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SUMMARY

If the restriction of incompressibility in the turbu-
lence problem is relaxed, the phenomenon of energy radi-
ation in the form of sound from the turbulent zone arises.
In order to calculate this radiated energy, it is shown that
new statistical quantities, such as time-space correlation
tensors, have to be known within the turbulent zone in
addition to the conventional quantities. For the particular
case of the turbulent boundary layer, indications are that
the intensity of radiation becomes significant onlyin super-
sonic flows. Under these conditions, the recent work of
Phillips is examined together with some experimental
findings of the author. It is shown that the qualitative
features of the radiation field (intensity, directionality) as
predicted by the theory are consistent with the measure-
ments; however, even for the highest Mach number flow,
some of the assumptions of the asymptotic theory are not

ein e WO a0l

yet satisfied in the experiments. Finally, the question of

o

turbulence damping due to radiation is discussed, with the
result that in the Mach number range covered by the experi-
ments, the energy lost from the boundary layer due to
radiation is a small percentage of the work done by the

wall shearing stresses.
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INTRODUCTION

When the compressibility of the fluid is taken into account, a new aspect of the turbulence problem
will arise. In a compressible fluid a disturbance from a source will propagate at a finite speed and will
influence the flow field over a finite distance in a given time. This means that in calculating the flow
properties at a given point and time, it will now be necessary to know the behavior of the disturbance source
at a certain earlier time. Thus, the concept of retarded time and retarded potential naturally arises. This
fact is reflected in the statistical description of a fluctuating flow field; in order to calculate, for instance,
the pressure fluctuations emanating from a turbulent shear field, it will now be necessary to know certain

space-time correlation functions within the shear field heretofore not considered.

In order to fix our ideas, we will choose a definite geometry for a turbulent shear flow: the boundary
layer. Thus, we have a turbulent fluid streaming over a rigid wall and want to examine the time-dependent
pressure field outside of the layer. Within the layer the fluctuations may be described primarily in terms of
vorticity and entropy modes and, to a lesser extent, sound modes. Outside the layer the first two modes die
out rapidly, so that at a sufficiently large distance from the shear zone (several wavelengths away) one
expects to find only fluctuations of the sound mode type present, usually referred to in the literature as
aerodynamic noise. We will seek a relation between this sound field and the fluctuations within the boundary

layer.

The mathematical tools to handle the radiation have been well developed in the electromagnetic,
acoustic and nonstationary supersonic theory. Thus, once the aerodynamic noise problem has been properly
formulated and linearized - - and this can be done with reasonable assumptions -- in principle, at least, a
solution can be obtained. The main difficulty and the reason for the rather slow progress in this field is the
fact that the soluticn is written in terms of the aforementioned statistical quantities of the turbulence field

about which very little if any information is available.

It is interesting to note that one new feature in a compressible turbulence is the fact that the
pressure energy radiated away from the turbulent zone represents a new form of energy loss besides the
dissipation. The question naturally arises as to whether or not, at sufficiently high Mach number, the radi-

ation can be intense enough to exceed the rate of turbulence production and thus dampen out the turbulence.
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The main purpose of this paper is not to give a comprehensive literature survey on the subject, but
rather to extract those ideas that seem to be most helpful in understanding the mechanism of radiation in the
case of a turbulent boundary layer. Since recent measurements indicate that the intensity of radiation becomes
significant mainly in supersonic flows, theories that depend on the assumption ¥ << 1 will be merely touched

upon; the discussion will concentrate on the supersonic problem.

FORMULATION OF THE PROBLEM

Taking the divergence of the momentum equation and using the continuity equation, one obtains

2 2
92 0pu.u. 9*T..
AL V2 M A | (1)
de? dx;0x;  O0x;0x;

where 7".1. is the viscous stress tensor.

In order to eliminate the density (at least from the leading terms), Phillips has rewritten this

equation in the form (Ref. 1)
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The last two terms in the equation represent entropy fluctuations and viscous effects. If we restrict ourselves
to small fluctuations and to regions not too far from the shear layer, where diffusion effects are not important,

these terms may be neglected.

The left-hand side of the equation has the form of a wave equation in which the time derivatives
have been replaced by those following the motion, and the propagation velocity is a variable. On the right-
hand side, the velocity tem is usually referred to in the literature as the pressure-generation term. This

nomenclature, however, is somewhat misleading and needs some clarification. The velocity fluctuation
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should of course be considered as an independent variable together with the pressure. This, unfortunately,
renders the problem hopelessly complicated. One could adopt the point of view (see, for instance, Ref. 2
that the velocity field within the shear layer is known from measurements, and therefore the right-hand side
may be considered a known forcing function for the wave equation. A much more satisfying approach is that
of trying, by a suitable assumption, to decouple the pressure field from the velocity field: provided the Mach
number is not very high, one may assume that the velocity fluctuation within the shear layer has predominantly
vorticity modes; that is to say, the noise field generated by the turbulent shear layer will contribute only a
negligible velocity field within the layer. There is some experimental evidence which indicates that this
assumption is reasonable. While the pressure fluctuations in the far field vary an order of magnitude in the
Mach number range considered, the velocity fluctuation field in the boundary layer (in an appropriately
normalized form) does not change as was shown in the previous paper by Morkovin; similarly the wall
pressure fluctuations, measured recently by Kistler, vary only slowly with Mach number (see Fig. 1; p/7  is

. . . *
the ratio of rms pressure fluctuation to wall shearing stress).

Thus, if the velocity field within the boundary layer is known a priori, the problem reduces to
solving a wave equation with a known source term. The mathematical difficulty in the solution lies mainly in
the fact that the governing partial differential equation has variable coefficients, and some suitable simplifi-
cation has to be made in order to obtain a solution. In the literature, one finds two approaches which will be

discussed below.

a. Low Mach number solution: Lighthill succeeded in reducing the problem to that of classical
acoustics by considering flows with ¥ << 1 (Ref. 3). Under this circumstance, we can replace the density in

the generation term (Eq. 1) by a constant value and neglect a term of the form

under the assumptions that the temperature of the flow field is nearly uniform and the fluctuations are

locally isentropic (a is the local mean speed of sound; subscript « refers to free-stream conditions). With

this simplification we obtain

*
The author wishes to express his thanks to Professor Kistler for permission to use these results before publication.
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The problem is thus reduced to finding the pressure fluctuations in a uniform acoustic medium at rest
produced by certain types of sources. The solution for the case of the boundary layer was first obtained by
Curle (Ref. 4) in a quadrature form in which the integrands contain the Reynolds stresses and pressure forces
taken at appropriately retarded times. (Other authors, Refs. 5 and 6, gave the results in somewhat different

form.) It follows that the pressure intensity p2 will contain the space-time correlations of these quantities.
In order to obtain numerical values for p2, it is, of course, necessary to know the correlations throughout the
shear zone. For the case of a boundary layer of constant thickness, Phillips estimated the intensity of

pressure radiation and found it to be negligibly small (Ref. 7). Indeed, measurements of pZ in supersonic

flows indicate a very rapid decrease in intensity as the Mach number approaches subsonic values.

Thus it appears that for boundary layers the radiation problem becomes interesting mainly in super-
sonic flows. In this case, however, the mathematical difficulties become much larger. Lighthill’s very useful
acoustical analogy cannot be extended to higher Mach number flows. The physical problem, of course, becomes
gradients; the convection velocities of the sources can no longer be neglected and can be subsonic or super-

sonic with respect to the free stream.

b. Solution for M » = : Phillips has studied this problem using Eq. (2) and has succeeded in obtain-
ing a solution for the asymptotic case of ¥ » o (Ref. 1). Although he considered a free shear layer, his
theory can be easily adapted to the boundary layer. The main results may be described as follows: the wave-
number frequency energy spectrum of the pressure fluctuations at a point outside the boundary layer corre-
sponding to a given wave number k and frequency n is contributed entirely by a certain critical layer within
the boundary layer that lies at a distance Y from the wall where n + kl UY)=0 (kl is the x component of the
vector k). In other words, one may consider at ¥ a frozen eddy pattern that is convected downstream with a
velocity U(Y) which is supersonic with respect to the free stream (Fig. 2). The pattern thus moves like a
wavy wall in a supersonic stream and radiates energy in the form of Mach waves, the direction of the waves
depending on the relative velocity between U(Y) and the free stream. The resulting pressure spectrum has

the form
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where n = -—kl U(Y), and Y(Y/8, I;: n) is the wave-number frequency spectrum of the v’ fluctuations in the

boundary layer at Y.

Following Phillips, if one now makes the rough approximation that ¥ (Y/9, l-c: n) ~ ¢ (l:) 9(1-;) is
independent of Y where 6 (k) is an integral time scale of the v’ spectrum of the order of 3/U_, one obtains

for the pressure intensity

00 U
d ——
00 Y
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— 9 — P 8
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The following comments may be made about the result:

1. The pressure field outside of the boundary layer is uniform independent of the distance

from the plate.

2. The variation of the radiated pressure intensity with Mach number cannot be expressed
explicitly. The value of the integrand decreases rapidly with Mach number (roughly as
M2) so that the intensity is expected to vary much slower than H3/2,

3. Within the framework of the theory, directionality of the radiation can also be predicted.
It may be shown that as the Mach number of the free stream is increased, a larger portion
of the total radiated energy will be concentrated in a given direction, the direction of

propagation approaching the perpendicular to the boundary layer as ¥ » .
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DISCUSSION

In this case, as in any type of asymptotic solution, one would like to know whether the results of
such a solution could be applied to finite values of Mach numbers. In this section we will examine the

existing experimental information on sound radiation in the light of Phillips’ theory.

In a recent work (Ref. 8) it was shown that in a supersonic wind tunnel the fluctuations in the free
stream are mainly pressure or sound waves emanating from the turbulent boundary layers of the four tunnel
walls. The sound field intensity was found to be very uniform a few wavelengths outside of the boundary
layer. Figure 3 shows the normalized tﬁ fluctuations near the edge of the boundary layer for several Mach
numbers. It is seen that in the free stream the sound field intensity (where v 'is proportional top ') is
uniform indeed. Furthermore, the nonuniformity in intensity extends farther out of the boundary layer for the
low Mach number flow. This is not surprising since, as will be seen later, the nondimensional wave length

of the sound field /8 = —()xx/S) cos O is larger at lower Mach numbers. (6 is the angle between the nommal

to the wave front and the flow direction.)

The directional characteristics of the field may also be investigated by measuring the space-time
correlation of the pressure fluctuations. Kigure 4 shows the result of such measurements for three Mach
numbers. The two hot wires were behind each other at a distance A x apart, indicated in the figure; they were
also displaced in the plane perpendicular to the flow direction sufficiently that no mutual interference was
observed. It is seen that there exists a particular time delay 7, for which the correlation is a maximum; or
expressing it another way: there exists a preferred velocity U, = Ax/7, with which the fluctuation patterns
are convected downstream. Since the measurements are made several wavelengths away from the layer, one
can assume the sound waves to be plane. Then the above result implies that the wave fronts have a pre-

ferred direction; as a matter of fact, with increasing Mach number more and more of the sound energy is

oriented in one particular direction (the maxima of the correlation curves become stronger).

A consistent result is obtained if the spectra of the pressure fluctuation obtained at various Mach
numbers are compared (the Re/in. of the tunnel, or approximately U _A/v was held constant). Figure 5 shows
that by choosing for the convection velocity the values obtained by the correlation method, the spectra
exhibit a similarity throughout the wave number range. This implies that the directional characteristics of the
sound waves of all wavelengths are the same. The similarity also implies that for a given boundary layer, the

wavelengths A = A cos 0 decrease with increasing Mach number.
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Figure 6 shows the variation of the convected velocities with Mach number. The upper curve corre-
sponds to those obtained by observing the pressure fluctuations at the wall. As pointed out earlier, these
fluctuations are believed to be produced mainly by the vorticity field within the layer, by the large-scale
energy-carrying eddies. It is seen that for low speeds the convection velocity is 0.8 U, , indeed the same
as found by Favre for the large-scale eddies from the space-time velocity correlation measurements (Ref. 9).
The lower curve shows the convected velocities of the sound field in the free stream. If one identifies
these with some average velocities of sources producing the sound, one may explain the Mach number vari-
ation of these convection speeds in terms of Phillips’ picture. According to Phillips, within the boundary
layer only an inner layer which flows supersonically with respect to the free stream is the effective sound
producer. The sound sources are then convected downstream with some average velocity of this layer.
Clearly, as the free stream Mach number increases, the relatively supersonic layer thickens, containing higher

velocity sources.

From the above discussion of the theoretical and experimental results, one arrives at the following
conclusion: Phillips’ basic idea — namely, that the sound generation mechanism consists of a moving,
spacially random, virtual wavy wall formed by an eddy pattern that is convected supersonically with respect
to the free stream ~ is consistent with the main features of the sound field found experimentally. Such a
virtnal wall radiates a sound far-field that is homogeneous and has certain directional properties described
earlier. However, it seems that the experimental Mach numbers are not high enough to yield the same
functional behavior of the sound intensity with Mach number as predicted by the asymptotic theory. The
subsonic region (as shown in Fig. 2) even for M = 5 extends over half of the boundary layer. This implies
that the sound fluctuations produced by the virtual wall will be attenuated in the subsonic region adjacent
to this wall as they are radiated out in the far-field, the attenuation being much higher for the large wave
numbers. This is believed to be partly the reason that the sound spectrum in the far-field contains much less

energy in the high-frequency region than the spectrum of the generating function v'(see dashed line in Fig. 5).

If one now adopts the over-simplified point of view that all the sound is produced in a layer near the
wall, the average velocity of which is Uc (the averaging is taken spacially across the layer), one may study
the equivalent problem of the sound field produced by a randomly wavy wall moving with a relative Mach

number
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From the well-known potential solution, one obtains

2 2 it
T T S (& m, ) ds dndr
y2p2 U2 u2-1

r r

where (£, 7, T) is a space-time correlation function. (§ = x;, ~ x5, 7 =z, - z, in the plane of the layer;
7 is the time delay ty - t2.) Since Mr =(1- UC/UN)Mw = 1/cos O, it is easy to show that the above
expression becomes

Y 5 2

p ‘2 0’2 M
’)/2_;;2 Ui sin? 6

J (&, m,7) dE dndT

In order to estimate the space-time correlation, one has to make some assumptions on the statistical
behavior of the wall wavyness. It is reasonable that the fluctuations are correlated only over a certain area,
say L L , where L  and L, are integral lengths that scale with the boundary layer thickness. Furthermore,
the correlation must depend on a time scale corresponding to the average life time of a ‘‘bump’’; we assume

for lack of better information that it scales with S/Uc. Thus we may write for the space-time correlation

LLz T U

W&, = —— —5 5,(8) 8y(m)
§2 8

where SD(f), 50(77) are Dirac delta functions. Finally, since v '2 scales with the friction velocity
Uz = Cf/2 U2, we may write

oo ?

c

'y 2
2,2 ¢ LL, TU, U M2

¥ 2 2 82 8§ U, sin?8
This relation indicates that the pressure intensity varies with the square of the Mach number. In Fig. 7 a
comparison is made between the measured rms pressure fluctuations ’}; in the far-field and this relation in

which we assumed
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It is seen that the variation of the pressure fluctuations is much stronger than indicated by the above relation.
The explanation may be due to the quantity 7U_/8 which, according to Ref. 9, varies rapidly across the
boundary layer. In the Mach number range 1.6 to 5, the thickness of the radiating layer increases rapidly, and

the increase in p might be partially due to changes in TU_/§.

The only conclusion we can draw from the above discussion is that in the interesting region of low
supersonic Mach numbers there is no theory yet that describes properly the very fast increase of radiated
energy of a boundary layer as the flow Mach number is increased. Additional measurements, especially that

of space-time correlations of the v’ fluctuation near the wall, are necessary to further clarify the problem.

With reference to the question of turbulence damping mentioned in the Introduction, it is possible, on
the basis of the measurements described, to make a rough estimate of the energy loss due to radiation. The

sound energy density in a moving medium may be written (Ref. 10)

P
pa® a
where the phase velocity
i_.a
Vp=a+ =a+U_cos 0 =a(l+M_ cos6)
a
or
2.2
E=2 27 (14 cos 6)
P2 ,),2

The sound energy flux per unit area from the boundary layer

- >

N=E@+U)

2 3
V|- "_2 _p% (1+M_ cos 8) /M2 +1+2M_ cos 6)
p2 vy

10
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or, in a nondimensional form,

N 22 (LM, 08 0) /H? 41+ 2M, cos 6

oUS e

At M =5 the experiments give (remembering that the hot wire senses the radiation coming from two walls of

the wind tunnel):

|

12

~

= - 1.2 x 1074 cos 8 = =0.45

= |

and therefore

- 28x107°
pU

r T

This energy flux may be compared to the total work done by the wall shearing stress ¥ = 75, U_ . In

a nondimensional form

W w G
pUS  pU? 2

For the particular example, this value is approximately 3.3 x 1074, It is seen that at M = 5, the energy lost
due to radiation is merely of the order of one percent of the total work done by the wall shearing stress. Thus
it is quite clear that in order to resolve the question of complete turbulence damping, the radiation intensity

variation with higher Mach numbers would have to be clarified.

1
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