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A REVlEw OF THE STALL CHARACmISTICS OF SWEPT WINGS 
+ 

By Charles W .  Harper and Ralph L .  Maki 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

The unsat isfactory s i tua t ion  regarding the  understanding of t he  s t a l l  of 
swept wings complicates t he  design of new a i r c r a f t .  
presented which serves as a usefu l  guide i n  determining what must be done 
empirically t o  achieve a given set of wing cha rac t e r i s t i c s .  Many general  and 
specif ic  s tudies  made t o  cont ro l  t h e  s t a l l i n g  of swept wings support t he  
hypothesis; however, it has not been possible t o  predict  quant i ta t ively the  
wing cha rac t e r i s t i c s .  

A general  hypothesis i s  

This state of  ignorance regarding swept-wing s ta l l  could wel l  be ser ious.  
To date the  s t a l l  cont ro l  devices i n  use stem from a background of unswept- 
wing s t a l l i n g  experience. There i s  no reason t o  assume these are necessarily 
the  best  solution f o r  t he  swept wing. A more fundamental understanding of the  
problem i s  needed t o  avoid an unnecessary penalty i n  low-speed f l i g h t  
performance and safe ty  of swept-wing a i r c r a f t .  

INTRODUCTION 

The increased appl icat ion of t he  swept-wing pr inciple  t o  high-speed 
commercial a i r c r a f t  has focused a t ten t ion  once again on the  d i f f i c u l t i e s  of 
achieving, with swept wings, su f f i c i en t ly  high maximum l i f t s  together with 
sa t i s fac tory  s t a b i l i t y  and control  f o r  landing and take-of f .  
again" i s  used as a reminder t h a t  t he  problem w a s  faced a decade or more ago 
with the  introduction of swept wings in to  mi l i ta ry  a i r c r a f t  design. The 
solutions t o  the  h igh - l i f t  and associated s t a b i l i t y  and control  problems 
which were adopted f o r  m i l i t a r y  a i r c r a f t  cannot necessar i ly  be considered 
adequate f o r  commercial a i r c r a f t .  That i s ,  mechanical complication, e lec-  
t ron ic  ass is tance ( i n  the  form of augmentation), and increased approach and 
landing speeds do not appear desirable  f o r  commercial a i r c r a f t .  

The phrase "once 

Despite t he  obvious d e s i r a b i l i t y  of achieving a fundamental understanding 
of these low-speed problems so they could be analyzed i n  a quant i ta t ive sense, 
it i s  a f a c t  t h a t  most, if not a l l ,  of t he  solut ions f o r  t he  m i l i t a r y  a i r c r a f t  
were reached i n  an empirical  manner through wind-tunnel s tudies  guided by only 
qua l i ta t ive  understanding of t h e  phenomena involved. This s i tua t ion  exis ted 
not because of lack of i n t e re s t  i n  t he  fundamentals of t he  problem, but simply 
because time did not allow the  painstaking invest igat ions required.  

In view of t h e  in t e re s t  i n  wider appl icat ion of swept wings, it is 
considered of value t o  review t h e  state of understanding of t h e i r  low-speed 



problems. 
conclusions given a re  based oi5 a ce r t a in  amount of conjecture.  
it is  believed they may serve as a departure point f o r  addi t iona l  work. The 
following mater ia l  is presented with t h i s  in m i n d .  
drawn from many experiments and chosen only t o  i l l u s t r a t e  pa r t i cu la r  points ;  
no attempt is  made t o  be complete in data presentation; where o r ig ina l  data 
a r e  avai lable ,  the  published sources a re  c i t e d .  

Obviously, since the  information is not complete or def in i t i ve ,  
Nevertheless, 

The data presented a re  
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aspect r a t i o  

e f fec t ive  aspect r a t i o  

wing span 

chord 

mean aerodynamic chord 

wing drag coef f i c  Lent 

wing l i f t  coef f ic ien t  

a i r f o i l  sect ion l i f t  coef f ic ien t  

wing pitching-moment coef f ic ien t  

Mach number 

pressure coef f ic ien t  

Reynolds number 

chordwise dis tance from a i r f o i l  leading edge 

angle of a t t ack  

taper  r a t i o  

sweep angle 

l o c a l  wing spanwise dis tance,  f r ac t ion  of wing semispan 
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Subscript s 

maX maximum 

U upper surface 

DISCUSSION 

The major low-speed aerodynamic problems facing the  designer who chooses 
low" maximum l i f t  and, more important, t he  appear- 

Not surpr is ingly,  

11 t o  use swept wings a re  the  
ance , well  below maximum l i f t  , of extremely nonlinear pitching-moment curves 
which usually fu r the r  l i m i t  the  "usable" maximum l i f t .  
po ten t i a l  f l o w  analysis  explains none of t h i s  although it does, in i t s  various 
forms, describe with good accuracy a l l  the  cha rac t e r i s t i c s  of swept wings i n  
the  range of l o w  lift coef f ic ien ts .  Since the  swept-wing problems a t  low 
speeds a re  a consequence of viscous e f f ec t s ,  neglected i n  po ten t i a l  flow 
analysis,  any improvement i n  swept-wing charac te r i s t ics  w i l l  come from 
improved understanding and cont ro l  of t he  viscous e f f e c t s .  It can be conjec- 
tured log ica l ly  t h a t  the  viscous e f f ec t  of major importance t o  these problems 
is  f l o w  separation re la ted  t o  s ta l l  of t he  s t r a igh t  wing; i n  the  following the  
term "stalling'l w i l l  be used t o  specify 
appears t o  have dominant e f f ec t s  on wing aerodynamic parameters. 

CL values where flow separation 

The f irst  f igure,  showing r e su l t s  t m i c a l  of many swept-wing investiga- 
t i ons ,  i l l u s t r a t e s  t he  points  under discussion. In  the  low l i f t - coe f f  i c i en t  
range the  wing charac te r i s t ics  a re  s i m i l a r  t o  those predicted by po ten t i a l  
flow theory wherein viscous e f f e c t s  are  ignored. Above about two-thirds 
maximum l i f t ,  however, the rate of drag r i s e  with l i f t  increases rapidly,  the  
l i f t  curve slope decreases, and t h e  aerodynamic center shifts  forward, a l l  
apparently r e s u l t s  of wing s t a l l i ng ;  f i n a l l y ,  t he  measured maximum l i f t  i s  
lower than t h a t  which would be ant ic ipated on the  bas i s  of experience with 
unswept wings alone. 

Other experimental r e su l t s ,  s i m i l a r  t o  those of f igure 1, led t o  
extensive research programs directed at finding some design features which 
would a f f ec t  t he  s t a l l i n g  behavior i n  a manner t o  raise the  CI; a t  which 
s t a l l  first occurred, t o  raise C b a x ,  and t o  avoid the  pitch-up associated 
with forward s h i f t  of t h e  aerodynamic center .  The solut ions were d i f f e ren t  
f o r  each combination of plan-form sweep, aspect r a t i o ,  and taper  r a t i o .  Many 
attempts were made t o  cor re la te  these s tudies  on the  bas i s  of geometric param- 
e t e r s ;  some success w a s  achieved, notably reference 1, but ,  i n  general, t he  
correlat ions were of l imited value.  It became increasingly c l ea r  t h a t  some 
design-chart approach similar t o  reference 2 w a s  required t o  provide the  
designer with a measure of what swept-wing performance might be e q e c t e d  and 
what geometric f ac to r s  could be expected t o  influence t h i s  performance. 

The success of t h e  method of reference 2 i n  predicting unswept w i n g  
charac te r i s t ics  underscores i t s  basic soundness. Although reference 2 could 
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not be successfully applied d i r e c t l y  t o  swept wings, i6 seemed log ica l  t o  
assume t h i s  did not inval idate  t h e  basic correctness but ra ther  t h a t  sweep had 
introduced new or emphasized h i the r to  unimportant f ac to r s  which must be 
included. 

The remainder of  t h i s  paper, then, w i l l  be a discussion of the  e f f o r t s  
t o  re f ine  or extend the  pr inciples  of reference 2 i n  an attempt t o  a r r ive  at  
an acceptable quant i ta t ive understanding of t he  s t a l l i n g  of swept wings. 

Basic Approach t o  the  Prediction of 
Swept -Wing Character is t ics  

Prediction of f i rs t  appearance of s t a l l . -  A s  shown i n  f igure  1, the  
charac te r i s t ics  of swept wings f a l l  i n to  t w o  regimes: t h a t  where the  e f f e c t s  
of v i scos i ty  a re  s m a l l  and where it has been demonstrated t h a t  inviscid 
theories  apply, and t h a t  where the e f f ec t s  of v i scos i ty  a re  dominant. The 
f i r s t  s tep  i n  the  study of the  s t a l l i n g  of swept wings, then, would be t o  
develop a method t h a t  defines adequately the  upper l i m i t  of the  inviscid-flow 
regime and thus would enable adequate design cont ro l  of the  f ac to r s  t h a t  
determine the  f i rs t  appearance of s t a l l .  

The method given i n  NACA TR 572 ( r e f .  3 )  , with various minor refinements, 
has been shown t o  be sa t i s fac tory  f o r  determining s ta l l  on unswept wings. 
Very important t o  the  usef&ness of t h i s  method i s  the  degree t o  which the  
e f f ec t s  of a i r f o i l  sect ion and wing plan form can be studied independently; 
although such independence cannot be rigorously j u s t i f i e d ,  t h e  benefi ts  from 
making it a su f f i c i en t ly  accurate approximation are so tremendous t h a t  many 
studies have been directed a t  reducing t h e  degree of approximation. 

A t  l e a s t  two changes t o  the  method of TR 572 are  necessary t o  include, 
correctly,  fac tors  known t o  a f f ec t  the  beginning of swept-wing stall :  a span 
loading theory applicable t o  the  swept wing must be subst i tuted f o r  l i f t i n g -  
l ine  theory, and the  concepts of simple-sweep theory must be followed i n  
applying two-dimensional a i r f o i l  da ta .  Aside from these changes, the  proce- 
dure is  iden t i ca l  t o  t h a t  of TR 572. A s  shown i n  f igure  2 f o r  a typ ica l  case, 
the  loading theory w a s  used t o  es tab l i sh  the  sect ion l i f t - coe f f i c i en t  d i s t r i -  
bution across the  wing (shown by the  so l id  curve),  and simple-sweep theory 
concepts were applied t o  two-dimensional a i r f o i l  da ta  t o  define the  d i s t r ibu -  
t ion  of maximum sect ion l i f t  coeff ic ient  (shown by the  dashed l i n e ) .  
span-loading theory used i n  place of t h a t  based on the  l i f t i n g  l i ne  w a s  the  
one proposed i n  reference 4. 
instance, t o  be accurate f o r  a wide range of plan f o r m s ,  but could be sup- 
planted with a s t i l l  more accurate method. The simple sweep concept w a s  used 
with two-dimensional a i r f o i l  data  i n  order t o  i so l a t e  three-dimensional 
f ac to r s .  If instead the  streamwise section of a swept wing had been examined 
(not compatible with "simple-sweep" concepts) t he  conclusions regarding the  
three-dimensional f ac to r s  would d i f f e r .  

The 

This has been shown, i n  reference 5 ,  f o r  
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The simple-sweep concept states t h a t  t he  sect ion charac te r i s t ics  on an 
infinite-span w i n g  do not vary as t h e  wing i s  yawed, provided the  section 
chosen is  normal t o  t h e  constant percent chord l i n e s  and provided the  r e fe r -  
ence veloci ty  chosen i s  p a r a l l e l  t o  t h i s  sect ion.  
charac te r i s t ics"  a re  not only the  pressure d i s t r ibu t ions  associated with 
inviscid flow but a l so  the  associated boundary-layer charac te r i s t ics ,  whether 
laminar or tu rbulen t .  Thus, the  changes i n  wing charac te r i s t ics  as the  
i n f i n i t e  wing i s  yawed are  e n t i r e l y  the  r e su l t  of change i n  reference veloc- 
i t i e s ;  f o r  instance, t h e  maximum l i f t  of t he  yawed i n f i n i t e  wing w i l l  be less 
than t h a t  of t he  unyawed wing exactly i n  proportion t o  the  square of t he  
r a t i o s  of e f fec t ive  t o  free-stream ve loc i t i e s  ex is t ing  i n  the  case of t he  
yawed wing. What theo re t i ca l  or experimental proof of the  simple sweep 
concept e x i s t s ?  

Included i n  the  "section 

The invariance of the  pressure d i s t r ibu t ion  has been demonstrated both 
theo re t i ca l ly  ( r e f .  6) and experimentally. 
t he  point fu r the r .  Shown on the  f igure  are comparisons of t heo re t i ca l  and 
measured pressure d is t r ibu t ions  f o r  a i r f o i l  sect ions taken both p a r a l l e l  t o  
t he  plane of symmetry and normal t o  the  quarter-chord l i ne  of the  43' ( r e f .  7) 
and 60° swept wings. 
through the  method of reference 8 as modified i n  reference 9 f o r  each of t he  
a i r f o i l  sect ions.  It can be seen t h a t  while the  uncambered sections do not 
show large differences i n  pressure d is t r ibu t ion ,  these differences occur near 
t h e  leading edge where, i n  general, the  s t a l l i n g  charac te r i s t ics  are  de te r -  
mined. The differences i n  agreement i n  t he  cases of t he  cambered section are 
la rge .  This evidence shows t h a t  if two-dimensional da ta  are t o  be used t o  
a id  i n  studying swept-wing s ta l l ,  they must be applied t o  a section normal t o  
the  quarter chord. The invariance of the  laminar boundary-layer character-  + 

i s t i c s  has been shown theo re t i ca l ly  i n  reference 10, and some experimental 
evidence is  included i n  the  same reference.  The invariance of the  turbulent-  
boundary-layer charac te r i s t ics  is  assumed i n  order t o  maintain consistency i n  
the  application of t h e  simple-sweep concept. It should be noted t h a t  t h i s  
concept implies t h a t  t he  e f fec t ive  Reynolds number f o r  a section on a swept 
wing i s  based on the  chord and the  component of free-stream veloci ty  normal 
t o  the  0 . 2 5 ~  l i n e .  

Figure 3 i s  included t o  emphasize 

The theo re t i ca l  pressure d is t r ibu t ions  were obtained 

The arguments just presented i n  favor of using the  a i r f o i l  section 
normal ' to the  0.252 l i n e  on a swept wing as t h a t  one t o  be re la ted  t o  two- 
dimensional a i r f o i l  charac te r i s t ics  lead t o  in t e re s t ing  conclusions when the  
low-aspect-ratio wing of high taper  i s  considered. The l imit ing case of a 
t r iangular  wing (swept leading edge, unswept t r a i l i n g  edge) has been examined 
i n  an attempt t o  determine how, if a t  a l l ,  section cha rac t e r i s t i c s  could be 
used. The leading-edge pressure d is t r ibu t ions  could be re la ted  t o  two- 
dimensional r e s u l t s  through the  sweep of the  leading edge. 
pressure d is t r ibu t ions  over the  hinge l i ne  of a t ra i l ing-edge f l a p  appeared 
t o  be re la tab le  t o  the  two-dimensional case through t h e  sweep of the  f l a p  
hinge l i n e .  It i s  d i f f i c u l t  t o  avoid the  conclusion t h a t  the  simple-sweep 
concept should be modified t o  make the  reference a i r f o i l  i n  the  three-  
dimensional case a curved one described by l i n e s  normal t o  constant percent 
chord l i nes  (or, perhaps more accurately,  normal t o  t h e  pressure-distribution 
i sobars ) .  

On the  other hand, 

Study of t he  l o c a l  s t a l l i n g  behavior of t r iangular  wings encourages 
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speculation along these l i n e s .  
would preclude t h e  use of two-dimensional t es t  r e s u l t s .  
high-aspect-ratio wings of moderate taper ,  it should be possible t o  avoid t h e  
curved a i r f o i l  concept. 
effectiveness on plan forms with low sweep of t h e  f l a p  hinge l i n e .  

It is  obvious, however, t h a t  t h i s  hypothesis 
In any event, f o r  

A n  important exception may be trail ing-edge f l a p  

The accuracy of t h e  method under discussion i n  predicting the  f i rs t  
occurrence of s ta l l  on swept wings has been examined f o r  a group of wings of 
widely d i f f e r ing  plan form and p ro f i l e .  
determined by means of two-dimensional a i r f o i l  data modified by simple sweep 
concepts, and span loadings were calculated f o r  increasing l i f t  coef f ic ien ts  
u n t i l  t h a t  wing l i f t  w a s  determined wherein t h e  span loading curve f i rs t  
reached the  czmax curve. The wing var iables  included sweep, aspect r a t i o ,  
taper  r a t i o ,  camber, t w i s t ,  leading-edge devices of various spans, and 
trail ing-edge f l a p s .  If a sudden increase i n  t h e  rate of drag rise with l i f t  
coeff ic ient  i s  assumed t o  be the  most ce r t a in  precursor of s ta l l ,  t he  r e s u l t s  
shown i n  f igure  4 a re  obtained. For these wings, of symmetrical p ro f i l e  and 
varying sweep and aspect r a t i o ,  a degree of conservatism i s  present i n  every 
case - t he  predicted value i s  on the  average about 20 percent lower than t h e  
experimental value.  
of accuracy of t he  method i n  predicting t h e  delay i n  the  f i rs t  appearance of 
s t a l l  produced by various wing modifications, and leading- and trail ing-edge 
h igh- l i f t  devices.  
camber and t w i s t ,  nose camber, leading-edge slats and f l aps ,  and t r a i l i n g -  
edge f l a p s .  
vative and t o  about t he  same degree as f o r  t he  unmodified and/or unflapped 
wings. While t h e  absolute accuracy of t he  r e s u l t s  obtained by application of 
the method i s  not outstanding, it i s  important t h a t  t he  e r ro r  is always i n  one 
direct ion,  and t h a t  t h e  e f f e c t s  of design changes a re  correct ly  predicted.  
This i s  taken as evidence t h a t  t he  procedure is  bas ica l ly  correct and accounts 
f o r  the  primary e f f e c t s  of sweep but t h a t  secondary, although important, 
e f f ec t s  have been Ignored. 
emphasized because, as w i l l  be discussed later,  t h i s  i s  important evidence t o  
be used i n  developing a hypothesis f o r  t he  e f f e c t  of wing sweep on the  
s t a l l i ng  of ‘ a i r f o i l  sect ions.  

That is, czmax d is t r ibu t ions  were 

Figure 5 has been prepared t o  indicate the  general order 

This f igure  shows the  predicted and measured e f f ec t s  of 

The predict ions f o r  t he  modified and/or flapped wings a re  conser- 

The conservatism of t h e  predictions should be 

--chanw.-  In  the  foregoing examination of t he  
accuracy of t h e  method, a t ten t ion  has been directed only a t  the  point of 
sudden drag rise. While t h i s  is  sui table  f o r  evaluating the  onset of separa- 
t ion ,  i n  prac t ice  it is  t h e  prediction of more or l e s s  sudden pitching-moment 
changes and t h e i r  d i rec t ion  which are given prime importance, since s t a b i l i t y  
i s  thereby d i r e c t l y  a f fec ted .  It has been shown repeatedly t h a t  where i r reg-  
u la r  pitching-moment changes occur, they can be t raced  t o  a marked change i n  
section l i f t -curve  slope at some point on the  wing span. Since section l i f t -  
curve-slope changes generally occur as a r e s u l t  of reaching czmx or being 
very close t o  it i n  the  two-dimensional case, it would be expected t h a t  t he  
outlined procedure might predict  t he  wing l i f t  coeff ic ient  where irregular 
pitching-moment changes would occur. Further,  since t h e  pitching moment of 
swept wings i s  la rge ly  controlled by the  span load dYstribution (see ref .  11, 
p .  lo), t h e  procedure, i n  showing the  spanwise locat ion of first stall ,  would 
be expected t o  predict  the  d i rec t ion  of t h e  pitching-moment changes. The 
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r e s u l t s  presented i n  f igure  6 f o r  a representative group of wings show the  
accuracy with which the  predictions can be made. 
r e c t l y  t h a t  each wing would exhib i t  a pitch-up moment after t h e  first appear- 
ance of s ta l l ;  it can be inferred,  thus,  t h a t  the  method predicted the  
approximate spanwise location of f i rs t  stall .  I n  some cases the  l i f t  coeff i -  
c ien t  f o r  pitch-up w a s  higher than t h a t  f o r  sudden drag r i s e ;  thus,  t he  f i rs t  
appearance of s ta l l  does not always produce immediate changes i n  pitching 
moment . 

The method predicted cor- 

The f a c t  t h a t  t he  method appears t o  predict  t he  spanwise location of 
s ta l l  provides a r a t i o n a l  bas i s  f o r  attempting t o  design wing modifications 
t o  force the  first appearance of s ta l l  far inboard and thus  produce pi tch-  
down a f t e r  f i rs t  s ta l l .  A s  shown in f igure  7, t he  spanwise var ia t ion  of 

f o r  in i t ia l  s t a l l  can be adjusted so t h a t  first s ta l l  w i l l  decrease 
t h e  wing loading over an area forward of the  moment center location and thus 
produce nose-down moments. Figure 8 shows the  e f f ec t  of such adjustments on 
the  pitching moments of several  wings which i n i t i a l l y  had nose-up moments at 
high l i f t .  The pa r t i cu la r  device or devices used t o  adjust  t h e  span loading 
are  indicated f o r  each wing, and i n  each case the  arrangement w a s  supposed 
t o  produce nose-down moments a t  high l i f t .  
t i o n  w a s  successful i n  only 50 percent of t he  cases; t h i s  percentage w a s  not 
increased when a la rger  number of wings were examined. 
e a r l i e r  t h a t  t he  method w a s  most l i ke ly  t o  be sa t i s fac tory  in cases where 
nose-up moments, or i n  e f f ec t  outboard s ta l l ,  were predicted.  

ZmaX 

It can be seen t h a t  t he  predic- 

However, it w a s  noted 

It can be concluded ten ta t ive ly ,  then, t h a t  the  method proposed 
represents a fundamentally sound approach t o  the  problem of predicting the  
existence of pitch-up and of prescribing the  design changes t o  delay and pos- 
s ib ly  t o  eliminate the  pitch-up. However, it must be concluded a l so  t h a t ,  
because of three-dimensional e f f ec t s ,  t he  effectiveness of t h e  s ta l l  cont ro l  
device i n  two-dimensional experiments may not be a measure of i t s  ef fec t ive-  
ness on a swept wing. 

Effect of Mach number.- A l l  of t he  foregoing comparisons and remarks 
have been based on cases where shock-induced stalls were not involved. There 
w a s  reason t o  believe,  however, t h a t  t he  analysis  is  applicable t o  the  high 
Mach number case.  Lack of su i tab ly  de ta i led  and correlated experimental data  
( i  .e .  , lack of comparable two- and three-dimensional sect ion data  at  compa- 
rable  Reynolds numbers) makes d i f f i c u l t  an exact evaluation of t he  process 
when applied t o  high Machnumbers. 
serve t o  encourage fu r the r  study i n  t h i s  d i rec t ion .  Shown i n  figure 9 is  a 
correlat ion of t he  lift coef f ic ien t  f o r  sudden drag rise f o r  several  wings a t  
two Mach numbers. The comparisons of experiment and predict ion a re  encour- 
aging i n  sp i t e  of the  lack of exactly re la ted  two-dimensional experimental 
da t a .  Pitching-moment breaks are compared in figure 10. The l i f t  coef f i -  
c i en t s  f o r  predicted and experimental pitching-moment changes are in fair  
agreement but t he  nose-up moment predicted i n  every case w a s  not always 
found experimentally and, when it did occur, it w a s  at  a higher l i f t  coeff i -  
c i e n t .  Thus the  method is  conservative at  moderate Mach numbers as w e l l  as 
at  low Mach numbers. 

However, comparisons can be made which 



If the  predict ion of s ta l l  on swept wings i s  t o  be extended t o  high Mach 
numbers, the  existence cf an upper l i m i t  of Mach number f o r  which the  method 
would be applicable must be recognized. Experimental r e s u l t s  indicate t h a t  
as a Mach number of 1 .0  is closely approached, t he  shock waves emanating from 
the wing-fuselage intersect ion and from the  wing t i p  exer t  a control l ing 
e f fec t  on the  s t a l l i n g  pa t te rn  of t he  wing; under these conditions any attempt 
to apply reasoning based on two-dimensional concepts i s  obviously i l l o g i c a l .  

?"ne Importance of Three-Dimensional Viscous Effects  
i n  the  Design of Swept Wings 

In order t o  i l l u s t r a t e  and es tab l i sh  some quant i ta t ive measure of the  
magnitude of t he  three-dimensional e f f ec t s  on s t a l l i n g ,  reference i s  made t o  
material  i n  a report  comparing the  two-dimensional charac te r i s t ics  of an a i r -  
f o i l  section with those f o r  the  same section on a swept wing ( r e f .  12 ) .  The 
comparisons presented i n  t h a t  report  a re  i l l u s t r a t e d  i n  f igure 11 f o r  a 4 5 O  
sweptback wing having an a i r f o i l  section f o r  which de ta i led  two-dimensional 
data e x i s t .  Adjusting the  two-dimensional sect ion l i f t -curve  slopes t o  cor- 
respond t o  those given by Weissinger theory f o r  several  span s ta t ions  enables 
a d i r ec t  comparison t o  be made with data  obtained experimentally a t  each sta- 
t ion  on the  three-dimensional wing. 
the section cha rac t e r i s t i c s  f o r  the  swept-wing sections a re  f o r  a section 
normal t o  the  quarter-chord l i ne  of the  wing and a re  based on ve loc i ty  par- 
a l l e l  t o  t h i s  sec t ion .  A most s t r ik ing  point is  t h a t  a t  a l l  s ta t ions  except 
the most outboard, t he  two-dimensional sect ion maximum l i f t  i s  de f in i t e ly  
exceeded and i n  increasing measure f o r  fu r the r  inboard s t a t ions .  These data  
imply, then, t h a t  a t  no place on the  span are  the  three-dimensional e f f ec t s  
(probably characterized by the  spanwise boundary-layer f l o w )  detrimental  t o  
elma,, and a t  most places a re  favorable. 
considered a strong, na tura l  fo rm of boundary-layer cont ro l .  

In these and a l l  following comparisons, 

This spanwise flow should, then, be 

The phenomenon j u s t  described i s  not unique t o  the  wing i n  question. 

From these data  it can 
Similar r e s u l t s  a r e  shown i n  f igure 12 f o r  a group of wings typ ica l  of almost 
a l l  wings f o r  which such comparisons can be made. 
a l s o  be seen t h a t  not only i s  maximum l i f t  always increased toward the  inboard 
s t a t ions ,  but t he  percent increment i s  increased as sweep is  increased. For 
the  more highly swept wings, it becomes impossible t o  determine a czmax f o r  
the inboard s t a t ions .  The existence of t h i s  phenomenqn explains the  conser- 
vatism of the  method previously discussed, since t h a t  method ignored any such 
increase i n  inboard elmax values .  

A s  a f i rs t  s tep  i n  the  process of accounting quant i ta t ively f o r  t he  
existence of t h i s  e f f ec t  i n  swept-wing design, it i s  necessary t o  determine 
jus t  how t h i s  na tu ra l  boundary-layer control  i s  appl ied.  
ing can come from examination of t he  form of t he  separation which l imits 
cimax f o r  t h e  two-dimensional and three-dimensional cases .  Before doing 
this , it i s  desirable  to c l a r i f y  what is  meant by "form of separation ." 

Such an understand- 
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The pa t te rn  of separation ex is t ing  j u s t  p r io r  t o  t h e  maximum l i f t  of an 
a i r f o i l  section has three  general  forms, shown i n  f igure  13. F i r s t  i s  t h a t  
common t o  th ick  or highly cambered sections on which separation first appears 
at  the  t r a i l i n g  edge, then spreads s lowly  forward with increasing angle of 
a t tack  t o  f i n a l l y  f i x  exmax; the  re la ted  pressure d i s t r ibu t ions  show a d i s -  
t i n c t  and sharp peak at  the  leading edge, a lack of complete pressure recov- 
e ry  a t  t h e  t r a i l i n g  edge, and an a rea  of constant pressure coeff ic ient  over 
t he  af t  portion where separation e x i s t s .  The second pa t te rn  i s  that common t o  
very t h i n  sections on which separation of flow at  the  leading edge appears, 
followed by reattachment of flow f a r t h e r  a f t ,  and where the  point of reat tach-  
ment moves af t  with increasing angle of a t tack  t o  f i n a l l y  f i x  czm as it 
reaches the  t r a i l i n g  edge; t h e  re la ted  pressure d i s t r ibu t ion  shows a s l igh t  
peak at t h e  leading edge followed by a region of r e l a t i v e l y  constant pressure 
aft  t o  t h e  point of reattachment, and then recovery t o  e s sen t i a l ly  free-stream 
pressure.  The t h i r d  pa t te rn  i s  t h a t  common t o  sect ions of about 10-percent 
thickness and l i t t l e  camber on which both types of separation appear and f o r  
which exmax i s  f ixed when t h e  forward-spreading trail ing-edge separation 
becomes suf f ic ien t ly  extensive or reaches the  aft-moving point of reattach- 
ment of the  leading-edge separation; t he  re la ted  pressure d i s t r ibu t ion  shows 
both a l o s s  of the  sharp peak a t  the  leading edge and lack of recovery a t  the  
t r a i l i n g  edge , with some evidence of pressure recovery between these points .  
On the  bas i s  of these d i s t inc t ions  and f r o m  examination of t he  chordwise 
pressure d is t r ibu t ions  j u s t  p r io r  t o  s ta l l  of a given a i r f o i l  section i n  two- 
and three-dimensional flow, an insight  can be had in to  the  mechanism of the  
na tu ra l  boundary-layer cont ro l  on swept wings. 

Consider again the  case of t h i s  previously mentioned 450 sweptback wing. 
Shown i n  f igure  14 i s  a comparison of t he  two-dimensional pressure d is t r ibu-  
t i o n  j u s t  p r io r  t o  with the  corresponding ones f o r  t h e  various span- 
wise sections of t he  wing. Two-dimensional pressure d i s t r ibu t ions  show the  
t y p i c a l  evidence of both leading- and trail ing-edge types of separation - both 
a loss of the sharp leading-edge peak and a lack of recovery at the  t r a i l i n g  
edge. Pressure d is t r ibu t ions  f o r  several  s ta t ions  on the  span of t he  swept 
wing indicate the  same type of separation pa t te rn  over the  outboard par t  of 
t he  span, but a change t o  t he  t h i n  a i r f o i l ,  leading-edge type of separation on 
the  inboard sect ions.  From t h i s ,  it can be judged t h a t  the  boundary-layer 
control  i s  increasingly e f fec t ive  f o r  t he  t ra i l ing-edge type of separation as 
the  s ta t ions  a re  nearer the  r o o t .  Now consider the  same wing swept t o  600. 
A s  indicated i n  f igure  15(a),  t he  separation pa t te rn  has been changed f r o m  
t h a t  f o r  the  wing a t  45' sweep; across the  e n t i r e  span of t h e  60° swept wing 
the  sections show only the  leading-edge separation j u s t  p r io r  t o  section m a x i -  
mum lift. 
layer  control  at  the  t r a i l i n g  edge. Now examine the  r e s u l t s  shown i n  
f igure  l ? (b )  f o r  t he  45O swept wing with a highly cambered sect ion,  an 
NACA 64A810. 
loading, it should not s ign i f icant ly  d is turb  the  balance between leading- and 
t ra i l ing-edge boundary-layer cont ro l .  As indicated by the  pressure d is t r ibu-  
t i o n s  i n  figure l 5 ( b ) ,  two-dimensional t e s t s  show the  sect ion t o  have exten- 
sive t ra i l ing-edge separation j u s t  p r io r  t o  maximum l i f t .  Note t h e  constant 
value of pressure coeff ic ient  over t he  r ea r  25 t o  30 percent of the  sect ion.  
D a t a  obtained from various s t a t ions  on the  wing show the  trail ing-edge 

czmX 

It appears then t h a t  increasing sweep in t ens i f i e s  t he  boundary- 

The wing i s  a l so  twisted,  but since t h i s  ad jus t s  only span 
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separation t o  be almost e n t i r e l y  suppressed at  a l l  but t he  outermost s ta t ions  
on the  wing. 
which are  a l t e r ed  when under t h e  influence of t he  na tu ra l  boundary-layer con- 
t r o l  ex is t ing  on a swept wing. Again, these should not be looked upon as 
unique examples, but ra ther  as t y p i c a l  of what has been found t o  occur i n  
other cases.  
t h a t  or iginat ing wholly from t h e  leading edge, cannot be ascertained because 
of t he  lack of comparable da t a .  However, it might be inferred t h a t  such 
leading-edge separation w i l l  be delayed a l so ,  increasingly so with sweep or 
inboard location, since air-flow studies  show a strong spanwise flow of the  
boundary layer along t h e  leading edge as w e l l  as aft  on t h e  wing. 

The two cases j u s t  discussed cover two types of section s t a l l  

The e f f e c t  of wing sweep on the  t h i r d  type of section stall ,  

The two major e f f e c t s  of wing sweep, suppression of inboard s ta l l ,  p a r t i -  
cular ly  at  the  t r a i l i n g  edge, through the  na tu ra l  boundary-layer cont ro l  j u s t  
discussed, together with the  outboard movement of t he  peak of t he  span loading 
d is t r ibu t ion ,  which i s  increased as taper  i s  increased, combine t o  produce a 
s t a l l i n g  pa t te rn  which i s  unlike any commonly experienced by unswept wings. 

It has been shown ( r e f .  13) t h a t  when a t h i n  a i r f o i l  section i s  a t  
appreciable angle of a t tack ,  but below maximum l i f t ,  t h e  area of separation 
lying near the  leading edge contains a strong vortex; as the  angle of a t tack  
i s  increased, the  rearward edge of the  area of separation moves toward the  
t r a i l i n g  edge of t he  section, and the  enclosed vortex increases i n  s ize  and 
strength,  becoming qui te  apparent before the  separation spreads t o  the  
t r a i l i n g  edge and czmax i s  reached. On a swept wing t h e  na tu ra l  t r a i l i n g -  
edge boundary-layer cont ro l  i n  delaying normal s ta l l  causes t h i s  phenomenon t o  
appear on sections of much greater  thickness than on unswept wings. 
because. of t he  usual  sect ion l i f t - coe f f i c i en t  d i s t r ibu t ion  on a swept wing, 
the  vortex appears, f i r s t ,  a t  the  t i p  and spreads slowly toward the  root as 
wing angle is  increased. In  many cases, before t h e  leading-edge vortex 
spreads t o  the  root,  t he  t i p  sect ions have complete separation, and the  vor- 
t e x  has curved back t o  leave the  wing a t  t h e  f a r t h e s t  inboard point where 
separation has reached the  t r a i l i n g  edge. 
both the  or ig in  of t he  vortex and the  point a t  which it leaves the  wing move 
inboard. This inboard movement of t he  t i p  vortex i s  pa r t i cu la r ly  serious,  
f o r  it produces'much of the  drag at high l i f t  (s ince it ef fec t ive ly  reduces 
the  wing aspect r a t i o )  and many of t he  s t a b i l i t y  d i f f i c u l t i e s  encountered 
where a high-placed horizontal  t a i l  is  used (s ince it causes rapid increases 
i n  downwash i n  the  plane of symmetry). 

Also,  

As angle of a t tack  i s  increased, 

The foregoing analysis ,  even though la rge ly  qua l i ta t ive ,  o f fe rs  an 
explanation f o r  many of t he  observed cha rac t e r i s t i c s  of swept wings and 
enables r a t iona l  speculation as t o  t he  best  way t o  improve swept-wing charac- 
t e r i s t i c s  and as t o  probable limits of improvement. No attempt w i l l  be made 
here t o  explore i n  d e t a i l  a l l  the  implications f o r  a l l  of the  wing character- 
i s t i c s ;  pitching moment w i l l  be given primary a t t en t ion .  

The e f f ec t  of wing sweep on section s t a l l i n g  l i m i t s  t he  d i r e c t  applica- 
t i o n  of section data  proposed i n  the  method outlined e a r l i e r .  In  par t icu lar ,  
it i s  c l ea r  why the  method f a i l e d  when it w a s  used t o  adjust  section 
t o  force inboard s t a l l  t o  occur f irst ,  and thus  give nose-down moments. 

czmax 
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Because t h e  maximum l i f t  of t h e  inboard sections i s  far above the  two- 
dimensional values, it i s  not possible from two-dimensional considerations 
alone t o  know when the  
t h i s  increase must not only exceed that of the  inboard sections,  but by suf- 
f i c i e n t  margin t h a t  outboard s ta l l  w i l l  not be precipi ta ted by flow of air  
f romthe  s t a l l e d  inboard area. To demonstrate t he  powerful e f f ec t  of sweep on 
t h i s  problem, three  wings of d i f f e ren t  sweep, 3 5 O ,  4 5 O ,  and 60°, w i l l  be 
considered. Each wing when unmodified showed f i rs t  s ta l l  a t  the  t i p  and 
resu l t ing  nose-up moments. It w a s  apparent t h a t  if a s t a l l ed  area could be 
i n i t i a l l y  produced anywhere inboard of t he  t i p ,  nose-up moments would be 
reduced. 
considerations) were made i n  t h e  c values of sections lying within 
various percent spans of t he  outboard portion of each wing. A s  shown i n  
figure 16, inboard s ta l l  and nose-down moments w e r e  produced i n  the  case of 
the  3 5 O  swept wing where sect ion czmax 
board 40, 61, and 75 percent of t h e  span. 
i n  f igure 17. Note t h a t  t he  i n i t i a l  point of s t a l l  could be moved in to  the  
60- or 40-percent span point,  although only the  l a t t e r  produced the  desired 
nose-down moments. I n  contrast  t o  t he  3 5 O  swept wing, when it w a s  attempted 
t o  move t h e  i n i t i a l  s ta l l  on t h e  45' swept wing in to  the  20-percent span 
point,  it w a s  found impossible, as' i n i t i a l  s t a l l  again appeared a t  the  t i p .  
Results presented i n  f igure  18 f o r  t he  60° wing show t h a t  inboard s t a l l  and 
nose-down moments could not be produced i n  t h i s  case.  It i s  c l ea r  that as 
sweep w a s  increased, the  na tu ra l  boundary-layer cont ro l  increased the  inboard 
section maximum l i f t  t o  a point where it roughly equalled t h a t  of the  s lo t t ed  
outboard sections,  and the  e f fec t  of t he  discont inui ty  i n  spanwise d is t r ibu-  
t i o n  of c w a s  l o s t .  Note t h a t  f o r  t he  600 swept wing t h i s  w a s  t rue  
even as far outboard as the  60- ercent span point,  i n  contrast  t o  t he  45' 

cZmx of outboard sections i s  su f f i c i en t ly  increased; 

By means of leading-edge slats, increases (based on two-dimensional 

2maX 

values w e r e  increased over t h e  out- 
Results f o r  t he  4 5 O  wing are given 

2maX 

swept wing. (See also r e f .  13. P 
Although the  foregoing shows what i s  probably t h e  most important th ree-  

dimensional e f fec t  of sweep not considered by the  simple analysis  f irst  
presented, there  i s  a second important f ac to r  t o  be considered. AS demon- 
s t ra ted  e a r l i e r ,  wing sweep has a l so  the  e f f ec t  of changing the  location of 
a i r fo i l - sec t ion  separation from the  t r a i l i n g  edge t o  the  leading edge, with 
the effect  becoming stronger toward t h e  roo t .  This e f f ec t  must a l so  be con- 
sidered when the  e f f ec t  of separation-controll ing devices i s  estimated f r o m  
two-dimensional da t a .  For example, consider t he  e f f ec t  of a leading-edge 
slat on a wing swept 4 5 O  and then 600 ( f i g .  19). 
a 64AO10 which, as noted earlier, has two-dimensional separation both a t  the  
leading and t r a i l i n g  edges just p r io r  t o  maximum l i f t .  A slat, if properly 
drooped, delays primarily t h e  appearance of leading-edge separation on a two- 
dimensional a i r f o i l .  A s  f igure  19 shows, t he  slat a l so  served t h i s  purpose 
near t he  t i p  of a 4.5' swept wing; thus p r i o r  t o  
d is t r ibu t ion  shows a loss of pressure recovery at  the  t r a i l i n g  edge, indicat-  
ing s ta l l  i s  i n i t i a t e d  by t ra i l ing-edge separation. On the contrary, the same 
slat on the  same wing swept t o  600 could not contain the  leading-edge separa- 
t i on ;  j u s t  p r io r  t o  t h e  sect ion pressure d i s t r ibu t ion  shows a loss of 
leading-edge pressures, while f u l l  pressure recovery is  real ized a t  the  
t r a i l i n g  edge. It i s  inferred t h a t  t h e  na tu ra l  boundary-layer cont ro l  w a s  

The basic a i r f o i l  w a s  again 

cz,,, t he  sect ion pressure 

cz,, 
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more powerful i n  containing trail ing-edge separation than w a s  t he  slat i n  
containing leading-edge separation despi te  t h e  slat e f f e c t s  found i n  two- 
dimensional s tud ies .  Another wing, swept 6 3 O  and with an a i r f o i l  section 
very s i m i l a r  t o  a 64AOI-0, w a s  equipped with, a rea  suction boundary-layer con- 
t r o l  at  t h e  leading edge. It w a s  possible,  with t h i s  form of boundary-layer 
control,  t o  prevent leading-edge separation from preceding trail ing-edge 
separation, as shown on the  pressure d i s t r ibu t ion  on the  r igh t  of f igure  19; 
note t h a t  a very high leading-edge peak is  reached before pressure recovery 
at  the  t r a i l i n g  edge decreases. 
w a s  reached at  a sect ion l i f t  coef f ic ien t  near ly  twice t h a t  reached on the  
t i p  of t he  60° swept wing where leading-edge separation w a s  already evident.  
In  attempting t o  cont ro l  outboard wing s ta l l ,  consideration must be given 
not only t o  the  sect ion 
t h a t  t he  two-dimensional s t a l l  pa t te rn  may be sh i f ted  t o  make leading-edge 
s ta l l  the  dominant problem. 

It i s  in t e re s t ing  t o  note t h a t  t h i s  condition 

czmax t h a t  must be achieved, but a l s o  t o  the  f a c t  

This examination of the  two f ac to r s  which appear t o  a f f ec t  most 
s ign i f icant ly  the  problem of properly control l ing wing stall ,  makes it pos- 
s ib l e  t o  consider t he  general  case and show probable reasons f o r  t he  success 
or f a i l u r e  of some of t he  s ta l l -cont ro l l ing  devices which have been t r i e d .  
Obviously, t he  most desirable  solution i s  t o  increase t h e  maximum l i f t  of 
outboard sections suf f ic ien t ly ,  since t h i s  a l so  increases t o t a l  maximum wing 
l i f t .  However, it appears from examination of inboard czmax tha% f o r  wings 
swept more than 45O, t he  naturalboundary-layer cont ro l  causes inboard cz max 
values t h a t  w i l l  be d i f f i c u l t  or impossible t o  exceed a t  the  t i p  no matter 
what device is  used t o  increase czma,; f o r  instance, on a t y p i c a l  wing of 
4-50 sweep, it would be necessary t o  exceed two-dimensional maximum section 
l i f t  coef f ic ien ts  of 2.8 on the  outboard s ta t ions ,  whereas on a t y p i c a l  wing 
of 60° sweep, an outboard 
required.  
coef f ic ien ts  of about 3.9 were real ized at  t h e  t i p  without successfully moving 
s ta l l  inboard. Where t h i s  approach becomes impossible, t he  a l te rna t ive  of 
reducing inboard must be resorted t o  even a t  the  cost  of reducing 
wing C h a x .  Two general approaches a re  possible:  f i r s t ,  t o  spo i l  the  flow 
over inboard sections and thus counteract t he  e f f ec t  of boundary-layer control  
and, second, t o  minimize t o  t he  degree necessary the  boundary-layer control  
at  the  inboard s t a t ions .  The f i rs t  approach does not appear promising, 
although s tudies  are so l imited t h a t  a d e f i n i t e  conclusion is  not possible .  
For instance, leading-edge spoi le rs  were attached t o  the  inboard leading edge 
of the  3 5 O  sweptback wing, t he  r e s u l t s  f o r  which a re  shown i n  figure 2O(a). 
The spoi le rs  were of a s ize  t h a t  has been shown by two-dimensional t e s t s  t o  
reduce markedly maximum l i f t .  
of t he  nose-down tendency, which would accompany root stall ,  f o r  any of the  
spoi le r  spans t e s t ed ,  although there  i s  evidence t h a t  t he  root disturbance 
s l igh t ly  reduced the  m a x i m u m  l i f t  of t he  t i p  sec t ions .  Tuft  s tudies  showed 
the  spoi ler  act ion t o  be confined t o  an a rea  j u s t  af t  of the  spoi ler  and, i n  
opposition t o  two-dimensional experience, showed complete reattachment of flow 
over the  rearward area. 
the  boundary-layer cont ro l  i s  suf f ic ien t  t o  overcome conventional spoi le r  
act ion on inboard sections;  hence, wings of greater  sweep cannot be given 
nose-down moments i n  t h i s  manner ( a l so  see r e f .  14) .  

czmaX of over 3.2 (two-dimensional) would be 
It has been found t h a t  on a 6 3 O  swept wing, two-dimensional l i f t  

c 2 max 

The measured pi tching moments show no evidence 

It would appear, then, t h a t  f o r  even 35' of sweep 

12 



A more promising manner of obtaining nose-down moments (although s t i l l  at 
a cost  of reducing maxi" wing l i f t )  i s  t o  minimize t h e  boundary-layer con- 
t r o l  on inboard sect ions.  A s  an example, consider t he  3 5 O  swept wing j u s t  
discussed with a small discont inui ty  added t o  t h e  wing leading edge a t  the  
20-percent span point (see f i g .  20 (b ) ) .  Wt studies  showed the  e f f ec t  of 
such a device w a s  t o  c rea te  a vortex lying j u s t  above t h e  surface of t h e  wing 
and ro ta t ing  so  as t o  sweep the  boundary layer  inboard, thus  minimizing the  
outboard dra in .  Under these conditions, t he  root a rea  s t a l l e d  su f f i c i en t ly  
ea r ly  t o  provide t h e  nose-down moments. Similar e f f e c t s  have been noted i n  
t h e  case of partial-span leading-edge devices which were able  t o  give nose- 
down moments. The effect iveness  of such devices has been found t o  be measur- 
ably reduced when the  inboard end w a s  f a i r e d  smoothly t o  eliminate any sharp 
discont inui ty .  

Perhaps a more d i r e c t  w a y  of minimizing the  boundary-layer cont ro l  on 
inboard sections is  through the  use of physical  dams or fences t o  stop or 
reduce the  spanwise boundary-layer control .  Experience has shown t h a t  only 
under cer ta in  conditions can a fence prove successful; appl icat ion of t h e  
reasoning of t h i s  paper shows the  f ac to r s  which should govern successful 
act ion of fences.  A t  most a fence should cause the  sect ions j u s t  inboard of 
it t o  have two-dimensional maximum l i f t  and type of s ta l l ,  whereas the  sec- 
t i ons  j u s t  outboard should show a l l  the  e f f e c t s  of t he  na tu ra l  boundary-layer 
cont ro l .  If advantage i s  t o  be taken of t h i s  t o  produce nose-down moments at 
high l i f t ,  fur ther  s teps  must be taken.  Thus, f o r  t he  case of constant sec- 
t i ons ,  t h e  wing span-load d i s t r ibu t ion  must be adjusted by plan form or t w i s t  
t o  give a maximum loading where first s ta l l  i s  desired; if wing sect ion alone 
i s  var ied,  then t h e  maximum l i f t  of t h e  sections outboard of t h a t  one where 
f i rs t  s t a l l  i s  desired must be su f f i c i en t ly  higher than inboard sections t o  
sustain the  addi t ional  load introduced by sweep, taper  r a t i o ,  and/or aspect 
r a t i o .  
then the  location of t he  fence must be considered. If t h e  sect ion s ta l ls  
two-dimensionally from the  t r a i l i n g  edge, then the  fence must be placed af t  
t o  stop boundary-layer cont ro l  a t  t h a t  po in t .  Under any circumstances, it 
i s  not l i ke ly  t h a t  a fence w i l l  have a dominant e f f ec t ,  but can only be of 
a id  i n  obtaining f u l l  benefi t  from other  devices. With t h i s  reasoning i n  
mind, it i s  useful  t o  examine severa l  cases where fences have been t r i e d .  

When a proper r e l a t ion  is  a t ta ined  between sect ion loading and czmax, 

It has been implied t h a t  on the  t h i n  swept wing with symmetrical 
sections,  a fence is  l i k e l y  t o  prove inef fec t ive .  Figure 21  shows the  reason 
f o r  t h i s .  It i s  evident t h a t  even i f  t he  fence wholly overcame the  boundary- 
layer  control,  inboard s ta l l  would not r e s u l t .  Figure 22 shows a t y p i c a l  
case i n  which such i s  the  r e s u l t .  For wings of l i t t l e  sweep - probably 3 5 O  
or l e s s  - where the  span loading i s  not appreciably d i f f e ren t  from the  unswept 
wing and where the  boundary-layer control  i s  not strong, it i s  possible a 
fence could prove e f f ec t ive .  

A number of cases can be shown where a fence w a s  able  t o  increase the  
effect iveness  of a par t ia l -span leading-edge device. This effect iveness  
va r i e s  i n  degree from simply increasing the  nose-down tendency near maximum 
l i f t  t o  producing a nose-down moment where nose-up moments exis ted without t he  
fence.  Generally, fences become most necessary as sweep increases,  but it is  
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a lso  evident t h e i r  effect iveness  vanishes w i t h  su f f i c i en t  sweep. It i s  
evident t he  act ion of a combination of par t ia l -span leading-edge device and 
fence is  very similar t o  t h a t  of t he  leading-edge device alone, where an aero- 
dynamic fence i n  the  form of a vortex has been shown t o  e x i s t .  
r e s u l t s  a re  shown i n  figure 23( a)  (reproduced from f i g .  18 of r e f .  14) and 
f igure  23(b) (reproduced from f i g .  7 of re f .  15). 
sweep, ex is t ing  nose-down moments were increased, and i n  the  second case of 
greater  sweep, nose-up moments were nearly eliminated. 

m i c a 1  

I n  the  f i r s t  case of l e s se r  

It i s  a l so  shown, i n  the  references j u s t  quoted, f o r  example, t h a t  t he  
optimum combination of fence and leading edge va r i e s  with t ra i l ing-edge f l a p  
def lect ion.  That such should be the  case i s  c l ea r  when consideration is  
given the  changes i n  span-load d i s t r ibu t ion  and spanwise sect ion maximum 
l i f t  d i s t r ibu t ion  engendered by f l a p  def lect ions . 

The foregoing discussion i s  directed only at  demonstrating the  probable 
action of fences on swept wings. There a re  many d e t a i l s  regarding fences 
which, i n  a l l  l ikelihood, w i l l  never be subject t o  generalization since they, 
i n  tu rn ,  are affected by each var iable  i n  t h e  wing's geometry. Thus, t he  
exact values of fence location, spanwise and chordwise, and fence height and 
chordwise extent f o r  maximum fence effect iveness  must undoubtedly be found 
experimentally f o r  each combination of wing plan form, including leading-edge 
and t ra i l ing-edge devices and a i r f o i l  sect ions.  It i s  believed, however, t h a t  
consideration of t he  pr inc ip les  discussed w i l l  aid i n  d i rec t ing  such research. 

Reynolds number e f f e c t s  .- All of t h e  reasoning and conclusions drawn t o  
t h i s  po in t  have been based on r e s u l t s  obtained at  high Reynolds number. It 
i s  of - in te res t ,  and pa r t i cu la r ly  w i t h  regard t o  the  act ion of fences, t o  
consider the  e f f ec t  of reduced Reynolds number on swept-wing cha rac t e r i s t i c s .  

The argument has been advanced and supporting evidence produced t h a t  the  
e f fec t ive  ve loc i ty  in t h e  case of t he  a i r f o i l  sect ion on a swept wing i s  
closely t h a t  one normal t o  t he  wing quarter-chord l i n e .  
can be advanced, although the  supporting evidence i s  meager, t h a t  t he  effec-  
t i v e  Reynolds number should a l so  be based on t h e  e f fec t ive  veloci ty  and the  
chord normal t o  the  quarter-chord l i n e .  If t h i s  i s  so,  then it i s  apparent 
t h a t  the  e f fec t ive  Reynolds number of any a i r f o i l  sect ion on the  swept wing 
is  less than the  Reynolds number based on the  MAC by a f ac to r  equal t o ,  on 
the  average, t he  cosine squared of the  angle of sweep. Thus, f o r  a wing of 
4 5 O  of sweep, t he  Reynolds number based on t h e  MAC must be over 2X106, t o  
reach a section Reynolds number of 1X106. In small-scale tests,  then, sec- 
t i o n  Reynolds number can become extremely low. Reference 16 shows t h a t  t h e  
charac te r i s t ics  of a i r f o i l  sections,  pa r t i cu la r ly  the  values of maximum l i f t ,  
undergo marked changes i n  the  low Reynolds number range. 
expected, as has been shown, t h a t  swept wings would be excessively sensi t ive 
t o  Reynolds number e f f e c t s  even over a Reynolds number range where s t r a igh t  
wings snow only minor e f f e c t s .  

Similar arguments 

It would be 

The e f f e c t s  of Reynolds number on swept wings are fu r the r  complicated 
by the spanwise boundary-layer flow. 
the  e f f ec t  of very low Reynolds number i s  t o  promote extensive trail ing-edge 

For example, as reference 16 indicates ,  



separation a t  low angles of a t tack;  t h i s ,  of course, i s  the  very e f f ec t  t h e  
boundary-layer drain tends t o  overcome. Thus, t he  boundary-layer drain can 
be considered t o  increase e f fec t ive ly  the  Reynolds number of inboard sections;  
i n  t h i s  way t h e  e f f ec t ive  Reynolds number range encompassed by a i r f o i l  sec- 
t i ons  on a swept wing may include t h a t  wherein there  i s  a great  change i n  
section cha rac t e r i s t i c s .  The maximum lift would not be expected t o  r e f l e c t  
t h i s  e f f ec t ,  since f o r  both large-scale and small-scale swept wings t h i s  
occurs after a large pa r t  of t he  t i p  i s  s t a l l e d  and since t h e  e f f ec t  of 
Reynolds number on l i f t  of a s t a l l e d  surface i s  small, t he  region of great  
differences i n  cha rac t e r i s t i c s  due t o  Reynolds number has disappeared. How- 
ever, t he  pitching moments at  higher l i f t ,  i n  par t icu lar ,  would show large 
Reynolds number e f f ec t s ,  since as previously noted, the  section maximum l i f t  
coeff ic ients  dominate these cha rac t e r i s t i c s .  Figure 24 i s  t y p i c a l  of such 
r e su l t s  . 

While insuf f ic ien t  da ta  ex i s t  t o  document thoroughly these Reynolds 
number e f f ec t s ,  t he  e f f e c t  of Reynolds number on t h e  act ion of fences can be 
interpreted as a ve r i f i ca t ion  of t he  existence of these e f f e c t s .  
proposed e a r l i e r  t h a t  a fence,  t o  a large degree, a c t s  simply as an addi t iona l  
wing root i n  t h a t  it increases t h e  boundary-layer cont ro l  just outboard of it, 
and, of course, reduces t h a t  j u s t  inboard. Thus, a t  low Reynolds number a 
fence can e f f ec t  a very large change i n  the  maximum l i f t  of sections on e i t h e r  
side of it. A s  Reynolds number i s  increased, t h e  change i n  maximum l i f t ,  and, 
accordingly, the  effect iveness  of t h e  fence, becomes much l e s s ,  60 much so i n  
some cases t h a t  t h e  fence w i l l  control  t he  s ta l l  i n  t e s t s  at  low Reynolds 
number but not at  high Reynolds number. 

It has been 

Care must be taken a l s o  t h a t  Reynolds number e f f e c t s  do not obscure the  
effectiveness of fundamental design parameters. 
camber t o  increase section 
seem pert inent  t o  swept-wing design. 
apparent usefulness of these design parameters would be very d i f f e ren t ,  
depending on the  Reynolds number of t he  experimental work. 

For example, using both 

Figure 25 shows, however, t h a t  t h e  
czmax and t w i s t  t o  adjust  span loading would 

It i s  recognized t h a t  these comments regarding the  e f f ec t  of Reynolds 
number on the  cha rac t e r i s t i c s  of swept wings a re  only qua l i ta t ive .  It must 
be remembered, however, t h a t  the  e f f ec t  of Reynolds number on the  maximum 
l i f t  of two-dimensional a i r f o i l  sect ions i s  "understood" quant i ta t ively only 
t o  the  extent t h a t  a vast amount of experimental da ta  has been used t o  a r r ive  
a t  some empirical  f a c t o r s .  No such col lect ion of da ta  e x i s t s  f o r  t h e  far 
more complex case of t he  s w e p t  wing. It i s  probable t h a t  Reynolds number 
e f f ec t s  f o r  swept wings are far d i f f e ren t  from those f o r  s t r a igh t  wings. 
Thus, any attempt t o  predict  Reynolds number e f f e c t s  on swept wings which i s  
based wholly on unswept-wing experience m u s t  be considered highly suspect.  
A basic consideration f o r  swept wings i s  t h e  e f f ec t  on wing s t a l l  of t h e  
spanwise flow of t he  boundary layer .  



Stat e -of - the  - A r t  Summary 

The foregoing discussion enables a s ta te-of  -the-art  summary of t h e  
current understanding of the  s t a l l i n g  of swept wings. The sa l i en t  points  can 
be s ta ted  as follows: 

Inviscid flow theor ies  which a re  a modified form of t he  analysis  of 
TR 572 conservatively predict  t he  first appearance of s ta l l  on a 
swept wing. 

Up t o  t h e  first appearance of stall ,  a reference a i r f o i l  on the  
swept wing chosen normal t o  t h e  quarter-chord l i n e  of the  wing 
generally permits reasonable comparisons between two- and three- 
dimensional pressure d i s t r ibu t ions .  

The conservatism c i t ed  i n  ( a )  above i s  a consequence of a spanwise 
flow of t he  boundary layer  which a c t s  as a na tu ra l  boundary-layer 
cont ro l  system and increases sect ion maximum lift on the  swept 
wing above two-dimensional values .  

Once l o c a l  s ta l l  has appeared, t h e  spanwise boundary-layer f l o w  
serves t o  change the  s t a l l i n g  cha rac t e r i s t i c s  of t he  unstalled 
sect ions so they have l i t t l e  resemblance t o  two-dimensional r e su l t s ,  
e i t h e r  i n  the  value of the  l i f t  coef f ic ien t  at  which s t a l l  occurs or 
i n  t he  type of s ta l l  demonstrated. 

S t a l l  cont ro l  devices on a swept wing are  important i n  a f fec t ing  
l o c a l  sect ion l i f t  and the  spanwise boundary-layer flow. 

summary i n  mind it is  possible t o  examine t h e  problem of developing 
a procedure t o  predict  swept -wing s t a l l i n g  cha rac t e r i s t i c s  with a t  l e a s t  t h e  
accuracy demonstrated by TR 572 for unswept wings. It m u s t  be recognized t h a t  
t he  success of TR 572 depends t o  a very large degree on the  f a c t  t h a t  experi- 
mental two-dimensional sect ion data were used t o  produce sa t i s fac tory  answers. 
This i n tu i t i ve ly  log ica l  s t ep  cannot be employed f o r  swept wings because 
three-dimensional boundary-layer conditions on a swept wing differ  so from 
any boundary-layer conditions on a two-dimensional a i r f o i l  t h a t  s t a l l i n g  
behaviors are unrelated.  Several de ta i led  s tudies  of boundary layers  on 
swept wings f a i l e d  t o  uncover any re la t ion ,  r igorous or empirical, between 
two- and three-dimensional boundary layers  which would a i d  i n  understanding 
or predicting three  -dimensional separation. The d i f f i c u l t i e s  encountered in 
attempts t o  prescribe theo re t i ca l ly  the  energy t r ans fe r ,  or shearing stress, 
i n  the  two-dimensional turbulent boundary layer  indicates  t h a t  there  i s  l i t t l e  
poss ib i l i t y  of rea l iz ing  success with fundamental s tud ies  of three-dimensional 
boundary layers .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., Apri l  16, 1964 
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Figure 1.- Aerodynamic character is t ics  of a typ ica l  swept-wing configuration. 
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Figure 2.-  Determination of f irst  section stall on a swept wing. 
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Figure 3 .  - Comparisons of t h e o r e t i c a l  section pressure d i s t r ibu t ions  with 
experimental loadings on f in i t e  wing panels.  
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Figure 11. - Comparisons of  two- and three -dimensional experimental section l i f t  curves; 
NACA 64A010 sections.  
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Figure 12.- Effect of sweep, aspect ratio, and Mach number on comparison of two- and three- 
dimensional lift curves. 
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Figure 16. -  Control of pitching moments by spanwise location of f irst  s ta l l  on a wing swept 3'3'. 
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Figure 17.- Control of pitching moments by spanwise 'location of f i rs t  s ta l l  on a wing swept 4-5'. 
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Figure 18.- Control of pitching moments by spanwise location of f irst  s t a l l  on a wing swept 60°. 



r 

' u II / 

L 
x /c 

I I I I I 
x /c 

Figure 19.- Full-span stall-control devices on wings of various sweeps. 
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Figure 21.-  The e f fec t  of a fence on the  maximum l i f t  potent ia l  across the span of a swept wing. 
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wing. 
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