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A 

EXPERIMENTAZ, INVESTIGATION OF JXJ? ZMPINGEMEKT 

ON SURFACES OF FINE PARTICLES I N  

A VACUUM ENVIRONMENT 

By Norman S. Land and Leonard V. Clark 
Langley Research Center 

SUMMARY 

The erosion character is t ics  of a bed of f ine  par t ic les  under vacuum con- 
di t ions (10-4 t o r r )  resul t ing from an impinging j e t  exhaust were investigated 
f o r  various par t ic le  s i z e s  and j e t  heights above the dust surface. 
t iga t ion  included measurements of the craters  during erosion, measurements of 
the v i s i b i l i t y  reduction, and photographs of t he  erosion process. 

The inves- 

The resu l t s  of t h i s  investigation indicate tha t  there  ex is t s  a f i n i t e  jet 
height above which par t ic les  w i l l  not be eroded. 
conditions, varies with surface-particle s ize .  I n  addition, the  resu l t s  indi- 
cate t ha t  the magnitude of surface erosion also depends on-surface-particle 
size; erosion is  most rapid with the  coarsest par t ic les .  
ciated t e s t  resu l t s  a re  presented and compared with available theory. 

This height, f o r  given nozzle 

These and other asso- 

INTRODUCTION 

Although the  gross structure of the v is ib le  lunar surface (such as craters  
and peaks) i s  well known and d i rec t ly  observable, l i t t l e  i s  known of the  f ine  
s t ructure  and no means a re  currently at hand f o r  def ini t ive remote observation. 
The present l i m i t  of resolution f o r  earth-based opt ical  observation is  about 
1/8 mile ( r e f .  I). Recently, the opt ica l  resolution has been improved through 
the  pictures taken by Ranger V I 1  t o  reveal objects on the  order of 1 foot i n  
s ize .  These pictures do not d i rec t ly  enable the measurement of the  f i n e  surface 
roughness. However, electromagnetic (ref. 2) and thermal observations ( r e f s .  2 
and 3 )  of the  lunar surface suggest t ha t  t h i s  surface i s  covered with a layer 
of insulating material having a roughness between 10 and 300 microns. 
hypothesized from these observations tha t  t h e  surface of the moon is  e i ther  
covered, wholly or  par t ia l ly ,  by loosely packed dust ( re f .  4 )  o r  consists of a 
random cellular,  vesicular structure (ref. 5 ) .  
w i l l  be tes ted  i n  the  future by the  Surveyor project o r  by some type of pene- 
trometer project. Because a deep, loosely packed layer  of dust would seem t o  
of fer  extreme hazards t o  a manned lunar landing, such a surface has been assumed 

It i s  

The va l id i ty  of t h i s  hypothesis 



i n  many theoret ical  and experimental studies of the  landing dynamics of 
touchdown. 

An additional problem associated with landing on a layer  of dust i s  i ts  
behavior while being subjected t o  the  impingement of a supersonic rocket blast, 
such as the  retrograde rocket t o  be used f o r  LEM. 
( re fs .  6 t o  10) have been made of the behavior of t he  dust &der such conditions 
and also some qual i ta t ive experimental work has been reported (refs. 11 t o  14).  
The most complete theoret ical  treatment of the  problem is  tha t  given i n  refer- 
ence 10 which predicts the  time his tory of c ra te r  growth and changes i n  v i s ib i l -  
i t y .  The experimental study reported herein was made principally t o  gather 
quantitative data t o  compare with the theory of reference 10. 

Some theore t ica l  studies 

Measurements were made of the  time his tory of c ra te r  growth and the "near- 
f ie ld"  v i s i b i l i t y  with f ine  par t ic les  of various sizes.  
l i z e d  a single, supersonic, lrcold-gas'' nozzle mounted with the j e t  axis perpen- 
dicular t o  the  dust bed. 
conducted i n  the  Langley 60-foot-diameter vacuum sphere at the Langley Research 
Center. 
and experiments i s  given i n  the  section following the  symbols. 

The experiments u t i -  

The apparatus w a s  ins ta l led  and the  t e s t s  were 

A qual i ta t ive description of the  flow f i e l d  as gained from the theory 

An auxiliary study of the  flow f i e l d  of a supersonic jet  impinging onto a 
smooth, f l a t  p la te  w a s  a lso made t o  determine the  ambient pressure required f o r  
reasonable simulation, and the resu l t s  a re  given i n  appendix A. 

Consideration has been given t o  the  scaling of such experiments (appen- 
dix B) but the  resu l t s  of these t e s t s  should not be regarded as simulating any 
specific f u l l - s i z e  system. 

SYMBOLS 

a 

C 

c f 

d 

dn 

dB 

g 

h 

i 

speed of sound 

packing fac tor  

aerodynamic f r i c t i o n  coefficient 

pa r t i c l e  diameter 

nozzle-exit diameter 

diameter of normal shock bowl 

acceleration due t o  gravity 

height above undisturbed surface t o  nozzle ex i t  

tube current 
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k 

2 

m 

M 

n 

P 

p3 

Ps 

pt 

Po0 

r 

rn 

R 

NRe 

t 

T 

v 
V 

Y 

U 

7 

A 

constant, p = kTn 

length 

m a s s  

Mach number 

exponent, p = kTn 

pressure 

s t a t i c  pressure at j e t  ex i t  

surface pressure 

t o t a l  pressure i n  nozzle plenum chamber 

ambient pressure i n  vacuum chamber 

rad ia l  position 

nozzle-exit radius 

gas constant 

Reynolds number 

time 

absolute temperature 

velocity 

voltage 

depth below undisturbed surface 

angle of repose 

r a t i o  of specific heats 

2F 
’IM 

length scale, - 

viscosity; a lso symbol f o r  micron (0.OOl”) 

mass density of gas 
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m a s s  density of surface material PS 

A normal shock standoff distance 

t dimensional equivalence 

Subscripts : 

M model 

F full s i ze  

QUALrrATIVE DESCRIPTION OF TBE FLOW FIEI;D 

The exhaust flow f i e l d  of a jet  i s  depicted schematically i n  a plane sec- 
Since the  moon i s  believed t o  be t i o n  taken through the  jet  a x i s  i n  figure 1. 

pract ical ly  devoid of any atmosphere, the  jet w i l l  operate i n  an "underexpanded" 
condition; t ha t  is, t he  s t a t i c  pressure at the  jet  ex i t  w i l l  great ly  exceed any 
ambient pressure. Under such conditions, t he  jet  plumes out, or  expands, at  a 
very large angle with respect t o  the je t  axis. Most of t he  energy, however, i s  
confined t o  a narrow core as evidenced from the pressure data i n  reference ll. 
Also under these high expansions no transverse or  oblique shock waves are formed 
i n  a f ree  je t .  

Just above the  surface, a bowl-shaped shock occurs which turns the  flow 
Where the  extended axis of the  jet intersects  the  surface, radial ly  outward. 

a stagnation condition exists.  The s t a t i c  pressure along a rad ia l  l i n e  on the 
surface decreases rapidly fromthe stagnation pressure as radial distance from 
t h e  stagnation point increases. The flow jus t  above the  surface boundary layer 

i s  accelerating radial ly  from 
zero speed at the  stagnation 
point and reaches supersonic 
speeds while continually 

Distribution of free- Streamline mar decreasing i n  density. A t  
at top of boundary some radial location a condi- 

t i o n  of maximum dynamic pres- 
sure i s  reached. A t  t h i s  
location the maximum surface 
shearing stress is l ike ly  t o  
occur. Thus, the  dust may be 
expected t o  erode i n i t i a l l y  
i n  an annular ring as veri- 

ences 11 and 13. With a low 
nozzle height, t he  erosion 
should extend radial ly  with 
t i m e  both inward and outward 
from the  i n i t i a l  ring. The 
dust ejected from the  crater  

stream dynamic pressure 

Jet boundary 

/ / /  f i ed  experimentally i n  refer- 

Eroding particles 

Baundary layer region 
cawing surface shear stress 

N o d  shock wave 

Figure 1.- Plane section of exhaust flow f i e l d  of j e t .  
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w i l l  move upward and outward i n  a sheet which, near the surface, resembles an 
inverted and truncated cone. 
theoret ical ly  possible f o r  the  eroded par t ic les  t o  reach lunar o rb i t a l  condi- 
t ion.  

The ejection veloci t ies  may be high and it i s  

(See refs .  15 and 16.) 

APPARATUS AM> TEST PROCEDURE 

Nozzle 

An isentropic expansion nozzle with an ex i t  diameter of 1 inch designed 
f o r  a Mach number of 3.36 operating with a gas having 
r a t i o  of 5.96) was used f o r  the  t e s t s .  
from the  scaling considerations given i n  appendix B. 
a solenoid-operated valve t o  the nozzle at measured stagnation pressures ranging 
from l l . 6  t o  16.2 psia  and temperatures ranging from 50° t o  700 F. 
instrumentation consisted of pressure and temperature gages t o  provide a meas- 
ure of nozzle-stagnation conditions and ex i t  pressure. 

7 = 1.4 (an expansion 
"his par t icular  nozzle was dictated 

Air was supplied through 

Nozzle 

In  an e f for t  t o  eliminate surface-erosion e f fec ts  which could be at t r ibuted 
t o  a s ta r t ing  transient,  two techniques were employed whereby dust impingement 
would resul t  only from a f u l l y  established flow. 
exhaust impinged upon a deflector p la te  located between the nozzle ex i t  and the  
t e s t  bed u n t i l  nozzle flow had become established. This technique, however, 
s t i l l  presented an unrea l i s t ic  s ta r t ing  transient,  since the exhaust suddenly 
impacted the surface a f t e r  the deflector p la te  was moved aside which resulted 
i n  high initid erosion and i n  associated v i s i b i l i t y  impairment. 
technique was then employed wherein flow was s ta r ted  with the nozzle at a suf- 
f i c i en t  height above the  dust bed t o  eliminate surface erosion due t o  the 
s ta r t ing  t ransient  and then dropped and arrested at  a desired height above the 
surface by means of crushable honeycomb ar res te rs .  
more representative of the  r ea l  case of the LEM retrograde rocket braking the 
vehicle t o  a so f t  lunar landing. 

I n  one technique, the j e t  

A second 

This l a t t e r  technique i s  

Test-Bed Material 

The majority of t he  t e s t s  were conducted with par t ic les  of aluminum oxide 
(alumina) i n  a form used commercially as an abrasive. 
selected because it i s  relat ively ine r t  and i s  available i n  closely graded 
sizes.  Most of the par t ic les  are roughly spherical i n  form although many 
elongated par t ic les  were encountered. One t e s t  was conducted on a bed of 
pumice, which i s  a porous volcanic glass. 
i n  s t ructure  with a large percentage of needlelike shapes. 
t e s t s  were made with different  grades of clean foundry sand. 

T h i s  material w a s  

The pumice par t ic les  appear fibrous 
I n  addition, two 

The appearance of the various par t ic les  used i s  i l l u s t r a t ed  i n  the photo- 
micrographs of f igure 2. 
measured by a standardized l iquid displacement technique which i s  described i n  
reference 17. The following specif ic  gravi t ies  were obtained: pumice, 2.20; 

The specific gravity of the  materials (sol id)  was 
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Ahminun oxide (dmean = 5431) Sand (a,,,, = 2 6 8 ~ )  

Aluminum oxide (d,,,, = 75P) 

L-64-8392 
Figure 2.- Photomicrographs o f  dust surfaces used for erosion studies. 
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Aluminum oxide (a,,, = 34p) 
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Aluminum oxide (d,,,, = l p )  

Figure 2.- Concluded. L-64-8393 
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sand, 2.59; and aluminum oxide, 3.89. 
primarily obtained by sieving methods. Sizes greater than 37p were obtained by 
using ASTM standard sieves as described i n  reference 18. Some f ine r  "micromesh" 
sieves with nominal opening sizes of 5, 10, 15, 20, 25, and 3Ow were also used. 
The sample s izes  varied between 150 and 200 grams and were sieved f o r  at l ea s t  
9 minutes. These sieving procedures are i n  accordance w i t h  the  recommendations 
of reference 19 (pp. 51-52). 
shaker which imparted three-dimensional motion. 
amplitude of 1/8 inch peak t o  peak and was operated at 600 cpm which resulted 
i n  peak accelerations of 0.64g. 
were also analyzed f o r  t h e i r  average grain s ize  with an instrument which operates 
on an air  permeability principle ( r e f .  19, pp. 384-385). 
rials were a l so  sized by a standardized microscope counting technique described 
i n  reference 20. The resu l t s  of the  sizing measurements are given i n  figure 3 .  

The par t ic le  s ize  dis t r ibut ions were 

The sieves were agitated on an automatic sieve 
The ver t ica l  component had an 

The f i n e r  grain-size materials (d  below 5Op) 

The two f ines t  mate- 

Pr ior  t o  each t e s t  the  dust beds were prepared t o  a depth ranging from 3/8 
t o  6 inches, depending on the type of t e s t .  
used i n  the cratering t e s t s .  The t h i n  layer  w a s  used t o  determine an incipient 
erosion boundary as a function of surface-particle s ize .  The materials were 
placed within a circular  form i n  beds tha t  were 3 t o  6 f ee t  i n  diameter with no 
deliberate packing and then screeded t o  provide a relat ively smooth surface. 
For the coarser s izes  of par t ic les ,  the screeded surface i s  believed t o  have 
been smooth t o  the magnitude of the par t ic le  s ize .  The beds composed of the two 
f ines t  s izes  (4p and 1p average) could not be screeded t o  a comparable smooth- 
ness because the  cohesive forces caused dragging or tearing of the surface. 

Deep dust beds (4  t o  6 inches) were 

Fac i l i ty  

The t e s t s  were performed i n  the  Langley 60-foot vacuum sphere which has 
the volume and pumping capacity t o  permit a reasonable running time at high 

0 
.I 

- 
A 
B 
C 
D 
E 
F 
G 
H 
- 

Alumina 

Alumina 
Alumina 
Alumina 

4 

1 10 100 1000 

Particle size, microns 

Figure 3.- Grain-size distributions of dust surfaces used 
for erosion studies. 
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exit-to-ambient-pressure ra t ios .  The sphere has an ultimate pressure capabil- 
i t y  of 3 x 10-4 t o r r  a f t e r  approximately 8 hours of pumping which, following a 
%-second t e s t  run with the  1-inch-diameter nozzle would increase t o  approxi- 
mately 1 x 10-2 t o r r .  
compact the f ine  par t ic les  as shown i n  reference 21. 
pressure ra t ios  corresponding t o  these pressures would change from 4 x ldc  t o  
1 x lo3 f o r  a nozzle chamber pressure of 13 psia. I n  view of t he  findings of 
reference 21 and the preliminary sugersonic impingement studies performed on a 
f la t  p la te  (appendix A), it appeared tha t  these pressure ra t ios  permitted a 
reasonable simulation of the  pressure environment f o r  investigating erosion on 
a simulated lunar surface. I n i t i a l  and f i n a l  sphere pressures were determined 
with an ion gage o r  a McLeod gage. 
60-foot vacuum sphere pumping equipment by the  abrasive dust, the f a c i l i t y  w a s  
f i t ted with covers t ha t  closed over t he  diffusion pump inlets; pr ior  t o  a run, 
t he  covers were remotely lowered in to  place. 

These ambient pressures are believed t o  be l o w  enough t o  
The jet-exit-to-ambient- 

I n  order t o  prevent contamination of the 

MEASURING EQUIPMENT p;ND TECHNIQUES 

Vis ib i l i ty  Measurement 

The v i s i b i l i t y  measurements of t he  present tests were objective i n  nature 
as they consisted of recording the  result ing attenuation of directed l i gh t  
beams. Subjective v i s i b i l i t y  
measurements (as i n  re f .  14), 
were not within the  scope of 
t h i s  investigation as they 
would depend on such factors  
as contrast, familiari ty,  and 

x-ray SDUTEB 

Light source 

r 

size .  I n  addition, the  behav- .- 
i o r  of the  dust w a s  photograph- 
i ca l ly  recorded; however, no ,' 

I-  

attempt w a s  made t o  correlate Debris 

source 

Bedplate 

the  objective v i s i b i l i t y  m e a s -  
urements with these films t o  
obtain subjective v i s i b i l i t y  
measurements. The v i s i b i l i t y  
measurement consisted of 
recording the  output of a 
photocell which looked at  a 
collimated beam of l i gh t  orig- 
inating at the  other end of the  
desired v i s i b i l i t y  path. (See 
f ig .  4.) The l i gh t  beam w a s  Typical e 

5/8 by 13/16 inch i n  cross film 

section. The beam w a s  atten- 
uated by the  debris resulting 
from surface erosion and the  
photocell recorded t h i s  atten- 
uation through the  test .  The 
general setup is  shown schemat- Figure 4.- Schematic of setup. 
i ca l ly  i n  figure 4. 

- Radial position 
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Vis ib i l i ty  through the  dust cloud w a s  measured dong  a path para l le l  t o  

The horizontal 
the  surface of t he  dust bed and also along a path extending from a point jus t  
above the  nozzle down t o  a point at  t he  undisturbed surface. 
v i s i b i l i t y  path w a s  3 inches above the  bed and 3 inches offset  from a bed diam- 
eter ( the nozzle w a s  located at the  center of t he  circular  bed); however, f o r  
t e s t s  t o  establish incipient erosion boundaries, t h i s  path w a s  lowered t o  
1 inch. 
t he  t e s t  bed and extended t o  the undisturbed surface at a depression angle of 
approximately 230 from the  horizontd.  This angular sight path i s  believed t o  
be representative of tha t  used by the  p i lo t s  of vehicles descending ver t ica l ly  
during landing maneuvers. 

The angular v i s i b i l i t y  path originated from a point 17 inches above 

I n  performing the v i s i b i l i t y  measurements, it w a s  necessary t o  make pro- 
visions t o  eliminate possible "blacking out" of t he  subject due t o  coating 
and/or "sand blast" effects  of the test-bed par t ic les  on the  instrumentation. 
Coating of t he  lens and phototube surfaces was held t o  a mini" by introducing 
a f ine  j e t  of air  w h i c h  washed across these surfaces during a t e s t .  
b las t"  effect  of t he  coarser par t ic les  was minimized by employing replaceable 
cover-glasses over these surfaces. 

"he "sand 

Dust-Depth Measurement 

Dust depth during the  t ransient  erosion process was measured by an X-ray 
absorption technique. 
a t tent ion i n  appendix C. 

This technique i s  rather  unusual and is  given special  

The setup is  shown i n  the  sketch of figure 4. An X-ray machine (200 kilo- 
volts, 5 milliamps max i "  rating) w a s  positioned above the  dust bed at one 
side of the  nozzle. 
3/4-inch-steel p la te  which formed the bottom of the  bed of dust. This p la te  
had a radial ly  positioned s lo t  3/16 inch wide and 18 inches long, one end of 
which w a s  near the  center l i n e  of the nozzle. Underneath t h i s  s lo t  w a s  a lead- 
covered drum 12 inches i n  diameter, w i t h  i t s  axis para l le l  t o  the  s lot ,  on which 
a standard 14- by IT-inch sheet of X-ray fi lm w a s  placed. This drum rotated at  
2 revolutions per minute. Thus, the time resolution w a s  approximately 0.2 sec- 
ond. 
mize sca t te r  effects.  
dinates of rad ia l  distance and time; the  opt ical  density at t h i s  point would 
be a measure of t he  depth of dust above it. 
of the evolution of a c ra te r  i s  included i n  the  setup schematic i n  f igure 4. 
This system then gives a t i m e  history of dust depth over a rad ia l  s l i c e  of a 
crater  . 

A l l  the  unwanted X-rays were essent ia l ly  stopped by a 

This lower assembly w a s  enclosed i n  lead (except f o r  the  s l o t )  t o  mini- 
A point on an exposed f i l m  i n  t h i s  setup then had coor- 

A sketch of a typical  f i l m  record 

. The effects  of X-ray tube current and voltage on fi lm density f o r  various 
depths of 34p aluminum oxide are shown i n  figure 5 .  
between opt ical  density and dust depth i s  apparent from the  figure. 

The nonlinear re la t ion 

Photographic Coverage 

Photographic coverage of the  erosion process w a s  accomplished through the  
use of two high-speed motion-picture cameras and one sequence camera. 
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Figure 5.- X-ray film sensitivity to X-ray tube operating parameters for dust 
surfaces composed of 34p aluminum oxide particles. 

RESULTS A.ND DISCUSSION 

The resu l t s  of experimental studies of the  e f fec ts  of a supersonic j e t  
impinging onto surfaces of f i ne  par t ic les  under a vacuum-pressure environment 
are presented i n  figures 6 t o  19. 
which describe the  behavior of the  dust surfaces under such conditions. The 
jet-exit-to-ambient-pressure r a t i o  f o r  these studies w a s  i n  the range from 
4 x ldc t o  1 x 103. 

These figures include curves and photographs 

Incipient Erosion Boundary 

A par t ic le  lying on a surface exposed t o  a pa ra l l e l  airstream is acted 
upon by two se t s  of forces: 
move it downstream, and (2)  the  forces between the  pa r t i c l e  and the  surface 
which tend t o  res t ra in  it. Since the  airstream forces increase with stream 
dynamic pressure and the  particle-surface forces are independent of stream 
velocity, there must be some m i n i m u m  airstream velocity required t o  overcome 
the  s t a t i c  restraining forces and move the par t ic le .  
flow and par t ic le  s ize ,  it i s  reasonable t o  expect t ha t  there  would be some 

(1) the a i r  forces on the  pa r t i c l e  which tend t o  

Thus, f o r  a given nozzle 
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height of t he  nozzle above which the  pa r t i c l e  would not move since the  dynamic 
pressure decreases with height, that is, no erosion would occur. 

There are two kinds of s t a t i c  restraining forces: (1) fr ic t ion,  and (2) 
cohesion. 
volume f o r  a constant m a s s  density). 
which there  is  l i t t l e  information, arise from intermolecular a t t rac t ion  and 
are believed t o  vary inversely with par t ic le  diameter. 
restraining forces w i l l  then be dominated by f r i c t i o n  and s m a l l  p a r t i c l e  
restraining forces, by cohesion. Experience has indicated (ref. 21) t ha t  with 
par t ic les  below approximately l5p, the  cohesive forces become dominant. 
large-particle (noncohesive) range, an increase i n  s i ze  resu l t s  i n  an increase 
i n  the  minimum airstream dynamic pressure (or  correspondingly, a decrease i n  
nozzle height) necessary t o  i n i t i a t e  erosion. I n  the small-particle (cohesive) 
range, a decrease i n  pa r t i c l e  s ize  requires an increased mini” dynamic pres- 
sure (o r  a corresponding reduction i n  nozzle height) t o  i n i t i a t e  erosion - t h i s  
i s  shown t o  be the  case experimentally. 

The f r i c t i o n  force varies as the pa r t i c l e  weight (therefore, as the 
The in t e rpa r t i c l e  cohesive forces, about 

Large-particle 

I n  the  

The resu l t s  of tests m a d e  t o  define the  erosion boundary of the nozzle 
exhaustlng onto aluminim oxide par t ic les  a re  given i n  f igure 6. 
mental data  confirm the existence of an incipient erosion boundary and tha t  the 
boundary shape i s  as conjectured. 
visually and the  nozzle height at w h i c h  erosion s ta r ted  was not always detect- 
able by visual  observation even with the  a id  of binoculars. 
erosion was, however, detected by the v i s i b i l i t y  measuring system. The erosion 
points i n  f igure 6 represent less than )+-percent reduction i n  v i s i b i l i t y  along 
a path approximately 7 feet long and 1 inch above the  surface of t h e  bed. 

The experi- 

The boundary w a s  d i f f i c u l t  t o  determine 

The existence of 

BcperimentAl 
lWo r 

0 No erosion 
0 Erosion 

One set of theore t ica l  
boundaries is shown i n  f ig-  
ure 6 f o r  comparison with 
the  experimental data. The 
boundaries a re  based on the  
assumption tha t  the  surface 
i s  very rough (roughness on 
the  order of boundary-layer 
thickness) and tha t  t he  
aerodynamic shear s t r e s s  
varies as cfpv2. The 
rough-surface assumption 
agrees closely w i t h  the  
experimental data. It i s  
indicated then tha t  the  
theory based on a rough- 
surface condition should be 
used even though the sur- 

Figure 6 . -  Incipient erosion boundary f o r  duminum oxide face is visualized a‘ 
pa r t i c l e s .  re la t ively smooth (as 

though screeded) . 
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Effect of Par t ic le  Size I . \ Nozzle 

on Erosion 

I 

When the nozzle height i s  
below tha t  f o r  incipient erosion, 
t he  aerodynamic shear s t r e s s  on 
the surface is  greater  than the  
maximum shear stress tha t  the  sur- 
face  can w i t h s t a n d .  Momentum w i l l  
then be transferred f r o m  the  air- 
stream t o  the  par t ic les ,  se t t ing  
them in to  motion. There i s  a 
def in i te  amount of momentum avail- 
able f o r  erosion depending on the  
nozzle height r e l a t ive  t o  the  
incipient erosion height, and all 
t h i s  momentum w i l l  transfer t o  
par t ic le  momentum. As t he  par t i -  
c le  s i ze  increases, t he  i n e r t i a  
(volume) increases faster than the  
aerodynamic propelling forces 
(area). Since the  la rger  par t i -  
c les  accelerate more slowly than 
s m a l l  par t ic les ,  and therefore 
a t t a i n  a s m a l l e r  f rac t ion  of the  
airstream velocity i n  a given time 
than do the  s m a l l e r  par t ic les ,  a 
la rger  m a s s  of t he  la rger  par t i -  
c les  must erode i n  a given time i n  
order t o  absorb the  exce6s momen- 
t u m .  
as the  s i z e  of the par t ic les  
increases, the erosion w i l l  
increase unt i l ,  of course, the 
erosion boundary i s  reached i n  
which case erosion stops and all 
airstream momentum is  again 
absorbed i n  surface shear stress 
by the  s t a t i c  restraining forces. 

For a given nozzle height, 

Crater prof i les  determined by 
using the  X-ray system are shown 
i n  figures 7 t o  12, with t i m e  as a 
parameter, f o r  several  s izes  and 
types of dust and three nozzle 
heights. I n  each of these figures 
depth and radial posit ion are non- 
dimensionalized by using the  nozzle 
radius. The nozzle ex i t  is  a l so  

locus of maxi" shear force 
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Figure 7.- Crater formation i n  543p aluminum 
oxide pa r t i c l e s  at - h = 9.2. 
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Figure 8.- Crater formation in 268~ sand 

particles at - = 10. h 
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Figure 9.- Crater formation 
i n  2 6 8 p  sand par t i c l e s  at 

rn  
h = 5 .  

Figure U.- Crater formation 
i n  68p  pumice pa r t i c l e s  

Nozzle 

'n 

Figure 10.- Crater formation 
i n  12lp sand par t i c l e s  at 

rn 
lL = 5. 

Nozzle 

I I I 
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Figure 12.- Crater formation 
i n  1p aluminum oxide par- 
t i c l e s  at LL = 5 .  

r n  
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shown i n  each figure at  the appropriate height and s ize .  
could not be determined at, or  close to, the  center because the  nozzle and i ts  
plenum chamber blocked the  X-rays i n  t h i s  region. 

Crater prof i les  

I n  general, the  crater prof i les  tend t o  support t he  quali tative descrip- 
t i o n  given ea r l i e r  and the  theoret ical  descriptions, i n  t ha t  there i s  a maximum 
erosion some distance out f romthe center and a result ing central  cone. The 
l o c i  of maximum surface aerodynamic shear stress, as given by the theoret ical  
treatments of references 6 t o  8, are shown i n  f igure 7 f o r  comparison with the  
experimental data. 

The erosion-time curves obtained from these data (at a radial location 
r/rn = 4)  are shown i n  figure 13. Some of the curves presented i n  figure 13 
are not faired through zero erosion at zero 
time mainly because of erosion due t o  flow 
transient  effects  which occurred before the  
defined zero time. 

The crater  prof i les  of f igures 7 and 8 and 
the  erosion-time curves shown i n  figure l3(a) 
i l l u s t r a t e  the effect  of par t ic le  s ize  on ero- 
sion f o r  a nozzle height of approximately 
10 radi i .  
curves of figure l3(b)  show the  particle-size 
effect  f o r  a nozzle height of 5 radii. The 
decrease i n  erosion with a decrease i n  par t ic le  
s ize  from 543 t o  68p i s  evident. Although t h i s  
particle-size raage w a s  covered with three mate- 
rials (sand, pumice, and aluminum oxide), it i s  
believed tha t  within the  accuracy of these 
t e s t s  the par t ic le  s ize  w a s  the  important 
variable. 

Figures 9 t o  12 and the  erosion-time 

The very low erosion r a t e  f o r  the  1p par- 
t i c l e  size, as shown by the  erosion-time curve 
of figure l3(b), i s  believed t o  be evidence of 
the  in te rpar t ic le  a t t rac t ive  forces (cohesion) 
which are large compared with gravity forces 
f o r  f ine  par t ic les .  

A comparison of figures 8 and 9 shows the  
great ly  increased erosion r a t e  as the  nozzle 
height is  decreased. A decrease i n  nozzle 
height from 10 t o  5 radii increased the  erosion 
rate by a fac tor  of approximately 10. 

There is  an apparent tendency f o r  t he  
craters  formed with the  low nozzle height t o  
have a greater depth-to-diameter r a t i o  than the  
craters  formed with the  higher nozzle height. 
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Figure 13.- Erosion ra tes  a t  
L = 4. 
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This effect  is seen by comparing the shapes of the  prof i les  i n  figures 7 and 8 
with those of figures 9 t o  12. 

Figure 14 shows experimental erosion rates determined along the  theore t ica l  
locus of maximum scrubbing action of reference 8 as a function of nozzle height 
above the dust surface. 
erosion ra tes  computed by the theory of reference 10. Both the theory and the 
experimental data are shown f o r  the  i n i t i a l  nozzle-to-surface relationship; on 
t h i s  basis  the theory overpredicts the ra te  of formation of the craters.  How- 
ever, as the surface erodes, the  nozzle height would effect ively increase. 
Using a more r e a l i s t i c  value of nozzle height would great ly  improve the agree- 
ment between theory (a function of h- >I2) and experiment. 

The.limited experimental data a re  compared with the 

Effect of Cohesive Force on Erosion 

Figures 15 t o  17 present sequential photographs of some of the t e s t  runs. 
t = 0 photograph of these figures indicates the  l i n e  The dashed l i n e  i n  the  

along which the  c ra te r  prof i le  w a s  determined. 
e f fec t  of in te rpar t ic le  cohesive force on erosion. 
sequence photographs of the  erosion of a surface with a mean pa r t i c l e  diameter 
of 543p at a nozzle height of 9.2 nozzle exit diameters. 
height f igures 16 and 17 present time-sequence photographs of the  erosion of 
4p and 1p part ic les ,  respectively. 

These f igures  i l l u s t r a t e  the 
Figure l5 ,presents  time- 

For the same nozzle 

Figure 15 i l l u s t r a t e s  how the  surfaces 

= 543u \ 

m r i m e n t a l  data 
d, microns 

0 543 
0 268 
0 121 
A 6 8  

Theoretical _- Reference 10 

0 

10 100 
I 1 1 I I l l l l  I I I I I I I C 1  

hlr, 

Figure 14.- Variation of erosion rate with nozzle height 
and surface particle size. 
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t = 4 5ec t = 0 see t = 2 sec 

t = 6 sec t = 8 sec .L*',er csllapse 

L-64-8394 
Figure 15.- Sequence of photographs showing erosion of 5 4 3 ~  aluminum oxide particles at 

- =  9.2. 
rn 

composed of the larger  grains erode evenly, result ing i n  a crater  which is  
symmetrical about the surface stagnation point. V i s i b l e  i n  figure 15 is  the  
central cone at the nozzle stagnation region t h a t  w a s  discussed previously. 
In addition, the w a s  of the crater may be at aDgles greater than the s t a t i c  
angle of repose of the material (being held there by t he  exhaust pressure 
f i e l d )  and an inward collapse of the crater occurs when the  nozzle flow ceases. 
Figures 16 and 17 show the  retarding effect of interpar t ic le  cohesive force on 
erosion. 
line; however, the surface appears t o  erode from a f i n i t e  nwnber of points 
instead of evenly as i n  figure 15. 
nounced ray pattern. 
ure 15 would be representative of any radial section through the crater.  This, 
however, i s  not true f o r  the case depictedin figure 16 because of the  peculiar 
erosion pattern. 
crest  or a ray trough and hence the magnitude of the crater  prof i le  might d i f -  
fer. Figure 17 shows the behavior of a surface composed of s t i l l  smaller par- 
t i c l e s  (1~). 
i n  par t ic le  s ize  produces another characteristic type of crater. 
instance the erosion appeared t o  start at a number of finite points around the 
stagnation region as i n  f igure  16, b u t t h e  erosion w a s  more pronounced a t  one 
par t icular  region. Erosion of t h i s  surface produced an asymmetric crater.  
the  tests onto surfaces of 4p particles and 1p part ic les ,  the craters  were 
destroyed when the nozzle flow ceased, unlike the  tests on the 543w-particle 
surface where the sides of the crater  merely slumped t o  the angle of repose. 
An explanation may be that  some of the  exhaust i s  forced into the surf'ace i n  

In figure 16 the  craters exhibit symmetry about the nozzle center 

Erosion of t h i s  surface produces a pro- 
The crater  prof i les  ( f ig .  7) shown p ic tor ia l ly  i n  fig- 

The X-ray path through the crater  might go through a ray 

The increase of interpar t ic le  cohesive force w i t h  the decrease 
In t h i s  

For 



c _  - 0 sec 

t = t sec 

t = 2 see 

A%er ccliagse 

L-64-8395 
Figure 16.- Sequence of photographs showing erosion of 4~ ~ ~ ~ u m ~ n u m  oxide par t ic les  at 

h 
In 
- = 9.2. 

A - -  - 0 sec 

t = t sec i -  
(I - 8 sec 4 2 e r  c o l i a p s e  

L-64-8396 
Figure 17.- Sequence of photographs showing erosion of lp aluminum oxide particles at 

h 
=n 
- =  9.2. 
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t he  stagnation region, and when nozzle flow ceases, t h i s  air i n  the test  bed 
expands t o  the  surrounding vacuum and i n  doing so disturbs the  craters .  The 
la rger  par t ic les  would not be affected by t h i s  phenomena as the pores between 
par t ic les  are large enough t o  permit the  surface t o  "breathe" without disturbing 
the crater.  

f l  m '  

> 
0 

beam path i s  again horizontal, 
but i n  t h i s  instance only ldn 

l i n e  i s  f o r  corresponding data 
at h/rn = 9.2 f o r  the  angu- 

5 40 
above the  surface. The top c 

1ar v i s i b i l i t y  path looking 

Effect of Erosion on Vis ib i l i ty  

I 
I 

I '- _- 4- ,'--. 
I ,--. ____. ---.' 
I ;; 

I I '\ I#! 

I? , 

,e-. 

,#'Dug to bedplate (from movies) 20-t;: - - ._/' 
Y-percent high-frequency variation 

! I I 

Vis ib i l i t y  prof i les  were obtained f o r  several. erosion tests. These pro- 
files consfsted of the recorded t i m e  h is tory of the  attenuation of directed 
l i gh t  beams. 
the  j e t  exhaust impinging onto sand par t ic les  at a nozzle height 
of 5rn. The mean l eve l  of v i s i b i l i t y  i s  shown; the actual  data had a 
fj'-percent high-frequency variation. 
t h a t  all the  directed l i gh t  beam is received by the  photocell and 0-percent 
v i s i b i l f t y  denotes tha t  none of the  light i s  received. 
is  shown because during the  test the  j e t  exhaust had eroded t o  the  underlying 
bedplate and the  v i s i b i l i t y  record clearly indicated a subsequent increase i n  
the  mean leve l  of v i s i b i l i t y .  
v i s i b i l i t y  a t  the  start of the record as a resul t  of the nozzle starting pro- 
cedure (establishing flow and then moving a deflector p la te  aside t o  l e t  the  
exhaust impinge onto the surface). 

Figure 18 presents one of these time h is tor ies  of v i s i b i l i t y  f o r  
d = 268p 

One-hundred-percent v i s i b i l i t y  denotes 

This par t icular  prof i le  

Also seen i n  the figure i s  a sharp reduction i n  

A summary of some of these data i s  shown i n  f igure 19 as a function of 
surface-particle s ize  fo r  two nozzle heights. 
an average of the v i s i b i l i t y  leve l  throughout the  t e s t  runs pr ior  to eroding 
t o  the bedplate. 
i n  the sketches at the  r ight  of t he  figure.  
simply t i e  the appropriate data  together as the data are insuff ic ient  t o  show 
the variation of v i s i b i l i t y  with surface-particle s ize .  
( h / m  = 5) shows average v i s i b i l i t y  levels  f o r  a horizontally directed l i gh t  
beam 3dn above the  surface 

The experimental data represent 

The position of the directed l i gh t  beam f o r  the  data i s  shown 
The dashed l i nes  i n  the f igure 

The lower l i n e  

loo 80 I and 3dn t o  one side of t he  
nozzle. The middle l i n e  shows 
data f o r  a higher nozzle height L 

at an angle of approximately 
2 3 O .  The v is ib i l i ty  leve l  f o r  
the  angular path should be and 

Figure 18.- Mean v i s i b i l i t y  during erosion of 
2 ~ 3 p  s a d  particles a t  = 5 .  rn 



60 6 

Figure 19.- Variation of average visibility with nozzle height and 
surface-particle size. 

i s  higher than the  horizontal paths because the  angular path looks through 
only one sheet of c ra te r  debris. 

CONCLUDING REMARKS 

An experimental study has been made of t he  behavior of f ine  par t ic les  
when subjected t o  the impingement of a supersonic j e t  i n  a vacuum environment. 
The tests were limited i n  extent and were made t o  gather data  t o  compare with 
an existing theory. The t e s t s  are not t o  be regarded as d i rec t ly  representa- 
t i v e  of any par t icular  ful l -s ize  configuration. 
indicate the following conclusions: 

The resu l t s  of these t e s t s  

1. There is  a f i n i t e  nozzle height above which par t ic les  w i l l  not be 
eroded. "his height, f o r  given nozzle conditions, varies with the  surface- 
par t ic le  s ize .  Theory based on rough surface o r  "dynamic" conditions is  i n  
good agreement with t h i s  height boundary. 

2. The craters  t ha t  were formed evolved from an i n i t i a l  ring which expanded 
radial ly  both inward and outward with time. 
bowl shaped with sides which may exceed the angle of repose. 
ceases, the  crater  may collapse. 
t i on  of the  craters.  

Pr ior  t o  collapse the crater  is 
When nozzle flow 

Theory adequately predicts the r a t e  of forma- 

3. Within the range of the t e s t  variables, erosion w a s  most rapid with the  
coarsest par t ic les .  
which w i l l  erode f o r  a given s e t  of nozzle conditions. 

Eowever, there i s  a l i m i t  t o  the  maxi" size  of par t ic le  

20 



4. Vis ib i l i t y  reduction may be especially severe as a result of a sharp 
nozzle thrus t  t ransient .  
is, when the b o t t m  of a shallow dust layer  i s  exposed. 

V i s ib i l i t y  increases if bottom erosion ceases, t h a t  

5.  The cohesion forces which exis t  between par t ic les  have an extremely 
important effect  on the  behavior of f i n e  par t ic les .  
available on these in t e rpa r t i c l e  forces. 

Very l i t t l e  information is 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hanpton, Va., October 20, 1964. 



APPENDIX A 

FLOW IMF'INGESIENT ON A FLAT SURFACE 

Some tests were conducted t o  determine the  ambient pressure required f o r  
valid test r e su l t s  and t o  obtain both a qual i ta t ive and quantitative descrip- 
t i o n  of the nature of t he  flow f i e l d  caused by a supersonic j e t  impinging nor- 
mally onto a smooth p la te  i n  a vacuum pressure environment. The t e s t s  included 
photographic measurements of the  j e t  boundary and the  normal shock formed above 
the  p la te  a t  various exit-to-ambient-pressure r a t io s  and measurements of s t a t i c  
pressures on the surface. 

The basic apparatus, such as the nozzle, valve, and vacuum tank w a s  t ha t  
which had been used f o r  the  t e s t s  of reference 14. 
ume of approximately 5000 f t3  and could be pumped down t o  a pressure of approxi- 
mately 1 t o r r .  
Mach number of 5.0, with an ex i t  diameter of 5/8 inch, and had a 15' half-cone 
angle expansion section. 
pressurized t o  approximately 2000 psig through a remotely controlled fast- 
acting valve. 

The vacuum tank had a vol- 

The nozzle employed i n  these tests w a s  designed t o  have an ex i t  

The nozzle w a s  supplied with nitrogen from bot t les  

Nozzle stagnation pressure w a s  measured at the entrance t o  the  nozzle and 
Vacuum-tank pressure at the  w a l l  near the nozzle recorded on an oscillograph. 

w a s  detected by a thermopile pickup and similarly recorded. S ta t ic  pressures 
on the p la te  w e r e  measured by miniature diaphragm variable-reluctance gages 
connected by short lengths of tubing t o  0.010-inch-diameter f lush or i f ices  i n  
the  plate .  
of ex i t  s t a t i c  pressure t o  ambient pressure were calculated by using the meas- 
ured ambient pressure and the  ex i t  s t a t i c  pressure computed from the design 
nozzle Mach number and the measured stagnation pressure. 

These pressures were also recorded on the  oscillograph. The ra t ios  

Shadowgraphs of the flow f i e l d  were obtained by photographing through a 
pa i r  of windows i n  opposite w a l l s  of the tank. A beam of l i gh t  produced by a 
commercial, e - w a t t  zirconium concentrated-arc point source at the focus of a 
parabolic mirror entered the tank through one window and w a s  adjusted t o  be 
pa ra l l e l  t o  the  surface of t h e  plate .  The beam emerged through the opposite 
window and w a s  photographed by a lensless  a e r i a l  camera. 
and shadowgraphs were correlated by having the  shut ter  of the camera e lec t r i -  
ca l ly  connected t o  the oscillograph. 

The pressure records 

Figure 20 presents shadowgraphs obtained with the  nozzle at 6.7 ex i t  rad i i  
above the  p la te  f o r  various jet-exit-to-ambient-pressure rat ios .  The oblique 
and normal shocks usually shown i n  the  exhaust f i e l d  of a f r ee  jet  at low pres- 
sure ra t ios  (see ref. 22) do not appear here probably because of the insensi- 
t i v i t y  of the shadowgraph system. The shock standoff distances above the  p la te  
at the jet  center l i n e  were measured from these and similar photographs and 
are  plotted i n  f igure 21 as a fract ion of the nozzle height as affected by 
pressure r a t i o  and nozzle height. 
center-line shock heights f o r  an i n f in i t e  

Shown f o r  comparison are  the predicted 
pj/poo by the  theories of 
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Figure .ZQ.- Shadovgrqhs of a M = 5 Jet exhawti% m t o  a flat @ate for 

under a vacuum pressure environment. 

references 6, 7, 8, and 13 which show tha t  the r a t io  of A/h 
with height. The experimental data show that the shock height decreases with 
decreasing nozzle height and tha t  the shock height fo r  a given nozzle height 
approaches a constant with increasing exit-to-ambient-pressure ratio.  
theories of references 6 and 8 are i n  fair agreement with the data, whereas 
the  theories of references 7 and 13 predict too great a shock standoff height. 
Figure 21 also shows tha t  the shock standoff distance f o r  a given nozzle height 
increases sharply as the  pressure ra t io  o f t h e  je t  approaches an optimum expan- 
sion r a t io  ( p Jpm = 1). Therefore, these data indicate the  necessity of con- 

ducting erosion tests, f o r  example, a t  a high exit-to-ambient-pressure ratio.  

does not vary 

The 

The diameter of the bowl-shaped normal shock i s  shown as a function of 
pressure r a t io  f o r  several nozzle heights i n  figure 22. 
the data, the diameter increases as the nozzle-exit-to-ambient-pressure r a t io  
increases. I n  addi- 
tion, the  shock diameter f o r  a given nozzle height appears t o  approach a 
constant value f o r  increasing pressure r a t i o  i n  a similar manner as the shock 
heights presented i n  figure 21. 

Within the  range of 

This can a l so  be seen i n  the shadowgraphs of figure 20. 
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Figure 21.- Variation of normal shock stand- 
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Figure 22.- Variation of normal shock bowl diameter 
with exit-to-ambient-pressure ratio. 
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P h 
(a) 4 = 8.0; A = 124. (b)  - = 4.0; 3 = 141. 
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Figure 23.- Shadowgraphs of a M = 5 jet exhausting onto a f lat  plate  showing a comparison 
of shock shape with theory. 

The cross-sectional shape - .oio 
of some of the  shock waves i s  Experimental 

shown in figure 23. Also pre- -. 0 G- = 9 9  psi% 
sented are theoret ical  predic- \O 
t ions  of the shape, as given i n  ‘a 
references 6 and 8. Within the .mt - 
range of these tests the theo- 
r e t i c a l  shape given by refer- 
ence 6 is i n  excellent agree- 
ment, while t ha t  of reference 8 
i s  i n  fair agreement. 
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shown i s  the pressure variation 
predicted i n  reference 8. The 
agreement between theory and 

Figure 24.- Surface pressure distribution on a 
flat pla te  resulting from an impinging jet 
at - = 8.  experiment i s  good. rn 



SCALING CONSIDERATIONS 

It is  believed t h a t  if s imilar i ty  between the model and the  fu l l - s ize  
vehicle f o r  three par t s  of' the  erosion problem is  achieved, then the overall  
erosion behavior of the model w i l l  reproduce, t o  scale, the  erosion behavior 
of the prototype. These three parts are: 
(2)  the aerodynamic shear stress on the  surface, and ( 3 )  the  s t a t i c  resistance 
of the  dust t o  movement. 

(1) the  jet-exhaust flow f ie ld ,  

It is  believed, as i n  reference 10, t ha t  the hypersonic s imilar i ty  param- 
e t e r  7(7 - l)M2 should be the  same f o r  model and the  ful l -s ize  vehicle. I n  
addition, the pluming of a j e t  i s  governed by the  je t -exi t  cone angle, and the 
r a t i o  of exi t  s t a t i c  pressure t o  ambient s t a t i c  pressure. The je t -exi t  cone 
angle i s  simply handled by geometric similari ty,  and f o r  the  jet  tested, t h i s  
angle w a s  zero i n  the  bel ief  tha t  the angle f o r  the  ful l -s ize  vehicle would be 
zero also. 
is  unknown because the  lunar ambient pressure is  unknown, but is believed t o  
be very low. The model w a s  tes ted i n  a large, low-pressure f a c i l i t y  i n  order 
t o  a t t a i n  a high value of th i s  pressure r a t i o  and a convenient running time. 
An exact reproduction of the  exit-to-ambient-pressure r a t i o  i s  believed t o  be 
unnecessary i n  v i e w  of t he  tests reported i n  appendix A. 

The r a t i o  of ex i t  t o  ambient pressure f o r  a ful l -s ize  lunar vehicle 

The aerodynamic shear s t r e s s  on the  surface depends on the type of flow 
over the  surface, which i n  turn  depends on the  surface roughness height as 
compared w i t h  the aerodynamic boundary-layer thickness. 
assumed tha t  i f  the  r a t i o  of roughness height t o  boundary-layer thickness i s  
l e s s  than 0.1, laminar flow occurs; i f  the  r a t i o  i s  between 0.1 and 1.0, the 
flow i s  turbulent; and i f  the  r a t io  i s  greater  than 1, a "dynamic" type of 
flow occurs. It i s  believed unlikely tha t  laminar flow w i l l  exis t  f o r  any 
low nozzle heights. If turbulent flow exists,  the  surface shear i s  propor- 

t i ona l  t o  p$e 'I6. If the  "dynamic" condition exists,  the  surface shear i s  

of the magnitude of t he  free-stream dynamic pressure and i s  proportional t o  

I n  reference 10 it i s  

CfPV? 

The s t a t i c  resistance of the  dust t o  movement i s  composed of two parts: 
agdc t an  a, and (2)  the cohe- (1) the s t a t i c  f r i c t i o n  which i s  expressed as 

sion a t t rac t ion  between par t ic les .  
s t a t i c  f r ic t ion:  (1) the  packing factor  c i s  the same f o r  model and the f u l l -  
s ize  vehicle, and (2 )  the  angle of repose 
fu l l - s ize  vehicle. I n  th i s  scaling analysis the  cohesion forces have been 
neglected. 
sion forces on the  ear th 's  surface, and none i s  available on cohesion forces 
under conditions believed t o  prevail  on the  lunar surface. 

Two assumptions are  made regarding the 

a i s  the same f o r  model and the 

L i t t l e  data are  available on the  magnitude of in te rpar t ic le  cohe- 

The erosion of the  dust takes place because of a momentum t ransfer  from 
the  gas stream t o  the  dust par t ic les .  Therefore, the r a t i o  of mass density of 
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the  gas t o  the  m a s s  density of the dust should be the  same f o r  m o d e l  and full'- 
s i ze  vehicle. 
f l u t t e r  and s t a b i l i t y  studies. 

This i s  analogous t o  the  mass r a t i o  scaling used i n  airplane 

The conditions f o r  s imilar i ty  are  then believed t o  be: 

Hypersonic f l o w  s imi la r i ty  parameter - 

Ratio of pa r t i c l e  s t a t i c  f r i c t i o n  per uni t  area t o  aerodynamic shear 

( PNG:'~)~ = ( PNi:'6)M 

stress (turbulent flow) - 
Psgd P s i s  

Same r a t i o  as equation (2a) but fo r  a very rough surface - 

Ratio of m a s s  density of gas t o  m a s s  density of surface material - 

(?)F = (2)M (3) 

The scale ra t ios  f o r  length, mass, and time can be determined from equa- 
t ions  (l), (2a), and ( 3 )  f o r  turbulent flow and equations (l), (a), and (3)  

f o r  very rough surface flow. I n  equation (11, l e t  M2 = ( i ~  ( ~ l t ) ~ .  I n  
7m 

P p  
equation (2a), l e t  NRe = -. I n  t h i s  equation use the  relations: V 2 2 / t ,  

Lr - 
. Also t o  avoid a geometrically pz 

kRT1+"t 
pg = p/RT, and p = kTn. Then N R ~  

d i s tor ted  model, d 5 2 .  

Length Scale 

The length scale as determined from the  turbulent flow (eqs. (1) and 
(2a)) i s  : 
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APPENDIX B 

The length scale as determined from the  rough surface, o r  dy-namic condition 
(eqs. (1) and (a)) is: 

The following values of the various quantit ies are believed t o  be repre- 
sentative of the  ful l -s ize  and the  experimental study reported herein: 

I Parameter 

M .  . . 0 ' .  

y . . . . . . . . . . . . . . . . . . . . .  
R, ft2/sec2-% . . . . . . . . . . . . . .  
k, 1b-sec/ft2-Oe . . . . . . . . . . . . .  
n . . . . . . . . . . . . . . . . . . . . .  
g, f t /sec2 . . . . . . . . . . . . . . . .  
a, lb-sec2/ft4 . . . . . . . . . . . . . .  
p, lb/in.2 . . . . . . . . . . . . . . .  
T, 91 

TY OR 

}& . . . . . . . . . . . . . . . .  
p, lb/in. . . . . . . . . . . . . . . . .  

Stagnation . . . . . . . . . . . . . . . .  

Model 

3.36 

1716 
3.4 10-9 

0.76 
32.2 

1.4 

7.5 f o r  a l u m i -  
nun oxide 

0.21 

163 
13 

530 

~1 s ize  I 
4.5 
1-25 
2115 

2.6 10-9 
0.70 
5.32 

5.0 average of 
estimates 

0.23 

1760 

125 

6200 

By using these values, t he  length scale A i s  11 calculated from the  
turbulent assumption; and A is  15.9 on the  assumption of "dynamic" conditions. 

Time Scale 

The first s imilar i ty  condition (eq. (1)) implied a time scale: 

Upon substi tution of numerical values, the  t i m e  scale on a turbulent basis i s  
1.9 and 2.7 f o r  a rough surface condition. 
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APPENDIX B 

Mass Scale 

Using equation (3) and the dimensional equivalence pg or  ps m / 2 3  the 
mass scale is: 

or  

For the  t e s t s  reported herein, it is of in te res t  t o  see i f  the ra t ios  of gas 
mass density t o  material m a s s  density are the same f o r  model and fu l l - s ize  
vehicle. Substituting the  numerical values, these r a t io s  are: 

6 = 1.8 x 10' 
P 

P 
s,F 

It is  apparent tha t  f o r  the  model, the  gas w a s  heavier re la t ive  t o  the pa r t i c l e  
material than is  the  case f o r  the  assumed f u l l - s i z e  vehicle. 
therefore, t ha t  the experimental erosion data presented here should not be used 
d i rec t ly  t o  predict the  behavior of the Apollo LEM vehicle. 

It i s  believed, 

Additional Comments on Scaling 

It i s  believed tha t  the rough-surface, o r  dynamic, condition i s  l i ke ly  t o  
prevail  and model t e s t s  should be scaled by t h i s  scheme. It should be noted 
t h a t  the  r a t i o  of the  rough-surface aerodynamic shear stress t o  the s t a t i c  
f r i c t ion  per uni t  area of the dust par t ic les ,  

of the m a s s  r a t i o  of gas t o  dust material, 

which re la tes  i n e r t i a  t o  gravity effects.  If the  Froude number were inde- 
pendently a l ike f o r  t he  model and the  fu l l - s ize  vehicle, some assurance tha t  
the  t ra jec tory  of the dust par t ic les  would be similar f o r  the  model and the  
ful l -s ize  vehicle could be given. 

pgV2/psgd, i s  also the  product 

pg/ps, and a Froude number V2/gd, 

The Knudsen number which re la tes  the  mean-free-path length of gas mole- 
cules t o  a body length has been neglected i n  t h i s  discussion. 
mean-free-path lengths calculated f o r  the tank pressures encountered during 
these tests and average dust par t ic le  sizes, t he  Knudsen number ranged from 

Referred t o  

2 x 102 t o  105. 



APPENDIX c 

X-FLAY METHOD OF MEASURING DUST DEPTH 

When planning these tests, it was decided tha t  quantitative time h is tor ies  
of dust erosion were a necessity. Two methods were selected f o r  use. One w a s  
a photographic technique using s tad ia  rods fastened t o  the  bottom of the  bed 
which would be exposed as erosion proceeded. 
X-ray absorption technique. Both were t r i e d  but only  the  l a t t e r  proved suc- 
cessful. 
described i n  de t a i l .  

The other method employed an 

Because the  X-ray absorption system i s  rather  unusual, it is  herein 

Actually, the first bench t e s t s  were made with gamma radiation emitted by 
a radioactive element. Since the  amount of gamma radiation (number of dis inte-  
grations) i s  a random function of time and since the  t i m e  history of dust depth 
w a s  the objective, the  method proved unsuitable. 
X-ray tube, however, is  constant and i n  addition is  safer since the radiation 
source can be e l ec t r i ca l ly  deactivated. X-rays are  frequently used qualita- 
t i ve ly  and sometimes quantitatively but seldom t o  obtain a quantitative time 
relationship. 

The radiation output from an 

The X-ray dose received at some point within the  f i e l d  of the X-ray tube 
without an absorber between ta rge t  and reference point i s  described by the  
equation (see ref. 23): 

kivCt 
2 

I o  = - 
S 

where IO i s  dose received; k i s  a constant; i i s  tube current; v i s  tube 
voltage; t i s  time; s i s  distance from ta rge t  t o  reference point; and 
c = 2.5 (value depends on X-ray machine parameters). 

When an absorber is placed between the tube ta rge t  and the  reference 
point, the  re la t ion  becomes 

where I i s  dose received at reference point with absorber; Io i s  dose 
received a t  reference point w i t h  no absorber; p i s  X-ray l inear  absorption 
coefficient; p i s  density of absorber material; and d i s  depth or  thickness 
of absorber. The quantity p/p i s  a nonlinear function of the material con- 
tained i n  the absorber and the energy of the rays s t r iking it. The general 
nature of t h i s  function i s  shown i n  figure 25. (See ref .  23.) The resu l t  i s  
tha t  the dose received at a point below a dust bed is: 

kiv't .-ppd/p 1 =-  
2 S 
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Figure 25.- Variation of X-ray 
absorption coefficient with 
X-ray energy. 

Figure 26.- Typical X-ray film sens i t iv i ty .  
(Replotted from ref'. 24. ) 

Thus, f o r  a given setup, the  dose i s  an exponential function of t h e  dust-bed 
thickness and a l inear  function of t i m e .  

Consideration must a l so  be given t o  the nature of the  detector. Commer- 
c i a l  X-ray fi lm seemed t o  be a good choice because it could be used t o  provide 
a continuous depth survey rather than a point-by-point survey. The sens i t iv i ty  
of the  f i l m  t o  X-rays i s  a l s o  a nonlinear function as may be seen i n  figure 26, 
which i s  taken from reference 24. X-ray f i lm sens i t iv i ty  may be increased by 
the  use of fluorescent intensifying screens which cause an additional optical  
exposure o r  by lead screens which reradiate electrons and secondary X-rays and 
attenuate sca t te r  radiation. 
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