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PREFACE 

The subjects discussed in this review cover Guidance, 
Control, Unsteady Aerodynamics, Structural Dy
namics, Orbit Theory and Prediction, and selected 
topics concerning Astrophysics. Other subjects such 
as Aerothermodynamics and Flight Evaluation will be 
discussed in forthcom ing reviews. It is hoped that 
these r eviews will be interesting and helpful to other 
organizations engaged in space flight research and 
related efforts . Criticisms of this review and discus 
sions concerning individual papers with respective 
authors are invited . 

.-, 

/ fi v/.>-- , £u-
E . D. Ge issler 
Director , Aero-Astrodynamics Laboratory 
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STUDIES IN MINIMAX CONTROL 

by 

Kenneth J . Davis 
David A. Ford 

This report presents a new formulation of a mini -
max problem in launch booster control, and a summary 
of work done by contractors on the problem. The 
m inima.x problem described in the introduction is a 
mathematical one whose solution would yield a control 
ler which would minimize the maximum possible value 
of some selected analytical index of booster perfor
mance. The work summarized was completed before 
June 1, 1964, and includes studies by Honeywell (Con
tract NASw-563) and Control Research Associates 
(CRA, Contract NAS8-111 43) , Honeywell's study re 
sults in a Linear fixed gain controller which minim izes 
a given criterion under a worst-disturbance condition . 

Sym bol 

f3 

F(x) 

C (u) 

1. u. b. 

g . l. b, 

Definition 

Engine swivel angle 

Angle of attack due to wind 

n-dimensional Euclidean space 

performance index 

"Cost" functional 

Leas t upper bound 

Greatest lower bound 

CRA has developed a general theory of minimax ele- x EX x is a member of the set X 

men ts, and has defined a problem whose solution WOU1~ 
yield a closed loop controller, I 1. u. b. 

XEX 

g(x) Least upper bound of the values g (x) 
of the function g for x belonging to the 
set X. 

Symbol 

x 

A 

B, C 

U :: u(x) 

g ~ get) 

r 

T 

z 

. ) 

LIST OF SYMBOLS 

Definition 

n-dimensional state vector 

Constant rum matrix 

Constant n-dimensional vectors 

Scalar control law 

Scalar d is turbance fWlction 

Class of control laws u (x) 

Class of proper control laws 

Range of control law u(x) 

Class of disturbanee functions get) 

Terminal time 

Angle of attack 

Angular deviation from reference 

Lateral dev iation (dr ift) from reference 

Set of controllable initial states 

I. INTRODUCTION 

This report records results thus far on a minimr.x 
problem related to launch booster control. The mo ci
vation for the problem is the reduction of peak va' ues 
of some selected index of vehicle performance, \ ,rhile 
at the same time maintaining other vehicle perform
ance characteristics within prescribed bounds. 

In section two of this report, a mathematical fo:-
IDulation of the minimax problem is given. Thii' ~rob
lem statement involves a linear plant, with ;1 tlme
varying disturbance entering as a forcing tern!' The 
bounds on performance characteristics are ircorpo
r ated as state variable constraints. The obje(· t~ve. is 
the determination of a control law which will miOlmIze 
the maximwn value of a given (nonintegral) pe;form
ance index. The ma..ximum is takert relativ{ to a 
particular set of initial conditions and a partiCular 
class of disturbances, as well as over a given finite 
t ime interval. 

Since this type of problem differs from the usual 
variational problems, and does not yield readily to 
standard techniques, the statement is given in termS 
which emphasize the qualitative aspects of the problem . 

.' 
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While ·the ultimate goal is the development of effective 
procedures for computing the optimal control, the 
immediate goal is to obtain mathematical insight into 
the nature of the problem. Consequently, the problem 
is stated in general mathematical terms so that it may 
be amenable to rigorous mathematical treatment. 

Section three is a summary of work done under 
contract by Honeywell, Inc . In this study the case of 
a general linear plant with a linear controller and a 
bounded disturbance is considered. Honeywell imposes 
zero initial conditions and no intermediate Or terminal 
conditions . A linear performance index is treated, 
and a procedure is developed for finding the maximum 
value of this cost index for a given l inear controller. 
In addition, Honeywell applied their technique to two 
second-order and one fourth- order (rigid launch ve
hicle) exam pie. 

The results obtained by Control Research Associ
ates (CRA) are summarized in section four. In con
trast to the M-H approach , their efforts have been 
directed towa.rd the more qualitative aspects of the 
problem. In particular, they have made a study of the 
general theory of minimax e lements . Their most sig
nificant contribution has been in the formulat~on of a 
meaningful mathematical statement of the problem. 

II. THE PROBLEM STATEMEI T 

The ter ms in which the problem will be stated are 
as follows . The unforced booster dynamics are repre
sented by a homogeneous linear vector matrix differ 
ential equa.tion 

(2. 1) 

whece x is an n-dimensional state vector, and A is an 
n x n matrix. The control pr9cess for the whole first 
stage \flight will be thoug'nt of as being made up of a 
sequen~'e of shorter processes, each T seconds in 

length, "~l.ere the t ime interval 0 ::: t ::: T is sufficiently 
s mall to allow the coefficients in the matrix A to be 
consider d constant throughout the interval. The con
troller e ters (he system as a scalar u. A scalar g is 
introducep into the system to r~present wind effects in 
the boost,er, where mathematically g = g (t) is re
s tr icted to a suitable class of functions r. With these 

I 
additions 1 the system (2 .1 ) is rewritten as 

( 

x = A x + B u + C g, (2 . 2) 

where B and C are constant n- vectors . 

To ~larify the terminology used above, the rigid 
body bOJS ter dynam ics will be transformed to the form 
( 2.2) . T he standard rigid body equations of motion 

can be written as 

~=K(f3+f3 ). 
c 

~ Th~.firsteq~ation is theresultofcombining Ct - aw = 

¢ - Z/ V and Z = Kl <i> + K20! + K3(3). This system is 
transformed into the :'state variable" form (2.2) by 
l etti~g Xl = ¢, x2 = cp, x3 = Cl!, x4 = {J, U = f3c and 
g = O!w . In vector matrix notation the rigid body 
equations become 

o 1 o o o 

o o o 

~ 1 _ ~ _ K3 
V V V 

+ u+ g. 
x3 0 1 

o o o K o 

Generally, ~t ISFC the linear control law is 
u = f3c = aoe;::> + ale;::> + boO! Or u = k t Xl + k2 X2 + k3 x3 and 
g = Ctw corresponds to the MSFC design winds (Cape 
Kennedy). Here, however, the control u is not r e 
stricted to be a linear control law; inde.ed, it may be 
of nonlinear form such as the optimal bang-bang con
tro l law. The control u may depend explicitly on tim e 
t or the state vector x. Preferably, however, the 
control takes the form u(x) of a feedback control law. 
The range of u is restricted to a bounded set U, and 
the class of adm issible controllers for the problem is 
denoted by fl . In some studies concerning the rigid 
body problem mentioned above, the class of controls 
might be the set of all linear controls. 

To assure adequate booster performrJ1ce, the 
state vector x is constrained to lie in a region R in 
En. The characteristics of the region R depend upon 
the particular system under investigation. For ex
ample, it may be necessary to restrict linear' combi
nations of the state variables x so that desirable 
booster performance can be obtained. Thetie combi
nations can be written a's the dot product.£l . x, and 
the r estrictions can be represented by inequalities in 
the following general form : 

I Ii . xl::: L. , 
1 

(2. 3) i = 1, 2, . .. , r 

where the Li are positive constants. To illustrate this 
formulat~on, consider the booster rigid-body example 
and the r es triction of maintaining the bending moments 
on the booster within the structural desi.gn limits. 

3 



This can be written in the for~ (2.3) by 

I i ~ x3 + 11 X4 I ~ L 1, 

where li = M~, 1: = M~, and L1 is the struc tural de
sign limit for the bending moments. These restric
tions, along with others imposed by the physical 
situation sllch as limit on engine deflection angle f3 and 
perhaps a limit on attitude an~le cp, determine the 
region R. 

Continuing with the general formulation of the 
problem, it is assumed that a set Xo of initial states 
exists having the property that there is a control u in 
fl such that for each initial state xO E XO, and each 
disturbance g E r, the solution x(t; u, g, xo ) to equa
tion (2) (which is initially x(O; u, g, xO

) = xO ) re
mains in R throughout the time interval 0 ~ t ~ T . 
The set x.o is called the set of controllable initial 
stutes. To state this in terms of the booster rigid 
body system, consider the initial states for the state 
variables cp , ~ , a, {3 for any interval of flight time 
(e. g., 60-70 sec. ) . The initi2J states are such that, 
for any wind the vehicle encounters, there exists a 
control u which will maintain the state variables so as 
to satisfy all restrictions imposed on them . 

Once a controllable set XC is given, it is neces
sary to consider, within the set n of allowable con
trols, only thos e which control the vehicle from each 
initial state in XC, and for each disturbance g E r. 
Let 'iF denote this subset of n defined mathematically 
as follows: u E'iF if for each x0 E XO, and each g E r, 
x(t; u, g, xo ) remains in R for 0 ~ t ~ T. The mem
bers of 'iF will be called proper contrqls. 

A second condition on x, and on the initial region 
xC, stems from the fact th'lt the terminal state 
x(T; u, g, xo) is an initial state for the controller in 
the next time period. Thus, it is required that 
x(T; u, g, xo) belong to the set of controllable initial 
states for the succeeding time period. This amounts 
to placing terminal conditions on the problem. (The 
requirement for the term inal conditions on the problem 
is a result of the approach to the formulation of the 
problem. The choice was either to conSider the prob
lem from a time -varying standpoint or to us e a con
stant parameter (time -invariant) formulation. The 
latter approach was chosen because of the apparent 
simplicity.in the formulation and traotability of the 
problem). Since the problem is formulated for the 
constant coefficient case, the flight region must be 
broken up into segments in which the parameters are 
almost constant. It is therefore understandable that 
the controllable initial states for one segment must be 
the terminal conditions for the preceding segment. 

4 

A minimax problem is no~v fo~mu!'at~d in th~'s~t
ting. A non-negative functional 

F (xl> x2" .. , ~) = F (x) 

is introduced as an index of performance. The "cost" 
for a given control u is then defined by 

max F (x (t; u, C (u) = max 

g E r t ~ 0 ~ T 

The expression C (u) is a general mathematical 
representation of a peak value of some vehicle param
eter. For example, C (u) could be taken as the peak 
bending moment under a worst-case wind, for a worst 
initial condition. Since the object of the minimax con
troller is the reduction of this peak, the minimax 
problem is that of finding a controller ut.' such that 

C (If.' ) :: min 
UEQ 

c (u). 

The controller ut.' would therefore guarantee the peak 
bending moment to be the smallest value found, within 
limitations, for any control u which could be con
sidered. The choice of a functional F would generally 
depe nd 011 the constraints placed on x. For example, 

F(x) = maxi 1i. x I, 
1::Si~r 

'", , 

/ 
I' 

. I 

where the 11 are the constant vectors of expression I 
(2 . 3). Another possibility would be ; 

n 

F (x) L 
i = 1 

! 
t 

I 
which would minimize all "average" worst cae.e. 

I 
I 

/ 
I , 

The problem will n0W be summarize~. For a 
particular time interval of length T, the ~notion is 
described by the system \ 

t 

x = A x + B u + C g. 

For this time interval, we seek a controll r u* En 
such that 

(1) \.t7- force s the system to remain in R ' hrough
out the flight time for all disturbances gEl' and an 
initial slates X

O 
E xD, 

\ , 
\ 

\ 

\ , 

\ 

\ 
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. -' . (2) .each of the possible terminal 
lime' interval under consideration is 
initial state for the next time period, 

tates for the 
a controllable 

(3) If:' minimizes the ma.ximum value of a given 
function F (x). 

The deSired controller for the entire flight time will 
be the com bination of the controllers for the particular 
intervals. 

III. HONEYWELL 'S STUDY 

Honeywell considers the minimax problem for the 
case of a linear feedback control, zero initial condi
tions, no state variable constraints, and bounded dis
turbance. It is shown that, for a given fixed·-gain 
linear control law, the "worst" dis turbance, that is, 
the one which maximizes the peak value of a given 
( linear) performance index is bang- bang. The per
formance index chosen has the form 

F (x) = Ii' x I , 

where i is a constant n-vector . Honeywell develops 
a procedure for determining the worst disturbance and 
for computing the cost incurred under this dis tLll'banc e. 
Thcy then find the minim urn cost by using an iteration 
procedure. They also present. examples to illustrate 
their techniques . The remainder of this section is 
devoted to summarizing their work. 

The class of controls Q consists of fixed gain 
lincar control laws in the form 

(3. 1) 

s uch as 

1 , 

is placed pn the gain coefficients ki . The subclass tIr 

of propel' controls is all of Q in this case, since 
. neither c Jnstr~ints nor terminal conditions are pres

ent. The ~ass of dis turbances r cons is ts of all meas -
. I 

urable ftmtions g res u'icted by I g l :S 1. Only the case 
of zero irttial conditions XO = 0, is treated. (Honey
well has Jeported recently that the mathematical dil-, 
ficulties Ihich imposed the zero initial condition have 
been ove:come. ) . I 

Sino the control u depends only on the state vari
able, x,Jubstitution of a given control law in equation 
(2.2) asults in a right-hand side which depends only 

4 

on x and g . Considering g as the control, the prob-
lem of maximizing a performance index is ~n oplim u. l 

control problem. This modified system has the [orlll 

• A'" x= x+ C g (3.2) 

where 

T 
and k denotes the transpose of the fLxi matrix (vec-
tor) whose components are the gains k1' k2,···, kn 
of (3. 1) . 

The performance index whose ma.'(:imum value is 
to be minimized is represented in the form 

F (x ) = 11 . x I. 

In accordance with the terminology of section 2, the 
cost for a given control u is given by 

C (u) = m ax max 11' x (t; u(X), g, 0)1 (3 . 3) 

or more simply, 

C (u) = max max 11. x (t; u, g) 1 . (3 . 4) 

g(r O:St:ST 

In the report, two useful Simplifications of the 
expression for C (u) are made possible because of the 
res trictions on xO and on g . Since only zero initial 
conditions are considered, it is found that no generality 
is los t in assuming that rna.."\: 11 . x (t; u, g) I always 

O:St:ST 
occurs at the final time T. Furthermore, since g (t) 
is confined to a symmetric region, it is sufficient to 
consider the case where 1 . x (t; u, g) is non-nega
tive, and consequently, the absolute values in (3.4) 
may be dropped. Therefore, 

C (u ) = max [1 . x (T; u, g»), 
g(r 

which is the final expression for the "cost. " 

(3.5) 

The main contribution of Honeywell is in the de 
term ination of a "wors t" dis tLll' bance ' g, that is, One 
which satisfies 

C (u) = 1 . x (T; u, g). (3. 6) 

The central idea, as suggested above, is that of 
letting the disturbance g in equation (3.2) take the 
role of a control, and applying the theory of time
optimal control to yield a bang-bang "controller" g 

5 
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• which maximizes the performance index 

1 . x (T; u, g) 

of (3.6). 

The solution of this problem leads to the con
struction of g in the following form . Let y ( t) denote 
the solution to the system 

• 1\ . 
y .; -Ay 

with terminal condition 

Y (T) = 1. 

Then, in terms of this solution, 

g (t) = sgn [y ( t) . C) 

is the desired "worst" disturbance . 

(3 . 7) 

In review, it should be pointed out that the above 
results apply to the zero initial condition case. 

In some cases the cost C (u ) is expressible ex
plicitly in terms of the gains kl' k2' . . . , kn' in which 
case one may attempt to find the control u(x) which 
minimizes C (u) by analytical techniques. In their 
report, Honeywell develops such a procedure for the 
plants ~ = u + g and x + x = u + g, where the terminal 
time T is taken at + 00. 

A more usual situatior. is that the cost is not ob
tainable explicitly in terms of the gains, but rather a 
selection of apparently suitable control laws is made, 
3Ild the cost computed for each. The selected control 
l::lw yielding the least cost is then chosen as the opti
mum control law. This approach is used by Honey
weLL in the example discussed in the following para
brraphs. 

This example was c hosen by the contractor to 
lliustrate the developed techniques for a more or less 
realistic approximation to the problem of rigid body 
control of a typical launch vehicle. T he conventional 
rI~id body equations of motion were used in conjunc 
tion with a control law having fixed gains in the pitch 
rate feedback loop and in the ptich attitude and normal 
acceleration filtered feedback loops. T he rigid body 
cqu:ltions of motion were written in the form of (2) , 
"lth state variables 

x I -' 9, X2 = ;P, X3 = Z, X4 = {3. 

Cost indices of the form 

C. (u) = ma..'C r «T » . 1 2 3 4 
1 

. X. ; u, g , 1 = , , , 
1 1 

g 

, . , ..... , 
"-. . 

were considered where the weigh~ing factors l'j 'Wl;l"L 

chosen to permit comparison of the peak values of the ' 
state variables. For each control u, the larges t uf 
the values Ci (u) was taken as the cost C (U). ThL: 
cost was computed for an initial choice of gains, aml 
an iterative procedure for improving the chOice W3.S 

implemented which subsequently reduced tho initial 
cost by 25 percent. The closed loop roots of the opti
m ally controlled system were-.0047, -.44, and-.137 
± j (1. 126). The computer time involved was approxi
mately two hours on Honeywell's H-800 digital COm 

puter . Transient responses for the extremal distur
bances producing the minimum of the Ci (u) are given 
in F igures 3 through 6. 

. IV. CRA'S WORK 

This section summarizes work done by CRA on 
the minimax problem during February, March, and 
April, 1964. The initial interest of the contractors has 
been in the mathematical theory upon which the prob
lem is based. Accordingly, the earlier reports con
tain a survey of minimax elements in general. Included 
in this is a discussion of topological results which are 
3.ssociated with the problem. At this point, the most 
significant contribution of CRA has been the mathe
matical formulation of the problem. The formulation 
conceived is a considerable improvement over earlier 
statements of the problem. 

Some of the general theory presented follows. 
Let X andY be spaces and let F be amapping of X.'( Y 
into a bounded set S of the real numbers. The authors 
present a p::.oof of the known result I 

" g. L b. [ 1. u . b. F(x,Y)l~ I 

y€Y x€X (4.~) 
1. u . b . [g. 1. b . F (x, y) 1 . I 
x€X y€Y 

Briefly, this says that the minimax is at least as large 
a s the max-min. It is also pointed out that, WIdeI' the 
above nonrestrictive conditions, it is possible to ob
tain a very good approximation of the minim~'C solu
tion . In particular, it is proved that, if € is any 
positive number, then there exists a point (xo' yo) in 
X x Y such that 

IF (xo , yO) - g. l.b. Lu.b. F (x,y)f < €. (4.2) 
y€Y x€X I 

To see the significance of this result, we no tel that, in 
\ 

the case whe.re the minimax exists, we have 

g . L b. 

y€Y 
1. u. b. F (x, y) = min max F (x, y). 

XEX 

.. 

/ 
/ 

\ 

~--------------------~=-~~==~==~~~~--. -



• ~ 'Fhu£, thi's' the'orenl says that, even if the minImax 
does not exist, we are .assured of an approximation of 
the desired value to within any specified degree of 
accuracy. 

i By placing restrictions on the spaces X and Y and 

{, -

on the function F, a more precise theorem is proved 
concerning the existence of a minimax solution. 

Theorem . 1£ each of X and Y is a sequentially 
compact metric space and F is a continuous real 
valued function defined on X x Y, then there exists a 
point (xo , yO)(X x Y such that 

F (xo , yo) = min max F (x, y). 
XEX YEY 

This thcorem is actually proved as a corollary to a 
more general theorem involving semicontinuity and 
general topological spaces . 

Turning to the minima.,-x problem in control theory, 
the contractors considered the system 

x = f (x, u, g), (4. 3) 

where f is an n-vector function and x, u and g are as 
given in section n. The region R is assllmed to be of 
the form Il xll ::::: r 

where 

terminal set Xl is taken to be all of R . 

FIGURE 1. ILLUSTRATION OF T-TAME 

• The contractors introduced two new con C:L b 

which are defined below. 

Definition 1. The system (4.3) is said to be T
tame with respect to R if there exists a subre"ioll 

o 0 

RTCR sllch that, for any x E RT and any g E r, there 
exists a control u E Q such that x(t; u, g, xo ) E R for 
all t such that 0 ::::: t::::: T (Fig. 1). 

The system indicated in Figure 1 is tctame but 
it is not t2-tame or t3-tame. A typical traj ectory is 
shown in Figure 1. 

Definition 2. The system (4.3) is said to be uni
formly T-tame with respect to R if there exists a 
subregion RTCR and a nonvacuous subclass >It of Q 

such that x(t; u, g, XO)E R whenever xO E RT, g E r, 
u E -V and t E [0, T]. The idea 'of T-tameness seems 
to be of significant importance. When working with a 
system which is uniformly T-tame, we are assured 
of the existence of a "controllable s et" of initial states 
and at least one controller which will insure adequate 
booster performance against all admissibla winds . 
Without this proper ty, we would be in the unllesirable 
position of having our controller u (x) depend explic
itly on the wind. 

Exam ple: 

The system 

with lui =:§ 1, Igl :§ 1, and T = 2 sec, is uniformly T
tame with respect to the region R, defined by 

RT may be taken to consist of the strip in R between 
the lines x + 2y = 2 and x + 2y = -2. Any initial state 
inRT may be controlled for any g (satisfying Igi .:§ 1) 
by taking u = - sgn x2 (Fig. 2). 

FIGURE 2. REGIONS R A~D RT FOR EXAivlPLE 
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The assumption that our system be uniform ly ~
tame with respect to R is fundamental in the wor k of 
CRA. These concepts have been useful to the contract 
monitors in preparing the new problem statement. In 
fact, the RT in the definitions above can be identified 
with the :xo of the problem statement. Furthermore , 
the statement that the system (4 . 3) is T - tame is 
equivalent to the assumption made in the problem 
statement that an "adequate" controller does exist. 

The last progres s report from CRA included a. 
discussion of the expre sion "uniform ly T - tame." It 
contained an explanation of the significance of the term 
and of its relationship to the (nonuniform ) T-tameness 

CONCLUSIONS 

The introduc tion of this report provides a com
plete s tatement of a minimax problem in launch boos ter 
contro l. Two aspects of this essentially new formu
lation should be pOinted out. First, there is not a 
particular index of performance which may be singled 
out as the index of performance for the problem . The 
second point is that the problem includes terminal 
constraints on x. 
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The most useful form for . the c~ntr~iJ.er i~ ' It:e ' . 

u (x) form. Honeywell 's study choos es this type ()[ 
controller , and carries their technique through to :l 

computational algorithm . One shortcoming of this 
scheme is that the only constraint which they pbce on 
their state variable is the undesirable one of zel"U 
initial state , Another drawback of Honeywe ll's pro
cedure is that, in most cases, the optimum u (x) is 
one of a preselected set of control laws rather than :l 

control law derived from the process, That is, the 
only thing which they provide is the determination of 
the worst-case cost for a given controller . The ir ap
proach has been applied successfully to in-house 
studies involving equations for a rigid boos ter with :l 
first order actuator lag, where the m aximum be nding 
moment is to be minimized. A report will be written 
on this work in the near future. 

The work of CRA has centered around obtaining a 
sound formulation of the problem. Their work contri
buted heavily to the essentially new statement of the 
problem given in the introduction to this report. 
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A BOUNDARY VALUE FORMULATION FOR SPACE 
VEHICLE GUIDANCE 

\ . I , 

By 

Robert Silber 

N65-2412 
SUMMARY 

Part 1 of this two- part paper presents a discus
sion of the general notion of guidance of space vehicles, 
the purpose of which is to arrive at an understanding 
and description of the decision process which is 
central to the steering of a space vehicle. In many 
cases, the dec i sion process can be embodied in a set 
of mathematical functions, called control laws. The 
second part of the paper is concerned with the numeri
cal representation of the control laws . One way in 
which this may be accomplished, with the aid of a 
digital computer, is by the expansion of the control 
laws in Taylor's series about lmown data. This pro
cedure is described and explained. A more detailed 
treatment of the material of this paper can be found in 

R~ces 1 and 2. 

V- 1. SPACE VEHICLE GUIDANCE 

A. INTRODUCTION 

A convenient starting point for a discussion 
of fundamentals of space vehicle guidance can be found 
in the following list of basic inputs: 

( 1) Flight Environment 
(2) Vehicle Performance Characteristics 
(3) Mission 
(4) Optimization Criteria. 

This introduction consists of considerations of 
these four items, which are pertinent to steering a 
space vehicle. 

By the flight environment is meant the physical 
situation in or through which the vehicle is expected 
to fly, i. e., its universe . Mathematically, this 
amounts to the total extra-vehicular accelerations ex
perienced by the vehicle during flight. Primary ex
amples are the gravities of neighboring bodies and, in 
many cases, atmospheric drag. For nonatmospheric 
flight, it is assumed that in some coordinate system, 
the environmental accelerations are known functions 
of, at most, the position and velocity coordinates of 
the vehicle and, possibly, time. If the vehicle is con
sidered as a point of variable mass, this is sufficient. 
When rigid body dynamics are of interest, the situation 
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is slightly more involved. For purposes of this treat
ment, we shall take the former viewpoint. 

By vehicle performance chaTacteristics is meant 
those parameters pertaining to the vehicle and of sig
nificance to its motion. In this category are placed 
those parameters defining the magnitude and direction 
of the vehicular thrust vector . For atmospheric flight 
the effects of vanes, rudders, and more generally of 
vehicle geometry must be considered. As a special 
s ubclass of parameters in this category, we have the 
flight controls . For steering a space vehicle, certain 
devices are available for application, within con
straints, by a pilot or computer, for the purpose of 
appropriately influencing the motion of the vehicle. 
The instantaneous effects of such devices manifest 
themselves as parameters in the differential equations 
of motion of the vehicle . These parameters ar e the 
above mentioned flight controls. Typical constraints 
encountered are upper and lower bounds on the values 
of these parameters as well as the necessity of time -
continuous or piecewise continuous variations. 

The third item, the mission, is a problem area 
in itself. Generally speaking, the mission is stated 
qualitatively. For purposes of space vehicle guidance, 
the mission must be stated analytically. The transi
tion from one to the other generally brings an investi
gator face to face with many of the classical unsolved 
problems of celestial mechanics . However, the mod
ern computer has made feasible many numerical ap
proaches hitherto undeveloped. In any case, the mis
sion is assumed to determine anumber of mathematical 
relationships among the position and velocity coordi
nates of the vehicle and possible time, the simultaneous 
satisfaction of which is both a necessary and sufficient 
condition for mission fulfillment. For our discussion, 
these relationships, called mission criteria, are as
sumed known. 

In many cases it is advantageous to consider a 
stated mission as a member of a family of missions . 
As an example, an earth orbit of given eccentricity, 
major axis, inclination, etc., can be embedded in a 
family of earth orbits of varying eccentricities, major 
axes, inclination, etc. Generally, the family is as
sumed to be defined by certain parameters, called 
mission parameters. Each mission of the family dif
fers from the others by alteration of one or more of 
the mission parameters. 

1 
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' .. donSicie~ n~w th~ fo~rth t,tem, optimization criter
. ia. It Can and does happen that in steering a space 
vehicle from a given set of conditions, one encounters 
a multiplicity of possible trajectories leading to mis
sion satisfaction. In such circumstances, it is natural 
to seek out the best or optimum trajectory. The cri
teria by which one decides which trajectory offers the 
most desirable solution shall be called optimization 
criteria. For our purposes, the optimization criteria 
are assumed to be dependent on the considered family 
of missions, but not on individual members. 

The preceding comments are sufficient to allow a 
discussion of the steering decision itself. We shall 
see how this decision is related to the four items just 
discussed by way of the differential equations of mo
tion of the vehicle. 

B. THE STEERING DECISION AND THE DIF
FERENTIAL EQUATIONS OF MOTION 

If the flight environment and vehicle perform
ance characteristics are known, then for an assumed 
set of values for the flight controls, the instantaneous 
differential equations of motion can be written. To 
discuss this, we introduce the following notation. 

In a three-dimensional Cartesian coordinate sys
tem, let x, y, and z be the position coordinates of the 
vehicle. Let u, v, and w be velocity coordinates: 
x = u, y = v, and i = w. Let m denote the instantan
eous mass of the vehicle. Let F denote the instantan
eous magnitude of the vehicular thrust, and let the 
direction of this thrust vector be defined by the two 
angles cp and e. (The actual convention for measuring 
l{J and e is not pertinent here.) As usual, t denotes 
tim e and a dot indicates differentiation with respect to 
time. 

U sing Newton I s second law and dividing by m =F 0, 
one can generally obtain expressions of the form 

x = u, 

y = v, 

z = w, 

u = f(F, cp , e, m, x, y, z, u, v, w, t), 

v = g(F, cp , e, m, x, y, z, u, v, w, t), 

'IV = h(F , cp , 8, m, x, y, z, u, v, w, t). 

Other differential equations mayor may not ap
pear, depending on the construction of the vehicle. 
F or example, some vehicles are of constant thrust, 

so that additionally 

F = O 

m = c, a constant. 

When all equations are written, the flight controls, 
since they are open for selection, will appear on the 
right hand side of the system, but not on the left. By 
way of illustration, we conSider the constant thrust 
vehicle. This has the system 

x = u 

y = v, 

i = w, 

Ii = f(F, cp , 0 , IT! , x, y, z, u, v, w, t) , 
(1) 

V = g(F, cp , 0, m, x, y, z, u, v, w, t) , 

w = h(F, cp , 0, m, x, y, z, u, v, w, t) . 

F = 0, 

m = C. 

Since the thrust is of constant magnitude, the pilot 
has available the direction of thrust for steering. 
Thus, the flight controls are cp and e, and these are 
the two parameters appearing on the right side of (1) 
for which there are no corresponding differential 
equations. In this example, the steering decision con
sists of selecting values at each instant for cp and O. 
However, this is not to be done arbitrarily. Consider 
that the values of cp and 0 which are most appropriate 
will depend on current position, current velocity, 
current vehicle performance parameters and current 
time, eventual mission satisfaction, and optimization 
criteria. 

Thus, we can expect the flight contro ls cp and 0 to 
be functions of current state, current performance 
parameters, current time, and mission parameters, 
defined via the optimization criteria. In the more 
general case, the flight controls will be such functions, 
called the control laws. 

In order to see more explicitly in what way the 
control laws are defined, we consider a system of the 
form 

(2) 
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This system is to be thought of as representative of 
the differential equations resulting from application of 
Newton's second laws. '> System (1) is thus a special 
case of system (2). The steering decision now be
comes the determination of the quantities ul' u2" .. , uk 
as fWlCtions of current values of xl, x2"" , xm and t. 
The xl' x2" .. , xm must be thought of as containing 
position and velocity coordinates and whatever else is 
appropriate. 

The mission criteria are functions of position and 
velocity coordinates and time . It will be convenient 
to write them as fWlctions of all the variables Xl' 
X2, ... , xm · Thus, the mission criteria are denoted 
by 

j = 1, 2, ... , s . 

The parameters cl' c2"'" c represent the mission p 
parameters. 

It is at this point, in many cases, possible to ap
ply an optimization theory such as the calculus of 
variations in order to impose the optimization criteria. 
It is beyond the scope of this paper to discuss such a 
theory; there is abundant literature on the subject. 
What we need are only the end results of the optimi
zation. Generally, there are three of these. First of 
a ll new variables may be introduced into the problem. 
(This is a consequence of the use of Lagrange multi
pliers . ) The variables Xl, x2"'" xm ' t will remain, 
but the variables ul' u2"'" Llk may be replaced by a 
new set containing k or more variables. The ul,' . . , 
Uk can be determined once the new variables are 
Imown, and so it is sufficient to work with the new 
variables. 

Secondly, with the new variables, every variable 
is furnished a first order differential equation. Thus, 
system (2) is transformed to a system 

Y2 = f2 (Y1> Y2" . . , Y ,t) n 

y = f (y 1> Y2,' .. , y ,t) . 
n n n 

( 3) 

Unlike system (2), the only variable on the right-hand 
side of (3) for which there does not appear a differen
tial equation is t . In system (3) we identify the vari
ables Yl ' Y3, "" xm . The re maining variables 
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Ym+1" ' " Yn' take the plac~(iul' ~2:" . :, uk"\ 'The 
steering decision now consists of determining' 

.Ym+1'···' Yn for given Yl, " " Ym and t. 

Thirdly, the optimization theory furnishes addi
tional end conditions to be met concurrently with the 
mission criteria. The additional end conditions may 
involve more variables than the mission criteria; they 
generally depend on all the Y i and t. We therefore 
combine the new end conditions with the mission cri
teria; instead of depending only on Y 1> •• . , y m' t (ab
stractly), we depend on Ym+1' ... , Yn as well. The 
result of this is the set of end conditions 

(4) 

j = 1, 2, ... , n-m+1. The fact that the total number 
of end conditions becomes n - m+1 is a result of the 
optimization theory. 

We are now nearly in a position to define the con
trol laws. We need only introduce one further nota
tion. Let the functions 

Yi(t, T, 1)1' 1)2,···, 1)n)' i = 1,2, ... , n 

represent the general solution to (3) in terms of initial 
conditions at T. Thus, for each i, 

Y.(T, T, 
1 

and the functions Y i' considered as functions of t, 
solve (3) for all initial conditions. Suppose the space 
vehicle to be at a certain pOint of flight. The pOSition, 
velocity, time, and .performance parameters dictate 
the values for T, 1) 1, rJ2, . .. , 1)m' A little reflection 
reveals that the steering decision consists of the de
termination of 1)m+1' ... ,1)n' But each selection of 
1)m+1"'" 1)n yields exactly one solution of (3). The 
question becomes, "D?there existvaluesof 1)m+1" ' " 
1)n yielding a solution 'of ( 3) which at a later time t 
satisfies (4) ?" Note that there are n - m+1 conditions 
in (4) and there is available, to satisfy these the 
selection of the n - m initial conditions, 1)m+1' ... , 1)n 
as well as time t of mission fulfillment. 

In reality, therefore, one substitutes the solution 

y. = Y.( t,T , 1)1, "" 7) );i = 1, 2, .. . , n 
lIn 

into (4) and solves the system of n - m+1 equations 
for the n - m+1 Wlknowns 1J m +1" .. , 1)n' t in terms 
of T, 1)1,·· · , 1)m' cl,'" cpo 
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Let th.ese solutions be denoted by 

11 = (3 (T, 111"'" 11 ,ct. ... , c ) ; m+r r m p 

r = 1, 2, ... , n-m ( 5) 

The functions in (5) are tile c,ontrol laws and embody 
the steering decision. 

In general, y i cannot be substituted into (4) and 
solution for f3r and tt crumot be obtained, since the 
functions Yi are not available . However, the functions 
in (5) are nevertheless well defined, and can be nu
merically represented on the basis of the defining 
properties of the Y i and the conditions that the (3r and 
tt solve (4). This is tile subject of the next part. 

n. NUMERICAL PRESENTATION OF THE 
CONTROL LAWS 

A. INTRODUCTION 

We now concern ourselves with arnvmg at 
some numerical representation of the functions 
(3r (T, TIl" " , 11m' ct. ... , cp) and ~(T, TIl" .. , 11m' 
cl> ... , Cp)' One approach is presented here. It is 
certainly not tile only possible solution and is presented 
merely as a possibility. 

First of all, we assume that one solution of the 
problem is known numerically . That is, for a partic
ular set of values 

>~ ~( ~, T' , 111 , .. . , 11m , c'i , .. . , 

thecorrespondingvaluesTlm+r* = (3r(T* , 11*"' " Tlin, 
* ':< - 1 2 d '* - t

1
e( * c 1 , ••. , Cp), r - , , ... , n-m an ~. - "I T , . .• , 

~, "', 
TI~' c';, ... , Cp} have been numerically determ ined. 
This might be accomplished by an iteration on a digital 
computer. In any case, using the initial values, T* , 
* ,~ ,'. * t' (3) 111 , . .. , 11 m , 11m+f",···' 11n , equa lOns are nu-

merically integrated to yield numerical values for 

This particular solution shall be called a reference 
trajectory. 

The idea now is to find the (truncated) Taylor's 
series for the control laws about the solution 

r = 1, 2, ... , n-m 

This can be accomplished once numerical values are 
known for the partial derivatives of sufficiently high 
order of the control laws with respect to their argu
ments, evaluated at the point (T':<, ri; , ... , r(~, 
c1 ' ... , C'b). For brevity, we shall only show here 
how to obtain numerical values of all first" partials. 
The procedure generalizes readily to higher orders. 

B. THE FUNDAMENTAL IDENTITIES 

The entire procedure is based on three funda
mental identities. These are, first, an identity satis
fied by the function Yi by virtue of being solutions of 
(3), secondly, a second identity satisfied by the func
tions Yi characterizing tile parameters as initial 
values, and thirdly, identities satisfied by the control 
laws by virtue of solving the end conditions. We now 
list these: 

and 

Gj(Y j , • •. , Yn, tf , cl, c2,"" cp) == 0; 

j = 1, 2, ... , n-m+1 

in which 

Y(T,11l''''' 11m , ct. ... , Cp} = Yi(tf , 111"'" TIm 

(31" ' " (3 );i = 1, 2, ... , n. n-m 

(6) 

(7) 

(8) 

(9) 

IdentitY. (6) is understood to hold in all of the 
arguments t, T, 111"" , 11n' Identity (7) holds in all 
of the arguments T, 111"", 11n' Identity (8) holds in 
the arguments of the control laws; i. e., in T, 111"" , 
11m , cl"'" cpo 

·Under certain conditions, the above identities can 
be differentiated an unlimited number of times with 
respect to their arguments to yield furtiler identities. 
We assume tilis to be the case; for justification, see 
Reference 1. In particular, using the chain rule, (8) 

can be differentiated witil respect to 11k; k = 1, 2, ... , 
m, tt or c1., 1. = 1, 2, ... , p. For 17k we obtain 

naG. r ay atf ay n-m ay a(3r ] L: ~ ~- + ---..9. + L: q 
q=1 ay q a11t 8TJk a11k r=1 8TJm +r 8TJk 

aGo at
f +~ - = 0 

at 8TJ
k 

15 



k = 1,2, ... , m, j = 1,2, . . . , n-m+1. 
we rewrite the above as the system 

For fixed· k, 

j = 1, 2, ... , n - m+1 ( 10) 

and view the system as a system of n - m+1 linear 
equations in the n - m+1 unlmowns 

Similar 'systems can be obtained for differentiation 
with respect to T or cp.. We take (10) as exemplary. 

Now the arguments in (10) are those of the con
trol laws ; it has a lready been pointed out that the ex
pansion is to be made about the point (T* , rt , ... , 
~ * J 1Jill, ci,.!·· · ' Cp,)' We therefore evaluate (10) at 

( ,',', ,~ * * ) A . th T " , 1J1 , . .. , 1J m , c1 , .. . , cp ' ssumlng e re-
s ultant system to be nonsingular, once the coefficients 
of the unlmowns 

a~ a~ 
81J ,1' = 1, 2, . .. , n - m, and 81J 

k k 

are numerically determined, the sys tem can be solved 
by standard processes for the desired numerical 
values. As similar statements hold for systems ob
tained by differentiation of (8) with respect to T and 
Ct, we will present only the details for (10). 

C. DETERMINATION OF COEFFICIENTS IN 
( 10) 

To determine the coefficients in (10) , we need 
numerical values for the quantities (for appropriate 
arguments) : 

ay 
~; q = 1, 2, ... , n; k = 1, 2, ... , n . 

k 

ay aGo aGo 
~ ---.l---.l at and at 'a ,j = 1, 2, .. . , n-m+1, 

yq 

q = 1, 2, . . . , n. 

Partials of the Gj can be directly calculated from 
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I I ' " ' . t 
the end conditions. The only problem is the determi-
nation of 

ay ay 
---.9. since ---.9.

at a1J
k 

' 

is simply given by evaluatiori of the right side of (3) 
at the time of mission satisfaction. 

Differentiation of (6) with respect to 1Jk gives 

(1 1) 

which is a linear homogenous system in the unlmown 
partials 

8Y 

~; q = 1,2, .. . , n; k = 1, 2, ... , n. 
1Jk 

Differentiation of (7) yields the initial values for (11) 
at t = T; in fac t 

the Kronecker c5 . 

af 
Also, the functions ~ are numerically known along 

Yj 

the reference so that (11) can be integrated nwneri
cally from t = T#. Reading off the integrated values 
yields the desired results . 

As has been pointed out, similar procedure s ap
ply to the determination of. the remaining first order 
and higher order partials. 
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WALL PRESSURE FLUCTUATIONS AND SKIN VIBRATIONS 

. . ' 
WITH EMPHASIS ON FREE SHEAR LAYERS AND OSCILLATING SHOCKS 

By 

Fritz R. Krause 

N65 241;>8 
SUMMARY 

Ever since the failure of the first Centaur fligh ts , 
high frequency skin vibrations have been of much con
cern. Large wall pressure fluctuations below sepa
rated flows and oscillating shocks lead to a dangerous 
resonance exci tatioll over the entire transonic and 
s upersonic portion of the flight. A new relation be
tween pressure and force correlations has been es tab
lished for inhomogeneous turbule nce in order to 
account corr ec tly for the larges t press ure fluctuations 
below osc illating separation and reattachment lines. 
It shows that the power spectra of the generalized 
forces can be fo und from rigid model tests by a curve 
fit of a spec ial pressure cross correlation function. 
However, a curve fit of experim enta l pressure corre 
lations is useful only as long as the statistical error 
of a cr oss correlation es timate is smaller than the 
num er ical error of the curve fi tting procedure . Non
linear transfer functions and dynamic shifts in pres 
e ntly avai lable pressure transducers and tape record
ers are so large that the more refined fo r ce estim ates, 
which consiaer the spatial structure of the pressure 

field, might lead to ambiguou, re,ult" ~ 
DEFINITION OF SYMBOLS 

Geometrical and Panel Paramters: 

Symbol Definition 

a, b edge lengths 

A panel area, ab 

x s treamwise s urface coordinate 

y crosswise s urface coordinate 

f.. }1 wave number in x, y direction 

m number of loops in x direction 

n number of loops in y direction 

h panel thickness 

p de ns'ity of pla te material 

D flexural rigidity 

18 

Symbol 

E 

u 

M 

w 

q 

Definition 

Young's modulus of elasticity 

Poisson's ratio 

Eigen value of two-dimensional wave 
equation 

modal mass 

modal damping ratio 

transverse deflection 

generalized coordinate or loop 
deflection 

Flow Parame ters : 

p 

U 

6 

F 

S 

R 

t 

T 

b 

w 

T 

H( w) 

cp ( w) 

N 

f:::,,2R 

wall pressure 

velocity 

geo me trical boundary layer thickness 
on clean wall 

generalized force 

cross-power spectral density 

cross correlation function 

time 

time delay 

noise bandwidth in radians/ sec 

angular frequency, radians/ sec 

integration time 

complex frequency response function 

phase shift angle 

number of data transmitting e lements 

Mean square error of cross cor e la
tion es tim ate 

-, 
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, DEFINITION OF SYMBOLS (Concluded) 

Symbol Definition 

pertubation 

Sub and superscripts 

1 

2 

m, n, k, j 

P 

F 

A 

0 

C 

~, 

fixed transducer 

moved transducer 

summation indices 

pressure 

force 

plane wave approximation 

natural frequency 

convected turbulence 

Space average for a translated 
transducer pair with fixed separa
tion distances. 

wall pressure approximation with 
mode shapes 

1. INTRODUCTION 

Recent wind tunnel and flight tests indicate that a 
large booster will experience wall pressure fluctua
tions during the transonic and supersonic portion of 
the flight, bigger than the jet noise at the launch. 
Figure 1 shows some root-mean square pressures that 
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were measured during the fourth flight of a Saturn I 
vehicle [1]. At the supersoniOo Mach number of 1. 6, 
the fluctuation level of the transducer D-159-20 is 14 
db higher than at launch. Because of the supersonic 
flow, an upstream radiation of jet noise is not pos
sible, and the highest level of . 16q must be induced 
by a noise generation process. In subsonic free shear 
layers the observed pressure fluctuations are below 
10 percent of the local dynamic pressure, and in at
tached boundary layers the RMS values are usually 
equal to . 5 percent [2]. Therefore, the area between 
the 10 percent and . 5 percent dynamic pressure curves 
has been shaded and called "free shear layer noise. " 
RMS values below the shaded area are called "attached 
boundary layer noise" and those above 10 percent dy
namic pressure "shock induced noise." Apparently 
the highest fluctuations can be explained only by a free 
shear -layer interacting with an oscillating shock. 

The three transducers were located near the 
S-IV/ S-I interstage as indicated by Figure 2. Repro
ducing the flow field from MSFC wind tunnel shadow
graphs, one sees immediately that the flow above the 
transducer cross section is indeed separated. The 
high pressure fluctuations of the transducer D-159-20 
were picked up shortly downstream of a sharp I-beam 
fairing, and an oscillating bow shock might have been 
the cause. 
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FIGURE 2. FLOW FIELD REPRODUCED FROM 
WIND TUNNE L SHADOWGRA PH 

A power-spectral analysis of the three trans
ducers indicated several peaks which are centered 
around a Strouhal number of .2, as shown in Figure 
3. These peaks are known from the vortex shedding 
behind two-dimensional cylinders, and thus might be 
taken as further evidence of a flow separation inter
acting with an oscillating shock. 
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Unfortunately , the high RMS values occur between 
frequencies of 120 to 240 cps, which is in the range of 
fundamental resonance frequencies of individual skin 
panels. The flat curves of FigUl;e 1 have shown that 
the high RMS values are not limited to a small Mach 
number range but do extend over the entire transonic 
and supersonic portion of the fli ght. This has been 
substantiated in model tests that were run at Douglas 
Aircraft Company [3]. Typical "saw-tooth- type" dis
tributions are shown in Figure 4. They are essentially 
independent of Mach number. In flight, the dynamic 
pressure for Mach numbers below 3 is appreciable and 
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the corresponding time interval extends over a,.pproxi -
mately 30 seconds. Severe fluctuations might there-' 
fore cause a dangerous skin excitation over an extended 
period of time, and every effort should be made to 
study the intense, high frequency wall pressure fluc
tuations which are produced by flow separations and 
oscillating shocks. 

n. AERODYNAMIC EXCITATION AND STRUC
TURAL RESPONSE 

Ames Research center and the Marshall Space 
Flight Center are working jOintly on a wind tunnel 
program whose purpose is to measure wall pressure 
fluctuations below free shear layers and oscillating 
shocks [4]. These press ures will supply a generalized 
force for each generalized coordinate chosen in the 
description of the slin vibration tests . The test will 
be performed on individual forward- and backward
facing inter stage areas and local protuberances rather 
than on a complete Saturn model. This is necessary 
to obtain Reynolds numbers which are already so high 
that a further increase to full scale will not change the 
flow separation and reattachment lines [5,6] . For 
complete models, the Reynolds numbers are so low 
that the wanted flow separations and shock oscillations 
may not occur at all [7] . 

A local treatment of structural components is 
possible for all elements which almost conserve their 
vibration energy [ 8] (kinetic energy plus work of 
stresses '[ 13] and pressures). AU structural coupling 
with the rest of the vehicle ha& to be small. Such ele
ments have been defined in terms of "correlation 
boundaries" like stiffness and heavy internal masses 
[ 19]. They could be found in shake tes ts on the ground 
by measuring the acceleration of the skin at different 
pOints simultaneously. A correlation houndary ex
exists between two accelerometers if their cross cor
relation is negligibly small . 

The simplest treatment of local panels is given 
by the classical modal approach [10) which might be 
viewed as an attempt .to curve-fit a flashlight image of 
the skin deflection with a linear combination of stand
ing fl-exural waves. For the rectangular flat plate, 
these waves can be guessed easily (see Fig. 5). From 
all conceivable flexural waves, the standing ones are 
those which are continuously reflected to and fro be
tween opposite edges of the plate. This can happen 
only fo r waves which run in either x or y direc tion, 
provided that the distance between the edges cor re
sponds to a multiple of the distance between nodal 
pOints. Denoting the number of loops which are 
counted in x and y direction by the wave numbers m 
and n,_ the distance I:;>etween the nodal pOints becomes 
al m and bi n ; che wave length of the flexural waves is 
exactly twice this distance (14) . 
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Each running wave has a sinusoidal time history 
of deflection and, because of the continuous reflection 
at the edges, the distribution in time is converted to 
a distribution in space. As a result , one determines 
that the flexural waves of a simple supported, flat 
plate have a sinusoidal shape. 

. 1I'1Ilf . 7rny 
cP mn (x, y) = sm ~ sm b . (1 ) 

For n, m == 1, 2,.... the complete setof stand
ingwaves is then used to approximate the skin deflection 
w (x, y, t); all other flexural waves are neglected. 

00 00 

w(x, y, t) = L: L: qmn (t) cP mn (x, y ) 
m = 1 n== 1 

(2) 

The coefficients qmn of this curve fit describe·a flash
light image of the deflection; they are called the 
"generalized coordinate" or "responses." Each re
sponse is due to the excitation of a generalized force 

F(m,n,t) = II p ~w dA 
A q 

== f f p(x,y, t) cp (x,y,) dx dy. 
A mn 

( 3) 

The relation between these excitations and the re
sponses q can be illustrated by the forced oscillation 
of a harmonic oscillator, as shown in Figure 5. The 
angular natural frequency of the oscillator is 

( 4) 

and its mass is given by 

M(m,n) == ff phcp2 dxdy =pabb/4. 
A mn 

( 5) 

The inevitable loss of vibration energy is determined 
by the oscillation decay of a free vibrating panel. The 
ratio between the energy loss and the work of the 
bending moments is equal to four times the ratio 
~ (m, n) between two consecutive amplitudes of a stand
ing but decaying flexural wave. 

Unfortunately, the wall pressure fluctuations be
low free shear layers and oscillating shocks are 
neither SinUSOidal nor periodic. Because they are 
samples of a random process, the generalized force 
which is their space integral, equation (3), will also 
be random. Since we have random forcing functions 
for each of the equivalent oscillators, n and m, statis
tical methods have to be used. 'These methods have 
already been developed in communication theory. The 

asymptotic response to a random force will therefore 
be given by comparing the equivalent oscillator to the 
electronic element of a data reduction chain. The 
generalized acceleration F (m, n, t) / M is treateo as an 
input signal, and the generalized coordinate qmn (t) 
as an output signal. 

The statistical description of the input and output 
is based on a frequency decomposition which might be 
described through the action of an ideal digital filter, 
as shown in Figure 6. The phase shift, cp , across this 
ideal filter is zero,and the gain factor is infinite in an 
infinitesimal frequency interval around w = w(m, n) 

S( nil Digital flit 

I 

~I t .. 
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PIULur 

FIGURE 6. POWER SPECTRAL ANALYSIS OF 
DETERMINISTIC AND RANDOM 
SIGNALS 

such that the area under the frequency response func
tion is one unit. The individual frequency components, 
q (t, w), are the output of such a narrow band digital 
filter, they are described statistically by their mean 
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square values or "power spectral densities", Sq ( w) 

<q2(t, w ) >, respectively. 

The harmonic oscillator itself is a linear and 
time invariant element; that is, apure harmonic output. 
The transmission of each frequency component is de
scribed by the phase shift cp across the oscillator and 
by the ratiO between the output and input amplitudes 
which are said to constitute the complex frequency 
response function (Fig. 7), 

H( w) 
deflection amplitude i cp 
acceleration amplitude e 

(6) 

1 
= w2(m,n) - w2 + 2 i t w w(m,n)' 

The power spectrum of the output is then equal to the 
power spectrum of the input times the squared magni
tude of the frequency response function [11]. 
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FIGURE 7. THE COMPLEX FREQUENCY RE
SPONSE FUNCTION H( W) OF A 
MODE 

SF( W) 
Sq( W) = /H( W)12 rvI2 (7) 

The local treatment of structural components is pos
sible only if the energy losses, that is, the damping 
ratios {;, are small. In this case, the "power transfer 
function" H (w) 2 has two sharp peaks centered around 
the frequencies, ± wO ' the bandwidth of which is given 
by 

+00 I H 12 
b = 1. J ~ dw = 7r t w 

2_
00 

H(wo) o· ( 8) 
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Because the oscillator will ~c~~Pt o~y ' the tyJe fr~
quency components which are centered at the natural' 
frequency wo , the mean square value of the response 

becomes SF (w ) 

< q2(m,n, t» = 2 b IH(W~)12 M20 

7r SF(m, n, w(m,n» 

2 t (m,n) w3(m,n) 

(9\ 

This excitation response relation splits the prediction 
of skin vibrations into a structural part and an aero
dynamic part. In the first, one would determine the 
sizes, natural frequencies, mode shapes and damping 
ratios of possible panels in shake tests on the ground. 
The aerodynamic part would be to calculate the power 
spectrum of the generalized forces SF (m, n, t) from 
measured pressure fluctuations. 

The relation between aerodynamic excitation, SF' 
and structural response <q~ has been illustrated for 
the Simplest of all cases, the rectangular flat plate 

with Simply supported edges [12]. The derivations 
and a complete list of assumptions have been prepared 
such that they might be verified in futur e tests .. 
It turns out that equation 9 is valid not only for the flat 
plate but for all structural components, the free vi
brationofwhich can be described by orthogonal modes. 
A similar relation could be obtained for the general 
case, where structural coupling between components 
has to be considered [25] . The main difference is 
that the modal frequency response function, equation 
6, is replaced by an overall transfer function, which 
has to be measured on shake tests on the ground. 

III. STANDARD FORCE ESTIMATES 

In rigid model tests, the problem is to find the 
most dangerous generalized forces from measured 
wall pressure fluctuations. According to the excita
tion response relation, equation (9) , the mean square 
deflection of a single mode is directly proportional to 
the power spectral density, SF, of the corresponding 
generalized force taken at the natural frequency of the 
mode. Most rigid model tests are therefore aimed at 
the measurement of this property. 

The power spectrum of the generalized force, SF' 
was defined by filtering operations. Writing down the 
mathematics of this filtering process [11] we find that 
SF is the Fourier transform 

SF(m,n,w) 1 J+OO -iWT 
- 27r RF(m,n,T)e ciT (10) 

T =_00 
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of th0 f?rc'e-'a~tocor;e"la'tion function 

lim 1 +T/ 2 
RF(m,n,T) = T-oo T f F(m,n, t) F(m,n, t+T)dt 

-T/ 2 
(11) 

= <F(m,n, t) F(m,n, t+T». 

The wanted relation between forces and pressures is 
now obtained by substituting the definition of the gen
eralized force 

F(m,n,t) = jjP(X,y,t) cp (x,y) dxdy 
A mn 

(3) 

into equation (21). Inverting the order of space and 
time integration, we obtain an exact, but unwieldy 
fourth order integral 

RF(m,n,T) = 

(12) 

The first factor of the integrand summarizes all the 
information that has to be obtained from rigid model 
tests. It is called the "pressure cross correlation 
function, " 

whose measurement is described in Figure 8. Two 
transducers, 1 and 2, are located at the pOints xl ; Yl 
and x2 = xl + ;; Y2 = Yl +.". The signal from trans
ducer 1 is delayed by the time T. Both signals are 
then multiplied and the wanted pressure cross cor
relation function is the output from the time averaging 
element. 

For an accurate integration of equation (12), each 
transducer has to be moved independently over the 
whole panel surface and the cross correlation repeated 
over and over again for each combination of the two 
transducer locations. This is very cumbersome. To 
obtain design criteria, the process must be repeated 
for each resonance frequency and for the combinations 
of Mach number, Reynolds number, upstream bound
ary layer thickness, wedge angle and step height. The 
transducer output has to be recorded for approximately 
,30 seconds to obtain statistically reliable time aver
ages. Evidently, such an approach requires an ex
cessive amount of data, and it is doubtful that the 
direct evaluations of the fourth order integral could 
be tried for more than one or two cases. 

\// Expansion 

2 

x+! a 

FIGURE 8. MEASUREMENT OF THE STANDARD 
PRESSURE CROSS CORRELATION 

The numerical and experimental effort can be 
reduced if a conservative estimate of R F or SF is ac
ceptable. The most simple of all estimates is obtained 
by replacing the actual pressure field p (x, y, t) with 
normal incident pressure waves, the strength of which 
corresponds to the maximum pressure fluctuation 

p(x,y, t) ::; S(t), "normal wave estimate". (14) 

Substituting equation (14) into equation (12), the 
power spectrum of the generalized force becomes 

~4 a b ) 2 SF(m,n,w) ::; -2-- S~(w), 
1T mn p 

( 15) 

which is directly proportional to the power spectrum 
of the incident pressure wave. As a result, a con
servative estimate of the aerodynamic excitation Can 
be obtained by looking at the power spectral density of 
all wall pressures which have been measured inside 
the edges of a particular panel. For design estimates, 
the power spectral density has to be evaluated at the 
natural frequenCies of the panel. From all transducer 
locatiOns, that one must be found which gives the 
largest SF( w(m ,n». 

The plane wave estimate neglects completely the 
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spatial structure of the pressure field. Several at
tempts have been made to include spatial characteris
tics for s tatistically homogeneous flows. The assump
tion of homogeneity means that the pressure cross 
correlation is invariant against a translation [1 5] . 

( 16) 
"homogeneous turbulence". 

A good summary has been given by Allan Powell [16] . 
The autocorrelation of the generalized force is, in 
first approximation, 

mn 1Tn 
RF(m,n,T) "" S (A = - /.! = -p ) J(m,n) 

p a' 

+ . . + S (A = - mn /.! = - 7illb ) J ( - m, - n) , 
p a ' 

(17) 

proportional to the wave number components of the 
pressure field 

S (A, /.!,T) 
P 

1 
27f 

which are centered around the structural wave num-

bers A = ± 7Tm 7Tn . a ' /.! = ± t' and some structural weIghts : 

+ 00 

J(m,n ) =2- If (iIfcp.
m 

(x ,y ) e i t\x +IL Y )dx dyp2d t... dlL . (19) 
2 11 . 00 A n 

The wave number components Sp might be viewed as 
influence coeffic ients which are necessary to curve
fit the pressure cross correlation Rp with harmonic 

i(Ax +/.!y) 
spatial waves e . In a sense, the autocorre-
lation of the generalized force is therefore obtained 
by the curve fit of a measured cross correlation func
tion. In homogenous turbulence the measurement of 
Rp requires that only one transducer be moved. The 
fourth order integration of equation (12) is then re
duced to the double integral of equation (1 8). 

Unfortunately, intense noise sources seem to be 
connected with inhomogeneous flows. Homogeneous 
turbulence represents uniform flows behind grids [15] , 
whereas the main noise sources are associated with 
attached [17], [18] and separated (j e t) boundary 
layers [19] , [20]. High shear and homogeneous tur
bulence are theoretically incompatible. 

In supersonic flow additional noise sources must 
be expected. The presently conducted wind tunnel 
program indicates that flow separation lines (shock) 
and reattachment lines are always unstable and lead 
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to a very high noise level. in 'tilese ~e'gio~s '. a~cori
stant convection speed does not exis t, ant the assump- ' 
tion of homogeneity is very questionable. 

IV. FORCE APPROXIMATIONS FOR 
INHOMOGENEOUS TURBULENCE 

The largest pressure fluctuations are expected 
for inhomogeneous flows, and a new Simplification of 
the pressure field is needed which is not restricted to 
hom ogeneous pressure fields. In this paper, it is 
proposed to curve-fit a flashlight image of the pres
sur e fields with a set of orthogonal e ige n functions: 

00 00 

P(x,y,t) "" P(X , y , t) = ~ ~f (t) cp (x,y ). 
m=1 n=1 mn mn 

( 20) 

Approximations of this kind are very general and 
should fit almos t a ll pressure distribution which occur 
in flows , except in the vicinity of the edges. In prin
ciple, any set of orthogonal eigen functions might be 
chosen. Using the mode shapes, however, has the 
advantage that the coefficients fmn are directly pro
portional to the generalized forces, equation ( 3), The 
mean square deviation between the given pressure, p, 
and its approximation 15 is a m inimum , if 

f (t) = F(m,n,t) = 1 F (m,n,t). (21) 

mn J J
A 
q~n (x,y ) dx dy 

One could argue that the curve fit of equation (20) is 
very impractical since it has to be repeated for each 
instant of tim e and might require a large number of 
coeffiC ients. In fact, the individual coefficie nts should 
never be calculated. They are rather the basis of a 
statistical procedure where the individual coeffiCient 
is immaterial and only the average over a large num
ber of curve fits is used. For homogeneous turbulence, 
this has been tried by es tablishing the relation between 
the pressure cross correlation and the force auto
correlation. The forces are then found by curve fit
ting Rp with complex waves. If we wish to find a 
Similar relation for inhomogeneous turbulence, this 
function should be based on a translation of both trans
ducers (Fig . 8) since this is r equired in the accurate 
fourth order integration, equation (12) . In view of 
these considerations, a "special pressure cross cor
relation" Iff> is now introduced which ties the wanted 
force correlations to the measurable pressure cross 
correlations, Rp. 

The measurement of the special cross correlation 
Rp is shown on Figure 9. A pair of pressure trans
ducers is moved across the panel such that the separ a 
tion distances remain fixed . The speCial cross cor
relation R)~ is then nothing but the space average of 
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FIGURE 9. THE SPECIAL CROSS CORRELA TION 
FUNCTION R*p 

The wanted relation between Rp and the force corre
lation is found by establishing the special correlation 
for the simplified pressure model 

b-T/ a-~ -
R* = I I <p (x,y, t) p(x+s. y+J], t+T » dx d . 

"P 0 0 (a- O (b-T/) y 
(23) 

Substituting equations (20) and (21) and neglecting 
the force cross correlation between modes [1 2] , we 
find the wanted relation 

"" "" 
~ ( LT/ ,T) = ~ L: ~2 1f!mn ( LT]) RF (m ,n,T). 

m=1 n=1 
( 24) 

The structural weights 1f!mn are comple tely determined 
by the mode shapes 

( 25) 
a-~ b-T] 

(a-O\b-T]) £ £ <pmn(x,y) <Pmn(x+~, y+7]) dx dy 

= a (1) a (21) . 
m a· n b 

For the rectangular flat plate with simply supported 
edges , they are shown in Figure 9. 

According to equation (24) , the wanted, force cor
relations RF are the influence coefficients of a curve 
fit which approximates measured Rp pressure cross 
correlations with known structural weighting functions 
l/lmn ( ~ , T]), Once again the unknown coefficients are 
determined by the method of least squares. The mean 
square error between the measured Rp, and the ap
proximated special cross correlation, IE 

p 

a b 
2 ·' 111 ~< '"2 6. R'< = - (R ' - IL..) dT] d~ = 

P Aoo p p 

, 

(26) 

is required to be a minimum. This will happen when 
the partial derivatives 8 (~2 R'~) / 8RF vanish, Writing 
this condition of extremum down for all combinations 
k ,.£ = 1,2, ........ ,' "" , we obtain an infinite system 
of algebraic equations: 

1 a b 
A I I (R* - R!) l/lki (~, T]) dT] d~ = 0, 

o 0 . p p 
( 27) 

In explicit form 

"" "" 
= A~ 2: ~ RF(m,n,T) C(m,k) C(n,!). 

m=1 n=1 

( 28) 

The cons tants C (m, k) are an abbreviation of the fol
lowing integral: 

( 29) 

The same equation holds for the constants C (n, 1) if 
n and .£ are substituted for m and k. 

The right-hand side of equation (28) approaches 
zero as 1/n2• The left-hand side of equation (28) 
represents a space average of a speCial correlation 
function which is weighted with the functions ak and 
a1' For higher values of k and 1, these weights ap
proach cosine functions, the signs change rapidly with 
the separation distances ~ and T], and the integral goes 
to zero . Consequently, one might truncate the system 
since all coefficients C (m, k) and C (m, £ ) with 
m, n, f k, £ decay rapidly with increasing difference 
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between m and k and nand L The solutionofthefinite 
system of algebraic equations can therefore be ap
proxima ted in first order by considering the diagonal 
e lements only 

Higher approximations are found most easily by 
actually solving the finite system of linear equations, 
preferably in an iterative fashion. 

,', 
The curve fit of the special cross correlation R~ 

is an attempt to replace the accurate but unwieldy 
fourth order integration of equation (12) with something 
more practical. As far as the numerical effort is 
concerned, the curve fit is indeed Simpler since the 
fourth order integral is reduced to a system of alge
braiC equations between double integrals. A reduc
tion of the experimental effort is not so immediately 
apparent. The determination of the special correla
tion function, equation (22), requires moving both 
transducers over the entire panel, and nothing more 
is required in the exact solution, equation (12). The 
great advantage of the special correlation function is 
that the number of measurements can be matched 
easily to the present statistical theories of turbulence 
and to the flow type. If the turbulence is homogeneous, 
then the special correlation Rp and the standard cor
relation Rp are identical ; that is, the position of one 
transducer can be fixed. Furthermore, the integral of 
equation (22) does not depend on the location or the 
size of the integration domain; that is, the rigid model 
test is completely independent from all structural 
considerations. 

In the case of high shear flows, the rapid decay 
of the short waves might change with the streamwise 
position. The inhomogeneous behavior must be con
sidered, if the integral scales of turbulence are small 
compared to the panel size. However, the turbulent 
structure of attached and free shear layers does not 
change rapidly and the change of Rp with pair position 
x will be smooth. For an almost linear dependence, 
the number of pair locations is given by the stream
wise extent of the largest panels. Two or three pair 
locations might already be sufficient. In the cross
wise direction, the flow is probably still homogeneous, 
and no additional pair locations will be needed. 

Below separation and reattachment, the inhomo
geneous behavior of Rp (x,y)L17,T is difficult to pre
dict. However, in any case, the aerodynamiC engineer 
could pick a minimum number of pair locations in a 
streamwise direction, such that the integral of equa
tion (22) stays within prescribed error margins (see 
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Section VII). There is no reason why the tur.bule"nt 
fluctuations should be inhomogeneous along the sepa
ration and reattachment lines in two-dimensional or 
axisymmetric flows. Therefore, panel size and loca
tion are of no concern in a crosswise direction, and 
no additional pair translations will be necessary. 

V. QUICK LOOK PROCEDURES 

Any statistical program requires a large amount 
of data and the determination of generalized forces 
from rigid model tests is a particularly bad case. The 
success of such a program depends largely upon 
whether or not the most dangerous cases can be iso
lated at an early stage. A "quick look" for large fre
quency components of the generalized forces should 
precede any program which uses the spatial structure 
of the pressure field to arrive at "true" force esti
mates. 

For quick look purposes, it is probably sufficient 
to concentrate on the two limiting cases of broad band 
and narrow band excitation, Figure 10. In a broad 
band excitation, the integral over SF (w) will be large. 
This integral is given by the autocorrelation at zero 
time lag (mean square value) and a probably dangerous 
broad band excitation of a single mode could therefore 
be detected by looking at mean square values only . 

The detection of large narrow band components 
is much more laborious . In the derivation of the ex
citation response relation, equation (9), it was shown 
that the structure will accept only very narrow bands, 
the width of which is only a few percent of the center 
frequency. This means that the quick look should be 
performed with equally narrow bandwidth; otherwise, 
some dangerous narrow band components might be 
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, . 
integrated out. If a larger region of the frequency do
'main must be covered, the narrow bandwidth leads to 
a very large num ber of center frequencies, and there
fore large computation times. The numerical effort 
could be reduced considerably by using the autocor
relation instead of the power spectrum. The two are 
related by Fourier transform pairs; it is a general 
feature of these operations that the transform is broad 
if the transform function is narrow, To be more 
specific, a narrow band peak of SF ( w) is present 
whenever the autocorrelation does not vanish, but os
cillates at time lags that are large compared to the 
fundamental period of the panel oscillation 
TO » 271'/ w (1,1). Instead of looking at a large number 
of center frequencies, it might be possible to concen
trate on the autocorrelation at zero time lag and one 
selected interval of large time lags. 

In view of these considerations, a quick look pro
cedure is sought which detects a rough, quick estimate 
of the force autocorrelations RF (m, n, T) from meas
ured wall pressures. Obviously, the reliability of the 
force estimate depends very much on the pressure 
model which is used. In many cases, the plane wave 
approximation, equation (15) , is already sufficient. In 
this case, a temporal Fourier transform of equation 
(15) shows that the wanted autocorrelation of the forces 
RF(m,n,T) is directly proportional to the autocorre
lation of the pressures R"~ (0, O,T) . A broad band 
excitation is present as soon as the RMS-pressure 
(zero lag autocorrelation) is large. A narrow band 

" excitation might occur as soon as Rp (0, 0, T) shows 
a sinusoidal wiggle, If more than one mode is excited , 
the correspondent asymptotic autocorrelation of the 
pressures deviates from a simple sinusoidal pattern. 
A Fourier decomposition of R'p (0,0, T) will indicate 
the time periods which receive the largest contribution 
of the asymptotic wiggles. A dangerous vibration be
comes possible as soon as these time periods coincide 
with the time periods of standing flexural waves . 

Unfortunately, it is not possible to restrict the 
"look" for asymptotic I('f (T) wiggles to those combi
nations of geometrical ang flow parameters which were 
indicated by large rms values since all narrowband 
excitations are overlooked where the area under the 
na rrowband peak of SF (m, n, w ) is small compared to 
the area under the complete curve (mean square 
value) as shown in Figure 10 . Both "looks" must 
therefore be carried out for all combinations of geo
metrical and flow parameters. 

The flight data of Figures 1 and 3 already indicate 
that the plane wave approximation might give a large 
number of "dangerous" Mach numbers . One might 
want to further reduce the number of geometrical and 
flow parameters which have to be considered in the 

final analysis. For this purpose, the pressure model 
must retain the spatial structure. The model of 
homogeneous turbulence implies that the power spec
tral density analysis must be repeated for the spatial 
wave numbers or frequencies r... and J,l, equations (17) 
and (18) . Again the "quick look" could be based on 
the general feature of Fourier transforms which has 
been discussed above. It seems suffiCient to measure 
RJ; (L 1), T) for selected large separations only. The 
zero lag case has been treated in the plane wave ap
proximation. A dangerous excitation is then detected 
as soon as the asymptotic pressure correlation R~ 
( ~ , rllT_co wiggles at large separation distances such 
that the distance between zero crossings coincides 
with the IIspace periods" aim and bi n. 

The "quick look" becomes very powerful, if the 
pressure fluctuations are due to a convected pattern 
of steady decaying turbulence [16] which has been ob
served in attached- [17] [18], separated- [ 19] , and 
jet-boundary layers [20]. In these cases, the pres
sure time history at one point resembles the flash 
light image of the pressures taken along the upstream 
portion of the streamline (1) == 0). Therefore, a nar
row band component of the pressure power spectrum, 
which is centered around the angular frequency, 
w == 271'/ T 0' indicates a spatial cross correlation func
tion, Rj;(;'1),T), which has the space period r... = UC·T o. 
Thus, the spatial and temporal wave numbers are no 
longer independent and the criterion for large excita
tions may be reduced to one single condition, 

U = w(k, 1) a ,k, 1 == 1, 2, 3 
c 271' k 

(31) 

for the convection speed'Uc of the pressure fluctuations. 

To check whether or not the measured wall pres
sure fluctuations are due to convected turbulence, one 
needs only two transducers which are separated along 
the streamline 1) = 0 as indicated in Figure 11. A con
vection is present as soon as the temporal cross cor
r e la tion betwe~n the two transducers is comparable to 
the displaced autocorrelation of the upstream trans
ducer. A "resemblance" exists as soon as the cross 
correlation function has a distinct maximum and an 
average convection speed Uc [21] might be based on 
the time delay, T m' at which the maximum occurs 

U =-.l..., 
c T 

m 

(32) 

In the quick look, one is concerned with the convection 
speed over large separation distances which are com
parable to the largest edge lengths, a, b. The domi
nantnondecayedportionof R~ (~,1),T) would be statis
tically homogeneous if this convection speed is constant 
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across the panel. However, for homogeneous turbu
lence, the special cross correlation, R~, is reduced 
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to the standard cross correlation, Rp. Expressing 
the decayed portion by the change between the auto 
and cross correlations 

R ( O,T - T ~/a) - R (LT) 
p m p 

one obtains an approximation: 

"" (1 - ~) R (x=O y=O, ~ = 0, 71 , T - T ~/a) a p , m 

(33) 
+~ R (x=O, y=O, ~ =a, 71,T) . 

a p 

Thus , the estimate of the special pressure cross cor
relation requires only to change the crosswise sepa
ration of three transducers, Figur e 11. 

In the vicinity of boundary layer separation and 
reattachment lines, we cannot expect a constant con
vection speed, Uc ' However, an average speed was 
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a lr eady estimated by using tlle 'l9.rgest separatioe:m (=a 
between the ups tream transducer 1 and the dowllstream· 
transducer 2. It is hoped that the space average of the 
standard cross correlation is reflected approximately 
by taking the average convection speed instead. 

The observed convected patterns of turbulence 
often show that the ratio between convection velocity, 
Uc, and the free stream ve locity, Uoo ' is often inde
pendent of Mach and/or Reynolds number . In this 
partic ular case, we can gather all the necessary in
formation about convection speeds at a particular con
venient combination of M and/or Re . For all other 
operating conditions, the convec tion speed fo llows by 
calculating the free s tream velocity Uoo ' The auto
correlation function (or power spectrum) could be 
obtained by scaling with the Strouhal number [22]. 
The concept of convected turbulence i s therefore a 
very powerful tool. It r educes both the num ber of cor
relations and the number of Mach and Reynolds num 
bers that are necessary in a quick look procedure. 

VI. TOLERABLE ERRORS 

In the curve fit of a given cress correlation, it 
has always been assumed that the statistical analysis 
of the measured wall- pressure fluc tuations is exact. 
In r e ality, the m easured R'~ values ar e only estimates 
of a true value. The curve-fitting procedure gives 
ambiguous influence coeffic ients as soon as the error, 
0-'1, of an R~ estimate is equal to or bigger than the 

2 ," k root me.~ square error (~ Rp) 2 , between t~e esti-
mated Rp distribution and the appr oximation R~ which 
was given in equation (2 6) . The condition 

2 * ~ u ,~ « ~ R ) 
R P 

( 34) 

should therefore be checked in each wind tunnel pro
gram which trie s to predict the autocorrelation of the 
generalized forces, RF (m , n,T), by a curve fit of ex
perimenta l cross correlations . The predicted RF 
values are meaningful only if the condition of equation 
(34) is met. 

The true value of the even space-time correlation 
function, R~, was defined in e quation (22) . It is based 
on an "ideal tes t" which meets the following r e quire 
ments : 

(1) The wall pressure fluctuations are a s ta
tionary and ergodic process (11) . 

( 2) The pressure r ecords are infinite ly long 
[23) . 

(3) The complex frequency response function 
of the two narrow band filters and/or the time delay 
is a Dirac function [ 24] . 
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, '( 4) THe transduc'ers· and all data processing 
'elements are both linear and time invariant. 

In the actual tests, all four requirements will be vio
lated, and additional calibration tests are needed to 
find the error d~ , 

u; = [(.6.2 R;'<)l + .. + (.6.2 R~' )} (35) 

which accounts for the accumulated deviations from 
the "ideal test. " 

The largest error is due to nonlinear effects and 
time shifts on the data reduction chain. Contrary to 
the other three errors, (.6. 2 R~< ) 4 cmmot be reduced 
by a proper choice of the data reduction equipment 
and! or repeated runs. This is, therefore, the error 
which will ultimately decide whether or not the tests 
are meaningfuL Also, it is useless to make the first 
three errors much smaller than the fourth_ A good 
choice for the tolerable upper limit of error mentioned 
above would be 

, 1 2 ':' 
( A 2 R"<) < - (.6. R ) i = 1 2 3 

U i - 3 '4;' , . ( 36) 

Anestimate of (.6. 2R':< )4 is now possible for a data re
duction chain which is linear and time invariant enough 
such that the amplitude dependence and the time shifts 
of the frequency response function might be treated as 
random disturbances. As an exmllple, a data reduc
tion chain is treated which consists of N = 6 elements_ 

f.. = 1 Transducer 

2 Transmission line 

3 Tape recorder chmmel 

4 Filter or time delay 

5 Multiplier 

6 Integrator 

The average actionof each element is now completely 
described by its complex frequency response function, 

( 37) 

The elements i = 1, 2, 3, 4 are used in pairs because 
the pressures from the points j = 1 and k = 2 are 
handled independently as indicated in Figure 8. For 
each pair of elements, the cross-power spectrum of 
the two inputs j and k is related to the cross-power 
spectrum of the two outputs by 

--- -- - _ . - - --- - -

j k;" I S. (w) I = H. (w) [H. (w) 1 . S'k(W) . 
Jk out ~ ~ J m 

( 38) 

., 

- <P~(W)~s. (W)I 
Jk . in 

The cross-power spectrum of the output is equal to 
the cross-power spectrum of the input multiplied by 
the gain factor and the exponential phase difference of 
the two transmitting elements. This input-output re
lation might be viewed as an extension of the power 
spectral analysis of equation (9) _ -:r:he two e~uations 
are identical if one demands that HJ(w) = H .(w) fOk all elements that transmit both pressures pJ and p 
simultaneously. In the above data transmission line 
this happens at the multiplier and any following ele
ment. 

The output of the element i is the output of the 
element i + 1 and the action of the complete chain is 
therefore given by multiplying the factors of equation 
38. Therefore, 

S'k(W) I 
J output from averager 

= S (W) N~61 Hj 
1- \ If I· jk pressure i =1 i i 

( 39) 

Using equation 39 it is possible to eliminate systematic 
signal distortions in the final data presentation. How
ever, the gain factors and phase shifts of the individual 
elements are known only within the statistical errors 

.6./H11, .6.IH:1 and .6.( <P1- <p:), which summarize the 

effects of nonlinearity (amplitude dependent frequency
response function) , time variance (time shift of cali
bration curves), and the errors that were inherent in 
the calibration device used to measure response func
tions He (w). For small and random derivations, the 
accumulated error is then given by the error propa
gation law: 

N fras X (a S'k J 
2 

) 

("'"jk). ",h ~ad,';, "IH,y j+k \-.;: '" j-k 

{(.6.IH~I) 2 + (~IH~IJ 2 

= Sjk(~'TJ,W) -i =~ IH~I \.IH~ IJ 
. k ~ 

+ [.6.(<P~ - <Pi)] j . (40) 
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In presently available commercial data reduction 
equipment, the biggest errors are introduced by dy
namic phase shifts between transducers and between 
the channels of tape recorders [24]. Relative mean 
square errors of 

2 ~ 
[ (b. 8 o k ) 4] 

ISjkJ(W)] ~ 20% 
(41 ) 

are to be expected even for carefully selected ele
ments . It seems that nonlinear effects and dynamic 
shifts in the transducer and in the data transmitting 
e lements are so big that the more refined force 
estimates, which consider the spatial structure of the 
pressure field, might lead to ambiguous results . 

Equation (40) gives the error ot a cross power 
estimate in a form which is directly applicable to dy
namic calibration tests . The wanted error of the 
cross correlation estimate follows from a Fourier 
transforma tion in time. This shows that the statisti
ca l errors will be of the same order of magnitude 
whether the statistical ana lysis is done in the frequency 
domain or in the time domain. The error analysis and 
the inherent demand for dynamic calibration are there 
fore quite general and not r estricted to the cross 
corre lation tec]mique. In fu ture calibra tion programs, 
one has to measure not only the "av rage" frequency 
response function but the disturbances of the gain 
factors and phase differences that are produced by 
nonlinear and dynamic effects in the transducer , in 
the data reduction chain, a nd in the calibra tion device. 

Equation (40) could be used as a ba :Sls for a sur
veyof optimum linear and time invariant e lements and 
calibration procedures 0 Measuring the standard d -
viations for the gain factors and phase shifts of each 
data transmitting e le ment, the smallest pressure 
cross corre lation could be calculated which is still 
meaningful in acoustic wind tunnel tests. 

VITI . CONCLUSIONS 

Recent flight and wind tunnel tests indicate that 
the skin of large launch vehicles might suffer a high 
frequency vibration caused by flow separation and 
oscillating shocks . This paper discusses the feaSi
bility of obtaining the aerodynamic forcing functions 
at anearly design stage by a cross correlation of wall 
pressure fluctuations, which have been measured on 
rigid wind tunnel models . 

The relation between generalized forces and wall 
pressures is illustrated for the simplest of all cases, 
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the rectangular flat plate with simply suppo~ted edges . 
All simplifying assumptions will be listed in a separate 
report and may be verified in future tests . A simple 
excitation response relation is given which is valid 
not only for the flat plate but also for all panel configu
rations and all edge conditions, the free vibration of 
which can be described by orthogonal modes . 

The accurate prediction of skin vibrations re
quires the power spectrum of the autocorrelation of 
the generalized forces which act on the individual 
modes . Their exact determination would lead to a 
fourth order integration over the cross correlation 
function of two transducers which are independently 
moved across the panel. The experimental and nu
merical effort in this exact solution is prohibitive and 
simple models of the pressure field have to be tried 
instead. The approximation with normal incident plane 
waves and the assumptions of homogeneous turbulence 
are reviewed . The first neglects the spatial structure 
of the pressure field completely and the second might 
lead to ambiguous results for high shear flows anc1/ or 
supersonic flows with boundary layer separation and 
reattachment. 

Unfortunately, the largest pressure fluctuations 
are mostly aSSOCiated with inhomogeneous flow . It is 
shown that the force autocorrelations might be ob
tained for inhomogeneous flows by a curve fit of a 
"speCial " pressure crOss correlation function. For 

homogeneous turbulence, this curve fitting procedure 
is equivalent to Allan Powell's spatial Fourier decom 
posi tion ("joint acceptance") . 

The experimental and numerical effort of any 
curve fitting procedure is still so large and cos tly that 
it can be applied only to very few cases where Simpler 
pressure models give marginal results. A quick look 
is described which estimates the space- time cross 
correlation by the use of only three transducers on 
opposite panel edges. It is based on the concept of 
convected turbulence and shows that only very few 
Mach and Reynolds numbers are necessary in "quick 
look" tests provided that convected turbulence is the 
dominant noise source . 

A curve fit of experimental pressure correlations 
is useful only as long as the statistical error of a 
cross correlation estimate is smaller than the numeri
cal error of the curve fitting procedure. An analysis 
of systematic and random errors indicates that non
linear effects and dynan1ic shifts in the data trans
mitting elements might produce relative mean square 
errors up to 20 percent. The refined estimate of gen
eralized force, which is based on the spatial structure 
of the pressure-space- time correlation func tion , might 
therefore lead to ambiguous results . The pressure 
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tr~sa4cer '~d the d~ta ~eduction chain must be cali
' brated very accurately not only for the time average 
-frequency response but also for dynamic shifts of gain 
factor and phases. Dynamic errors are particularly 
severe in small pressure transducers and tape re
corders . 

The interest, discussions and constructive criti
cism of Dr . W. H. Heybey, Dr. R. D. Rechtien, and 
Mr. K. D. Johnston, Mr. G. A. Wilhold, Mr. L. A. 
Schutzenhofer, and Mr . R. Thornton are gTatefully 
acknowledged. 

REFERENCES 

1. Krause, F.: "Preliminary Results of SA-4 
Acoustic Flight Tes ts, "Memo M-AERO- A-48- 63 . 

2. Eldred, K . ; Roberts, W. M. and White, R . W. : 
"Structural Vibrations in Space Vehicles," WADD 
Technical Report 61-02 (1 96 1) . 

3. Ailman, C. M. : "Wind TUlmel Investigations of 
the Fluctuation Pressures on the Surface of a 
Saturn I Vehicle, 2.75 Model "C", " Douglas Re
port S. M. - 44148 . 

4. Krause, F.: "Initiation of Acoustic Tests, Pt. 2: 
Coordination with NASA-ARC," MSFC Memoran
dum M-AERO-A-72-63. 

5. Kuehn, D.: "Experimental Investigation of the 
Pressure Rise Required for Incipient Separation 
of Turbulent Boundary Layers in Two- Dim ensional 
Supersonic Flow," NASA TR - 117 (1961) . 

6. Kuehn, D.: "Turbulent Boundary Layer Separa
tionInduced by Flares on Cylinders at Zero Angle 
of Attack," NASA TR-R-117 (1961). 

7. Krause, F.: "Initiation of Acoustic Tests, pt. 1: 
Coordination with NASA - LRC," MSFC Memoran
dum M-AERO-A-70-63 . 

8. Ziegler, H.: Meclmik III, Birkhauser Verlag, 
Basel-Stuttgart, 2nd Ed . 1956. 

9. Francken, P. A.; Lyon, R. N.: "Estimation of 
Sound Induced Vibration by Energy Methods with 
Application to the Titan Missile," DOD Shock, 
Vibration and Associated Environments, Sympo
sium 31, Pt. 3 (Oct. 1962) 12-26. 

10. Ritz: "Uber eine neue Methode zur Loesung 
gewisser Variations probleme der mathematis
chen Pysik." Journal fuer die reine und ange
wandte Mathematik," Vol. 135 (1909) pp -161. 

---~ ~--"-'--

~ 11 . Crandall, S. H.: "Random Vibration in Mechan
ical Systems" Academic Press (1963), New York, 
N. Y. 

I" 

12. White, R. W.: "Structural Response to Pressure 
Flucturations and Oscillating Shocks," Wyle 
Labs . - Southeast Div . , Report WR-63-12, Sept. 
1963. 

13. Lamb, H.: "The Dynamical Theory of Sound, 2nd 
Ed. (A25), reprinted Dover (1960) N. Y. 

14. Rayleigh, F . R. S.: "The Theory of Sound, Vol. 
i (1894), Chapter 10, Reprint, Dover (1945) 
N . Y. 

15. Batchelor, G. K.: "The Theory of Homogeneous 
Turbulence," Cambridge University Press, Stu
dent ' s Edition, 1960. 

16. Powell, A.: "On the Response of Structures to 
Random Pressures and toJetNoise in Particular," 
Random Vibration, Vol. 1, The MIT Press, Cam
bridge, Mass., 1958. 

17 . Bull, M. K.; Wilby, J. F.: Blackman, D. R.: 
"Wall Pressure Fluctuations in Boundary Layer 
Flow and Response of Simple Structures to Ran
dom Pressure Fields," University ~f Southampton, 
AASU Rep. 243 (1963) Contract AF 611052) 35 . 

1 . Kistler, A. L. and Chen, W. S.: "The Fluctu
ating Pressure Field in a Supersonic Turbulent 
Boundary Layer," JPL Report 32-277 (1962). 

19. Kistler, A. L.: "The Fluctuating Wall Pressure 
Under a Sepal'ated Supersonic Flow, "Fluid Dy
namics Panel of AGARD, "Rhode-Saint-Genese, 
Belgium, Apr. 1-5, 1963. 

20. Davies, P. O. A. L . ; Fisher, M. J. and Barrett, 
M. T . : "The Characteristics of the Turbulence 
in the Mixing Region of a Round Jet, " Journal of 
Fluid Mechanics, Vol. 15 (1962) pp 337-367. 

21. Wills, J. A. A.: "On Convection Velocities in 
Turbulent Shear Flows," PL-Aero-Report 1050, 
(1963). 

22. Rainey, A. G.: "Progress on the Launch Vehicle 
Buffeting Problem, 5th AIAA Structures and Ma
terials Converence, Apr. 1-4; 1964, Palm Springs, 
Calif. 

23 . Bendat, J. S.: "Measurement and Interpretation 
of Correlation Functions," Lecture at Data Re
duction and AnalySiS Symposiwn, Jan. 22-23, 
1964, Huntsville, Alabama. 

31 



24. Schulze, G. H.: "Tape Recording Erros, '1'. ISA' 
Reprint, Sagamo Electric Company , Springiield, 
Ill. 

1 

32 

25. 
, . . . #. . ' . , 

Rechtie'n, R. D.: "On the PressureRequiremEmts 
for Structural Response Equations," R-AERO-AU 
presentation, Aug . 19, 1964, to be published as 
NASA TN. 

... 

--- -- r- ----~ 



ON AN EXTENSION OF OSWATITSCH'S EQUIVALENCE RULE TO UNSTEADY FLOW 

By 

M. F. Platzer 

N65-2412 
SUMMARY Symbol Definition 

d(x,y) Amplitude of pulsation 
This paper outlines an approximation theory for 

the calculation of the linearized subsonic and super
sonic flow around pulsating bodies of low aspect ratio, 
extending K. Oswatitsch's and F. Keune'S theories for 
steady flow to these unsteady flow cases. 

E[n] (x,y,z) Sum of source-moments of nth order 
over the cross section 

In afirst approximation, the flow around pulsating 
bodies of low aspect ratio consists of two terms: 

a. A two-dimensional cross -flow. 

b. A spatial influence which depends only on the 
sum of the source - elements over the cross
section. 

This spatial influence reduces the flow over puls
ating low aspect ratio wings to the flow over the equiv
alent pulsating body of revolution. A similarly char
acteristic structure of the flow field is found also for 
the higher order flow terms . 

In addition to the basic conditions for linearization, 
the range of validity of this approximation theory is 
essentially bound by certain combinations of aspect 
ratio, Mach number, and reduced frequency. 

These order of magnitude considerations can be 
further substantiated by comparing the aPPt"oximation 
theory with certain exact solutions of the unsteady; 
l inearized potential equation. Such solutions are I) fu 
for the infinitely long tube or ribbon pulsating harmo . - / 
cally in subsonic or supersonic flow. ¥:\ 

~ . 

Symbol 

A 

c 

C 

Ci 

LIST OF SYMBOLS 

Definition 

Amplitude of cross-sectional pulsa
tion 

Free-stream velocity of sound 

Euler's constant = 0.5772 .... 

Integral cosine function 

------ ---.~-- -----

H (1) 
o 

H (2) 
o 

i 

k 

K 
o 

L 

m 
[ n] 

M 

p 

Q(x) 

r, e 

s (x) 

Si 

t 

U 

V(x) 

x,y,z 

Hankel function of first kind, zeroth 
order 

Hankel function of second kind, zeroth 
order 

imaginary unit 

wL V reduced frequency 

Modified Bessel function of $econd 
kind, zeroth order 

Characteristic length (wing-root, 
body-length, wavelength of pulsation) 

Source-moment of nth order 

u 
-, free-stream Mach number 
c 

Laplace transform variable 

Amplitude of cross-sectional pulsa
tion 

Source -dis tribution 

Cylindrical coordinates 

Half-span of wing 

Integral sine function 

time 

Free-stream velocity 

Definition equation 2. 8 

Cartesian coordinates Figure 2 

w 

c(M+1) 



LIST OF SYMBOLS (Concluded) 

Symbol 

(3 

cota 

cf? (x,y, z, t) 

¢ (x,y,z) 

l' 

K 

w 

(J 

Definition 

w 
c( 1-M) 

w 
c(M- 1) 

V1-M2 

JM 2_1 

Disturbance potential 

Amplitude of disturbance potential 

Cross -flow potential 

Spatial influence 

2rr . L' Wave- number of pulsatIOn 

wU wU 
c 2{32 'c2 cot2a 

Circular frequency 

s i ' reduced span 

Source coordinates 

1. INTRODUCTION 

The problem of steady linearized subsonic and 
supersonic flow about bodies of low aspect ratio at 
zero and small angles of attack has been treated by M. 
Munl< [2], H. S. Tsien [3], R . T. Jones [ 4], G. N. 
Ward [5], M. C . Adams - W. R. Sears [6] , F. Keune
K. Oswatitsch [7] , [ 8] , and M. A. Heaslet -H. Lomax 
[ 9] . 

M. Munk [2] first recognized that the flow about 
bodies of revolution at small angles of attack may be 
considered two-dimensional when viewed in cross 
sections perpendicular to the longitudinal axis . With 
this idealization, the local lift distribution can be ob
tained from simple momentum considerations . R. T. 
Jones [ 4] later found that this concept also holds for 
low aspect ratio wings. Garrick [10] and Miles [ 11] 
finally could show that the Munk-Jones hypothesis of 
two-dimensional, incompressible flow in planes nor
mal to the flight direction retains considerable useful
ness also for harmonically oscillating slender pointed 
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wings and bodies. Thus, the' v~iocity' p~'tentia~ bf (ne • 
transverse flow pattern satisfies in both cases, steady' 
and unsteady flow , Laplace I s equation in two dimen
sions. However, for unsteady flow the condition of 
suffiCiently low reduced frequency must be fulfilled in 
addition to the condition of very low aspect ratio. For 
high reduced frequencies, the concept of two-dimen
sional cross-flow may be extended to compressible 
flow, the velocity potential satisfying now the two
dimensional wave equation of acoustics [ 16] . 

In all these cases there is only a cross-flow to be 
considered reducing the original three-dimensional 
problem to a two-dimensional one . This is an im
portant Simplification explaining the general use of this 
slender-body concept in modern missile aerodynam ics . 

We want to turn now to the corresponding sym
metrical steady and unsteady flow cases; namely, the 
flow about bodies of low aspect ratio at zero angle of 
attack whose skin may be stationary or execute time
dependent breathing vibrations (pulsations). 

The steady flow about bodies of low aspect ratio 
at zero angle of attack has been treated by G. N. Ward 
[5], M. C . Adams-W. R . Sears [6), F. Keune-K. 
Oswatitsch (7) [ 8] a . o . This case proves to be more 
difficult than the calculation of a lift distribution on a 
lifting delta wing, according to R . T. Jones, or on a 
lifting body of revolution, according to M. M. Munk. 
The lifting effect corresponds to the effects of a dipole 
distribution and produces disturbances only within a 
short distance. Therefore, the influence of the parts 
of the body in front of or behind a given cross section is 
of higher order and may be disregarded. In the non
lifting flow case, however, the effect of body thiclmess 
corresponds to a source- sink distribution producing 
disturbances over a large distance. Considering the 
incompressible cross-sectional flow alone, therefore, 
would neglect the "spatial influence" of the parts of 
the body in front of or behind this cross section . This 
influence being of the same order of magnitude as the 
cross-sectional flow has therefore always to be re
tained in order to obtain a correct description of the 
non lifting flow about bodies of low aspec t ratio . 

Representing the wing by a source distribution, 
the disturbance potential of the cross- sectional flow 
is given by 

1 +s (x) . 
¢' (x,y,z) = 2rr J q'(x,T) i.nJ (Y-T) 2 +z2 dT) 

-s(x) 

+ ¢R(x~, 
(1. 1) 

where g (x, y) is determined by the boundary condition 
at the body, and ¢ R (x) is an additional function of x 
whose meaning was not always clear in the literature 

, 
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. ' of' ih~ slende'; body ~pp~oximation (compare the dis-
~ , 

'cussion in Ref. 6). Oswatitsch and Keune [7,8] 
could show that this function is just the spatial influ
ence mentioned previQusly and can be extracted from 
the exact solution of the linearized potential equation 
for low aspect ratio wings at zero angle of attack. 

1> (x,y,z) 1 II q(s,1)) dl; du 

41T FAx-~) 2 + ri(Y-1)) 2+{32 z2 

for M < 1 

( 1. 2) 

</> (x,y, z) 
1 

21T 
II q (l;,1))d5 d1) 

S j(x-o 2- cot2a (Y-T)) 2 - cot2a z!2 

for M» 1 

After proper expansion of this double-integral with 
respect to the source distance from the axis, two 
terms are obtained. One is the cross - sectional flow 
i.e . , the first term in equation (1.1); the other main 
term reads 

L 
,j., ( ) = _ -.1.. I V (5) dl; _ .Y1& i 
't'R x, r 41T • 21T n r 

o Ax-02 + (32 r2 

for M <1 
(L 3a) 

Vex) i for M > 1 - 21T n r 

and reduces in the immediate vicinity of the body to 

L 

Yi& 1 JiM'-11 _ -L 2 fV<o In (x-O d; + £-1 ~ J V<O i n « - xl d; 
<PR (xl : 2n n 2 4~ 8x 0 4n 8x 0 

x 
+ £-2 ~ J V(;) I n (x-;)d; 

4-rr ax 0 

2 for M < 1 
E = 

1 for M> 1 

(1. 3b) 

by a proper limiting process r -0. The function V(x) 
in equation (1. 3) is defined by 

+s(x) 
Vex) = J q(x,T)) dT). 

-sex) 
(1. 4) 

Thus, the spatial influence, equation 1. 3, is depen
dent only on the sum of the source distribution over 
the cross section. It is easily interpreted as the dif
ference of the potential of a body of revolution whose 
sourCt distribution is given by equation (1. 4) and its 
cross-sectional flow potential. The spatial influence 
of a given low aspect ratio wing and the spatial influ
ence of its equivalent body of revolution, i. e. , that 
body having the same total source strength in all cross 
sections, therefore, are the sallie. Since the total 
source strength is proportional to the cross-sectional 
area, equivalent bodies are defined as bodies having 
the same cross-sectional area distribution (Fig. 1). 

FIGURE 1. LOW ASPECT RATIO WING AND ITS 
EQUIVALENT BODY OF REVOLU
TION 

These considerations led Oswatitschto the postulation 
of an equivalence rule for both the linearized subsonic 
and supersonic flow regimes and the nonlinear trans
onic region which he first communicated at the VIDth 
International Congress for Applied Mechanics [12] in 
1952. At nearly th~ same time, experimental investi
gatiOns on equivalent bodies in the transonic range 
were carried ollt by R. T. Whitcomb [13]. His main 
interest was in finding bodies of low drag; he arrived 
in this way at the equivalence concept by notiCing that 
the shock waves in the transonic range become axisym
metrical in a rather short distance and that they tend 
to become of the same shape as the shock waves of the 
equivalent body of revolution. These results are 
generally known as the "area rule. " 

2. EXTENSION OF OSWATITSCH'S EQUIVALENCE 
RULE TO PULSATING FLOW 

We want to extend now the work of Oswatitsch and 
Keune to unsteady flow and consider a wing of low 
aspect ratio in linearized subSOniC or supersonic flow 
whose skin performs a symmetric harmonic pulsation 
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(Fig. 2).1 We mention that the problem is identical 
to the problem of a vibrating low aspect ratio panel 
embedded in the xy-plane, which is of considerable 
interes t for panel flutter inves tigations. 

.,-/ Cross Section x = Cons t. 

\ 

\ 
x 

FIGURE 2. SYMMETRIC HARMONIC PULSATION 

Assuming harmonic pulsation, we may write the dis
turbance potential <I> (x, y, z, t) in the form 

iwt 
<I>(x,y,z,t) = ¢(x,y,z) e , 

and, similarly, the pulsation amplitude 

i wt 
D(x,y, t) = d(x,y) e . 

(2. 1) 

(2.2) 

We assume the pU]flation amplitude to be zero at the 
edges of the wing, 

d(x, s (x» = d(x, - s (X» = 0, 

and restrict ourselves to the first pulsation mode sym
metrical to the xz -plane . 

Within the framework of linearized theory, the 
problem is entirely determined by the exact velocity 
potential equation (2. 3a) for subsonic flow , 

1 The author wishes to thank Professor K. Oswatitsch, 
Vienna Institute of Technology, Austria, for his sug
gestions and encouragements. 
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I . ' , 

M < 1: 

{2. 3a) 

and by equation 2. 3b supersonic flow 

M > 1: 

¢ (x, y,z) 

; _....!. J JQ{ g,1) cos [ < 1{x-o 2- cot 2Q {Y-1) 2-cot 2Q . z2] - e il-' { X- ~ ) d~ dl1 

2" S ·Y(X- O 2 _ co t 2Q (Y- l1 ) 2_cot 2Q z 2 

( S = area cut out by tbe ups tream M ach cone ) 

(2. 3b) 

As is well known in steady aerodynamics (e. g., Ref. 
1, pp. 498 and 514), the source distribution can be 
expressed also for pulsating flow by the normal ve
locity on the wing surface, 

q(x,y) = 2w(x,y,0), (2. 4) 

where w (x,y,o) can be related to the pulsation ampli
tude by means of the linearized boundary condition on 
the surface of the pulsating wing: 

. 8dJx,y ) 
w(x,y,o) = ± [lwd (x ,y) +U 8x J. (2 . 5) 

The evaluation of the double integral equation 
(2. 3) for arbitrary plan forms, frequencies and Mach 
numbers can be achieved only by tedious numerical 
integration. Therefore, an approximation theory will 
be developed which generalizes the approach first 
given by Oswatitsch and Keune for the case of steady 
flow [7, 8J. 

Since the coordinate y of a source elem ent on the 
wing are a is always sm all compared to the root length 
L, we may write for the velocity potential (considering 
first only subsonic flow) 

,. 

, 



. , ' 
.. where 

1 ' . , 

!':.\ll (X,y , z) 

(2 .7 ), 

Fo ... large distances from the wing !J.¢(x, y, z) will 
become negligibly small compared to the first term 
in the expansion and the potential becomes with 

+5 ( X) +5(X) 

Ve x ) - J q ( x,~) d~ 2 J w (x , Il ) d~ iuJQ(x) + U Qx(x) (2 . 8) 
-5 ( x) -5 (x) 

", (X,y , z) 

where 
+s(x) 

Q(x) = 2 J d(x,1) d1) 
-s(x) 

(2. 9 ) 

(2 . 10) 

is the amplitude of the cross-sectional pulsation of 
the wing. For points near the wing, however, 
!J.¢(x,y, z) is of equal order of magnitude as the first 
term in the expansion. Here the term x-~ approaches 
zero; therefore the term Y- TJ has an important influence 
on !J. ¢(x, y, z). The main influence of this second term 
can be taken into account, however, by replacing the 
variable source distribution w (~, 1) by the source dis 
tribution at a given cross section ~=x; thus 

If we make now the further approximation that instead 
of integrating from the leading edge xL(TJ) to the trail
ing edge x T (1) we extend this integration in the inner 
integral of equation 2. 11 to - <lD and + 00, then a 
closed form solution is obtained; 

(7v y' + z, )J~. 
( - 12) 

There remain two terms K1 and K2 [ 14) which can be 

------ ---

shown to be of higher order. Hence , the final result 
can be written in the following form: 

d~ + CP R (x,y,z) , (2. J3) 

where 

( 2.14 ) 

We mention without proof that a similar approach for 
supersonic flow leads to (14) [15) 

M > J : 

. +s(x- 1' cot OI ) 

<I> (x,y , z ) -i J w(x -rcot Ol , ~) 1I!2) (~ V (Y-'1)' ) d~ + <I>R (x,y,z), 
- s(x-r cot OI ) 

(2 .15) 

where 

X-l' COL Ct 2 2 2 · _....L J V( ~ ) cos I· (.<-0 - cot '" . l' e - ll'(X-~ ) d ~ 

217 a V (x- ~ )' _ cot' OI • 1" 

- ~ V(x- r cot OI l H!2) (~r) 
(2.1 6) 

Hence, the induced flow field consists of two potential 
flows, a two-dimensional flow satisfying the Helmholtz 
equation 

w2 
A-. +A-. +- A-. - O 
't'yy 't'ZZ C2 't' - ) (2. 17) 

and being induced by the source distribution equation 
2. 4 plus a three-dimensional flow being induced by the 
source distribution equation 2.8. This flow is identi
cal with the flow around a pulsating body of revolution , 
equation (2. 9) with equal variation of the cross
sectional pulsation, along the X-axis. Comparing 
equations (2.1 3) and (2.15) , it is seen that the two
dimensional flow is the same for subsonic and super
sonic flow. The spatial influences ¢ R (x, y, z) equations 
(2.1 4) and (2.16) are different, however, for subsonic 
and supersonic flow and represent the influence of the 
parts of the body in front and behind a given cross 
section. They are obtained, as in the steady flow case 
[ 7] , by subtracting from the potential of the pulsating 
body of revolution its cross~flow potentiaL 
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Of particular importance are velocity and pressure 
distribution on the wing surface. These quanut"ies can 
be obtained from equations(2. 13 - 2. 16)by a limiting 
process z - 0, r - O. Ther, we obtain immediately for 
the cross-flow in subsonic and supersonic flow 

. + sex) (2) ~ j') 
¢ (x,y,z) = ~ J w(x,T) Ho ~~ /Y - T)ij 

q -sex) 
dT),! 

(2. 18) 

and after some manipulation for the spatial influences, 

M < 1: 

<P R(X) .Y.W r Ci ~ 
4r."l c(1+M) 

_Cl W(L-x)l 
L C(1-M) J ~ wx ] - ir. + iS i~ 

[ W(L-X)]} 1 IX V ex) - V<U - i ~ 
+ i Si c (1- M) +;;; x _ ~ e e(1+M) dl; 

o 

( 2. 19) 

L ~ 
~ J V( ~) - Vex) e -i c ( 1-M) d l; 
4r. 0 I; - x 

M > 1: 

.Y.l.& ( '- wx ] C· [ wx J . +. S' [~] <i> R (x) = 4r. - Ci Le(M- 1) - I e(M+ 1) - m 1 I e(M- 1) (2.20) 

} 

x ( .~ i~) 
+ i S i [~l + ~ J Vex) - V(n e- I C(M-1) + e- c(M+1) dl; 

e (M+1D 4r. 0 x - I; 

where Ci and Si are the Integral Cosine and Integral 
Sine Functions. This approach which was rather based 
on physical considerations about the main influences 
upon the flow field can be supplemented by two other 
mathematically more rigorous approache s. For this 
purpose, we generalize a method first used by F. 
Keune for the steady flow problem [18] and rewrite 
the potential for the pulsating wing equation (2.3a) in 
the form 

(2. 21) 

(2.21b) 
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where a 2 = (Y-1) + z2 . 
l " I ... 

Integration by parts and proper expansion gives in a 
first order approximation for the potential function of 
the pulsating wing in subsonic flow 

¢ (x , y,z) = ¢'~ (x,y,z) + ¢~(X) (2.22) 

(2. 22a) 

* 1 (a i~) x -i~ '" (x) =-- - +- J V( I;) e e (1+M) In (x-I;) dl; 
't'R 4r. ax 1+ M 

o 

~ i~0 L .~ ~..!... ...£. __ c_ Iv(oe-I C( 1 -M)ln( I;-X)d!;+ ¥ln~. 
..J1T ox i-Nt x 1i 

(2. 22b) 

The second approach can be obtained by generalizing 
the Adams-Sears method [ 6] to pulsating flow. We 
show this for supersonic flow and use, therefore, 
Laplace transformation 

00 

¢(p,y,z) = J e-Px ¢ (x,y,z) dx. 
o 

transforming the potential equation into 

¢ +¢ -i.Yrp = O 
yy zz ~ 

where 

2 iwU w2 
A 2 '" cot2 

Q! • P + 2 --P - - • 
c 2 c 2 

A proper solution of this equation is 

+s 
- 1 J-et> (p, y , z) = - - w (p, 1) K (Aa) d1) . 

rr 0 
-s 

(2.23) 

(2.24) 

(2.25) 

We are looking for a so'lution near the body and ex
pand, therefore, the modified Bessel function with 
respect to its argument 

Aa (Aa)2 [ AaJ Ko(Aa) = -C-lnT + 4 1-C- 2 + .... 
(2.26) 

C = Euler ' s constant. 

Retaining in afirst approximation again only the linear 
terms gives after inversion for the potential function 



\ 

~ 

• ' " I • • 

.... of the' pulsating wing in supersonic flow, 

cP (x,y, z) = cp'~ (x, y, z) + cP; (x) (2.27) 

• 1 +s(x) 
CP" (x,y,z) = - f w(x,T)) In,.,) (Y-T)) 2 + z2 dT) 

q 7r 

-s(x) (2.27a) 

.w 
* .Yi!tl cot Or 1 (a 1 ~ ) x -i ~ 

<l> R (X) 2~ In -2 - - 4,; a;: + M+J { V(O e c(M J) In (x-O cit; 

x .~ J V( t; ) e-
1 

c( M-1) In (x-O ci t; . 
o 

(2.27b) 

Equations 2.22 and 2.27 show that these ap
proaches lead to different definitions for cross-flow 
and spatial influence, the cross-flow being again the 
same for subsonic and supersonic flow, but satisfying 
now the two-dimensional Laplace equation. 

It can be shown that the representations, equations 
(2.18) - (2.20) and equations (2.22) - (2.27) are 
equivalent, this being quite analogous to the different 
forms found in steady flow (compare M. D. van Dyke, 
Second-Order Slender Body Theorv: NASA TR-R-47, 
equations 7 and 8) . 

It is also easy to verify that, for vanishing fre
quency, F. Keune's solutions for steady flow are ob
tained (equations 2.10, 3.10, 4.1 and 4.2 in Reference 
8). 

Similarly, a further limiting case for M = 1 can 
be obtained [ 14], [15]. For the transonic flow case, 
however, the frequency must be kept sufficiently high 
in order not to violate the assumption of linearization. 

Summarizing our results, we have fOlmd that the 
flow near the body can be considered two-dimensional 
in every cross section and is easy to be calculated 
from the Laplace equation 

cP + cP = 0. 
yy zz 

Hence, the disturbance potential is 

1 +s (x) 
CP(x,y,z) = 21r f t.I(x,T)) In~(Y-71)2+z2d71 

-s(x) 

+ cP~" (x) . 
R 

(2. 28) 

(2. 29) 

As in the stationary case;, the solution is dependent on 
an additional function cP'R (x), namely the spatial in
fluence. Generalizing Oswatitsch' s and Keune's 

conception l we have obtained for this spatial influence 

-- ~ i~)X ~ 
<l>'R' ( x) ~ In ,,' 1M' - 11 - ....!. .2. _c_ j VIt;)C-

i 
c( 1+M) In (x-O cit; 

2. 2 4c ax M +1 0 

( i~) x .~ 
+ <-2 .2.+_c_ JV(OC-1C(~1 - 1 ) In (x-E) ci t; . 

4 ax M-J 0 

where E = 2 for M < 1 
1 for M > 1 

(2.30) 

Having essentially replaced a solution to the com
plete linearized unsteady potential equation 

by a solution of the Laplace equation (2.28) , the fol
lowing restrictions have to be imposed in addition to 
the conditions for linearization (cf. J. W. Miles, The 
Potential Theory of Unsteady Supersonic Flow, 
Cambridge 1959) . 

11 - M2fa2 « J kM2 a2 « 1 (2. 32) 

where k is areduced frequency and (J ameasure of the 
lateral extent of the wing. 

We want to mention that the range of validity of 
the solution can be extended by keeping the higher 
order terms of our expansion of the velocity potential. 
This can be done in generalizing Keune's method for 
steady flow [17], [19] or generalizing the Adams
Sears procedure [6]. Keune's method is physically 
more appealing, however , showing that the higher 
order flow terms are built up by certain higher order 
moments of the basic source distribution. 

We remember that in our first approximation we 
needed: 

a. The local sOurce distribution q(x, 71) 
b. The sum of the sources over the cross section. 

+s(x) 
V (x) = f q(X,71) d71 

-s (x) 

We introduce now after Keune [12] also for pul
sating flow the higher order moments of these quanti
ties, namely 

~ 
m[n] (x,y,Z,T)) = q(x,T)) an = q(x,TJ) [(y_T))2+z2)2 

(2.33) 
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and the sum of these source moments over the cross 
section 

+s (x) 
E[n] (x,y,z) = J 

- s (x) 

n 

q(x, T) )[(Y - T) ) 2 + z2 ]2 d T) . 

(2.34 ) 

The significance of these quantities can be seen from 
Figure 3 

u 

\ 

Cross Section x = Cons t. 

F IGURE 3. PHYSICAL SIGNIFICANCE OF' 
SOURCE MOMENTS 

a = PS = distance of a point P in the cross sectiop. 
x = con st. from a sour<.;e-,element at point S. 

It turns out that also the higher order terms of 
the expanded velocity potential of the pulsating wing 
equation!2. 3\can be interpreted as a generalized crosS
flow and a generalized spatial influence if instead of 
the local source distribution q (x, 71) and its sum over 
the cross section V (x ) the higher order moments 
m[ n] and E[ n] are used. A more detailed discuss ion 
is given in [14, 15]. Thus, a relatively simple 
theory is obtained for pulsating bodies in compressible 
flow which extends appreciably the range of validity of 
the first approxim ation equations(2. 29 :;end(2. 30). 
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Furthermore, it should be mentioned her:e that lIP 

these developments for the pulsating wing can be used 
to obtain another and quite· elementary approach to 
"quasi-slender body theory" for oscillating wings and 
bodies of revolution which gives some new insight to 
the basic structure of the flow field around oscillating 
bodies, too [14] [15]. 

3. Comparison With Exact Solutions 

The usefulness of the approximation theory de
veloped in the previous section can best be assessed 
by comparing it with exact results. There are con
figurations for which exact solutions of the linearized 
unsteady potential equation can be found. We mention 
the infinitely long pulsating tube and ribbon. 

Consider first a tube of small diameter whose 
axis cOincides with the X-axis and whose flexible wall 
executes apulsation of wavelength L. We assume this 
wavelength to be large compared to the diameter of 

the tube. The wave number of the pulsation is l' = ~ 
and the subsonic or supersonic flow is aligned to the 
tube , i. e., in the direction of the positive X-axis 
(Fig. 4) . 
---__ u 

. . L 
-_ . __ . _ . _ .- Ro 

L 

FIGURE 4. INFINITELY LONG PULSATING TUBE 

The spatial influence equation( 2. 19) for subsonic 
flow Simplifies for the infinitely long pulsating tube to 
[14], [15] 

M<1: 

CP R (x) 

x . w(x- s ) 
1 J q (x) - q( 51 e -1 c( 1-M) d~ 

47f _ 00 X - ~ 

1 00 q (51 _ q(x) -i w(s-x) 
47fJ ~-x e c(1-M)d~ 

x 
(3. 1) 

Inserting the appropriate source-distribut ion for the 
pulsating tube leads to the following final form for 
this spatial influence with A as amplitude of the cross 
sectional pulsation: 

~) 



..... \ ' 

> r > j ex = r 
7> a> 0 

~ I I lrr/ 2 1 > i'I l 
+ i ~ sin r x lo 1 - ~ + cos r x rr./ 4 ~ "" ~ 

OCt> 'l ' 0 

~ j"/ 2 Ct' > 1 

+ ~ sin ., x - 5 in ')' x -:r./ 4 a' - r 

o 1> a' 
+,,"," 1~lj 

· , r "" , . '" I, ' ~I ' < •• , • ~:: ;, ::,, ~) 
• 't' {~ <. '" ," I, "I ,'" '" {~: :::' J 

H ~ "",. ," h i +- '" .... p { ::: 
~ > 'l > :1 Y '" f 

'l > - , 0 

l- f"/2 
+ i cos 1 x \~/4 

ex' >, > 0 

Q ' '" "/ 

r > a' > 0 

~ ::: ] 
(':(' > "'/ > 0 

, ; ,., , · ' l "" , · '" 1~1 

• is fulfilled, i. e., if the wavelength of the advancing 
or receding acoustic wave coincides with the wave
length of the standing tube pulsation. 

To find an exact solution for this case, we have to 
extend the limits of integration in equation (2. 9) and 
to insert the proper source distribution, thus obtaining, 
for M < 1, 

<I> (x, 1') 

[or M > I 
+ x-r cot a 

<I> (x , 1') 
_ ~ J [j w sin Y i .;- U y cos Y t l cos (1\..)( .... - 0 z - cot2 a r2, e -il-l(x-{) d{ . 

2" _ ~ '" (x-~ )' _ cot' O! ' 1" 
( 3. 4b) 

An evaluation of these integrals is possible [ 14, 
15] and leads to the following closed form solution: 

<i>( x , 1') _A- (w+y U) e
iyx 

P, (1') _A(_w+y U) e-
iyx 

P2 (r), 
iT it I 

(3.5) 

with 

CI! ' > y 
( 3. 6a) 

= 2Ko [r ,B >J ( CI! + y) (Y- CI! ') ] 

(3.6b) 

P2 (r) irr H~2) [r ,B>J ( CI! - y) ( CI! ' + y) ] CI! > Y 
( 3. 6c) 

= 2K
O

[r,B>J (y- CI! ) ( CI! '+y)] CI!< y 
(3 . 6d) 

(3 . 2) for subsonic flow, 

where 

a = W and CI! ' = W • 
c(1+M) c(1-M) (3. 3) 

A similar expression is obtained for supersonic flow 
[ 14, 15} . We note that ¢ R (x) = 0, for y = O. If the 
wavelength of the standing pulsation is infinitely large, 
i. e., the tube is pulsating with constant amplitude 
over the tube· length , then there is no spatial in
fluence. In this case, sources of constant strength 
are distributed over the entire x-axis , and as is well 
known, a solution is given by the cross-flow, i. e . , the 
cylindrical solution. There is a spatial influence, 
however, for non- zero y, which may even become in
finite if one of the "matching conditions" y = "N or y = CI!' 

and 

(3.7a) 

(2) l a >' y 
P 2(r) = - irr Ho [r cot CI! >J ( CI!-y) ( CI!"- Y)..J CI! " > Y 

(3.7b) 

= irr H~1)[ r cot CI!>J (Y- CI! ) ( Y- CI!" )]~ ~ !" 

G . I ]y >a = 2 Ko r cot CI! '" (Y- CI! ) ( CI!"-Y) ,J 
CI!" > Y 

for supersonic flow. 
(3.7d) 
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This solution for the infinitely long pulsatin'g tube • 
which we have obtained here directly from the potential 
equation (3. 4) can be fOlUld also according to R. W. 
Leonard and J. M. Hedgepeth [20] by considering first 
the solutions for traveling waves and composing them 
to the standing wave solution. 

We mention without proof that proper expansion 
of the exact solutions, equations (3.6) and (3 . 7), with 
respect to the argument and retaining only the linear 
terms leads to equation (3.2) , thus providing a quanti
tative check on the range of validity of this solution 
[14, 15]. 

A further interes ting exact solution can be found 
for the infinitely long pulsating ribbon of constant 
width. Assuming sinusoidal pulsation over the x
direction, the chordwise integration again can be car
ried out which reduces the double integral to a single 
integralover the functions, equations (3.6) and (3.7), 
which had already been obtained for the axisymmetric 
case. This solution appears to give good approxima
tions for the aerodynamic pressure distribution on 
fluttering panels of high length/Width ratio. Thus, a 
relatively simple aerodynamic theory might evolve for 
panels of length-width ratios comparable to those oc
curring on Saturn V panels. This problem area is now 
under detailed study. 

CONCLUSIONS 

An approximation theory has been developed to 
calculate the linearized subsonic and supersonic flow 
around pulsating bodies of low aspect ratio which 
generalizes the theories of K. Oswatitsch and F. Keune 
[7, 8, 17, 18, 19] to unsteady flow. 

The flow around pulsating bodies of low aspect 
ratio consists of two terms, a two-dimensional cross
flow and a spatial influence which depends only on the 
sum of the source elements over the cross section. 

A Similarly characteristic structure of the flow 
field is found also for the higher order terms by intro
ducing after Keune [17] higher order source moments 
and the sum of these quantities over the cross section. 

In addition to the basic conditions for lineariza
tion, the range of validity of this approximation theory 
is essentially bound by sufficiently small aspect ratio, 
Mach num ber, and reduced frequency, so that 

kMa < 1 

is fulfilled . 
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These order of magnitude considerations y'an be- ... 
further substantiated by comparing this approximation 
theory with certain exact solutions of the unsteady 
linearized potential equation. Such solutions are found 
for the infinitely long tube or ribbon pulsating harmoni
cally i~ subsonic or supersonic flow. 
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ON THE PRESSURE REQUffiEME TS FOR STRUCTURAL RESPO SE EQUATIONS 
, " 

By 

Richard D. Rechtien 

N65 24130 
SUMMARY 

The fluctuating pressure requirements for the cal
culation of flight vehicle vibration environments are 
reviewed in light of the development of a "lumped" im
pedance approach to the response problem. This re

sponse approach demonstrates that the only fluctuating 
pressure information required is the pressure cross 
power spectral densities. 

For homogeneous anisotropic flow conditions , a 
considerable Simplification in the response equations 
result. For this flow condition it is suggested tha~the 
pressure cross- power spectral density informatio 
reduced to a more elementary form . 

DEFINITION OF SYMBOLS ~ 

Symbol 

H(r, s, w) 

H(r, K, w) 

F(s, t ) 

cp s (r) 

A (r) 
s 

P(s, t) 

R (r)!:::" w 
R 

PSD (s, w) 
P 

CPSD (s, s! w) 
p 
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Definition 

Structural transfer function 

Wave number spectrum of the 
structural transfer function 

Applied sinusoidal force at the 
point s 

Structural response at r due to the 
applied load at s 

Phase difference between the re 
sponse at r and the applied load at 
-s 

Magnitude of the response at r 
due to a sinusoidal load of unit 
amplitude applied at s 

Fluctuating pressure acting at the 
point s 

Narrow- band response coherence 
function 

Pressure power spectral density 

Pressure cross- power spectral 
density 

DE FINITION OF SYMBOLS ( CONT' D) 

Symbol 

Co(s, s! w ) 

Quad(s, s', w) 

M (k, w) 
p 

Z(w) 

y , {3 

r 

s 

w 

!:::,.w 

t 

i 

!:::" A 

U 
o 

f 
o 

-u 

k 
c 

Definition 

Response power spectral density 

Co- spectrum - the real part of 
CPSD (s, s', w) 

p 

Quad- spectrum- the imaginary 
part of CPSD ( 5, s; w) 

p 

Wave number spectrum of CPSD 
(- - ' ) p s, s, w 

Point impedance function 

Orthogonal surface coordinates 

Position vector for the response 
measurement point 

Position vector for the load appli 
cation point 

Circular frequency 

Frequency bandwidth 

Vector wave number 

Wave number bandwidth 

Separation vector 

Time 

Incremental surface a r ea 

Free stream velocity 

Center frequency 

Wave velocity 

Coincidence vector wave number 
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. -- 1. INTRODUCTION 

The s tructural integrity of present day flight ve
hicles d~pends to a large degree on the accuracy with 
which one can predict the dynamic stress levels that 
the structure will endure under operational conditions. 
Such stress levels are derived from the anticipated vi
brational environment, which in turn is deduced from 
available fluctuating pressure information. The ac
curacy of the predicted stress envi ronment therefore 
merely reflects the adequacy, or inadeq~acy , wit~ 
which the dynamic characteristics of the structure and 
the characteristics of the fluctuating pressure field can 
be described. These char acteristics are ultimately 
coupled by means of a mathematical form uli sm to pro
duce an environmental response calculation. 

Under operational conditions, the flight vehicle is 
subjected to a wide variety of dissimilar fluctuating 
pressure environments, of which those that fall within 
the broad classifications of engine aerodynamic noise 
and inflight aerodynamic noise s ustain a position of 
great importance . Now "noise" is a word which has 
many meanings; thus, it is important that it should be 
clear what the word is to mean in the present context. 
Here, noise will be regarded not just as "unwanted 
sound" butas something more explicit, a random dis
turbance, and will include those processes or experi
ments in which the results fluctuate irregularly. 
Hence , noise in the present context refers to pressures 
which fluctuate randomly in time. Randomness, on the 
other hand, is a l ess restrictive phrase and may be 
extended to describe also the spatial distribution of the 
fluctuating pressures in that they are irregularly dis
tributed and this distribution is unpredictable. Thus, 
the term "random," as used in the present context, 
refers to processes where both the time fluctuations 
and spatial distribution are unpredictable . 

The common feature of all "noise" E.nvironments 
experienced by the operational vehicle is that they are 
random, both in space and time, and the associated 
measured pressure quantities can be considered only 
in a statistical sense in an "average" sort of way. As 
the exciting pressure environment is random, so also 
is the structural response, and again statistics come 
into play in its description. 

Various statistical measures of fluctuating pres
sure and response constitute an input-output system 
in which the proportionality factor is referred to as 
the structural transfer function. This input-output re
lation can attain any degree of complexity depending 
on the degree of rigor with which one attacks the prob
lem , and the format of pressure and structural 
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information. For a statistical response approach, 
the calculated response quantity is a matter of per
sonal choice. One may , for example, be concerned 
with the mean-square, autocorrelation, cross-corre
lation, power spectral density or cross-power spec
tral density of either a displacement, velocity, accel
eration or strain. The choice of measure of a partic
ular response quantity depends on the needs of the 
response analyst. The choice of the statistical pres
sure measure required for the computation of response 
is, however, not quite so arbitrary; but yet it is inde
pendent of the desired statistical response measure. 
That is to say, regardless of the desired response 
measure, the format of the required pressure infor
mation remains the same. 

The third necessary response quantity, the struc
tural transfer function, is also arbitrary to a degree 
in that its form depends on the choice of the manner in 
which one couples the external exciting pressure to the 
structure. It is restricted in the sense that it must 
act as a unit conversion system which changes the 
units of pressure to units of response. In this regard , 
it is dependent to a limited extent on the desired re
sponse measure, but it is quite independent of the for
mat of the required pressure information. 

The foregOing statements concerning response 
equations are not quite true in general, [or if one views 
the family of allied response forms that have emerged 
in the past few decades, he finds that in most cases 
the structural transfer function is intimately connected 
with the pressure distribution. However, if one also 
scrutinizes the derivation of those response relations 
which do not conform to the foregOing statements, he 
will also find that these response relations are merely 
degenerates of a rigorous approach (as they must be) 
where the intimacy of the pressure distribution and 
transfer function has resulted from a specialization of 
either the statistical pressure quantities or the trans
fer function independently or by a simplification of the 
combination of these quantities . Thus, the statements 
of the preceding paragraph are essentially true only 
if the response approach is rigorous in the sense that 
specialization to a particular structure or pressure 
distribution has not been made. These statements are 
precisely valid if in addition one can state that the mo
tion of the vibrating structure yields no reaction to the 
exciting pressure field thereby modifying its charac
teristics . We are speaking now of small lateral dis
placements of a structure . For example , the magni-

tude of the displacement caused by aerodynamic noise 
is of the order of a few percent of the boundary layer 
thickness (Baroudi et al., 1963). 
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The conditions ... of $n:dlness of the lateral dis 
placements of the structure come into play also in the 
development of the response relations. It is always 
desirable that the structure be linear; that is, its mo
tion should be describable by a linear partial differen
tial equation, so that the principle of superposition 
may apply. 

For a linear structure and for conditions of small 
displacements , a rigorous approach to response cal
culations allows the response problem to be conven
iently separated into two independent areas of interest: 
structural and aerodynamic research . Although ulti
mately the results of investigations within these two 
fields of interest must be combined in some ia shion to 
produce a response calculation, the structural and 
aerodynamic information can be obtained from quite 
dissimilar investigations . Thus, the value of rigid 
model wind tunnel experiments becomes evident, as 
al so , dynamic testing on full scale vehicles, or seg
ments thereof, using nonaerodynamic exciting sources 
(i. e., electromag11etic vibrators). In this way, the 
structural analyst has at his disposal the necessary 
pressure information from wind tunnel tests which may 
ha ve been designed for an entirely different purpose. 

This paper undertakes to describe the complete 
response problem from a semi-intuitive pOint of view, 
in contrast to a strictly mathematical approach . This 
is to demonstrate the relative role of fluctuating pres 
sure information in the response problem. It will also 
be shown that , for a given format of structural and 
pressure information, the response problem can be 
considerably reduced to a rapid, accurate, and prac
tical calculation. 

The first part of this report considers the struc
tural transfer function in a way that is compatible with 
recent trends in structural experimentation . By ap
proaching the problem experimentally, one is led in
tuitively to the exact response equation. The second 
part of this paper considers the external pressure field 
to be spatially homogeneous. This assumption allows 
the response equation to be readily reduced to a prac
tical form . 

A rigorous derivation of the re sul ts of this method 
will be published in a paper by the author (Rechtien 
1964) . 

II. DEVELOPMENT OF THE RESPONSE RELATION 

The attitude taken in this approach to the response 
problem presupposes that the structure in question, or 
a dynamically similar model, materially exists and 
can be subjected to physical experimentation. Of 
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immediate interest is a [unc'tion H (r', i, ~v) whlc'h"de- ; 
scribes the transfer of vibrational energy from 'a point · 
s to a point r on the surface of the structure. In order 
to demonstrate the interpretation of this function, its 
physical measurement will first be described . 

Consider any typical vehicle structure for which 
the position of any pOint on its surface is expressible 
by an orthogonal set of surface coordinates (y, (3 ) . 
The vectors (y,{3) represents the locationatwhich a 
force, F(s, t), is applied and r(y ,{3) represents the 
position vector where the response U (r . t) to the _ s 
applied load at s is measured (see Fig. 1). 

o 

U (r, t) 
s 

.. 1 F(5, t) 

-------

FIGURE 1. COORDINATE CONFIGURATION 

The force, F(s, t), applied at 5, shall be con
sidered to be a sin usoid of uni t amplitude and ci rcular 
frequency w, 

F(s, t) = e
iwt 

( 1) 

which is being continuously monitored by some force 
measuring device. At location r on the surface of the 
structure there exists a response detector, for ex
ample, a velocity pickup, which also is continuously 
being monitored. It is then assumed that a sufficient 
length of time has ellapsed since the initial application 
of the load so that a steady-state condition exists. The 
amplitude of the responseatr, A (r) , and the phase 
difference, ¢ s (r) , relative to the force at s, are then 
measured. The response at r can then be related 
to the applied force at s by the input-output relaiion 

_) - - ) iwt U (r, t = H ( r ., s, we, s . ( 2) 

where the transfer function H(r, s, w) is given by 

_ -) _) i¢ (r) 
H(r,s,w = A (r e s s 

( 3) 

and shall have the units of response quantity per unit of 
force. The inverse of this function is generally re
ferred to as the transfer impedance function. This 
function reflects, implicitly. the totality of those mech
anism s which act to modify the vibrational energy be ing 
transferred along many paths through the structure t(l 

the point of measurement. When the point of measure 
ment and the position of the applied load coincide, that 



r 

l 
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, is, wil~n r = s, then [H fr, s, w) 1 reduces to the 

well-known point impedance function. 

Having now discussed the physical measurement 
ofthe structural transfer functions, an analogous prob
lem with a higher degree of complexity shall be con
sidered. Let the force applied at s be, in actuality, a 
pressure P(s, t) acting over an incremental area t::..A 
of the surface. Further, it is supposed that tills pres
sure is not sinusoidal but a stationary:' , ergodiC':' ':' 
random function of time. Next, itis supposed that this 
random pressure fluctuation is being continuously 
monitored by passing the signal from the pressure 
transducer through a filter with a very narrow band
width of center frequency, w. The resulting signal 
would resemble a sinusoid in that the zero crOSSings 
would tend to be regular. However, the amplitude of 
the signal would be quite random. The response at r 
due to this f~tered portio~, p(s, t) t::..w' of the total 
pressure, P( s ,t), acting at s is given approximately by, 

U Cr,t) " = H(r,s,w) P(s,t) t::..A, (4) 
s '-'w t::..w 

where H (r, s, w) has the same meaning as equation 
(3), and the subscripts refer to narrow-band filtered 
quantitie s. 

Suppose now that at another point s' of the struc
ture a second pressure P Cs; t) is simultaneouslyap
plied over an incremental area t::..A'. Its narrow-band 
contribution to the response at r is given by 

U ,(r,t)" =H(r,s\w) P(S\t)" t::..A'. s uW uW 
( 5) 

The question now arises as to the degree of co
herence between the narrow-band vibrational energy 
at r arriving from the two different sources. We are 
essentially asking what degree of similari ty exists be
tween the two narrow-band response signals, or al
ternately, what is the degree of disSimilarity due to 
the difference in transn1i.ssion paths and due to the 
difference in phase and amplitude between the two 
sources. A measure of the degree of coherence be
tween the two response signals , considered as being 
separable, is given by the time average of the product 
of the narrow-band response signal of one times the 
complex conjugate of the other, 

':' One implies by the condition of stationarity that the 
statistical measures of P (8, t) are invariant with re
spect to time translations. 

,:,~, The ergodic hypotheSiS implies that if a given ex
perimentwere repeated a number of times under con
stant conditions, the results of anyone such experiment 
would be representative of the ensemble. 

R (r) = narrow-band response coherence 
R t::..w f t· unc IOn 

lim 1 
+T 

T-oo 2T 
J - ,~ -
T 

U (r, t)" U '(r, t) dt, (6) 
- s uW s t::..w 

where (,:, ) deSignates the complex conjugate of the 
corresponding quantity. The complex conjugate of the 
response function is necessary since the response co
herence function is required to be real. 

Substituting (4) and (5) into (6) one finds that 

( 7) 

The bracketed quantity is just the narrow-band 
pressure coherence function between the spatial points 
(s, s') , and measures the degree of similarity between 
the two filtered pressure signals. To be more con
sistent with the current literature, this function shall 
be referred to as the pressure cross-power spectral 
density, CPSDp (s, s' , w). Similarly, the product of 
the transfer functions, If~ H, can be considered as a 
measure of the Similarity of the two different trans
mission paths. Thus, 

response 
similarity 

transmission path 
similarity 

pressure 
similarity 

( 8) 

Now the response coherence function is a statis
tical measure and obviously deals with pairs of quanti
ties. In practice, one is always faced with pressure 
fields that are continuously distributed over the entire 
surface of the structure. Obviously, one could then 
speak of coherence functions, or cross-power spectral 
densities , associated with an infinite number of pres
sure pairs, each pair generating a distinct narrow
band response coherence function at the point of meas
urement. The swn of all of these distinct narrow-band 
response coherence functions is nothing more than the 
narrow-band mean square response at the measure
ment point r. This measure is commonly referred to 
as the response power spectral density 

PSDR(r, w) = L: RR(r) t::..w 

all pairs 

( 9) 
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Thus, by summing the response coherence functions 
at r from all possible filtered press ure pairs and pass
ing to the limit as the incremental areas 6.A , and 6.A' 
become small, the following integral is generated, 

PSD (-) J J H(r,s, w) H':' (r,s' ,w) CPSDp R r , w := 

A A' 

(s,5"',w) dAdA', (10) 

where the integrations are to be taken over the entire 
structural surface. 

The power spectral density of the response at a 
given point of the structure is the quantity most desired 
by the response analyst. Therefore , in essence , equa
tion (10) is the fundamental response formula. The 
fact tha t the power spectral density of response i s here 
presented in integral form presupposes that both the 
t ransfer func tio.ns and the pressure cross power spec 
t ral density are known as continuous variables of the 
spatial coordinates. For practical structures, the de
termination of such transfer functions for the total 
structure would not be practical. Howen:r, one 
generally finds that local stiffening elements , such 
as ring frames in flight vehicles, considerably re 
strict the transfer function to have non-n~gligible 
values only in relatively localized areas. Thus , such 
structural elements would limit the integration of (10) 
to local regions of response significance. 

The continuously distributed pressure fields which 
one deals with in practice not only fluctuate randomly 
in time , but are randomly distributed in space . That 
i s , if one were to measure the instantaneous pressure 
along a profile on the s tructural surface, the instan
taneous pressure value at a given position could not be 
predicted from know ledge of the instantaneous press ure 
valuesatwell separated points . However, such a pro
fil e would constitute a continuous pressure curve . 
Without being at all rigorous, the idea of continuity is 
that the instantaneous pressure curve should be smooth 
from one position to the next. Consideration of this 
leads to the conclusion that the ins tantaneous pressure 
at a given position is dependent to a certain ex
tent on the instantaneous pressure a t adjacent posi
tions . Intuitively , if at one position a l arge positive 
value is recorded, a large negative value will not be 
recor'ded at an adjacent point at the same instant. That 
is, the instantaneous pressures at adjacent pOints have 
a high degree of Similarity, or dependence. Butas 
the interval between the two observed positions i s in
creased, the dependence between them clearly de
creases , and if the separation interval between the ob
servationpositions i s large enough there will be prac
tically no dependence, or correlation. 
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We are here speaking of the total pressur~ field. 

But the same arguments would hold true for the narrow- . 
band filtered components . Thus , the pressure cross
power spectral density is actually a measure of the de
gree of dependence of the narrow-band press ure com
ponents at two different locations on the 's tructural 
surface. Such dependencies give rise to characteristic 
c urves for the pressure cross-power spectral density , 
as shown in Figure 2. The pre ss ure cross- power 

'" Q 

~ 1.0 

:J 
0. 
:; 
<: 
Q 

'" N 
:J 
<: 

~ 
(5 - 0.5 
Z 

= separation distance 

U 0 = free stream veloc ity 

fo = center frequency 

FIGURE 2. NORMALIZED CROSS- POWER SPECTRA 
FOR SUBSONIC ATTACHED TURBU
LENT BOUNDARY LAYERS (AFTER 
HARRISON 1958) . 

spectral denSity i s by its very nature a complex quan
tity and is generally represented in terms of its real 
and imaginary parts, 

CPSD (8 , s\ w) := Co(s, s' , w) + i Quad(5", s', w) , (11) 
p 

where Co and Quad are referred to as the co- and 
quad- spectrum, respectively . These are the quan
tities shown in Figure 2 . The decaying character 
istics of these curves r eflect the degree of dissimi
larityof the narrow-band pressure compon~nts a t ad
jacent positions . For subsonic turbulent boundary 
layer fluctuations, Harrison (1958) shows that the co
and quad- spectra fall to le ss than one-half of their 
peak value for a separation distance of 

U 

1
- - t 0 s - s ' ~ --

f 
o 

( 12) 

where Uo is the free stream velocity and fo is the cen
ter frequency of the filtered quantities . For separa
tion distance s of twice this length , the magnitudes fall 
to within 10 percent of the peak values. Thus , for sub
sonic flows, the pressure fluctuations within a t urbu
lent boundary layer are correlated only over distances 
of a few feet for intermediate fr equencies. For s upe r
sonic flows, Kistler and Chen ( 1962) show that the 
distances over which the pressures are corr elated are 
reduced by an order of magnitude as compared to s ub
sonic flow conditions . For other flow characteristic s, 
s uch as separation and oscillating shock phenomena, 
the correlated regions may be increased by an or der 
o£.magnitude as compared to their turbulent boundary 
layer counterparts. But the pOint is that all of the se 
pressure fluctuations are only correlated in localized 
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regions of the structural surface . Moreover, such 
areas of correlation are generally of an order of mag
nitude smaller than those areas defined by the previ
ously discussed regions of response significanc e . 
Therefore, in general, the effective area of integration 
of the response relation (10) will be governed by the 
area of correlation of the fluctuating pressure distri 
bution. Since this area is small, as compared to the 
total area of the structure , the response relation as 
given by (10) is not as formidable as it may first 
appear. However, even though the transfer function 
and the pressure cross-power spectral density may be 
known pseudo-analytically within this area of correla
tion, the evaluation of a do uble integration over this 
area may still not be practical. Thus, an alternate 
form of the response equation which would allow a 
rapid and accurate means of estimating the vibrational 
environment would be most desirable . However , to 
simplify the response relation as given by (10) one 
must idealize the external fluctuating pressure field to 
a limited degree . In particular, the pressure distri
bution must be taken as having a homogeneous charac
ter; that is, its statistical measures must be taken to 
be invariant with respect to a spatial translation . Such 
will be assumed in the following section, the conse
quences of which will yield a more conservative esti 
mate of the vibrational environment. 

III. THE RESPONSE RELATION FOR HOMOGEN
EOUS, ANISOTROPIC PRESSURE FIELDS 

In the development of the res ponse relation (10) , 
quantities of time were essentially transformed (by 
narrow-band filtering) to the frequency domain, thus 
giving rise to spectral quantities . In this section a 
further transformation shall be applied, primarily for 
the purpose of eliminating the area integrations of 
equation (10) • 

The pressure-cross power spectral density, as 
given in (10), is a function of the spatial locations , 
(s,Sl) , at which the narrow -band filtered pressures 
are compared. As a consequence of the assumption of 
homogeneity, this function is no longer dependent on 
the spatial locations , butonly on the separation vector 
o , 

o = 8 - 8' • ( 13) 

That is, the pressure-cross power spectral density is 
assumed to be invariant with respect to a translation 
so that the magnitude and direction of the separation 
vector is preserved. The pressure cross-power spec 
tral density can then be written as 

CPSD (8,8', w) = CPSD (0 , w) . 
p p 

( 14) 

Now , just as a function of time may be decom
posed into a spectrum of elementary waves in the fre
quency domain, so can a function of separation be de
composed into a spectrum of spatial waves in the 
wave-number domain. Thus, the wave-number de
composition of the pressure cross-power spectral 
density is given by the Fourier integral relation 
(Powell, 1958), 

CPSD (o,w) = J M {k,w)eik.~ 
p p 

( 15) 

where dk represents the differential area, dkl'dkiJ' in 

ehe wave number domain, and the integral over k ex
tends over all wave numbers. 

Physically, by this transformation, the external 
pressure field is considered to be made up of a super
p~sition of harmoniC traveling waves of amplitude ~ 
(k, w). Now the frequency generated by a particular 
wave as it is convected past a particular point in the 
flow will be equal to the scalar dot product of the vec
tor wa ve number k and the velocity u of the elementary 
wave 

w == k u ( 16) 

If all of these elementary waves were traveling 
with the same velocity, then there would be only one 
vector wave number, or essentially only one wave, 
which would generate a given frequency at a fixed point 
in the flow by nature of its convection. Since the pres
sure cross-power spectral density is defined for only 
one frequency, this would imply that it was composed 
of only one wave and would not have a wave number de
composition such as (15). In this case, the pressure 
cross-power spectral density would have the form of 
a non-decaying spatial sinusoid, which contradicts the 
available experimental results (see Fig. 2 or Wills 
(1963) for example). This contradiction leads one to 
the conclusion that the velocity of the elementary har
monic traveling waves is not constant, but assumes a 
broad spectrum of values for fluctuating flows in gen
eral. This is a most important point, as shall be dem
onstrated, in the estimation of vibrational environ
ments. 

If the transform relation (15) is substituted into 
equation ( 10), it can easily be showIP:' that this re
sponse relation can be transformed to an integral rep
resentation over wave-number (Rechtien 1964) , 

PSDR(r-,w) == 167r' J Mp(k,W) IH(r,k,w)12 ctk,(17) 

k 

,~ For a similar treatment, see Powell ( 1958) • 
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where H(r,k, w) is the two-dimensional inverse Four
ier transform of the structural transfer function, 

H(r,k,w) J H(- - ) -iK. (s-r) cIA' ( ) r,s,we 18 
A 

Equation (1 7) is the basic form of the response 
equation for homogeneous flow conditions. The pro
perties of this relation shall not be discussed, and the 
relative advantage of this wave-number representation 
should be clearly evident. 

IV. PROPERTIES OF THE RESPONSE EQUATION 

In the previous section the structural transfer 
function, as well as the pressure cross-power spec
tral density , was transformed into the wave- nwnber 
domain. By this representation, the instantaneous 
deflection of the structural surface due to the appli 
cation of a sinusoidal force (which the structural 
transfer function essentially describes ) is considered 
as a linear s uperposition of structural surface waves . 
Now the structural transfer function is experimentally 
determined at a given forCing frequency, w. The 
structural waves that will be excited by this distur
bance will be those for which the scalar dot product of 
the structural vector wave-number and velocity of pro
pagation (i. e . , the material velocity of sound) is equal 
to the forCing frequency. The velocity of sound in the 
material will not vary greatly in the structure , and 
therefore only a few structural waves can be excited 
at this frequency. In other words, the wave-number 
spectral representation I H (r, k, w) I 2 will be extremely 
peaked, as shown in Figure 3 for the one-dimensional 
case. Thi s spectral distribution may exhibit more 
than one peak as in the case when the material speed 
of sound changes drastically across a surface discon
tinuity. 

FIGURE 3. WAVE-NUMBER SPECTRUM OF THE 
STRUCTURAL TRANSFER FUNCTION. 

The wave number spectral representation ~f the 
pressure cross-power spectral denSity, M (k, w), 
possesses a similar distribution as shown iR Figure 
4. This curve was obtained, for the purpose of illus
tration, by transforming the curves of Harrison given 
in Figure 2 . Since the co- and quad - spectra are char
acteristically damped cosine and sine c urves, 
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respectively, the transformed cross-power spec:;rl:tm 
will generally exhibit the character of Figure 4: But 
the relative peakedness of this curve will depend en
tirely on the fluctuating pressure conditions. 

FIGURE 4. WAVE-NUMBER SPECTRUM OF THE 
CROSS-PANEL SPECTRUM 

Since the product of the two peaked spectral func
tions, Mp(k,w) and IH(r,k, w)\ 2, comprises theointe
grand of the response relation, equation (17), the de
gree of Similarity between them will determine the 
magnitude of the response power spectral density. 
When the peak values of the two distributions occur at 
the same wave number, a coincidence condition will 
exist. Coincidence is defined as that condition for 
which the dominant pressure wave vector and convec
tion velocity for a given frequency match the structural 
wave vector and the velocity of sound in the material. 
This condition is illustrated in Figure 5A. For this 
coincidence condition, the response integral of equa
tion (1 7) can be accurately approximated by evalua
ting the integrand at the coincidence value kc of the 
distributions and multiplying by an appropriate band
width of integration, 

In Figure 5B, another fimitingcase is considered 
where the peak value of the pressure spectral distri
bution falls well below that of the structural spectral 
function. In this case, the structural spectral function 
can be considered constant once the effective band
of integration and the integral (15) approximatEE to 

PSD
R 

~ 167r4 I Her, k , w) I 21M (k, w) dk. (20) 
P k P 

The integral of (18) is defined as the 20wer sp~tral 
density of the pressure at the point r, PSDp( r, w) . 
Therefore, equation (18) reduces to 

~21) 

which yields the response for forced oscillations (non
resonant conditions) . 

Figure 5C illustrates the reverse situation in 
which the peak of the structural spectral function falls 
well below that of the pressure spectrum . In this 

__ J 



1-- ----

ca~e', ·tl.~~~essure 'spec'trum can be considered as 
.constant over the effective bandwidth of integration and 
the integral (17) approximates to 

PSDR ~ 167r4 Mp(ks'W) JIH(r,k,w)12 elk. ( 22) 

K 
The integral of (20) is simply the inverse of a point 
load impedance Z (w), and equation (22,) reduces to 

PSD == 1671'4 
R 

M (k ,w) 
p s 
Z(w) 

(23) 

This condition corresponds to the limiting case in 
which the narrow-band pressure fluctuations at adja
cent points on the structural surface are completely 
uncorrelated. 

M (k, w) 
P 

k~ 

A. Coincident conditions 

B. 

k 
p 

~ 
w) " , :-IH (1", K, w)1 2 , . 

I , , . , 

k + 

Nonresonant conditions 

, 
I 

/H (r, k, w)/ 2 

:,/ .. 
_M (k,W) 

p 

k k ~ s 
C. Uncorrelated pressure conditions 

FIGURE 5. LIMITING CASES OF THE SUPER
POSED WAVE-DISTRIBUTIONS 

Bothof the limiting cases given by equations (2i) 
and (23) will yield a negligible response relative to a 
near-coincidence condition. In practice one should 
generally encounter a degree of coincidence lying 
somewhere in the intermediate regions between pure 

coincidence and the above limiting cases. One must 
then rely on intuition to make a reasonable approxi
mation. But the real advantage in specifying the wave 
number distributions of the structural transfer function 
and the pressure cross-power spectral denSity lies in 
the fact that the degree of coincidence, and therefore 
the degree of response, can immediately be deter
mined by inspection of the superposed distributions. 
A quick estimate of the response level could then be 
obtained without requiring a rigorous evaluation of the 
response integral. 

V. CONCLUSIONS 

An attempt was made herein to provide a baSic 
understandingofthe response problem, to demonstrate 
the relative role of fluctuating pressure information, 
and to show that, for a particular format of structural 
and pressure information, the response problem can
not only be entirely separated into two completely in
dependent areas of experimentation but also can be 
considerably reduced to a rapid, accurate, and prac
tical calculation. 

A dynamically scaled model of the Saturn V ve
hicle is now being fabricated at the Langley Research 
Center. Experimental programs to determine the 
structural transfer function for this model would yield 
the necessary structural information required as input 
to the response equation (17 ). This information, a
long with wind tunnel pressure data for rigid models, 
would provide, by using the response relation given 
herein, the means for obtaining a good estimate of the 
in-flight vibrational environment. 
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NONLINEAR TWO-DEGREES-OF-FREEDOM RESPONSE WITH 

SINUSOIDAL INPUTS 

By 

Robert S. Ryan 

SUMMARY 

The study of a forced vibrational system is very 
difficult if the system is nonlinear. This becomes ap
parent because the prinCiple of superposition does not 
hold as it does for linear systems. 

In studying the behavior of linear systems, it is 
useful to deal with sinusoidal inputs and resulting out
puts which are harmonic. By definition the complex 
ratio of the output to input is called a transfer func
tion. This transfer function, since it is complex, can 
be written as two parts: the modulus and the argu
ment. The first describes the so-called response 
curves, and the second the phase angle between the 
two harmonic oscillations. Because of the property of 
superposition inherent in linear systems, these trans
fer functions become the baSis for a <.:omplete discrip
tion of the system. 

In the nonlinear system, the output of the system 
to Sinusoidal inputs is no longer sinusoidal, but con
tains harmonics of both higher and lower frequencies. 
Neither does the superposition principle hold; there
fore, a study using sinUSOidal inputs does not yield the 
wide scope of information obtained in the linear case. 
There are other shortcomings in studying the system 
using sinusoidal inputs ; nevertheless, the sinusoidal 
input functions provide a convenient way of studying 
the nonlinear system. 

This analysis proposes to solve the nonlinear 
forced oscillation of a vehicle using air springs for 
vibration isolation. Both a single and a two-degrees
of-freedom system will be studied where the force 
applied is considered to be sinusoidal in nature. The 
single-degree-of-freedom system is also solved in the 
free vibration state using phase plane methods. 

1. INTRODUCTION 

The isolation of machinery against vibration or 
outSide excitation has long been a goal of engineers. 

The problem was first attacked by linearizing the 
problem. In studying the behavior of linear systems, 
it is useful to deal with sinusoidal inputs and resulting 
outputs which are harmonic. By definition the complex 
ratio of the output to input is called a transfer function. 
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This transfer function, since it is complex, can be 
written as two parts: the modulus and the argument. 
The first describes the so-called response curves, 
and the second the phase angle between the two har
monic oscillations. Because of the property of super
position inherent in linear systems, these transfer 
functions become the basis for a complete description 
of the system. 

The study of nonlinear systems cannot be attacked 
in this simple manner. In the nonlinear system, the 
output of the system to sinUSOidal inputs is no longer 
sinusoidal , but contains harmonics of both higher and 
lower frequencies. Neither does the superposition 
principle hold; therefore, a study using Sinusoidal in
puts does not yield the wide scope of information ob
tained in the linear case . There are other shortcomings 
in studying the system using sinusoidal inputs; never
theless, the SinUSOidal input functions provide a con
venient way of studying the nonlinear system. 

The Ritz-Galerkin averaging method is presented 
as an ideal method for solving nonlinear problems. 
Most solutions given in litera ture solve Simple systems 
which are nearly linear in nature and have odd re
storing forces, and therefore present no real difficul
ties. The Ritz method can be used to study highly 
nonlinear restoring force systems that are general in 
nature. 

II. BASIC METHODS FOR SOLUTION 

There is usually considerable advantage infinding 
an analytical solution for the governing differential 
equations of a phySical system when it is possible to 
do so. The solution is obtained in algebraic form and 
often gives basic insight into the system. If, however, 
no insight is available from the algebraic form itself, 
then the equations are in a form s uitable for paramet
ric, numerical studies, thus leading to a detailed look 
at the system . 

The basic method presented is the Ritz Averaging 
Method. It is a very powerful method applicable to b0th 
autonomous and nonautonomous systems. The method 
will not satisfy the differential equation point by point, 
but will satisfy it only in some mean or weighted 
average. 

. . 
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, ' T? ar .c'ive at the Rit~ condition, it is best to start 
with the variational problem since many problems in 
engineering and physics can be formulated as a mini
mum problem. The solution is then one that gives 
some integral expression a minimum value. 

To begin, let F(1), 1), t) be a continuous function 
where 1) and ~ are the functions of time; then 

t 
1 = JF(1), 1), t) dt 

t 
o 

has some meaning. 

( 1) 

The problem now is to choose 1) (t) such that I is 
a minimum. This is done by variation of 1) (t). If Yi (t) 
is a neighborhood function of 1) (t), then 

17(t) = 1)(t) + to Y(t), 

where to is a small arbitrary number and Y is an ar
bitrary function. 

This is a problem of calculus of variations, and 
the extremum I may be obtained by letting 

I ~~I == t1 
eo J 

t 
o 

{ aF aF . } l ~ Y + a~ Y dt = O. 

The main idea of the Ritz method is to let extre
mum I depend on a finite number of parameters only, 
by approximating 1) (t) by a function T)(t) , where 

n 
T)(t) = 6 a . l/J. (t). 

i=1 1 1 

( 2) 

Then l/Ji(t) 's arelmown functions, and ai'S are coeffi
cients to be determined. The problem is now to give 
I a minimum value when I depends on a finite number 
of parameters. Minimizing the functional integral I 
with respect to the undetermined coefficient ai leads 
to the following n equations: 

t 1 

EL = J 
aai t 

o 

- ,I, + - ,I, dt = 0 
[

aF aL· J 
Of) 'l'i B11 'l'i . i = 1, 2, ... n. 

Integrating the second term by parts yields 

t 

.£L = J1 UaF _ ~ a~} 
aa a- dt = i t 1) v,/ 

o 

( 3) 

(4) 

If the second term vanishes for the limits to to t1 - this 
can be accomplished by proper choice of l/Ji - then 

t 
1 

-.EL == J aF d aF 
aa. aT) dt a-r; l/Ji dt = O. 

1 to 
(5) 

In the braces are Euler equations or the differen
tial equations of the system. Therefore, 

t 
1 

J D (in I/J. dt = 0 
t 1 
o 

( 6) 

is the mllllmum problem with D(Yi) the differential 
equation of the problem. It coincides with the Euler 
equation of the corresponding variational problem 
written as a function of the assumed function in equa
tion (2). However, this equation will not vanish at 
every point as the Euler equation does. This method 
has, however, the advantage of operating with the dif
ferential equation and not some expression I ; in fact, 
I does not have to be Imown if the differential equation 
is Imown. The weight functions correspond to the co
ordinate function of equation (2). 

The procedure for solution of nonlinear equations 
is now straightforward and contains the following 
steps: 

First, assume the approximate solution 

n 
T)(t) == L: 

i -= 1 
a . I/J.(t). 

1 1 

Second, solve the integrals 

I/J. dt = o. i = 1, 2, ... n 
1 

(7) 

(8) 

Third, solve the resulting algebraic equations for the 
coefficients a i . 

The obvious disadvantage of the method is that some 
idea of the nature of solution is necessary for choosing 
the weight functions. Otherwise, too many terms will 
be necessary to get accurate results. 

ill. APPLICATION OF METHOD TO A SPECIFIC 
PROBLEM 

A. DERIVATION OF BASIC EQUATIONS DE
SCRIBING SYSTEM 
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To illustrate the use of the Ritz method, the re
y sponse of a traveling vehicle to sinusodial force inputs 

is chosen where the spring is an air spring. Both 
single and two degrees-of- freedom are studied. 

" 

The first step in describing the characteristics 
of the system is to derive the expression for the re
storing force of an air spring. This is accomplished 
by assuming that adiabatic conditions hold for the gas 
(air); therefore, the characteristics of an air spring 
under the influence of a load can be determined using 
the relationship between voLume and pressure in the 
form 

P V
y 

P =~ Y , 
V 

(9) 

where V 0 and Po are the equilibrium volume and pres
sure of the gas column in a cylinder at static equili
brium, V and P the displaced volume and the corre
sponding pressure, and y the ratio of specific heats. 

Let x be the displacement of the piston from 
equilibrium; then the volume at any displacement x is 

V(x) = V - A x 
00' 

( 10) 

where Ao is the cross-sectional area of the cylinder. 

If 1.0 is by definition the height of the piston from 
the bottom of the cylinder at the equilibrium pOSition, 
then 

V = A 1. 
o 0 0 

Substituting the foregoing equation and equation (5 ) 
into equation (4) yields the pressure as a function of 
the displacement as 

( 11) 

The following diagram depicts the above defini
tions and coordinate system. 

FIGURE 1. T HE SINGLE - DEGREE - OF-FREE DOM 
SYSTEM 
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The total force acting on the pistion, sinye it'iS 

evenly distributed, yields 

F p = Po A 0 (1 - i.: ) - y (12) 

Since the weight is balanced by part of the total force, 
the weight of the mass must be subtracted from the 
total force to get the restoring force . By definition, 
w = mg = Po Ao ; thus , the restoring for ce becomes 

(13) 

The restoring force as derived is of a general nature 
and is valid for each spring of the two-degrees - of
freedom system and the single - degree- of- freedom 
system. Figure 2 is a plot of the restoring force as a 
function of displacement. 

10 .0 

' .0 

6.0 

4.0 

' .0 

I I I --~i~------~-
.'.:..0 ______ -2.'..::..0 -~~-'-;.I~--==---l "' '1 

. 2.0 

FIGURE 2. COMPARISON OF CURVE FIT TO 
ORIGINAL RESTORING FORC E FOR 
y = 1. 4 

The equation of motion reads, by usingaquation (13), 

Dividing (1 4) by m and as suming that 

~t) + S(t ) 
1. 

o 

yields 

= T) ( t ) 

( 14) 

(15 ) 

, . 

I 
J 



T 

L 

where 

w =jPo Ao = Ii: 
o m.f J""1 

and 

_ So 
I;, = -

o .f ' 
o 

o 0 

(16) 

( 17) 

where Wo is the undamped natural frequency of the 
linearized and transformed system . The time is 
t = si v in which v is the traveling velocity of the ve
hicle. Equation (11 ) is then the basic equation of 
motion for a single-degree- of-freedom vehicle with 
an air spring. 

A two-degrees - of-freedom system should ade
quately represent a traveling vehic le if the system is 
considered to have two air springs sinusoidally forced 
with a phase lag between them . The following diagram 
depicts the sys tern. 

~-----------=:=~-i 
c.C'. 

~----~~------~-----~~s 

s L 

FIGURE 3. THE TWO- DEGREES-OF-FREEDOM 
SYSTEM 

In the diagram,x is the displacement of the center of 
gravity of the system, and cp is the angular rotation 
about the center of gravity. 

The equations of motion can now be written as 

( 18) 

( 19) 

where 

m = vehicle mass 

I = moment of inertia of vehicle mass about 
center of gravity 

R 1 (x1) = restoring force on piston 1 

R 2(X2) = restoring force on piston 2 

X1 = total displacement of air in piston 1 

X2 = total displacement of air in piston 2 

a + b = L. 

Since Xi and x2 were defined as the total displace
ment of the air column from equilibrium, their re
spective definitions become 

Xi = X + a cp + S (s) (20) 

X2 = X - b cp + s(s + L) , (21 ) 

where s is the displacement along path and L is the 
distance between the pistons. 

By using equations (13), (20), and (21), equa
tions (18) and (19) become 

-y 

x + ki [G -X + ~~ + S(S») - ~ + 

+ k [1 X - bp + s(s + L») -y _~ = 0 
2 - 1 J 

2 

where 

Pi Ai 
k i = -

m 

P 2 A2 
k2 = --

m 

a Pi Ai 
k3 = I 

1) P A 
2 

k4 = --I=----

(22) 

(23) 

(24a) 

(24b) 

(24c) 

(24d) 
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Now letting 

_ x + lip + S ( s ) 
Zl - 1 

1 

_ X - bre + S (s + L) 
Z2 - 1 

2 

s(s) == s sin nt 
o 

S(s+L) == s sin(m+a) 
o 

(25a) 

(25b) 

(25c) 

(25d) 

in which the phase lag a can be determined in terms 
of the vehicle velocity v and its length L, equations 
(17) and (18) yield 

.. 12 _. L [ -I' ] 
OZl+1az2+Tkl (1-z1) -1 

1 1 

( 26) 

== - n2~0 [Sin m (b +3: cos a ) +3: cos m sin a] 

== - n 2 S sin m + n 2 S sin (m + a ) 
o 0 (27) 

== n2~0 [ Sin m (cos a - 1) + cos m sin a], 

where 

So s == o 1 
1 

B. SOLUTION OF EQUATIONS 

(28) 

To solve the nonlinear forced response (equa
tion (16» by the Ritz method, a solution is assumed 
for 7). This solution must contain a constant term 
since the restoring force is not symmetrical about the 
7)-axis . This leads to 

7) == M + Q sin m, (29) 

where M and Q are constants to be determined. Since 

( 30 ) 

5 

, . 
and 

conditions (46) of the Ritz method then yie ld 

211' 

J D(7) dr == 0 
o 

2rr 

J D(7J) sin T dr == O. 
o 

(31 ) 

(33) 

Replacing the second term of equation (11) by a 
power series yields 

(34) 

The coefficient al is equal to 1, and the ao coef
ficient is zero since the curve must pass through the 
origin. Using the approximated differential equation 
(60) leads to two algebraic equations in M and Q, the 
simultaneous solution of which gives the forced re
sponse. These equations are, if the series is cut off 
as the 5th power, 

( 35) 

where 

( 37) 

To solve these equations, the method of steepest 
descent was used. The results of these equations are 
shown on Figures 4 and 5, and show the response in 
absolute maximum amplitude denoted by 11 versus the 
frequel2..cy ratio with the force amplitude as parameter. 
When So equals zero , the backbone curve, or fre
quency, as a function of amplitude appears . 

It can be seen that the system first softens for 
small amplitudes and then hardens for larger ampli
tudes approaching a constant value as the frequency 
increases . 

A jump in amplitude will occur at any point where 
the slope of the amplitude curve is infinite . By ob
serving the amplitude curve, it is seen that, as the 

. . 
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fr~ci.u~ncy r J tio is m"crea~ed, a jump in amplitude will 
occur giving large amplitudes of oscillations . Starting 
with a large frequency ratio and decreasing the value 
will first give a jump of increased amplitude and then 
a jump to a lower amplitude . It seems advisable, 
therefore, for the natural frequency of the system to 
be above the forcing frequency by a factor of two or 
three to maintain a low response value. 

C. TWO-DEGREES-OF-FREEDOM SYSTEM 

Equations (26) and (27) described the basic 
equations of motion of a rigid two-degrees-of-freedom 
vehicle. These equations are again nonlinear. 

To solve the nonlinear two-degrees-of-freedom 
system, a polynomial of fifth order will be used to 
represent the restoring force function of equations 
(26) and (27); therefore, 

( 1 - z ) -y - 1 = z + a z~ + a z3 + a Z4 + a z5. (38 ) 
i i 21 3i 4i 5i 

+ J.L K2 [Z2 + a2z~ + a3z~ + a4z~ + a5z~]= (39) 
1 

- [22 ~o ~in mC5 + a cos a ) + a cos m sin a]. 

( 40) 

[22 So ~in m (cos a -i) + cos m sin aJ. 

Again the Ritz method is applied. Since the sys
tem has nonsymmetric restoring forces, and the 
forcing functions have both sine and cosine terms, the 
assumed solution takes the form 

z. = M. + Q. cos m + R. sin m. 
1 1 1 1 

( 41) 

Substituting equation (41) into equations (39) and (40) 
leads to the differential equations in terms of the as
sumed solution (41). 

Application of the Ritz method yields the following 
six integrals: 

2rr 

j D.(z.) COST ciT = 0 
1 1 

o 

2rr 

j D. (z.) sinT cIT = 0 
1 1 

o 

i = 1 and 2 (42) .. 

i = 1 and 2 (43) 

i = 1 and 2, (44) 

where Di (zi) are the differential equations with the 
assumed solution (4 1) applied. 

Applying equations (42), (43), and (44) gives the 
following set of nonlinear algebraic equations for the 
coefficients Mi, Qi' Ri · 

+ ~ a M R4 + 10a M3Q2 + 10a MSR2 + 30 a M Q2R~=0 
4 5 ii 5ii 5ii 45ii~ 

(45) 
2 

" 1(21· f2M. + 2a2M~ + 2a3M~ + 2a4M~ + 2a5M~ + a2Q~ 
i~1 L 1 1 1 1 1 1 

30 5 10-' + 5a M4Q + - a M2Q R2 + - a Q R4 + - a Q3R21= 0 
5 i i 4 5 iii 16 5 i i 16 5 i iJ 

(47) 
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2 2 

si t \' A2·Q· + I (1 - cos a)]+ \'R. lQ · !..J 1 1 0 L.J 21 1 
i=1 i=1 

i5 30 + 4a M3Q + 3a M Q R2 + - a Q5 + -a M2Q2 
4 i i 4 iii 24 5 i 4 5 i i 

+ 5a M4Q'I. + .l!.Q. a M2Q R2 + ~ a Q R4 + 1Q a Q3R2] 
5 i i 4 5 iii 16 5 i i 16 5 i i 

= O. (48) 

si [ ~ A .. R . + a~ sin al + \' K.. fR . + 2a2M.R. L i~1 11 1 0 J L.J 11 l' 1 1 1 

+ - a M2Q2R + - a Q2R3 + - a Q4R = 0 30 10 5 J 
4 5 iii 16 5 i i 16 5 i i . 

n2 [- ~ all·R . - ~ sin al t- \' R . fR . + 2a2M.R. 
i~ 1 0 J L.J 21 L 1 1 1 

+ 3 M Q2R + 1Q a R5 + 30 M2R3 + 5a M4R a4 . . . 24 5· 4 a5 .. 5 ·· III 1 11 11 

wher e 

LaPAy 
1 1 

R21 = 1 I 
1 

- LoPAy 
- 2 2 
K22 = 

60 

(49) 

(50) 

( 51) 

( 52) 

( 53) 

( 54) 

All = b 
(' " '(fj5) 

(56) 

( 57) 

(58) 

These algebraic equations are solved by using the 
method of steepest descent as was done for the s ingle
degree- of- freedom system. 

Information of the dependency of the amplitudes 
M1, M2, Ql' Q2' R 1, and R2 on the system parameters 
is shown on Figures 6 through 11. Of main concern 
are the forcing frequency, the amplitude of forcing 
flmction I o ' and the phase ( a ) of the forcing frequency 
n, with the other parameters r, a ; and Io noted on 
the respective curves . Since the meaning of the curves 
seems to be clear, they require little comment. It is 
obvious that two resonance conditions occur with the 
backbone curve appearing when Io is equal to zero. 
The system contains the jump phenomenon discussed 
under the single- degree- of-freedom system with the 
signific'ant difference that it occurs near each reso
nance frequency . The effect of changing the ratio of 
specific heat y is not Significant. The changing of the 
forcing function amplitude IQ does not give a larger 
maximum response due to the nonlinearity, but does 
give larger amplitudes away from resonance. 
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, . " . ,A SIMPLE METHOD FOR DETERMINING THE BENDING MOMENT EQUATION THAT INCLUDES 
VEHICLE ELASTIC AND SLOSHING MODES AND A NUMERIcAL EXAMPLE 

By N 65 Z. 4131 
Robert S. Ryan, Fred Swift, and Don Town~n~ ... 

SUMMARY 

This paper describes a method for deriving the 
bending moment of a vehicle in terms of pertinent 
control parameters. The equation is presented in a 
form that is easier to use for control optimization 
techniques, particularly if the bending moment at some 
critical station is chosen as the value to be optimized. 
The form of the equation lends itself to any technique 
used in vehicle dynamic response studies . Also in 
this form, the effect of various parameters is com-
pletely separated allowing a better survey of causes 
and effects. A numerical example is given and the ef-
fects of angle of attack, engine deflection, bending dy-

Symbol 

V 

V 
w 

X 

x 
cg 

namics, and propellant oscillations determined'j7he 
trade-off between angle of attack and engine deflectio /t XT 
is shown graphically. 

X 

DEFINITION OF SYMBOLS ~ 01 yy 

Symbol 

a 
0 

b 
0 

C 
z 

D 
0 

F 
s 

F (s) 

I 

M 

M(x) 

M' 

N' 

q 

s 

T(s) 

Definition .~ (x) 

Attitude control gain 

Angle of attack control gain 

Local normal force coefficient 

Reference diameter of vehicle 

Swivel thrust 

Alphachannel filter transfer function 

Moment of inertia 

Mass of vehicle 

Local mass distribution 

Aerodynamic Moment coefficient 

Aerodynam ic normal force coefficient 

Dynamic pressure 

Vehicle reference area 

Actuator transfer function 

y' 
~(x) 

y" 
.,~ (x) 

y 

a(x) 

D 
!l-) 

Definition 

Vehicle velocity 

Wind velocity 

Vehicle station 

Location of vehicle center of gravity 

Gimbal station 

Vehicle station about which moments 
are taken 

Vehicle station at aft end of vehicle 

Vehicle station at nose of vehicle 

Normalized deflection of vehicle 

Slope of deflection curve 

Rate of changp of slope of deflection 
curve 

Translation normal to trajectory 

Angle of attack 

Angle of attack due to wind 

Local angle of attack 

Engine gimbal angle 

Elastic deflection of vehicle 

Attitude angle of vehicle with respect 
to trajectory 

Acceleration normal to vehicle cen
ter-line 

Aerodynamic coefficients 
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DEFINITION OF SYMBOLS 

Symbol Definition 

M' 
I 

1. INTRODUCTION 

The ascent of a space vehic le through the a tmos
pher e s ubjec ts it to many disturbances, including wind 
magnitude, wind shear, and turbulence or gus ts . The 
loads induced on the flight vehicle due to these distur
bances are of major concern in desig11ing the vehic le 
structure . Therefore, we must be able to predict the 
probable loads . Of gr eat concern i s a means of opti
mization of control sys tems in s uch a manner that the 
loads are r educ ed at the critical station, while at the 
same time not building up excessive loads at another 
s tation making it the critical one. Obviously, this 
type of load reduction canplace more payload in space 
by optimization of the structure. The form of the 
bending moment equation as used by s tress engineers 
is not readily applicable to the control engineer's opti
mization techniques . These forms of the equation ar e 
the mode displacement and mode acceleration methods. 
A study of these equations shows that the effects of the 
var ious parameters are not completely separated so 
that a good physical ins ight into the phenomenon can
not be obtained . Also in using equations in this form, 
large numbers of terms or modes are necessary for 
good conver gence . In some cases, numerical ac
curacy is not good due to the subtraction of large 
numbers . 

The bending moment equation is presented in a 
form which allows the effec ts of the various parame
ters to be completely separated and at the same time 
retain aform readily applicabl e to optimization studies 
by the control engineer and e liminate the numerical 
error . To illus trate this , a numerical example for 
the Saturn V space vehicle is included showing the ef
fec ts of rigid body angle of attack, engine deflec tion, 
bending dynamics, and sloshing dynamics. Of parti
cular interest to the control engineer is a curve pre
senting the trade-off between angle of attack and 
engine defleftion. 
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II. DERIVATION OF BENDING MOMENT 
EQUATIONS 

A. COORDINATE SYSTEM AND EQUATIONS OF 
MOTION 

The coordinate system' chosen ' to '~scr ibe -the 
system is a two- dimens ional trajectory-fixed system . . 
The origin coincides with that of the vehicle center of 
gravity on a nominal trajectory . The positive x-axis 
is tangent to the traj ec tory and in the direction of 
flight. The positive y- axis conforms with that of a 
right-handed coordinate system . Lateral translation 
is m eas ured on the y-axiS and rotation ( cp ) is meas
ured counterclockwise from the positive x- axis. This 
is illustrated in the following diagram for a rigid ve 
hicle . 

Y 

x 

FIGURE 1. COORDINATE SYSTEM 

Figure 2 is a vectorial r epresentation of com
ponents of the angle of attack. 

l-y 

FIGURE 2. RIGID ANGLE OF ATTACK 

To include vehicle bending, it is assumed that the 
vehicle ' s structure can be approxim ated by the super
position of several free - free beam modes from the 
relationship 

y (x,t) = \' T) Y , 
L.J v et) v ex ) 
v 

(1) 

'f' 

. -

1 



r
• 

, 

which defines the centerline displacement of the s truc -
. ture; Y (x) is the free-free normalized mode shape 

and TI the generalized coordinate . These mode shapes 
are computed with the liquid mass and engine masses 
included, but asseumed to be frozen in. 

The dynamics of the liquid are represented by a 
mechanical model attached to the vehicle tank walls. 
This model exactly duplicates the forces and moments 
determined from the hydrodynamical solution and ac
curately duplicates the fl uid oscillations within the 
assumptions made for the hydrodynamical solution 
(incompressible, irrotational fluid with small distur
bances) . 

Bases upon these considerations and assumptions, 
the equations of motion and various relationships be
come: 

1. Local angle of attack 

?i!£ \' '\' TI v 
- 0T1v Y (x) - L.i - Y (x ) 

v v v V v v (2) 

=a +a +a 
rigid rotation bending 

where a rigid = ep - L+ aw , 
v 

a rotation = - ?i!£, and 
v 

Tlv 
a bending = - '\' TI Y (x) - " - Y (x). L.i vv ~vv 

v v 

2. Rotation equation 

m X 
- s s .. 
ep - L: --1- ~s + C1a + C2 f3 + L: Q E TI 

v v 
s v 

( 3) 

3. Translation equation (perpendicular to vehicle 
centerline) 

m 
.;: - k2 a - ka f3 + '\' ~~. + '\' Q E TI 

L.i m s L.i vv 
( 4) 

s v 

4. Bending equation 

5. Sloshing equation 

~ + 2 ~ w ~ + w2 ~ + y' - x 'cP + '\'~. Y (xs) 
s sss ss s L.i vv 

v 

- gep+gL:Tl
v 
Y~(xs) = 0 (6) 

v 

6. Control equation 

f3 = a ep. + a. ep. +b a. (7) 
o 1 1 1 0 1 

where 

cp o = cp - \'T) Y ' (x rn ) 
1 L.i VVr 

v 

and 

a. = cp - Y + a 
1 v W 

B. BENDING MOMENT EQUATIONS 

Rep 
v 
v 

The bending moment arises from the lateral 
forces acting on the vehicle. By summing from a 
particular station to one end of the vehicle, the pro
duct of these lateral forces times the distance to the 
desired station gives the moment value at that station. 
The lateral forces have three sources: aerodynamical 
forces dependent upon local angle of attack, inertial 
forces dependent upon local acceleration, and lateral 
components of thrust due to vmgine swiveling. The 
moment due to thrust misalignment arising from ve
hicle bending will be neglected. This leads to the fol
lowing equations for bending moment. 

x
E 

M Aero = .9§. J c' (x-xk) a(x) dx 
B Do z x

k 
a 

xE 
MB Inertial = - J M' (x) (x-xk) T i (x) dx 

x
k 

(8) 

( 9 ) 

The M' (x) considers the sloshing mass as rigidly 
attached at a point; therefore , the sloshing dynamiCS 
show up as the second summation term. 
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( 10) 

Assuming that the bending contribution in equa
tions (3) and (4)" are negligible (this should be a valid 
assumption since this is the contribution of bending to 
the local angle of attack and should be small), the 
lateral acceleration of the center of gravity becomes 

m 

.j-. = k2 Q! + k3 (3 - L; 2 i " 
cg s m s 

( 11) 

and rotational acceleration becomes 

m 

~ = - C 1 Q! (x) - C 2 {3 + 1:: -f (x - x ) ~ • ( 12) 
s cg s s 

Substituting these relationships into equations (8) and 
(9) neglecting sm all term s yields for the bending 
moment 

M = M' Cl! + M' (3 + \';j M' + \' M' ~. , 
B (xk) Q! rigid LJ v v(x) LJ s s 

v s 

where 

x
E N' 

m J M' (x) (xk - x) dx 
x

k 
X 

M' E 
+ I J M' (x) (~- x) 

x
k 

(x - x) dx 
cg 

F x k 

( 13) 

( 14) 

= F (x - x ) - 2 J M' (x) (x. - x) dx 
s k E m K 
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xE 

IXk 

J M' (x) (xk - x) Y J.l (x) dx 
x

E 

M' (x
k 

- x) dx 

( 16) 

( 17) 

, 0 

By taking the limit of the integrals over the total 
vehicle we can see that each of these coefficients 
satisfies the boundary conditions (moment zero at end 
of vehicle) . .These analytical results are not included, 
but can be verified by consulting the plots of these 
coefficients presented in the next section . 

Representing the bending moment in this form has 
numerous advantages to the control engineer. Among 
these advantages are 

(1) complete separation of the effects of the 
various control parameters, 

(2) weighting or trade-off of the various param
eter effects as a function of vehicle station, thus, lead
ing to optimization possibilities at the weakest sections, 

(3) the moment is not as sensitive to numerical 
errors because the coefficients can be computed on 
large computers using large numbers of terms, and 

(4) greater physical inSight into the problem of 
load reduction. 

II. NUMERICAL EXAMPLE 

The bending moment coefficients as derived were 
computed for the Saturn V space vehicle at 70 seconds 
flight time (Figures 3-6). The ratio of the coefficient 
of angle of attack to the coefficient of engine deflection 
is shown on Figure 7. It can be readily seen that any 
control law that increases the ratio of engine deflec 
tion to angle of attack will be detrimental to the bend
ing moment. . 
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70 
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FIGURE 3. M~ VERSUS VEHICLE STA TION 
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To determine the effects of the various parts on 
the total bending moment, a response of the veh~cle 

was made. The control equation was assumed to be 
iaeal with the rate gyro located at the vehicle tail for 
bending mode stability. All sloshing modes were 
damped by introducing adequate damping into the slosh 
equation. The input force was the Marshall synthetic 
profile with 99 percent wind shear, 95 percent wind 
magnitude and the superimposed 9 m/ sec2 gust. Plots 
of the total bending moment and the various parts are 
shown on Figures 8 and 9 . Bending dynamics have an 
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FIGURE 8 . BENDING MOMENT DUE TO SLOSHING 
VERSUS VEHICLE STATION 
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FIGURE 9 . CONTRIBUTING PARTS T O BENDING 
MOMENT VERSUS VEHIC LE STATION 
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effect of from 5 percent to 50 percent' de~e~ding"o~ \he 
vehicle station. The maximum effec t of propellant · 

oscillations is 3 percent. The contributions of angle 
of attack and engine deflection are about equal. 

Figure 10 is a plot of some representative failing 
moment (not actual since this was not available) with 
the bending moment obtained superimposed. It be
comes quite c lear that optimizing the moment at the 
two or three critical stations would give better struc
tural integrity. Since the purpose of this paper was to 
present the equations, no attempt at optimization is 
m ade, however , it is believed that the results shown 
give ample evidence of the advantage of writing the 
bending moment equation in this simple form. 
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CONCLUSION 

A Simple representatio.n for the bending moment 
has been given. It can be concluded from the results 
presented that the form of the equations leads to greater 
physical inSight and provides the control engineer with 
a tool that can be readily used in optimization tech
niques . 
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ON TRANSIENT RESPONSE OF A MULTISTAGE SPACE VEHICLE 

by 

~~?- 241 32 Frank C. Liu 
, 
I 

SUMMARY - -

/ 

~resented in this paper is an analytical solution 
for the transient response of a multi stage space ve
hicle to a general external load . The structure of the 
vehicle is considered to be a stepped beam with uni 
form sections . 

Symbol Definition 

square matrix defined by equation (15) 

length of one section of beam 

L total length of beam 

m mass of beam per unit length 

M bending moment or total mass of beam 
William type modal solution for a uniform beam 

is assumed for each section of the beam. Upon im
posing the conditions of continuity of these sectional 
continuous functions, these functions should yield equal 
magnitudes of deflection , slope , bending moment and 
shear force at the junctions~ and the boundary condi
tions at two ends , the characteristic determinant of 
natural vibration , and the arbitrary constants of the 
solutions are determined . The differential equations 

N total number of section of the stepped beam 

P. 
1 

q 

of the generalized coordinates are obtained by making q 
useof the orthogonality relation of the e igenfun~ Qk 

LIST OF SYMBOLS ~pl S 

Symbol Definition l1l 

t 
a = Ell A G.e 2 

s 
V 

A cross- sectional area of beam 
W 

A effective shear- carrying area of cross 
s 

section x 

[ A nJ column matrix, arbitrary cbnstants -x 

b = I/M2 y 

[CnJ column matrix, arbitrary cons tants z 

c = EI/rni 4 Z. 
1 

D characteristic matrix T 

D 
mk 

e lement of the adjoint matrix of D l/J 

E Young's modulus of elasticity III 

g row matrix defined by equation (16) w 

I moment of inertia of cross section n 

generalized load defined by equation (24) 

external load 

square matrix defined by equation (13) 

rigid body translation 

time variable 

shear force 

static deflection 

coordinate 

= xl .e 

transverse deflection 

= yl .e 

natural vibration mode 

=.Jct', dimensionless time variable 

rotation of cross section 

Dlltural vibration mode of l/J 

natural frequency of beam 

static part of rota1:j.on l/J 
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LIST OF SYMBOLS (Cont'd) 

Symbol Definition 

d>. generalized coordinates 
1 

Superscripts 

n designates quantity of the nth section. 

INTRODU CTION 

In the dynamic analysis of a rocket or a missile, 
the structure is usually treated as a uniform beam in 
very crude approximations, or as a beam with many 
uniform sections in using matrix methods. Obviously, 
the first approach gives a very poor result for a multi
stage space vehicle because of the abrupt change of 
structural parameters from one stage to another. In 
matrix analysis, the structure can be represented ac
curately, but the quality of the result depends on fine
ness of the breakdowns of the structure. This often 
leads to manipulation of large size matrices. Hence, 
the limited capacity of the digital computer and the 
excessive cost and time required to invert and to find 
eigenvalues of a large size matrix are disadvantages 
of the matrix method . 

In the proposed method of this paper, the space 
vehicle is treated as a uniform stepped beam. Each 
stage of the vehicle may be further broken down into 
steps as desired . The differential equation of beam 
vibration considered is the Timoshenko type which is 
written in the form of simultaneous equations in two 
variables with a general external load function. Our 
analysis is to find the response of the stepped beam to 
a general external load. The solution given by this 
paper is exact and maximun1 size of the matrix in the 
calculation is 4 by 4. 

We now outline the analysis as follows: 

(1) Assuming a solution of the beam differential 
equations in the form given by Leonard (3) for each 
section of the beam independently, we can obtain so
lutions which are sectional continuous functions with 
undetermined arbitrary constants; 

(2) By imposing the conditions of continuity to 
the section or continuous functions such that the as
sumed solutions yield equal deflection, slope, bend
ing moment and shear force at the junctions of the 
sections, we can express the arbitrary constants of the 
solution for each section in terms of arbitrary con
stants of the two end-sections through chain relations; 
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(3) Applying the nat'.lTal boundary condit,i'ons at 
the two ends of the beam to the solutions, we formu
late the characteristic equation from which the eigen
values can be computed, and in turn, the eigenvectors 
of the arbitrary constants are obtained; 

(4) Using the orthogonality relation of the eigen
functions, we determine the differential equations of 
the generalized coordinates of natural vibration. 

II. ANALYSIS 

A. EQUATION OF MOTION OF A UNIFORM 
BEAM 

The well known differential equation of transverse 
vibration of a uniform beam , including rotary inertia 
and shear deformation effects, may be written in the 
the form of simultaneous equations of two variables of 
the form ( 3) 

Elli +A G (~ a:x2 s ax -0 -ml ft 
A at2 o ( 1) 

where y is the transverse displacement and ?/i is the 
rotation of the cross section of the beam. Expressing 
the above equations in dimensionless form, we have 

1 
?/i" + - (z' - ?/i) - b?/i = 0 a 

1 
- (z" - ?/i') - z 
a 

-q ( 2) 

in which the primes and dots denote the derivatives 
with respect to the dimensionless spatial coordinate 
x and the time variable T, respectively. 

A great deal of work has been done in solving this 
system of partial differential equations . The solution 
given by Leonard (3) is presented here. Leonard as
sumes the solution of '( 1) in the form 

00 

Z(X,T) = S(T) + W('~,T) + L.: 
i=O 

00 

CP.(T) Z.(x) 
1 1 

?/i(X,T) = Q(X,T) + L.: cpo (T) ?/i. (x), 
i=O 1 1 

( 3) 

where S( T) is the rigid body translation of the beam, 
W (x, T) and Q (x, T) are the static deflection and ro
tation, Z. (X) and ?/i. (x) are the natural vibration 
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mo(jes~ aft'd 'CP . • (T) a~e the generalized coordinates. 
1 . 

. We wiil use the same form of solutlOn for a stepped 
beam. 

B. EQUATION OF MOTION OF A STEPPED 
BEAM 

Consider a stepped beam consisting of N uniform 
sections as shown in Figure 1. The spatial coordinate 
of the beam x and the beam parameters will be de
signated by a superscript "n" to indicate the nth sec
tion of the beam. These parameters are assumed con
stant in each section of the beam, but may vary from 
section to section. 

-"----+...c:n + 1 N-l 

" 

FIGURE 1. COORDI NATE SYSTEM OF 
MULTIPLE SECTION BEAM 

N 

It is obvious that for each section alone the sys
tem partial differential equations are still governing 
equation of motions, and the solution given by equation 
(3) is still valid within each section. These solu
tions are sectional continuous functions. Conditions 
of continuity at the junctions of the sections must be 
satisfied, and the natural boundary conditions at two 
ends of the beam must be fulfilled by these functions. 

1. Conditions of Continuity. The following 
are the conditions of continuity: 

= y(x t) n- 1 n-1 [ 
n- 1 ] 

, x =1. 

[
an ~ [a 11-1 j ----; y (x , t) 11 = ----;:;-:t y(x , t) n-1 n-1 

ax x '=0 ax x =1. 

( 4) 

~ n- 1 J = M(x ,t) n-1 n-1 
x =1. 

2. Boundary Conditions. Four types 
boundary conditions will be considered: 

Displacement zero z = 0 

Total slope zero z' = 0 

of 

Moment zero ¢ ' = 0 
( 5) 

Shear zero z' - 1fJ = O. 

3. Orthogonality of the Eigenfunctions. The 
orthogonality relation for a uniform beam can be ex
tended to a stepped beam. As shown in Appendix D of 
Ref. 1, we have 

L 

J mi. 3( Z.Z. + b'l'. '1'.). dx = 0 i *" j 
1 J 1 J 

( 6) 
o 

C. THE GENERAL SOLUTIONS 

We now proceed to determine the terms given 
in equation (3) • 

1. The Rigid Body Translation. The rigid 
body translation of the beam is the same for all sec
tions. It can be obtained by direct integration of the 
total external load acting on the beam and dividing by 
the total mass of the beam: 

L 
S(t) = J J J q(x,t)dxdtdt / M. (7) 

o 

2. The Static Solution. Setting the inertia of 
rotation tf!rm equal to zero in the first equation of (1) 
and :replacing the inertia term of linear motion by the 
inertia due to rigid body motion in the second equation 
of ( 1) , we have 

....nn 1 ......nn nn 
Q"(X,T)+ n [W'(X,T) -Q(x, T)] =0 

a 

1 ....nn ....n n nnnf"I[ 
-[W"(x T) -Q'(x, T )]=-q (X,T / "-Ic) 

n ' 
a 

+ S (T n / JJi) . ( 8) 

Eliminating the variable Q from these equations, we 
can obtain the solution for W by direct integration: 

W(?,T
n

) = J J J J qn(mf)4 - an J J qn(mf) 2 

+ f4 (-?)1. S(Tn/ J;;'IT) +{i xn i<,f) 2 i(3f)~r:J<9) 

when [C
n

] is a column matrix of four arbitrary con
stants of integration. These constants are determined 
from the concIltions that the static solution W satisfies 
both the conditions of the continuity, equation (4), and 
the natural boundary conditions, equation (5) . The 
formulation of C

n 
is given in Appendix A of Ref. 1. 

3. Solution of Natural Vibrations. Since the 
natural vibration of the beam is· harmonic with fre
quency w., we may replllce ~. by - (w~/ c) 'l!. and Z. 
by - (wY cl Z. in equation (2). IThis yiefds 1 1 

1 1 
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n -II -II _n nn2 " -II -
a 'lr'.' ( x ) + Z~ ( x ) - 'lr. (x ) + (b / c )w . 'lr.( x ) = 0 

1 1 1 1 1 

( 9) 

i = 0 , 1, 2 , .. . 

The solution of the above equations is 

n ( n _n O-I1 n_O. nJl )~ nJ Z ex ) ~ cosh Ct . x sinh Ct. x cos {3 . x sm {3. x A. 
i ll 1 1 1 

( 10) 

n .....n n n -l1 n. n..Jl n n _nJt nJ sinhG'. x d.coshO!.x - e.slIl (3. x e. cos{3.x A. I 
1 1 1 1 I 1 1 1 

h An . th .th fAn d w er e . I S e 1 eigenvector 0 . an 
1 1 

l = ~~ + anw~/cn\/ e~ =,~~ - anw~/cn\l , 
1 \> 1 ) 1 1 \1 1) 1 

where QI. and {3. are the real and imaginary roots, re
s pectivefy , of the algebraic equation 

A,~ + A,2 (a+b) w~/c - (abw~/ c - 1) wYc = o. (1 2) 
1 iII 1 

We now form a column matrix which cons ists of 
fo ur elements : defl ec tion, slope, bending moment, 
and shear force . It is readily seen from equation (10) 
that 

(Y( Xn
) 

where 

I cosh aX I sinh 0' x Icos/1x t sin fJ X 

a sinh ax a cosh a x il s in fJ; ~ cos fJ x 
Q(x) : 

_ E~dqocoshax E~dcr sinh aX' ~cosfJiC ~ sln/3x 

EI;, -d) sinh a x EI;; -d) cosh a x ~SinfJx ~ 
, 

cos fJ x ! 

With the aid of the above notations , the conditions of 
continuity given byequation (4) may be written s imp
ly in the form 

Qn An = Qn-1 An- 1 
o I . ( 14) 

By s uccessive s ub s titution of equation (14), An can be 
expressed in terms of A I, 
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'. 
where 

n ' (Q~) -1 ~n- 1 (Qn-1) - 1 Q~-2 .. . (Q2) -1Q1 . K = 
o 0 

By making use of equations ( 13), (14), ( 15) and 
the following row matrices 

gl { 1 0 ° O} for deflection, 

g2 {O 1 0 O} for sl ope, 
( 16) 

g3 {O 0 1 O} for bending mom ent, 

g4 {O 0 0 1} for shear force , 

we may express the natural boundary conditions sim
ply as 

DAi = 0, (1 7) 

where 

[:: J QI 
0 

D 

[:~J 
r , s, t, u = 1, 2,3 ,4 . 

QfKN 

Hence , the charac teristic equa tion i s obtained by l et
ting the determinant of D equal to zero 

ID I = 0 , ( 18) 

from which the eigenvalues or the natur.al frequencies 
w ., i=1, 2 , . .. are computed . Let D k (w.) denote 

1 m 1 

the el ements of the ad joint matrix of the matrix Dr 
then the e igenvector of A ~ i s 

1 

Ai 
i 

and 

AI 
1 

Ai 
2 

A§ 

Al 

n 
K ( w .) A1 

1 i 

1 

D21 ( w. )/ D l1 ( w .) 
1 1 

D3i ( w .) / D11 (w.l 
( 19) 

1 1 

D41 (w.l / Dl1 ( w.l 
1 1 

( 20) 



I -'-- .--- --

Tl\e general ' proced~re of computing wi is suggested 
as follows: 

1. Assume a val ue of W. , 
1 

. n n 
2. Fmd a. and f3. for n = 1,2 , . . . , N from equation 

(12) 1 1 

n n 
3. Compute Q and Q 1 for n = 1,2 ,. " N from equa-

tions (13) (b (15) . 

4. Compute \D(W
i
) I from equation ( 17). 

5. Repeat steps 1 to 4, until I D( w
i
) I approaches to 

zero . 

4. The Generalized Coordinates, cpd .!L:.. 
Substituting the assumed solution , equation (3), into 
the differential equation of motion ( 2) , and making use 
of equations (8) and (10) yields 

00 [d2 cp. ( t ) ] 

i~O dt~ + w~ CPi(t) Zi Of) 

8 Jl I~n t ) 
- Qt2 W (X,"-I (21a) 

00 t& cpo (t) ..., 
\' 1 + W~ ,.,.(t~ 'l1.(Xn) 
!....J de 1 '1' 1 1 

i=O 

8 Jl Til' 
~ n( x , "-/ c-- t) . (21b) 

Now, we multiply equation (2 1a) by rn.£ 3Z · and equa
tion (21b) by bm.£ ~ 'l1. , then integrate th~ sum over 
the range O:Sx:SL . M~king use of the orthogonality 
relation given by equation ( 6) we find that 

d2 P . ( t ) 
1 

i=0,1 ,2, . .. • 

( 22) 

The generalized mass and the generalized load ap
pearing in the above equation are defined, respectively, 
as 

N 
m. = L: J: mn(.£n) 3 [z~ (Jf ) + b

n 'l1 ~ ( X
n

)] ct? 

( 23) 

1 
n=1 

Pi (t) = ~1 J m n(.£n) 3 [wcx:n , J:!f t) Zi("?) + 
o 

n Jl r n ......n] .-n b n ( x , "-I c t ) 'l1 i (x) ax . ( 24) 

--~ -- -

For the rigid body mode ( wo = 0), 'l10 = 0 and 
Z = C from equations (23) and (24), 

o 
N 

m = L: mn(.£n) 3 Z2 (25) 
o n=1 0 

N 1 
P (t) 

o 
\' J n n 3 ......n rn- .......n Zo!....J m (.£ ) W(x , "-/ c-- t) ax . (26) 

n=1 0 

If the beam is assumed initially at rest and un
deformed, we have 

n 
z(x , 0) 0 

. ( n z x , 0) a 

n 
0) ~ (x , 0 

(27) 

• n 
1jJ (x , 0) O. 

Consequently , the initial conditions for cp. are 
1 

CP. ( 0) 
1 

- P.( O)/m. 
1 1 

( 28) 
¢. (0) 

1 
- P.(O) / m . . 

1 1 

= 0, 1, 2 , ... 

Finally, equation (22) may be solved by standard pro
cedures . 
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NONLINEAr. VIBRATION OF BEAMS 

by 

Frank C. Liu 

SUMMARY 

N65-24133 
This paper deals with vibration of uniform beams 

with large amplitude . Two sets of system of nonlinear 
partial differential equations of two variables are de
rived in Ref. 1 for the vibratory motions of a beam. 
One set treats beams with axially fixed ends; the other 
concerns beams free of axial constraints. The linear 
parts of the beam equation in both cases are the Tim
oshenko type, while the nonlinear terms are triple 
product of the first and second derivatives of the dis
placement variables. 

For practical purposes, the nonlinear terms may 

s 

t 

U 

x 

Y 

z 

i [(a' + 1){3w2 + .J (a' + 1)2{32w2 + 4w 2 ] 

= 1. [. (a' + 1){3w2 +,J(a' - 1)2{32w2 + 4w2 ] 
2 

dimensionless time variable (=bt) 

time variable 

nonlinear period of vibration 

linear period of vibration 

dimensionless longitudinal displacement 
( =u/L) 

coordinate along beam 

dimensionless deflection (=y/L) 

dimensionless transverse displacement due 
to shear (=y / L) 

q 

be regarded as small quantities j thus, an apprOximate 
solution in the form of a power series is developed 
based on Krylov-Bogoliunov's principle by using the 
linear solution as a generating function: Two illustra
tive problems, a Simple supported beam and a free 
free beam, are presented with numerical examples to 
show the variation of the undamped frequency With we-
spect to amplitude of vibration. z 

= x/ L 
'0 

LIST OF SYMBOLS \J (3 

Symbol 

A 
o 

a 

Definition 

dimensionless amplitude of Y 
o 

= k'G/E 

a' = 1/ a 

A 

E 

G 

h. 
1 

I 

k' 

L 
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cross sectional area of beam 

modulus of elastiCity 

modulus of shear 

unknown constants, equation (6) 

bending moment of inertia of beam 

shear coefficient 

length of half-length of beam or differ
ential operator 

{3' = (1 + a'){3 

p mass density of beam 

Subscripts "z" and "s" are partial derivatives . 

1. INTRODUCTION 

In dealing with dynamic control problems of a 
space vehicle to external disturbances in flight, it is 
often required to know the precise natura l frequency 
of the vehicle. It is well known that the natural fre 
quency of an elastic body varies with its amplitude of 
Vibration; however, there have been few analytical re
s ults published. This phenomenon has little signifi 
cance when the amplitude i s small. It is usually re
ferred to as linear vibration and the frequency is re
garded as constant. 

The nonlinearity in transverse vibration of a uni
form beam is mainly caused by one of three fac tors: 



(1), 'l arge ~urvature of b~nding, (2) longitudinal ex-
. tension of the beam, and (3) large deflection and lon

gitudinal strain. In deriving the nonlinear differential 
equation of beam vibration, it is desirable to reduce 
the number of variables to minimum, since the com
plication of a nonlinear problem increases rapidly with 
the number of dependent variables. Consequently, the 
author proposes that the nonlinear vibration of beams 
be treated individually according to its cause of non
linearity. 

In this analysis, beam vibrations with large amp
litude fall into two categories according to their boun
conditions: 

( 1) Beam With Axially Fixed Ends: 

For beam with two ends fixed axially , the 
longitudinal stress caused by the large transverse dis 
placement becomes an important factor of the nonlinear 
vibration. In Ref. 1, the Lagrangian method is used 
to obtai"n a system of differential equations in two de
pendent variables : the transverse and lonlritudinal 
displacement. The nonlinear terms in the differen
tial equations are a result from the nonlinear strain 

e 
x 

au 
ax 

pression. 

+ ~ (~) 2 us ed in the strain energy ex-

(2) Beam Free From Axial Constraints: 

The longitudinal stress due to the transverse 
displacement in this case is very small compared with 
the bending and shear stresses . A system of differ 
ential equations of the transverse displacement and 
displacement due to shear is formulated based on 
dynamic equilibrium . 

The linear parts of the beams equation of both 
cases are of the Timoshenko type, i. e . , rotary and 
shear effect are included, and the nonlinear terms are 
of triple products of the first and second derivatives 
of the variables . Difference methods are generally 
empl oyed for numerical solution of partial differential 
equations of second order. There has been no syste
matic scheme, to the author'S knowledge, developed 
for the approximate solution of nonlinear partialdif
ferential equations for higher order. A few papers 
dealing with special nonlinear beam vibration prob
lems have been found [ 5 through 8J ; however, these 
methods are not completely general. 

In solving nonlinear ordinary differential equa 
tions, Krylov-Bogoliubov [ 3, 4J has employed the 
linear solution as generating function in expanding the 

dependent as well as independent variables in power 
series of a small parameter. For practical purposes , 
the nonlinear terms in the nonlinear beam equations 
can be regarded as all q',l.8.ntity; by the same token, 
the approximate solution may be considered as the 
linear solution plus some functions with a small para
meter as their coefficients. Based on this principle, 
the present method is developed. 

II. EQUATION OF MOTION 

The equations of vibration of a uniform beam wi th 
large amplitude have been derived in Ref. 1 for two 
cases. In Case I the beam is treated free to move 
longitudinally. Consideration of dynamic equilibrium 
of a beam element results in partial differential equa
tions with the transverse displacement and the dis
placement due to shear as unknown variables. The 
beam is restrained axially at two ends of Case II. 
The longitudinal and transverse displacement are 
taken as unknown variables of the partial differential 
equations which are obtained by using Lagrangian equa
tions . The detail of the derivation of these equations 
is given in Ref. 1; here, we simply present these 
equations in their final nondimensional form. 

Case 1. Beam With No Axial Constraints 

( 1a) 

Hi == y2 [aZ - (313/2) Y ] - a Y Y Z , (1b) 
z zz ss z zz z 

Z - 13Z - (a/ t3) Z == - Y + Y • (1c) 
zzz zss z zss zzz 

Case II. Beam With Axial Constraints 

L(Y) == J.lF == M (H2) 

(U Y + 1. Y~) • 
z z 2 z z 

U == 13U == - Y Y , 
zz ss z zz 

(2a) 

( 2b) 

( 2c) 

In the above equations , the subscripts z and s denote 
partial derivatives with respect to the nondimensional 
spatial and time variables, respectively; Land Mare 
partial differential operator defined as follows: 

L 
8~ 84 

~ - 13 ' 8z' 8s2 

( 3) 
M 
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Notice that the differential equation, L( Y) = 0 , is 
a Timoshenko beam equation , and the terms jJ.F on the 
right-hand side of equations ( 1a) and (2a) are the non-
linear functions . ..... . .. 

III. METHOD OF SOLUTION 

The method of solution proposed here is based on 
the assumption that the beam equations are slightly 
nonlinear; in other words, the nonlinear function is a 
small quantity. Hence, we may extend Krylov
Bogoliubov ' s principle [ 3 ] for ordinary differential 
equations to the beam equation and use the linear so
lution as a generating function . First, we expand both 
the dependent variables and the independent time vari
able in a power series in terms of a small quantity jJ. , 

Y = Y + jJ.Y1 + jJ.2Y2 + ... ( 4) 
0 

W W + jJ.W 1 + jJ.2W2 + ... ( 5) 
0 

T 2 ( 6) s = - (1 + jJ.hl + jJ. h2 + .. . ) , 
w 

where W represents either 2 of equation (1c) or U of 
(2c) , Y

1
' and W. are unknown functions, and h. (i = 1, 

1 1 
... ) are unknown constants. 

Substitution from equations (4) through ( 6) into 
(1a) and (2a) results in 

4 
( 1 + jJ.ht + ... ) (Y + jJ.Y t + . . . ) 

o zzzz 
2 82 

- [3 I W 
2 

( 1 + jJ.h 1 + ... ) '" T2 ( Y + jJ. Y t + ... ) 
u 0 ZZ 

2 82 
+ w 2 (1 + jJ.h t + ... ) ~ (Y + jJ.Y t + .. . ) 

uT 0 

I [32 4 8
4 

(Y ) +a w ~ +jJ.Y t + ... 
uT 0 

= (1 + /J. h J + ... ) 4 jJ.F [ ( Yo + jJ. Y 1 + ... ), (W 0 + 

(7) 

Collecting the terms with the same power of jJ. and 
equating them to zero , we obtain from the above equa
tion 

o 
jJ. : L[Y ] = 0 o ( Sa) 

L[Yd = - 2h1 (2Yo - [3' w2 Y + 
ZZZZ °ZZTT 

+ w 2 Yo ) + F t (Y , W ) 
TT 0 0 

(Sb) 
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- w2 [2hl Y 1 + ( 2h2 + h~ ) Y J 
o TT 

+ F2 (Y , Yt , W , W1, h1), 
o 0 

( Sc) 

. ... . ..... . ... . . .. ...... , 

where the F's are the r esults of the expansion of the 
nonlinear function jJ.F, 

I-'F [( Y + I-' Y 1 + . . . ), (W + jJ. W t + .. . )] ( 1 + J..ili1 
o 0 

4 

+ . .. ) =jJ.F 1 (Y, W) +jJ.2F 2 (Y ,Y1,W , Wt , h1) 
o 0 0 0 

+ .... ( 9) 

Solution of the linear differential equation (Sa) for 
various boundary conditions may be fO lmd in Ref. 2. 
Using the linear solution for Y , the approximate so

o 
lution of the second variable 2 or U can be readily ob-
tained from the following equations , 

( 2 .) - [3 (2.) -(a/[3)(2.) =-[3 ( Y.) + 
1 ZZZ 1 ZSS 1 Z 1 z.ss 

(Y,) 
1 ZZZ 

(10) 

i=1 , 2 , .. . 

( 11a) 

( 1ib) 

Since the effect of the homogeneous solution of the sec
ond variable to the transverse vibration , Y, has little 
physical significanc'e , 'it may be neglected for simpli
city . 

Now, the terms on the right- hand side of equation 
( Sb ) are known from the sol ution of equations (Sa) and 
(10) or (11a) . Since-the left- hand sides of equations 
( Sa) and (Sb) are identical, the natl'ral frequency of 
Y l ' i. e . , the frequency of the homogeneous equations 
( Sb), and the frequency of Yo are equal. The condi
tion for Y 1 to have a periodic solution is that the sec 
cular terms on the right- hand side of equation (Sb) 

~----- ,-----' 



mu'st vanish, Apparently, this condition cannot be 
satisfit.:d for all values of z . Letting this condition be 
satisfied for the fundamental mode only should yield a 
useful approximation and permits the constant h1 to be 
determined. Hence, 

1 2" 
10 fo P , (yo. Wo) cos T '10 (z) eiTel" 

1 2" (1 2) 
2 f f ( 2 Yo - (3 ' w'Y o + w'y ) cos T',) (z) elTdz 

ZZZZ ZZTT OTT 0 
o 0 

Next, solving for Y 1 from equation (8b) with con
sideration of equation (12), we find 

( 13) 

and in turn we solve for the second variable W l' In 
the above equation, Y lp' is a particular solution of 
equation (8b) , and the arbitrary constant A1 and the un
known constant h2 are to be determined from equation 
( 8c) by letting the secular terms of both the first and 
second harmonic vanish Simultaneously. 

The amount of work necessary to carry out higher 
approximation is greatly increased; however, the first 
approximation is quite adequate for engineering pur
poses. The nonlinear period of vibration is 

27T 
TN = -z;- (1 + ~h1 + ~2h2 + ... ) . ( 14) 

IV. EXAMPLES 

A. SIMPLY SUPPORTED BEAM WITH SYMMF
TRIC MODE 

Considering a Simply supported beam with the 
two end supports being fixed axially, we apply the sys
tem of differential equations given by (2). The linear 
solution found in Reference 2 is 

Y = A cos pz cos T. o 0 
( 15) 

USing this solution and the boundary conditions Uo = 0, 
when z = 0 and 1, the solution of equation (11a) is ob
tained: 

U 
o 

sin 2p z cos2 
T • ( 16) 

Note that (1) this solution is not exact - it is off by a 
constant term and (2) the homogeneous solution 

which represent~ the longitudinal traveling stress is 
omitted. 

Substituting Y and U from equations (15) and 
(16) into equation SO (2b) agd (9) results in 

~F f cos npz cosm T, 
mn 

( 17) 
m,n=i,3 

where 

f 
mn : (1/{3 + n2 a' p? - m2 a' (3 w2) l3-n)p2 

+ 3(:- 2) (3 w2 ] 

Consequently, equation (8b) becomes 

+ f cos np'Z cosm T. 
mn 

m,n=1,3 
( 18) 

From the condition of periodicity of the solution Y1 
that the co~fficient of COST must vanish, we have. by 
neglecting cos 3 pz, 

3( 1/ (3 + a' V - a' (3w2) (2p2 - 3(3w2) 

2(2pl_ (3 ' w2p2 - w?) A 
o 

( 19) 

Now, the solution for Y 1 from equations (18) and 
(19) is 

Y1 = A1 cos pz cos T + ~ C cos npz COS3T (20) 
n=1 3 n , 

The arbitrary constant A1 and unknown constant h? may 
be determined from the second approximation which 
will not be given here. 

Numerical Results 

To show the magnitude of {3, we consider beams of 
the following: 

a. Solid cylindrical beam withD/ L=1/10 (D 
diameter) 
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{3 I/ AL2 = (D/ 4L) 2 

b . Thin hollow cylindrical beam (neglect s hell 
effect) , D/ L = 1/ 10 

(3 2( D/ 4L)2= 1/800 . 

A {3 =1/ 1600 (3 = 1/800 
0 

1/ 10 0 1 - .015 1 - .007 5 

1/50 1 - .06 1 - .03 

1/25 1 - . 18 1 - .12 

Note that Ao is the ratio of amplitude to half le ngth of 
the beam. 

B. FREE -FREE BEAM WITH SYMMETRIC 
MODE 

Since the ends of a free - free beam are free of 
shear force a nd bending moment which can be ex
pressed conveniently by the variabl es Y and Z, we use 
the system of differential equa tions given by (1). The 
mode function for symmetric mode given by Ref. 2 i s 

Y = 1) cos 7 
o 0 

( 21) 

1) (z ) = A (q sin p ch qz - pshq cos pz)/ a 
o 0 0 

a = ( q s inp chq - pshq cos p) - ( q s in p - pshq). 
o 

As a result of equation (21) the solution for Zo fo und 
from equation (i 0) i s 

Z = A (b1 chqz+b2 cospz) cos 7, 
o 0 

where 

The homogeneous solution of Z i s omitt ed. 
o 

( 22) 

To obtain the nonlinear function , we sub sti tute 
equations ( 21) and (22) into equations (2b) a nd ( 9) , 
then expand in series by eigenfunction expansion and 
take only the fundamental mode, 
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where 

K = - 3R / [ (1/ m(3 - Ola '(3w' ) H - ~ Hozz l 1Jo ( z ) dz 
m 4 0 0 m 

( 24) 

m = 1, 3 

1 
R 

1 

J 1)~ ( z) dz 
o 

3 
H 0 ( z ) = - 1)~ (ato zz + 2" (3w

2
1)0 ) + a1)0z 1)ozz toz z 

= a(a1b2 - a2b1) [ s hqz sin pz (a1q2 chqz + a2 p2 cos pz ) 

M(sh2 qz cos pz + ch qz s in2 pz) 1 + 

+ % {3w? (a 1 qshqz - a2P sin pz ) 2. 

a1 = A q sin p 
o 

a2 = A P s hq . 
o 

Similarly , it follows from equation ( 12), that 

1 

h1 = K 12R J (21)0 + (3 ' w 2
1)0 - W

2
1)0 )1) dz . Y' zzzz zz 0 

() 

This results in 

L [ Y 1l == K31) ( z) cos 37 . 
o 

( 25) 

The solution for Y 1 may be readily written in the form 

Y1 == At1)o( z ) co s 7 + K3 ( B1 chqz + B2 cos pz) cos 37 , 

(26) 

where A1 is an unknown constant and 

The unknown constants A1 and h2 can be determined 
from equation ( Bc ) • 

The change of frequency of a free - free beam is 
much smaller than that of a s imply supported beam. 
For {3 == 1 /800 , the val ues of TN / T vs A are as 

o 0 
follows: 

A 
o 

A 
o 

1/ 10 1- . 0019 

1/ 5 1- . 0075 
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LUNAR TOUCHDOWN DYNAMICS STUDIES 

by 

Robert E. Lavender 

SUMMARY 

Results are pi~2d frtn ~V~b~~in~e'tiga-
tions which have been conducted concerning lunar 
touchdown dynamics. These investigations concern the 
use of a rocket motor to achieve a stable touchdown, 
effectof elasticity on touchdown stability, comparison 
of MSFC results with Grumman Aircraft Engineering 
Corporation (GAEC) analytical results , landing dy
namics for a cryogenic landing stage , and comparison 

of MSFC results with GAE C scale model drop te~~ : \J 

Symbol 

C 
m 

C 
s 

D 

k 

k 
e 

L.F. 

N 

T 

LIST OF SYMBOLS A )Jl"~ 
Definition 

Crushing force of main strut 

Crushing force of support strut 

Landing gear diameter 

Radius of gyration about c . g. 

Effective spring constant per leg parallel 
to vehicle ' s longitudinal axis 

Original height of center of gravity 

Load factor; total external force divided 
by earth weight for vertical landing on level 
surface . 

Number of legs 

Stabilization rocke t motor thrust 

Stabilization rocket motor burning time 

Vertical velocity 

V h Horizontal velocity 

V 
r 

W 
e 

o 

Rebound velocity from a vertical landing 

Earth weight (based on g = 9. 80665 m/ S2) 
e 

Stroke parallel to vehicle's longitudinal axis 

e Lunar slope , negative for downhill landing 

Initial pitch attitude, positive nose up 

Initial pitch angular rate 

Coefficient of friction 

1. INTRODUCTION 

In August, 1962, the George C. Marshall Space 
Flight Center began a study of a Lunar Logistic Sys 
tem (LLS) basedon the Saturn V launch vehicle. This 
system was designed to "soft- land" large payloads on 
the moon. Results of the study included a volume on 
the touchdown dynamics aspects of the system (Ref. 
1) . The system was designed to land safely on lunar 
slopes up to 30 degrees , but unfortunately , the landing 
gear required under such a condition was large and 
heavy. The results of Ref. 1 have been extended to 
include vehicles with from three to six legs and vari
ous deceleration load factors . These results , along 
with a description of the mathematical model, are pre
sented in Ref. 2 . 

While the method of Ref. 2 accounts for crushing 
and sliding, it does not consider the effects of elastic 
i ty in the vehicle's structure or the fact that the legs 
are hinged to the vehicle resulting in a variable land
ing gear diameter during the touchdown motion. A 
mathematical model including these effects is de
scribed in Ref. 3. The author is indebted to John D. 
Capps, Computation Laboratory, who has programmed 
both methods for digital computation. 

The purpose of the present paper is to present re
sults of additional investigations made recently in the 
field of lunar touchdown dynamics . 

II. DISCUSSION 

A. USE OF STABILIZATION ROCKET MOTOR 
TO OBTAIN STABLE TOUCHDOWN 

The purpose of this investigation is to obtain ad
ditional information on stabilization rocket motor 
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requi.rements necessary to obtain a stable touchdown. 
Ref. 2 shows that use of a stabilization rocket motor 
is very effective in providing a stable touchdown. Re
sults of Fig. 9, Ref. 2, correspond to a particular 
landing gear diameter and initial velocity components. 
This investigation provides the rocket motor require 
ments as a function of the landing gear diameter for 
several values of initial horizontal velOCity. 

The investigation was conducted for a four -legged 
spacecraft landing on a 30-degree lunar slope with a 
horizontal velocity component in the downhill direction. 
The vehicle impacts on two uphill legs, goes into free 
flight, and then impacts on two downhill legs. A stab
ilization rocket motor is assumed mounted on top of 
the payload and directed downward through the vehic 
Ie's center of graVity. The motor ignites when the 
downhill legs contact the lunar s urface. The same re
sults would be obtained for a number of smaller rock
ets mounted around the vehicle equidistant from the 
center of gravity. The vehicle'S attitude angle at 
touchdown is considered to be less than the lunar slope 
so that the first legs to sense contact will be the uphill 
legs. 

For any given landing gear diameter, there is a 
minimum thrust below which the vehicle'S center of 
gravity will rotate over the downhill feet. This mini 
mum thrust is shown in Fig. 1 as a function of the 
landing gear diameter for two values of the horizontal 
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FIGURE 1. STABILIZATION ROCKET MOTOR 
REQUIREMENTS 

velocity. The corresponding burning time: also shown, 
is essentially independent of the horizontal velocity for 
the tw.o value-s considered. The thrust given in Fig. 1 
will reverse the vehicle'S sense of rotation just as the 
center of gravity becomes vertical above the point of • 
rotation. A higher thrust motor of constant total im
pulse would be somewhat better from a touchdown sta
bility standpoint. However, extremely high thrust 
motors of very short burning time may present motor 
development problems. 

For a horizontal velocity of 2 m! s, a landing gear 
diameter to center-of-gravity height ratiO of 3. 51 is 
needed without any stabilization rocket motor. USing 
a thrust equal to the vehicle's earth weight, this ratio 
is reduced to 2.26 resulting in a landing gear diameter 
which is only 64.4 per cent as large. Some additional 
reduction in landing gear diameter is obtained by using 
higher thrust motors. For large logistics vehicles, 
which are designed to land on steep lunar slopes, use 
of a stabilization rocket motor appears to be useful in 
reducing the required landing gear diameter. These 
results were obtained using the method described in 
Ref. 2 which does not consider elastiCity effects. Ad
ditional study of the concept of stabilization rocket 
motors in conjunction with the vehicle's elastic char
acteristics would be profitable. 

B. EFFECTS OF ELASTICITY ON TOUCH
DOWN STABILITY DURING LUNAR LAND
ING 

After the MSFC Lunar Logistics System Study 
was completed, the Space Technology Laboratories 
was awarded a contract , NAS8-11022, titled, "Com
parative Design Study of Modular Stage Concepts for 
Lunar Supply Operations," Results of the touchdown 
dynamics portion of the study are included in Ref. 4. 
Results of their analyses indicate that the effect of 
elasticity is very important, increaSing the required 
landing gear diameter about 30 per cent compared to 
that of Ref. 2, The method of analysis used by STL 
accounts for the elasticity in the structure, but does 
not consider the legs to be hinged, resul ting in a vari
able landing gear diameter during touchdown motion. 

The purpose of this investigation is to determine 
the effect of elasticity on touchdown stability for a 
basic case using the method of Ref. 3. The discussion 
is restricted to the following conditions: 

W 
e 

177,930 N (40,000 lb) 

L2 6.32 m (249 in) 

N 4 
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D 20 . 17 'm (794 in) 

L . F. = 3 '. 
V 6 m/s v 

V
h 

= 1 m/s 

J1 1. 0 

For these conditions, the vehicle had been found 
to be stable (Ref. 2) for lunar slopes up to 30 degrees . 
Landing is in the downhill direction with a 2- 2 impact. 

Results of the investigation using the method of 
Ref. 3 indicate that the combined effect of elastiCity 
and hinged legs is compensating to the e}.1:ent that only 
about 5 per cent increase in landing gear diameter is 
required over the results from Ref. 2. USing an ef
fectivevertical spring constant of 2. 452 MN/m (14 , 000 
Ib/in), the vehicle is still stable for l unar slopes up 
to 27 . 8 degrees. Increasing the landing gear diameter 
to 22.35 m ( 880 in) provides stability up to 32.6 de
grees . Therefore , a diameter of about 21. 13 m (832 
in) will provide stability on slopes up to 30 degrees. 
This diameter is only 4. 8 per cent larger than the re
s ults from Ref. 2 . 

C. COMPARISON OF MSFC AND GAEC 
TOUCHDOWN STABILITY ANALYTICAL 
RESULTS 

This investigation compares some results of 
touchdown stability obtained by the Grumman Aircraft 
Engineering Corp. (Ref. 5) with results using an 
MSFC program ( Ref. 3). Such comparisons serve to 
indicate the extent of agreement or disagreement be
tween different approaches to the touchdown dynamics 
problem. Results presented in Ref. 5 include stability 
boundaries for a series of configura,tions with various 
landing gear diameters , height of the center of gravity, 
and number of legs. Results USing Ref. 3 have been 
obtained for only one configuration. The configuration 
chosen for comparison has the following characteris -
tics: 

W 44,482 N ( 10, 000 Ib) 
e 

k2 2. 69 m 2 (28 . 95 ft2) 

L2 3. 3 a m (130 in) 

D 8.84 m (348 in) 

N 4. 
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The load factor, in earth g' s', experi~nced upon l~nd
ing vertically on a level surface depends upon the co
efficient of friction between the foot pads and lunar 
surface. For the configuration chosen , GAEC shows 
the load factor to vary from 5. 6 for zero friction to 
16. 4for a coeffiCient offriction of 1. o. The maximum 
load factor is obtained when both upper and lower leg 
members are stroking in compression. 

Values were chosen for the crushing strength of 
the honeycomb crushable material in the upper and 
lower leg members of the two- dimensional model of 
Ref. 3 such that the load factors given in the above 
paragraph were obtained . In addition, it was assumed 
that the upper and lower leg members of the two
dimensional model have elastic deflection of one inch 
before crushing takes place . 

During a symmetrical landing (vertical landing 
on a level surface) with zero friction, the foot pads 
slide outward with the upper leg members in \tompres
sion and the lower leg members in tension. The ver
tical stroke (parallel to the vehicle I s centerline), 
which exists at the moment crushing begins , together 
with the normal force acting on the foot pads , deter
mines the effective vertical spring constant for each 
leg. When the vertical landing velocity is reduced to 
zero , the foot pads begin to slide inward reducing the 
compression load in the upper leg members and the 
tension load of the lower members. The vehicle be
gins a rebound motion and lifts off the surface as the 
normal force on each foot pad reduces to zero. During 
a symmetrical landing with high friction , the foot pads 
remain stationary with both upper and lower leg mem
bers compressing elastically until the crushing 
strengths of the honeycomb material are reached. The 
vehicle rebounds as the elastic energy stored in com
preSSion is released. 

Results of the symmetrical landing analysis are 
shown in Fig. 2. The load factor and effective vertical 
spring constant vary in such a way that the vertical 
elastic stroke varies from 0. 069 m (2 . 7 in) for zero 
friction to O. 033 m (1. 3 in) for high friction. The 
corresponding total vertical stroke is shown to vary 
from 0.775 m (30. 5 in) to 0.292m(11.5in) . Itis 
interesting to observe that the velocity with which the 
vehicle rebounds into free flight decreases as the co
effient of friction increases, until the friction is suf
ficient to keep' the feet from sliding. The rebound ve
locity at high friction (no sliding) is larger than that 
at zero friction because the energy stored in elastic 
deflection 'i-s larger. 

Results of the dOWnllill landing analysis are shown 
in Fig. 3. The vehicle initially contacts the lunar 
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<lrtace on two feet with an initial attitude of 5 degrees 
nose up. The vehicle then rotates over and goes into 
free flight. Zero friction is assumed for the uphill 
contact since GAE C (Ref. 5) states that this results 
in maximum initial overturning moment. Actually, 
for low vertical velocity and high horizontal velocity 
combinations , the uphill feet drag downhill so that 
friction would result in higher initial overturning mo
ment. High friction is assumed for the downhill con
tact so that no sliding occurs. Comparison of the sta
bility boundaries shows that the MSFC result is some
what more pessimistic. This may be due to the MSFC 
assumption regarding the elastic properties for the 
l anding gear. It is not too clear from Ref. 5 what 
GAEC assumed for the elastic characteristics. How
ever , general agreement is shown between the two 
methods. 

D. TOUCHDOWN DYNAMICS FOR CRYOGENIC 
LANDING STAGE 

Touchdown dynamics analysis has been per
formed to establish stability boundaries for configura
tions in the size and weight class for a cryogenic land
ing stage which has been under recent study. Results 
of the analysis can be used to estimate the landing gear 
diameter required for stable touchdown as influenced 
by the height of the center of gravity and the elasticity 
in the vehicle . A load factor of 4 was assumed for the 
case of a level landing on all four legs Simultaneously. 

The analysis was based upon a downhill landing 
with a 2- 2 impact. Walton, Herr, and Leonard (Ref. 
6) have presented, however, both experimental and 
analytical evidence that the 2-2 impact orientation is 
not the most critical orientation. The experimental 
evidence was obtained by dropping a block of aluminum 
vertically (no horizontal velocity) upon an inclined 
surface . The same general trend has also been es
tablished by the Bendix Corporation from drop tests 
with a dynamically scaled model (Ref. 7) . However , 
further drop tests by Bendixwith a horizontal velocity 
in the direction of maximum slope show that the most 
critical landing obtained is the 2-2 impact with maxi
mum horizontal velOCity. Additional drop tests are 
planned which will obtain the effect of cross-slope 
velocity. The writer is indebted to B. T. Howard 
and T. L. Powers of Bellcomm for the Bendix data. 

Results of the analysis for the cryogenic landing 
stage using the method described in Ref. 2 are shown 
in Fig. 4. The vehicle did not go into free flight when
ever crushing stopped in the uphill legs for most of 
these cases. Rather, the vehicle rotated as a rigid 
body until the downhill legs made contact and began 
crushing. After the downhill legs stopped crushing, 
the vehicle rotated as a rigid body until it became un
stable or until the rotation was reversed and a stable 
touchdown achieved. High friction was assumed 
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between the pads and lunar surface resulting in essen
tially no pad motion. For any given lunar slope , the 
required landing gear diameter increases with increas
ing height of the center of gravity, but the ratio of 
diameter to height decreases . 
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For a particular height of the center of gravity 

(3.30 m, 130 in) , the effect of elasticity in the 'vehic 
Ie's structure hd.s been obtained for three landing gear 
diameters. Res ults are shown in Fig. 5 and were ob
tained by the method of Ref. 3. The arrows shown 
correspond to data from Fig. 4 which assumes essen
tiallyan infinite spring Gonstant. The lunar slope fo r 
a stable touchdown dec rease s as the effective vertical 
spring constant decreases . 

An important considera tion in the applic ation of 
the method described in Ref. 3 which does not occur 
for the method of Ref. 2 is the question of the crush
ing force of the support struts. For Fig. 5, as the 
vehicle impacts on the downhill legs, both main and 
s upport struts c rush after some elastic defl ection. 
The crushing forces in these struts have been cho sen 
so that the reaction force on each pad in the plane of 
motion tangent to the surface is about 0. 7 times the 
force normal to the surface. This selection of crush
ing loads i s merely a choice and does not r epresent 
the optimum solution. 

USing this method the vehicl e did not rotate as a 
rigid body about the uphill legs after crushing ceased, 
but rather sprang into free flight. In the same man
ner , there was no rotation about the downhill legs as 
a rigid body after crushing ceased. The vehicl e sprang 
back into free flight from the downhill legs. A con
siderable number of bounces can take place on the 
downhill legs before the vehicle either tumbles or a 
stable touchdown assured. 

As seen from Figure 5, there is serious loss in 
stability as the spring constant is reduced. For ex
ample, the method of Ref. 2 indicates that with a 
cliameter- to - height ratio .of 2 ,46 the vehicle is stable 
for slopes up to 15,6 degrees , However , to achieve 
this same capability us ing an effective ve rti cal spring 
constant of 3 MN/ m ( 17,130 lb/in) r equi res a 
diameter-to-height ratio of 2. 92. This corresponds 
to an increase in the r equired landing gear diameter 
of 18.7 per cent . This effect has been found to be less 
severe for the Lunar Logistic System where only about 
5 per cent increase in diamete r was indicated , as di s 
cussed in Part B. It is worth noting that the large r 
vehicle (LLS) landing on a 30-degr ee slope went into 
free flight from the uphill legs using either method of 
analysis and also that a coefficient of friction of 1. 0 
was assumed with no crushing of the support struts. 
Therefore, as the vehic l e crushed on the downhill legs, 
the overturning radius increased during the motion. 
Finally, a word of explanation is offered for the odd 
values of diameter-to-height ratio shown in Figure 5. 
These c urves were originally obtained for landing gear 
diameters of 320 , 350 , and 380 inches with a center
of gravity height of 130 inche's: 



E. COMPARISON OF MSFC TOUCHDOWN 
STABILITY ANALYTICAL RESULTS WITH 
GAEC DROP TESTS 

The purpose of this investigation is to compare 
MSFC analytical results with GAEC scale model drop 
test results. The writer is indebted to Harold Benson, 
MSC , for a copy of the GAEC results (Ref. 8). The 
drop tests correspond to a one-sixth scale model of 
an early four-legged configuration of the LEM landing 
gear. The model data and corr esponding full scale 
values are given in Table I. The writer has adjusted 
the weight, center-of-gravity location, and radius of 
gyration to include the mass of the pad assemblies as 
shown for the overall vehicle. 

From the crushing strengths of the struts and the 
geometry of the landing gear, the writer determined 
that a load factor of 21 is developed during a vertical 
landing whenever the friction coefficient is high enough 
to prevent sliding. This corresponds to a load factor 
of 3. 5 for the full scale vehicle which was used in the 
MSFC analytical methods. This load factor is applied 
to the baSic module which does not include the mass of 
the unsprung pad assemblies. Such a landing produces 
a force on each pad s uch that, for this vehicle, the 
componentofforce tangent to the surface is 1. 50 times 
the component normal to the surface. However, for a 
2-2 impact landing, the tangent force parallel to th~ 
plane of motion is reduced by the cosine of 45 degrees . 
Therefore, in the application of the two-dimensional 
method described in Ref. 3 , the crushing forces of the 
main and support struts were determined such that the 
reaction force tangent to the surface, in the plane of 
motion, was about 1. 06 times the normal force. 

Insufficient data were available to determine the 
elastic properties. For the MSFC analysis using the 
method described in Ref. 3, elastic deflections were 
assumed for the main and support struts such that the 

TABLE I. MODEL AND FULL SCALE 
CONFIGURATION DATA 

Basic Module Data 

We: 175.1 3 N (39 . 371b) 
2 2 2 

k 0.406 m (4. 37 ft ) 

L2: 0.665 m (26.2 in) 

D 1. 197 m (47. 12 in ) 

C m : 623 N (1 40 Ib) 

C s : 623 N (140 Ib) 

Scale Factor 

216 

36 

6 

36 

36 

Pad Assemblies (Unsprung Mass) 

We: 27 . 27 (6.131b) 

Overall Vehicle 

We: 202.4 N (45.50 Ib ) 

k 2 : 0 . 427 m
2 

(4.60 ft2) 

L2 : O. 577 m (22.7 in) 

- -- -~~-

216 

216 

36 

Full Scale Data 

37830 N (8504 Ib) 

2 2 
14.6m (157ft) 

3.99 m (1 57 in) 

7.183 m (282 . 8 in ) 

22420 N (5040 Ib) 

22420 N (5040 Ib) 

5890 N (1324 Ibl 

43 , 720 N (9828 Ib) 
2 2 

15.38 m (165.6 ft ) 

3.46 m (1 36 in) 

effective vertical spring constant per l~g was 4. 90 
MN/m (28,000 lb/in) for the full scale vehicle. 

Results of the MSFC analytical analyses and the 
GAEC drop tests are shown in Fig. 6. Since the GAEC _ 
model was a one-sixth scale vehicle, the experimental 
velocity profile obtained applies directly (velocity 
scale factor of unity) to the full scale vehicle landing 
on the moon. The test model pads \/ere equipped with 
small prongs to simulate a restrained condition on all 
pads. A large coefficient of friction was assumed for 
t e analytical analyses. USing the method described 
in Ref. 2, which does not consider elasticity effects, 
the analytical results are somewhat optimistiC. Using 
the method of Ref. 3 , the analytical results are in gen
eral agreement with the experimental data but are 
more nonlinear. 

4 .0.----~----~--~~----__. 

'" "-
E 

3.5 

3.0 

;- 2 .5 

>-
l-
t) 

o 2.0 
-I 
W 
> 
-I 
<l: 1. 5 
t) 

I-
0:: 
W 
> 1.0 

0.5 

/.~ 

I 
AI B 

\ 

STABLE 

\ 
"
~ 

We = 43, 720 N 
k 2 = )5 . 38 m 2 

L 2 = 3.46 m 
D=7. IB3m 
L . F . = 3.5 
N = 4 
f' = 10 
8 = - 5 deg 
1>0 = 5 deg 
4>0 = 0 

DOWNHILL LANDING ,2-2 IMPACT 

O~--~---~----~----~-----~--~ 
o 0 .5 1.0 1.5 2.0 2 .5 

HORIZONAL VELOCITY t Vh, m/s 

A : Analytical Method of Ref. 3 
B : Drop Tests of Ref. B 
C : Analytical Method of Ref. 2 

3 .0 

FIGURE 6. COMPARISON OF ANALYTICAL AND 
EXPERIMENTAL RESULTS 

RE FERE CES 

1. Lavender, Robert E., "Lunar LogistiC System -
Lunar Touchdown," NASA TM X-50404, March 
15, 1963. 

85 



l __ 

2, Laven r , RobertE . , "Touchdown Dynamics Anal
ysis of Spacecraft for Soft Lunar Landing , " NA . 
TN D- 200 1, January , 1964. 

3. Lave nder, Robert E . , "Equations for Two 
Dime nsional Analysis of Touchdown Dynami c 3 of 
Spacecraft With Hinged Legs Including Ela: tic, 
Damping, and Crushing Effects," MSFC MTP
AERO-63-76, ovember 6, 1963 . 

4. "A Comparative Design Study of Modular St;, g(' 

Concepts for Lunar Supply Operations (U) , " TRW 
Space Tech. Labs. Rpt. 849 5-601 5-RLOOO , VoL. 
IIA, December 12, 1963 . (Confidential) 

G 

5. Floyd , J . and Taglarine, T., .iLLS/ LEM'Land
ing Investigation, " GAE C Structural Memo 63-S-7, 
March 27, 1963 . 

6 . Walton , W. C . , Jr . , R. W. Herr, and H. W. 
Leonard, "Studies of Touchdown Stability for Lu
nar Landing Vehicles , " AIAA Aerospace Sciences 
Meeting, January , 1964. (AIAA Preprint 64-94) . 

7. "Mid-Term Report of Lunar Landing Dynamics 
Systems Investigation," Bendix Corp. Rpt. MM
p4-4, June 1 , 1964 . 

8 . Donroe , F., "Results of Landing Gear Stability 
Drop Tests on 1/6 Scale Model," GAEC Rpt. LTR 
904-16001, September 6, 1963 . 

---- ----- -------------



[- _._.- -

v. ASTROPHYSICS 

87 



, 
A TOPOGRAPHICAL STUDY OF THE F2 REGION OF THE IONOSPHERE 

by 

W. T . Roberts 
and 

L. G. McDonald 

• SUMMARY 

N65- 24135 
Several aspects of tne l<'21ayer' (the region of 

highest electron density) of the ionosphere are inves
tigated. Contour maps of constant critical frequency 
ofthe F2 peak, and height of the F21ayerover the earth 
reveal a seasonal variabilitywhich may be predictable. 
The preliminary study shows that further work is nec 
essary in this area and that diurnal, as well as{p0 ar 
cycle variations, must be established. 

1. INTRODUCTION 

Of the many problems encountered in the orbiting 
of space vehicles, one of the most difficult is deter 
mining the atmospheric drag effects. One aspect of 
this problem is the question of how coulomb drag 
forces affect the vehicle. One of the first steps in re
solving this problem is to determine the number of ions 
above the earth's surface and how they vary season
ally, diurnally, and with the solar cycle. The Space 
Environment Group, Aero-Astrodynamics Labora
tory, is carrying out a study of the electron density 
(and therefore the supposed ion content) of the F 2 peak 
of the ionosphere, as well as the height variabilities 
involved. 

The purpose of this study is to determine global 
regions of high electron content, and to attempt to es
tablish patterns for these points. The parameters 
being studied are f F2, the maximum plasma frequency 
which can be reflgcted from the ionosphere, and h'F, 
the height atwhich this frequency is reflected. Monthly 
average values of the critical frequency of the F2 peak, 
f F2, and associated height data, h'F, reported by the 
o 

partiCipating stations in the Annals of the International 
Geophysical Year , were used in this analysis [1]. 

II . METHOD OF STUDY 

About one hundred and twenty stations scattered 
throughout the world supplied data on ionsopheric pa
rameters during the IGY. A value of either fo F2 or 
h'F for 1800 GMT was plotted at the geographical lo
cation of the station on a graph of latitude versus long
itude . On these graphs, isometric lines of either 
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constant frequency or height were drawn. The result
ing graphs show the rough variation in the monthly 
average value of the parameter over the globe. It is 
obvious that such a method does not allow an examina
tion of the fine structure. The fine structure in the 
ionosphere either may be averaged out over a month's 
time, or is not detectable between the widely scattered 
pOints on the graph. There are places on the graph 
where several stations are located in the same general 
area, and at these points the contours become more 
complex. One example of such a place is around 50° 
N latitude and 10° E longitude. In several of the graphs, 
"kinks" are noticed in the otherwise smooth contours 
at this point. This comes from trying to follow the 
micro-patterns resulting from stations in near proxi
mity. 

Figures 1 through 8 are contours of either con
stant frequency or height for the months of March, 
June, September, and December, 1958. These months 
are normally selected for studies, since March and 
September are months of equinox and June and Decem
ber are the solstice months. 

The frequency contours represent electron densi
ties at the F2 peak of the ionosphere by the relation 

where N is in electrons per cubic centimeter and f is 
the reflected frequency in megacycles per second. 
This equation neglects electron collision damping, but 
is a wholly acceptable approximation. Electron densi
ties are measured by generating a sweep frequency 
radio wave vertically into the ionosphere . The time 
delay is a measure of the height, and the frequency is 
a measure of the electron content at that height. As 
the frequency is increased , the wave penetrates higher 
into the ionosphere, until at a certain frequency a fur
ther increase in frequency produces no reflection from 
the ionosphere . This Simply means that the maximum 
electron content has been reached at this pOint, and the 
s ignal is passing through the ionosphere into space. 
The frequency at which this phenomenon occurs is the 
ionospheric parameter f F2. 
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III. DATA ANALYSIS 

Figures 1 and 2 are contours of constant critical 
frequency and height, respectively, of the F 2 layer for 
the month of March 1958 . It is interesting that the 
contours tend to form into either high or low cells at 
various geographical locations throughout the map . 
Figure 1 shows that the electron density reaches a 
maximum during the day as expected; however, the 
increase in electron density in the nighttime hours be
ginning at about 70° E around the geomagnetic equator 

FIGURE 1. CONTOURS OF CONSTANT FRE
QUENCY(MEGACYCLESPER 
SECOND) OF THE F2 PEAK AT 
1800 GMT FOR THE MONTH OF 
MARCH 1958 . THE HEAVY DASH
ED LINE IS THE PROJECTED 
GEOMAGNETIC EQUATOR 

is not so easily explained. In the area outside of ±30° 
latitude electron densities act as one might ordinarily 
expect; that is , they decrease to a nighttime low. In 
Figure 2 the height contours are generally lower during 
the day than at night; however, one also observes the 
contours of height beginning to increase around the 
geomagnetic equator at about 80° E longitude . 

Figure 3 represents the critical frequency of the 
F2 peak during the month of June. The contours show 
that at 1800 GMT the electron density begins to in
crease around 100° E longitude, or about 00:40 LMT 
which once again is long before sunrise. There is also 
an anomalous increase in el ectron density at about 0° 
to 400E longitude and 5° to 25° N latitude. 

• 
-l 

FIGURE 2. CONTOURS OF CONSTANT HEIGHT OF 
THE F2 PEAK AT 1800 GMT FOR THE 
MONTH OF MARCH 1958. THE HEAVY 
DASHED LINE IS THE PROJECTED 
GEOMAGNETIC EQUATOR. HEIGHTS 
ARE IN KILOMETERS. 

1100 OIllT JUHE I.~ 

FIGURE 3. CONTOURS OF CONSTANT FRE
QUENCY (MEGACYCLES PER 
SECOND) OF THE F2 PEAK AT 
1800 GMT FOR THE MONTH OF 
JUNE 1958. THE HEAVY DASHED 
LINE IS THE PROJECTED GEO
MAGNETIC EQUATOR. 
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Figur~ 4 is the associated graph for h 'F for the 

month of June. This graph indicates a much more 
"/ariable ionospheric height structure than the previous 
height graph. Thisgraphis filledwith "cells"ofmaxi
mum and minimum heights. Probably the most inter
esting of these cells are those which occur from 1 00° 
to 180 0 W longitude . At about 40 degrees north there 
is a low cell wi th a height of 190 kilometers. Near the 

FIGURE 4 . CONTOURS OF CONSTANT HEIGHT OF 
THE F2 PEAK AT 1800 GMT FOR THE 
MONTH OF JU E 1958. THE HEAVY 
DASHED LINE IS THE PROJECTE D 
GEOMAG ETIC EQUATOR. HEIGHTS 
ARE IN KILOMETERS. 

equator , there is a high cell with a central height of 
3 10 km; and at about 70 degrees south , there is an
other high cell with a height of 330 kilometers . During 
the night the northern hemisphere tends to have cell s 
with high altitudes, whereas the southe r;1 hemisphere 
ha s predominantly cell s with low altitude. 

The electron density distribution for the month of 
Se ptember i s shown in Figure 5. The highs which oc
cur during the day tend to stretch into the night in the 
northern hemisphere; but the southern hemisphere 
te nds to act fairly normal. 

Figure 6 s hows contours of constant height for this 
same month, and appears to be fair ly normal except 
at about 10° north lati tude a nd 30° E longitude where 
there appears a very ~gh cell dropping to a low at 
about 120° E longitude . 
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FIGURE 5. CONTOURS OF CONSTANT FRE
QUENCY ( MEGACYCLES PER 
SECOND) OF THE F2 PEAK AT 
1800 GMT FOR THE MONTH OF 
SEPTEMBER 1958. THE HEAVY 
DASHED LINE IS THE PROJECTED 
GEOMAGNETIC EQUATOR. 

FIGURE 6. CONTOURS OF CONSTANT OF THE 
F2 PEAK AT 1800 GMT FOR THE 
MONTH OF SEPTEMBER 1958. THE 
HEA VY DASHED LINE IS THE PRO
JECTED GEOMAGNETIC EQUATOR. 
HEIGHTS ARE IN KILOMETERS. 
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The low 'cel'l of foF; which occurs at about 20' N 

latitude and 70'W longitude in Figure 7 is very unusual. 
This indicates that during the day in the northern hem
isphere there occurs a decrease in electron density at 
this location. It is also interesting to notice the way 
in which electron content tends to remain constant into 
the night around the equator. There is even an in
crease in electron density at about 80' E longitude. 

s~~~~~-L~~~~~Jw~o~~,o~.o~~~~~~,oo~'w~~~J,~~~ 
W LOfoIGITUDf: ,.~ ) [ 

FIGURE 7. CONTOURS. OF CONSTANT FREQUENCY 
(MEGACYCLES PER SECOND) OF THE F2 PEAK AT 
1800 GMT FOR THE MONTH OF DECEMBER 1958. 

THE HEAVY DASHED LINE IS THE PROJECTED 
GEOMAGNETIC EQUATOR 

Figure 8 shows the height of the F2 peak during 

December. The high cell which occurs in the no rthern 
hemisphere during the day is unusual, and the night
time low in the northern hemisphere with a high cell 
in the nighttime southern hemisphere appears to be the 
reverse of what was said of Figure 4. 

In the frequency graphs the southern hemisphere 
appears to be fairly consistent throughout the year with 
nighttime densities consistently lower than the daytime 
densities. Around the equator the situation is. quite 
different. In March there tends to be a buildup in elec 
tron density shortly after midnight, while in June, 
September, and December, the electron density con
tours tend to drag out into the night with little or no 
change. In the northern hemisphere the contours tend 
to be rather consistent above about 45 degrees, but 
between 10' Nand 45' N latitude the seasonal variability 
is rather difficult to understand. It is also noticeable 

FIGURE 8. CONTOURS OF CONSTANT HEIGHT OF 
THE F2 PEAK AT 1800 GMT FOR THE 
MONTH OF DECEMBER 1958. THE 
HEA VY DASHED LINE IS THE PRO
JECTED GEOMAGNETIC EQUATOR. 
HEIGHTS ARE IN KILOMETERS. 

that the geomagnetic equator tends to exert an influ
ence on the data. In the morhing hours the regions of 
high electron density tend to lie south of the geomag
netic equator, whereas in the afternoon the highs tend 
to be north of the geomagnetic equator. 

The height contours appear to be most complex 
during the solstice months and least so around the 
equinox months. March appears to be especially calm, 
with September showing considerably more variation. 
The main feature which is always present is the in
crease in height of the F 2 peak just after nightfall just 
north of the geomagnetic equator. During the day there 
are generally low height cells except in the month of 
June when a high cell occurred in the morning hours. 
Generally, there appear to be nighttime low cells in 
the northern hemisphere and nighttime high cells in 
the southern hemisphere, except, once again, for the 
month of June, when this situation is reversed. 

It is apparent from the foregOing discussion that 
more data are needed to make a more thorough eval
uation of the ionospheric variations. We have looked 
into the nighttime peak in height at the geomagnetic 
equator and the electron density increases after sun
set. These two anomalie s will be studied to determine 
the diurnal variations which each experiences. 
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IV. FUTURE PLANS 

Ionospheric data have been ordered fro the World 
Data Center for the" International Year of the Quiet Sun. 
These data will be a nalyzed in the same way as the 
IGY data. They will also be compared with the IGY 
data to study variations appearing in the data from 
time of maximum solar ac tivity to time of minimum 
solar activity. The methods of anal ysi s which will be 
pursued in the continuation of this study will be (a ) to 
construc t graphs for each month of the year 1958 to 
s tudy the progression of the various "cells" of high 
and low ele ctron densities and the associated height 
contours, and (b) to cons truct graphs for each hour 
of the day , Greenwich Mean Time , to study the diurnal 
variations which occur as the sub- solar point pro-

92 

, . , 
gresses a round the globe. This will' be do'ne for each 
of the four months of March, June , September , and 
December . 

It is hoped that s uch a study program will produce 
r esult s which will a id in the refinement and optimi za 
tion of trajectory and orbital parameters required in 
later missions . 
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'AN EVALUATION OF A TECHNIQUE FOR PREDICTING SOME INDICATORS OF SOLAR ACTIVITY 

By 

Jeanette A. Scissum 
and 

Robert E. 
" 24~iS 
SUMMARY 

Results of prediction models must be monitored 
to insure that specific failure or low success areas 
are detected and corrected at the earliest possible time 
in the developmental stage of the system . In this re
port, results of the USAF Air Weather Service method 
for predicting solar flare occurrence probabilities, 
amount of 2800 MC solar noise flux, and geomagnetic 
activity are compared with actual observations of these 
parameters on the surface of the earth. It is concluded 
that the technique is successful; however, there is a 
tendency toward a persistency type of prediction, a not 
unusual occurrence in the formulative stage of most 

prediction teChni:ue:TRODUCTION ~ 

Authors of current publications on the properties 
of the upper atmosphere have concluded from analyses 
of satellite orbit perturbations and observations from 
rocket-borne probes that above the level of diffusive 
equilibrium, approximately 105 ±5 kilometers, the 
density, temperature, and molecular weight are highly 
dependent upon the level of solar activity. While the 
amount of ultra- violet radiation from the sun (the 
energy that actually causes the changes) cannot be 
measured directly on the earth's surface , there are 
certain indicators of the level of solar activity that can 
and are being measured and recorded in a systematic 
manner . These indicators are the number of sunspots 
visible on the solar diSC, the amount of 10. 7 centi
meter solar radio noise flux, and the three-hourly geo
magnetic activity . 

Several models for computing or predicting the 
temporal and spatial variability of the natural space 
environment parameters (density , temperature , and 
molecular weight) have been derived which are func
tions of either the known or predicted values of these 
indicators. Known values of these parameters are re
quired in post- flight mission evaluation studies while 
predicted values are required in pre- flight mission de
termination, orbital lifetime prediction, and launch 

Smith 

condition studies. Inasmuch as the natural environ-
ment parameter models are based on numerical values 
of these indicators, highly accurate methods for pre
dicting values of these indicators, as far in advance as 
possible,are necessary, 

Further, mission success is entirely dependent 
u]XJn the reliable performance of both material and 
personnel in the harsh environment of outer space, 
particularly, the radiation environment, and more spe
cifically, the radiation environment during and after 
a large solar flare or solar proton event. The accu
rate and reliable prediction of these events will greatly 
enhance the probability of mission success. 

Prediction models, expecially those in the devel
opmental stage, must be monitored continuously and 
rigorously to insure that acceptable accuracy levels 
are attained . This report presents an attempt to sub
stantiate one metho ciaof predicting these solar activity 
indicators, 

II. DISCUSSION 

Headquarters, Air Weather Service, Scott Air 
Force Base, illinois, has developed a method for pre
dicting these various solar activity indicators. Each 
day of the work week a message containing the follow
ing information is transmitted to several using agen
cies: 

Part I: Current observations of activity on the 
solar disc as reported by the High Altitude Observa
tory at Boulder, Colorado. 

Part II: Class 2 or greater solar flare and solar 
proton event probabilities during the five-day period 
following the day of transmission of the message. 

Part III: The 2 00 MC solar radio noise flux for 
the day of transmission as recorded at Ottawa, Canada, 
and the predicted values for the three succeeding days . 

Part IV: The geomagnetic index, Ak, for the day 
of transmission as recorded by Ft. Monmouth, ew 
Jersey, and the predicted values of ap for the three 
succeeding days. 
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Information from these four parts of the message 

for the months of March, April, and May is presented 
graphically as follows. 

Graph 1 compares one-, two - , three-, four-, and 
five-day predictions of the probability of occurrence 
with actual occurrences of solar flares. There was 
only one Class 2 flare during this period; it occurred 
on the fourth day of a period during which a fifteen per
cent probability of occurrence was forecast. A fifty 
percent probability of occurrence was forecast for one 
five- day period and, while no Class 2 or greater flare 
occurred, both a Class 1 and a Class 1+ flare occurred 
on the fifth day of the forecast period. 
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GRAPH 1. PERCENT PROBABILITY VS. ACTUAL 
OCCURRENCE OF SOLAR FLARES 

Graph 2 compares one-, twO-, and three - day pre
dictions with observed values of the 2800 MC solar 
radio noise flux emanating from the sun _ The predicted 
values are generally in phase with the observed values; 
however, the only major change in noise level predicted 
was one, two, and three days, respectively, after the 
actual day of occurrence, indicating a tendency towards 
a persistency or no change type of forecast. 
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Graph 3 compares, one- , two-, and three-day 
predicted values of ap with observed values of A

k
. All 

l~~1\ ~MllM (]J1~I'o!J~M 
~n~Do[l,~hD ~J~6~j~ 

I~~nf\tb[\~b J~~rsk~~ 
'" 

~AMN!kM 
GRAPH 3. PREDICTED VALUES OF a VS . ACT-

UAL VALUES OF Ak P 
three prediction profiles show a close phase relation
ship with the observed val ues ; however, it is impos
sible to determine a percentage accuracy because the 
Ak value reported in the message is merely an indi
cator of the predicted ap ' and there is no scale rel a
tionship on which a more definite comparison can be 
based . 
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B'reak~ in the data presented on all three graphs 

are due to (1) communication failures during the early
stages of the program, and/or (,2) the present concept 
of operation whereby forecasts are made only on norm
al work days. As the data requirements increase , the 
operational capability will be increased to seven days 
per week. 

III. CONCLUSIONS 

Table I shows that the one-day prediction is the 
most accurate with the two- and three - day accuracies 
usually decreasing sequentially. This resul t is in gen
eral agreement with most prediction methods in the 
developmental stages. 

Preliminary conclusions from this admittedly 
short period are that the average overall accuracy of 

, ~ 

TABLE 1. 2800 MC PREDICTION ACCURACY 

the prediction method decreases as the time period for 
which the forecast is valid increases. Further, it 
must be remembered that this verification covers only 
a time period during which the solar activity is a very 
minimum; therefore, the conclusions as to the accuracy 
of the method should not be applied unreservedly to a 
period of high solar activity. 

This verification program is being continued and 
periodic reports will be issued as the data sample in
creases and the solar activity level increases. 
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A METEOROID FLUX AND PUNCTURE MODEL FOR NEAR-EARTH AND CISLU AR SPACE 

by 

Charles C. Dalton 

SUMMARY 

N65-24137 
Presented in this report is a model for th~ mean 

cumulative flux of meteoroids which includes the ap
propriate earth- shielding factor as a function of dis
tance from the surface of the earth and which is as 
accurate as present information will support. A punc
ture model is presented forvehicles with homogeneous 
metallic walls . The results can be used to determine 
the no-puncture probability for particular vehicles and 

Symbol 

p 

Definition 

Angle of impact respect to the normal. 

Wall thickness in centimeters punctured 
by meteoroids of mass m. 

Meteoroid puncture flux IE r second per 
square meter total area of a randomly 
oriented surface . 

1. INTRODUCTION 

The meteoroid hazard to space vehicles , to e'quip-

missions when the relation between bumper or sand
wich-typewall structures and the equivalent thiCk~ess 
of a hOrn::Jgereou5 metallic wall has been established . 

DEFINITION OF SYMBOLS \J ment and structures in space, and to astronauts con

Symbol 

m 

F 
s 

h 

v 
a 

v 
c 
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Definition 

Meteoroid mass in grams. 

Meteoroid impacts per square meter of 
randomly oriented surface per second of 
mass equal to or greater than m 

Distance from the s urface of the earth in 
kilometers. 

Partial derivative of log F with respect 
s 

to log m . 

Value of log F for vanishing log m. 
s 

Meteoroid density in grams per cubic 
cp.ntimeter. 

Meteoroid geocentric velocity in kilo 
meters per second. 

Meteoroid velocity relative to a moving 
vehicle, km per second. 

Meteoroid crater depth in thick walls in 
centimeters , 

Wall denSity in grams per cubic centi
meter . 

Wall hardness in Brinell units. 

tinues to be uncertain. It is expected that better in
formation will become available from tim e to time , 
and consequent revision will be appropriate. A re
lation between bumper or sandwich-type wall struc
tures and the equivalent thickness of a homogeneous 
metallic wall has been suggested by Nysmith a nd 
Summers [1]. Although present' knowledge about the 
mechanics- of -materials aspects of meteoroid impact 
is not adequate for some design purposes, most of the 
uncertainty about the meteoroid hazar d is due to the 
continued inability to interpret definitively the rele
vant astronomical and space data w~ich have been 
published during the last ten years. This contention is 
supported by the error propagation in Reference 2. 
The sufficie~tly definitive interpretation may not be 
forthcoming until after more direct and more precise 
space measurements have been made. 

Whipple ' s [3] relation between the flux of small 
meteoroids and distance from the surface of the earth , 
combined with the estimates by McCracken and Dubin 
[ 4] and by Hawkins [5] for the relation between the 
fluxes of larger meteoroids near the earth and on the 
moon, is used to extend Whipple's [6] flux model to 
include the d'istance from the surface of the earth as 
a parameter . The model so obtained is substituted 
for 'the flux model in Reference 2 to find the relation 
between material parameters and puncture flux. All 
logarithms have been converted to base ten. Errors 
on indicated values are apprOximately normally dis
tribute,d, and probab~e errors are indicated. The in
dicated numerical estimates of uncertainty were e s
tablished by the method given in Reference 2. 
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'II. . Mi.Iif EOROID FLUX MODEL FOR t;ISLUNAR 

. SPACE 

With data from rocket firings, satellites, and 
space probes, Whipple [ 3] found that the mean impact 
rate F s on randomly oriented s~faces, including all 
particles greater than mass 10 gram and adjusted 
for the differing sensitivities of the equipments, varies 
inversely with the 1.4 power of the distance h from the 
surface of the earth; and that at some distance greater 
than h = 105 kilometers, the impact rates approximate 
those expected from calculations on the zodiacal cloud. 
Also Whipple [ 6] , by adjusting the initial mass of the 
zero-visual-magnitude meteor from 25 grams to 1 
gram in Hawkins and Upton's [7] flux model based on 
photographic meteors, and by introducing a near- earth 
shielding factor of 1/2, fo und the following mean flux 
model for a randomly oriented surface near the earth: 

log F = -1. 34 log m - 14. 48. 
s 

( 1) 

At the seventh meeting of the NASA Meteoroid 
Technology Advisory Working Groupwhichwas heldat 
Goddard Space Flight Center on June 17 and 18, 1964, 
(Secretary: Mr. M. Charak, Code RV-1, OART, 
NASA Headquarters, Washington, D. C.) a motion 
was adopted that,for present considerations of mete
oroid hazard near the earth, a non- segmented linear 
relation between log F s and log m will be assumed. It 
seems reasonable to apply this relationship throughout 
cislunar space with the provision that both slope and 
intercept can be functions of location ; i. e . , 

log F = {32 log m + {33 ± 1. 3, 
s 

( 2) 

where both slope {32 and intercept {33 are independent of 
m. 

Briggs [ 8] found that zodiacal-light observations 
are consistent with the theoretical apparent br~ghtness 
due to. scattered sunlight from thesteady-state system 
of particles in the solar system under the action of the 
Poynting-Robertson effect when it was assumed that 
the concentration of particles with radii equal to or 
greater than 50 microns is inversely proportional to 
mass m at a distance of one astronomical unit from 
the sun. This would correspond to .a negative unIt 
value of {32 in Eq. 2 along the earth 's orbit but not 
necessarily near the earth. Since the 50 microns 
radius entailed a particle density of 0. 1, Briggs' [ 8] 
resultis with respect to meteoroids with log m equal 
to or greater than -7. 3. 

Hawkins' [5] derivation from existing meteorite 
data shows that the flux of impacts of large stone mete
oroids onto the earth with mass equal to or greater 

than specified mass in kilograms is inversely pro
portional to the specified mass. Also Hawkins [5] 
indicates that the flux of large bodies onto the moon 
should be half as much as the fl ux onto the earth. It 

seems reasonable to assum~ that tl~e flux onto the moon . 
of meteoroids with mass equal to or greater than one 
gram may be only 40 percent of the corresponding val
ue onto the earth. 

McCracken and Dubin [4] in a study of "Dust 
Bombardment on the Lunar Surface" stated: "The 
geocentric distance to which the high fluxes measured' 
near the earth apply is not known; the fluxes of small 
dust particles on the moon probably fall between the 
values indicated by the zodiacal light studies and the 
values indicated by the direct measurements obtained 
in the viCinity of the earth. The fluxes are, however, 
thought to be close to those indicated by the zodiacal 
light studies," These results can be generated by 
assuming that, at the moon's distance from the earth, 
the values of {32 and {33 in Eq. 2 are -1 and 40 percent 
of the value of (33 in Eq. t, respectively; i. e. , 

log F = - log m - 14.58 ± 1. 3. 
s 

( 3) 

The next step toward establishing a meteoroid flux 
model for cislunar space is to write Eq. 2 as an ap
propriate function of distance h in kilometers from the 
surface of the earth so that Eqs. 1 and 3 are found 
when the values of log hare 2 and 5.59, respectively. 
Three approaches toward accomplishing this purpose 
could be pursued: (1) a theoretical approach based 
on considerations of particle dynamics, (2) an em
pirical approach based on direct measurements in 
space, and (3) a practical approach based on a con
sideration of present limitations of both the theoreti
cal approach and the empirical approach. 

The theoretical approach toward establishing a 
meteoroid flux model for cislunar space is not satis
factory because the distributions of dynamiC param
eters have not been definitively established, and the 
physical basis bywhich they might be established from 
theoretical considerations is problematical. Velocity 
information is available only from photographic and 
radar meteors, and it is not yet known whether the 
geocentriC velocities of the smaller particles (those 
which have been detected in space) tend to be higher 
or lower. 

The empirical approach based on direct measure
ments in space is so far only a little more satisfactory 
than the theoretical approach because the measure
ments (1) have been of uncertain interpretation with 
respect to particle mass, (2) have been limited to 
the small particle s, ( 3) may have had considerable 
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uncertainty in the threshold of mass sensitivity from 
time to time and from experiment to experiment, and 
(4) have not been very well distributed throughout 
cislunar space. 

~ 

The practical approach in establishing f32 and f33 in 
Eq. 2 as functions of the distance h from the surface 
of the earth is as follows: (1) Eq . 2 must reduce to 
Eqs. 1 and 3 when the values of log hare 2 and 5.59, 
respectively; (2) the partial derivative of log F with 

s 
respect to log h must be -1. 4 when log h and log mare 
2 and - 9, respectively, in agreement with Whipple's 
[ 3] empirical model; ( 3) log F is assumed to be a 
continuous monotonic decreasing ~unction of log hand 
the rate of decrease of log F s with respect to log h is 
assumed to decrease with respect to log h throughout 
cislunar space . These results are given by the follow
ing expressions for f32 and fh: 

O. 26(log h - 2) 
f32 = - [1 + O. 34e -0. 24(10g h -2)] (4) 

!33 = - 0. 028 (log h - 2) - 14.48, (5) 

which are illustrated graphically over the interval 
2 :s log h :S 6 in Figure 1. Corresponding values for 
log F s by Eq. 2 are illustrated in Figure 2 by a family 
of curves for the followin·gvalues of logm: -1 0, -7.5, 
-5, - 2.5, and O. 

III. NUMERICAL VALUES FROM REFERENCE 2 
WITH SUBSTITUTE CISLUNAR FLUX 
MODEL 

log P = -0. 35±0. 67 = log O. 44±0. 67 
p 

l og v = 1. 48 ± O. 13 == l og 30 ± O. 13 
a 

v = v 
c a 

( 6) 

( 7) 

( 8) 

log Po = (1/3) log ( p
p 

m/Pt 
H

t
) + (0.500 ± 0. 075) 

log [(v/4. 88) cosx2]+ 0. 778± 0.054 (9) 

log p == log p + 0.200 ± 0 . 067= log 1. 59 ± 0.067 (10) 
o 

Therefore, with random orientation, one obtains 
the following formulas for the hazard from meteoroids 
in cislunar space: 

f( x2) == sin 2x2 = probability density function 

for x2 

log Po = (1/3) log (m/ptH t ) + 0.95 ± 0. 26 

l og P = (1 /3) log (m/ptH
t
) + 1. 15 ± 0. 26 

9 

( 11) 

( 12) 

( 13) 

3 ) ' . ' . .. log =!32 l og(p ptHt - 3.45] +f33± 2 . 0, ( 14) 

1':':1; :!'" J l'i:";:, .'lg , .. :i: ,:, I:';:l g' 
I:i:' ~. ~ ~,~~~. 

I ~ .. ;. ,~:~~. 0 
: : 'i,: . I': '::' ii' . l'i~ . Ii,,; . ): . : gi: I', Ii: .. 

,,. IE, . 
·~·f hu.iW::I''''I' ':':r" I!::. r:". F. , ... i e: 

FIGURE 1. SLOPE!32 AND INTERCEPT !33 FOR LOG 
F AS A LINEAR FUNCTION OF LOG m 

...s..... 

+-~ ~; -.- , -:--;- -+-TI \. • .... r 

+'> 11-1 If I 

I 
, I 
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FIGURE 2. FLUX F s OF METEOROIDS PER SQUARE 
METER PER SECOND WITH MASS EQUAL TO OR 

GREA TER THAN m GRAMS AT h KILOMETERS 
ABOVE THE SURFACE OF THE EARTH 

WITH RANDOM ORIENTATION 



1- - wher~ <p if U:e pUnctu~e flux and Pi' Ht' and p are wall 

I specific density, Brinell hardness, and thickness in 
centimeters, respectively . 

IV. ILLUSTRATION 

With aluminum 2219-T87, for which the density 
P
t 

and hardness H
t 
are 2.82 and 128, respectively, and 

wIth the expressions for (32 and (33 from Eqs. 4 and 5 
substituted into Eq. 14, one obtains the results for log 
1> as a function of log h which are illustrated in Figure 
3 by a family of curves for the following values of wall 
thickness p: 0:001, 0.01, 0.1, and 1 centimeter. 

V. CONCLUSIONS 

The meteoroid hazard to space vehicles , to equip
ment and structures in space, and to astronauts in cis
lunar space is not well known. The puncture flux 
through specified thicknesses of aluminum 2219-T87, 
as illustrated in Figure 3, is believed to be accurate 
to within about two orders of magnitude probable error . 

FIGURE 3. PUNCTURE FLUX 1> OF METEOROIDS 
PER SQUARE METER PER SECOND 
THROUGH A RANDOMLY ORIENTED 
WALL OF ALUMINUM 2219-T87 OF P 
CENTIMETERS THICKNESS AT h 
KILOMETERS ABOVE THE SURFACE 
OF THE EARTH 

In addition to the hazard from primary meteoroids, 
which has been considered in this article, there may 
be considerable further hazard on or very near the 
moon due to secondary particles which are splattered 
up from the lunar surface. 
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SURFACE PROPERTIES OF TURBULENCE IN THE BOUNDARY LAYER 

By 

Dr. Hans A. Panofsky':' 

SUMMARY • 
N65 -241}8 

Presented in this paper is a d iscussion~n wilftl 
variations in the surface boundary layer where the 
vertical variation of stress is negligible . Relation
ships between mean wind speed profiles , gust factors , 
and standard deviations and spectra of horizontal wind 
components (lateral and longitudinal) are discussed 
as a function of stability and terrain conditions . i~ 

Symbol 

u* 

T 

P 

z 
0 

V 

z 

In 

Ri 

a u 

aw 

x, y, z 

a 
C\' 

a() 

LIST OF SYMBOLS ~)J 
Definit ion 

fr iction velocity defined bY ,fT 
p 

stress in horizontal direction due to wind 

dens ity of air 

roughness parameter 

wind speed 

he ight 

base of natural logarithm 

Richardson Number 

standard deviation of u component of wind 

standard deviation of w component of wind 

coordinate system 

standard deviation of lateral wind direction 
(azimuth) 

standard deviation of vertical wind direc 
t ion (elevation) 

u, v, w wind components along, x. y , z axes , 
respectively 

n 

S (n) 
u 
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wave number 

spectral density of u- component of wind as 
a function of wave number n 

Symbol 

S (n) 
v 

k 

Definition 

spectral dens ity of v- component of wind as 
a func tion of wave num bel' n 

dissipation of turbulent energy 

von Karman's constant which usually has 
the value 0.4 

1. INTRODUCTION 

The following will describe some of the charac 
teristics of the "surface boundary layer," defined as 
the layer in which the vertical varia tion of s t ress is 
negligible . Thus, the stress, or better the frict ion 
velocity u~" defined by 

J! 
p 

can be us d as a parameter. It is generally der ived 
from the wind profile or , if ava ilable , from the cor
relation between longitudina l and vertical wind . 

Additional parameters are the roughness length , 
zo ' and the Richardson num bel' (or the r a tio of height 
to Monin length) which describe the relat ive impor
tance of mechanical turbulence and convection. Dur 
ing high wind conditions , convection is relatively small 
and the Richardson number is a l so small , so that the 
properties observed in " neutral" s t ratification are a 
good approximat ion. Only Zo and u>~ a r e then the im 
portant parameters , and once they are given , every
thing else is well determ ined. 

A true constant stress layer can be assumed only 
over homogeneous terrain. If a ir has recently left 
rough terrain, the stress will increase with height up 
to an interlace above which is is more or less constant . 
Below the interface, turbulence character is t ics are 
those of smooth air; above the interface , they are 
those of the rough a ir . The typical s lope of such in
terfaces is 1/'10. 

':' Professor of Meteorology , Pennsylvania State 
University, University Park , Pennsylvania, and con
sultant to Aero- Astrophysics ·Office . 
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. II. Wil'ID PROFILES OVER ROUGH TERRAIN 

A. NEUTRAL AIR 

In neutral air, the wind profile is given by 

2. 5 u* In ~ 
Zo 

( 1) 

where V is the wind speed and In is base of natural 
log. Over uniform terrain , Z is a constant which o 
may change in time only if the roughness changes with 
tim e. In principle, the roughness length can be de
termined from any set of two wind observations at two 
heights in neutral air. In practice, it is better to cal
ibrate the site by taking many tests of such observa
tions and then treat Zo as known. Then, given zO ' 
each wind observation a llows estimation of u':' l;>y 
equation ( 1) . 

V 

B. CORRECTION FOR NONADIABATIC (DIA
BATIC) CONDITIONS 

For diabatic conditions , equation ( 1) becomes 

( 2) 

where >¥ (Ri) is a universal function of Richardson 
number Ri, which is positive in unstable a ir and neg
ative in stable a ir. It is well known in unstable air 
only. Once Zo is known, u* can be computed from a 
wind observation, subject to a correction for Richard
son number. This requires measurement of the lapse 
rate. It turns out that the Richardson number can be 
estimated from the lapse rate and a single wind . For 
fast winds, the Richardson number correction is usu
ally small. 

In unstable air, u* is poorly determ ined by one 
measured wind. 

III. WIND PROFILE OVER NONUNIFORM TERRAIN 

Over nonuniform terrain, with fast winds , a s im
ple logarithm ic profile will not fit . The lowest por
tion will be representative of the local roughness, the 
next portion to the roughness farther upstream, the 
next to the roughness even farther away and so forth . 

In the relatively simple case of a sharp change of 
roughness (with uniform roughness on either side), 
the profile can be approximated by two logarithmic 

portions with a sharp division in between. For ex
ample, if the local roughness (at the site Of measure-
m ent) is small, the lower part of the profile will have 
a slope corresponding to small u"". The upper part 
will have' a different slope reflecting the larger u* of • 
the ground farther upstream. 

IV. STANDARD DEVIA TIONS OF WIND COMPO
NENTS 

Let u, v, and w stand for the wind components in 
the x, y, and z directions, the x-direction being par
allel to the mean wind. (Rotation of the mean wind 
with height in the surface layer is negligible. ) 

The follOWing give standard deviations in neutral 
a ir (to very good approximations) at many sites : 

a 
u 2. 5 U"" ( 3) 

a 2. 2 u* 
v 

( 4) 

a 
w 1. 1 U"" ( 5) 

Using equation (1) for neutral air, we can write in
stead: 

a/V 
Z 

1. O/ln - ( 6) 
Z 

0 

a / V 
Z 

a . 88/ ln- ( 7) 
a v z 

0 

= a / V = 
z 

ae . 44/ ln - ( 8) w Z 
0 

Here a a and a e are the standard deviations of wind 
direction , lateral and vertical, respectively, in rad
ians . Note that all the quantities in equations (6) -

(8) decrease upward in neutral air, but the quantities 
in (3) - (5) are constants (over homogeneous terrain). 
Over heterogeneous terrain, all too standard devia
tions would increase upward if the local roughness is 
smooth and the roughness upstream is large. Note 
also that the quantities in equations (6) - (8) are in
dependent of wind increase with z • o 

Since frequency distributions of u, v, and ware 
approximately Gaussian, equatioIE (3) - (8) can be 
used to derive gust factors. For example, a speed of 
V + 2 (]' u would give the value exceeded 2,5 percent of 
the time. The gust factor would be 1 + 2. 5 uo/V = 1 + 

z 
2/ln-

Zo 
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Equations (3) - ( 8) must be corrected for non
zero R ichar&.3on nWll ber, corrections which are small 
in strong winds over rough terrain. First, equa tions 
( 3) - ( 5) must be corrected. The correc tion is very 

• small for uw' The Uv equation might double in un
stable air; for Uu the maximum corr ection is about 
1. 5. If we then proceed to equations ( 6) - ( 8) , a 
further correc tion is needed in that equation (2) must 
be used for u~" in equations ( 3) - (5) instead of equa
tion (1) • This gives an additional increase for the 
quantities in equations (6) - (8) in unstable a ir. 

V. SPECTRA OF THE HOR IZONTAL WIND COM
PONE·NTS 

Of most interest here are the high freque nc ies 
(per iods of 10 seconds and less) . Here, the conclu
sions from the Kolm ogorov theory of the inertial s ub
range are in good agreement with observations . In 
fact, they even apply to longer periods of V. 

Further, the " universal" c<1nstants in these equa
tions are now well known. We thus have 

n S (n) 
u 

and 

n S (n) 
v 

( 9) 

( 10) 

Here the left sides are the spectra multiplied by fre
quency, which come out in units of velocity squared, 
n is the wave number, S(n) is the spectral density as 
a function of n, and E is the dissipation , which under 
neutral conditions is given by 

E = 2. 5 u"" 3/ kz . 

With equation ( 1) , we finally have , 

and 

S (n) 
v 

( 11) 

( 12) 

( 13) 

For longer wave lengths, it will suffice to make 
some general statements-. The horizontal scale of 
lateral velocity is almost independent of height; that 
of longitudinal velocity increases slowly with he ight. 
The low-frequency port ion of the spectra is mostly 
dependent on laps e rate , particularly for the latera l 
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components . Infact, in neutral a ir, la te r ai'wind ' com 
ponents have negligible low- frequency energy. . 

VI. VERTICAL STRUCTURE OF T URBULENCE 

The following is based only on tower data f rom 
the Brookhaven National Laboratory , Upton , Long Is 
land, New York, and may not be r epresentative of 
other locations . Under unstable conditions, correla
tion coeffic ients between longitudinal wind components 
at different he ights are approximately equal for equa l 
height ratios (23 a nd 46 m is about the sam e as 46 m 
and 91 m) . This implies that the vertical scale is ap
proximately a linear function of he ight and that turbu
lence is hom ogeneous on a logarithm ic he ight scale. 

For neutra l conditions, a ~-:;, scale leads to more 
nearly homogeneous turbulence , suggesting that the 

. 2/ 3 
scale of turbulence vanes as z . 

Studies of cross spectra between diffe r e nt level s 
l ead to the following conclusions : 

1. Eddies slope down- wind by about 45 degrees 
on the average so that maximum corr elation exists 
for upp~r winds preceding lower winds . 

2. Separ ate analys is of eddie s of differe nt size 
shows tha t small eddies are nearly isotropic. Large 
eddies are elongated horizontally. The horizontal axis 
is m uch larger than the vertical axis in stable air, 
slightly larger in neutra l a ir, and slightly shorter than 
the vertical axis, only in extrem ely unstable ai r . 

3. If we are interested only in high-frequency 
variations (say, horizontal wave lengths of 10 m) , the 
vertical wave length is about the sam e. Vertical cor
relations would drop to zero after about 1/ 4 wave 
l ength, and winds more than a quarter wave length 
apart can be taken to be independent of each other. 
Although ther e is not yet any proof , similar conclu
sions are likely for la teral wind compo~nts . Only 
extremely slow fluctuations of wind components would 
be in phase all a long the vehicle. Because of the ver
tical elongation, eddies of the same horizontal wave 
length are more vertically coherent in unstable than 
in stable a ir. Hence, the total correlation coefficients 
are also greater in unstable than in stable air. But , 
as mentioned before, high-frequency variations at dif
ferent levels tend to be fairly independent of each 
other under a ll c onditions . 

Many more studies of coherence between wind 
components at various heights are urgently needed. 

--- - ----
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I VII. . PRACTICAL EXAMPLE 

Suppose that future measurements at Cape Ken
nedy had established that the roughness length there, 
for a certain wind direction, is 1 m. Then suppose 

that the wind at 200 ft (60 meters) was 10 m/ s. Then 
equation (1) gives a u* of .98 m/ s. Equation (6) 
shows that uu/ V is .244, and the gust factor (for 2.5 
percent exceedance) is 1. 49. The spectrum estimate 
in m 2sec- 2 per unit cycle/ s at a frequency of one 
cycle/s comes out as 1. 32, equation (12). 
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ESTIMA TION IN MIXTURES OF TWO POISSON DISTR IBUTIONS 
, 

By 

A. Clifford Cohen , Jr . ':' 

SUMMARY. 

N65 24139 
Techniques to resolve a mixture ~ two sample 

distributions into their respective components have 
applications in the statistica l analys is of atmospheric 
data. Dealt with in this report is the problem of es
timating par ameters of a mixed (compound) d is tribu
tionconsisting oftwo Poisson components . Estimators 
based on the first three sample moments and estima
tors based on the first two sample moments plus the 
sample zero-frequency are considered. A computing 
routine is outlined for solving the estimating equations 

O! = (x - 11.)/ (J.i - A) , 

xe - r =IJ [ 2] ' ( 2) 

x( e 2 - r) - r e = IJ [3] , 

where 

e = J.i + A, a nd r = J.iA , ( 3) 

a nd where 

1. THE PROBABILITY FUNCTION 

IJ [ k] - L: x (x - 1) . .. (x - k + 1) nx/ n , 
x=O 

(4) 
involved in the latter case . ~ _ R 

in which R is the largest observed (sample) value of 

Let J.i and A des ignate the parameters of two 
Poisson distributions that have been combined in the 
proportions O! and (1 - O!) , respectively , to form a 
mixed (compound) distribution. The probabil ity func
tion of the resulting d is tribution may be written as 

- J.i X 
f(x)=O! e J.i X: 

- A X 
e A 

+( 1- 0!) X: ( 1) 

For conveni.ence, and without any loss of generality, 
we let J.i > A. 

II. ESTIMATORS BASED ON FIRST THREE MO
MENTS 

Estimators for the parameters of this distribution 
based on the first three sample m oments were given 
by Rider [2] . Through the use of factorial rather tha n 
ordinary moments, the wr iter [1 ] s ubs equently sim 
plified Rider's original estimating equations to the 
following form : 

;" Professor of Mathematics , Univers ity of Geor
gia, Athens, Georgia. The r esearch reported in this 
paper was perform ed under NASA Contract NAS8-
11175 with the Aero-Astrophysics Office, Aero-Astro
dynam ics Laboratory, Marsha ll Space Flight Center , 
Huntsville , Alabama. Mr . Orvel E . Sm ith is the 
NASA contract monitor. 
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x , ~ is the sample frequency of x , and n is the total 
R 

sample s ize; i. e . , n = 6 nx • In the interest of a 
x=O 

s impler notation, x has been written in place of IJ[ 1]. 

On solving the last two equations of (2) simul 
ta neous ly for rand e, it fo llows that 

( 5) 

where the as terisks (j,,) distinguish es timators from 
the parameters being estimated. As shown in [1] , the 
required estim a tors of J.i and A follow from ( 3) and (5) 

as 

(6) 

These estima tors a re r ecognized a s t he two roots of 
a quadratic equation, with roots r 1 a nd r2 , which may 
be written as 

y2 _ e* Y + 1'* 0, (7 ) 

.... 

'-----'- .- •. ----. .-~ 



· ' " 
t..- 1 *\..r ~ d ~, . wtiere jJ. = r 1 an A' = r2( r1 > r2)' The proportion-

ality' parameter C\' is estimated from the first equa 
tion of (2) as C\' * = (x - A~') I (jJ.* - A"") . 

m. ESTIMATORS BASED ON FIRST TWO MOMENTS 
AND THE ZERO FREQUENCY 

It is well known that the higher sample moments 
are subject to appreciable sampling errors. In an 
effo rt to improve on the efficiency of the three-mom ent 
estimators of the preceding section, the writer [i] 
obtained the following estimating equation which is 
based onthefirsttwo sample moments and the sample 
zero-frequency 

x - A 

G( A) - A 

in which 

G( A) 

-G( A) - A 
e - e 

( 8) 

( 9) 

where no is the sample zero- frequency. Equation (8) 
can be solved for 71.*"" using standard iterative pro
cedures, and with A *",< thus determ ined, estimators 
of jJ. and C\' follow as 

( 10) 

The double asterisks ( *"" ) distinguish estimators of 
this section from the three- mom ent es timators of 
Section II and from the param ete rs be ing es tim ated. 
Unfortunately, no simple procedure for solving equa 
tion (8) has been devis ed. However , a computer rou
tine has been developed based on ite rative procedur es 
described by Whittaker and Robinson [3] to solve equa
tion (8) using as a first approximation the three
moment estimate of A given by equation (6) . 

IV. COMPUTATIONAL PROCEDURES 

The solution of the transcendental estimating 
equation (8) from Section III provides an inte r esting 
illustra tion of iterative numerical computation tech
niques described by Whittaker and Robinson [ 3] . To 
facilitate its solution , the denominator of the left side 
of ( 8) is interchanged with the numerator of the right 
side, and the r esulting equation becomes 

x - A 
---~ 

n In - e 
o 

-A 
G( A) - A 

-G( A) -A 
e - e 

where G( A) remains as given by equation (9) • 

( 11) 

Equation (11) might be condensed to the form 
L( A) = R( A) where 

L(A) 
X-A 

- A ' 
n / n - e o 

and R(A) = G(A) - A . (12) 
-G( A) -A 

e - e 

Gr aphs of the two functions L( A) and R (A) are 
essentially as given in F igure 1. 

A* * 

L (A) 

A 
o 

FIGURE 1. L( A) AND R (A) FUNCTIONS 

R (A) 

We begin with an initial approximation 11.0 and 
iterate toward the value A"""" as described by Whitta
ker and Robinson [3, pp. 81-83]. The three- moment 
estimate of A given by equation (6) of Section II pro
vides a satisfactory value for AO' This initial approx
imation is substitUted into the second equation of ( 12) 
to obtain Ro ' which is merely an abbreviated notation 
for R (A

O
) ' We then solve the equation 

( 13) 

to obtain Ai' the next approximation. This cycle is 
repeated as many times as necessary to attain the de
sired degree of accuracy. Equation (13) is itself a 
transcendental equation, though somewhat simpler in 
form than the original equation (11). It is amenable to 
solution by the Newton-Raphson method [3, page 84-
86] . For the ith cycle of iteration, the equation cor
responding to (13) becomes 

L( A.) 
1 

X-A. 
1 

-A' = Ri _1 ' 
n / n - e 1 
o 

( 14) 
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which may be written as 

f(A.) = 0, 
1 

where 

- A. 
f(A.) = A. - R. 1e 1 - C . 1 1 1 1- 1-

and where 

C. 1 = (x - R. 1 n /n) 
1- 1- 0 

( 15) 

ELjuation (14) may be readily solved using the 
Newton-Raphson method, where A. 1 the (r+1) st 

1:r+ , 
iterant to A., is given by 

1 

A. 1=71.. -f(A. )/fl(A. ). 
1:r+ 1:1' 1:r 1:1' 

The first derivative of f( \) follows from (15) as 

fl(A.) = 1 + R. 1 e-Ai 
1 1-

Accordingly, 

-Ai'r 
A.. -R. e . -C. 

1:1' 1-1 1-1 
-A' 

1 + R. 1 e 1 
1-

A = 71. -
i:r+1 i:r 

( 16) 

As an initial approximation A. 0 to A., it will 
1: 1 

usually be satisfactory to let \: 0 = \-1' The Newton-

Raphson iterative technique is continued through as 
many cycles as may be necessary to attain the desired 
accuracy in Ai ' More specifically, this subroutine is 
terminated at the end of the rth cycle, where this is 
the first cycle for which 

IL. - R. 11 < OJ 1:1' 1-

in which OJ specifies the maximum permissible abso
lute value deviation. With Ai thus determined, we cal
culate Ri , set up the new equation L( A. 1) = R . and 

1+ 1 
the primary routine is continued through k cycles, 
where the kth cycle is the first for which 

I ~ -Rk l < 02 , 

where 02 specifies the maxim urn allowable absolute 
value deviation. The required estimate of A is then 

1..* 0:< = Ak ' 
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V. AN ILLUSTRA'rIVE PROBL:eM 

To illustrate the application of his three-moment 
estimators, Rider [2] chose an example constructed 
by mixing equal proportions of two Poisson distribu
tions with !J. = 1. 5 and f... = 0.5, respectively. These 
data are as follows: 

In summary, n=2000, no = 830, x =0.9995, v [ 2] 
1. 243 and v [ 3] = 1. 734. Direct substitution of these 
values into equations ( 5) , (6) and (7) yields the three
moment estimates 

/1-t.< 1. 4766563 , 

0.47765894, 

(l't.< 0.52236479. 

These results differ slightly from those given by Rider 
due apparently to small round-off errors in his cal
culations. 

Estimates based on the first two moments and the 
zero frequency calculated with the aid of an electronic 
computer, programmed in accordance with the com
puting routine of Section IV, are 

0.4956, 

0.5049. 

These estimates are in much closer agreement with 
the actual population param eters /1- = 1. 5, A = O. 5, and 
(l' = O. 5 than the three-moment estimates. Investiga
tions are continuing with regard to the relative ef
fiCiency of the three-moment and the two-moment plus 
zero- frequency estimates, but at least, in the present 
instance where a large proportion of the population is 
in the zero class, the two-moment plus zero-frequency 
estimates are to be preferred. 
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CHARACTERISTIC FEATURES OF SOME PERIODIC ORBITS IN THE RESTRICTED Tl-IREE-B'ODY JPROBLE'M 

by 
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Presented in this report are earth-moon orbits 
which, when referred to a rotating coordinate system, 
return periodically to their original set of state var
iables. Such orbits offer repeated approaches to both 
earth and moon and could be used for instrumented 
exploration of earth-moon space for meteoroi con-

oentration, radiation belts and other usef: HO~,~ 

tion. 'l'Jyfi 
1. INTRODUCTION 

Characteristic features such as the period of the 
orbit, time spent in the region between earth and 
moon, close approach distance to the moon, and clo
sest approach distance to the earth vary for each fam
ily of periodic orbits. The orbits presented in this 
paper have periods of 1 to 3 months and they have at 
least one perpendicular crossing of the earth-moon 
line on the back side of the moon. The orbits con
tained herein represent only a small portion of the 
fam ilies of periodic orbits that are possible in the re
stricted three body problem, and it should not be in
ferred that these are the only orbits of interest. 
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II. DISCUSSION 

A. EXISTENCE 

The existence of certain periodic orbits in 
the restricted three-body problem has been known for 
a long tim e. Poincare - referred to orbits which re
duce to circles when the disturbance from the more 
distant body becomes zero as "solutions de la premiere 
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sorte" [1]. These orbits can be near either of the 
finite masses, but not both. Arenstorf [2] proved the 
existence of periodic solutions of the so- called second 
kind which are near rotating Keplerian ellipses. It is 
possible for these orbits to pass close to both finite 
masses, and therefore, for lunar exploration, they 
are more attrac tive than orbits of the first kind. Or
bits of the first and second kind exist even if one of 
the bodies becomes massless. Contrary to this, there 
are periodic orbits that exist only in the restricted 
three-body problem proper. In the earth-moon sys
tem such orbits would owe their existence to the dis
turbance produced by the moon. This report presents 
periodic orbits of the second kind and orbits that are 
inherent in the restricted three-body problem proper. 

B. BASIC ASSUMPTIONS 

A restricted three-body model is assumed 
for the earth, moon, and probe system. In this sys 
tem, the earth and moon revolve in circles in a plane 
around their common center of mass (barycenter) . 
For this investigation, the probe's motion is restric
ted to the plane defined by the earth-moon motion. 
The equations of motion are normalized such that the 
sum of the masses of the earth and moon is unity; the 
constant distance between the earth and moon is unity, 
and the period of the earth and moon about their com 
mon center of mass is 21T. The ratio of the mass of 
the earth to the mass of the moon was assumed to be 
80 . 45 , and for the purpose of converting from the un
itized system to a physical system of units, the dis 
tance from the center of the earth to the center of the 
moon was taken to be 385,000 km . 

Orbits are geometrically represented in a rotat
ing coordinate system (origin at the barycenter) in 
which the earth and moon lie on the x-axis. In this 
rotating coordinate system, periodic orbits are sym 
metric with respect to the x-axis. This symmetric 
property is attributed to image properties which oc
cur in this system . Miele's [3] "Theorem of Image 
Trajectories" states that if a trajectory is possible 
from earth to moon, the image reflected about the x
axis is also possible. The image trajectory will be 
traversed in the opposite sense, that is, from moon 
to earth. Thus, a trajectory starting perpendicular 
to the earth-moon line and crossing the earth-moon 
line perpendicular at some later time will return to 
the original starting position. This image property 
leads one to conclude that two. perpendicular cross ings 
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of the 'earW-moonline (x~axis) are sufficient for per
iodicity in the restricted three- body problem. With 
this in mind, orbits were started on the back side of 
the moon perpendicular to the earth-moon line. This 
was an arbitrary choice of starting conditions, but 
they proved quite convenient. With one perpendicular 
crossing assured, the problem is to isolate transits 
which have a second perpendicular crossing of the 
earth-moon line . In this study, the velocity magnitude 
at the starting position (first perpendicular crossing) 
was varied in order to perform the isolation. Com 
plete fam ilies were generated by changing the starting 
position and repeating the isolation. The period of the 
orbit and close approach distance to the earth vary 
with the close approach distance at the moon. These 
features are observed and presented for several fam 
ilies. As shown in Section III , some families contain 
orbits which collide with the earth. A further increase 
or decrease, as the case may be, in the starting po
sition behind the moon produces orbits that are retro
grade as they approach the earth. These retrograde 
orbits are neglected for the present; however, future 
investigations are planned in this area and should add 
insight to the general behavior of periodic orbits . 

C, C LASSIFICA TION 

The classification of orbit families used in 
this report is the same as the system used by Aren
storf [4] and Davidson*. Categories such as ratio, 
order, and class are used in distinguishing various 
families of orbits. Since these terms will be used ex
tensively, a brief explanation of each is in order. 

Figures 1 and 2 depict a periodic orbit in a ro
tating and a space-fixed fram e of reference, respec
tively. In the space-fixed system, the probe makes 

F: 0 :\10 

FIGURE 1. PERIODIC ORBIT RATIO 1/2, ORDER 1. 
ROTATING FRAME OF REFERENCE 

* Private communication with M. C. Davidson of 
the Computation Laboratory of MSFC. 

• 

s, 

FIGURE 2, PERIODIC ORBIT RATIO' 1/ 2, ORDER 
1, SPACE-FIXED FRAME OF REF
ERENCE 

two revolutions in its orbit in the same time the moon 
makes approximately one revolution in its orbit. The 
major axis of the probe's orbit has been rotated 
slightly duetothe disturbance by the moon; therefore , 
the period of the orbit is less than the period of the 
moon, and the orbit is not closed in the space-fixed 
frame of reference. However, the forces acting on 
the probe at S4 are equal to the forces acting at St. 
Thus, closure in the space-fixed frame of reference 
is not necessary for periodicity in the restricted 
three-body problem. If one lets m equal the number 
of revolutions the moon makes while the probe has to 
make k revolutions in its orbit before periodicity oc-

curs, then the ratio m/ k = ~ is used to classify this 

orbit and the period, t i'::l 2mn. 

Kepler's third law provides an estimate for min
imum value of m / k for orbits that encompass both the 
earth and moon. In the unitized coordinate system, 
the period of the moon is given as Pm =- 21T , and the 

period of the probe about the earth is Pp = 21T.J--a'J 
where a is the semimajor axis of the probe's orbit. 
-If the probe's orbit is to contain both masses, then 

1 
a ~ 2' Under this assumption, the minimum value of 

1 3 
m / k is (_)2 ~ . 354. 

2 
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Figure 1 is an orbit of ratio % order 1. Orbits 

with ratio ~, ~ , ~, ... ":oill be referred to as higher 

order orbits (sec~~d, third, fourth ... ) of ratio %. 
In general, an orbit with a ratio :: is classified as 

ratio m/ k order n. Figures 3 and 4 show orbits of 

FIGURE 3. RATIO 1/2, ORDER 2, CLASS A 

M 

FIGURE 4. RATIO 1/ 2, ORDER 2, CLASS B 

ratio 1 order 2. In Figure 3 the second perpendicular 

crossing of the earth~moon line occurs on the back 
side of the moon. Orbits with this characteristic are 
designated class A. The orbit shown in Figure 4 has 
the second perpendicular crossing on the front side of 
the moon. This perpendicular crossing occurs after 
apogee , or alternatively stated, on the descending leg 
of the space-fixed orbit. Orbits of this nature will be 
referenced to as class B. First order orbits are per
iodic orbits of the second kind, but the higher order 
orbits are orbits of the restricted three-body problem 
proper. 
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All orbits presented her~in have 'at leJ st on'e per~ 
pendicular crossing on the back side of the 'moon. 
There are orbits which do not possess this character
istic, but complete data on these orbits are not avail
able at this time. 

D. APPLICATIONS 

A knowledge of the conditions that exist in 
earth-moon space is desirable prior to manned lunar 
missions. Mapping of meteoroid concentration and 
radiation belts in the region of earth-moon space could 
be provided by an instrumented probe in a long-life 
periodic orbit (1 year or more) . Pe riodic orbits of
fer repeated close approaches to both the earth and 
moon and information gathered near the moon could 
be easily transm itted back to earth. Certain periodic 
orbits perm it adequate coverage of the space traversed 
by an Apollo type trajectory; therefore, in choosing 
an orbit, one should consider the amount of tim e spent 
(coverage) in the desired region. 

In the restricted three-body problem , the moon's 
orbit is assum ed to be circular , but in the true physi
cal system, the ellipticity of the moon's orbit adds a 
perturbative force which will require a velocity budget 
for orbit keeping. However, one can , in lim ited 
cases, overcome this perturbation by employing per
iodic orbits with periods that are exact multiples of 
the moon ' s period. If the orbit shown in Figure 2 had 
a period that was a multiple of the moon's period and 
Ml represented the position of the moon at apogee or 
perigee, then S4 would coincide with SI ' and the orbit 
would be periodic even if the moon's eccentricity was 
non-zero. 

Periodic orbits can also be used for exploration 
of outer space. If one replaces the earth- moon sys;-

tern by the sun-earth system, then an orbit of ratio ~ 
order 1 (Fig. 13) offers the advantage of a return 
near earth at which time information could be r e layed 
to earth via low power transmission. The orbit shape 
will vary slightly due to the different mass ratio of 
the sun~ earth system, but in general the orbit will 
have the same basic features. The period of the orbit 
shown in Figure 13, instead of being twice the moon's 
period, would be twice the earth's period about the 
sun. 

III. RESULTS 

Fam ilies were studied by varying the starting 
position behind the moon, and the results are pre
sented with this as the independent parameter. Closest 
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ap~ro;3.Ch dls~ance to 'the 'center of the earth, the per
iod of the orbit, and percent time on the inner leg of 
the orbit are presented for various families . The in
ner leg of an orbit is defined as the part of the orbit 
that lies closest to the earth- moon line and extends 
from perigee at the earth to perisel at the moon and 
back to perigee at the earth. The second approach 
distance to the moon is presented for the higher order 

orbits . Data for orbits of ratio % order 1 are pre

sented in Figure 5. Orbits of this family exist for 
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FIGURE 5. RATIO 1/ 2, ORDER 1 

starting positions (perpend icular cross ing on the back 
side of the moon) ranging from the moon's surface 
out to a radius of 89 , 400 km . At radii s lightly greater 
than 89,400 krn, the orbits impact the surface of the 
earth, and a further increase in the starting radius 
produces retrograde orbits . 

Figures 6 and 7 show data for ratio % order 2 

class B. These orbits exist for starting radii between 
3075 km and 57,000 km . Collision with the surface of 
the earth occurs for starting radii less than 3075 krn 
and greater than 57,000 km . It is ev ident from Fig
ure 7 that this fam ily contains an orbit that will be 
periodic even when the moon's orbit is assumed to be 
elliptic. 

Depiqted in Figures 8 and 9 are data for ratio % 
order 2 class A. Collision with the surface of the 
earth occurs with a starting radius of 1928 km. For 
this starting radius, the second perpendicular cross
ing of the earth-moon line occurs on the back side of 
the moon at a distance of 132,000 km. As the start
ing r~dius is continuously increased, the second per
pendicular crossing moves in toward the moon until 
the two crossings coincide. This occurs at about 
15,000 km. Transits that are started beyond this 
radius will have their second perpendicular crossing 

Closest Approach to Center of Earth (10' km) 

Second Approach to Moon (10' km) 

60 

50 

A~ ~ 

I ~ ~ Second Approach 

40 

ff ~ ~ 
30 

20 Closest APproa>\ ~" 
10 \ 

, \ 
o 

o 10 20 30 40 50 60 

Starting Position Behind the Moon ( 103 krn) 
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FIGURE 7. RATIO 1/ 2, ORDER 2, CLASS B 

between the moon and the starting position, and tpey 
will be duplicates of transits that were started from a 
position inside the 15,000 km limit. 
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F IGURE 8. RATIO 1/2 , ORDER 2 , CLASS A 
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Da ta for orbits of ratio 4 o;der :3 (an exam'pIe ' is 

shown in Figure 10) are pres e nted in F igur e s 11 and 12. 

FIGURE 10. RATIO 1/ 2, ORDER 3 

Cloacst Approach 10 Ccnte r of Emrth (103 km) 

ond ApprOAch to Moon (to' km) 

------12 110 
(The ~ond ApprOACh Doe. Nor. Occur 

~ 
Closcst Approllch 

on Earth-Moon Ll.ne) 

10 100 ,./ -- /' -- / -- ---..... 

// r-------
--------------

90 

80 

/ 
/ 

r----------/ 

/ 
/ ~OOOA~t-

/ 
/ 

I / 

70 

60 

o 2.20 2.25 2. ,. 2.35 2.40 2.50 2. 55 2.60 

Starting Poailion Oehlnd the Moon (10' km) 

F IGURE 11. RAT IO 1/ 2 , ORDER 3 

t I~rlod) 

~ t on blOor Leg 

'. 0 

tT t' . ofTlml' 10:>.13hr 

~ I-
M , --, , ~ 

" " ~ 0 

IS.5 7. 

IS.-I 7. 

.X 
,---

, .............. IS.3 7. 

/ 

--------
/ 

------/ '----------, 18. 2 7. 

I ,-- --/ 
1/0.1 7.0 

0.0 

0 2.20 2.25 2.30 2.35 2."0 2." •• 50 2.S,S 

Starting Poaltlon Bl'Mnd th(· Moon I I<Y km) 

FIGURE 12. RATIO 1/ 2 , ORDER 3 



1-. . . 
Collision with the earth occurs for starting radii less 
than 2310 km. As seen in Figure 10, the second per
pendicular crossing for the family occurs behind the 
earth. 

. 2 
Data for orbits of ratlO '3 order 1 are given in 

Figures 13 and 14. These orbits can be found with 
starting radii beginning at the moon's surface and ex
tending out to 183,000 km. 

OE M 

FIGURE 13. RATIO 2/ 3, ORDER 1 
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Figures 15,16,17 , and 18 show data for orbits 

f . 2 A o ratIO '3 order 2 class B. t a starting radius of 

51,000 km, there exists an orbit with a period of 811' 
(4 months). This fam ily contains two s olutions for . 
the same starting radius for starting radii near 1994 

~ ~- ---

km and 110,000 kIn; however, further investigation is 
necessary to determine the.exact areas in which these 
solutions exist. 

FIGURE 15. RATIO 2/ 3, ORDER 2, CLASS B 
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FIGURE 16. RATIO 2/3, ORDER 2, CLASS B 

2 
Data for orbits of ratio '5 order 1 are shown in 

Figures 19, 20, and 21. This family of orbits exists 
for starting radii between 7800 km and 19,800 km. 
Beyond these lim its the orbits collide with the surface 
of the earth. 
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F IGURE 17. RATIO 2/ 3, ORDER 2 , CLASS B 
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FIGURE 19. RATIO 2/ 5, ORDER 1 
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FIGURE 20. RATIO 2/ 5, ORDER 1 

Information for orbits of ratio ~ order 1 is given 

in Figures 22, 23, and 24. Members of this fam 
ily were found for starting radii from 3187 km to 
74,026 km. Two solutions were found for each start
ing position, and the alternate solution (the solution 
with the highest velocity) is denoted by an aste risk. 
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FIGURE 22. RATIO 3/ 5, ORDER 1 

Data are given in Figures 25, 26 and 27. The veloc
ity difference between two orbits starting from the 
same radius a t the moon varied from 6. 4 m/ s to 38.4 
m/ s. 

IV. CONCLUDING REMARKS 

Periodic orbits of ratio ~, %, ~, and ~ have been 

investigated. Higher order orbits of these r atios are 
being studied as well as different ratios; these will be 
described in a later paper. To aid in m ission plan
ning, Figure 28 shows a summary of some of the orbits 
which offer injection altitudes of the earth of approxi
mately 100 nautical miles . 
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FIGURE 25. RATIO 3/5, ORDER 1 >:< 
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FIGURE 28. ORBITS WITH INJECTION ALTITUDES 
~ 100 NAUTICAL MILES 
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, RECENT'DEVELOPMENTS IN THE PREDICTION OF EARTH ORBITAL SA.TELLITE LIFETIME 
"~ 
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H. F. Kurtz, Jr. 
and 
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SUMMARY 

A brief review of the orbital lifetime prediction 
model currently in use at MSFC is made followed by 
discussion of two recent developments in lifetime 
studies. The first is an extension of graphical pre
diction charts to account for the effects of orbital in
clination, argument of perigee, and date of launch. 
The second is a method of joint optimization of orbital 
lifetime and payload mass placed in orbit by a given 
vehicle. It is found by the latter method that signifi
cant increases in lifetime or payload mass may be 
obtained through the selection of an optimum elliptical 

orbit. ~vk 

1. INTRODUCTION 

For large vehicles of the Saturn class in low earth 
orbits, it becomes quite important to analyze the ef
fects of atmospheric drag upon the orbit both for life
time and decay prediction in mission planning and for 
post-flight orbit determination. This paper, after a 
brief review of the basic prediction model currently 
in use, presents a recent extension of a graphical pre
diction method and discusses recent findings in joint 
lifetime-payload mass optimization. The work de
scribed was performed partially in-house and partially 
by Lockheed Missiles and Space Company (LMSC) un
der contract NAS8- 11 121, and represents a continua
tion of studies begun in 1958 (Ref. 1) and last sum
marized in Reference 2. No attempt is made in this 
paper to present a comprehensive or detailed analysis, 
but rather to summarize recent progress . 

II. REVIEW OF ORBITAL LIFETIME PREDICTION 
MODEL 

The lifetime prediction model adopted is basically 
a common one, in which the decay rates of the orbital 
elements describing the altitude and shape of the orbit 
are represented by analytic derivatives: 

• da 
n, a = dt = fa (a, p, i, w,v, 

.~ n, W, p = = f (a p, i, v, dt p , 

where 

a = apogee 

p =: perigee 

i =: inclination 

n =: right ascension of node 

W =: argument of perigee 

v =: true anomaly 

CD =: drag coefficient 

A =: mass of vehicle 

p =: atmospheric density 

CDA 

M 
, 

CDA 

M 
, 

p) 

p) 

Orbital 
Elements 

Parameters 
of Drag 

( 1) 

Mean decay rates aM and PM are obtained by in
tegrating the equations (1) over an orbit, assuming 
that the orbital elements do not change over that time 
interval. Apogee and perigee are then obtained as a 
function of time by integration of the equations: 

dp PM 

da =: aM 

and ( 2) 

dt 1 
- =:-,-

da aM 

The exact formulation of equations (1) and (2) is 
largely a matter of choice, and varjn,us formulations 
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are successful. The technique ,may vary from a rela 
tively simple one, wh tch has been largely used in 
MSFC studies (Ref. 2) , to one of more sophistication 
such as that developed by LMSC for the Discoverer 
program (Ref. 3) . The first technique neglects var
iation of the parameters i, Q, and w , and assumes a 
s pherical earth model. The second technique inte
grates simple variational equations of the parameters 
i, Q, and w, and uses an oblate earth. The choice of 
param eters used in the formulation may also vary; for 
example, semi- major axis and eccentricity may be 
used instead of apogee and perigee. For many pur
poses a simple model carefully applied yields com
parable results to the sophisticated model. 

The primary factor of uncertainty in all current 
lifetime models is the atmospheric density p. Although 
the drag coefficient CD and effective drag area A (for 
unstabil ized bodies) also contribute noticeably to the 
uncertainty, their lIDcertainty is generally of lesser 
magnitude and may be removed to some extent by 
flight experience with similar vehicle configurations 
("calibration" by orbit determination) . Various mod
els are used to represent p, which is itself a complex 
function of many parameters . The primary variables 
which are of significance in the lifetime model are 
(a) altitude dependence , (b) variation with solar ac
tivity, and (c) "diurnal bulge" variation. 

The approach taken in MSFC studies has been to 
represent the altitude dependence by a standard model 
atmosphere (e . g., 1959 ARDC) and the diurnal bulge 
by an analytiC multiplicative factor (Ref. 4) . The 
variation with solar activity has been r epresented by 
a second mult iplicative factor based upon an extrapo
lation of the solar activity level and an estimate of it s 
effect upon the atmosphere . 

This "solar activity" factor attempts to account 
for the mean variation due to the eleven- year solar 
activity cycle only . Short- period dens ity effect$ such 
as the 27- day solar activity cycle are of much less 
importance. A typical form for this factor is dis 
cussed and shown graphically in Section III. A modi
f ied s hift function based upon experience with the first 
two Saturn I orbita l fl ights is being prepar.ed. 

For long ter m predictions (mor e than a few 
months in the future) s ubstantial uncertainty exists in 
the solar activ ity shift factor , am ounting to an uncer
tainty (~2(J) of +150 percent and - 60 percent in pre
dicted lifetimes . This uncertainty magnitude is borne 
out by apply ing the prediction method to some 50 de
cayed satellites and comparing with actual l ifet imes . 
The error distribution of these predictions is shown 

in F igure 1. 
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F IGURE 1. ERROR DISTRIBUTION OF LIFETIME 
PREDICTIONS 

This uncertainty can , of cou rse , be substantia lly re
duced for post-launch predictions by us ing the ob
served initia l orbit decay to "calibrate" the atmos 
phere (actua lly the atmosphere - ballis tic factor 
product) . The uncertainty can a l so be s ignificantly 
reduced before launch by " calibr a ting" through the use 
of observed decay information from past fl i ghts or 
satellites still in orbit, providing a satellite at a sim 
ilar altitude is ava ilable with suffic ient t r acking in
formation. 

III. IMPROVEMENTS IN GRAPHICAL MODEL 

For many purposes in preliminary m ission stuq
ies , the use of gr aphical methods to p red ic t or bita l 
lifetimes provides convenience , perm its quick re
sponse , a nd affor ds s uffic ient accuracy to make it an 
efficient method. Graphs providing nor malized life
time as a function of apogee and perigee altitudes, as 
shown in F igure 2, can be fo und many t imes in the 
literature. F igure 2 was generated by LMSC (Ref. 5). 
To make an approximate l ifetime predic tion, the nor
m a lized lifetime L' for a given orbit is read from the 
graph ; multiplying by the inver se ballis t ic factor 
(M/ CDA) y ie lds the absolute l ifetime estim ate, L . 

The graphical method has been extended to perm it 
correct ion for major factors affecting the lifetime 
other than apogee and perigee. The corr ect ed lifetim e 
pr ediction takes the form 

L = [M/ CDA J [L'J [f(t) J [f ( i, w ) J . 
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FIGURE 2. LIFETIME PARAMETER AS A FUNC
TION OF ORBITAL ALTITUDE 

The correction factor f(i,w) , shown in Figure 3, 
is a function of i , the orbital inclination, and w , the 
initial argument of perigee. This factor ad justs the 
predicted lifetime to account for the oblate geometri
cal earth, which causes an effective variation in the 
satellite a ltitude and is dependent upon the orientation 
of the orbit relative to the earth equator. -The f( i,w) 
function was derived numerically from many cases 
computed with the LMSC sophisticated lifetime model, 
which includes the cha nge of argument of perigee due 
to the oblate earth graVitation mQdel. The curves 
shown represent average values for various orbita l 
a l titudes, eccentricities, and ba llis tic factors. For 
most purposes the variation of f (i , w ) can be neg
lected . 

f( i, w ) 

1.4 ~------------------------------------~ 

1.2 Inclination i : 

0.8 

0.6 t----------.----------,----------.--------~ 
o 90 180 2 0 360 

Argum ent of Pe rigee w (deg) 

FIGURE 3. LIFETIME CORRECTION FACTOR AS A 
FUNCTION OF INCLINATION AND AR
GUMENT OF PERIGEE 

The correction factor f (t) is shown in Figure 4. 

f( t) 
2.0 r-----------------------------------------, 

Pe rigee Altitudes 2: 200 km 

1. 8 

1.4 

0 . 6 F-------~----_r------._----_.----~r_----~ 
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FIGURE 4. LIFETIME CORRECTION FACTOR AS A 
FUNCTION OF DA TE 

This factor corrects the lifetime prediction for the 
variation of atmospheric density with the eleven-year 
solar activity cycle, and is based upon a semi- empir
ical atmosphere model previously developed by LMSC 
in the Discoverer program (Ref. 6). For maximum 
accuracy in predicting lifetimes of longer than two 
months , the mean value of f(t) over the approximate 
l ifetime should be used. For lifetimes of less than 
two months, the value of f( t) at the initial time may 
be used. 
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Use of the correction factors with the normalized 
lifetime curves yields accuracies of lifetime predic
tion comparable with. that obtained by the more exact 
computational model from which they were derived. 
The correction factors given in Figures 3 and 4 are 
referenced specifically to Figure 2 and, in general, 
cannot be directly applied to similar graphs of lifetime 
versus apogee and perigee. 

IV . ORBIT OPTIMIZATION 

In planning the orbital a ltitude and eccentric ity 
for future satellites, it is often desired to guarantee a 
specified orbital lifetime , and also maxim ize the pay
load mass in orbit or, conversely, to maxim ize the 
lifetime for a given payload. Payload mass - lifting 
capabilit ies of the Saturn launch vehicles are derived 
using calculus of variations tec hniques to optim ize 
trajectory parameters for maximum payload. This 
optimization defines the apogee-perigee a ltitudes 
achievable by the launch vehic le for different orbital 
payload masses (Fig. 5). 

10,000 (km) All('I' ee Altitude 

5000 I-----+--:::::,.-=--I:--------f-----t------I 

( 000 I----'''''''--+----~:-------p,:__---t_T_-----I 

15. 000 kg Payload M388 

100 L(O-O ---"'201,-0 --------",J300~---c;;!400;;-------;5~on,-------~600 

FIGURE 5. LAUNCH VEHICLE ORBITAL CAPA
BILITY 

Orbital lifetime analysis of numerous sets of such 
performance data derived for Saturn launch vehicles 
has yielded a common result. Selecting a given pay
load mass, and plotting the lifetimes predicted for the 
possible maxim um achievable orbits, we found that 
there is a specific elliptical orbit for which the orbital 
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lifetime is clearly optimiZE!d (Fig. '6). The apogee/ 
perigee ratio which yields this best orbit appears to 

(day) Lifetime 
105 r------------------------~ 

Maximum 
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104 ~------------~==~~~~~z=~~------~ 

103 r-___ ~~~-~~-------\_---~~7~.~5~OO~ 

101 ~~~~---r_-----------------_4 

100~~-f_---------------------~ 

600 

Perigee Altitude (Ion) 

FIGURE 6. ORBITAL LIFETIME OPTIMIZATION 

be dependent upon the particular set of vehicle per
formance data. The optimum apogee-perigee com
bination is independent of the ballistic coefficient of 
the satellite, as long as a constant configuration is 
considered. In analyses thus far the apogee/ perigee 
ratio has varied between two and four, increasing with 
perigee a ltitude. 

Some interesting results obtained for one case 
which has been studied are presented. These results 
illustrate an application which has been made of this 
principle of an optimum orbit to yield maximum life
time for specified vehicle performance. Other appli
cations have also been made. The fifth Saturn I test 
flight orbit was optimized for maximum lifetime. Ex
tensive investigations have been made in defining the 
orbit ofthe ninth Saturn I flight carrying a meteoroid 
experiment. 

--- , 
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, In 'this illustl'ative case, the primary concern was 
maxim-izing payload mass for a given configuration 
and a specified orbital lifetime. The orbital capability 
of the launch vehicle was expressed in Figure 5 as 
maximum apogee altitude which can be achieved as a 
function of perigee altitude for different payload mas
ses. The lower envelope designates the limiting case 
of circular orbits. The orbital lifetime obtained for 
the different masses is shown in Figure 6 as a func
tion of perigee altitude, assuming the maximum pos
sible apogee associated with the perigee and payload 
mass. The locus of the maximum lifetime curve is 
shown in Figure 7 superimposed on the performance 

10,(100("':' m:::) .:..::A"":..:.:""c..."....:.A:.::.It':.::.'ud=.e,--___ ,---___ -,-____ ,--___ , 

- Payload Mass 
- - Ufetimc 

bOOO ~---+-+r---=:::,..~-+----+-----t------j 
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15, (\(lO(" Payload Moss 

. 00 1.["..0------.,,120,.-0 ----.l:1'.,----------:;.1f.00-------;;..l----~600 
Peri ;N' Altltudr . (km) 

FIGURE 7. LOCUS OF MAXIMUM LIFETIME AND 
CONTOURS OF CONSTANT LIFETIME 

data of Figure 5, with contours of constant lifetime 
also indicated. The orbital lifetime varies as the pay
load mass varies, and identical lifetimes may be ob
tained for different payload masses with a proper se
lection of the apogee-perigee combination. 

Using these data, an optimization can be per
formed to maximize the payload mass for any desired 
lifetime. This is noted by observation of the lifetime 
contour curves of Figure 7 where maximum payload 
values for ·a given lifetim e occur along the locus curve 
of maximum lifetime. The amount of the gain in pay
load mass resulting from the optimiz~tion is more 
clearly seen in Figure 8. The potential percentage 
gain or loss in payload mass which can be achieved 
by using an elliptical rather than a circular orbit to 
yield a specified lifetime is shown in Figure 8 as a 

i~~~~~~yl~Oa~d~M-a~ss~~~m----------------------~ 
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FIGURE 8. PAYLOAD MASS OPTIlVIIZA TION 

function' of perigee altitude. A clear maximum is seen 
in each of the constant lifetime curves. The gain re
alized by this optimization increases in importance as 
the absolute lifetime required increases. 
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PUBLICATIONS AND PRESENTATIONS " 
A PUBLICATIO S 

MTP- AERO- 64- 1 

January 15, 1964 

LONGITUDINAL PROPELLANT VIBRATIONS 

By 

Larry Kiefling 

ABSTRACT 

A direct iteration procedure is given for calcu
lating the natural frequency of longitudina l vibration 
of propellant in a cylindrical tank with elastic walls. 
Tank walls are assumed to deform under pure hoop 
stress . Propellant is cons idered incompressible . The 
mass of the tank wall s and elastic ity of a hem ispheri
cal end are included . Frequency data for a simple 
case a nd the outer tanks of Saturn I, Block II vehicles 
are given . These vibrations are in the same frequency 
range as some lower bending modes for the earlier 
flight tim es . 

MTP-AERO- 64- 2 

January 15 , 1964 

HEAT AND MASS TRANSFER IN BINARY INERT GAS 
FLOW FOR DISTRIBUTIONS OF TEMPERA TURE 

AND CONCE TRATION RENDERING THE 
PROPERTIES NEARLY CONSTANT 

By 

Ernst W. Adams , John D. Warmbrod , C. Lee Fox , 
a nd Robert M. Huffaker 

ABSTRACT 

Injection of a fore ign gas into the laminar air 
boundary laye r is considered. The mixture properties 
are arbitrary functions of temperature T and foreign 
gas concentration w. Unless the properties are con
stant , similarity transformations are valid only a t the 
stagnation point or for a wall at constant pressure. 
Sol utions of the three similarity equations are quite 
cumbersome because triple iter a tions are involved a t 
the wall to satisfy three conditions at the outer edge 
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of the boundary layer . A corre la tion formula of r ig
orous numerical solutions for qw/ qwo has been de
rived in Reference 14 for the constant pressure case. 
Here , qw is the heat transfer in the presence of mass 
transfer, whose absence is denoted by subscript o. 
This correlation formula is linear in the mass trans
fer rate Pwvw' a nd , therefore, fails for large values 
of Pwvw' 

A simple engineering solution method of the sim
ilarity equations is proposed here , which gives those 
points of the qw/ qwo versus Pwvw relationship fo r 
which five property parameters are nearly constant 
across the boundary layer . If these five conditions 
are satisfied, the differential equations in sim ilarity 
var iables can be uncoupled. By use of a n auxiliary 
graph, the momentum equation can be integrated di
rectly as an initia l value problem . This solution is 
us ed to determ ine qw by quadratures . Corr e la tion 
formulas for qw are presented for both the constant 
pressure and the stagnation point cases. 

The five conditions on the mixture properties can 
be satisfied in an approximate way for the injec tion of 
H20 , He , or H2 into a ir, provided diss ipation effects 
are sufficiently small. Comparison to the corre la tion 
formula of Reference 14 shows very good agreement 
if the Mach number Moo = 0, and some difference for 
Moo = 3. The results for H20 - a ir mixtures cover the 
r ange of qw/ qwo values from unity to values as low a s 
O. 5. Only very small injection rates are compatible 
with the five conditions if He or H2 is injec ted into 
a ir. The theory is worked out in this paper for the 
case of constant pressure and air as the primary flow
ing medium . 

TECHNICAL MEMORANDUM X- 53008 

February 18, 1964 

THEORE TICAL AND EXPERIMENTAL INVESTIGA
TION OF BOUNDARY LAYER CONTROL IN LOW

DENSITY NOZZLES BY WALL SUCTION AND 
COOLING 

By 

M. R . Bottorff and K. W. Rogers * 

ABSTRACT 

'~E ngineering Center , Univers ity of Southern Calif. 
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Presented in this report are the results of a the-

oretical and experimental investigation of the reduc
tion of boundary layer thickness in low- density nozzles 
by wall cooling, wall suction , and a combination of 
these two. Potentially there is a twofold benefit in 
reducing the thickness of the nozzle boundary layer: 
(1) a possible increase in diffuser effectiveness, and 
(2) a possible reduction in the amount of boundary 
layer flow for a specified usable test section size, or 
an increase in the size of the usable test section for a 
given nozzle mass flow. The theoretical development 
starts with the proper integral relationship for a com
pressible laminar boundary layer. The normal veloc
ity at the wall is allowed to be finite to include the ef
fects of wall suction. Definitions of momentum and 
displacem ent thicknesses which account for transverse 
curvature are used. The results of Iglisch , who de
veloped an exact solution for incompressible flat plate 
flow with suction, are used to estimate skin friction 
coefficients. The Prandtl number is assumed to be 
unity, and two- dimensional values of 6*/ (J are used. 
An exponential velocity profile which takes wall suc
tion into account was used to estimate boundary layer 
height. 

The theoretical results were checked by an ex
perim ent in which a Mach num ber 9 - to - 11 porous 
nozzle was operated at unit Reynolds numbers in the 
range of iOO/ inch to 600/inch. P itotpressure surveys 
were used to determ ine the exit Mach num ber and 
boundary layer thickness . Theoretical Mach number 
predictions are shown to agree with the experimental 
results to within 5 percent, and bounqary layer height 
predictions to within 10 percent. 

Theoretical results are presented which show the 
effects of suction and wall cooling at several Reynolds 
numbers onnozzle diameter and uniform core size for 
a given throat area and Mach number distribution. It 
is concluded that the use of suction and cooling may 
result in a larger test section size, but that the mer
its of a cooled porous wall in any specific case must 
be decided from an analysis of the complete wind tun
nel system. 

TECHNICAL MEMORANDUM X- 53009 

February 21 , 1964 

DIRECTIONAL WIND COMPONENT FREQUENCY 
ENVELOPES, CAPE KENNEDY , FLORIDA, AT

LANTIC MISSILE RANGE 

By 

Orvel E. Sm ith and Glenn E . Daniels 

ABSTRACT 

Directional Wind Component Frequency Envelopes 
for Cape Kennedy, Florida , based on the "windiest 
monthly period" concept, are presented in this report 
for use in structural and control studies in the design 
of aerospace vehicles. 

TECHNICAL MEMORANDUM X-53013 

February i8, 1964 

TEMPERATURE MEASUREMENT INSIDE A 
RAWINSONDE BALLOON 

By 

George T. Norwood, Jr. 

ABSTRACT 

Provided in this report is information concerning 
a comparison oftemperature inside a Rawinsonde bal
loon and the ambient temperature. This study may be 
of use to persons working with radiosonde and asso
ciated equipment. 

TECHNICAL MEMORANDUM X-53017 

March 3, 1964 

STABILITY ANALYSIS OF SATURN SA-5 WITH LIVE 
S-IV STAGE 

By 

Philip J. Hays and Phil Sumrall 

ABSTRACT 

A control feedback stability analysis of Saturn 
SA-5 during powered flight was performed for the S-I 
and S-IV stages. Sloshing stability was investigated 
by considering two propellant damping ( t s ) values for 
booster flight: (1) 1:s = 1/ 2 percent of critical damp
ing (corresponding to wall friction) , and (2) the pre
dicted flight damping (due to the z-rings and the ac 
cordian baffles). The predicted flight 9amping values 
were used for the S-IV flight. The sloshing instability 
in the 70-inch LOX tank is caused by roll coupling, 
but proper tank baffling eliminates the problem; 
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therefore , no instability will occur during booster 
flight until 133 seconds when the fluid leaves the last 
baffle. No instability is experienced in pitch because 
of the large mass in the S-IV LOX tank, which coun- · 
teracts the s losh masses in the S- I stage. A sli ght 
instability in the LH2 tank exists at ignition for the 
S-IV flight. 

Bending mode stability was achieved by two meth
ods for booster flight: phase stabilization and attenu
ation stabilization. Gain stabilization was employed 
for all elastic modes in the roll and a - channels . The 
cp- chalmel phase stabil ized the first lateral bending 
mode and gain stabilized the higher modes. The elas
tic modes in the cp-channel were attenuated for the 
S-IV flight. Stability was achieved for booster and 
and S-IV flights . 

TECHNICAL MEMORANDUM X- 53018 

March 5, 1964 

SPACE RADIATIONS: A COMPILATION AND 
DISCUSSIO 

By 

W. T. Roberts 

ABSTRACT 

The natural radiations encountered during a space 
mission will fa ll into one of five categories . There 
will be Van Allen belts, galactiC cosm ic radiations, 
solar winds , sola r flares, and photon radiations . Each 
type of rad iation is exam ined from the point of view 
of the Apollo program and the associated luna r logis
tics vehicle, but with some comments pointing to ex
tended missions in space , to de term ine the importance 
which should be assigned to each class. 
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TECHNICAL MEMORANDUM X- 53020 

March 6, 1964 

SATURN V UPRATING STUDY 

By 

Ronald Scott, Terr e ll Deaton, 
Ronald Toelle, and Neva Huffaker 

ABSTRACT 

Presented in this report is the performl:nce' ca15a.
bility of several uprated Saturn V vehicle confi:gura
tions . 

The configurations selected for this study repre
sent a wide spectrum of payloads and are reflected in 
moderate vehicle uprating to rather advanced vehicle 
concepts . 

The presentation of the relative performance be
tween the configurations should be a valuabl e a id in 
determining the proper steps to be taken to uprate the 
performance capabil ity of the basic Saturn V vehicle. 

Report classified ( C) . 

TECHNICAL MEMORANDUM X- 53021 

March 9 , 1964 

DIRECTIONAL WIND COMPONENT FREQUENCY 
ENVELOPES, SANTA MONICA, CALIFORNIA , 

PACIFIC MISSILE RANGE 

By 

Orvel E . Sm ith and Gleim E . Daniel s 

ABSTRACT 

Direc tional Wind Component Frequency Envelopes 
for Santa Monica , California , based on the "windies t 
monthly period" concept, are presented in this report 
for use in structural and control studies in the design 
of aerospace vehicles . 

TECHNICAL MEMORANDUM X- 53023 

March ·13, 1964 

TERRESTRIAL ENVIRONMENT (CLIMATIC) CRI
TERIA GUIDELINES FOR USE IN SPACE VEHICLE 

DEVE LOPMENT , 1964 REVISION 

By 

Glenn E . Daniels 

ABSTRACT 

Provided in this document are guidelines on prob
able climatic extremes and probabilities-of- occurrence 
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of terrestrtfl environmental data specifically for space 
vehicle and associated equipment development. The 
geographic areas encompassed are the Atlantic Mis
sile Range (Cape Kennedy, Florida) ; Huntsville, Ala
bama; New Orleans, Louisiana; the Pacific Missile 
Range (Point Mugu , California); Sacramento, Cali
fornia; Wallops Test Range (Wallops Island, Virginia) ; 
White Sands Missile Range, New Mexico; and inter
mediate transportation areas . Ther;efore, this docu
ment omits climatic extrem'es for world-wide opera
tions . This is consistent with the existing philosophy 
regarding the employment of large space vehicles, 
since launching and test areas are relatively restrict
ed due to the availability of facilities and real estate. 

This document presents the latest available in
formation on probable climatic extremes, and super
sedes previous information presented in MTP-AERO-
63- 8 (Ref. 1). Where differences exist between this 
document and MTP- AERO-6 3- 8 , the data presented 
herein shall be employed. The information in this 
document is recommended for employment in the de
velopment of space vehicles and associated equipm ent, 
unless otherwise stated in contract work specifica
tions. 

TECHNICAL MEMORANDUM'X- 53024 

March 17, 1964 

PROGRESS REPORT NO. 5 

SPACE FLIGHT AND GUIDANCE THEORY 

By 

William E . Miner 

ABSTRACT 

This paper contains progress reports of NASA
sponsored studies in the areas of space flight and 
guidance theory. The studies are carried on by sev
eral universities and,industrial companies. This prog
ress report covers the period from July 18, 1963, to 
December 18, 1963. The technical supervisor of the 
contracts is W ~ E. Miner, Deputy Chief of the Astro
dynamics and Guidance Theory Division, Aero-Astro
dynamiCS Laboratory, George C. Marshall Space 
Flight Center. 

TECHNICAL MEMORANDUM X- 53026 

March 18, 1964 

BOOSTER PARAMETRIC DESIGN METHOD FOR 
PERFORMANCE AND TRAJECTORY ANALYSIS 

PART I: CONFIGURATION 

By 

V. Verderaim e 

ABSTRACT 

A method is presented for mathematically de
scribing the geometric configuration of a conventional 
liquid chern ical booster stage for a vertically launched 
space vehicle. Geometric properties of all significant 
components were derived in parametric form. Re
sults were summarized in schematic dimensional dia
grams for two arrangements of tanked bipropellant 
fluids. These results will serve as a basis for formu
lating mass parametric equations as r equired for per
formance and trajectory analysis. 

TECHNICAL MEMORANDUM X-53027 

April 10, 1964 

CAPE KENNEDY LOW LEVE L WIND STUDY FOR 
SEPTEMBER 23 - 25, 1963 

By 

Carroll Hasseltine 

ABSTRACT 

Compared in" this report are the high winds re
corded at Cape Kennedy, Septem ber 23 - 25, 1963, 
with the previously computed 95, 99, and 99.9 per
centile wind speeds used for design criteria at Cape 
Kennedy and vicinity. Methods used in computing the 
wind speec;ls at Cape Kennedy are explained. Data are 
presented for the length of tim e that these percentile 
wind values were exceeded. A comparison of the con
stants describing the wind speed profiles for different 
wind speeds and a comparison of gust factors are also 
presented. Some ofthe computed constants which best 
describe the characteristics of high surface winds are 
shown to differ from the constants which best describe 
the entire spectrum of wind speeds. 

TECHNICAL MEMORANDUM X-53029 

April '6, 1964 
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DYNAMIC TEST RESULTS OF SAD- 6 

By 

Gale R . Ernsberger 

ABSTRACT 

The purpose of these vibration tests is to deter
mine the body bending and torsional dynamic behavior 
of a full scale prototype of the Saturn SA-6 flight ve
hicle. A full scale prototype was vertically suspended 
in the test tower and excited by shakers mounted at 
the engine gimbal planes. The vehicle's dynamic re
sponse at various appliedforcing frequencies was re
corded by vibration pickups. Since the Saturn is sta
bilized and controlled by a servo loop, response 
measurements are needed to properly design the con
trol system filter circuits, thus preventing ve)1icle 
dynam ic instability. The SAD-6 vehicle was tested 
for both the boost flight with the S-I booster stage and 
for the S-IV powered flight with the S- I stage removed. 

TECHNICAL MEMORANDUM X-53031 

April 6, 1964 

SA-6 PREDICTED STANDARD TRAJECTORY AND 
DISPERSION ANALYSIS 

By 

J. L. Crafts 

ABSTRACT 

Presented in this report is the standard trajectory 
for Saturn I vehicle SA-6 to be flown over the Atlantic 
Missile Range. Dispersion results from 2-CT pertur
bations and impact dispersion of the recoverable cam
era capsules and launch escape system are also pre
sented. The trajectory shaping and a brief vehicle 
configuration description are provided. A nominal 
trajectory will insert the S-IV stage and payload into 
a near-circular orbit with a perigee and apogee of 
183.1 km and 229.4 lan, respectively. This orbit has 
a nominal lifetime of 4.8 days. This trajectory is 
based on mass and propulsion data provided by P& VE 
Laboratory. SA-6 will be the first Block II vehicle to 
be flown with ,closed loop guidance during the burn of 
the S-IV stage. This trajectory assumes the Fischer 
Ellipsoid of 1960 as the reference ellipsoid. 

Report classified (C) • 

130 

, , , 
TECHNICAL MEMORANDUM X-53035 

April 22, 1964 

ON SOUND INTENSITY AND SOUND PRESSURE 
LEVELS 

By 

Willi H. Heybey 

ABSTRACT 

Sound propagation through the open atm osphere is 
studied at MSFC mainly for an estimate of the acous
tical energy that sound rays sent up by static firings 
and refracted back to ground level may transm it to 
inhabited areas. A theoretical e:>q>ression derived in 
an earlier report (Ref. 1) for the volume density of 
returned energy is converted into an expression for 
the corresponding intensity level to accomm odate it to 
engineering practice. A first approximation of the 
latter's relationship to the sound pressure level (as 
an observable quantity) is established. The results 
of the theory can thus be compared to those of field 
measurements by microphones, and a basis for theo
retical prediction is prepared. 

TECHNICAL MEMORANDUM X-53036 

April 22, 1964 

CONTROL THEORY HANDBOOK 

By 

Doyle Garner 

ABSTRACT 

This report is written to present under one cover, 
employing a unified coordinate system and notation, 
the equations of motion and the basic control theory 
applicable to stability analyses for a flexible launch 
vehicle. 

Five of the basic control problems are discussed 
to provide some background and insight in the control 
of large flexible boosters moving through the earth's 
atmosphere. 

The control system coordinate and notations are 
shown and the rigid body equations are derived for 
both the pitch and yaw planes. A conventional control 
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system is introduced containing a position gyro, rate 
gyro, accelerometer and angle of attack meter. The 
gains of the control mechanism and the vehicle pa
rameters are related to the frequency and damping of 
the rigid body. Both the "Drift Minimum" and "Load 
Minimum" control principles are developed. 

The bending and slosh equations are derived by 
writing the energy expressions and subsequently ap
plying Lagrange's equation. The method of computing 
bending modes and frequencies for a flexible body is 
shown for both a simplified continuous mass model 
and a lumped mass model. 

The construction of a synthetic wind profile for 
control system studies using the 95 percent or 99 per
cent probability of occurrence wind speed profile and 
the 99 percent probability of occurrence wind shear 
envelope is discussed and illustrated. The method for 
superimposing a gust on the synthetic wind profile is 
also shown. 

Block diagrams and the Laplace transform are 
introduced to relate the system equations in a form 
which can be studied in terms of general feedback 
theory. 

Several stability analysis techniques are dis
cussed, including Routh's stability criterion, Hur
witz's stability criterion , root locus , frequency re
sponse methods, and Nyquist's criterion. These 
techniques are applied to a vehicle containing one 
bending mode, a control filter and an actuator. The 
corresponding root locus plot, Bode plot, Nyquist plot 
and Nichols plot are drawn. 

The basic elements of an example adaptive control 
system are discussed and its corresponding block dia
gram is shown. 

The appendices contain the block diagram and 
transfer functions for several sensors and engine ac
tuator. A summary of the flexible body equations in
cludes the effects of engine inertia , bending motion 
and slosh motion and a derivation of the bending mo
ment at any station along the vehicle longitudinal axis . 

TECHNICAL MEMORANDUM X- 53037 

April 22, 1964 

INTERPARAMETER STATISTICAL ANALYSIS OF 
SURFACE WIND SPEED, TOTAL OPAQUE CLOUD 
COVER, AND MAXIMUM WIND SPEED ALOFT AT 

CAPE KENNEDY, FLORIDA 

.-~-- -----

By 

Orvel E. Smith, George C. Marshall Space Flight 
Center; Lawrence E. Truppi and Harold L. Crutcher, 

U. S. Weather Bureau, National Weather Records 
Center, Asheville, North Carolina 

ABSTRACT 

Provided in this report is a monthly analysis of 
the statistical relationships of surface wind, winds 
aloft and total opaque cloud cover at Cape Kennedy. 
These data are based on five years of record, Janu
ary 1957 through December 1961, and represent sur
face observations of wind speed and total opaque cloud 
cover coincident with RA WIN observations of maximum 
wind speeds in the 10 to 15 Ion-layer. Data are pre
sented as percentage occurrence of "go" to "no go" 
conditions where a favorable combination of all three 
parameters as to vehicle launch criteria represents a 
"go" condition, and a combination with one or more 
parameters unfavorable to vehicle launch is classified 
as a "no go" condition. The vehicle launch criteria 
have been arbitrarily chosen for the purpose of this 
report. 

TECHNICAL MEMORANDUM X-53038 

April 27, 1964 

HYPERSONIC STATIC LONGITUDINAL STABILITY 
AND AXIAL FORCE CHARACTERISTICS OF THREE 

SATURN IB UPPER-STAGE MODELS 

By 

David R. Carlson 

ABSTRACT 

Results of hypersonic wind twmel tests are re
ported and analyzed for three Saturn IB second-stage 
configurations which differ in length and frustum half
angle. The tests were performed in the Arnold En
gineering Development Center von Karman Facility 
(VKF) Twmel E-2, and spanned a nominal Mach num
ber range of 5 to 8. 

Three !>urposes directed the test program: (1) the 
establishment of static aerodynamic characteristics 
of the second stage; (2) the separation of effects of 
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strakes, Launch Escape System , change in frustum 
angle, and mission abort; (3) the qua litat ive determi
nation of the flow fields about these multiple- cone
frustum-cylinder shapes for application to future ve
hicles . The tests extend earlier s upersonic results 
for the same models to the hypersonic, low-density 
flo w regime. 

The amount of flow separation and its loca tion 
control the aerodynam ic characteristics. Large 
changes in axial force and stability coefficients occur 
near Mach 5 , at which point separated flow from the 
Lalllch Escape System comple tely engulfs the Com 
mand Module. High Reynolds number , concomitant 
with the use of spherical trips, reduces the volume of 
separated flow and produces large differences in sta
bility and axial force coeffic ients compared with the 
low Reynolds number (near full-scale trajectory) re
sults . 

Strakes on the Command Module have no signifi
cant effect. J ettison of the Launch Escape System, 
or abort of the Command or Service Module , intro
duces strong, rather sudden changes in the coeffi
cients . Newtonian impact theory correlates well with 
the data for tower-off models, where attached-flow 
concepts are applicable. The degree of sim ula tion of 
flow fields and vehicle characteristics is argued. It 
is concluded that the data apply very well at low angles 
of attack and approximately at intermediate and high 
angles of attack. 

TECHNICAL MEMORANDUM X-53040 

April 30, 1964 

ATMOSPHER IC ENVIRONMENT FOR SATURN 
(SA- 5) FLIGHT TEST 

By 

J . W. Smith 

ABSTRA CT 

An evaluation of atmospher ic conditions during 
the flight test of Saturn (SA-5) on January 29 , 1964 , 
is presented. The general synoptic situation for the 
flight area is discussed, surface observations are 
pre s ented , and upper air data, measured near launch 
tim e by rawinsonde and rocketsonde observation , are 
given. Wind and thermodynam ic da ta are presented 
graphically and compared to the Patrick Air Force 
Base r eference atmosphere. Atm ospheric effects on 
the performance of Saturn (SA- 5) are listed. 
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TECHNICAL MEMORANDUM X- 53041 ' 

May 1, 1964 

RIGID BODY STUDY OF CONTROL, SEPARATION, 
AND LIFT-OFF FOR SA-6 VEHICLE 

By 

E . L. Sullivan, D. O. McNiel, and W. H. Harm on 

ABSTRACT 

Presented in this report is a rigid body analysis 
of the dynam ics of the control, separation, and lift
off motion of the SA- 6 vehicle for the predicted stand
ard trajectory. 

A headwind r estriction of 27 meters per second 
is impos ed on the vehicle flight in order not to exceed 
the 5. 5 degree angle- of- attack limitation due to struc
tura l considerations. The wind r estriction is a head
wind due to the programmed 4 degree angle- of- a ttack 
in the maximum dynamic pressure region. With this 
wind restriction , the launch probability is still ap
proximately in the 3(1 confidence level fo r the four 
months May through August. 

Under the disturbances c.onsidered in this study, 
there is no collision or control problem during sepa
r a tion of the S-I/S-N stages for the predicted SA- 6 
flight . 

The "close" launch support equipment is not an 
obstacle to the lift-off of the SA- 6 vehicle under the 
disturbances consider ed. A collision problem with 
the umbilical tower does exist if control engine no. 1 
should fail very early in fli ght; however, this occur
rence must be considered highly improbable. 

Report classified (C) . 

TE CHNICAL MEMORANDUM X- 53042 

May 1, 1964 

A TECHNIQUE FOR INCLUDING THE EFFECTS OF 
VEHICLE PARAMETER VARIATIONS IN WIND 

RESPONSE STUDIES 

By 

J. A. Lovingood 

ABSTRACT 



A inethod is pr~sented for performing vehicle 
wind l'esponse studies including the effects of varia
tions in vehicle data such as aerodynamic and mass 
characteristics. These variations are combined in 
such a manner as to yield a 99. 87 percent probability 
value for the maximum bending moment experienced 
by the vehicle when flying through a determ inistic wind 
profile. A step-by-step procedure is presented for 
calculating the moment and other flight dynamics pa
rameters . 

TECHNICAL MEMORANDUM X-53048 

May 20, 1964 

MATHEMATICAL WIND PROFILESi 

PART I 

By 

Arnold Court, Robert R. Read,2 and 
Gerald E . Abrahms 

Office of the Chief Scientist" 
Lockheed- California Co. 

Burbank, California 

ABSTRACT 

Augmented Fourier polynomials, in which con
stant and linear terms have been added to a complex 
Fourier series, appear to offer a means for repre
senting the vertical profile of the horizontal wind ve
locity. Reasons for selecting this function, and 
methods of its computation and application, are given. 
Polynomial coefficients are presented for mean 
monthly winds over Cape Kennedy, Florida , and for 
four consecutive soundings over Montgomery, Ala
bama. 

TECHNICAL MEMORANDUM X- 53051 

May 27, 1964 

tprepared under Contract NAS-8-5380 with Aero
Astrodynamics Laboratory, George C. Marshall 
Space Flight Center, NASA, with O. E. Smith as 
Technical Supervisol:. 

2Associate Professor of Mathematics, U. S. Navy 
Postgraduate School, Monterey, and Consultant to 
the Lockheed- California Company. 

SATURN SA-5 POST-FLIGHT TRAJECTORY 

By 

Gerald R. Riddle and Michael Naumcheff 

ABSTRACT 

Presented in this report is the post-flight trajec
tory for the Saturn SA-5 test flight. Trajectory de
pendent parameters are given in earth-fixed, space
fixed, and geographic coordinate systems. A complete 
time history of the powered flight trajectory is pre
sented at 1. 0 sec intervals from first motion through 
insertion. Tables of insertion conditions and various 
orbital parameters are included in a discussion of the 
orbital portion of flight. A comparison between nom
inal and actual trajectory dependent parameters is 
also presented. 

Report classified (C). 

TECHNICAL MEMORANDUM X-53053 

June 2, 1964 

BOOSTER PARAMETRIC DESIGN METHOD FOR 
PERFORMANCE AND TRAJECTORY ANALYSIS 

PART II. PROPULSION 

By 

V. Verderaime 

ABSTRACT 

Approxim;:tte equations for large, liquid chemical, 
rocket engine mass and space envelope are presented 
in parametric form. Well known propulsion perform
ance equations are given with modifications to admit 
programming of mixture ratio shifts and throttling of 
propellant mass flow rate. Parameters used in mass 
and space envelope equations were nominal input de
sign parameters in common with the propulsion per
formance equations such that their interdependence 
could be manifested in a vehicle trajectory and per
formance optimization study. Though results are based 
on current type engines, it is expected that coeffic
ients and exponents used may be readily modified to 
define mass and size of moderately advanced rocket 
engines. 
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TECHNICAL MEMORANDUM X-53054 

June 2, 1964 

STABILITY ANALYSIS OF SATURN SA-6 WITH 
RA TE GYRO FOR S-IV CONTROL DAMPING 

By 

Philip J. Hays 

ABSTRACT 

A control feedback stability analysis was per
formed on Saturn SA-6 during S-I and S-IV stage pow
ered flight. Predicted flight damping values were 
used in the sloshing stability analysis for both stages 
of flight. Stability was achieved for both stages of 
flight although marginal stability was observed in the 
S-IV LOX tank during booster flight. The marginal 
stability is due to the interaction between the sloshing 
and the vehicle structure. 

Theoretical and experim ental bending frequencies 
were compared during booster flight using the experi
mentally obtained structural damping. Theoretical 
bending data were used for the S-IV flight with one 
percent structural damping assumed. 

Bending mode stability was achieved by two meth
ods: phase stabilization and gain stabilization. Gain 
stabilization was employed for all elastic modes in the 
roll and a-channels. The cp-channel phase stabilized 
the first lateral bending mode and gain stabilized the 
higher modes. The elastic modes in the cp-channel 
were gain stabilized for the S-IV flight. 

TECHNICAL MEMORANDUM X-53055 

June 3, 1964 

STUDY OF MANNED INTERPLANETARY FLY-BY 
MISSIONS TO MARS AND VENUS 

By 

Rodney Wood, Bobby Noblitt, Archie C. Young, 
and Horst F . Thomae 

ABSTRACT 

This report contains the results of an "in depth" 
mission analysis study of manned interplanetary 
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fly-by missions to Mars and Venus during the 1970's 
using Apollo technology and hardware wherever pos
sible. The usual conic and impuls ive velocity tech
niques wer e used in this study; however, a precision 
integrated fly-by trajectory to Mars during the 1975 
opposition is included. 

TECHNICAL MEMORANDUM X- 53056 

June 4, 1964 

THE AERODYNAMIC CHARACTERISTICS OF 
SATURN I/APOLLO VEHICLES (SA- 6 AND SA- 7) 

By 

Billy W. Nunley 

ABSTRACT 

Presented in this report are the final aerodynam ic 
characteristics of the Saturn /Apollo vehicles. These 
data are based on wind tunnel tests of scale models . 
Normal force coefficient gradient , normal force co
efficient, center of pressure, total power- on and 
power-off drag coefficient, power- on and power-off 
base drag coefficient, and forebody drag coefficient 
are presented for the Mach number range from 0 to 
10. Local normal force coefficient distributions are 
presented for various Mach num bers ranging from 
O. 20 to 4. 96 . These data are for zero angle of attack 
with the exception of the gradients, which are slopes 
at zero angle of attack, and the normal force coeffic
ients, which are a function of angle of attack. 

TECHNICAL MEMORANDUM X- 53059 

June 8, 1964 

SPACE VEHICLE GUIDANCE -A BOUNDARY VALUE 
FORMULA TION 

By 

Robert W. Hunt and Robert Silber 

ABSTRACT 

A mathematical formulation of the problem of 
guiding one stage of a space vehicle is given as a 
boundary value problem in diffe rential equations. One 
approach to the solution of this problem is to generate 



the Taylor's series expansion (in several variables) 
about a known solution. The theoretical nature of such 
solutions is discussed, and a method for numerically 
computing them is presented. This method entails the 
numerical integration of an associated system of dif
ferential equations, and can be used to obtain the so
lution to any desired degree of accuracy for points in 
a region to be defined. An extension of the method to 
the problem of guiding several stages of a space ve
hicle is also given, employing fundamental composite 
function theory. 

TECHNICAL MEMORANDUM X-53062 

June 10, 1964 

AN AUTOMATED MODEL FOR PREDICTING AERO
SPACE DENSITY BETWEEN 200 AND 60,000 KIL
OMETERS ABOVE THE SURFACE OF THE EARTH 

By 

Robert E. Smith 

ABSTR.ACT 

Described in this report is the derivation of a 
computer routine for predicting the vertical distribu
tion of aerospace density in the terrestrial space en
vironment above the surface of the earth. Solar ac
tivity, geomagnetic storm, diurnal heating, latitude, 
and the earth's orbital eccentricity effects are in
cluded in this model. Densities can be predicted for 
any time through December 1992. 

TECHNICAL MEMORANDUM X-53064 

June 16, 1964 

LA TEST WIND ESTIMATES FROM 80 KM TO 200 KM 
ALTITUDE REGION AT MID-LATITUDE 

By 

W. T. Roberts 

ABSTRACT 

The data from a total of forty rocket launches 
fired specifically to determine wind characteristics 
by the release of chern ilum inescent trails have been 

compiled and studied in an attempt to clarify seasonal 
and diurnal trends in upper atmospheric winds above 
80 kilometers. From a series of graphs taken at 10-
kilometer intervals, a general picture of the change 
in wind vectors with height is determ ined. 

Below 120 kilometers there appears to be extreme 
variation in speed and direction with very little cor
relation with seasonortimeof day discernible. Above 
120 kilometers, however, the winds appear to orient 
more with season, and above 150 kilometers, some 
diurnal variations become apparent. 

More experiments of this type, particularly in the 
summer and winter months, are needed to establish 
confidence in the seasonal and diurnal trends. 

TECHNICAL MEMORANDUM X-53071 

June 24, 1964 

SA-7 PRELIMINARY PREDICTED STANDARD 
TRAJECTORY 

By 

Jerry D. Weiler 

ABSTRACT 

Presented in this report is the preliminary pre
dicted standard trajectory for Saturn I vehicle SA-7 to 
be flown over the Atlantic Missile Range. The nomi
nal impact area of the S-I booster, the recoverable 
camera capsules, and launch escape system are also 
presented. 

A brief discussion of the trajectory shaping and a 
description of the vehicle configuration are presented. 

The nominal trajectory will insert the S-IV stage 
and payload into a near-circular orbit with a perigee 
and apogee of 185 km and 217 km altitude, respec
tively. The nominal lifetime of the orbit is 3. 0 days. 

The final predicted standard trajectory and dis
persion analysis will be published approximately 30 
days prior to launch date. 

Report classified (C) . 

TECHNICAL MEMORANDUM X-53072 
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June 24, 1964 

MULTIPLE BEAM VIBRATION ANALYSIS OF 
SATURN I AND IB VEHICLES 

By 

Larry Kiefling 

ABSTRACT 

The Saturn is idealized as a system of connected 
beams and the equat ions of motion are derived by the 
use of Lagrange's equation. A method of calculating 
three-dimensional deflections from the two- dimen
sional solution is presented. A comparison is made 
between theoretica l res ults and ten modes from the 
dynamic test at SA-D6 vehicle at 68 seconds flight 
condition. 

The multiple beam bending vibration program has 
been developed for analys is of Saturn I and Saturn IB 
vehicles. The vehicle is r epresented by a system of 
nine connected beams, one beam consisting of the ve
hicle upper stages and the center tank of the booster 
and each of the other beams consisting of an outer tank 
of the booster. A vibration analysiS is made on each 
of these beams using a modified Stodola method. The 
differential equa tions of motion for the system are 
then derived by using Lagrange's equation. 

Changes have been made to decrease the matrix 
size while increas ing the accuracy of the results. This 
has been done by the fo llowing four measures : 

1. Attachment of outer tanks to center tank by 
rigid links . This permits the use of center tank co
ordinates in describing outer tank motion, and elim i
nates e ight equa tions . 

2. Addition of a fourth bending m ode for the cen
ter tank. 

3. Addition of a second bending mode for each of 
the outer tanks . 

4. Addition of two degrees of freedom fo r longi
tudinal propellant vibration in outer tanks . 

TECHNICAL MEMORAND UM X-53118 

August 28, 1964 

DISTRIBUTION OF SURFACE METEOROLOGIqAL 
DATA FOR CAPE KENNEDY, FLORIDA 

136 

By 

J . W. Smith 

ABSTRACT 

Thermodynam ic surface data for Cape Kennedy, 
Florida, have been ana lyzed, and are presented 
graphically in this study. The m edians and extremes, 
plus the cum ulative percentage frequency level s of 
0. 135, 2. 28 , 15. 9, 84.1 , 97.72, and 99. 865 percent, 
are shown for temperature, pressure, density, vapor 
pressure , mixing ratio, entha lpy , refractivity, and 
relative humidity. These data are presented for hour
ly, monthly and annual periods , and are discussed 
briefly. 

B. PRESENT A TIONS 

ON LINEARIZED SUB- AND SUPERSONIC FLOW 
AROUND PULSAT ING AND OSCILLATING BODIES 

By 

Maximilian F. Platzer 

The problem of steady linearized sub- and super
sonic flow a round low aspec t ratio bodies at zero and 
small angles of attack has been treated by M. Munk, 
H. S. Tsien, R. T. Jones, G. N. Ward, M. C. Ad
am s, W. R. Sears, F. Keune, K. Oswatitsch, M. A. 
Heaslet, and H. Lomax. It is shown that in a first 
approximation the flow over bodies at small angles of 
attack can be replaced by the two dimensional cross 
flow only (Munk-Jones slender body theory ) ; whereas, 
for the flow around bodies at zero angle of attack, a 
spatial influence has to be added. K. Oswatitsch was 
able to s how that the spatial influences of low aspect 
ratio wings and bodies of r evolution are the sam e for 
bodies with equal cross- sectional area (Oswatitsch' s 
equivalenc e rule) . 

The extension of these r esults to not so s lend r 
bodies has been obtained by M. C. Adams-W. R . 
Sea TS, and F . Keune using two basically diffe r ent 
methods. M. C. Adams - W. R. Sears apply Laplace or 
Fourier transform s to the linearized potential equation 
with respect to x . Expansion and invers ion of the ap
propriate solution give the higher order flow te rms . 
This procedure is purely mathem atical. F. Keune, 
on the other hand,. develops an elem entary and phys
ically more a ppealing approach to the problem by us 
ing the loca l source-strength, the sum of the sources 
ove r the cross ~ ection , and the higher order moments 
of these quantities . 
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, The present investigation is based upon the un
steady linearized potential equation. The time de
pendenee is assumed to be purely ha rmonic . The ob
jective of this paper is the extension of Oswatitsch's 
and Keune's results to the flow around pulsating and 
oscillating bodies. It is shown that the sub- and s uper
sonic flow around low aspect ratio wings, whose skin 
executes symmetric pulsations, is in a first approxi
mation given again by two te rms; namely, a cross
flow and a spatial influence. This' spatial influence 
reduces the flow around pulsating wings to the flow 
around the equivalent pulsating body of revolution. 

Thus, a surprisingly simple approximation theory 
for pulsating low aspect ratio bodies has been found 
which may have some importance for panel flutter 
problems. The range of validity of this theory can be 
extended by considering a lso the higher order terms. 
These term s can again be obta ined by generalizing 
either the Adams-Sears method, or the Keune method 
to pulsating flow. Both methods give the same re
sults. The interpr etation after Keune is advantageous, 
however, showing that the higher order terms also 
consist of a generalized cross-flow and a generalized 
spatial influence. 

The insight gained for the pulsating body can be 
extended in an elementary way to the case of the os
cillating body. Her e , the first order approximation 
is given by the cross flow only (Garrick- Miles solu
tion); but in the second order approximation, a spatial 
influence has to be added and an equivalence rule can 
be postulated also for this case. 

F inally, these approximation theories are applied 
to cases where exact solutions of the linearized po
tential equation can be found. This is possible for the 
infinitely long tube and ribbon exhibiting a harmonic 
standing pulsation or osc illation. These solutions give 
insight not only into the range of validity of the ap
pr.oximate theories developed in this paper, but show 
also the trans ition to piston theory. 

Presented at the German Institute of Aeronautics 
andAstronautics, Aachen, Germany, on June 30, 1964. 

ON LINEARIZED SUB- AND SUPERSONIC FLOW 
AROUND PULSATING AND OSCILLATING BODIES 

By 

Maximilian F. Platzer 

Presented in partial fulfillment for Ph. D. at Vi
enna Institute of Technology, Vienna, Austria, in 
February 1964. 

AMPLITUDE DEPENDENT STATIC HYSTERESIS 
DAMPING AS A MODEL FOR EARTH MATERIALS 

By 

Richard D. Rechtien 

A general theory is presented for the description 
of the propagational characteristics of seismic wave
lets in earth materials. From the general development 
of the theory, it is shown that no. linear theory can 
ever predict the observed wavelet characteristics . 
However, the inclusion of a near-arbitrary, high fre
quency diSSipation function in the wave equation per
m its a linear theory to be applicable at arbitrarily low 
frequencies, 

The dissipation mechanism assumed operative in 
the seismic range is taken to be linearly dependent on 
the induced strain amplitude. This model essentially 
describes the irrecoverable plastic deformation due 
to local, high intensity stress at crystal boundaries. 
A comparison of theoretical and experimental wavelet 
behaviors is given, and the effects of nonlinearities 
are discussed. 

Presented in partial fulfillment for Ph. D. at 
Washington University, St. Louis, Missouri, on June 
12, 1964. 

A SEMIEMPIRICAL DETERMINATION OF ALPHA 
PARTICLE ENERGIES AND HALF-LIVES IN THE 

HEAVY ELEMENT REGION 

By 

Barton Scott Perrine II 

The parameters for a mass formula were deter
mined by empirical methods for the region of nuclides 
with N > 126 and Z > 82. By using this newly deter
mined mass formula, alpha particle energies were 
predicted· for this region. With these alpha particle 
energies the half-lives were found using a modifica
tion of a relation developed by Bethe between half-life 
and alpha decay energy. 

The parameters associated with the liquid drop 
model were not changed significantly from previous 
values. However, the parameters for the correction 
terms were changed enough to yield somewhat better 
predictions for alpha particle energies than the older 
parameters. The. root-mean-square error for the 
alpha particle energies was less than . 2Mev. The 
errors in the prediction$ for the half-lives were quite 
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large but these results should still be useful in deter
mining the methods to use in looking for alpha decay 
in this region. 

Presented in partial fulfillment for M. S, at Okla
homa State University, Stillwater, Oklahoma, on May 
24, 1964. 

WALL PRESSURE FLUCTUATIONS AND SKIN VI
BRATIONS WITH EMPHASIS ON FREE SHEAR 

LAYERS AND OSCILLATING SHOCKS 

By 

Fritz R. Krause 

Ever since the failure of the first Centaur flights, 
high frequency skin vibrations have been of much con
cern. Large wall pressure fluctuations below ge'pa
rated flows and oscillating shocks lead to a dangerous 
resonance excitation over the entire transonic and 
supersonic portion of the flight. A new relation be
tween pressure and force correlations has been es
tablished for inhomogeneous turbulence in order to 
account correctly for the largest pressure fluctuations 
below oscillating separation and reattachment lines. 
It shows that the power spectra of the generalized 
forces can be found from rigid model tests by a curve 
fit of a special pressure cross correlation function. 
However, a curve fit of experimental pressure cor
relations is useful only as long as the statistical error 
of a cross correlation estimate is smaller than the 
numerical error of the curve fitting procedure. Non
linear transfer functions and dynam ic shifts in pres
ently available pressure transducers and tape record
ers are so large that the more refined force estimates, 
which consider the spatial structure of the pressure 
field, might lead to ambiguous results. 

Presented at the Sixty-Seventh Meeting 'of the 
Acoustical Society of America, New York, New York, 
May 6- 9, 1964. 

PERFORMANCE OF THE MISTRAM TRACKING 
SYSTEM AT ELEVATION ANGLES LESS THAN 

FOURTEEN DEGREES 

By 

Max A. Horst 

Presented in this paper is the cyclic and random 
error buildup at low elevation angles for the MISTRAM 
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tracking system. The error buildups are baseci' on 
actual SA-5 final tracking data. The results of a 
Fourier analysis on MISTRAM velocity data are also 
presented. 

Presented at the MISTRAM Technical Working 
Group Meeting, Cocoa Beach, Florida, on April 30, 
1964. 

A SURVEY OF METHODS FOR GENERATING 
LIAPUNOV FUNCTIONS 

By 

C. C. Dearman and A. R. Lemay 

The principal difficulty encountered in applying 
Liapunov's second method to det~rmine the stability 
properties of nonlinear dynamical systems lies in 
generating suitable Liapunov'S functions. An exten
sive study of the several methods of generating these 
functions has been made and from these methods the 
most promising for use in investigating the stability 
properties of the differential equations of motion of a 
guided space vehicle have been selected. The deriva
tion of the methods in this sub-class and the differen
tial equations to which they are applicable is the sub
ject of this survey. 

Presented at the Conference on Mathematical 
Methods of Celestial Mechanics and Astronautics and 
Related Questions of Numerical Mathematics, Ober
wolfach-Walke, Germany, March 15-21, 1964. 

VARIABLE POROSITY WALLS FOR TRANSONIC 
WIND TUNNE LS 

By 

A. Richard Felix and J . W. Davis 

Recently, variable porosity walls were installed 
in the transonic test section of the 14 x 14 Inch Tri
sonic Tunnel at Marshall Space Flight Center. Eval
uation tests indicated that use of these walls greatly 
improve the ability of this facility to produce reason
ably accurate model pressure distribution data 
throughout the critical and difficult Mach num ber 
range from 1. 0 to 1. 25. The evaluation was accom 
plished by comparing pressure distributions for a 20 
degree ,cone-cylinder model with interference free 
data for the same model. The range of porosities uti
lized is between O. 5 percent and 5. 4 per cent with the 
holes being 60 degrees slanted. 
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Presented at the Twenty- First Semi-Annual Meet-
ing 0 the Supersonic Tunnel Association, Princeton, 
New Jersey, in April 1964. 

APOLLO LOGISTIC SUPPORT SYSTEM 

By 

Herbert Schaefer and Leonard S. Yarbrough 

One possible conceptual definition of an early 
Apollo Logistics Support System (ALSS) is presented 
and various payloads for the System are briefly dis 
cussed. A more detailed discussion of one payload, a 
Lunar Mobile Laboratory (MOLAB) , is given, includ
ing a summary discussion of the major sub- systems 
and critical features. Some of the considerations for 
planning a lunar scientific mission are discussed. A 
hypothetical traverse and general operations plan for 
the MOLAB are defined in a manner suitable for mis
sion optimization, once valid design data becomes 
available. Some aspects of the MOLAB testing pro
gram are presented. It is concluded that this system 
appears feasible and the problems which presently 
confront its design and developm ent do not seem in
surm ountable. 

The ideas expressed herein are those of the au
thors and should not be construed as being official 
NASA policy. 

Presented at the Tenth Annual Meeting of the 
American Astronautical Society on May 7, 1964. 

SATURN I FLIGHT TEST EVALUATION 

By 

Dr. F. A. Speer 

Presented in this paper is, in very condensed 
form, a representative cross section of the major 
Saturn I flight test achievements. The Saturn I flight 
test program discussed includes the first five flights, 
launched between October 1961, and 'January 1964. 
The overall Saturn I test program is discussed briefly 
along with the resources available for flight testing. 

The report also contains many illustrations which 
are indicative of the type of information which is being 
compiled and utilized, from the rough estimate of 550 
million bits of information received from these flights, 
in designing and building the two major NASA launch 
vehicles of the future: the Saturn IB and the Saturn V. 

Presented at the First Annual 'Meeting and Tech
nical Display (AIAA) , Washington, D. C., June 28-
July 2, 1964. 

SIMULA TION OF THE SA TURN V VEHICLE ON THE 
ELECTRONIC ANALOG COMPUTER 

By 

Dieter Teuber 

The development of large space vehicles of the 
Saturn V type presents numerous problems not en
countered in the development of smaller missiles, The 
increase of dynamic analysis efforts is apparent if the 
effect of atmospheric disturbances on a nonlinear con
trolled space vehicle is studied, Because of the un
certainty in predicting the nature of atmospheric dis
turbances, statistical methods are used. The GPS 
high speed repetitive analog computer is suited for the 
task to evaluate thousands of solutions for the overall 
system performance of the Saturn V. 

The systems of differential equations describing 
the behavior of the Saturn V are represented. With 
the addition of bending and sloshing modes, the prob
lem is represented on the analog computer by a 12-
degrees - of-freedom simulation. Driving function of 
this set of equations is wind magnitude as function of 
the flight time. A reel-to-reel tape recorder is used 
for measured wind profiles. In a different approach, 
the statistical driving function is generated from a 
noise generator and shaping filters based on the spec
tral characteristics and amplitude distribution of wind. 
Exceedances of maximum values for the bending mo
ment, engine deflection or angle of attack are regis
tered by the analog computer. Thus, an optimization 
by changing control parameters becomes feasible. 
Methods of programming the analog computer and 
typical transients during powered flight of the Saturn 
V are represented. 

Presented at the Hermann Oberth Society, Darm
stadt, Germany, on June 24, 1964. 

FAR-FIELD SOUND PROPAGATION AS RELATED 
TO SPACE VEHICLE STATIC FIRINGS 

By 

Orvel E. Smith 

As space vehicle boosters become larger in 
thrust, the emitted sound energy that is propagated 

139 



through the atmosphere becomes of greater concern 
to the organizations performing the static firings due 
to disturbance or nuisance to the near-by communi
ties. Far-field sound intensity levels are calculated 
using the inverse squar e law and theoretical model 
based on the acoustical equivalence to Snell's r efrac
tion law. The theoretical model requires a knowledge 
of the sound source intensity and the velocity of sound 
profile. This model requires accurate m easurements 
of the vertical structure of virtual temperature, wind 
speed and direction from which the velocity of sound 
profile is derived. The necessary simplifyingassumJr 
tions used in deriving the theoretical model will be 
discussed. The sound intensity level as derived from 
the theoretical model and empirical measurements 
from an acoustical horn and the static firings of the 
Saturn booster are compared. Practical operational 
techniques used in performing atmospheric measure
ments, atmospheric predictions, and sound intensity 
level calculations for the static firing of large boost
ers are discussed. 

Presented at the Fifth AMS Conference on Applied 
Meteorology - Atmospheric Problems of Aerospace 
Vehicles, Atlantic City, New Jersey, March 2-6, 1964. 

AN EVALUATION OF VARIOUS GEOMAGNETIC 
FIE LD EQUATIONS 

By 

Harold C. Euler 

The dipole and multipole approximations of the 
earth's main magnetic field are evaluated using Jensen 
and Whitaker's 568 Gaussian coefficients for Epoch 
1955. O. The total geomagnetic field, which was com
puted to 16 earth radii for various geographic loca
tions, is compared to values computed with the in
verse cube law and to some of the Vanguard III 
geomagnetic field observations. 

. 
Presented at the National Annual Meeting of the 

American Geophysical Union, Washington, D. C., 
April 22-25, 1964. 

PROPOSED SOLUTION TO THE GEOMAGNETIC 
ANOMALIES IN THE IONOSPHERE 

By 

William T . Roberts, 
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I f . , • r' In order to determine the dnving and control ing 
mechanisms which predominate in the ionospMre, a 
series of contour maps was drawn from IGY data 
taken at stations lying approximately along the seventy
fifth meridian. An attempt was then made to inter 
pret the anomalous behavior of the F2 peak of the 
ionosphere in the vicinity of the geomagnetic equator. 
If one assumes the existence of an equatorial electro
jet and further assumes that the magnetic field which 
is associated with this electrojet is sufficient to per
turb the earth's main magnetic field, electrons may 
be deflected away from the geomagnetic equator. 
Furthermore, if the atmosphere tends to expand and 
contract diurnally, ions and electrons may be deflected 
into regions at times which could account for the noc
turnal increase in electron density north and south of 
the geomagnetic equator. Special emphasis is placed 
upon this nocturnal increase in electron density , and 
when its seasonal variation is investigated one finds 
that the phenom enon is greatest during and around the 
months of equinox and least so during and around the 
months of solstice. 

Presented at the National Annual Meeting of the 
American Geophysical Union, Washington, D. C., 
April 22-25, 1964. 

SPHERICAL BALLOON WIND SENSOR BEHAVIOR 

By 

James R. Scoggins 

An analysis is presented which shows the response 
characteristics of freely rising superpressure spheres 
of different configurations. Wind profile data m eas 
ured by the superpressure balloon method, the smoke 
trail method, the AN/ GMD- 1 rawinsonde system, and 
from low level open air tests were used in the anal 
ysis . Results are reported on data measured at 
Huntsville, Alabama, at night during stable conditions 
to an altitude of 120 m and at Cape Kennedy to an alti
tude of 12 km . The results show that (1) the average 
drag curve for a freely rising 2- m diameter, smooth 
superpressure sphere differs considerably from the 
drag curve obtained in wind tunnels using smaller 
spheres; the average value of the drag coeffici,ent is 
larger over all Reynolds numbers except near the 
transition region; (2) the drag coefficient for rough
ened spheres is nearly independent of the Reynolds 
num ber but decreases slightly as the Reynolds num ber 
decreases; (3) , by the addition of surface roughness 
elements the aerodynamically induced horizontal 
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motions of"he sm~b~' ~111~re are reduced; and (4) the 
avera~e aerodynamic lift force, which acts primarily 
in the horizontal direction and is responsible for the 
aerodynamically induced horizontal motions, is neg
ligible indicating that it does not act in any preferred 

direction. 

Presented at the Fifth AMS Conference on Applied 
Meteorology - Atmospheric Problems of Aerospace 
'Vehicles, Atlantic City, New Jersey, March 2-6, 1964. 
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