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SUMMARY 

If t he  restriction of incompressibility in the turbu- 

lence problem is relaxed, the phenomenon of energy radi- 
ation in the form of sound from the turbulent zone arises. 
In order to calculate this radiated energy, it i s  shown that 
n e w  statistical quantities, such as time-space correlation 
tensors, have to be known within the turbulent zone i n  
addition to the conventional quantities. For the particular 
case of the turbulent boundary layer, indications are that 
the intensity of radiation becomes significant only in super- 
sonic flows. Under these conditions, the  recent work of 
Phillips is examined together with some experimental 
findings of the author. It is shown that the qualitative 
features of the radiation field (intensity, directionality) as  
predicted by the theory are consistent w i t h  the measure- 
ments; however, even for the highest Mach number flow, 
some of the assumptions of the asymptotic theory are not 

ye t  satisfied i n  the experiments. Fina!!y, t h e  q l ~ e s t i ~ n  ef 
turbulence damping due to radiation is discussed, with the 

result that in the Mach number range covered by the experi- 
men t s ,  the energy lost from t h e  boundary layer due to 
radiation i s  a small percentage of the work done by the 
wall shearing stresses.  
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INTRODUCTION 

When the  compressibility of the  fluid i s  taken into account,  a new a s p e c t  of the turbulence problem 

will arise.  In a compressible fluid a disturbance from a source  will propagate a t  a finite speed  and will 

influence the  flow field over a finite dis tance in a given time. T h i s  means that in calculating the flow 

properties at a given point and time, i t  will now be necessary  to know the  behavior of the disturbance source  

at a certain earlier time. Thus,  the concept of retarded time and retarded potential  naturally a r i ses .  T h i s  

fact  i s  reflected in the s t a t i s t i ca l  description of a fluctuating flow field; in order to calculate,  for ins tance ,  

the pressure  fluctuations emanating from a turbulent shea r  field, i t  will now be necessary  to know certain 

space-time correlation functions within the  shea r  field heretofore not considered. 

In order to fix our ideas ,  we will choose a definite geometry for a turbulent shear  flow: the  boundary 

layer. Thus ,  we have a turbulent fluid streaming over a rigid wall and want to examine the time-dependent 

pressure  field outside of the layer. Within the layer  the fluctuations may be descr ibed  primarily in terms of 

vorticity and entropy modes and, to a l e s s e r  extent, sound modes. Outs ide  the  layer  the first  two modes d i e  

out rapidly, s o  that at  a sufficiently large d is tance  from the s h e a r  zone ( severa l  wavelengths away) one  

expec t s  to find only fluctuations of the sound mode type present,  usua l ly  referred to in the l i terature as 

aerodynamic noise.  We will s eek  a relation between th i s  sound field and the  fluctuations within the  boundary 

layer. 

T h e  mathematical tools to handle the radiation have been well developed in the  electromagnetic, 

acous t ic  and  nonstationary supersonic theory. Thus,  once  the  aerodynamic no i se  problem h a s  been properly 

formulated and linearized - -  and th is  can be done with reasonable  assumpt ions  - -  in principle, a t  l ea s t ,  a 

solution can  be obtained. T h e  main difficulty and the reason for the  rather slow progress  in th i s  f ield i s  the  

fac t  that  the solution i s  written in terms of the aforementioned s t a t i s t i ca l  quant i t ies  of the turbulence field 

about which very little if any information i s  available. 

I t  i s  interesting to note that one  new feature in a compressible turbulence i s  the  f ac t  tha t  the 

pressure energy radiated away from the  turbulent zone represents  a new form of energy lo s s  bes ides  the  

dissipation. T h e  question naturally a r i s e s  as to whether or not,  a t  sufficiently high Mach number, the radi- 

ation can b e  intense enough to exceed the ra te  of turbulence production and thus  dampen out the  turbulence. 

2 
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The  main purpose of th i s  paper  i s  not to give a comprehensive l i terature survey on the subjec t ,  but 

rather to extract  those i d e a s  tha t  s e e m  to be most helpful in understanding the mechanism of radiation in  the 

case  of a turbulent boundary layer. Since recent  measurements indicate  that the intensity of radiation becomes 

s ignif icant  mainly in supersonic  flows, theories  that  depend on the assumption M << 1 will be merely touched 

upon; the discussion will concentrate on the supersonic problem. 

FORMULATION OF THE PROBLEM 

Taking the divergence of the momentum equation and us ing  the continuity equation, one obta ins  

a 2 pu.u .  $7.. 
' I  + -  ' I  - - v 2 0  = d 2 P  

r 

axi axj axi a x .  
I 

a t 2  

where 7.. i s  the v iscous  s t r e s s  tensor. 
' I  

In order to eliminate the densi ty  ( a t  l e a s t  from the leading terms), Phi l l ips  has rewritten th i s  

equation in the form (Ref. 1) 

a d r . .  
(2) 

1 D S  ' I  

axi p axi 
a a aui auj 

- l o g p  - - a 2  - l o g p  = y - - 0 2  

D t 2  a x i  dxi  axj axi 

The  l a s t  two terms in the equation represent  entropy f luctuat ions and v iscous  effects.  If we res t r ic t  ourselves  

to small f luctuat ions and to regions not too far from the shea r  layer, where diffusion e f fec ts  are not important, 

these  terms may be neglected. 

The left-hand s ide  of the equation has the form of a wave equation in which the time der ivat ives  

have been replaced by those  following the motion, and the propagation velocity i s  a variable. On the right- 

hand s ide ,  the velocity term is usual ly  referred to  in the l i terature as the  pressure-generation term. This I *  

nomenclature, however, i s  somewhat misleading and needs some clarification. The velocity fluctuation 

I - -  
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should of course be considered as an independent variable together with the pressure.  This ,  unfortunately, 

renders the problem hopelessly complicated. One could adopt the point of view ( see ,  for ins tance ,  Ref. 2) 

that the  velocity field within the shea r  layer  i s  known from measurements, and therefore the  right-hand s i d e  

may be  considered a known forcing function for the  wave equation. A much more sa t i s fy ing  approach i s  t ha t  

of trying, by a suitable assumption, to decouple the pressure  field from the  velocity field: provided the Mach 

number i s  not  very high, one may assume tha t  the velocity fluctuation within the shea r  layer  h a s  predominantly 

vorticity modes; that i s  to say ,  the  no i se  field generated by the  turbulent shea r  layer  will contribute only a 

negligible velocity field within the  layer. There  is some experimental ev idence  which ind ica tes  tha t  t h i s  

assumption is reasonable. While the pressure  fluctuations in the  far field vary an  order of magnitude in the  

Mach number range considered, the velocity fluctuation field in the boundary layer  (in an appropriately 

normalized form) does not  change as was  shown in the previous paper  by Morkovin; similarly the  wall 

pressure fluctuations, measured recently by Kistler,  vary only slowly with Mach number ( s e e  F ig .  1; F / T ~  i s  

the ratio of rms pressure fluctuation to wall shearing s t ress )?  

Thus ,  if the velocity field within the boundary layer is known a priori, the problem reduces  to 

solving a wave equation with a known source term. T h e  mathematical difficulty in the solution l i e s  mainly in 

the f ac t  that  the governing partial  differential equation h a s  variable coefficients,  and some su i t ab le  simplifi- 

cation h a s  to be made in order to obtain a solution. In the l i terature,  one  f inds  two approaches  which will  be 

d i scussed  below. 

a. Low Mach number solution: Lighthil l  succeeded in reducing the  problem to that of c l a s s i ca l  

acous t ics  by considering flows with M << 1 (Ref. 3). Under t h i s  circumstance,  we can rep lace  the  density in 

the generation term (Eq. 1) by a constant value and neglec t  a term of the  form 

under the  assumptions tha t  t he  temperature of the flow field i s  nearly uniform and  the f luc tua t ions  a re  

locally isentropic (a i s  the loca l  mean speed  of sound; subscr ip t  00 re fers  to free-stream conditions). With 

th i s  simplification we obtain 

* T h e  author wishes to express  h i s  thanks to Professor Kistler for permission to u s e  these  resul ts  before publication. 
~~ 
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1 a2p d2Ui  ui 
- ~ -  02p = p, - 
a: at2 axi ax. 

I 

T h e  problem i s  thus  reduced to finding the  pressure fluctuations i n  a uniform acous t ic  medium a t  r e s t  

produced by certain types  of sources .  The  solution for t he  c a s e  of t he  boundary layer  was  f i r s t  obtained by 

Curle (Ref. 4) in a quadrature form in which the integrands contain the  Reynolds  s t r e s s e s  and pressure  forces  

taken at appropriately retarded times. (Other authors, Refs.  5 and 6, gave the  r e s u l t s  in somewhat different 

form.) I t  follows that the pressure  intensity p 2  will contain the space-time correlations of these  quantit ies.  

In order to obtain numerical va lues  for p 2 ,  i t  i s ,  of course, necessa ry  to know t h e  correlations throughout t he  

shear  zone. Fo r  the  c a s e  of a boundary layer  of constant thickness,  Ph i l l i p s  es t imated  the  intensity of 

pressure  radiation and found i t  to b e  negligibly small (Ref. 7 ) .  Indeed, measurements  of p 2  in supersonic 

flows ind ica te  a very rapid dec rease  in intensity as the Mach number approaches  subsonic  values.  

- 

- 

- 

T h u s  i t  appears  that  for boundary l aye r s  the  radiation problem becomes interesting mainly in super- 

sonic  flows. In t h i s  ca se ,  however, the mathematical difficult ies become much larger. Lighthil l 's  very usefu l  

acous t ica l  analogy cannot he extended to higher Mach number flows. T h e  phys ica l  FrGSlem, of course, becomes 

more comp!ica~ed: the sound ...&city .,:.ithi= the layer  .,.Jill .;ary qp'""i&!y beccfise of the large teqjeraiurt 

gradients; t he  convection ve loc i t ies  of the  sou rces  can no  longer be neglec ted  and can be  subsonic  or super- 

sonic  with r e spec t  to the free stream. 

b. Solution for ill + w : Phi l l i p s  h a s  s tud ied  this problem us ing  Eq. (2) and h a s  succeeded in obtain- 

ing a solution for the asymptotic c a s e  of M +  ref. 1). Although h e  considered a free shea r  layer, h i s  

theory can be  eas i ly  adapted to the boundary layer.  The main r e su l t s  may be descr ibed  as follows: the  wave- 

number frequency energy spectrum of the pressure  fluctuations a t  a point ou t s ide  the  boundary layer  corre- 

sponding to a given wave number k and frequency n i s  contributed entirely by a certain cri t ical  layer within 

the boundary layer  tha t  l i e s  at a d is tance  Y from the wall where n + k, U ( Y )  = 0 ( k l  i s  t he  x component of the  

vector k). In other words, one may cons ider  a t  Y a frozen eddy pattern tha t  i s  convected downstream with a 

velocity U ( Y )  which i s  supersonic  with r e spec t  to the free stream (Fig .  2). The  pattern thus  moves l ike  a 

wavy wall in a supersonic stream and rad ia tes  energy in the form of Mach waves,  t he  direction of the waves 

depending on the relative velocity between U ( Y )  and the free stream. The result ing pressure  spectrum h a s  

- the form 

5 
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V fm  d -  

- 
2 

8 Pm 

3/ 2 - hfhiDo 
d -  

s Y 
d -  

2 6 

-b 

where n = - k ,  U ( Y ) ,  and $ J ( Y / ~ ,  k, n) i s  the wave-number frequency spectrum of the w '  fluctuations in the  

boundary layer a t  Y. 
-b - b - b  

Following Phi l l ips ,  if one now makes  the rough approximation that  $J ( Y / 8 ,  k, a)  - $ ( k )  B ( k )  i s  
-b 

independent of Y where B (k) is an integral  time s c a l e  of the w ' spectrum of the order of 6/Llm, one obtains  

for the pressure intensity 

- 
P I 2  - -  
-2 P t:) a -  

V 
d -  

A d  (f) 
Y 

d -  
s 

2 

2 

The following comments may be made about the result: 

1. The  pressure f ie ld  outs ide of the boundary layer  i s  uniform independent of the dis tance 

from the plate.  

2. The  variation of the radiated pressure intensity with Mach number cannot be expressed 

explicitly. The value of the integrand dec reases  rapidly with Mach number (roughly a s  
M 2 )  so that  the intensity i s  expected to vary much slower than M 3/2. 

3. Within the framework of the theory, directionali ty of the radiation C M  a l s o  be predicted. 

It may be shown that a s  the Mach number of the free stream i s  increased,  a larger portion 

of the total radiated energy will be concentrated in a given direction, the direction of 

propagation approaching the perpendicular to the  boundary layer  as M + 0 0 .  

6 



JPL Technical Report No. 32-1 19 

DISCUSSION 

In th i s  case ,  as in any type of asymptotic solution, one  would l ike to know whether the r e su l t s  of 

such a solution could b e  applied to finite va lues  of Mach numbers. In t h i s  sec t ion  we will examine the  

existing experimental information on sound radiation in the l ight of Phill ips '  theory. 

In a recent  work (Ref. 8)  i t  w a s  shown tha t  in a supersonic  wind tunnel the fluctuations in  the free 

stream are  mainly pressure  or sound waves emanating from the  turbulent boundary l a y e r s  of the four tunnel 

walls. The sound field intensity w a s  found to be very uniform a few wavelengths ou t s ide  of the boundary 

layer. F igure  3 shows  the  normalized u ' ~  fluctuations near  the edge  of the boundary layer  for severa l  Mach 

numbers. I t  is s e e n  that in the free stream the sound field intensity (where u ' is  proportional to p ' )  i s  

uniform indeed. Furthermore, the  nonunifonnity in intensity ex tends  farther ou t  of t he  boundary layer  for the 

low Mach number flow. T h i s  i s  not surprising s ince ,  as will be  s e e n  later, the  nondimensional wave length 

of the sound field A/6  = -(Az/6) c o s  8 is larger at lower Mach numbers. (8 i s  t he  angle  between the  normal 

to the wave front and the  flow direction.) 

T h e  directional charac te r i s t ics  of the  f ie ld  may also be  inves t iga ted  by measuring the space-time 

correiation of the pressure  fluctuations. F igure  4 shows the  r e su l t  of such measurements  for three Mach 

numbers. The two hot wires were behind each o ther  at a d is tance  A x  apart, ind ica ted  in the figure; they were 

also disp laced  in the p lane  perpendicular to the flow direction sufficiently tha t  no mutual interference w a s  

observed. It i s  s e e n  tha t  there e x i s t s  a particular time delay rm for which the correlation i s  a maximum; or 

expressing i t  another way: there e x i s t s  a preferred velocity U, = A x / r ,  with which the fluctuation pa t te rns  

are convected downstream. Since the measurements are made several  wavelengths away from the layer, one 

can assume the  sound waves to b e  plane. Then the  above resu l t  implies that the wave fronts have  a pre- 

ferred direction; as a matter of fact, with increas ing  Mach number more and more of the sound energy i s  

oriented in o n e  particular direction ( the  maxima of the correlation curves become stronger). 

A cons is ten t  resu l t  i s  obtained if the spec t ra  of the  pressure  fluctuation obtained at various Mach 

numbers are compared ( the  Re/in. of the tunnel, or approximately U o 0 A / v  w a s  held constant). F igure  5 shows  

that by choosing for the  convection velocity the values obtained by the correlation method, the spec t ra  

exhibit a similarity throughout the wave number range. T h i s  implies that  the directional charac te r i s t ics  of the 

sound waves  of a l l  wavelengths are the same. T h e  similarity also implies tha t  for a given boundary layer, the 

wavelengths A = A x  cos B dec rease  with increas ing  Mach number. 

- 

_. 
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Figure 6 shows the variation o f  the convected ve loc i t ies  with Mach number. T h e  upper curve corre- 

sponds  to those  obtained by observing the pressure  fluctuations at the wall. A s  pointed out earlier, t hese  

fluctuations are believed to be produced mainly by the vorticity field within the layer, by the large-scale 

energy-carrying eddies. I t  i s  s een  that for low s p e e d s  the convection velocity i s  0.8 U r n ,  indeed the same 

as  found by Favre  for the  large-scale eddies  from the space-time velocity correlation measurements (Ref. 9). 

T h e  lower curve shows the convected ve loc i t ies  of the  sound field in the free stream. If one ident i f ies  

t hese  with some average ve loc i t ies  of sou rces  producing the sound, one may explain the Mach number vari- 

ation of these convection s p e e d s  in terms of Phill ips’ picture. According to Phi l l ips ,  within the boundary 

layer  only an inner layer which flows supersonically with r e spec t  to the free stream i s  the effective sound 

producer. T h e  sound sources  are then convected downstream with some average velocity of t h i s  layer. 

Clearly,  as the  free stream Mach number increases ,  the relatively supersonic layer  thickens, containing higher 

velocity sources.  

From the above d iscuss ion  of the theoretical  and experimental resu l t s ,  one a r r ives  a t  the  following 

conclusion: Phillips’ bas i c  idea  - namely, tha t  the  sound generation mechanism c o n s i s t s  of a moving, 

spac ia l ly  random, virtual wavy wall formed by an eddy pattern tha t  i s  convected supersonically with r e spec t  

to the free stream - i s  cons is ten t  with the  main features of the sound field found experimentally. Such a 

virtual wall radiates a sound far-field that i s  homogeneous and h a s  certain directional properties described 

earlier. However, i t  s eems  that the experimental Mach numbers are not high enough to y ie ld  the  same 

functional behavior of the sound intensity with Mach number as predicted by the asymptotic theory. The  

subsonic  region (as shown in Fig.  2) even for M = 5 extends  over half of the  boundary layer. T h i s  implies 

that  the  sound fluctuations produced by the virtual wall will be attenuated in the  subsonic  region ad jacent  

to th i s  wall as they are radiated out in the far-field, the attenuation being much higher for the large wave 

numbers. T h i s  is believed to be partly the reason that the sound spectrum in the  far-field conta ins  much less 

energy in the high-frequency region than the spectrum of the generating function o ’ ( s e e  dashed l ine  in  Fig. 5). 

If one  now adopts  the over-simplified point of view that a l l  the sound i s  produced in a layer  near  t he  

wall, t he  average velocity of which i s  Uc (the averaging i s  taken spac ia l ly  ac ross  the layer), one may study 

the equivalent problem of the  sound field produced by a randomly wavy wall  moving with a relative Mach 

number 

8 
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From the  well-known potential  solution, one  obta ins  
_- 

where $(c,  7 ,  r )  i s  a space-time correlation function. (5  = x 1  - x 2 ,  

r i s  t he  time delay t l  - t 2 . )  Since MI = (1 - U c / U J  Mm = l / c o s  8 ,  i t  i s  easy to show that the above 

expression becomes 

= z1 - z 2  in t he  p lane  of the  layer; 

In order to es t imate  the  space-time correlation, one  h a s  to make some assumptions on the  s t a t i s t i ca l  

behavior of the  wall wavyness.  I t  i s  reasonable that the fluctuations are correlated only over a certain area,  

s ay  L x L z ,  where L x  and L z  are integral lengths that s ca l e  with the boundary layer  thickness.  Furthermore, 

the correlation must depend on a time s c a l e  corresponding to the  average l i fe  time of a “bump”; we a s sume  

for lack  of better information that i t  s c a l e s  with 6 / U c .  T h u s  we may write for the space-time correlation 

- 
where 60(5), sD(rl) are Dirac de l t a  functions. Finally, s ince  v r 2  s c a l e s  with the  friction velocity 

U: = c /2 u:, we may write f 

T h i s  relation ind ica tes  tha t  the  pressure  intensity varies with the  square  of the Mach number. In Fig.  7 a 

comparison i s  made between the  measured rms pressure fluctuations p in the far-field and th i s  relation in 

which we assumed 

% 

-. 

9 



IPL Technical Report No. 32-119 

It i s  seen that the variation of the pressure fluctuations i s  much stronger than indicated by the above relation. 

'Ihe explanation may be due to the quantity 7UJ6 which, according to Ref. 9, var ies  rapidly ac ross  the 

boundary layer.  In the Mach number range 1.6 to 5, the th ickness  of the radiating layer increases  rapidly, and 

the increase in might be partially due to changes in r U J S .  

The only conclusion we can draw from the above d iscuss ion  i s  that  in the interesting region of low 

supersonic Mach numbers there i s  no theory yet that  descr ibes  properly the very fas t  increase of radiated 

energy of a boundary layer a s  the flow Mach number is increased. Additional measurements, especially that 

of space-time correlations of the u fluctuation near the wall, are necessary  to further clarify the problem. 

With reference to the question of turbulence damping mentioned in the Introduction, i t  i s  possible ,  on 

the b a s i s  of the measurements described, to make a rough estimate of the energy l o s s  due to radiation. The  

sound energy density in a  moving medium may be written (Ref. 10) 

where the phase velocity 

or 

The sound energy flux per unit  area from the boundary layer  

-# -f 

N = E ( a ' + U , )  

10 
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_ _  or, in a nondimensional form, 

N 

Pu: Y2P2 

At M = 5 the experiments give (remembering tha t  the hot wire s e n s e s  the  radiation coming from two wa l l s  of 

the wind tunnel): 

~ 

12 
cos e = -0.45 - -  - 1.2 10-4 

-2 P 

and therefore 

N - -  - 2.8 x loc6 
P u: 

-. 
1 his energy f lux may 'he campared to (he totai work done by the  waii  shear ing  s t r e s s  = TT 6,. i n  

a nondimensional form 

For the particular example, t h i s  value i s  approximately 3.3 x 

due to radiation i s  merely of the  order of one  percent of the  total work done by the  wall shearing s t r e s s .  T h u s  

i t  i s  quite c l ea r  that  in order to reso lve  the question of complete turbulence damping, the radiation intensity 

variation with higher Mach numbers would have  to be clarified. 

I t  i s  s e e n  tha t  at M = 5, the energy l o s t  

11 
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Fig. 1. Wall pressure fluctuation level 

Fig. 2. Schematic diagram of the radiation mechanism 

Fig. 3. Fluctuation near the edge of the boundary layer 
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Fig. 6. Convection velocity ratio for 

pressure fluctuations 

Fig. 7. Far-field pressure fluctuations 

Fig. 4. Space-time correlation in far-field 

Fig. 5. Energy spectrum of pressure fluctuations 
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