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FOREWORD

The Committee on Space Research (COSPAR) held its fifth

International Space Sciences Symposium in May 1964 in Florence,

Italy. This volume presents a collection of papers co-authored

or presented at the meeting by personnel of NASA's Goddard

Space Flight Center, Greenbelt, Maryland.

There has been no attempt to arrange the papers in any par-

ticular sequence. Their publication within a single NASA Tech-

nical Note, rather than as separate ones, was prompted by

recognition of the growing need for more inter-disciplinary com-

munication. It is to be hoped, therefore, that the readers of any

of these papers will find material of interest in all of them.

Technical Information Division

Goddard Space Flight Center

Greenbelt, Maryland
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INFERENCESOF STRATOSPHERICAND MESOSPHERIC
CIRCULATIONSYSTEMS FROMROCKETEXPERIMENTS*

by

G. Warnecket and W. Nordberg

Goddard Space Flight Center

Synoptic rocket grenade experiments and meteorological rocket network

soundings performed during the winter seasons 1962/63 and 1963/64 were inter-

preted to show the existence and movement of conventional circulation systems

throughout the upper stratosphere and in the mesosphere. Pressure maps for

North America were derived from the rocket measurements at various altitudes

up to 70 kin. Considerable disturbances were found in the zonal pressure dis-

tribution at all altitudes. These disturbances were observed to persist several

days and some moved considerable distances during that period. Although these

disturbances exhibit depths of 10 to 20 km, no clear cut relationship between

such systems in the stratosphere and mesosphere could be found. Evidence of

such moving pressure systems exists only up to 70 km where the nature of the

circulation changes abruptly. The regular wind pattern primarily determined

by the circumpolar pressure distribution disappears at altitudes above 70 km,

and rocket wind measurements indicate that other forces, probably tidal in

nature, become exceedingly predominant above 70 km. At these altitudes, we

may only conclude that the nature of the circulation is radically different from

lower altitudes, but because of the rapid variation in the wind patterns, we were

unable to show the existence of pressure systems such as we found below 70 km.

INTRODUCTION _L_

Since the early rocket grenade experiments more than ten years ago and the successful fir-

ings during IGY, the experiments have been continued by NASA at Wallops Island. Thus numerous

soundings are available which provide a climatological survery on the gross features of the winds

and the thermal structure in the upper stratosphere and in the mesosphere (References 1 and 2).

Experiments have also been performed in Australia, Japan, Sweden, Italy, and France and the

United States program will be extended to include simultaneous launchings at Churchill, Wallops

Island, and Ascension Island (Reference 3). The number of rocket stations reporting data above the

normal Meteorological Rocket Network (MRN) levels is gradually increasing andpromises improv-

ing global data coverage for the levels between 50 and 90 km during the forthcoming International

*Scheduled, but not presented.

tNAS-NRC Besearch associate; on leave from Institut f/Jr Meteorologie and Geophysik der Freien Universitiit Berlin.



Geophysical Year (IQSY). In this report, interesting features are derived from the first simultand-

ous rocket grenade exper_m.ept_performed at Churchill, Manitoba, and Wallops Island, Virginia,

and from simultaneous Meteorological rockets launched at the various MRN sites over North America.

While the earlier sporadic experiments enabled a study of gross climatological features of the

mesospheric circulation, these simultaneous observations have encouraged the investigation of the

dynamic structure of the mesosphere on a smaller scale by means of synoptic presentation of flow

patterns for selected days over the North American continent. At the higher altitudes, the acoustic

temperature and .wind measurements were supplemented by other sounding techniques such as wind

measurements by means of sodium vapor release.

THE VERTICALCHANGEIN STRATOSPHERICAND MESOSPHERICWIND STRUCTURE

Considering the seasonal variations of stratospheric and mesospheric winds as measured at

Wallops Island over a period of 3 years, we find a remarkable change in the behavior of meso-

spheric winds around the height of 70 km. Below this level, the wind follows a consistent andpre-

dictable seasonal pattern while above 70 km the wind structure becomes very irregular and does

not show the well-known regular features observed at levels up to 70 km (Reference 2).

This irregularity is apparent in Figure 1, where all rocket grenade winds for the years 1960

through 1963 are presented in polar diagrams for the lower, middle, and upper mesosphere. The

winds in the 45-55 km layer show the same general features as in the stratosphere: strong and

relatively steady westerly winds with maximum deviations of +25 ° about an average direction of

265 ° and light but equally steady easterly winds in summer. During the transitions between winter

and summer seasons, there is a large variability in wind strength and direction; however, this

variability is still part of a consistent seasonal pattern which has been the subject of several pre-

vious analyses (Reference 4). In the middle mesosphere (60-70 km) we find qualitatively the same

behaYior, although variations in the wind directions are somewhat larger. In the upper mesosphere

(80-90 km), however, the picture changes completely. The winds both in winter and summer are

blowing from all directions and in highly variable strengths. The same characteristics are shown

by the results of recent sodium vapor release experiments at Wallops Island (Reference 5). Wind

direction profiles from five experiments reaching below 70 km are reproduced, in Figure 2 and

the drastic change in wind structure between 70 and 80 km is apparent.

From these rocket observations with both the grenade and sodium release methods, we may

conclude that above a transition layer between 70 and 80 km the dynamic behavior of the meso-

sphere becomes so complex that synoptic representations of the flow patterns on a day to day basis

will be meaningless. The motions above this layer appear to be highly "disorganized" from the

standpoint of conventional synoptic meteorology. Therefore, such an abrupt change in the wind

structure may very well be due to the increasing importance of tidal motions and possibly in the

fact that the atmospheric structure as a whole undergoes basic and major changes at the 80 km

level.
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Figure 1-Winds (m/sec) measured by rocket grenade experiments at Wallops Island, 1960-1963.



Nevertheless, up to this level the meso-

spheric motions are still organized in the usual

meteorological sense, and synoptic presentations

are quite justified and well representative of the

stream patterns over periods of several days.

INFERRED MESOSPHERIC SYNOPTIC

CIRCULATION SYSTEMS UP TO

70 KILOMETERS

Severalinvestigators have already extended

presentation of synoptic weather maps up to 0.5

or 0.4 mb level (about 55 km) by using Mete-

orological Rocket Network data (References 6, 7,

8, and 9). Herein, an attempt is made to con-

struct synoptic maps up to the 0.05 mb level

(68 km) for a few special days by making use of

recent grenade and MRN data.
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Data from the first simultaneous rocket gre- Figure 2--Wind direction profiles from five sodium
vapor trail experiments extending below 70 km.

nade soundings at Churchill and Wallops Island,

in early December 1962 (Reference 10) were

analyzed in addition to Meteorological Rocket Network data (Reference 11) also available for that

time period. Variation of flow and pressure patterns for various upper stratospheric and meso-

spheric levels over the American continent were investigated by constructing synoptic maps for

December 4 and December 6, 1962. In these maps, the pressure fields at constant heights are pre-

sented. Using the geostrophic approximation, the isobars were spaced such that each pressure field

is in accordance with the observed winds. The pressure values of the isobars were determined by

the observed pressures over the discrete points of observation.

The circulation in the lower stratosphere (100 mb or 16 km) around December 5, 1962 was

characterized by the displacement of the cold polar vortex to Siberia, the entire North American

continent being under a rather uniform westerly stratospheric flow with a slowly developing trough

moving gradually eastward over the United States (Figure 3 and Reference 12). The middle strato-

sphere (30 mb or 23 km) shows a quite different stream pattern over the entire western hemisphere

(Figure 4 and Reference 13) with a weak but, nevertheless_ unusual quasi-stationary anticyclone

over Canada and a zonally oriented trough over the United States along the 40 o latitude. In the

upper stratosphere (10 mb or 30 km) the same contour pattern appears with greater intensity: the

easterly wind at the southern flank of the Canadian anticyclone exceeds 25 m/sec (50knots), whereas

a stratospheric jet stream with winds up to 50 m/sec (100 knots) is located over the Gulf coast

(Figure 5). There are no significant changes of the circulation pattern at 30 km within the period

December 4-6, 1962, so that Figure 5 applies to this interval. The North American high pressure



Figure 3-Stratospheric circulation (16 krn)of the northern hemisphere,

December 5, 1962, (Reference 12).
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Figure 4-Stratospheric circulation (23 km) of the northern hemisphere,

December 5, 1962 (Reference 13).
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F|gure 5-Stratospheric clrculat;on (30 km), of the northern hemisphere,
December 4, 1962 (Reference 13).



systems represent an eastwardly displaced Aleutian anticyclone that governed the Northern hemi_-°

pheric circulation throughout November (Reference 14) and is still apparent at the 5 mb surface,

which was constructed for December 5, 1962 (Figure 6). The 40 km pressure maps (Figure 7) show

the pronounced trough over the Great Lakes area moving slowly southward, whereas the existence

of the Canadian anticyclone is not necessarily indicated at this level. Its center may well have

shifted to the Pacific region, Alaska and Canada being in the regime of the polar vortex. The anti-

cyclone can still be observed ten kilometers higher (Figure 8), and here there is a definite indica-

tion that its center has shifted northward, causing a nearly northerly wind over Churchill onDecem-

ber 4th and a southwesterly wind over Alaska. Althought the stream pattern remains essentially

"_ _ '_ V ,?

Figure 6-Stratospheric circulation (35 km) of the northern hemisphere, December 4-6.



(a) 40 kin, December 4, 1962 (Wallops Island
data, December 1, 1962).

(b) 40 kin, December 6, 1962 (Italics and dashed
lines indicate data obtained on December 7, 1962).

Figure 7--Rocket measurements of wind (m/sec) and temperature (°C) over North America.

\
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(a) 50 kin, December 4, 1962. (b) 50 km, December 6, 1962 (Italics and dashed

lines indicate data obtained on December 7, 1962).

Figure 8--Rocket measurements of wind (m/sec) and temperature (°C) over North America, showing trough.



the same at 60 km (Figure 9), there is a distinct further shift in the position of the center of the "

anticyclone. It is apparently displaced toward the Arctic, as indicated by the southeasterly wind

over Alaska. The pronounced trough, which has persisted at all altitude levels from 23 km up, is

still located over southern Canada; and there is some indication that its vertical axis is slightly

inclinded to the north, such that at 60 km the trough has taken the position of the ridge in the strat-

osphere (20 to 35 km).

At 68 km (Figure 10) data are very sparse and are mainly based on grenade soundings at

Churchill and Wallops Island. There is evidence that the zonally oriented trough over North America

still exists, as indicated by strong winds from the west southwest over the United States and very

light northwesterly wind inside the trough over Churchill on December 4, 1962. In general, it is

interesting to note the alternation between low and high pressure systems on a vertical scale be-

tween the 30 and 60 km levels as shown in Figures 5 through 10. This seems to confirm the theo-

retical expectation of such alternations as previously expressed by Paetzold (Reference 15).

Differences in the flow and pressure patterns between December 4 and 6 were found to be

insignificant at 40, 50, and 60 km. This is not surprising because the patterns in the stratosphere

also remained nearly unchanged. At 68 km, however,.a significant change seems to have taken

place between December 4 and 6 over Churchill and between December 1 and 6 over Wallops Island.

I

(a) 60 km, December 4, 1962 (Wallops Island
data, December 1, 1962).

(b) 60 kin, December 6, 1962).

Figure 9--Rocket measurements of wind (m/sec) and temperature (°(2) over North America.

10
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Figure 10a--Winds (m/sec) and temperature (°C)
measured by rocket experiments at White Sands
(66km; December 4, 1962), Fort Churchill (70kin,
December 4), and Wallops Island (68km, Decem-
ber 1, 1962).

Figure 10b--Winds (m/sec) and temperature (°C)
measured by rocket experiments at Wal lops Island
and Fort Churchill (68 km, December 6, 1962).

There is a 90 o rotation of the wind vectors at both stations, but at Churchill this rotation is clock-

wise, while at Wallops Island it is counter clockwise. This may be interpreted as a southwestward

motion of the low pressure system (Figures 10a and 10b).

Of course the sparsity of data permits only a very crude analysis even in this case, which

could be considered well documented by rocket sounding standards. Nevertheless, this case shows

that significant nonuniformifies exist in the slopes of the constant pressure surfaces which are

generally inclined downward toward the winter pole. If in the past such uniformity was assumed,

it was only because the available data were not sufficient to observe any detail. It is to be expected

that systematic rocket observations of the mesosphere extended over the hemisphere and spaced

over distances in the order of 1000 km will reveal up to about 70 km circulation systems of similar

variability and variety as observed at lower altitudes.
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STRATOSPHERICTEMPERATUREPATTERNS13A'SED

ON RADIOMETRICMEASUREMENTSFROMTHE
TIROSVII SATELLITE

by

W. Nordberg, W. R. Bandeen,

G. Warnecke*, V. Kunde

Goddard Space Flight Center

SUMMARY _ _

The TIROS VII meteorological satellitecarried a sensor to map the emitted

terrestrial radiation in the 15_ carbon dioxide band. The spectral response of

the sensor ranged from 14.8 to 15.5_. The radiation observed by the satelliteis

a function of the temperatures of the atmosphere varying along the optical path.

Atmospheric layers at various altitudes contribute to the observed radiation in

varying amounts. More than 96 percent of this contribution stems from altitudes

above 10 km and more than 60 percent from a layer ranging in altitude from 18

to 35 kin; thus, the radiation measurements were interpreted in terms of aver-

age temperatures of a major portion of the stratosphere.

Temperature patterns were analyzed from June 1963 to March 1964. The

measurements demonstrate on a global scale the varying patterns of strato-

spheric temperatures and circulation. Smooth temperature gradients were found

to coincide closely with latitudinal circles on both summer hemispheres. Tem-

peratures increased at high latitudes toward the summer pole (250°K) and

rapidly decreased toward the winter pole (200°K).

A fairly uniform region with temperatures generally around 230°K extended

between 25 ° latitude of the summer hemisphere and 40 ° latitude of the winter

hemisphere during solstices. During both equinoxes, the large latitudinal tem-

perature gradients at high latitudes disappeared and differences of about 10-15°K

existed with latitudes as well as with longitude. Winter temperature patterns

in both hemispheres exhibited strong temperature gradients between the pole

and 40 °, but a completely uniform pattern never existed in either winter hemis-

phere. A warm area over the Indian Ocean, though initially small, seemed to

play a similar role in the southern winter as the Aleutian warm center during

the northern winter. The morphology of a stratospheric warming which occur-

red over southwestern Asia and penetrated to Europe immediately after the

tropical belt had cooled by about 10°K was observed. _/_
I"

*NAS-NRC Research Associate; on leave from Instimt f_r Meteorologic und Geophysik der Frcien

Universitat Berlin, Berlin, Germany.
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INTRODUCTION

A radiometer aboard the Tiros VII satellite measured infrared radiation, emitted mainly by

carbon dioxide, in the.earth's atmosphere at wavelengths ranging from 14.8 to 15.5_. The instru-

ment used in these measurements was very similar to the 5-channel radiometers flown on previous

Tiros satellites and described by Bandeen, et al. (Reference 1) except that one of the optical chan-

nels was modified to have a spectral response as shownin Figure la. The initial objective of radi-

ation measurements in this region of the spectrum was to study the characteristics of the earth's
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Figure la-Effectlve spectral response of the Tiros VII
15H channel as a function of wavelength.
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Figure 1b-Average quasi-global equivalent blackbody
temperatures versus time. The heavy dashed curve
indlcates the derived a pparen t degradation in the
instrumental response.

horizon as described by Hanel, et al. (Reference 2) and later reported by Bandeen, et al. (Refer-

ence 3). Now with continuous observations over a period of more than six months, daily covering

the global zone from 65°N to 65°S, it is possible to use the radiation measurements to describe a

number of interesting features of the atmosphere. It will be shown that most of the radiation

reaching the satellite in this spectral region is emitted within a defined altitude interval in the

stratosphere whose average temperature can be derived from the observed radiation intensities.

Quasi-global maps of these average temperatures for different seasons not only reflect the ex-

pected variations in the mean stratospheric temperatures, but also reveal the development and

behavior of major synoptic systems in that region of the atmosphere. A complete description of

the 5-channel radiation experiment on Tiros VII as well as a critique and summary of all data re-

sulting from this experiment will be contained in the Tiros VII Radiation Data Catalog and Users'

Manual (Reference 4).
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• RELATION BETWEEN RADIATION AND STRATOSPHERIC TEMPERATURES

The spectral response of the instrument was chosen to coincide as closely as possible with

the 15/_ absorption band of carbon dioxide. The radiance N from the earth and atmosphere meas-

ured by the radiometer, whose spectral response function e(a) is shown in Figure la, can be

expressed as:

;i2I 3r
: _" q_(;_) B(k, T)-_s (P, P, T, 2_)d;_ ds ,

s=0 _= 1

(1)

where ; is the carbon dioxide density, B the Planck function, s the distance along radiation path,

_1 and _2 the wavelengths between which ¢ / 0, p the atmospheric pressure, T the atmospheric

temperature, and _ the atmospheric beam transmissivity. It is reasonable to assume that a con-

stant ratio, r - 0. 000471, exists between the densities ; (for carbon dioxide) and ;ai, for air:

p - r Pa i r • Furthermore, a number of typical distributions of temperature with height h for sur-

face pressures of 1013.25 mb were chosen so that Pai ,, P, and T could be expressed as functions

of h, where ;air and p were computed as a function of h from T by the hydrostatic equation. A

relationship between s and h, s - s(h) was established through the choice of several angles at

which the satellite viewed the earth from approximately 635 km. The integration of Equation 1

over ,\ was then performed for seven nadir angles: 0 °, 29.2 °, 39.7 °, 46.7 °, 51.7 °, 55.3 °, and 58 °.

The function r(_, h) was then determined using, in principle, the method described by Hanel,

et al. (Reference 2). That method is based on the general treatment by Elsasser (Reference 5) of

the absorption within the 15/_ CO 2 band. Thus

2 3? 3s_(X) B(h, _)"_-s (h, X)-_-d_ = _(h) . (2)

Hence

: _ @(h) dh . (3)

N was then computed from Equation 3 for each of the assumed temperature profiles and for each

nadir angle. The assumed temperature distributions with height and the resulting distribution

functions _(h) are shown in Figure 2. In accordance with previous practices of reporting Tiros

radiation measurements (References 6, 7, and 8), N may be expressed by the temperature TBB of

a blackbody whose radiant emittance w is given by

_2
?

: | ¢(a) B(TBs, a) da : _ (4)
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Figure 2-(a)Typical temperature profiles based on proposed supplements to the "U. S. Standard

Atmosphere 1962" for 60 ° North summer, 60 ° North winter (warm and cold) and 15 ° North. The
"warm" and "cold" temperature profiles for 60°N ("high latitude winter") can be considered typical

at these latitudes depending on the state of the stratosphere in these regions. The supplements to

the U. S. Standard Atmosphere 1962 are in the process of preparation by the U. S. Committee for

Extension of the Standard Atmosphere and were summarized by Cole in Reference16. (b) Weighting

functions _(h), applying to the measured outgoing radiance N; nadir angle = 0 °. (c) Weighting

functions, _(h) , applying to the measured outgoing radiance N; nadir angle = 58 ° .

Indeed, since the radiometers were calibrated using blackbodies at various temperatures, the meas-

urement of TBB may be considered as the primary quantity while N is derived from Equation 4.

The values of TBB corresponding to the temperature profiles of Figure 2a are summarized in

Table 1 (page 26).

The radiation measurement expressed by TBB thus represents a mean temperature of the

atmosphere in which the vertical temperature distribution is open to choice and where the tem-

perature at each altitude must be given a different weight with regard to its contribution to the

measured mean. The weighting function is given by 9(h) (Figures 2b and 2c), and although _(h)

depends to a certain degree on the assumed vertical temperature profile, it may be seen that for

most realistic temperature profiles at a nadir angle _ : 0; temperatures between 20 and 25 km

are weighed most heavily with about 65 percent of the weight being concentrated in the region
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.from 15 to 35 km and more than 96 percent of the weight lying at altitudes above 10 km, (Figure 2b).

It may also be seen from Figure 2c that the maximum weight shifts to somewhat higher altitudes

with increasing nadir angle. But, since this shift amounts to less than 5 km from v = 0 to v = 58 °,

it is not possible to make a precise quantitative determination of the variation of temperature with

altitude from measurements of TBB at various nadir angles. However, we shall show that we may

infer qualitatively from such measurements whether the temperature is increasing, decreasing, or

constant with height over the altitude range where the ¢ functions reach their maxima. Further-

more, with a prudent and realistic choice of assumed vertical temperature profiles, such as shown

in Figures 2a, we can easily determine from the TBB measurements which profile represents the

best fit qualitatively to actual conditions at a certain location on the globe; and, more important,

we may determine from continuous observations how the choices of such "best fits" vary with time.

Thus, the maps of TB8 measurements plotted for the "quasi-global" (65°N to 65°S) zone for dif-

ferent times of the year (presented in Figures 3-12), enable the synoptic analysis of phenomena

related to the temperature structure in the stratosphere between about 15 and 35 km. The occur-

rence of such events as explosive warmings, the establishment of the Aleutian anticyclone in

winter, the onset of the seasonal circulation reversals and similar events may be categorized as

such phenomena. Although the Tiros VII radiometer views the entire global zone from 65°N to

65°S during the course of 12 hours, data from only about 60 percent of the orbits during any one

day can be acquired because only stations within the United States are capable of receiving the

data which are stored aboard the satellite for no longer than one orbital period. This causes two

significant gaps in the data displayed in the maps, Figures 3-12. One such gap exists at 90°W just

off the west coast of South America, the other is at 90°E over the central Soviet Union.

As will be stated in the Tiros VII Radiation Data Catalog and Users' Manual (Reference 4) the

precision of each individual measurement is probably not much better than +3°K. However, we

may assume that the physical properties of the stratosphere remain generally constant for several

days and are uniform over distances of less than 500 km. Since the field of view of the radiometer

is about 5 degrees, covering an area of about 50 × 50 km on the surface of the earth for small

nadir angles, and since in general measurements for the entire quasi-globe are obtained at least

once every 24 hours up to about 1000 measurements may result within one week over an area of

about 500 × 500 kin. Therefore, a precision of better than l°K can be estimated for the tempera-

ture values shown in the maps (Figures 3 through 9, 11 and 12) which were obtained by averaging

measurements within each grid element (ranging from 5° latitude × 5° longitude at the equator to

2.5 ° latitude × 5° longitude at 60 ° latitude) over the period of one week.

Although the precision of the temperature measurement is greatly enhanced by reducing the

random error in the averaging process, there are a number of systematic errors which must be

considered. Attempts have been made to reduce these errors by applying the appropriate cor-

rections, but uncertainties still remain and, cause the overall accuracy to be considerably poorer

than the fraction of I°K stated for the precision. Aside from correcting for an instrumental de-

gradation which will be discussed later, a correction was applied to the data for an as yet unex-

plained deviation from the original preflight calibration. The radiometer, which alternatingly

views the earth through one of two viewing ports showed that a consistently lower response on one
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Figure 3a-Quasi-global map of 15p equivalent blackbody temperatures averaged over the week

" 19-25 June 1963; nadir angle 0°-40 °.
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Figure 3b-Quasl-global map of 15H equivalent blackbody temperatures averaged over the week

19-25 June 1963; nadir angle 52°-58 °.
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Figure 4-Quasl-global map of 15H equivalent blackbody temperatures averaged over the week

11-18 September 1963; nadir angle 0o-40 ° .
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Figure 5-Quasi-global map of 15tJ equivalent blackbody temperatures averaged over the week
25 September - 1 October 1963; nadir angle 0°-40 °.

19



60 ° 60 °

40°

20 °

0o

20 °

40 °

40 °

20 °

0o

20°

40°

60° 60°

100 ° 120° 140 ° 160° 180 ° 160° 140 ° 120 ° 100° 80 ° 60 ° 40 ° 20 ° 0° 20° 40° 60° 80° 100 °E

Figure 6-Quasl-global map of ]Sp equivalent blackbody temperatures averaged over the week

20-26 November 1963; nadir angle 00-40 ° .

of these viewing ports with respect to the other was apparently causing half of the measured tem-

peratures to be too low and half to be too high. According to the preflight calibration, there should

be no such difference. For lack of a better correction procedure, the difference between the tem-

peratures measured through the two viewing ports over the same area at the same time were

determined for all cases shown in the maps. (Figures 3 through 12). Temperatures for the lower

side were then corrected upward by half this difference, while those for the higher side were cor-

rected downward by the same amount. Total differences were generally 5 ° to 8°K, so that the

corrections were in the order of 2.5 ° to 4°K.

The maps were prepared from the magnetic tapes (FMRT's) containing all the Tiros VII radi-

ation data (Reference 4) by an IBM 7094 computer and contour lines were drawn manually. This

mapping procedure was the same as the one used on similar maps published previously

(Reference 9).

ANALYSIS OF STRATOSPHERICTEMPERATURES, JUNE1963 TO MARCH 1964

Solstice - June 1963

A typical temperature pattern at the start of the northern hemisphere summer and southern

hemisphere winter for the quasi-globe is shown in Figure 3a. Stratospheric mean temperatures

2O



It "_1 _J 220 / 215

W_ ,. -l°

40 °

20*

160 ° 180 ° 160 ° 140 ° 120° 1O0° 80° 60 °

"___1 60 ° N

I 20 °

40 ° W

Figure 7a-Map from the North Pacific to the North Atlantic of 15H equivalent blackbody temperatures
averaged over the week 12-15 December 1963; nadir angle 0°-40 °.
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Figure 7b-Map from the North Pacific to the North Atlantic of 30 mb air temperatures measured by
radiosonde balloons averaged over the week 5-12 December 1963 (data from stratospheric analysis
charts, Institut fur Meteorologie und Geophyslk, der Freien Universitat Berlin).

were averaged over nadir angles between 0 ° and 40 ° and averaged over the week from 19 June to

25 June, the first week's operation of Tiros VII, and range from 240°K near 60°N to 215°K near

60°S. The generally zonal structure of the temperature pattern, with isotherms running practically

parallel to latitude circles, confirmed the established knowledge of the physics of the lower strato-

sphere; namely, the existence of a very strong cyclonic circulation system around a low pressure

core centered near the winter pole. This low pressure was caused by the intense cooling of the
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Figure 8a-Quasi-global map of 15p equivalent blackbody temperatures averaged over the week of
15-22 January 1964; nadir angle 0-40 ° .
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Figure 9a-Quasi-global map of 15p equivalent blackbody temperatures averaged over the week
22-29 January, 1964; nadir angle 0o-40 ° .
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Figure 9b-Reglonal map of 151J equivalent blackbody temperatures averaged over the week

22-29 January 1964; nadir angle 520-58 °. The effects of a stratospheric warming over

Eastern Europe are illustrated. No essential change in the temperatures occurred in other

areas of the quasi-globe relative to Figure 8b.
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Figure lO-Regional map of the differences between the
15p equivalent blackbody temperatures measured on
27 January 1964 and those averaged over the week 9-
15 January; nadir angle 0o-40 ° . The effects of a
stratospheric warming over Eastern Europe are i l lustrated.

stratosphere over the winter pole. Conversely',

anticyclonic circulation prevailed over the sum-

mer pole where solar heating caused the warm

stratosphere resulting in a high pressure system.

The predominantly zonal isotherms at high

northern latitudes (summer) suggest that solar

heating was primarily responsible for this pat-

tern. At high southern latitudes (winter) how-

ever, there are slight but apparently significant

disturbances in this zonal pattern. Isotherms

over the South Pacific between 30°S and 60°S de-

viated from a perfect zonal course, and showed

a definite slope from southwest to northeast.

Temperatures increased rapidly from the

winter pole toward the equator causing very

steep temperature gradients with latitude in

the winter hemisphere. A temperature of

about 230°K was reached near 20°S. This

temperature prevails over the tropical region

to a latitude of about 15°N. From there to the summer pole, the temperature increased gradually,

and the gradients were not as steep as over the winter hemisphere. This confirmed the expectation

that the winter cyclone is considerably stronger than the summer anticyclone. The measured

mean temperatures of 215°K near 60°S and of 240°K near 60°N agree reasonably well with the

computed values of 213°K and 238°K, respectively (Table 1), for the temperature profiles for the

high latitude cold winter and summer shown in Figure 2a. The measured temperatures of 230°K

within the belt 40°S to 25°N are 3°K higher than those computed (Table 1) for the tropical tempera-

ture profile shown in Figure 2a. This disagreement with the computation seems to be consistent

with the cases at 60°N and 60°S where the measured temperatures were 2°K too high. The reason

for this consistent discrepancy could be due to a number of assumptions contained in the radiative

transfer calculations, which could have resulted in computed values of TB8 (Table 1) being several

degrees too low.

A course picture of the temperature gradient with altitude can be obtained by comparing Fig-

ures 3a and 3b. In Figure 3b, temperatures measured at nadir angles between 52 ° and 58 ° were

plotted. The weighting functions in Figures 2b and 2c show that all measurements shown in Fig-

ure 3b reflect temperatures at altitudes approximately 3-4 km higher than the temperatures

shown in Figure 3a. Thus, by comparing Figures 3a and 3b, we may distinguish three categories

in the temperature profiles:

1. Increasing temperatures with altitude between 15 and 35 km where the measured tempera-
ture differences are positive

2. Decreasing temperatures with altitude between 15 and 35 km where negative differences
are measured; and

3. Isothermal regions between 15 and 35 km if the differences are close to zero.
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Figure 1 la-Quasl-global map of 15_ equivalent blackbody temperatures averaged over the week

31 January - 8 February 1964; nadir angle 0°-40 °.
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Figure t ll0-Quasi-global map of 15p equivalent blackbody temperatures averaged over the week

31 January - 8 February 1964; nadir angle 520-58 ° .
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Figure 12-Quasi-global map of 15p equivalent blackbody temperatures averaged over the week

18-25 March, 1964; nadir angle 0o-40 ° .

Table 1

Computed Mean Temperatures (TBB) Expected to be Observed by

15/_ Radiometer for Temperature Profiles Shown in Fi$_res 2a at

Nadir Angles of 0 and 58 Degrees.

Computed Mean Temperatures

Nadir (°K)

Angle

(degrees) Tropical High Latitude High Latitude High Latitude
Summer Cold Winter Warm Winter

0 227 238 213 229

58 231 240 214 231

It can be seen that differences of about +2°K occur in the topics where strongly positive tempera-

ture gradients with altitude prevail. This difference agrees with the values calculated for a tropi-

cal profile (Table 1). Over the higher northern latitudes (summer) and over the high southern

latitudes (winter) moderately increasing temperatures with altitude and isothermal profiles are

suggested. This is in fair agreement with the calculations (Table 1).
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Seasonal Reversal, September - October 1963

As the solar illumination gradually became symmetrical with respect to northern and southern

hemispheres, as during September 1963, temperature patterns at high latitudes markedly reflected

the resulting change in solar heat input. In some areas, this change took place rapidly while other

regions underwent a much slower transition. During the first two months following the solstice,

there were practically no temperature gradients along any given latitude circle in the northern

hemisphere; but strong longitudinal temperature patterns began to develop during the transitional

season, especially after the September equinox. During July and August, the temperature patterns

remained essentially the same as those during 19-25 June (Figure 3a). There was one important

change, however, which exhibited the same characteristics as similar changes observed on meas-

urements in other spectral regions in previous Tiros satellites (References 7 and 8). All meas-

ured temperatures over the entire world seemed to decline during the first three weeks of

observation. It is extremely probable that a gradual degradation in the response of the radiometer

was responsible for this decline. By mid-July 1963 the magnitude of this sensitivity decrease was

about 7°K. After that the degradation seemed to level off and continued at a much lesser rate. An

approximate time history of this instrumental degradation based on the preliminary information

available at this time is given in Figure lb. A more complete version will be given in the Tiros

VII Radiation Data Catalog and Data Users' Manual. An appropriate correction based on Figure lb

should, therefore, be added to all temperature measurements quoted thereafter and shown in the

maps (Figures 4 through 12). Although this degradation leaves some uncertainties in the exact

absolute magnitudes of the temperature measurements, it does not appreciably affect the ability to

assign the appropriate temperature profile (Figure 2a) to a measurement at a given location or the

implications drawn from the distribution of relative temperature patterns.

The first indication of any significant change in the post solstice temperature pattern occurred

during the week 28 August to 3 September; the temperatures at high northern latitudes decreased

by about 5°K to a temperature of about 228°K (+7 ° correction) at 60°N. At northern mid-latitudes

(20°-50°N) there also was a slight temperature decrease from the summer (19-25 June) con-

ditions. However, here this decrease did not take place uniformly at all longitudes. There were

pocket-like regions where warmer temperatures seemed to persist longer than over other regions,

thereby causing some inhomogeneities in contrast to the quite uniform zonal pattern observed in

June. Going southward, temperatures in general decreased very gradually from about 228 + 7°K

at 60°N to about 223 + 7°K at 40°S with the latter temperatures prevailing over most of the zone

from about 25°N to 40°S. From there southward temperatures decreased rapidly with latitude.

Thus, the remainder of the southern hemisphere remained essentially unchanged, still reflecting

typical winter conditions (205 + 7°K at 60°S) except for a warm region of 225 + 7°K, which de-

veloped during late winter over the Indian Ocean between 40 ° to 50°S. The disturbance noted dur-

ing June at these latitudes over the western South Pacific had grown throughout July and early

August, and a warm region now extended over the entire Indian Ocean showing a definite longitudi-

nal pattern. For example, temperatures over the southern Indian Ocean at 60°S were about

216 ° + 7°K. At the same latitude over the Atlantic and central South Pacific, temperatures were

213 + 7°K and 203 + 7°K respectively.
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During September, the European and West Asian portions of the northern hemisphere and paris

of North America began to cool rapidly. There temperatures at 60°N had cooled to about 223 + 7°K

while over the northwest Atlantic and North Pacific somewhat warmer temperatures still prevailed

(228 + 7°K) during the week of 11-18 September (Figure 4). At the same time, the breakdown of

the winter over the southern hemisphere was gaining impetus. The same, even intensified, longi-

tudinal patterns as observed in August were apparent. Temperatures in the Indian Ocean warm

area were about 234 + 7°K. This area had spread out between the longitudes of 95 ° to 180°E along

the 50th parallel, yet temperatures at this latitude over the South Atlantic and the eastern South

Pacific still remained relatively cold (220 + 7°K). Temperatures at low and mid-latitudes, in

general, ranged around 225 + 7°K (Figure 4).

The week following the equinox (25 September - 1 October) showed that the temperature gradi-

ents between the two hemispheres (Figure 5) had reached their minimum during this transition

period. With the exception of the very warm region of 50-55°S over the Indian Ocean reaching

maximum temperatures of 236 + 7°K at 70°E and some cold pockets over the west Asia, tempera-

tures over the entire quasi-globe were nearly constant at 225 + 7°K. It is significant to note that

the temperature gradient within a given latitude belt could now be much greater than gradients be-

tween 60°N and 60°S at most longitudes: temperatures along 50°S vary from 236 + 7°K at 70°E to

223 + 7°K near 170°W, while along the 180th meridian, for instance, temperatures at 60°S are about

222 + 7°K, at 60°N about 228 + 7°K and at the equator about 223 + 7°K. This was a total variation

of 6°K along the meridian compared to a variation of 13°K along the 50°S parallel (Figure 5). The

phenomenon of very pronounced temperature differences between the Indian and Pacific Oceans at

all latitudes between 45°S and 65°S persisted during the entire transition period from winter to

summer. The maximum temperature difference was about 15°K throughout this time, with the

Indian Ocean area showing the warmest and the eastern South Pacific showing the coldest temper-

atures (Figure 5). The phenomenon first appeared on a large scale during the middle of August

and lasted until about October 20th. During early and middle October, the eastern portion of the

southern hemisphere (40°W to 120°E) was relatively warm (230 + 7°K at 60°S) with the warm center

of 234 + 7°K at 80°E, while the western portion remained relatively cold with the cold center of

220 + 7°K at 170°E. During late October (the week of 23rd to 29th) the entire southern hemisphere

finally achieved a typical summer temperature pattern, with wide and uniform latitudinal tempera-

ture belts ranging from about 230 + 7°K at 60°S to about 225 + 7°K at 30°S. There was a uniform

belt with temperatures of almost exactly 225 + 7°K between 30°S and 30°N. Over the Atlantic,

Europe, and Western Asia, temperatures dropped rapidly from 225 + 7°K at 30°N to 215 + 7°K at

60°N, while over the Pacific they remained at 225 + 7°K up to 60°N.

During the entire fall transition period, the north Pacific area had not cooled off as rapidly as

the rest of the northern hemisphere and in general remained warmer throughout much of the

winter. During the course of October, this pattern intensified whereby temperatures in all northern

regions except over the north Pacific and eastern Asia continued to decline. Finally, at the end of

October, as previously stated, the northern hemisphere showed a typical winter pattern with the

same tight gradients with latitude as observed three months previously in the southern hemisphere.
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• At 60°N,temperatures were uniformly cold (215 + 7°K) over Eurasia, the North Atlantic, and

North America, but warm over Alaska and the Bering Sea (225 + 7°K). The global picture did not

change appreciably between the end of October and the week 20-26 November shown in Figure 6.

Although the warm area (224 + 7°K) over the North Pacific had somewhat diminished in size com-

pared to the end of October, and it was now located over the Gulf of Alaska, the isotherms over

that area still showed a very definite departure from a zonal pattern and ran northwest to south-

east over North America and northeast to southwest over east Asia. While temperatures

were still uniform with latitude over the Atlantic and Eurasian continent and ranged from 213 + 7°K

at 60°N to 225 + 7°K at 40°N, the summer temperature pattern in the southern hemisphere was

perfectly uniform with latitude and temperature, ranging from 235 + 7°K at 60°S to 225 + 7°K at

25°S (Figure 6). This pattern is identical to the temperature pattern during June, however, with

northern and southern latitudes reversed.

The "Aleutian Anticyclone," December 1963

An unexpectedIy warm stratosphere occurring as a regular climatological feature during

winter in the general area of the Aleutian Island chain had long been recognized as the cause of a

strong anticyclonic stratospheric circulation system in that area (Reference 10). Such circulation

is unusual because in winter we would expect a very cold stratosphere resulting in a cyclonic cir-

culation symmetric around the winter pole. Indeed, this cyclone exists, but in the northern hemi-

sphere during mid-winter it is strongly disturbed and displaced by the Aleutian anticyclone. The

morphology of this stratospheric warming over the North Pacific has received much attention in

the past and numerous attempts have been made to explain its origin on the basis of dynamic proc-

esses (Reference 11). Satellite temperature measurements made it possible to follow the variation

of mean temperatures in the lower stratosphere over this entire region throughout the winter of

1963. Figure 7a shows the averaged temperature measured by the satellite between 40 °, 160°W

and 20°N to 65°N for the week 5-12 December. Globally, there is practically no change from the

patterns shown in Figure 6, except that the warm North Pacific region, which had previously re-

mained at higher temperatures because it simply cooled more slowly than the other areas,

has actually warmed between the end of November and early December. It was centered at the

end of the Aleutian Island chain and stood out clearly with temperatures of 232 + 7°K. An analysis

of temperatures at the 30 mb level from conventional radiosonde observations analyzed and ob-

tained from the Freien Universit,_t Berlin for the same area and time is shown in Figure 7b for

comparison. The excellent agreement in the patterns between the two maps can serve as a meas-

ure of the validity of the satellite data. As can be seen from Figures 8, 9, 11, and 12, the Aleutian

warm region was a permanent feature of the entire winter after the week of 5-12 December. How-

ever, although temperatures within the warm center had not shown an actual increase until 5-12

December, a warm area in one form or another had been present since the end of summer over

the North Pacific as described previously (Figures 4, 5, and 6). This meant that the winter

anomaly over the Pacific though variable in extent during early winter, grew directly out of the

summer conditions without ever reaching as low temperatures as other portions of the northern

hemisphere do. Although, during early December, the system took on a more permanent form and

location and intensified somewhat, it had originated not because of a sudden heating phenomenon
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during winter, but simply because it had refused to cool off at the end of summer. Nafurally_

there must be a mechanism to maintain the higher temperature during winter, while other regions

at equal latitudes cool rapidly. It should be noted that those dynamic mechanisms which would

have to depend on the existence of the complete winter cyclone could not explain the warm regions

which already exist even before the cyclone is fully established. It might be interesting to investi-

gate mechanisms by which the warm regions can be maintained throughout the winter by absorption

of infrared radiation.

The satellite measurements showed that the situation in the northern hemisphere actually did

not differ vastly from that of the southern hemisphere where a warm region over the southeastern

Indian Ocean-though not quite as intense as the Aleutian one-had persisted throughout the winter

and then had spread to make one half of the hemisphere almost 15°K warmer than the other. In

the northern winter, almost a mirror image of this process occurs; the Pacific is warm and the

Atlantic and Eurasia are cold, while in the south the Pacific is cold and the Atlantic and Indian

Ocean areas are warm. In the north, the temperature gradients between warm and cold regions

are somewhat greater (about 20°K between 180 ° and 40°W at 60°N). However, satellite data thus

far only exist for the seasonal cycle 1963//64, and the observations described here must be tested

by experiments in future years.

Solstice, December 1963

Between November 1963 and the middle of January 1964, there was very little change from the

temperature patterns shown in Figure 6. The aforementioned Aleutian warm center became some-

what stronger and quite stationary during early December and, in contrast, the Atlantic and

Eurasian cold regimes had remained unchanged with very tight latitudinal temperature gradients

and isotherms perfectly aligned with latitude during the week 15-22 January 1964 (Figure 8a)o It

is interesting to note that the temperature difference of about 15°K between 60°N and the tropical

belt over the eastern portion of the northern hemisphere is less than the longitudinal temperature

difference between the Aleutian warm center and the North Atlantic at 60°N. A similar situation

existed in the southern hemisphere at the end of winter (Figure 5); but during the solstice, the

Australian warm area did not extend to such high latitudes as the Aleutian area does. As shown

in Figure 8a, the mid-latitude and tropical regions had cooled considerably; and the temperature

between 25°S and 40°N was now about 218 + 7°K, while earlier temperatures in the same zone

ranged near 225 + 7°K. This remarkable cooling over so wide an area was particularly signifi-

cant since it preceded by about one week the occurrence of a stratospheric warming over western

Asia. Instrumental degradation cannot be responsible for such a temperature decrease_ since

Figure 12 did indicate higher temperatures again in March. Also, ever since November tempera-

tures at high southern latitudes had remained unchanged. Relatively moderate and very uniform

temperature zonal temperature gradients existed at all longitudes. Temperatures at 60°S are

235 + 7°K.

Temperatures of 231 + 7°K at 50°S and of 206 + 7°K at 60°N (eastern portion only) are com-

patible with the computed temperatures of 238 and 213°K respectively for the "summer" and
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* "cold winter" profiles (Table 1). Temperatures calculated for the "tropical" profile (227°K

Table 1) are about 2°K higher than those measured in the now cold mid-latitude belt (218 + 7°K).

Mean temperatures of 232 + 7°K in the center of the Aleutian warm region measured during

December suggest that the average temperature of the stratosphere in the 15 to 35 km region was

about 12°K higher than that shown in the "warm winter" profile of Figure 2, which yields a mean

temperature of only 229°K (Table 1). Of course, such a temperature profile in this particular alti-

tude region is merely postulated since, for example, a low average stratospheric temperature of

205°K in the altitude region from 15 to 35 km (such as shown in the "cold winter" profile, Fig-

ure 2a) could be balanced by an extraordinarily high average temperature of 300°K in the region

from 35 to 60 km to produce the measured radiation temperature of 239°K. But, such a tempera-

ture profile is much less probable than the one postulated. The validity of an assumed average

stratosphere temperature increase of 12°K between 15 and 35 km is also suggested by comparing

the satellite measurements at low nadir angles (0-40 °, Figure 8a) to those at high nadir angles

(52-58 °, Figure 8b). Temperatures over the Aleutian warm area are practically the same at both

nadir angle ranges indicating a nearly isothermal or at least a very slowly varying temperature

gradient with altitude in the region where the weighting functions ¢(h) are at their maximum (15-

35 km, Figures 2b and 2c). A temperature profile such as the aforementioned one with a mean

temperature of 205°K between 15 and 35 km and 300°K between 35 and 60 km would produce a dif-

ference of 9°K between the radiation temperatures measured at 0 ° and 58 ° nadir angle. Figures

8a and 8b, however, indicate no temperature differences over the Aleutian warm center. Thus,

we find that the difference in the mean temperatures between 15 to 35 km level and the 35 to 50 km

level cannot be excessively large, and with that restriction, a temperature increase of 10°K for

the standard "warm winter" profile from 15 to 35 km follows for the North Pacific area. Simi-

larly, we find that there is no temperature difference for the two nadir angles over the North

Atlantic and Northern Europe (Figures 8a and 8b) which agrees well with the calculated difference

of I°K for the "cold winter" profile. The larger temperature differences over the tropics-the

220°K isotherm is about 10 ° further north in Figure 8b than in Figure 8a-indicate the rapid tem-

perature increase with altitude above 15 km and agree well with the computed difference of 4°K

for the "tropical" profile (Table 1); while the calculated values of 238 and 240°K for "high lati-

tude summer" (Table 1) agree well with the observed temperatures (+7 ° correction) and tempera-

ture differences between 50 and 55°S.

This picture has changed considerably during late January (Figures lla and llb) where tem-

perature differences at mid-latitudes and in the tropics over the entire eastern hemisphere are as

high as or exceed the differences observed previously within the tropics. Such large differences

exceeding 5°K extend particularly into North Africa, the eastern Mediterranean, and the Near East

(Figures lla and llb). This indicates that neither the "tropical" nor the "summer" temperature

profiles (Figure 2a) apply in this case. In that area, temperatures at 15 km must be somewhat

higher than those given by the "tropical" profile; and there must be a pronounced increase of tem-

perature with altitude resulting in a very warm upper stratosphere (i.e., a very strong vertical

temperature gradient between the lower and upper stratosphere). It is significant that this change

occurred over the area into which the sudden warming, described below, moved in its decaying

stages.
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SuddenWarming, January 1964 "

The type of temperature measurement obtained with the satellite described herein was ex-

pected to be most useful for the detection of the occurrence and the observation of the behavior of

stratospheric warmings. These warmings were first observed over Berlin by Scherhag (Refer-

ence 12) and since then have been the subject of intensive observation and analysis (Reference 13).

The sudden warmings have now been observed almost every year during the northern hemisphere

winter and, during their occurrence, the lower stratosphere over a limited area may be heated by

as much as 30°K within a few days. Causes for such warmings have thus far not been explained.

in contrast to the Aleutian warm center described above, the sudden warmings show no regularity

in their time and location of occurrence. In order to be detectable by the Tiros radiometer, the

warming must occur at altitudes between 15 and 35 km or, if it occurs at other levels, it must be

unproportionally intense. Calculations based on the "warm winter" temperature profile of Fig-

ure 2a show that a uniform temperature increase of 12°K between 15 and 35 km will increase the

radiation temperature by 10°K, while a similar change of the temperature profile between 34 and

44 km will cause a rise in the radiation temperature of less than I°K.

A number of small and weak warmings occurred over America and Europe during December

1963 and January 1964, but those did not penetrate to altitudes below 30 km (Reference 14). There-

fore, they could not be detected by the satellite. During the week 22-29 January, however, a

warming of apparently moderate intensity occurred over the region of the Caspian Sea, extending

between the Himalayan Mountains and the Black Sea (Figure 9a). Radiation temperatures over that

area have increased by about 8°K over the previous week (Figure 8a). During that week (15-22

January), there was practically no indication of any disturbance in the perfect latitudinal tempera-

ture structure over that region, except perhaps for a very small area over Iran where a tempera-

ture increase of about 2-3 degrees could be observed; but in the high nadir angle measurements,

there is an indication of increased temperatures over South Central Asia (Figure 8b) inferring

that the subsequent warming might have originated in the upper stratosphere (above 30 km) in that

area. Unfortunately, the warming developed in an area where no conventional meteorological data

are available at these altitudes, and the satellite observations provide the only method of analyzing

the event. Furthermore, even the satellite observations are limited in coverage, since this area

is located near the data gap over the central Soviet Union which exists because of the particular

geometry of the data readout stations for Tiros. The satellite data were, therefore, analyzed for

individual days of 22, 24, 25, 26, 27, and 29 January. These daily analyses showed that the tem-

peratures within the warm center were as high as 230 + 7°K on 29 January, but because they ex-

tended only over very small regions and because of the motion of the center from day to day,

these high temperatures became obscured in the weekly averages (Figure 9a). The first definite

indication of the warming occurred on 22 January, where a small and relatively weak warm center

of 225 + 7°K appeared over Pakistan, Afghanistan, and Eastern Iran. This is already a few de-

grees higher than the average temperature over the same area for the preceding week of 14-22

January (Figure 8a). Two days later on 24 January, the warm region had spread out somewhat to

the north, and the center had also moved in that direction but had not intensified significantly. On

25 January, temperatures of 225 + 7°K ranged over the entire middle East extending as far
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_stward as central China. The center was now just east of the Caspian Sea and had just barely

reached a temperature of 230 + 7°K. On 26 January, the same situation prevailed with the center

becoming slightly warmer and larger. On 27 January, the center had grown considerably larger

and temperatures of 230 + 7°K extend over an area of at least 30 ° longitude and 10 ° latitude north-

east of the Caspian Sea. The 225 + 7°K isotherm had advanced to a latitude of 50°N, causing a

tremendously tight temperature gradient over northern Europe where temperatures increased by

more than 20°K from southern Norway to the Black Sea. Due to the warming, isotherms have

been tilted to follow a course from southeast to northwest instead of the perfect eastwesterly di-

rection still prevailing on 22 January. Finally, on 29 January a warm center, extending over the

10 ° great circle arc with temperatures of 230 + 7°K, stretched from the Black Sea eastward to

China. One 225 ° isotherm now ran east-west along the 40th parallel between 40°E and 80°E. The

other ran southwest to northeast from the Black Sea to about 50°E and 55°N. The center was

located near 65°E and 50°N. This situation was summarized in Figure 10 which shows that on

27 January the radiation temperatures had increased by 15°K over the averages for the week 9-

15 January near the center and that the periphery of the warming extended as far west as the

North Sea_ and the Atlantic and as far south as North Africa and Arabia. Figure lla shows that

during the week 31 January to 8 February the warming had passed its climax. Rather homogeneous

temperature patterns with latitude returned over northern Europe and eastern Asia_ but south of

40°N a broad warm area of about 223 + 7°K now covered the entire region between about 40°N and

25°S latitude and ll0°W and 80°E longitude (Figure lla). This meant that the mid-latitude belt which

had cooled so drastically before the warming had been restored close to its normal temperature of

about 223 + 7°K between 25°S and 40°N. Figures 8, 9, and 11 show that the Aleutian warm center had

remained undisturbed during the entire period of the warming. On 30 January, the warming was de-

tected by a radiosonde ascent over Berlin--the only one available for this analysis (Stratospheric

Analysis Charts, Freien Universitat Berlin, Reference 15). This radiosonde temperature profile,

when compared to a prewarming profile shows that the warming over Berlin occurred primarily

over 30 km. For the week of 22-29 January, temperatures at high nadir angles were about 5°K higher

than at low nadir angles not only over the warm center_ but also extended far beyond the center,

particularly along the southern and western periphery of the warming (Figure 9a and 9b). This

means that over the center temperatures have increased not only in the lower stratosphere but

more so in the upper stratosphere. The much greater extent of the warming in the high nadir

angle temperature patterns compared to the low nadir angle patterns suggested that along the

western and southern periphery the warming occurred only in the upper stratosphere. This also

confirms the above mentioned radiosonde observation over Berlin. Since the much larger warm-

ing (13°K) in the center would require an unreasonably large temperature if the warming were

confined to altitudes above 30 km_ and since such a strong vertical temperature gradient would be

clearly noticeable as a much greater temperature increase at the larger nadir angles_ it must be

concluded that the warming near the center penetrated to much lower altitudes where the ¢ func-

tions are at maximum. If the warming occurred uniformly at altitudes from 15 to 35 km, a tem-

perature increase of about 15°K would satisfy the radiation measurements. Such an increase is

quite commensurate with a moderate stratospheric warming.
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Equinox, March 1964

The global temperature structure undergoes a major change during the period from early

February (Figure lla) to the week of 18-25 March (Figure 12). The steep zonal winter time tem-

perature gradients at high northern latitudes_ particularly over the eastern hemisphere, as well

as the zonal summer pattern in the southern hemisphere had disappeared. The southern hemi-

sphere had cooled considerably, and parts of the northern hemisphere had warmed. This results

again-as during the September equinox-in an almost constant temperature over the entire quasi-

globe. In fact, temperature gradients, longitudinally or latitudinally are even shallower than dur-

ing September. Over the eastern Pacific, there was no temperature gradient at all between 60°S

and 60°N, with temperatures of about 223 + 7°K prevailing at all latitudes. As the southern hemi-

sphere cooled, a temperature gradient along 60°S seemed to develop similarly as during the pre-

vious winter. The South Indian and Atlantic Oceans were now about 5°K warmer than the South

Pacific. In the northern hemisphere near 60 ° the North Atlantic and northeast North America had

warmed rapidly by about 20°K since February, while the region east of the Black Sea, where the

sudden warming occurred in January, had returned to its prewarming winter temperatures of

217 + 7°K. Temperatures in the Aleutian region had remained practically constant throughout the

winter and were still at about 228 + 7°K. This produced temperature differences of about 10°K

between the Atlantic and Pacific warm regions and central Asia at 50°N, which was the largest

temperature difference found during this equinox (Figure 12). Since these data have been reduced

only very recently, there has not yet been adequate opportunity to analyze the January to March

transition as thoroughly as the June to October period. Such as analysis will be made in the future.

CONCLUDINGREMARKS

Satellite measurements of emitted radiation in the 15t_ carbon dioxide band have demonstrated

that mean temperatures in the lower stratosphere can be mapped on a global scale. By comparing

measurements at high and low nadir angles, a qualitative inference can be made about the vertical

temperature gradient between the lower to upper stratosphere. Analysis of global temperature

patterns from June 1963 to March 1964 revealed that temperature patterns in both hemispheres

remain relatively undisturbed during summer. These patterns are oriented very precisely along

latitude circles with the temperature maximum occurring at the summer pole. Near maximum

temperatures are reached in the southern summer about one month after the equinox. After that,

temperatures increase only slightly through the solstice and remain high until the next equinox.

The northern summer could only be analyzed through its peak and declining phases, June to

September 1963. Temperatures decline very slowly during the first two months following the sol-

stice. Then, a rapid decline occurs just before the equinox. During both equinoxes, temperatures

were relatively uniform and differences of about 10-15°K may exist both with latitude and longi-

tude. Winter temperature patterns in both hemispheres exhibit strong temperature gradients be-

tween the pole and 40 °, but a completely uniform pattern never exists in either winter hemisphere.

A fairly uniform region with temperatures generally around 230°K extends between 15 ° latitude
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" of the summerhemisphereand40° latitudeof thewinterhemisphereduringsolstice. Thesatel-
lite measurementsnotonlypermittedfor thefirst timea continuousanalysisof thesouthern
hemispherefrom June1963to March1964up to a latitudeof 65°S,butalsodemonstratedtheuse-
fulnessof uniform andcontinuousdatacoverageovertheentire quasi-globe.A warm areaover
theIndianOcean,thoughinitially small, seemsto playa role in the southernwinter similar to the
Aleutianwarm centerduringthenorthernwinter. Duringwinter 1963,this warm regiongrewout
of a disturbancein the isothermsduringJuneandfinally dividedtheentire stratosphereof the
winter hemisphereintoa "warm" and"cold" portionwiththewarm portion locatedbetweenAfrica
andAustralia. Temperaturedifferencesbetweenthesewarm andcoldareasamountedto about
15°Kanddisappearwith thewarmingof theSouthPacificareaduringlate October,givingwayto
thehomogeneoussummerpattern. Similarly, there is nohomogeneouswinter patternin the
northernhemisphere.A large regionover the NorthPacific doesnotcooloff asrapidly after the
equinoxastherest of thestratosphere.Just beforethesolstice, this regionbecomeswell estab-
lishedandintensifiesin the areawheretheAleutiananticycloneis usuallyfound.

Themorphologyof a stratosphericwarmingoversouthwesternAsiaandits penetrationto
Europewasobservedbythe satellite indicatingthatheating(of possibly20°K)penetrateddownto
at least 20km over thecen.erof thewarming,butat theperipherywarmingof perhapssomewhat
greater magnituderemainedat altitudesabove30km. Thepersistentclimatologicalinhomoge-
neitiesof warm cells overbothwinter hemispheresleadto the speculationthat duringwinter the
stratospherictemperaturesmaybe influencedbyradiationfrom underlyingsurfaces,whileduring
summersolar heatingis dominant.

A studywasalso madeof theeffectof highaltitudecloudsonthe measuredtemperatures,
sincetheweightingfunctions(Figure2b)are notnegligibleat 10km. Theresult indicatedthat
very large andhighcloudsystemssuchashurricanesdodecreasethemeasuredtemperaturesby
asmuchas 10°Kif the cloudsreachabove10km andby less than4°K if theclouds,filling the
field of view are at 6km; but it wasshownthat sucheffectsare onlyisolatedandareaveraged
outbytheweeklyanalyseswhichformedthebasisfor this investigation.
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SUMMARY

The Explorer XVII satellite performed direct, very localized measurements

of the total neutral particle density, the concentration of neutral particle masses
4, 14, 16, 28, and 32 and the temperature and concentration of thermal electrons,
between the altitudes of 258 and 920 km over those regions of the earth where
the satellite was accessible to the Minitrack network-in particular between ±58 °
latitude. Pressure gages on the satellite showed that the total density at 280 km
was about 50percent lower than is given by the appropriate atmospheric models
based on satellite drag measurements. Daily variations in total density are

more strongly dependent on % (the magnetic index) than had been believed pre-
viously. Neutral mass spectrometers showed that He is the predominant neu-
tral constituent above 600 kin, 0 is predominant between 250 and 600 km, and
N2 is predominant below 250 km. The scale heights of the various constituents
agree in general with the corresponding model atmospheric scale heights.
Langmuir probe results confirmed the global extent of thermal non-equilibrium
(Te > Tg) and provided high resolution of the diurnal variation of electron tem-

perature and density at several stations. For example, the electron tempera-
tures near the F2 maximum over Blossom Point show a nighttime value of about
ll00°K, followed by a mid-morning maximum of 2800°K and an afternoon plateau
of 2200°K. A consistent and strong latitude effect, evident particularly at Blos-
som Point, caused a significant positive gradient in electron temperature (the
order of 25°K/degree of latitude) and an inverse gradient in electron density in
a manner approximately in accord with recent theories of Hanson and Dalgarno.

INTRODUCTION __'J

The Explorer XVII (1963-9A) satellite (Figure 1) was designed to provide direct measure-

ments of aeronomic parameters as a basis for new studies of the physics of the earth's upper at-

mosphere. Thus instruments were selected for the satellite which would provide both total and

relative concentration of the neutral particles and high resolution measurements of the electron

temperature and density, both of which are of considerable significance in studies of the physical

processes controlling the upper atmosphere. These data would help also to (1) clarify and define
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the structural properties of the atmosphere, 
previously established primarily through in- 
ferences from satellite drag measurements; 
and (2) investigate the variability and depend- 
ence of the atmosphere on solar conditions. 

The technological advance of measure- 
ment techniques was also an objective of the 
project, as part  of a continuing effort to im- 
prove experimental capability. The applica- 
tion of laboratory-developed t e c h n i q u  e s 
required engineering as well  as measurement 
technique refinements and adaptation to new 
environments. The atmospheric data to be 
obtained, if it were to be of maximum benefit 
consistent with its timeliness, required com- 
puter usage for processing the large quantity 
of data (of the order of 2 x lo9 bits of 
information). 

EXPERIMENTS 
Figure 1 -Artist's conception of Explorer XVII in orbit. 

The choice of experiments to obtain the 
desired data was based mainly upon labora- 
tory vacuum technique experience; thus both thermionic and cold-cathode pressure gages (obtained 
from proven laboratory sensors) were selected for the measurements of the total neutral particle 
density. Double-focusing magnetic mass  spectrometers were chosen for the measurements of 
neutral particle concentrations. Two Langmuir probe experiments were employed for measure- 
ments of the electron temperature and ion density. 

It is of special significance from the point of view of determining local values of the ambient 
concentrations of constituents that proven laboratory vacuum system techniques were employed 
in constructing the satellite. For example, to minimize potential sources of contaminating gases, 
nearly all external surfaces were constructed of stainless steel, and all satellite joints were 
either welded or utilized copper shear gaskets for vacuum sealing. A significant effort was thus 
devoted to making the satellite-sensor system a t rue "inside-out" ultrahigh vacuum system so that 
the experimenter could be confident that the atmospheric samples measured were not contami- 
nated by materials carried aloft by the satellite. 

The Pressure Gages 

The density measurements made by the Explorer XVII ionization gages extended to satellite 
usage the technique employed in rocket manometer experiments (References 1 and 2) to measure 
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thetotal atmosphericdensity. Thedescriptionof the instrumentation,thecalibrationtechnique,
andtheflight responseof theExplorerXVII sensorshavebeenreported(Reference3).

Four independentpressuregageexperimentswereemployed:twoBayard-Alperttype(thermi-
onic cathode)ionizationgagesandtwoRedheadtype(cold-cathode,magnetic)gages. Eachsensor
wasequippedwith a specialvacuum-sealedorifice thatcouldbeopenedafter the satellitewasin
orbit. Thusthesensor,properly cleaned,calibrated,andsealedundervacuum,wasto beopened
oncommandto thespaceenvironment.Thisprocedure,whosevalidity waspreviouslyestablished
throughrocketexperience,assuredthenecessaryhighdegreeof vacuumcleanlinessfor the
sensors.

Theuseof bothcold andthermioniccathodegageswasconsideredessentialbecauseof un-
certainties in (1)the responseof a hotcathodegageina sometimespredominatelyatomicoxygen
environment(notsubjectto adequatelaboratorycalibration)and, (2) thegeneralapplicabilityof
ionizationgagesto the high-velocitysatellite environment.At the sametime, adesirableredun-
dancywasaccomplishedandvaluablestudiesof theusefulnessof the twofundamentallydifferent
sensorswere madepossible. Eachpressuregagewasprovidedwith anappropriateelectrometer
amplifier andotherelectronicsupportdeviceswhichenabledconversionof thesensoroutputcur-
rent to a voltagesuitablefor telemetry. Theelectronicsystemsalso includedprovisionfor in-
orbit current calibrationof theamplifiers onceduringeachoperatingcycleof thegages.

Neutral Particle Mass Spectrometers

Two identical double focusing magnetic mass spectrometers were employed for the determi-

nation of the local concentrations of atmospheric helium (mass 4), atomic nitrogen (mass 14),

atomic oxygen (mass 16), molecular nitrogen (mass 28) and molecular oxygen (mass 32). Although

detailed descriptions of the spectrometers are provided elsewhere (References 4, 5, 6, and 7),

their significant features are summarized herein. The external ion source, designed to reduce the

interactions of the sampled particles with the sensor, was followed by an electrostatic ion lens

which focused the relatively high energy ions on the entrance slit of the analyzer. In this way, it

was possible for the instrument to accept particles from a 2_ steradian solid angle, and up to

12 ev kinetic energy. In the magnetic analyzer the beam of ions was separated according to mass,

a given mass falling on the appropriate collector electrode in spectrograph fashion.

Each of the spectrometers was provided with a sensitive electrometer and logarithmic ampli-

fier for conversion of the collected ion current to the proper telemetry voltages. Electronic logic

circuitry accomplished the required changes in sensitivity and mass-number selection. As with

the pressure gages, a vacuum-seal arrangement was adopted which permitted exposure of the

spectrometer ion source to the atmosphere after the satellite was in orbit.

The primary task of the data analysis was to determine the relationship of the measured ion

currents to the ambient neutral particle densities. Particles could enter the region of ionization

in one of three ways: (1) directly with no collisions; (2) after suffering one or more cbllisions

with surfaces in the source region; (3) by entering the spectrometer analyzer, becoming
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tnermalized,andsubsequentlybeingre-emitted. Therelationshipsbetweenthemeasuredion cur-
rents andtheambientatmospherewere computedonthe basisof thesethreemechanismsandthe
laboratorygascalibrations. Thevalidity of thesecalculationsis demonstratedby thefact thatthe
total mass-densitymeasuredbythe spectrometeris in satisfactoryagreementwith that obtained
independentlyb_thecompanionpressuregageexperimentsdescribedabove.

Langmuir Probes

Two independent Langmuir probe systems, based on established techniques and previous

rocket usage (References 8, 9, and 10) were employed to provide measurements of the ion concen-

tration (Ni) , and the electron temperature (Te) of the ionosphere. Each probe system used a cylin-

drical electrode (projecting into the plasma) whose potential was varied with respect to the satel-

lite shell. The resulting current to the probe was converted to a voltage suitable for telemetry.

By using the following equation, the temperature was derived from the electron current to the

probe as it was swept from the satellite potential to the plasma potential:

d loge ie e

dV kT e
(1)

To localize the T measurement, the electron temperature probe was swept at a rate of 10

sweeps per second; and to maximize the resolution, the voltage was swept in two ranges, 0 to

+3/4 v and 0 to 1 1/2 v, respectively. As a result, each temperature measurement was com-

pleted in less than 400 meters of the satellite path-and to that extent represents a point measure-

ment. The telemetry sampling rate was sufficiently high to permit determination of temperature

values as low as 400°K (although the lowest temperatures actually recorded were about 900°K).

The ion density probe was swept from -3 to +2 volts in a 2-second period, which was long

compared with the satellite spin period of 0.7 seconds. Ni was derived from the ion current max-

ima which occurred each time the probe axis was perpendicular to the velocity vector.

Sensor Location

As noted above, the capability to provide measurements of the constituents of the space en-

vironment required close adherance to established laboratory vacuum techniques. Thus, in addi-

tion to providing a sealed housing which would not itself contaminate the local atmosphere, the

eight sensors were located so as to provide maximum separation from each other.

Consideration of sensor orientation with respect to the direction of motion required that the

mass spectrometers be located at the two ends of the spin axis to minimize changes in orientation

during each mass-sampling sequence. The four pressure gages were distributed uniformly about

the spherical satellite to insure that at least one gage would always experience pressure vari-

ations due to satellite spin, regardless of the spin axis orientation. One pressure gage of each
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type was located on the satellite equator to enable a comparison of the gage responses under

identical conditions. The two Langmuir probes were also located on the equator at points nearly

diametrically opposite each other.

SUPPORTING SYSTEM

The interpretation of data from various sensors required detailed knowledge of the instan-

taneous angle between any sensor and the satellite's direction of motion• This information was

provided through the use of a multiple optical sensor arrangement, which enabled sensing the di-

rection of the sun and/or moon and the instants of passage, during spin, of the Earth's horizons.

Direct measurement sensors like those employed on Explorer XVII provide time rates-of-

change of data requiring high telemetry sampling rates. For example, the spectrometers and

pressure gages required 60 samples per second and the "high speed" Langmuir probe required

180 samples per second. To meet these needs a pulse code modulated (PCM) telemetry system

capable of 1000 samples per second was selected. This system had the additional advantage of

providing a digital format which facilitated computer data processing.

The satellite was powered exclusively by silver-zinc cells, since solar cells presented the

possibility of local contamination of the atmosphere. The 150 pounds of cells employed provided

adequate energy to operate the entire satellite system for a total of 75 hours. A command-and-

control system permitted the experiments to be turned on for four-minute periods, each of which

was terminated by an internal programmer. Because a tape recorder was not employed, re-

sponses were confined to geographic regions of approximately 4000 kilometers diameter about

each minitrack command station. Figure 2 illustrates the geographic coverage attained by show-

ing the path of the satellite during each data-producing response. Some of the pertinent statistics

of the satellite are summarized in Table 1.

EXPERIMENTAL RESULTS

The Pressure Gage Experiment

As noted above, four independent gage systems were employed on the satellite, and all gages

operated in orbit• Three of the gages gave useful and meaningful data during the active life-time

of the satellite. The fourth gage, however, experienced an apparent decrease in sensitivity after

opening in orbit and no atmospheric structure data from this gage are available at present. Some

of the results from the other three gages for five northern midlatitude stations, representing

approximately 25 percent of the total available data are presented here.

Figure 3 shows the measured atmospheric density over Grand Forks, Minnesota during a

pass at 2000 hours local time and demonstrates typical resolution of the density gage data. It may

be seen that the total altitude change was only 5 km for this pass_ and at the average altitude of
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Table 1

Explorer XVII Statistics

Launch Date

Inclination

Perigee

Apogee Range

Useful lifetime

Perigee motion

Data responses

Telemetry

Spin rate

Power supply

Size and shape

Weight

April 3, 1963

58 °

258 km

920-870 km

100 days
+39 ° to e58 ° to -18 °

650 on command

PCM - 8640 bits/sec

90 rpm

Chemical

1 meter diameter sphere

410 pounds

265 km, the atmospheric density was

2 × 10 -14 gm/cm 3. Each point shown is the

average of the three independent density

measurements. The resolution of the density

data from each gage is such that the density

was measured every 700 milliseconds or once

every six kilometers along the satellite orbit.

The observed small scatter of the density data

makes quantitative density scale height deter-

mination possible for passes possessing

significant altitude changes. The magnitude of

the error in the absolute value of the density

is +25 percent for this pass and can be attri-

buted primarily to uncertainty in the absolute calibration of the sensors in the laboratory. At an

altitude of 600 km, the error in the absolute value of the measured density is +55 percent for some

passes. Generally, the precision of the density measurements is better than +20 percent.

Figure 4 (Reference 11) provides a comparison of the atmospheric densities directly meas-

ured by the gages in the altitude range 258 to 300 kilometers, to the density obtained from drag
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Figure 3-Density data derived from a single pass over Grand Forks, Minnesota

demonstrating the resolution of the pressure gage data.
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Figure 4-Comparlson of directly-measured and drag-derlved atmospheric densities.

observations of Explorer XVII (Reference 12) and Injun 3 (Reference 13). All data are normalized

to a height of 280 kilometers for comparison purposes, by using density gradients obtained from

the Harris and Priester model with S = 90.

The Injun 3 data (indicated by squares) were selected for quiet geomagnetic conditions (A : 2)

for the time interval of February 18 through June 30, 1963. During this period, the latitude
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of the satellite perigee varied between -40 ° and +60 °. The drag data from Explorer XVII .4

(indicated by crosses) correspond to the time interval from April 3 to July 6, 1963, when the lati-

tude of the satellite perigee was between +58 ° and -20 °. All Explorer XVII data in the figure have

been reduced to quiet conditions (Ap : 0) by using the preliminary linear reduction relation:

log p = O.006 A
P

Further analysis of the gage data indicates, however, that the correlation between density and

geomagnetic activity should be a steeper, nonlinear relation with the steepest portion applicable

for A (Reference 11). Application of the modified relation is expected to (1) remove some of the
p

scatter from the gage data (which reflects real atmospheric variations), and (2) lower the average

value of the directly measured densities by a small amount.

It is observed that the densities determined from drag are systematically 40 to 50 percent

greater than the normalized densities measured by the gages, and that this separation is just out-

side the combined, stated uncertainties of the two sets of data. This difference is significant but

at this time is not considered serious, since it could be accounted for by modest changes in the

altitude to which the drag data are assigned, the drag coefficient, or the gage calibration constants.

Figure 5 shows measured atmospheric density-versus-altitude for the altitude range 258 to

600 km. These data result from approximately 60 passes for an Ap between 0 and 10, Flo .7

FOR ALL PASSES

0 <_ Ap<10

70 <_ F i0.7 <--100

10-17
250 300 350 400 450 500 550 600

ALTITUDE (kin)

Figure 5-Atmospheric density versus altitude measured by the pressure gage experiment.
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between 70 and 100, and most localtimes. It is seen that considerable variation in the atmospheric

density occurs, resulting primarily from the differences in local time, a factor of 5 diurnal vari-

ation at 360 km being observed. The Harris and Priester model densities (S = 90) for 0400 and

1400 hours are shown for comparison purposes.

Continued analysis of the Explorer XVII data are currently underway to further define: (1) The

quiet atmosphere and its variation with local time; (2) The variations from the quiet atmosphere

resulting from solar and geomagnetic disturbances; and (3) Other effects not now apparent.

Mass Spectrometer Experiment Data

Concentrations as a function of altitude are shown in Figure 6 (Reference 14) where Nicolet's*

model is included for reference. The data points shown are measured values converted to ambient

number densities. Measurements of each mass taken on the same satellite interrogation are made

approximately one minute apart and in the figure are joined by straight lines. The numbers refer

to orbit numbers. Table 2 lists pertinent information for the passes shown in Figure 6.

*M. Nicolet, Private communication.

Table 2

Tabulated Mass Spectrometer Data (The Local Sun Time, Angle of Attack, Geographic Latitude and

Longitude are Averaged Over the Four Minute Pass.)

Pass and station*

15 BP

50 COL

80 COL

80 FTM

118 BP

120 GF

138 BP

152 BP

167 BP

182 BP

183 QUI

197 BP

211 BP

226 BP

241 BP

242 MOJ

254 NFL

270 BP

271 GF

708 NFL

795 OOM

800 JOB

888 JOB

Date

4/4/63 21.15

4/6/63 0.65

4/8/63 0.99

4/8/63 4.89

4/10/63 18.81

4/11/63 20.32

4/12/63 2.51

4/13/63 2.01

4/14/63 1.65

4/15/63 1.54

4/15/63 3.26

4/16/63 1.43

4/17/63 0.53

4/18/63 0.48

4/19/63 24.19

4/19/63 0.64

4/20/63 22.75

4/21/63 23.30

4/21/63 22.88

5/20/63 7.18

5/26/63 15.81

5/26/63 15.90

6/1/63 13.24

Local Time

(hr)

Angle a of attack

(degrees)

6

16

9

63

70

51

12

14

20

25

23

27

45

53

62

54

82

80

85

39

63

65

33

Geographic Latitude

(degrees)

38.5

57.0

55.0

18.0

37.0

51.0

37.0

39.5

39.5

37.0

4.5

34.0

41.5

38.5

38.0

31.0

49.0

41.5

45.0

49.5

-34.0

-37.5

-27,0

Geographic Longitude

(degrees)

-75.0

-149.0

-147.0

-92.0

-72.0

-98.5

-84.0

-68.5

-75.0

-78.0

-79.0

-81,5

-71.5

-74.0

-79.5

- 121.5

-53.O

-71.5

-101.0

-49.5

137.5

19.0

25.0

*The stations involved are: BP - Blossom Point, Md.; COL - College, Alaska; FTM - Fort Myers, Fla.; GF - Grand Forks, Minn.;
QUI - Quito, Equador; MOJ - Mojave, Calif.; NFL - Newfoundland; OOM - Woomera, Australia; JOB - Johannesburg, South Africa.
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Figure 6-Average daytime and nighttime concentrations of He, 0, and N 2

from Explorer XVII mass spectrometer experiment.

Of particular interest are the helium concentration versus altitude, and the altitude regions

where helium, atomic oxygen and molecular nitrogen are predominant. It is seen that helium is

the major constituent above 600 km, molecular nitrogen is predominant below 250 km, and atomic

oxygen is predominant between these levels. It shofild be noted that the scale heights of the con-

stituents at higher altitudes correspond to temperatures of about 700 ° at night.

A possible deviation of the nighttime N2 distribution from a diffusive equilibrium condition at

altitudes less than 400 km is also suggested by this figure. One possible explanation is that the

diffusion time in this altitude region is the same order of magnitude as the diurnal variation period.

It should also be kept in mind, however, that these data represent a variety of times and geographic

locations and thus do not accurately present an instantaneous vertical profile.

Figure 7 shows the variation of mean mass with altitude. The mean mass was computed using

the major constituents, N2, O and He. Hydrogen, which the instrument was not designed to meas-

ure, could significantly reduce the value of the mean mass at higher altitudes.

The variation of concentration ratios of helium-to-oxygen and atomic oxygen-to-molecular

nitrogen with altitude is shown in Figure 8. The solid lines drawn through the points are average.
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values; as in all the data presented, the points are measured values and are not averaged, nor do

they reflect any smoothing. It can be seen here again that helium is the dominant component

above 600 km and that molecular nitrogen is predominant below about 250 kin.

Langmuir Probe Experiment Results

Figure 9 shows the detailed variation of Te and Ni, measured during a series of near perigee

passes near the F 2 maximum over Blossom Point, Maryland. These data were obtained over the

three month satellite lifetime during which the rotation of the orbit plane caused a complete diurnal

variation to occur. The data are shown as points or pairs of points, the latter corresponding to the

measured values at the beginning and at the end of individual satellite passes.

At first glance one is struck by the lack of correlation between the gross diurnal variations

(smoothed curves) and the changes during the individual passes, especially in the afternoon. Since

perigee passes such as these can exhibit very little altitude change, this in-pass variation must be

largely latitude dependent (10 ° change in latitude within average pass). The average in-pass change

in Te implies a latitude gradient near Blossom Point of approximately 25°K per degree of latitude,

corresponding to about a 10 percent change in T within a pass. With few exceptions the changes

in T e within a pass are accompanied by an inverse change in N i which is even greater than 10
percent.

Plots similar to Figure 9 have been prepared from Te and N_measurements at two other

latitudes (10°N at Quit•, 60°N at College), and the resulting gross diurnal variation curves at all

three latitudes are shown in Figure 10. These data also correspond to the region of the F 2 maxi-

mum (below 400 km).
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Figure 10-Averaged T and N 1 showing the diurnal

variation above three selected stations; Qulto (10°N),

Blossom Point (40°N)and College (60°N).

The T variation at the F 2 maximum at

all latitudes shown is characterized by a steep

morning rise, a mid-morning maximum, and

afternoon plateau, and a gradual decrease near

sunset. The nighttime values of T are some-

what variable but are always significantly

above the neutral particle temperature (Refer-

ence 15), particularly at College, Alaska where

the summer night at F 2 altitudes is short or

non-existent.

The values of N, rose gradually through-

out the day, reaching a maximum density in the

late afternoon, except at College where the

maximum occurred in the early afternoon.

It should be noted that the curves in Fig-

ure 10 represent direct "in situ" measurements

above specific geographic locations during the late spring and summer of 1963, and therefore should

not be considered models of the diurnal variation at other altitudes, longitudes, and seasons. How-

ever, the analysis of higher altitude data from these sites, as well as data from other sites is now
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• in progress,andit is hopedthatthesedatawill helpprovideabetter understandingof theglobal
structure of the ionosphere.

In conclusion,it is clear from thesimultaneousmeasurementsthat Te and Ni are related in

a generally inverse manner which agrees reasonably well with the inverse square relationship

predicted by Hanson (Reference 16) and Dalgarno, et al. (Reference 17). The elevated nighttime

values of T show that there is a heat source for the electrons at night, although its energy con-

tent is only a few percent of that required to cause the electron temperatures observed in the day-

time (Reference 18).
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THE TEMPERATUREOF CHARGEDPARTICLES
IN THE UPPERATMOSPHERE

by

R. E. Bourdeau

Goddard Space Flight Center

SUMMARY _4_ _

Three general methods of investigating charged particle temperatures in

the upper atmosphere have been used: direct measurements from rockets and

satellites; indirect determination using electron scale heights measured from

rockets and satellites; ground-based radar incoherent backscatter experiments.

The latitude, altitude, and temporal trends of these results are reviewed and the

implications discussed.

Observations by all three methods are consistent in showing that the electron

temperature increases with latitude for both daytime and nighttime conditions.

Moderate differences between the daytime electron and neutral gas temperatures

are indicated to altitudes well above the F2 peak for a winter mid-latitude iono-

sphere at an epoch between solar maximumand solar minimum conditions. Much

. larger daytime differences are observed for summer months and for solar mini-
mum conditions. All of these trends reflect corresponding changes in the electron

density.

The daytime observations are consistent with ultraviolet radiation as the

predominant heat source ff the possibility of photoelectrons diffusing along mag-

netic field lines and depositing their excess energy elsewhere is included. A

nighttime heat source (small compared to the daytime ultraviolet effect) is re-

quired to explain the observations. _ _x)

INTRODUCTION

At the first COSPAR meeting, in Florence, early direct measurements of electron temperature

To were reported from rockets (Reference 1) and from the Explorer VHI Satellite (Reference 2).

The Japanese rocket results suggested temperature equilibrium between electrons and neutral

constituents in the E region of the daytime ionosphere. Low values of T e in the daytime E region

subsequently were confirmed by rocket experiments (Reference 3). However, other rocket electron

temperature measurements (References 4, 5, and 6) showed that significant departures from tem-

perature equilibrium are more often observed than not in the E region even at night. The results

of Spencer, et al. (Reference 3) showed that departures from temperature equilibrium extended

well into the daytime F region.
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Early measurements of charged particle temperatures applicable to the region considerably ,

above the F2 peak at mid-latitudes for solar conditions when the 10.7 cm flux index ($10.7) was

150/wm 2 cps were reviewed by Bauer and Bourdeau (Reference 7) and Bourdeau (Reference 8).

Implications of temperature equilibrium at high altitudes (which they optimistically derived from

the data) critically depended on the assumed neutral gas temperature T • When these early direct

measurements of /_nd of the average electron-iontemperature (Te + Ti)/2 obtained from electron

density profiles are compared with more recent reference atmospheres, moderate values of To/T

of the indicated level of solar activity of about 1.3 are indicated at midday even to altitudes above

1000 km. These observations are in approximate agreement with the theoretical model of Hanson

(Reference 9) who assumed electron density values close to these particular observational

conditions.

More extensive charged particle temperature observations for different epochs of the solar

cycle now have been made by use of ground-based radar incoherent backscatter experiments, by

additional direct measurements from rockets and satellites, and indirectly from electron density

profiles obtained from rockets and the Alouette Topside Sounder Satellite (1962 _ 71). In general,

the trend is toward much larger departures from temperature equilibrium than indicated in the

theoretical models and in the earlier observations especially at the higher altitudes.

It is timely then, as done herein, to compare these trends with the introduction of latitude

and temporal electron density variations in the early theoretical models.

FACTORSCONTROLLINGTHE ELECTRONTEMPERATURE

The principal factors controlling To are:

Heat Input

I. Solar Ultraviolet Radiation

1. Locally-deposited energy

2. Diffusing photoelectrons (Z > 300 kin)

H. Corpuscular Radiation

Heat Loss

I. Inelastic collisions with neutral constituents (Z <

H. Elastic collisions with ions (Z > 250 km)

1. Ion temperature controlled only by neutral constituents

2. Ion temperature also controlled by electrons (Z > 600 km)

250 km)
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]:II. Coulombcollisionsof photoelectronswithambientelectrons

Thermal conductivity in the electron gas (Z > 600 kin)

Theoretical charged particle temperature models based on solar ultraviolet heating alone have

been developed by Hanson and Johnson (Reference 10), Hanson (Reference 11), and Dalgarno, et al.

(Reference 12). Of these , Hanson's model is the most complete in that he introduced the possibility

of (1.) photoelectrons diffusing along magnetic field lines and depositing their energy elsewhere,

(2.) the loss of ion temperature control by the neutral constituents and (3.) the importance of ther-

mal conductivity in the electron gas at high altitudes. The indicated altitudes where these factors

are important represent Hanson's estimates based on his assumed model atmosphere and electron

density profile.

The models of Hanson and of Dalgarno, et al. each used a single electron density profile and

both depended on rocket measurements of ultraviolet radiation intensity (Reference 13) to estimate

the heatinput, Q. The EUV intensity used applies to a level of solar activity corresponding to

Sx0" 7_ 100. The heat input is the product of the EUV intensity, the ionization cross-sections, and

the density of the ionizable constituents and of the heating efficiency. Both theoretical charged

particle temperature models exhibit approximately the same altitude behavior wherein low values

of T//T are indicated in the E region, with the ratio reaching a maximum of about 2.0 to 2.5 at

200 km and decreasing in the upper F region. A principal and important difference is that the

model of Dalgarno, et al. has Te - T=essentially vanishing above 300 km whereas Hanson's model

permits constant values for TJT of about 1.2 at extremely high altitudes.

Because the observational evidence is most heavily weighted for altitudes above the F2 peak,

the most important effect to examine is the efficiency of cooling to positive ions. On the assump-

tion that cooling occurs only by elastic collisions to atomic oxygen ions, the electron temperature

is given by (Reference 9):

T - T i 2.1 × 106 Q (1)

Te3/2 Ne2 '

where Q is the heat input to the electrons expressed in ev/cm 3 see and N e

For values of Q greater than a critical value Qc,

is the electron density.

Qc _ 2 × 10-7 N 2 Ti-I/2 , (2)

there is no solution to Equation 1 and T is not limited by energy transfer to positive ions (Refer=

ence 10). If Q = Oc, Te > :T, and if O >> Q, very large "runaway" values of T will result and

heat conduction in the electron gas is an important effect.
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SOLAR CYCLE VARIATIONS OF Te

In Figure 1 are illustrated daytime mid-

latitude electron density profiles typical of

December 1960 and 1962, respectively. The

principal differences to note are the much

higher values of Nma x and hma x for the 1960

period, and the constant electron scale height

for the 1960 case in contrast to the continually

varying scale height for the 1962 profile. The

monthly mean of the solar 10.7 cm flux during

December 1960 was 150/wm2-cps.

In Figure 2 is presented the mid-latitude

diurnal electron temperature variation di-

rectly measured during November-December

1960 (Reference 14) from the Explorer VIII

Satellite for magnetically-quiet days assuming

T is constant with altitude. Depending on

which of the current reference atmospheres

for the pertinent level of solar activity is used,

the average midday T, value of 1600°K taken

at midday and at altitudes above 1000 km

corresponds to an estimated value for Te/T _ of
about 1.15 to 1.33.

It is seen from Equation 1 that the ratio

of the heat input to the square of the electron

density, Q/N 2, controls the electron tempera-

ture at high altitudes. The Q/N_ computed at

400 km from the December 1960 N profile in

Figure 1 closely corresponds to the value used

by Hanson as an upper limit in his model. We

have taken into account that the heat input Q

would be larger than in Hanson's case by as-

suming a linear change of EUV intensity with

the decimetric flux index, $10" 7, and a corre-

sponding change in the density of the ionizable

constituent, ,_(0). The higher heat input is

compensated for largely by the higher electron

density than that used by Hanson. Thus we

should and do estimate similar values for T
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as.did Hanson. Consequently, we find excellent agreement between the observed Te/T _ of 1.15
to 1.33 and Hanson's theoretical upper limit of about 1.15.

In Figure 3, the Explorer VIII data are included with measurements of (Te + Ti)/2 computed

from early rocket N profiles on the assumption of diffusive equilibrium. Of particular interest

is the ion density profile obtained by Hale (Reference 15) at midday and at about the same time as

the Explorer VIII observations. Here a value for (To + T,)//2 of 1600°K (Reference 11) is derived

for the region above 1000 km. The data are too sparse for a firm conclusion but there is a sug-

gestion by the inter-comparison that for winter midday mid-solar cycle conditions T¢ _ T i at alti-

tudes above 1000 km but that both the electron and ion temperatures are moderately higher than the

neutral gas temperature. This would be consistent with Hanson's arguments that above 600 kin:

(1) thermal conductivity of the electron gas could support differences between Te and T which are

constant with altitude and furthermore; and that (2) the electrons rather than the neutral constituents

could control the ion temperature so that Ti > T.

Low midday values of Te//T _ at high altitudes also can be implied from the measurement in

December 1961 of a value for (To ÷ Ti)/2 of 1235°K (Reference 16) from a rocket flight for which

an equivalent ion temperature has been inferred (Reference 17). However, we emphasize here

Equation 1 and the extreme sensitivity of T e to the electron density. We further emphasize that in

the actual case, ratios of Q//Ne2 which permit only moderate rather than large midday departures

from temperature equilibrium as is indicated for December 1960 at high altitudes perhaps repre-

sent the exception rather than the rule at middle and high latitudes.

Now we shall consider the drastic changes in charged particle temperature characteristics as

we approach solar minimum conditions. The average value for the index S of solar activity corre-

sponding to the December 1962 profile illustrated in Figure 1 was 85. Taking into account a linear

decrease in EUV intensity from the time of the rocket EUV measurements (Reference 13) and a

corresponding decrease in the density of the ionizable constituents and computing Qc directly from

the observed N e profile, the estimated ratio Q//Qc is larger than 2. Because of the uncertainties

in our knowledge of ionization cross-sections and model atmospheres, the computation of Q//Qc is

suggestive rather than quantitative. Within these uncertainties, it does appear that the EUV effect

for low electron densities is sufficient to cause very large electron and possibly runaway electron

temperatures.

Figure 4 is a mid-latitude diurnal variation of electron scale heights calculated for an altitude

of 500 km from electron density profiles obtained from Alouette satellite during the period October-

December 1962 (Reference 17). It is seen that on the assumption of diffusive equilibrium and 0+

as the principal ionic constituent, values for (T + T_)/2 of 1500°K are indicated at midday. As-

suming T_ - Tg, a value for T/T of about 2.0 is indicated (Reference 18), which is much in excess

of the December 1960 value. This should not be surprising because of the large increase in the

ratio Q//N/ at 400 km and above from December 1960 to December 1962.

If the assumed model atmosphere and ionization cross-sections on which the computation of

Q/Q¢ depends are correct, the fact that runaway electron temperatures are not observed suggests
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that much of the heat input is not deposited locally. Also it should be emphasized that the ratio of

2.0 for T/T must be considered an upper limit since it assumes that at 500 km the ion and neutral

gas temperatures are the same. Evans (Reference 19) with radar-back-scatter experiments ob-

serves at similar latitudes and under similar conditions that T, > Tg even as low as 400 kin. Thus

the values for T implied from Figure 4 may indeed be somewhat overestimated. That the electron

temperature begins to control the ion temperature at an altitude lower than that estimated by

Hanson is explainable on the basis that the scale heights illustrated in Figure 4 were measured for

a different model atmosphere and electron density profile than that assumed by Hanson.

In summary, the observational evidence shows, as expected, a large increase in L/T between

December 1960 and December 1962 which corresponds to a change in the ratio of the heat input to

the square of the electron density. In the 1962 case, there still appears to be a sufficient EUV

flux to explain the high daytime electron temperatures observed at 500 km during periods of low

electron density. There is indirect evidence that some of the energy is not locally deposited and

direct evidence from Evans' results that the ion as well as the electron temperature is raised

above the neutral gas temperature.

SEASONAL VARIATION OF T e

Ionosonde data have shown that the electron density is much higher at the F2 peak in winter

than it is in summer. For example, N measured at Washington, D. C., was on the average more

than a factor of two larger in the summer than in the winter of 1962. Corresponding changes in

S,o 7, which reflect changes in heat input, are not observed. These factors contribute to making

the ratio qN _ much higher in the summer than in the winter months. Consequently, it is possible

that, at least for mid-latitudes in the Northern Hemisphere, high ratios of T/T will persist high

into the upper F region throughout a solar cycle. This could explain why some of the early rocket

results taken between solar maximum and solar minimum conditions (Reference 3) show different

electron temperature behavior.
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DIURNAL VARITION OF ELECTRON TEMPERATURE

As illustrated in Figure 2, the Explorer VIII satellite results suggest a significant increase

in T e during the early morning hours. High values of T e in the early morning at the F2 peak are

also indicated in ground-based backscatter observations (Reference 20) and, at higher altitudes, by

Evans (Reference 19).

Early morning maxima in electron temperature have been confirmed by use of the Explorer

XVII satellite from which the maximum value of T e is placed near 9h local time (Reference 21).

The electron scale height results from Figure 4 also suggest a maximum T at approximately the

same local time (Reference 18). Here the high scale heights for night-time conditions reflect the

importance of light ionic constituents. However, for daytime conditions it would be expected that

mi is relatively constant and thus that the early morning maximum represents a true T maximum.

It should be pointed out that the nature and existence of an early morning peak in Te has not been

emphasized in the Ariel (1962 ol) satellite results (Reference 22).

It is possible to show-from ionosonde data and Equation 1 on the assumption of no EUV ab-

sorption above 300 km-that the ratio Q//N_2 which controls T near the F2 peak maximizes at

dawn. However, at high solar zenith angles there could be enough absorption above 300 km to shift

the T maximum to later in the morning. This reasoning would insert a latitude and altitude de-

pendence on the time of the diurnal T maximum. It would be expected that the effect becomes

more diffuse at higher altitudes because here the diurnal amplitude of the ionizable constituent has

increased relative to the amplitude of the diurnal N variation (Reference 14).

LATITUDE VARIATION OF ELECTRON TEMPERATURE

Early ionosonde data showed that the daytime electron density at the F2 maximum increases

drastically as we go from mid-latitudes toward the geomagnetic equator. More recently, results

from the Alouette satellite have extended the observation that the geomagnetic field plays an im-

portant role in governing the electron density distribution to altitudes well above the F2 peak. In

Figure 5 an idealized representation of the latitudinal behavior of N prepared by Jackson* is pre-

sented by combining topside sounder (Reference 23), and ionosonde (Reference 24) results. Other

Alouette data (Reference 25) show that the equatorial anomaly builds up earlier in the day at the

eastern longitudes. It should be clear from the illustration and Equation 1, that in the daytime T

should increase with increasing latitude on the basis of the electron density behavior alone, if we

assume no EUV absorption above 300 km and no latitude dependence of the neutral gas character-

istics. An increase of daytime electron temperatures with latitude is indicated by all three meth-

ods of charged particle temperature investigation for altitudes below about 800 km. Alouette

satellite data suggest constant electron scale heights above 800 km (Reference 25).

The ground-based incoherent backscatter results at the geomagnetic equator (Reference 26)

show that in the region 200-350 km Te//T i is close to 2 during the daytime hours, maximizing at

about 275 km. Above about 400 km in the daytime the results show that Te//T _ is unity. Daytime

ion temperatures_ for March 1964, in the vicinity of 1000°K are observed. Depending on the

*J. E. Jackson, Private communication.
_K. Bowles, Private communication.
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adequacy of the Harris-Priester reference at-"

mosphere, this would put an upper limit on T/T

of 1.2 even during solar minimum conditions.

Low values for T/T at high altitudes would be

expected near the geomagnetic equator because

of the generally higher values of No and because

near this location vertical diffusion of photoelec-

trons tends to be inhibited. This supposes heat-

ing only by EUV radiation.

The incoherent backscatter results of Evans

(References 19 and 27) taken near 50 onorth mag-

netic latitude show drastically different behavior

of charged particle temperatures. This would be

expected because of: (1) the generally lower value

of N than wouldexistat the equator; and (2) the

higher _robability of the photoelectron diffusion

effect, and (3) additional sources of ionization.

The earlier results of Evans' taken in March-

Figure 5-Idealized representaHon of equator.ial anomaly
along 75 W meridian based upon data by lockwood and
Nelms (Topside) and J. W. Wright (Bottornslde).

April 1962, show daytime ratios of T /Tiof up to 1.6

in the 300-400 km and that T increases with altitude up to 700 km (Reference 27). In more recent

results taken during July 1963, Evans (Reference 19) offers two possible interpretations for his

daytime data obtained for altitudes up to 700 km: (1) if the ionic constituent is all 0_, T e and T i

continually increase with altitude to values of 2320°K and 2040°K at approximately 700 km; or

(2) by assuming a mixture of 80 percent 0 + and 20 percent He + at 700 km, T maximizes at about

450 km then decreases to 1960°K at 700 km while T i increases to a value of 1410°K at 700 km.

The trend of ion composition results (References 9, 16, 28, 29, and 30) would imply that the latter

alternative is the more likely. If so, it would be consistent with high values of (/N 2 permitting

high values of T especially below 450 km, and the possibility that cooling to light ionic constitu-

ents is becoming effective above 450 km. It should be noted that Equation 1 applies only for ff

and that the cooling efficiency to ions should be inversely proportional to the ionic mass mi.

Direct electron temperature measurements measured with the use of the Ariel satellite also

show that W significantly increases with latitude (Reference 22) the steepest gradient centered at

a geomagnetic latitude of about 20°. The midday T t value given at the geomagnetic equator for an

altitude of 400km is about 900 °K which compares favorably with T given by Harris-Priester for the

pertinent level of solar activity and with the Ti measurements of Bowles. The trend of the lati-

tude variation at 400 km obtained from the Ariel satellite is generally consistent with the latitude

variation N, and thus with the ground-based results of both Bowles and Evans (Reference 22).

However, the situation above 400 km is more complicated. The Ariel results show T in-

creasing with altitude up to maximum height of the observations at all latitudes. The continuing

increase with altitude of T from Ariel at higher latitudes would be consistent withthe 1962 results
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of _.vans but not for the likely possibility which Evans offers for his 1963 results, that T decreases

above 450 km. We suffer here in the comparison from a lack of simultaneity in the observa-

tions. An increase of T e at all altitudes in 1962 is perhaps reconcilable with a possible decrease

in T e above 450 km in 1963 on the base of a lowering with solar activity of the 0 + - He + transition

altitude.

The fate of the photoelectrons which apparently escape from the altitude of their formation is

not yet clear. We have made a case that for the December 1962 mid-latitude profile the ratio of

O/Oc possibly is large enough that the high values of T e observed up to 500 km at mid-latitudes

could be explained on the basis of the EUV effect and heat conduction in electron gas. In his

interpretation of the daytime altitude behavior of T from the Ariel satellite, Willmore (Reference

22) finds that for altitudes up to 600 km, the altitude dependence of the heat inpuf computed from

the observed T e and N (see Equation 1) follows the scale height of atomic oxygen and thus also

concludes that the main energy input below 600 km is by the photoionization of atomic oxygen.

Willmore also finds that the increase of T above 800 km can be explained by additional energy in-

put from the photoelectrons diffusing from below together with the main energy loss mechanism

being thermal conduction in the electron gas rather than collisions with positive ions. However,

his conclusions depend on an assumed model atmosphere and assume that the photoionization of

helium is unimportant.

NIGHTTIME CHARGEDPARTICLE TEMPERATURE MEASUREMENTS

The charged particle temperature measurements of Figures 2 and 3 are too sparse and the

dependency on the assumed reference atmosphere to critical to draw firm conclusions about de-

partures from temperature equilibrium at night for mid-solar cycle conditions. Bowles, et al.

(Reference 20) observe that Te/T i is unity at night at the geomagnetic equator with Ti _ 600 °K, the

latter value being in fair agreement with the Harris-Priester reference atmosphere. Remember-

ing the different altitudes and times of the observations, Willmore, et al. (Reference 22) report

that at 1000 km midnight values of T increase from about 800 °K at the equator to 1400 °K at 60 °

magnetic latitude, l_,vans (Reference 19) indicates a small but significant departure from temper-

ature equilibrium in the F region at 50 ° north magnetic latitude. The definite evidence from the

Ariel satellite for quite significant departures from temperature equilibrium at night at medium

latitudes have been confirmed by rocket measffrements (Reference 6). The Ariel results show that

the nighttime departure from equilibrium becomes more pronounced at the higher latitudes. The

nighttime source required to explain the Ariel observations has been estimated to be less than 30

percent of the daytime EUV heat input (Reference 22).

As an example of the sensitivity of nighttime electron temperatures to small sources of heat

input, consider Equation 1 and the fact that for solar minimum conditions, Ne varies by a factor of

4 from day to night at 400 km (Reference 18). From these considerations, it can be shown that less

than 10 percent of the daytime EUV heat input would be required at night to maintain the same tem-

perature difference (T - T )throughout the day.
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CONCLUDINGREMARKS

For all temporal conditions and latitudes, large departures from temperature equilibrium

(Te/T _ > 2)are observed in the daytime lower F region at the altitude of maximum rate of electron

productions. Moderate but significant daytime values for Te//T _ are maintained to very high alti-

tudes in winter at mid-latitudes in the middle of the solar cycle. Daytime mid-latitude data taken

for summer and/or solar minimum conditions when electron densities generally are much lower

reveal much larger values of T/T persisting to altitudes well above the F2 maximum. There is
considerable evidence at least for altitudes below 600 km that the diurnal electron temperature

maximum occurs in the early morning. Observed increases of daytime electron temperature with

latitude follows the observed electron density which is under geomagnetic control. All of these

temporal and latitudinal trends in the observed electron temperature are consistent with EUV as

the predominant daytime source of electron heating. The uncertainties in calculating the EUV ef-

fect make it difficult to infer other possible daytime heat sources at the present time. The charged

particle temperature observations strongly suggest the possibility that not all of the EUV energy

is locally deposited-an important factor to be considered in the theories of formation of the ion-

osphere. There is some evidence, principally from backscatter experiments, that the ion temper-

ature is controlled by electrons at very high altitudes.

Significant departures from temperature equilibrium at night have been observed especially

for conditions close to solar minimum. The estimated intensity of this additional heat source

increases with latitude but at all altitudes is only a fraction of the daytime EUV effect.
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SUMMARY

The diurnal variation of the upper atmosphere as revealed from satellite

drag measurements has been further investigated on the basis of a simultaneous

integration of the heat conduction equation and the hydrostatic law. In addition

to the heat source due to absorption of solar extreme ultraviolet radiation and

the hypothetical "second heat source," the heating due to absorption of solar

radiation in the Schumann-Runge range by oxygen molecules has been included.

The effects of time-dependent variations in the boundary conditions on the phase

and amplitude of the diurnal variation in the upper thermosphere and exosphere

have been investigated. Also the effects of lateral heat conduction and lateral

convective heat transport on the diurnal variation of density and temperature are
discussed.

The main purpose of the paper is to investigate several possibilities which

could be thought to eliminate the requirement for the "second heat source." It

is shown that neither the inclusion of absorption of solar radiation in the

Schumann-Runge band by O 2 molecules in our heat source nor diurnal varia-

tions of the boundary conditions at 120 km can be invoked in order to explain the

diurnal variation on the basis of an EUV heat source exclusively. Further the

effect of horizontal conduction is found in a simplified analysis to be quantita-

tively insufficient to account for an energy transport toward the west large

enough to explain the observed diurnal variation under the presumption that all

heating comes from the solar EUV radiation. __¢_

INTRODUCTION

The diurnal variation of the atmospheric density at heights above 200 km has been determined

from satellite drag measurements by several investigators. An extensive analysis has been given

by Jacchia and Slowey (Reference 1). The diurnal density variation can be described as follows:

During the morning the density increases until it reaches a maximum at about 14 h local

*NAS-NRC Senior Research Associate with the Goddard Institute for Space Studies; on leave from Bon! University.
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time. Then it decreases rather rapidly in the afternoon and evening, followed by a less steep de- "

crease during the night. The density minimum can be placed at around 04 h local time. This

holds true for at least the altitude range from 350 to 660 km and for the time interval from 1958

through 196:_, c_uring which sufficiently accurate satellite drag data were available. It is partic-

ularly remarkable that almost for the entire decreasing phase of solar activity, the diurnal maxi-

mum is always found very close to 14 h local time (Reference 2). It furthermore should be noted

that the density decrease is considerably less rapid during the hours around midnight than in the

late afternoon. The description of the diurnal density variation is also applicable to the diurnal

temperature variation to a good approximation.

By using Nicolet's set (Reference 3) of "static" models, Jacchia obtained temperature maxima

and minima exactly at the same local times as for the densities. This results because Nicolet's

models furnish a monotomic relationship between densities and temperatures independent of local

time. Since the main physical processes which determine the time-dependent variation of the up-

per atmosphere (heating by absorption of solar energy and heat conduction) have different charac-

teristics, some caution must be exercised when relying on this kind of transformation (for further

details, see Reference 4). For this reason, we shall always use the observed density variations

rather than the inferred temperatures, for the analysis in this paper.

Two years ago we investigated how the observed diurnal variation could be understood by as-

suming hydrostatic equilibrium and integrating the time-dependent heat conduction equation (Ref-

erence 5). We included an expression which represented the convective heat transfer due to the

diurnal expansion and contraction of the atmospheric bulge. From this analysis we concluded that

heating of the thermosphere due to absorption of the solar extreme ultraviolet (EUV) radiation

alone cannot explain the observed diurnal variation of density and temperature, as extreme ultra-

violet heating alone would yield the maximum value of the density at about 17 h local time instead

of 14 h. Furthermore, if the EUV flux is adjusted to represent the observed average density of the

diurnal variation, then the amplitude of the diurnal variation would greatly exceed the observed

amplitude.

Also, comparison of the required flux with Hinteregger's measurements of the EUV flux (Ref-

erence 6) would require a very high efficiency for the conversion of EUV radiation into heat.

Recent improved EUV measurements by Hall, Schweizer, and Hinteregger (Reference 7) yielded

considerably higher fluxes than one would have expected for low levels of solar activity from the

previous measurements. This might indicate that the solar spectrum in the EUV range does con-

tain sufficient energy to provide the required heat exclusively. If so, it would eliminate the re-

quirements for an extremely high efficiency, but does not affect the wrong phase and too large

amplitude of the diurnal variation when calculated with an EUV heat source only by the afore-

mentioned method.

Figure 1 illustrates the discrepancy between the diurnal density variation derived from ob-

servations (Reference 8) for an altitude of 600 km, and the calculated variation when only an EUV

heat source is used (dotted line). In order to overcome this discrepancy we assumed the existence

of a second heat source which has a maximum in the morning (at about 9h or 10 h local time), a
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*ratherlow valuein the afternoon,anda small
contributionduring the night. With this addi-
tionalheatsourceone achievesa goodagree-
mentbetweenobservedandcalculateddensities.
Thecalculatedvaluesare givenin Figure 1 by
the solid line. The line representsour model
S = 200, wherein a peak flux of 0.93 erg/cm 2-

sec for the EUV heat source and of 1.03 erg/

cm2-sec for the "second heat source" were

used. These values correspond to the average

level of solar activity in the fall of 1959. If we

use an EUV heat source only, it would be neces-

sary to employ a peak value of _2 erg/cm 2 -sec

of the EUV flux, in order to obtain a diurnal

average density in close agreement with the ob-

served average density. If the efficiency for

conversion of solar EUV radiation into heat in

the thermosphere is 40 percent (Reference 9),

the total flux in the EUV range below 1000

would have to be as high as 5 erg/cm2-sec for

a level of solar activity that occurred in the fall
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Figure 1--Diurnal variation of the density at a height of
600 km. The abscissa is the local time. The circles rep-
resent the observations as given in the Bonn model 1961

(Reference 8) which represents atmospheric conditions
during the fall 1959. The dotted line is the calculated

density variation if the absorption of solar extreme ul-
traviolet radiation is used as the only heat source. The
solid line is the variation which Tsobtained if a "second
heat source" is included in the calculations.

of 1959. But even with this rather large flux the problem of a wrongly phased variation remains.

It is the purpose of this paper to investigate what the effects are on the diurnal variation if some

of the simplifications made in the previous calculations are removed.

DISCUSSION OF THE BASIC EQUATIONS

In the attempt to understand the diurnal behavior of the upper atmosphere, it is important to

determine to what extent the requirements for the second heat source are influenced by the simpli-

fications employed in the basic equations.

The time dependent heat conduction equation is:

0-_ (T) - pCp
1 aT OT

T T20z dz' + O = ;Cp O-t- (1)
J J

z 0

Since we use, in this paper, the same notations as in the previous ones, we shall not repeat all the

details here. The equation includes a convective term for the vertical heat transport during the

diurnal expansion-contraction of the atmospheric bulge. This is represented by the second term

on the left side of Equation 1 and the appearance of Cp instead of Cv on the right side. A detailed

derivation has been given earlier (Reference 5). The second term in Equation 1 has only a minor
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influenceonthe energybalance,as calculationswithandwithoutthis term haveshown.It, there-"
fore, is unimportantin ourdiscussionof theeffectsof simplificationsin thetheoryonthe calcu-
lateddiurnalvariation.

Thefirst term in Equation1 accountsfor theheatconductionin thevertical direction. K(T) iS

the coefficient of heat conduction, taken as the weighted average of the coefficients. The weighting

factor is the number density. The co-efficient depends, furthermore, on the square root of the

temperature (Reference 10).

The third term accounts for the heat sources and losses. The heat source due to absorption

of solar EUV radiation is given by

QEUV eini(z, t) FAOi ()_)exp . "ri (z, t,?v dh , (2)

where

m ni(z, t)7_(z, t, a) = _(_) cosO(t) dz . (3)

z

c_i (_,)is the cross-section for absorption by the i th constituent of radiation of wavelength \

in the region d_, Fa is the incident flux of wavelength _ in the region d_, at the top of the atmos-

phere and e i is an efficiency factor for the conversion to thermospheric heat of energy in the ex-

treme ultraviolet absorbed by the ith constituent. _ is the zenith angle of the sun.

In our previous paper (Reference 5), the summation sign in the exponential function of Equa-

tion 2 was accidentally left out in the printing. The correct formula, however, was used in the

computer program. The correct formula is also given in our paper which was printed in the

proceedings of the Third International Space Science Symposium (Reference 11).

We summed Hinteregger's measurements of the solar EUV flux from 40 to 1000 A and used

appropriately averaged x:ross sections for the absorption by the different constituents. This sim-

plification was made after calculations had shown that the temperature profiles of the thermosphere

were only slightly affected whether the EUV region was divided into five different regions with

appropriate mean cross sections or a proper average over the entire EUV region was used.

The efficiency for the conversion of solar EUV energy into heat was taken to be 37 percent

in close agreement with the result of Lazarev's recent paper (40 percent) (Reference 9). The

uncertainty of the above value is still quite large. Smaller values (15 to 30 percent) have been

recommended by Hanson and Johnson (Reference 12) and Chamberlain (Reference 13). Therefore

all arguments about the heating of the thermosphere which are based on the absolute values of

solar EUV fluxes must be considered with caution.
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In this paperwehaveinvestigatedthe effectsof additionalheatingcausedbytheabsorption
of solar radiationin theSchumann-Rungerangeby oxygenmolecules.A detaileddiscussionof
this processandits heatingefficiencyis givenin thenextsection.

Johnsonarguesin a recentpaper(Reference14)thatit wouldnotbeentirely unreasonablethat
the generallyusedvaluesfor the heatconductivitymightbe toolarge bya factor of threeor even
ten. Wehaveinvestigatedtheinfluenceof different valuesfor the conductivity. A smaller value
woulddecreasethediscrepancyin thethermosphericheatbudget,but it wouldincreasethedis-
crepancybetweentheobservedandcalculatedtime of thediurnal maximum.This is anargument
againstconsiderablysmaller valuesfor the conductivity.

A shortcomingof our Equation1is theneglectof horizontalconductionaswell as horizontal
convection.Thiswill bediscussedlater. Thehorizontalconductiondepends,of course,on the
horizontaltemperaturegradients. Dueto thelarge distancesinvolved,thesegradientsare rather
small. MacDonaldestimatesin his recentview (Reference15)that theaveragetemperature
gradientat analtitudeof 1000km is 3x 10-7_K/cmfor a temperaturedifferenceof 600_Kbetween
thedarkandthe sunlit sideof theearth. Thecorrespondingheatflow is thenonly of the order of
10-2erg/cm_-sec.

SCHUMANN-RUNGEABSORPTION

In previous integrations of the time dependent heat conduction equation we included electro-
o

magnetic radiation in the EUV range only (40 to 1000 A). As the number density of molecular

oxygen at the 120 km level is still rather large and the flux in the Schumann-Runge region is

large compared to that in the EUV region, such a neglect has been considered as an oversimpli-

fication. However, integrations of the time dependent heat conduction equation which includes

heating from solar flux in the Schumann-Runge region show that our previous conclusions are not

affected.

Walker (Reference 16) has estimated the amount of flux in the Schumann-Runge region that

can be optimistically converted into local heating of the atmosphere above 120 km. His conclusion

is that at most a flux of 0.5 erg/cm 2 sec can be converted into local heating. We have performed

integrations of the time dependent heat conduction Equation 1 where we have included the absorp-

tion of Schumann-Runge radiation by molecular oxygen in addition to the heating due to extreme

ultraviolet radiation. We used a cross section for absorption of 1.5 x 10 -17 cm 2 (Reference 6).

In these calculations we obtain a behavior of the upper atmosphere which is qualitatively

similar to our previous results: The temperature still peaks at 17 hours local time and the

amplitude of the diurnal variation is much too great.

The inclusion of Schumann-Runge absorption has the effect of steeping the temperature gra-

dient at the lower boundary. This makes it possible to obtain better agreement with the densities

measured at the lower boundary altitude by the failing sphere method (Reference 17) and still to
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maintaingoodagreementwith thesatellite dragdata. Figure2 is the comparisonof thedensity.
profiles at thediurnal maximum(14h) andminimum(4h)with andwithoutinclusionof absorption
in theSchumann-Rungerange.

VARIATION OF THE RATIO OF ATOMIC TO MOLECULAROXYGEN

In all of our previous calculations (References 4, 5, 11, and 18) we have assumed that the

number densities of the various constituents at our boundary level (120 km) do not vary within one

day. This is reasonable for example, as the lifetime for recombination of atomic oxygen at this

altitude is of the order of years (Reference 3). Also the lifetime for molecular oxygen due to dis-

sociation is of the order of several days.

Since it has been suggested that the ratio of atomic to molecular oxygen might vary by a

factor of three to four over a day-night cycle (References 15 and 19), calculations have been made

to ascertain how this affects the calculated
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Figure 2--Density versus height from 120 to 600 km for
14 and 4 hours local time. The dotted line represents
our model S = 200 (Reference 5) for mean atmospheric
conditions during the fall 1959. The solid lines give the
densities when, in addition, the absorption by oxygen
molecules in the Schumann-Runge range is included in

the calculations. In the legend the boundary number

densities of N2, 0 2 andOat 120 km are given.

diurnal variation. However, it is difficult to

see how such a variation at 120 km could in-

fluence the density variations of higher altitudes

within one day as the diffusion time at 120 km

is of the order of one day. Nevertheless, de-

spite the above objections, we have performed

calculations where we have varied the amount

of atomic and molecular oxygen sinusoidaliy

and in such a manner that the variation would

correspond to photodissociation of molecular

oxygen (or recombination of atomic oxygen) and

maintain a constant density at 120 km. Thus

the variation at 120 km chosen was the following:

N(O) -- N o (0) ÷ _ sin 2--4 (t - 10 , (4)

I1 1 N O (O) 2_ )1N(O2) = No(02) - _o(O2 ) sin 2"-4 (t-X0 ,(5)

where NO (O), N0(o2) are the diurnal average

values of the number density of atomic and

molecular oxygen, t is the local time in hours.

The ten hour phase was chosen so as to have

the number density of atomic oxygen increasing

until 16h local time. Equations 4 and 5 yield a

variation of the ratio of atomic to molecular
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, oxygenof abouta factor of3. In thecalculations
"only heatingdue to EUV and Schumann-Runge
radiationcorrespondingto an averagelevel of
solar activity of autumn 1959was included.
Figure3 presentsthe relative variation of the
density at 600km togetherwith the observed
variation. For comparisonthe calculationswith
constantboundaryconditionsare also shown.It
is noticedthat sucha variation hardly affects
the behaviorof thediurnal variation,thatis, the
calculatedvariation still peaks at about17h
local time with a toolarge amplitude. Thus
sucha variation at 120km cannotaccountfor
the diurnal variation observed in the height
rangefrom 300to 700kin.Onthebasisof these
calculationsit is also difficult to interpret the
rocket measurementsof the numberdensities
of atomic and molecular oxygenat 190km by
Hall, Schweizerand Hinteregger(Reference7)
asa diurnal variation.

VARIATION IN THE TURBOPAUSE HEIGHT

The level at which diffusive equilibrium

begins is not well known. Furthermore it might

be that the height of the diffusive equilibrium

level changes from day to night. For the vari-

ous atmospheric constituents it may vary from

about 100 to 120 km. For example if the level

for the diffusive separation of atomic oxygen

changes by 28 km from 90 to 118 km, then the

number density of atomic oxygen would change

by a factor of nine at 120 km. We have per-
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Figure 3--Diurnal density variation at 600kin calculated
with time-dependent boundary conditions. The number
densities of 02 and O at 120km were Forced to vary ac-
cording to formulas 4 and5 (see lower part of the figure).
The resulting density variation at 600 km is represented
by the dashed llne in the upper section of this Figure.
As heat sources, only the absorption of solar radiation
in the EUV and Schumann-Runge range are used. For
comparison, the dashed-dotted curve gives the densities
when the number densities at 120 km are kept constant
at the mean values. The solid llne again shows our
model S = 200, which represents the observed variation
in the fall 1959.

formed calculations in which we forced the number density of atomic oxygen at 120 km to vary

diurnally so as to give good agreement with the observed densities at 600 km.

The diurnal variation we used is given in Figure 4. Again only extreme ultraviolet and the

radiation in the Schumann-Runge region were used as heat sources. Figure 4 shows that a fairly

good agreement can be obtained due to the manner in which the number density of atomic oxygen

is varied at 120 km. Even perfect agreement could be obtained by an additional slight variation

of the boundary conditions. But Figure 4 also shows that we cannot obtain good agreement simul-

taneously at lower altitudes between 200-400 km. Thus such an assumed diurnal variation of the
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heightof the turbopause cannot account for the

observed diurnal density variation in the 300 to

700 km range. Furthermore, since the diffusion

time for atomic oxygen at 120 km is of the order

of one day, it is difficult to understand how such

an effect can be propagated upward within a day

without smoothing out the variation at greater

heights.

VARIATION OF THE BOUNDARY TEMPERATURE

The third type of variation we may use to

explain the observed diurnal variation is the

variation of the boundary temperature. As the

characteristic conduction time (Reference 15)

at 120 km is large compared to one day, we do

not expect any appreciable diurnal variation in

the temperature at 120 km. Thus any forced

variation at the 120 km level, even if the total

amplitude would be as large as 100_K, would be

rapidly damped out with increasing altitude.

This is borne out by actual calculations where

we have varied the temperature at 120 km

sinusoidally with a total variation of 100_K from

305 to 405_K, peaking at 6 hours local time.

Again only EUV and Schumann-Runge radiation

were used. In Figure 5 we compare the exo-

spheric temperature obtained with the results

for fixed boundary temperatures of 305°K, 355°K

and 405_K. The results for the periodic

boundary temperature variation do not deviate

appreciably from the results when a constant

boundary temperature of 355°K is used. This
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Figure 4--Diurnal
and 600 km calculated under the assumption that the
height of the turbopause (diffusion level) changes
diurnally from 90 km at 6 hours local time to 118 km at
18 hours local time. The corresponding variation of the
number density of atomic oxygen at 120 km is given in
the lower part of the figure. The solid lines in the up-
per part represent the calculated densities. For com-
parison again the densities of our model S = 200 are
given (dashed lines). The agreement at 600 km is good,
but agreement at the lower altitudes cannot be achieved
simultaneously with height variations of the turbopause.

demonstrates that a periodic temperature variation at 120 km cannot propagate rapidly enough

to affect the diurnal variation in the upper thermosphere.

Thus diurnal variations of the boundary conditions of the type illustrated above cannot ac-

count for the density peaking at 14 h local time (instead of 17 h) nor for the much lower observed

ratio of daytime maximum temperature (or density) to minimum nighttime temperature (or den-

sity). Thus the considerations in sections 3 to 6 of this paper have no influence upon our require-

ment of an additional heat source which when included well represents the observations.
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LATERAL HEAT TRANSPORT

The basic Equation 1 depends on height and

time only. A complete treatment of two or

three dimensions in space is not quite feasible

with the high speed computers readily available

at the present time. However, lateral heat con-

duction parallel to the equator can be included

in our one-dimensional treatment by taking ad-

vantage of the relationship between the longitude

and the local time. Lateral conduction is ex-

pected to be small as the lateral temperature

gradients are small (of the order of the differ-

ence between maximum daytime temperature

and minimum nighttime temperature divided by

the circumference of the earth). At high alti-

tudes, however, the lateral temperature gradient

can be comparable to the vertical temperature

gradient--but at these altitudes the heat content

of the thermosphere is small so that such a

lateral heat flow hardly affects the total heat

budget in a given column of air. If horizontal

conduction would be sufficient to decrease the

diurnal amplitude, which is obtained when heat-

ing by EUV radiation alone is used, towards the

observed value and also sufficient to shift the

/
1900 / ..-_\

/,/"
,/ ,y ,

,,,,?/ \

_?..15oo I/I'

,, ,
t.u N

\. \\. / ,/7// \\\ 355

', \X

1100 \'x_\\\'\" "' x'x..//j7 / X PERIODIC
I \305/, /

700

350

300 -- _
,

4 8 12 16 20 24

LOCAL TIME (hours)

Km

Figure 5--Diurnal variation of the exospherlc tempera-
ture for different boundary temperatures at 120 kin. As
heat sources, only the absorption of solar radiation in the
EUV and Schumann-Runge range are used with the same
fluxes in all cases. The dashed curves give the temper-
ature variations when the boundary temperature is kept
constant at 305, 355 and 405°K respectively. The solid
llne represents the variation of the exospheric tempera-
ture when the boundary temperature at 120 km is forced
to vary diurnal ly as given in the lower part of the figure.diurnal maximum towards 14 h local time, this

might offer an immediate explanation of why the

local time of the maximum remains close at the same local time (14 h) for the whole solar cycle.

If we calculate the local time of the maximum using only solar EUV radiation as the heat source

for the entire solar-cycle, by changing the flux parallel to the solar activity we find that the max-

imum proceeds from 17 h for high solar activity towards 15 h for extreme low activity. Parallel

to this, however, the temperature maximum and the diurnal amplitude of the temperature de-

creases. From the decrease of the latter it is plausible that the effectiveness of horizontal con-

duction also becomes gradually smaller. So it can only provide a smaller time-shift for the max-

imum at periods of low solar activity. This just might then result in having the maximum always

at about 14 hours. Of course, this requires quantitative proof.

The method we employed to include lateral conduction along the equator is the following. It

is illustrated in Figure 6. A horizontal displacement ds is equivalent to a change in local time dt,

thus the lateral temperature gradient dT/ds can be replaced by 1/[_(Ro + z)] aT/St , where _ is the

angular velocity of the earth and Ro the radius of the earth, and z the height. Thus the net heat
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inputto a givenamountof air (K02 T/0s 2) can be included-

by adding the term

K(z) _2 T

(z 2 (R+ z) 2 at 2
(6)

Figure 6--This figure demonstrates how the
lateral conduction in longitude can be in-
cluded in our formula 1 if we take advan-

tage of a conversion of length units into
time units.

to Equation 1. In this term we have ignored the explicit tem-

perature dependence of the thermal conductivity as it is a

small correction to a small term. Calculations have been

made including this term as a perturbation and with EUV

and Schumann-Runge radiation alone. The result is a change

of the exospheric temperature by less than 25°K, too small

to be of any significance. A comparison of the term given

as Equation 6 with the net heat input due to vertical conduc-

tion (first term in Equation 1) showed that the former term

only becomes comparable to the latter for heights above

500 km and times around 06h and 18h local time. Below

300 km it is always smaller by more than two orders of

magnitude.

But we have, of course, to consider also the meridional

component of the heat conduction. This can reasonably be

expected to be of the same order as the longitudinal com-

ponent. Thus lateral heat flow does not affect the gross

properties of the upper atmosphere, that is, it does not shift the time of the diurnal maximum,

nor does it decrease the ratio of the maximum to minimum temperature appreciably.

Another factor which can be thought of to influence the diurnal behavior of the upper atmos-

phere is lateral convective energy transport. From the temperature gradient one expects speeds

of convective flow much too small to furnish any appreciable horizontal energy transport. In

order to have a_n effective horizontal energy transport, large range flow velocities of the order of

104 cm/sec are required (Reference 15).

At present it cannot be proved or disproved whether this effect can be, indeed, large enough

to account for a temperature difference of 250 ° at the bulge maximum between the "observed"

temperature and the higher value which has been calculated on the basis of a sufficiently strong

EUV heat source (no other source) and no horizontal convective energy transport. Quantitative

proof is needed which is at present not yet feasible in order to see whether horizontal convection

can provide the required time shift and flattening of the temperature maximum. As long as this

cannot be done one will have to rely on a second heat source. There seem to be two different ways

to interpret this source:

1. As a heat source other than the absorption of solar EUV radiation. This is particularly

suggested if we relate the semi-annual variation to the solar wind, since, in this case, we surely
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"w.ouldneeda "secondsource"whichprovidesaboutthesameamountof heatasthe EUVradiation.
Furthermoreit wasrecentlyfoundthatmuchstrongeradditionalheatingof thethermosphereoc-
curs parallel to slight changesof geomagneticactivity duringquietperiodsthanasanticipated
before(References20and21). This favorstheassumptionof additionalheatingother thansolar
EUVradiation.

2. If weassumethat the solar EUVprovidesenoughenergy(aflux upto 6 erg/cm2secfor
very highsolar activity if theefficiencyfor conversioninto heatis 40 percent or up to 12 erg/cm 2

sec if the efficiency is only 20 percent), then we might interpret the sum of the EUV heat source

and the "correction term" which provides the agreement with the observed diurnal variation as

the "effective heat source" of the upper atmosphere. This source then incorporates the horizontal

energy transport in such a way that the simplified theory provides the agreement with the obser-

vations. This interpretation, however, depends strongly on a quantitative proof of whether hori-

zontal convection is effective enough.

CONCLUSIONS

Herein, several possibilities have been investigated which could eliminate the requirement

for a second heat source which we had to introduce in order to reproduce the observed diurnal

variation by solving the time-dependent heat conduction equation as a function of height and time

only. We were able to show that neither the inclusion of absorption of solar radiation in the

Schumann-Runge band by 02 molecules in our heat source nor diurnal variations of the boundary

conditions can be invoked in order to explain the diurnal variation on the basis of an EUV heat

source exclusively.

Further, the effect of horizontal conduction is insufficient to account for an energy transport

toward the west large enough to explain the observed diurnal variation. A complete three-

dimensional quantitative analysis which will eliminate the need of the artifice employed here

would be useful. But this requires a much larger and faster computer than presently available.
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RESULTSFROMTHE IMP I RETARDING
POTENTIALANALYZER

by

G. P. Serbu

Goddard Space Flight Center

Some preliminary experimental results obtained with a planar geometry re-
tarding potential analyzer flown on the IMP I satellite are presented. The

plasma energy spectrum for both ions and electrons was measured in the range
from 0 to 100 ev. Charged particle density measurements have been obtained for

the complete range from 1000 km to 30 RE. The results show a sharp decrease
of about an order of magnitude in charged particle density at about 4.5 RE-
similar to the decrease deduced from whistler observations. The electrons ex-

hibited thermal energies for geocentric distances less than 4.5 RE;the average
electron energy then increased gradually to values above 100 ev at about 8 RE. ,

The observed satellite potential was less than 1 v positive. _ .<:_,-3

INTRODUCTION

Measurements of the ionized plasma enveloping the earth have been reported by numerous

investigators to date. The region to 30 earth radii (R_) has been traversed extensively by a num-

ber of satellites; beyond this distance measurements h_tve been made from the Soviet Lunik probes

and the American Mariner series. Primarily the energy spectrum of positively charged particles,

presumably protons, has been investigated, and only a few measurements on the electron spectrum

below 10 kev are available to date. Presented are some preliminary experimental results obtained

with a retarding potential experiment designed to measure the number density and the energy of

ions and electrons in the energy range below 100 ev at distances to 30 RE.

INSTRUMENTATION

The retarding potential analyzer gives information on the arrival direction and energy distri-

bution of both ions and electrons with energies up to 100 ev. The detector is a charged particle

trap of planar geometry which is programmed with appropriate voltages such that the number of

r
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chargedparticles of either polarity canbe measuredseparatelyas a functionof a given
energy interval. -_.

Thechargedparticle trap, a circular cup7 cm in diametermountedsothat theapertureis
flushwith thesatellite skin, looksoutat right anglesto thespin axisof thesatellite. Theoutside
apertureis a holeof 5cm2in areaoverwhichis stretchedafine wire meshwith 95percentlight
transmission.Surroundingtheaperture is a tungstensurfaceof 35cm2areawhichis electrically
connectedto theaperturegrid. Spacedparallel to theapertureand4mmbehindit is theretarding

grid. Thecollector, a tungstendisk is par-

NORTH ECLIPTIC POLE

\
\

\
\
\

ECLIPTIC

SOUTH ECLIPTIC POLE

Figure 1--Location and viewing sphere of the retarding
potential analyzer aboard the IMP I satellite.
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APERTURE

COLLECTOR

TELEMETRY

ELECTRONS

LOW(v) HIGH(v)
+30 + 100

0-+I00 0--28 0--100

-20 +20 +20

Figure 2--Schematlc diagram of sensorand the various
programmed vol rages.

allel to and 5 mm behind the retarding grid.

The geometry and size of the aperture and

the relative spacings provide a viewing angle

for the trap of 5 steradians. Figure 1 shows

the total viewing direction of the trap as it

was spin-modulated at the satellite spin rate

of 22 rpm. Nearly all directions are viewed

during one revolution, with the sun vector

lying within 20 degrees of the normal to the

trap once each revolution.

The collector current is measured by a

logarithmic amplifier whose analog output is

presented directly to telemetry. The elec-

trometer sensitivity is from 10-11 to 10 -6

amps of either polarity. An internal current

calibrator is used to check the electronics

in flight.

Figure 2 shows the sensor schematically

and also the sequence of voltages programmed

to the various trap elements in order to define

the four modes of operation: low (30 ev) and

high (100 ev) ion spectrum and the low (30 ev)

and high (100 ev) electron spectrum. A mech-

anical programmer, which operates synchro-

nously with the telemetry system, is used to

switch the voltages to the trap. For example,

the low energy (30 ev) ion spectrum is done

as follows. The aperture grid and guard

electrode are maintained at -30 v with re-

spect to the satellite skin, thus all electrons

with energy less than 30 ev are excluded

from the trap and all positive ions are accel-

erated through the aperture. The retarding
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_rid voltageis changedin fifteenequalstepsbetween0 and +28 v. A current measurement is

made and telemetered at each retarding potential step. Only those ions with energies in excess

of the retarding potential will pass through the retarding grid and impinge on the collector. In

this manner a current voltage characteristic is obtained for ions with energy below 30 ev.

During the ion measurement, photoemission current from the collector appears as a positive

current, the expected magnitude being about 10 -8 amps. As the collector views the sun the photo-

emission current amplitude will vary as the cosine of the angle between the sun vector and the

trap normal and it will be repetitive with the spin cycle, thus corrections in the data can be made

for the photocurrent. A highly accurate solar aspect sensor is used to find the precise time that

the sun vector lies in the plane normal to the trap.

The electron mode of operation is such that the positive 20v potential on the collector sup-

presses all photoelectron emission from the collector. However, photoelectrons can be emitted

from the grids and will appear as a negative current, the expected value being 5.10 -1° amps.

Also corrections for grid photoemission

currents can be easily made in the elec-

tron data.

The 30 ev and 100 ev ion spectra

are obtained and then the trap voltages

are reversed and the 30 ev and 100 ev

electron spectra are obtained. The en-

tire ion and electron sequence is repeated

once every 10 minutes; each individual

15 step spectrum analysis is done within

5.4 seconds.

RESULTS

Figure 3 shows a 30 ev electron spec-

trum which was obtained at 2.2 RE geo-

centric distance. The data points are

the measured current values, plotted on

a logarithmic scale as a function of the

known retarding potential voltage. The

resultant semilogarithmic plot of

a current-voltage characteristic yields

information on the mean energy and the

density of electrons. The observed de-

crease of two orders of magnitude in col-

lector current with 2v negative retarda-

tion suggests a maxwellian distribution

10-7

10.8

ELECTRON MODE, 2.2 RE

LOWER LIMIT: _ 0.3ev FLUX 5 x 1010electrons/cm 2 - sec

UPPER LIMIT:~ 5.0ev FLUX 3x 10 8 electrons/cm2-sec

CA

Z z
10-g 1 SPIN PERIOD

10-11

0 -2 - 10 -20 -28

RETARDING POTENTIAL (v)

Figure 3-The 30 ev electron spectrum for 2.2 RE geocentric.
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of electron velocities. A second component or high-energy "tail" to the distribution is noted beyond

2 v. The primary slope yields an energy value of 0.3 ev or an equivalent electron temperature of

3500°K. From the governing equation:

1 -ve/kT

I_ - 4 N. Vq-eAe "' (1)

where I_ is the measured current, Ne the electron density, V_ the most probable velocity, A the

area, v the retarding potential, e the electronic charge, k Boltzmann's constant and T the electron

temperature. We can compute the electron density if A, the effective area is known. Low energy

electrons which normally would not impinge on the aperture are deflected into the aperture along

the accelerating +30 volt electric field lines; thus a uncertainty in the effective collection area

exists. Using the geometric aperture area, we compute a flux of 5 × 101° electrons/cm2-sec;

this flux could be a factor of 10 too large due to the collection area uncertainty. Using Equation 1

a flux of 5.10 lo electrons/cm 2_sec with a mean energy of 0.3 ev at 2.2 RE, if maxwellian in distri-

bution, represents an electron density of 3.5 x 103 electrons/cm 3. The high energy component of

5.0 ev has an upper flux value of 3.108 electrons/cm2-sec. It has been suggested by Hanson

(Reference 1) that at 7000 km, approximately this altitude, a 108 electron/cm 2-sec flux of 5 ev

photoelectrons exists. These photoelectrons are formed at altitudes above 300 km and diffuse

along magnetic field lines; Mariani (Reference 2) extended the work of Hanson and describes the

role that these photoelectrons may play in the explanation of the "equatorial" or "geomagnetic"

anomaly. Since these electrons are constrained to follow field lines, the flux will drop off with

the cube of the distance; thus beyond 3 RE this flux should be below the minimum sensitivity of

this experiment.

In Figure 3 the current to the trap decreases below the minimum sensitivity at retarding

potentials greater than -12 v, thus fewer than 1 x 107 electrons/cm_-sec exist within excess of

12 ev. The two photoemission peaks correlate well with the indicated sun position. The magni-

tude of the photoemission current is consistent with the value of 5 × 10 -'° amps computed on the

basis of solar illumination of the 95 percent transparent grid.

Satellites, in general, are negatively charged (References 3 and 4), owing to the high velocity

of electrons compared with either the velocity of the satellite or the thermal velocity of ambient

ions. However, at very high altitudes and in interplanetary space, where the electron concentra-

tions are small, a satellite might tend to have a net positive charge due to the photoelectric

effect (Reference 5).

A direct measurement of the net charge, or the resultant potential difference between satel-

lite and plasma as a consequence of the accumulated charge, can be based on observed current-

voltage characteristics (Reference 6) such as these in Figure 3. Since a positive potential will

accelerate ambient electrons to the satellite the measured electron current will not be retarded

until an opposing voltage of magnitude equal to that of the satellite potential is reached. At that

potential the characteristic will change slope and a further increase in negative voltage will retard

the electron current. It is evident from the data of Figure 3 that a break in the curve could exist
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for potentials more negative than +2 volts;

therefore, the satellite potential is not more

than I volt positive--more probably it is only

a few tenths of a volt negative. There is no

evidence throughout the magnetosphere that

the satellite potential is ever positive. E

10_9

The 30 ev electron spectrum obtained at

4.6 R E geocentric, is shown in Figure 4, which

yields an electron energy value of 1.4 ev, or u
z

an equivalent gas temperature of 16,400°K.

A maximum flux of 9×109 electrons/cm2-sec _10 -1°
...J

is computed from the data, assuming the ef-

fective area to be equal to the geometric area.

By converting to energy units, the data of Fig-

ure 4 yield, a value of 2.2 × 10 -2 ergs/cm 2-

sec. Thus when we compare this to the value 10-11
0

of 1 to 10 ergs/cm2-sec for particles with

E_> 200 ev obtained by the Explorer XII Cad-

mium Sulphide Total Energy Detector (Ref-

ELECTRON MODE

- 10 -20

RETARDING POTENTIAL (v)

Figure 4--The 30 ev electron spectrum for

4.6 RE geocentric.
erence 7), it is apparent that a large number

of low energy electrons (E_< 1.4 ev) exist in

the second radiation belt, however, their energy content represents only a small fraction of the

total particle energy. Gringauz, et al. (Reference 8) infer from the Soviet charge particle traps

that in this region an electron flux of 109 electrons/cm2-sec with E < 200 ev is present.

-28

Figure 5 shows a consecutive series of 30 ev electron spectra obtained between 7.2 and 8.3 R E .

From all the spectra it is apparent that a residual negative current component is measured even

at the maximum retardation voltage of 28 v. Similar data, obtained at 9.2 Rz, is shown in more

detail in Figure 6. The residual current amplitude is not roll modulated; thus at 8.2 Rz, on the

-_ 10 --8

10-9
i.u

U

_) 10-l°

,,u,
_ 10-11,

o
I I

-IO -2o -28 0 0
I I

-10 -20 -28

i
i

I I
- 10 -20 -28

RETARDING POTENTIAL (v)

8.3 RE

I I
-1o -20

Figure 5--A successive series of 30 ev electron spectra depicting the transit into a region characterized by a
residual current in the trap, due to a omnidirectional flux of electrons.

-28
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Figure 6--The 30 ev electron spectrum for

9.2 RE geocentric.

- 28

sunlit side of earth, the satellite crosses"

into a region of omnidirectional electrons

with energy in excess of 100 ev at a flux

value of 1.5 × l0 s electrons/cm2-sec.

Gringauz, et al. (References 9, 10, and 11)

observed, with Lunik 1 and also with Lunik 2

and Mars 1, a flux of 1-2 x 108 elec-

trons/cm2-sec at these distances with elec-

tron energies greater than 200 ev, and thus

called this region "the outermost belt of

charged particles."

Figure 7 shows the 100 ev ion and

electron spectra obtained at 9.0 and 9.1 RE.

The omnidirectional current residual in

both traps at 100 v retardation indicates

that both ions and electrons are present

in the outermost belt of charged particles

with energies in excess of 100 ev.
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Figure 7--The I00 ev ion and electron spectra obtained at 9.0 RE and 9.1 RE geocentric.

- 101o

109

108

-100

A

w
I

<.

x

U.

82



The data of Figure 7 may also be used to illustrate that the net current flow to the satellite is

essentially zero. At zero retardation, the current flow to the collector should be representative

of any given area on the surface of the satellite, thus in order to maintain a constant satellite to

plasma potential it must be shown that the net current flow to the satellite is zero. The photo-

emission current, which acts over the illuminated cross sectional area of the satellite, constitutes

a positive current flow, i.e., electrons flowing outward from the satellite. The negative current

is, on the other hand, effective over the entire area of the satellite, since the ambient electron

velocity exceeds the satellite velocity, and so electrons diffuse inward from all directions. In

order to have a net zero current flow the ratio of the photocurrent to electron current must be

equal to 4, which is the inverse ratio of the areas in which these current flows are effective. From

Figure 7 the current ratios at zero volt retardation are seen to be 4; thus the trap currents at zero

retardation are inferred to be representative of the overall current flow to the satellite and we

deduce that the equilibrium potential in sunlight is stabilized near zero volts.

The data in Figure 8 is representative of the trap currents at distances beyond 16.2 RE geo-

centric. Positive and negative currents have been plotted as a function of orientation relative to

the sun; this presentation was chosen since attempts at plotting the currents as a function of

retarding voltages were useless. After disregarding the data points due to photoemission (the

dashed curve), a residual net current in both traps is evident at 90-degree clockwise rotation

from the sun; in the anti-solar direction the currents to the trap drop below 1 × 10-11 amps. Since
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the retarding potentials do not effect the trap currents, it is evident that the negative current

measurement represents a net negative charge entering the trap with energies in excess of 100 ev,

and that the positive current measurement represents a sum of net positive charge plus secondary

electron emission. With the assumption of a secondary electron emission efficiency of 100 per-

cent, these observations are consistent with the computation that what is seen beyond 16.2 Rz(i.e.,

in the solar wind region) is a net flux of both ions and electrons of the order of l0 s particles/cm 2-

sec with energies in excess of 100 ev.

CONCLUSIONS

An overall summary of these observations may be made by using Figure 9, which is a plot of

the electron flux as a function of geocentric distance. The three plotted curves were computed

1011
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i

%
v 10 8

o

x 10 7

,-, 109 -

10 8

10 7

OMNIDIRECTIONAL
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E>10O ev

0<E<5 ev

2O

Figure 9--Plot of the electron flux asa function oF geo-
centric distance. Three electron energy intervals are
shown.

from the negative current in the trap found

in the 0 to -5 v retardation interval, the -5

to -10 v and the greater than -100 v interval.

The flux of electrons with energies

0 _< E _<5 ev shows a steep decrease with

distance between 3 and 5 RE. This type of

electron drop off is in agreement with

whistler observations; Carpenter (Refer-

ence 12) refers to this decrease as the

"equatorial knee" and points out that the

equatorial knee moves further out, i.e., be-

yond 3 RE, during magnetically quiet periods.

Out to about 3 RE we note that the flux in the

energy interval 5 < E _< 10 ev is decreasing

with distance. This energy interval contains

the previously mentioned Hanson photoelec-

trons, which are evident in Figure 2. Further-

more the drop off in flux in Figure 9 lends

credulity to the belief that in this region we

observe the flux of trapped photoelectrons

produced at altitudes above 300 km.

Beyond 3 RE an increase in the flux of

electrons with energy 5 _< E <__10 ev is

noted; and at 7 Rz this flux is comparable to

the flux of lower energy electrons. The error

bars in the figure reflect the previously
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discussed uncertainty in the "effective collection area." Thus the overall picture is one of an

initial sharp decrease in thermal electron concentration accompanied by an increase in the average

energy of electrons, such that, at some 7 R E geocentric there are nearly as many electrons with

energy greater than 5 ev as there are those with energy below 5 ev. At 8.2 Re geocentric, on the

sunlit side of earth, with a payload-earth-sun angle of 25 degrees, a flux of 2 × l0 s electrons/cm 2-

sec omnidirectional electrons with E > 100 ev is observed. There is no significant variation in

this flux rate across the magnetosphere (the magnetosphere boundary was determined through the

IMP I magnetometer data of Ness*). Beyond 16.2 R E the flux of these omnidirectional particles

drops off sharply. Whereas the crossing of the magnetosphere boundary is not evident from the

trap data, the crossing of the shock front is. On the earth side of the shock front the trap currents

are governed by the retarding poten.tial voltages; outside the shock front the trap currents are

governed by the trap-sun angle orientation.

The recent controversy (References 13 and 14) concerning the observations of particles in

the outermost belt of charged particles and whether or not these particles are trapped is not re-

solved on the basis of these IMP observations, since it is possible to explain the observed constant

flux across the magnetosphere boundary either on the basis of some unknown mechanism for solar

wind penetration as suggested by Gringauz or on the basis that the total trapped flux inside the

boundary just equals the flux outside the boundary, a possibility not excluded by the measurements

of Explorer XII and IV (Reference 15).
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SUMMARY

The Interplanetary Monitoring Platform (IMP I), Explorer XVIII (1963 46A),

launched on November 27, 1963 has provided the first accurate measurements of

interplanetary magnetic fields. The initial apogee of the satellite was loeated

197,616 km on the sunlit side of the earth, with an apogee-earth-sun angle of 25 °.

Detailed measurements of the interplanetary magnetie fields and the interaction

of the solar wind with the geomagnetic field have been performed. This paper

presents the initial results of the magnetie field experiment.

The strength of the interplanetary magnetic field is found to vary between 4

and 7y with extreme values as low as 1 and as high as 107. The magnitude,

however, is extremely stable over time scales of hours, although directional

changes are significant. The average direction of the interplanetary magnetic

field lies slightly below the plane of the ecliptic and approximately along the

streaming angle predicted for a steady state solar wind. A significant feature

of the magnetic field measurements is the discovery of fields pointed diametri-

cally opposite the streaming angle indicating filamentary structure of interplan-

etary fields. Associated with the fields of opposite direction are null surfaces

between the filaments and in the overall field structure.

The complex interaction of the solar wind and geomagnetic field shows a

variety of significant magnetic field fluctuations and transition characteristics.

The discovery at 13.4 RE, of the collisionless magnetohydrodynamic shock wave

at the stagnation point associated with the super Alfv6nic flow of solar plasma is

one of the major results of this experiment. Details of the fluctuations are dis-

cussed as well as the gross structure and shape of the magnetospheric surface

(10.2 RE at the subsolar point) and the shock wave from the subsolar point to the

nighttime geomagnetic tail. The transition region between the shock wave and

the magnetopause is one of high turbulence in the magnetic field.

A unique aspect of the magnetic field data is the detection of the magneto-

hydrodynamic wake of the moon during the fifth orbit when the satellite was

eclipsed by the moon's magnetosphere while in interplanetary space. _/_ _z_)

*Published in ]. Geophys. Res. 69(17):3531-3570, September 1964.
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iNTRODUCTlON L 

. .. F 
The Interplanetary Monitoring Platform (IMP I), Explorer XVIII (1963 46A), was launched from 

the Atlantic Missile Range, Cape Canaveral, Florida on November 27, 1963 at 0230:01.07 UT. The 

vehicle with an initial orbital period of 93.5 hrs, inclination to the earth's equator of 33.33" and 
eccentricity of 0.937. The initial apogee was on the sunlit side of the earth a t  an angle to the sun 
of 25.6" and a t  a geocentric distance of 197,616 km (initial perigee, 192 km). The spacecraft was 
spin stabilized at an initial rate of 22.27 rpm with an initial spin axis-satellite-sun angle measured 

craft  spin axis were initially 116.6" and -23.5", respectively. 

63 kg spacecraft (Figure 1) was placed into a highly elliptical orbit by a three stage Thor-Delta I 

by the spacecraft optical aspect sensor of 111". The right ascension and declination of the space- I 

Figure \-IMP I spacecraft in  flight configuration with a l l  appendages (solar paddles, fluxgate magnetometer 
booms, and rubidium vapor magnetometer tube) fully deployed. 
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An important physical force acting on the dynamically spin stabilized satellite and its solar

paddles is solar radiation pressure. This force, or more properly, the torque effect associated

with this force has led to both a gradual increase of the satellite spin rate and a precessional mo-

tion of the spin axis in celestial inertial coordinates. When the spacecraft aspect angle to the sun

decreases below 90 ° the net effect of the solar radiation pressure torque will be to decrease the

spin rate. After 70 days in orbit the spin rate was 24.30 rpm at an aspect angle of 125 ° to the sun

with the location of the spin axis given by a right ascension of 111.1 ° and declination of -30.6 °.

The maximum solar aspect was 129 ° after 47 days in orbit. The lifetime of the satellite is ex-

pected to be at least 160 days and may well be 360 days or longer.

It is the purpose of this paper to discuss primarily the results of the magnetic field experi-

ment on board the IMP I spacecraft. At this early date approximately 70 days of data collected by

the spacecraft have been acquired, processed, and analyzed. It is important to note that our in-

itial impressions of the significance of certain features of the data and their interpretations may

be changed as the quantity of information returned from the satellite is increased and as our over-

all statistics and characteristics of the magnetic fields and associated phenomena become better

understood.

The primary mission of the magnetic field experiment was four-fold:

1. The interplanetary magnetic field-- its magnitude, direction and temporal variations as

correlated with solar and terrestrial phenomena;

2. The transition region associated with the interaction of the solar wind with the geomag-

netic field which leads to the study of two characteristic boundary surfaces; namely,

3. The collisionless magnetohydrodynamic shock wave surface separating the undisturbed

interplanetary medium from the transition region, and

4. The magnetopause boundary separating the transition region from the magnetosphere,

that region of space containing the geomagnetic field and encompassing the earth in the

classical concept of the Chapman-Ferraro geomagnetic cavity.

These four major phenomena have been investigated in considerable observational detail thus

far by this experiment but we shall attempt to summarize them at this time. Future publications

concerning the IMP I magnetic field experiment will consider in substantially more detail the re-

sults of the magnetic fields in space and their solar-terrestrial correlations and also the correla-

tions with other sensing elements carried on board the same spacecraft measuring importantly

related phenomena such as the low energy proton flux "solar wind" and the higher energy proton-

electron particle fluxes.

An additional feature investigated by the spacecraft has been the interaction of the solar wind

with the moon, forming a magnetohydrodynamic (MHD) wake. This unexpected event occurred dur-

ing December 1963 when the satellite was in an approximately lunar eclipsed position with respect

to solar plasma propagation from the general direction of the sun. An even more fortuitous event

studied occurred near the apogee of the satellite's second orbit during which time a geomagnetic
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suddencommencement(SC)storm occurredonDecember2, 1963at 2117UT.* A clearly unique
eventwasobservedto occurin the interplanetarymagneticfield datathreeminutesprior to the
terrestrial magneticfield event.

HISTORICALBACKGROUND

The existence, general description, and temporal behavior of the interplanetary magnetic field

have been deduced in the past from a variety of terrestrial observations notably the analysis of

energetic particle trajectories impacting the earth. An analysis by McCracken (Reference 1) is

indicative of the most recent efforts in this respect. Direct measurements in space by Pioneer V

(Reference 2) with a search coil magnetometer were initially interpreted as consistent with a

steady field component of 2.5_ normal to the ecliptic plane. In addition it was also reported that

fluctuations as large as 50:Y were detected during times of magnetic disturbance (Reference 3).

Recent efforts to reanalyze and reinterpret the Pioneer V data by Greenstadt t (Reference 4) have

yielded results inconsistent with the initial findings in that the fields are now found to have been

much nearer to being in the plane of the ecliptic with a magnitude of 5-10:y.

A steady field normal to the plane of the ecliptic is inconsistent with a number of models of

the interplanetary magnetic field in which solar magnetic lines of force are stretched out away

from the sun by the highly conducting streaming solar plasma (Reference 5). The low energy pro-

ton flux detected by Explorer X (Reference 6) was directed at all times away from the sun but

fluctuated in magnitude and energy spectra as a function of time. Measurements by the Mariner

spacecraft (References 7 and 8) have indicated that the flux of low energy plasma from the sun

gives a spectrum with considerable temporal and energy variation but which, in general, is in

agreement with the extrapolated results of Explorer X (1961 K1).

Measurements of the interplanetary magnetic field by Explorer X (Reference 9) were distorted

by a strong interaction between the streaming plasma and the magnetic field of the earth which led

to the formation within the plasma stream of a cavity containing the geomagnetic field. The mag-

netometer measurements on the Mariner (1962 apl) spacecraft (Reference 10) are incomplete for

total vector information, because of unknown spacecraft magnetic fields, and do not provide ac-

curate vector data on the interplanetary magnetic field. The data are consistent with an interplan-

etary field in the plane of the ecliptic with a strength of approximately 5y normal to a sun-satellite

direction. The magnitude of this field component compares somewhat favorably with Pioneer V

(1960 al) but the direction is different by 90 °. Recent data on galactic fields (Reference 11) indi-

cate that they are on the order of 0.5y and may be up to 2.5:Y in interstellar space.

In summary the interplanetary magnetic field has been estimated by various methods to be

approximately 1-10y average value, although steady periods might be infrequent. The variability

of the interplanetary magnetic field and the extreme variations expected during solar disturbances

*Final classification of this event is not as an SC.

tGreenstadt, E. W., Private communication, 1963.
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indicateda widedynamicrangewasrequiredaswell aspreciseandaccuratemeasurementsin
order to achievethedesiredscientific objectivesof thisexperiment.

INSTRUMENTATION

The IMP I satellite experiment complement included two types of magnetic field instruments: A

Rb 87 vapor magnetometer and two monoaxial fluxgate magnetometers. The purpose of the rubid-

ium vapor magnetometer was to allow extremely accurate measurements of the interplanetary

magnetic field to be performed and also to provide a wide dynamic range for magnetic field meas-

urements within the magnetosphere and near its boundary, the magnetopause. The two monoaxial

fluxgate magnetometers were employed to delineate precisely the vector characteristics of the

interplanetary magnetic field. Their zero levels were calibrated inflight on the spacecraft through

a combined use of the rubidium vapor magnetometer data. The dynamic range of the fluxgates is

±40:Y with a sensitivity of + 1/47 while the dynamic range of the rubidium vapor magnetometer is

3-5007 with a sensitivity dependent upon the magnitude of the field; the 0.1 percent precision of the

ground digitization system leading to maximum errors of +0.57 at the upper limit.

The rubidium vapor magnetometer measures the absolute scalar intensity of the magnetic

field by measuring the Zeeman splitting of the sub-levels in the ground state of the atom (Refer-

ence 12). For the Rb 87 isotope the separation between adjacent levels is 6.99592 cps/7. In order

to detect these separations, a technique known as optical pumping is employed to selectively popu-

late one of these sub-levels. As the vapor in the absorption cell is "pumped" by a spectral lamp

it absorbs the light until a final state is reached in which the cell becomes transparent. The appli-

cation of a weak ac magnetic field at the frequency corresponding to the separation of the Zeeman

sub-levels (which is the Larmor frequency) then results in the redistribution of the population to

all the levels and hence re-absorption of the incident light. It is possible to couple the modulated

light produced and subsequently detected by a silicon photocell to the coil producing the ac mag-

netic field. Such a feedback loop with the appropriate phasing of signals operates the magnetom-

eter as an atomic self-oscillator with the resonant frequency being the Larmor frequency. A

"flashlight" configuration (Reference 13) of one lamp and absorption cell has been employed in the

particular configuration used on the IMP spacecraft (Figure 2).

Although the Larmor frequency is dependent only upon the magnetic field intensity the inherent

signal-to-noise ratio depends upon the angle a between the optical axis of the system (along the

spin axis in IMP I) and the magnetic field as approximately sin 2a. This leads to the formation of

two null regions of field orientation, polar and equatorial relative to the spin axis, in which the

magnetometer will not self-oscillate with sufficient signal-to-noise ratio for accurate quantiza-

tion by the ground digitization system. The fluxgate magnetometers however do measure the

magnetic field vector at an extended range when in the null regions of the rubidium vapor mag-

netometer and thus provide complete coverage of the magnetic field in interplanetary space over

the range 0.25 to 407 or more.
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Figure 2--Functional block diagram of single absorption cell self-resonant rubidium
vapor magnetometer instrumented For IMP I.

It is possible to convert the scalar Rb 87 magnetometer to a vector instrument by application

of a sequence of known triaxial bias magnetic fields. On a spin stabilized spacecraft, the rotation

of the structure reduces the complexity of the bias coil system so that only one set of coils and

one bias vector field is required. By a proper choice of the orientation and magnitude of the bias

field the instrument will measure vector magnetic fields with an accuracy dependent upon the un-

known vector field magnitude and orientation. An additional purpose of the bias coil system is to

provide a means for inflight calibration of the fluxgate magnetometer zero field levels since it is

possible to measure the unknown vector field simultaneously with two vector instruments.

Let F be the magnitude of unknown magnetic field; _, the polar angle of F to spin axis; B, the

magnitude of bias magnetic field; _, the polar angle of B to spin axis; R, the magnitude of resultant

field measured; and % the spin frequency of spacecraft. Then

R l/F2 + B2 + 2FB cos ct cos () + 2FB sin cz sin L1 cos _t (1)

The analysis of R(t ) will yield values of F and % if B and _) are known.

A major problem associated with the utilization of a rubidium vapor magnetometer in

satellite applications is the necessity to maintain both the lamp used for optical pumping as
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well as the gas cell for resonance absorption at optimum temperatures. These unfortunately

range over only limited values and for the gas cell an optimum temperature is approxi-

mately 42.5 ° ± 5°C. The temperature at the lamp bulb base support structure is optimumly

110 ° ± 10°C. The development of the IMP Rb s7 vapor magnetometer was predicated upon the neces-

sity to include active thermal control circuits and heating coils on the lamp and gas cell. Because

of the difference in optimum temperatures required it was necessary to operate three completely

independent temperature control systems: one for the lamp and two for the gas cell. Figure 3 il-

lustrates the results of the active thermal control system on the spectral lamp from telemetered

temperatures of the lamp bulb. It is seen that shortly after launch the temperature of the bulb

begins to rise until it reaches the critical value of 120°C at which time the heat source is turned

off. When the temperature reaches the lower limit of 100°C the active thermal control once again

begins to heat the bulb to raise its temperature and this cycle has continued since launch stabilizing

at a periodicity of approximately 32 minutes. This is indicative of the thermal time constants of

the lamp bulb housing and the radiative properties of the support structures enclosing the rubidium

spectral lamp. The temperature of the gas cell has always been above its lower limit and has not
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cycled thus far. It remains at approximately 47°C being heated by the thermal losses from the

physically adjacent spectral lamp. The IMP I rubidium magnetometer is completely transistorized.

The additional power required for controlling the environmental temperatures of these elements is

a fraction of the total power (approximately 4.5 watts) required by the system.

The characteristics of the fluxgate magnetometers are considerably less sensitive to temper-

ature and their operation is proper and within the specified limits over a very wide temperature

range. Thus no measurement of the temperatures of the fluxgates was required and their operation

has proceeded normally. Standard calibrations on the sensitivity of the fluxgates are conducted

inflight and have been within the desired range. The operation of the instrumentation for the mag-

netic field experiment on the IMP I spacecraft has been excellent since date of launch and no

failures have been experienced to date.

In order to provide a uniform environment for the rubidium magnetometer system, a 13-inch-

diameter spherical enclosure encompasses the lamp and gas cell mounted on top of the spacecraft

(see Figure 1). This sphere, appropriately surface-coated for passive thermal control, provides

a uniform temperature regime in which thermal equilibrium of the sensing elements can be main-

tained with minimum power. In addition this sphere supports a set of McKeehan coils (Reference

14) for generating the known bias fields. The strength of the magnetic bias field employed on the

IMP I spacecraft was 20y at an angle of 54 ° 45' to the spin axis. These values were chosen to

optimize the directional sensitivity of the resulting vector magnetometer for interplanetary mag-

netic fields. The output frequency from the magnetometer was used to directly phase modulate

the 136 Mc carrier of the satellite telemetry system. Subsequent digitization of the signal on the

ground via a period count procedure was employed using a multiplied reference frequency re-

corded on the raw analog data tape as the counter. This eliminated to first order the wow and

flutter errors associated with data record and playback.

The fluxgate magnetometer measures the relative magnetic field intensity along the axis of the

sensing element. The fluxgate sensor consists essentially of a saturable magnetic core which is

driven at a high rate (10 kc) from positive to negative saturation by a solenoidal drive coil. Any

second harmonic signal generated is due to the presence either of an ambient field component

along the axis of the element or to permanent magnetization of the core material. The voltage

output (0 to +5) represents the discriminated second harmonic output which is calibrated to yield

the magnitude of the field component parallel to the sensor axis while the phase indicates the di-

rection, parallel or antiparallel. Figure 4 presents a block diagram of the fluxgate magnetom-

eters used on IMP I.

The pulsed frequency modulation (PFM) telemetry system employed on IMP I encoded the

fluxgate data by applying it to a voltage controlled oscillator whose frequency output (333 cps to

938 cps) modulated the 136 Mc carrier. The fluxgate signals were digitized on the ground through

the combined use of a contiguous set of narrow bandpass filters specifically designed for the PFM

telemetry scheme and commonly referred to as a "comb filter". This led to a precision in the

digitization of +0.47 associated with the precision of the comb filters (+ 1 percent of full scale

range).
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SPACECRAFTSTRUCTUREAND MAGNETIC CLEANLINESS

In order to insure the success of the magnetic field experiments on the IMP spacecraft it was

absolutely essential that permanent or induced magnetic fields associated with the structure and/or

the electronics and instrumentation be kept to an absolute minimum. In the design and fabrication

of all subsystems, components that were highly magnetic were replaced by nonmagnetic equivalents

and all circuit leads and welding material were chosen to be nonmagnetic or minimally magnetic.

Considerable care was taken in the design and wiring of the spacecraft harness and power distri-

bution system so that no net circulating currents and/or ground loops existed. In some instances

this necessitated complex wiring techniques between and within subsystems. In addition, each

solar cell module (8 x 15 series-parallel individual cell arrangement) was back wired within the

paddle structure for compensation so that cell and module degradation did not change the com-

pensating currents required. All power leads between subsystems and within subsystems at cur-

rent levels above 20 ma were bifilar or twisted pair wound.
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Extensive tests of individual subsystems and illuminated solar paddles at the Goddard Spac,_

Flight Center Magnetic Test Facility and finallyof the entire spacecraft in flightconfiguration at

the Naval Ordnance Laboratory Magnetic Ship Modeling Facility and the U. S. Coast and Geodetic

Survey, Fredericksburg Magnetic Observatory provided confidence that minimum magnetic fields

would be enjoyed on the satelliteafter launch. Mapping of the actual spacecraft magnetic fields

due to permanent, induced, and stray magnetic fields indicated contamination levels at the fluxgate

sensors of less than 0.67 and contamination levels at the rubidium vapor magnetometer of less

than 1_. These limits were set by the natural ambient magnetic fieldvariations at the two facil-

itiessince itwas not possible to completely cancel out the normal geomagnetic fieldfluctuations.

In addition extensive tests were performed on the vibration effects of ferro-magnetic materials in

the earth's magnetic fieldto evaluate the potential "perming" which might result from the vibra-

tion of the satelliteduring the launch maneuver. These tests indicated contamination fields which

were significantlyless than the sensitivityof the experiment. The inflightmeasurements (see

Figure 7) showed that the spacecraft fields actually achieved by the IMP I were less than

+ 0.25y and represented one of the "cleanest" satellitescarrying magnetometers launched to date.

Figure 5 illustratesa schematic cross section of the IMP satelliteshowing the geometrical

configuration and positional location of the three magnetic field sensing elements. In spite of all

the precautions taken to restrict spacecraft magnetic fields to an absolute minimum itwas still

necessary to place the magnetometer sensors at as remote a distance from the spacecraft as pos-

sible. The rubidium vapor magnetometer was contained within the spherical enclosure mounted on

top of a telescoping two section boom. This was erected at the same time the spacecraft was

separated from the third stage ABL-258 rocket motor during the launch maneuver. This placed the

Rb s_ magnetometer resonance gas cell at a distance of 1.65 meters (65") from the center of the

spacecraft. The two monoaxial fluxgate magnetometers were mounted at the extremities of double

sectioned foldingbooms. These were also erected at 3rd stage separation and placed the sensors

SPIN AXIS 2.1 meters (82") from the center of

-_t 54°45'

- BIA_

82" Y///////////////4 82" r ._,,_

FLUXGATE B MAIN BODY FLUXGATE A

Figure 5--Schematic cross section of the IMP satellite illustrating
location and orientation of sensors for magnetic field measurements.

the spacecraft. The use of two booms

was part of the experiment design to

yield a spacecraft structure that was

both statically and dynamically

stable. Their axes were oriented so

as to both lie in the same meridian

plane containing the spin axis of the

satellite but at different angles to

the spin axis. The purpose of the

two angles was to allow the sampling

of magnetic fields larger than 40y

by either one of the two sensors de-

pending upon the orientation of the

unknown field to the spin axis. This

is illustrated in Figure 6 in which

the allowable magnitude as a function
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"of polar angle a is shown for the _ angles,

8A = 30 ° and88 = 60 °, chosen for the two
2.5

sensors. It is seen that by use of the two

angles whose sum equals 90°the sensors tend 2.o

to compliment each other in their capability _ i 1.5
to accurately and in an undistorted manner _ o

measure fields of intensities greater than 1.0

407. It was the intent of the experiment to
0.5

extend the effective range of the fluxgate

magnetometers beyond 407 and thereby com- el = 30°

pliment the rubidium vapor magnetometer
e 2 = 60 o

for field orientations that were nearly paral-

lel or perpendicular to the spin axis of the

spacecraft because of its signal-to-noise

degradation at these orientations.

30 90 150 30 90 150

I I I I I I I I I I I I

60 180 120 60 0 120
I I

Figure 6--Dynamic range of IMP I fluxgate magnetom-
eters as a function of sensor and field orientation. Al-

lowed region is defined to be such that the detected

output of the sensor is linearly related to the component
of the field parallel to the sensor axis.

DATA SAMPLING AND ANALYSIS PROCEDURES

Magnetic field data are transmitted by the satellite sequentially in a format which time multi-

plexes the magnetic field information with the other scientific sensors and spacecraft performance

parameters in a predetermined time shared manner. Figure 7 illustrates on a linear time scale

four sequences of 16 frames containing fluxgate and rubidium vapor magnetometer data extending

over a time interval of 327.65 seconds. Each normal telemetry sequence is 81.9144 seconds in

length and contains four samples of real-time fluxgate magnetometer data consisting of continuous

transmissions for 4.8 seconds at intervals of 20.5 seconds. Four such samples per sequence are

shared between the two fluxgates, A and B, previously referred to in the description of the loca-

tion of sensors on board the spacecraft. This procedure is repeated in an identical manner for the

next two sequences. Every fourth sequence transmitted, however, is uniquely different from the

previous three in that it contains only rubidium vapor magnetometer data continuously transmitted

for a period of 81.91 seconds with gaps associated with the synchronization time channels required

by the PFM telemetry format every 5.12 seconds.

Figure 7 illustrates the effects due to the different 8 angles of the monoaxial fluxgate sensors

as indicated by the difference in amplitude of the spin modulated sine wave for fluxgates A and B.

In addition during the first few samples of each fluxgate a sensitivity calibration is performed

which linearly adds a field of 107 to the measured field. By measuring the difference in the re-

corded fields, and taking into account the rotation of the spacecraft, the verification of the sensor's

sensitivities can be performed.

The programming of the rubidium vapor magnetometer bias coil system is also evident. Dur-

ing the first four frames of the 4th sequence the rubidium bias field is in a positive direction

pointing forward relative to the spin axis. During the next eight frames the bias coil is program-

med off and during the last four frames the current through the bias coils is directed in the re-

verse sense so as to yield a bias vector which points aft of the spacecraft.

97



"2

E

o
v

9
m

U

Z
o

20

lO

FLUXGATES A

SEQUENCE •

1T[

+BIAS

I I I

2

81.9144 sec

I I I I

4 6

I

I

I I I
10 12

I |

B

!

iAA ri
l  JVJ

- BIAS I

I
I , , ,

14 0

FRAME NUMBER

Figure 7--Sample telemetry data format for IMP I taken at a distance of 100,000 km illustrating

interlacing of fluxgate and rubidium vapor magnetometer data.

The design of the experiment was contingent upon a measurement of interplanetary magnetic

fields ranging between 1 and 10_. Utilization of a bias magnetic field of 20y and the illustrated

programming sequence allows a unique and a complete determination of the vector magnetic field

characteristics through the use of mathematical procedures to analyze the resultant fields given in

Equation 1. These data were obtained at an elevation of approximately l0 s km during the first

month's operation of the satellite and is representative of the general characteristics of magnetic

field data obtained in interplanetary space on the IMP I spacecraft.

A principal problem with the use of fluxgate magnetometers is the fact that they are relative

devices whose absolute zeros can only be calibrated by physically reversing the sensor in a station-

ary magnetic field. Although the spacecraft rotates about its spin axis and thereby allows a unique

determination of the magnetic field component perpendicular to the spin axis Fl, the component par-

allel to the spin axis F_ is not capable of unique and absolute determination from the fluxgate data

alone. Thus it has been necessary to calibrate the fluxgate magnetometer zero levels through the
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,, use of the absolute rubidium vapor magnetometer data while in flight. Figure 8 compares the flux-

_ate magnetometer data and the rubidium vapor magnetometer data when viewed in a coordinate

system in which magnetic field data is represented by perpendicular and parallel component values.

In this representation the magnetometer data from Fluxgate A has been used without any ad-

justment of its zero level. The data from Fluxgate B has been adjusted taking into account a zero

offset of -2.1y. Throughout the satellite's first 70 days, the fluxgate magnetometer data and the

rubidium vapor magnetometer data have compared very well with the zero offset for Fluxgate A

remaining constant at 0 + 0.25;/ which is equal to the sensitivity of the analysis and the noise level

of the instrument. The zero offset for Fluxgate B has changed from approximately -2.1 to -2.5y.

The fluxgate magnetometers were manufactured by the Schonstedt Instrument Corporation. The

rubidium spectral lamp and absorption cell were manufactured by Varian Associates. The ancillary

electronics for Fluxgate A and the complete electronics for the rubidium vapor magnetometer were

fabricated at Goddard Space Flight Center.

A natural coordinate system to use in the initial reduction of magnetic field data on a spin

stabilized spacecraft is associated with the spin axis of the satellite and the satellite-sun direction.

In the payload coordinate system defined in Figure 9, the z-axis is coincident with the spin axis of
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magnetometer data obtained while IMP I was in orbit.
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Figure 9--Payload coordinate system and analysis procedure to obtain vector fields with
monoaxlal fluxgate magnetometers on a spin stabilized spacecraft.

the spacecraft; the x-z plane contains the satellite-sun vector; and the Y-axis is chosen to form a

right-handed coordinate system. The analysis of the monoaxial fluxgate data has proceeded through

the use of numerical filters designed to extract from the spin modulated magnetometer signal the

first harmonic and the first and second time derivatives of the magnetometer signal at a particular

instant of time. As illustrated in Figure 9_ it is possible to combine the first and second time

derivatives to determine both the component of the magnetic field perpendicular to the spin axis,

Bxy = B sina, and also the azimuthal angle of the magnetic field _. These two quantities and the

first harmonic then determine the component of the magnetic field parallel to the spin axis, B cos a.

These three quantities: parallel, perpendicular, and azimuthal angle completely specify the vector

magnetic field B. A similar procedure is used to deduce the vector fields from the rubidium

magnetometer data.

A limited amount of onboard processing of the Fluxgate A magnetometer data was performed

on IMP I as shown in Figure 4. A signal peak detector was developed to provide a pulse in time

coincident with the maximum field value which occurred each spin period. A counter using the

opUcal-aspect-sun pulse to open a gate and start a 100 cps count rate was terminated by this peak

pulse. By this means an onboard measure of the azimuthal angle _ was made once each telemetry

sequence and provided an accurate check on the numerical procedures used to demodulate the spin

modulated magnetometer data. Angle accuracies are more precisely determined for azimuth be-

cause of this and are accurate to + 2 °. The angular error of the polar angle a is dependent upon

direct measurements of B_ and B, and thus can be larger for certain ratios of B l and BLI. This

angular error is not significant in the transformation of the data from the initial payload coordi-

nate system to another coordinate system by using a rotation matrix since B± sin _b, Bl cos _b, and

B, are used directly. The uncertainties in the field values and azimuth angle combine so that an

estimate of the general directional accuracy of + 5 ° is conservative.
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Each fluxgate magnetic field vector measurement is obtained from a sample of data 4.8 sec-

onds in length containing 30 discrete samples of the magnetic field with a sensitivity of 0.4y. The

bandpass of the magnetometer sensors is flat with negligible phase shift from 0 to 5 cps and falls

off at 6 db per decade for higher frequencies. The analysis procedure employed to obtain a vector

measurement from the sampling of the magnetic field limits the final information bandwidth in the

analysis to approximately 0 to 0.1 cps. As shown in Figure 7, the field samples from the fluxgates

are obtained once every twenty seconds.

It is important to note from Figure 7 that during the interval when the rubidium vapor mag-

netometer bias coil was off the spin modulation observed on the total magnetic field output is less

than + 0.25y. During this particular time interval the magnetometer is sensitive to contamination

fields which are perpendicular to the spin axis of the satellite at the position of the rubidium

vapor sensor. The fluxgates always measure the component of the magnetic field perpendicular

to the spacecraft spin axis accurately, independent of spacecraft contamination fields and zero

offsets of the sensors. The agreement of the fluxgate and Rb magnetometer fields F_ (shown in

Figure 8) combined with the absence of spin modulation in the Rb 87 data gives assurance that the

magnetic field data being discussed is accurate to + 0.25y and is not affected by spacecraft fields.

COORDINATESYSTEM FOR RESULTS

The primary mission of the IMP magnetic field experiment was the delineation of the character-

istics and statistics of the interplanetary magnetic field. However, the particular satellite chosen

for these measurements was earth-orbiting so that all data collected were obtained in the vicinity

near the earth. A geocentric solar ecliptic coordinate system has been defined which reflects both

the interplanetary nature of the data and takes

into account the motion of the earth around the

sun. This is identical to the coordinate system

used previously in the Explorer X data analysis

and interpretation (Reference 9). In this coordi-

nate system (Figure 10), the origin is at the cen-

ter of the earth, the Xs -axis points to the sun,

the zse-axis is normal to the ecliptic plane and

Ys_ is chosen to form a right-handed coordinate

system. These coordinates have proven ex-

tremely successful in the analysis and interpre-

tation of the magnetic field data.

The vector magnetic field will be presented

as a magnitude F and two angles: e represents

the latitude of the magnetic field being positive

above the plane of the ecliptic and negative be-

low and ¢ the longitude, being 0 ° when it points

to the sun and 180 ° when it points away from

the sun. As will become evident from studying

the results of this experiment, the choice of a

Z $O

COMPONENT

..L TO "_"
ECLIPTIC PLANE /I

CENTEREARTH - _ _1

SUN ECLIPTIC PLANE

COMPONENT

Figure lO--Solar ecliptic coordinate system and associ-
ated parameter nomenclature and definitions.
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magnitudeandtwoanglerepresentationof thevectormagneticfield appearsto havemoreclearly
elucidatedits uniquecharacteristicsrather thanthealternaterepresentationusing three com-
ponentsof themagneticfield. It shouldbenotedthat thecoordinatesystemis not stationary in
inertial coordinatesbutrotatesabouttwoprincipal axesandmaintainsits orientationat all times as
shownin FigureI0. Viewedfrom a non-rotatingsolarcentricpositionthecoordinatesystemmoves
aroundthesunonceeachyear followingtheorbital motionof theearth.

In additionto its utility in the investigationof the interplanetarymagneticfields, the solar
ecliptic coordinatesystemis alsousefulfor studyingthe magneticfield phenomenaassociated
with the interactionof thesolar windwith thegeomagneticfield. Sincethis interaction leads to
theformationof a geomagneticcavitywhichis strongly solar oriented, the coordinatesystem
chosenis particularly meaningfulin presentingthe magneticfield data in a frame of reference
whichillustratesthe intimatesolar-terrestrial phenomenabeingstudied.

Themagneticfield results hereinpresentedrepresent the time averageof the 12 fluxgate
measurementsoccurringin thetelemetrytransmission in sequencesI, II, and III, and yield a
samplingintervalof 5.46minutes. Thesolar ecliptic componentsfor these12measurementsare
averagedbysimpleadditionandnospecialnumericalfilters areemployed.For theXs_com-
ponent,if xsierepresentsthe ith valueof themagneticfield in thesampleset,

1

1 _Xi (2)xso : _ so
i=l

where N is less than or equal to 12 depending upon the percentage of missing data points in the

original 30 point data samples. If the number of missing points due to either digitization errors

or transmission errors is greater than 10 percent, the corresponding vector field sample is not

used in the analysis to determine the 5.46 minute average.

These average values for the three components are used to compute the magnitude F and the

two angles _) and ¢. In addition the average value for the components is used in computing esti-

mates of the variance of the magnetic field for the 12 sample data set. The variance is defined as

: (xsio
i=l

(3)

for the X component and similarly for Yse and Z. The rubidium vapor magnetometer data have

not been included in this initial field averaging because its directional sensitivity for magnetic

fields is not as high as the fluxgate magnetometers.

In summary, the magnetic field data are represented by the following six parameters sampled

at 5.46 minute intervals:
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1. Themagnitudeof theaveragecomponents,

= f( so) 2+(Lo)2÷( so)2 ;

2. The latitude of the field direction,

 so)2+(Lo) lj

3. The longitude of the held measured in the plane of the ecliptic,

4. _Xse, variance of the field in the xse

5. _Y, variance of the field in the Ys_

6. _Zso, variance of the field in the z

direction;

direction; and

direction.

(4)

ORBIT CHARACTERISTICS

The orbit of IMP I is highly eccentric with an apogee of approximately 31.7 RE (earth radii).

The projection of the first four orbits as a function of time on the plane of the ecliptic or XY

solar ecliptic plane is shown in Figure 11. The figures placed on the projection of the trajectory

reference the date of the month and/or the time of the day measured in hours (UT) at which the

satellite is located at the particular position shown. The location of the satellite at the time of

the sudden commencement geomagnetic storm on December 2 is indicated by a cross on orbit 2.

The data from this particular orbit will be presented later and discussed in detail with regard to

the propagation of magnetic storms in interplanetary space.

A unique feature of highly eccentric orbits is related to the basic dynamics of satellites orbit-

ing the central force field of the earth. At apogee the satellite moves very slowly in longitude so

that with IMP I the spacecraft is located beyond 20 I_Efor 66 percent of its orbital period. Thus

the measurements of properties of interplanetary space is enhanced with respect to total time of

possible observations. However, because of the high eccentricity of the IMP I orbit it is severely

affected by the gravitational field of the moon. The selection of an appropriate "launch window"

for IMP must take into account the multiplicity of spacecraft requirements for favorable solar

aspect for power and thermal control as well as lifetime in orbit before lunar perturbations lead

to a perigee which intersects the earth's surface. IMP I has a lifetime on this basis of approxi-

mately two years.

The highly elliptical orbit does not place the satellite far above nor far below the ecliptic plane

(see Figure 12). Here a projection of orbit 1 is made on a plane perpendicular to the ecliptic
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Figure 11--Projection on solar ecliptic XYplane of orbits 1 through 4. Cross indicated location of satellite
at tlme of the December 2 sudden commencement geomagnetic storm.
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"plane passing through the earth and the sun,
which is the X-Z plane in solar ecliptic co-
ordinates. As time sincelaunchincreases, the
projectionbecomesforeshortenedon this par-
ticular planeastheearth movesaboutthe sun
until the apogeeeventuallyoccurs behindthe
earth, 160daysafter launch. Figure 13 illus-
trates the predicted variation of the apogee-
earth-sunangleasa functionof lifetime of the
satellite.

The fact that the apogee-earth-sunangle
neveris 180° or 0° is due to the inclination of
the line of apsidesto the ecliptic plane. The
magnitudeof the inclinationis determinedfrom
this figure to be5°. Thespacecraftspin axis-
sunangleshownis importantfor certain of the
directional sensors on board the spacecraft
suchasthetwoplasmaprobes,whoseresponse
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Figure 13--Predlcted variation of apogee sun--angle
and solar aspect angle for IMP I.

is principally associated with solar originating and radially directed plasma flux. The solar as-

pect angle is also important in determining the effects of solar radiation pressure on the spin

period of the satellite since the four solar paddles were all pitched in the same sense and at the

same angle and a spin up or spin down of the spacecraft occurs dependent upon whether the sun is

below or above the equatorial plane of the satellite.

MAGNETIC FIELD RESULTS

A selection of one particular orbit of the available and already analyzed 19 orbits of the IMP

satellite has been made to illustrate the characteristics of the data obtained and the format in

which the data will be presented. The initial studies reported herein are preliminary only in the

sense that detailed correlations of magnetic fields with other sensors on board and certain other

solar and terrestrial phenomena have yet to be completed. The data themselves are final as no

other changes, corrections, or calibrations are necessary since all have been included in this

presentation.

However as the data are further studied certain characteristic features may become more

evident than they are at the present time. The study of long term statistics of the interplanetary

fields and the quantitative descriptions of the shock wave and magnetopause boundaries statisti-

cally are subjects for future studies.

The magnetic field data obtained on an outbound portion of orbit 11 on January 5, 1964 are

presented in Figure 14. As previously indicated the data are presented in a magnitude and two

angle representation. The RMSE or variance of the solar ecliptic components is indicated in the
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Figure 14--Magnetic field data from orbit 11 (January 5, 1964) illustrating outbound traversal

of magnetopause at 13.6 RF and shock wave at 19.7 RE.

lower three curves. The numerical values at the bottom refer to UT (hours) on the date indicated

while the values at the top indicate the geocentric distance of the satellite in earth radii. By in-

spection of the data and reference to previous results on Explorer X (Reference 9) and Explorer

XII (References 15 and 16), it is clear that the magnetopause boundary has been traversed by the

IMP I satellite at a distance of 13.6 R E at 0630 on January 5, 1964.

As the satellite moved away from the earth the measured magnetic field began to increase

above the predicted value at about 10 RE, and proceeded to increase to more than twice that ex-

pected on the basis of the Finch and Leaton coefficients (Reference 17) for spherical harmonic ex-

pansion of the earth's terrestrial fields. In addition there were slight but regular angular devia-

tions of the magnetic field increasing in importance until at 13.6 RE there was an abrupt change in

the character of the magnetic field in both magnitude and direction. The direction of the magnetic

field appears to reverse by 180 ° while the magnitude, simultaneously and just as suddenly, de-

creases to less than 50 percent of its original value. The magnetic field then begins to fluctuate

appreciably in its average magnitude and direction as the satellite continues moving further away.
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/_lthough the direction of the field remains roughly stable pointing generally back toward the sun

and below the ecliptic plane, the magnetic field continues to display large deviations in the three

solar ecliptic components which indicate a turbulent characteristic out to a distance of 19.7 RE .

At this point in space the magnetic field becomes stable both in magnitude and direction as evi-

denced in the F, 8, ¢ presentation but shown much more dramatically in the presentation of the

variance results. This sudden decrease in the variance from several gammas to less than 0.47

is a consistently remarkable feature of the IMP I data. This value is equivalent to the noise level

of the instrument and the analysis procedure. For the next twelve hours the magnetic field is ap-

proximately 4 to 5_ in magnitude and pointed about 30 ° to 40 ° below the ecliptic plane while directed

either away or generally towards the sun. The change in character and quantitative values de-

scribing the field at 19.7 RE is identified as the collisionless shock wave suggested by Zhigulev

(Reference 18), Axford (Reference 19), Gold (Reference 20), Kellogg (Reference 21), and Rossi

(Reference 22), associated with the standing bow wave due to the super Alfv_nic streaming velocity

of the solar wind impacting the geomagnetic field. Theoretical aspects of these data will be dis-

cussed in a later section.

Continuing through orbit 11, Figure 16 illustrates data taken on January 6, 1964 immediately

following that shown in Figure 15. In this case it is seen that the interplanetary field remains very

steady at a level of 4 to 7) _ and in general is below the plane of the ecliptic by 10 ° to 20 ° although
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Figure 15--Magnetic field data from orbit 11 (January 6, 1964) illustrating interplanetary magnetic field.
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Figure 16--Magnetlc field data from orbit 11 (January 7, 1964) illustrating interplanetary
magnetic field and null surface separating filaments.

the sense of the field is to point either away from the sun at approximately the streaming angle

associated with steady state models of coronal expansion or towards the sun at the streaming

angle. A significant feature in Figure 16 is the occurrence of a reversal of field direction at 2300

UT on January 7. At the same time as the field changed from being along the streaming angle to

180 ° opposite the streaming angle, the magnitude abruptly decreased within 10 minutes. Detailed

inspection of the data at this time shows that the field went to zero as the field changed directions

which is indicative of a neutral surface in interplanetary space.

The variance of the field remains quite low and clearly indicates a relatively stable magnetic

field configuration somewhat in contrast to the Mariner 2 results previously reported by Coleman

et al. (Reference 10). Figure 17 continues the presentation of data from orbit 11 on January 7,

1964 and supports the general statements of the stability of magnitude of the interplanetary field

between 4 and 7_ while the directional changes in general are slow, on time scales of hours to

several hours, and average directions correspond to pointing towards and away from the sun at

the streaming angle.

The inbound pass on orbit 11 shows the'magnetic field data obtained on January 8, 1964 (Fig-

ure 17). The presentation o[ data is such that time always increases from left to right and the

satellite is identified as being either on the inbound or outbound portion of its orbit by the sense
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Figure 17--Magnetic field data from orbit 11 (January 8, 1964) illustrating inbound traversal of

magnetopause at 9.7 RE and shock wave at 16.0 RE.

in which the geocentric distance increases. Figure 17 illustrates two more traversals of the

boundaries characteristically found throughout the lifetime of the IMP satellite. The shock wave

(identified as before on the basis of the increased turbulence in the magnetic field) is shown in

this sample as an abrupt and very distinct increase in magnetic field strength at 16.0 R_. The

magnetopause boundary --at which the field jumps rapidly to very large values more than twice

those theoretically predicted, at the same time as its direction abruptly changes -- is found to

occur at 9.7 RE. _[hese data very briefly summarize the salient features of the 19 orbits which

have been studied to date on the IMP I satellite.

The general characteristics of all the orbital passes are those shown in orbit 11: namely,

traversal of two characteristic boundaries twice in each orbit. As the satellite orbit has pro-

gressed around from the sun-earth line the distance at which the magnetopause boundary and the

shock wave boundary have been found to occur has changed. These changes have been correlated

with a number of phenomena and will be discussed shortly. However, the most unique aspect of

the boundary crossings in general has been their consistent and readily identifiable occurrence on

all of the orbits.
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Themostimportantfeatureof the interplanetarymagneticfield resultshasbeen,in general,.
that the interplanetarymagneticfield magnitudeis quitesteadyandvaries onlyover fractions
of a gammaonthe relatively longtime scale(hours). This stability of thefield magnitudebut
variability of directionmaylendsupportto the studiesbyDesslerandWalters(Reference23)and
Walters(Reference24)asto theeffectsof thestreamingmagnetizedplasmaonterrestrial mag-
neticactivity andmagnetosphericgeometry. Thecorrelation betweendirectionalchangesof the
interplanetarymagneticfield andtheassociatedterrestrial activity as indicatedbyvarious in-
dices, includingKpandAp,is currently beinginvestigatedin detail. Previousexperimentalstudies
by Snyder,NeugebauerandRao(Reference25),Greenstadt(Reference4), andMaerandDessler
(Reference26)havenotbeencompletelyconsistentalthoughtheyhavegenerallyindicateda definite
correlationbetweenKp, or Ap, and solar wind velocity. These results are somewhat contradictory

to the theoretical suggestions of Dessler and Fejer (Reference 27), who deduced a correlation be-

tween Kp and changes in the solar wind velocity. It is important to note that the time variations of

the interplanetary magnetic field observed reflect mainly the structural variations within the in-

terplanetary medium. This is because the proper frame of reference moves with the bulk velocity

of the solar plasma.

Although the statistics are not as yet complete it appears that in general there is a preference

over this portion of time in the solar cycle for the interplanetary magnetic field to lie generally

below the plane of the ecliptic by approximately 10° to 20 °. At the same time the projected vector

on the ecliptic plane appears to have two preferred orientations to which it returns and near which

it is observed most of the time. In order of duration these two directions are:

1. At the streaming angle associated with the theoretical models of the solar wind; and

2. At the anti-streaming angle (i.e., exactly 180 ° opposite to the streaming angle theoretically

predicted.

These results of the IMP I magnetic field experiment suggest very strongly the existence of a

filamentary structure in the interplanetary medium associated with unique and separate sources

of solar associated magnetic fields. These fields are stretched out away from the sun by the highly

ionized streaming solar plasma as modeled and discussed by Parker (Reference 5). In between

these streaming filamentary elements evidence has been found of magnetic field magnitudes de-

creasing abruptly to zero so as to essentially be in consonance with the idea of a null surface

separating regions of interplanetary magnetic fields which are of opposite directions. Throughout

the lifetime of the satellite thus far, approximately 12 such readily identifiable filamentary struc-

tures have been observed.

A comparison of the observed streaming angle with those predicted by steady models assum-

ing an axially symmetrical expanding solar plasma flux is made in Figure 18. The observed

interplanetary magnetic field is close to ,/. = 130°to 150 °, or 310 ° to 330 ° for the streaming or

anti-streaming angles, respectively. These directions are consistent with velocities of the solar

wind of 300 to 700 km/sec -- the values found by the Mariner II probe (Reference 8). The detailed

characteristics of the angular deviations of the interplanetary magnetic field are currently being

studied and in the future detailed correlations with the plasma probes on board the satellite as

well as additional solar and terrestrial indices will be made.
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J, At the present time it appears that 180,

the results of the IMP magnetic field

experiment have indicated an impres-
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sive consistency with the theoretical

models proposed mainly by Parker, but _,
-O

also by Gold (References 28 and 29). ._

Those of Parker are substantiated on 120

the basis of the interplanetary field di-

rection dependence upon plasma velocity

which compares very favorably with ob- 90

servation. The general directions of the

field lines emphasize the principal fact

that a rotating sun continuously emitting

SUNCo
fl

J

v s /

J

i
=90°+ tan-1 (Vs/r El )

I I J i J

300 600 900

Vs, SOLAR WIND VELOCITY (km/sec)

360

330

"0

v

300

J270

Figure 18-Theoretical direction of interplanetary magnetic

field ¢ as a function of solar wind velocity V s.
plasma will lead to a gross superposed

spiral field structure under most cir-

cumstances. The filamentary structures appear to indicate specific sources, as proposed by Gold

(Reference 29), must be considered in the modeling of realistic solar coronal phenomena. It is

also possible that the data are consistent with the magnetic "bottle" ideas of Gold (Reference 20)

in which cutting of lines of force near the sun generates field topologies which do not include the

sun.

Additional data from the magnetic field experiment shown in Figure 19 for orbit 15 on January

21, 1964 clearly illustrate the crossing of the magnetopause at 15.7 RE , while the shock wave

traversal is not observed to occur until 22.7 R E.

A particularly significant feature of the outbound traversal of the shock wave on this orbit is

the appearance at 24.5 RE of an increased variance for 10-30 minutes. Not in evidence on every

orbit although clearly indicated here, this feature of the IMP I magnetic field data is very impor-

tant. This limited increase in variance is also spatially associated with the position of the shock

wave and when observed is usually found to be several earth radii beyond the shock wave. This is

identified as a precursor to the shock and is suggested to be indicative of characteristic plasma

instabilities or particle resonances whereby the presence of the shock wave can be communicated

"upstream" to the plasma by a mechanism that depends upon the individual particle dynamics of

the plasma rather than the continuum dynamics of the collective particles. For orbit 15, the in-

terplanetary field on January 22, 1964 is shown in Figure 20. The characteristics of the data are

quite similar to those shown for orbit 11 although the boundary positions are considerably beyond

those observed in orbit 11 and, correspondingly, the boundary positions detected during orbit 11

occur at larger distances than detected during early orbits. An important feature of the turbulent

field structure is that fluctuations occur about a specific orientation so that there is an appreciable

sense of directionality to the magnetic field, even though it is not stable in magnitude.

The data from orbit 6 inbound is being investigated in detail since it followed an interval of

time during which the interplanetary field was disturbed because of the interaction of the moon's

magnetosphere with the solar wind. It is clear from Figure 21 that the characteristic boundaries
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Figure 19--Magnetic field data from orbit 15 (January 21, 1964) illustrating outbound
traversal of magnetopause at 15.7 RE,shock wave 22.7 RE and precursor at 24.5 RE.

observed on all other traversals (37 in all) are not evidenced here in the same manner. Princi-

pally the variance remains at the instrument noise level until a distance of 10.8 r e is reached.

Secondly, the abrupt directional changes in magnetic field are not coincident with abrupt changes

in the magnetic field strength. The data strongly suggest the absence at this time of the collision-

less shock wave probably due to the increased field strengths and possibly low plasma densities

leading to Alfv_n velocities sufficiently high that a shock situation does not exist. These data are

also consistent with the study by Alfv_n, Danielsson, Falthammer and Lindberg (Reference 30) on

the direct entry of solar plasma into the geomagnetic field when fields external to the cavity are

parallel to internal fields.

SUMMARYCHARACTERISTICSOF MAGNETICFIELDPHENOMENA

It is appropriate to summarize the many details of the interplanetary magnetic field data and

the characteristics of the magnetic field at the shock wave and the magnetopause boundaries as
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Figure 20--Magnetlc field data from orbit 15 (January 22, 1964)
illustrating interplanetary magnetic field.

well as the characteristics of the data for the transition region. Certain features are clear and

have been already stated. The omission of certain characteristics which may become obvious to

the reader should not be taken to indicate their dismissal by the authors as insignificant aspects.

It is quite impossible to discuss in this first publication all of the results which have been obtained

from this particular experiment.

The orbit of the IMP I satellite and the data obtained is such that it suggests logically separa-

ting the region of space surrounding the earth into three physical regions for discussion.

° The Magnetosphere: that region of space including the earth and its radiation belts and

separated by the magnetopause boundary from region 2. This geomagnetic cavity corres-

ponds to a persistent containment of the geomagnetic field along the concepts initially

developed for magnetic storm theory by Chapman and Ferraro (References 31, 32, and 33);

Ferraro (References 34, 35, and 36) and reviewed by Chapman (References 37 and 38).

2. The transition region extends from the magnetosphere to the interplanetary medium or

more appropriately the interaction region between the streaming solar plasma and the

geomagnetic field which is separated by the collisionless magnetohydrodynamic shock

wave from region 3.

3. The interplanetary medium in which the plasma flux and magnetic fields are undisturbed

and undistorted by the presence of the earth in interplanetary space. This region of space
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Figure 21--Magnetic field data from orbit 6 (December 20, 1963) illustrating inbound

traversal of magnet•pause at 10.8 RE and questionable shock wave at 16.3 R E.

and its physical characteristics represent the principal region of interest for the IMP I

measurements.

The physical characteristics of the magnetic fields in these three regions and the description and

discussion of the boundary properties is given in the following paragraphs.

The dynamics of charged particle motion in the magnetosphere region is dominated by the

magnetic field of the earth. Measurements on the IMP I show that deviations of direction and

magnitude of the observed magnetic field when compared with theory do not become significant

until an elevation of 7-10 RE is reached. The deviations beyond this distance are consistent with

the characteristics of a contained geomagnetic field with the strength increasing to at least a

factor of two greater than normally expected without the formation of a magnetopause.

The directional distortion is consistent with the fields being oriented approximately tangential

to the magnetopause surface. Although it requires further investigation in the future it is possible
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to state that the magnetic fieldsnear the boundary on the sunlithemisphere interior to the mag-

lletopause are not stable as argued by Dessler (References 39 and 40) and that appreciable energy

must be transmitted into the magnetosphere in the form of magnetohydrodynamic waves. The

fluctuationsobserved are generally smaller than could have been detected by Explorer XII, be-

cause of its limited sensitivityof + 127 (Reference 15) and show characteristic values of 107 rms

or less and corresponding values of _F/F of 0.05 to 0.3.

The magnetopause, reviewed by Hines (Reference 41) is identifiedby the abrupt discontinuity

illthe character and quantitative description of the magnetic fieldas the satellitepasses from

Region i to Region 2. Near the subsolar point this isfound to occur at approximately I0 RE. The

magnetic fieldrapidly decreases from values of 30-607 to 5-207 and the corresponding variances

from small 5F'F to large 5E/F,approximately 0.5 to 2.0. The thickness of the magnetopause is

difficultto determine unambiguously but upper limits can be placed assuming that the boundary

is stationary on a time scale such that the total time for motion of the satellite across the

magnetopause is small. At distances of I0 RE the satelliteradial velocity from the earth is ap-

proximately 2.7 km/sec.

In general the analysis procedures and definitions currently employed to determine the loca-

tion of the magnetopause are such that +2.5 to + 15 minutes is a good measure of the uncertainty

in precisely specifying where the boundary is traversed. The spacecraft velocity combined with

this time uncertainty together yields thicknesses of 810 to 4860 km. This is quite reasonable

since the proton Larmor radius for a 1 kev proton in a magnetic field of 10 7is 450 km and should

be a reasonable scale length to consider in estimating the magnetopause thickness since all plasma

flux is presupposed to be reflected and excluded by the geomagnetic field from entering the mag-

netosphere (Reference 42).

The direction of the fields at the magnetopause boundary strongly suggest that both internally

and externally to the magnetopause, the fields are tangential to the magnetopause surface at least

locally, i.e., not far from the boundary. Furthermore the directional changes suggest that al-

though the magnetic fields are oppositely directed on either side of the magnetopause for a number

of the crossings studied thus far, there are cases in which the fields appear to be crossed per-

pendicular with respect to each other on opposite sides of the boundary.

The transition region is one of great instability of the magnetic field suggesting that turbulent

phenomena occur in this region and that statistical descriptions of the field will be most appropri-

ate in their study. The vector field fluctuates rapidly in magnitude and direction with _F/F ranging

from 0.5 to 2.0. At times however the magnetic field direction and magnitude stabilized for time

scales of 20 to 60 minutes with values corresponding to those of Regions 1 or 3. Although sug-

gested by the Explorer XII results, this is not considered to be representative of the general

characteristics of Region 2. It is not interpreted to be indicative of rapid spatial movements of

the magnetopause as it expands and contracts. Actually in a region of turbulence there is a finite

probability that the field orientations will equal those of other regions. The region of high turbu-

lence encompassing and enclosing the magnetosphere is well established by the IMP data and

quantitative statistical descriptions of the magnetic field and its topology in the vicinity of the

magnetopause will be presented in future publications.
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The collisionless shock wave boundary separates the interplanetary region 3 from the tur-

bulent region 2, and is observed experimentally at 13.4 R E at the subsolar point. The identifica-

tion of its position as the satellite traversed it in space is based upon the striking physical dif-

ferences between Regions 2 and 3. The abruptness of the changes in character of the fields at the

outer boundary of the turbulent region is not always as sharply defined as at the inner boundary.

In general, the interplanetary fields are very stable and characteristically show very small

variances, less than 0.4y for extended times yielding 5F/F < 0. I. Inside the shock wave boundary

the field is observed to be randomized in direction and the total energy density in the magnetic

field increases: both the dc value, as measured by B2/877 and the fluctuating field as measured by

the variances _X , _Yse, and _zse. This m.eans that the total energy of the magnetic field in-

creases by factors of 5-I0 and can play an important role in the flow of plasma around the cavity.

It should be noted that although the identification of the shock wave boundary is generally unique

based upon the above physical criteria, certain samplings of the shock region show a precursor in

the Region 3 which stands off from the shock wave by several RE. This precursor does not show

the characteristic of large fields but does display large variances, up tO 5_, in each component for

time scales of <40 minutes. At these distances, the satellite is moving radially outward at ap-

proximately 1.8 km/sec. Thus the spatial width of the precursor is _<4000 kin. Since the satellite

is moving more slowly when it traverses the shock wave, the longer times required do not indicate

a more diffuse boundary than is the case of the magnelopause.

The existence of the collisionless magnetohydrodynamic shock wave was anticipated on the

basis of theoretical analyses relying principally on the analogy with high speed aerodynamic flow.

Various aspects of this general approach have been reviewed by Levy, Petschek and Siscoe (Ref-

erence 43). Their specific interest and results were mainly to deduce certain aspects of the

overall plasma flow around the geomagnetic cavity. Analytical studies on the structure of colli-

sionless shocks in magnetohydrodynamics have proceeded in some work by modification of the

appropriate form of the Rankine-Hugoniot conditions derived by De Hoffman and Teller (Refer-

ence 44). Theoretical studies by Adlam and Allen (Reference 45), Auer, Hurwitz and Kilb (Refer-

ences 46 and 47), Fishman, Kantrowitz and Petschek (Reference 48), Morawetz (References 49

and 50), and Morton (Reference 51) have attempted to treat in varying degree the detailed descrip-

tion of the shock characteristics and sufficient conditions for its existence. The present situation

appears to be one in which the characteristics of the plasma flow are grossly described, at least

in the location of the shock and magnetopause, on a basis of the analogy with fluid dynamics. How-

ever, the physical structure of the fields and plasmas in the observed three dimensional case of

the earth are not immediately derived by such simplifying considerations. In particular the dis-

covery of the shock precursor is obviously indicative of the necessity to treat the flow of plasma

more specifically as a two stream flow of non-cold electrons and protons (References 52 and 53}.

A more detailed study of the observed shock wave with regard to the theoretical descriptions is

presently in progress. However, it is reasonably certain that the IMP I satellite and its experi-

ments hace provided the first physical measurements of tile physical structure of a collisionless

magnetohydrodynamic shock which heretofore has never been observed because of the "scaling

problems" in laboratory research.
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• The interplanetary region 3 is defined most readily by the stability of the magnetic field as

measured by the variances _x, _Y, and _zo. These are observed to be less than 0.4_r with

corresponding magnitudes of 4 to 77 although excursions to values as low as 1 and to as high as

l0 s for extended time intervals have been observed. The extreme stability of the magnitude of

the field is in contrast to the more variable directional characteristics of the field. In general

the fields lie on average slightly below the plane of the ecliptic (0 = 10 ° or 20 °) and at the stream-

ing angle of 130°-150 ° or anti-streaming angle 310°-330 °. The gross structure of the interplane-

tary field is in remarkably good agreement with the general concepts of spiral field configurations

originally proposed by Parker (Reference 5). Associated with the two preferred orientations of

the field, along or opposing the traces of the plasma flux, are regions of abrupt change to low

values on time scales of less than 5 minutes. These are identified as neutral surfaces of zero

field strength separating magnetic field filaments oppositely directed.

LOCATION AND GEOMETRYOF MAGNETOPAUSEAND SHOCKWAVE

A summary of the positions of shock wave and magnetopause traversals as a function of time

associated with preliminary K indices from the Fredericksburg, Virginia magnetic observatory

are shown in Figures 22-25. In addition, the geomagnetic latitude of the subsolar point x_ has
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been included since it is an important factor in the interpretation of the position of the boundary "

crossings and the manner in which they relate to theoretical models of the magnetopause and the

shock wave surfaces. In these figures the orbit number is enclosed in a large circle while the

boundary crossings are indicated by small circles. These are connected from inbound to outbound

passes by straight lines if successive boundary crossings are uniquely identifiable. In some cases

the position of the boundary is not sufficiently clear (e.g., on the outbound portion of orbit 5) to

uniquely specify its position and a question mark is displayed. This is related to the difficulty as-

sociated with the definition of the characteristics of the boundaries as deduced from the magnetic

field data alone.

Certain aspects of the position of the boundary crossings are immediately evident upon in-

spection of these data. Principally seen is the periodic difference in position of the boundary
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Figure 23--Time characteristics of geomagnetic latitude of subsolar point _s5 , magnetopause
and shock wave locations and K indices for days 348, 1963 to 01, 1964.

crossings associated with outbound and inbound passes of the satellite. Characteristically the

outbound pass shows the position of both boundaries to be greater than that associated with the

next successive inbound pass. Upon further investigation it is found that following the sudden

commencement storm in December 1963 (Figure 22), the magnetopause and shock wave boundaries

were located at smaller distances than normally to be expected on the basis of previous passes.
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Also over the 70 day interval covered by these data, it is clear that the position of the magneto-

pause boundary and shock wave boundary increase as the satellite moves away from the earth-

sun line. The two boundaries do not increase by the same amount. The shock wave increases

more rapidly implying a wider transition region away from the subsolar point. It is noted that the

satellite motion is roughly normal to these surfaces for early orbits, but becomes more oblique

for later orbits.

Superimposed upon this spatial variation of the boundaries is the fact that the position of the

boundary must be sensitive to the varying geomagnetic latitude of the subsolar point during suc-

cessive crossings. This is seen by inspecting the condition for balance of magnetic and particle

pressure at the boundary. The original developments by Chapman and Ferraro (References 31

through 33) the recent works by Beard (Reference 54), Davis and Beard (Reference 55), Spreiter

and Briggs (References 56 and 57) have led to agreement of the proper form. The location of the

boundary at the stagnation point is given by

Bt2
877 2_nVs_' (5)
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36

n the proton density, v S the solar wind velocity, and B t the net magneticwhere m is proton mass,

field tangential to the magnetopause boundary, which is commonly taken to be given by

Bt : 2fBc, (6)

where f is a factor less than or equal to 1 (usually taken as unity) and B c IS the theoretical and

undisturbed geomagnetic field. However

Ro_ C7)
B c :: B 0 _ ¢1 +3sin 2X_s

Rc3

where ×s_ is the geomagnetic latitude at the stagnation point where the flow velocity is normal to

the surface and B0 the terrestrial equatorial field strength.

Combining Equations 5 through 7 yields

Rc = Ro _:v_ ' (8)
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' where x_s is the geomagnetic latitude of the subsolar point. Clearly the distance at which the

magnetopause is predicted depends upon the angle of the earth's dipole to the solar plasma. This

concept has been included in the final data summary and has been employed to rectify the position

of the boundary crossings to a geometry which allows comparison with the simplified theoretical

treatments. In these analyses the solar stream

is assumed normally incident upon the axis of

the magnetic dipole, implying coincidence of

the geomagnetic equatorial plane and the

ecliptic plane.

A summary of the location of the mag-

netopause and shock wave traversals rotated

into the ecliptic plane as a function of position

of the satellite is presented in Figure 26. The

effect of motion of the line of apsides of the

satellite relative to the sun-earth line is

evident. Figure 26 shows all boundary cross-

ings which have been uniquely identified on

the basis of magnetic field information alone.

These data do not include any corrections for

time variations of the solar wind, the plane-

tary indices of the geomagnetic field, nor the

geomagneticlatitude of the subsolar point _ss"

These boundary crossing positions have been

rotated from their actual position to the

ecliptic plane in a meridian plane through the z
se
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Figure 26--LocaHon of magnetopause and shock wave
boundary traversals rotated onto ecliptic XY plane.

axis. This essentially assumes a constant radius

of curvature in each meridian plane. An alternative procedure- not employed- is to rotate the

positions into the ecliptic plane about the x e axis which presumes cylindrical symmetry about the

Xs_ axis.

Clearly evident in this figure is the fact that the magnetopause is not spherical, but actually

on the nightside hemisphere of the earth, the boundary flares out in consonance with the ideas

originally resulting from measurements on the Explorer X satellite (reviewed by:Bridge, Refer-

ence 58, and Ness, Reference 59). In addition, it is seen that the shape of the shock wave boundary

when projected on the ecliptic plane is approximately hyperbolic. The angle which the hyperbola

asymptotically approaches is referred to as the Mach angle and, if measured, could indicate the

velocity of solar wind propagation relative to the interplanetary magnetic field strength and plasma

density by defining the Mach number of the super Alfv6nic flow of the solar wind.

In order to make a first order correction for the variation of the geomagnetic latitude of the

subsolar point and thereby take into account the variable magnetic field strength which the solar

wind meets at the stagnation point, an expansion factor K has been computed. This is dependent

upon the geomagnetic latitude of the subsolar point and the strength of the magnetic field of an as-

sumed dipole at the center of the earth. From Equation 8, K is defined as:
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I I I/5K = 1 + 3 sin 2 Xs s (9)'

The maximum inclination of the earth's magnetic dipole axis to the solar wind direction is 35.1 °

being the sum of 11.7 °, the tilt of the magnetic axis to the rotation axis, and 23.4 °, the obliquity of

the rotation axis to the ecliptic. The maximum expansion is seen in Figure 27 to be 12 percent

assuming a constant pressure of the solar wind. The time of launch of IMP I is such that the max-

imum inclination was achieved during the first month of operation of the satellite (the winter

solstice), and since that time the earth's rotational axis has approached perpendicularity to the

earth-sun line. This is seen in Figures 22 through 25 in which the diurnal variation of xss is seen

to become more negative, reaching a minimum in December 1963 and then becoming less negative

as time progresses. The average values of xss over one day indicate the angle between the nor-
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Figure 27--Magnetopause expansion factor K to compen-
sate for variable tilt of earth's magnetic field axis to the
"angle of attack" of solar wind.

mal to the earth-sun line (Xs_ axis) and the

direction of the earth's rotation axis.

In comparing theoretical and observed

boundary geometries, it has been assumed

that the only model currently available is

that provided by the computations of Spreiter

and Jones (Reference 60) using a blunt body

profile representing the earth's magneto-

sphere to determine the shape of the shock

wave surface based upon a strict analogy

with high speed aerodynamic flow.

The blunt body profile used is that which is obtained by rotating the trace of the magnetopause

in the geomagnetic equatorial plane about the x._e axis. The shape has been determined by a num-

ber of workers --among these are Beard, Hurley, Midgley and Davis, Slutz, Spreiter and Briggs,

and Mead and Beard (References 54, 6!, 62, 63, 56 and 57, and 64, respectively) --and all their

results are generally in good agreement as long as the region near the null points in the polar

regions is not considered. None of these analyses has included an interplanetary magnetic field

in determining the shape nor physical characteristics of the magnetopause boundary, particularly

in view of the importance of the collisionless shock wave. This omission has been partially recti-

fied in the work of Lees (Reference 65) by inclusion of the interplanetary magnetic field. The

ramification of the shock on the field configuration external to the magnetopause has been con-

sidered by Beard (Reference 66). The results for the particular model which Spreiter and Jones

(Reference 60) utilized have been slightly adjusted to match the actual observation of standoff

distances of the geomagnetic cavity boundary and the shock wave boundary at the subsolar point.

In addition all boundary crossings have been rectified by dividing the observed distance by the

appropriate value of the expansion factor K so as to reduce all distances to a geometry in which

the solar wind is normally incident upon the axis of the earth's magnetic dipole. The results of

these rectifications and the adjustment of the theoretical models are compared in Figure 28 with

the theoretical results indicated by solid curves through the experimental data. The theoretical

magnetopause geocentric distance at the subsolar point is taken to be 10.25 RE while that of the
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shock wave is taken as 13.4 L_E. It has been necessary to rotate the theoretical model by 5° about

the zse axis to obtain the demonstrated agreement. This is comparable with the aberration effect

due to the earth's orbital motion of 30 km/sec when compared to the solar wind velocities. For

values of v S between 300 and 400 km/sec the aberration effect changes from 5.7 ° to 4.6 ° and the

value of 5° is taken to be a representative average.

An important parameter describing the flow of the solar plasma and its interaction with any

planetary object is the velocity at which disturbances can be propagated. In the highly ionized

magnetized plasma being studied, the appropriate modes of propagation are the magnetoacoustic

modes. Considering the important mode to be the simple Alfv_n transverse magnetohydrodynamic

mode, we have the relevant velocity given by

B

v_ : -_¢-_ , (lO)
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andshownin Figure29for therangeof parametersobservedin space.
sentativevaluesof theseparametersare

Sincein generalrepre:

4<B<77 ,

3_p< 10protons/cm3 ; (11)

therefore

25 < V^ < 90 km/sec .
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Figure 29--Alfv_n magnetohydrodynamic phase velocity
of wave propagation as function of magnetic field
strength and plasma density.

Now the directed stream velocity of the solar

wind is observed to be

300<V <700 km/sec .
-- s --

Thus the ratio of directed velocity to Alfv_n

velocity measures the super Alfv_nic ratio, or

Mach number corresponding to the gas dy-

namic analogy, and is found to be

3.3 _M A 2 28 , (12)

and the mean value is

MA = 5- 10 {13)

A general review of the applicability of the gasdynamic analogy used in treatments of the flow of

plasma around the geomagnetic field has been given by Levy, Petschek and Siscoe (Reference 43).

The comparison between theory and observation of the position of the shock wave surface is

good. It is clear however that the comparison is possible at the present time only near the stagna-

tion point. Here the shape of the surface is not critically dependent upon Mach number or the

equivalent gas specific heat ratio used. The experimental data however do suggest an outward

flaring of the magnetopause --first observed on Explorer X and is seen to be consistent with the

present observations on IMP. The portion of the Explorer X trajectory over which the magneto-

pause boundary was observed is indicated in Figure 28, where the magnetopause boundary has

been rotated about the Xso axis into the ecliptic plane ahead of the earth. The extrapolation of the

IMP observations coincides reasonably well with these earlier measurements. It indicates a

fundamental discrepancy between theory and observation in that all theoretical models using a

real, thermalized plasma lead to a closure of the magnetopause at distances of 30-50 RE on the

dark side of the earth. However, the observations indicate that an outward flaring of the magneto-

pause surface at a half-cone angle of 10-15 ° occurs. The magnetic fields interior to the magneto-

pause for orbits 11 and beyond are directed at 4 = 205-215 ° which is consistent with an outward

flaring, if the fields are tangential to the bounding geomagnetic cavity surface.
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The relative position of the subsolar
geocentricdistanceto theshockwave,Rs , and

the magnetopause boundary, 1_c, is presented

as a function of the Alfv_n Mach number in

Figure 30. The solid lines indicate the theo-

retical models for a sphere and blunt body as

predicted by Spreiter and Jones (Reference

60). The circled data represent the values

deduced by Kellogg (Reference 21) in his

analysis using the analogy of supersonic flow

in gasdynamics and the theoretical results of

Hida (Reference 67) for a spherical object.

The observed value of the ratio of R/R is

shown as a horizontal solid line, experimen-

tallydetermined to be 1.31 + I percent. The

correspondence between theory and observa-
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Figure 30--Theoretlcal stand-off ratio R,/R c of shock

wave surface to magnetopause boundary and comparison
with observations.
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tion is very good and although the use of the blunt body profile does not yield the proper ratio, it

is increased in the proper sense. The present discrepancy between theory and observation can be

readily resolved through use of y < 2 and slightly altering the magnetopause shape.

The totality of IMP observations on the location and geometry of the magnetopause and col-

lisionless shock wave boundary are in generally good agreement with theoretical models using the

analogies between supersonic fluid flow and the super Alfv6nic flow of the solar wind with the in-

terplanetary magnetic field acting to couple the particles together as described by Axford (Ref-

erence 19) and Kellogg (Reference 21) rather than direct particle collisions. Obayashi (Reference

68) has reviewed all previous satellite measurements with respect to their significance in the

detection and identification of the magnetopause and shock wave boundary positions.

Since the satellite has yet to complete mapping the nighttime magnetospheric tail, it is not

possible to definitely state that an extended flaring of the cavity far behind the earth is the only

possible interpretation of the data. It appears to be a reasonable assumption, however, and it is

anticipated that during orbits 20-40 the IMP satellite will provide extremely important data on the

actual geometry and physical characteristics of the magnetopause boundary and the magnetic field

topology within the geomagnetic tail. Studies on the magnetosphere tailmagnetic field topology

have been performed by Axford and Hines (Reference 69), Harrison (Reference 70), Hones (Ref-

erence 71), and Johnson (Reference 72). Quantitative estimates of the field characteristics in the

magnetosphere near the stagnation point have been performed by Mead (Reference 73). In the

traversals of the magnetopause boundary the direction of the magnetic fields appear to be tangent

to the apparent magnetopause surface within _ 10°. At present one of the major theoretical un-

certainties is the reason for the outward flaring shape of the cavity boundary on the nightside of

the earth.
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SOLAR TERRESTRIAL TRANSIENTS

The general level of terrestrial magnetic activity throughout the lifetime of the IMP satellite

has been extremely low as seen by the K values in Figures 22-25. This is associated with the de-

crease of solar activity which will meet its absolute minimum within the next eighteen months.

Fortunately, however, there have been a few specific isolated magnetic disturbances associated

with the limited solar activity and these have been observed definitely by the IMP satellite in in-

terplanetary space. In particular, the December 2, 1963 sudden commencement storm beginning

at 2117 UT occurred at a very favorable time in the second orbit of the satellite. At this time, as

shown in Figure 11, the satellite was approaching apogee and essentially was stationary in space

except for its motion through the interplanetary medium at the heliocentric orbital velocity of the

earth.

The regular run magnetograms from a number of standard observatories in the US Coast and

Geodetic Survey net are presented in Figure 31 for the time interval preceding and following the
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sudden commencement storm. It is clear from inspection of the records that this sudden com-

mencement showed similar characteristics at a number of stations for several hours after the

initial onset. In order to accurately establish the time of occurrence of the sudden commencement

at terrestrial stations, the rapid-run magnetograms from certain of these same stations are il-

lustrated in Figure 32 (in which the time scale is considerably expanded). It is seen that the onset

time of 2117 is easily identifiable as there is no discrepancy in its unique characteristic.

The magnetic field data obtained on the outbound portion of the orbit 2 on December 1, 1963

are shown in Figure 33. At this time the boundary of the magnetopause was observed at 11.1 RE;

but the shock wave was observed at 16.2 RE . In general the interplanetary magnetic field condi-

tions were quiet although the field was somewhat larger than previously observed, approximately

67, varying somewhat in direction and illustrating the filamentary structure previously referred

to in the summary of the overall characteristics of the interplanetary magnetic field. Data from

the portion of the second orbit during which the storm occurred are shown in Figure 34. The in-

terplanetary magnetic field was undisturbed prior to the occurrence of the sudden commencement,

although the magnitude increased gradually. Shortly before the terrestrial observations of the

sudden commencement the field decreased very rapidly, and varied somewhat for several hours,

eventually returning to a configuration similar to that prior to the storm. An expanded time
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• I _1
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2100 2200

UNIVERSAL TIME (hrs)

Figure 32--Rapid-run observatory H component magnetograms for
December 2, 1963 sudden commencement storm period.
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scale presentation of the interplanetary magnetic field is presented in Figure 35 in a payload co-

ordinate system. Instead of 5.46 minute averages, the 12 sample values in that interval are pre-

sented separately with a time spacing of 20 seconds. It is clear that the occurrence of the sudden

commencement indicated by the initial onset of the magnetic field disturbance occurs at 2114 on

December 2 at the satellite. Assuming radial propagation of the plasma front and the associated

magnetic field distortions to the surface of the earth yields a propagation velocity of 700 km/sec.

This velocity is an apparent value of velocity of propagation, since it does not include the physical

propagation of the storm transient itself to the surface of the earth, and it assumes the direction

of propagation of the storm front and that the magnetic field disturbance and the plasma disturb-

ance occur at the same place in the solar plasma stream. This value of 700 km, however,

is consistent with the transit time associated with the projected solar region responsible for

the storm, and is equivalent to particle energies of 2.5 key. By assuming a propagation

velocity of 700 km/sec and by observing the time interval during which the magnetic field

is disturbed and presumed to be associated with the propagation of the shock front surface, the

shock front surface thickness is 0.005 AU. This is consistent with particle measurements yield-

ing scale lengths of scattering centers in interplanetary space at the time of magnetic disturbances.
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Another important feature of the storm is that there is a null surface observed during the

transit of the storm front surface across the spacecraft. The structure may well be consistent with

Parker's "blast wave" model of sudden commencement storms if we include the fact that if the

compressed interplanetary fields are filamentary in their topology, then null surfaces must occur.

This suggests that magnetic field annihilation as proposed by Petschek (Reference 74) may be the

mechanism whereby acceleration of particles in the shock front occurs. The present sample of

magnetic fields associated with SC's in interplanetary space does not show the large fields, up to

50_, previously reported by Coleman et al., (Reference 3) for Pioneer V data. Indeed the experi-

mental results appear to be in the main contradictory since Pioneer V also did not measure a null

surface. At the present time, it is suggested that these differences only reflect the great variabil-

ity in storm characteristics and intensities.

INTERPRETATIONSOF SOLAR STREAM PROPERTIES

The location of the magnetopause and shock wave boundaries as observed by the magnetic field

experiment permit an extrapolation to the characteristics of the streaming solar plasma. The

streaming angles indicated by the magnetic fields are used in computing the characteristics of the

129



130

280 °

120 °

8 y

4 y

0yl

4 y

0 y

_4 ),

I I

I I

I I

OI
x() O0 x ¢

o _a xq_,,

I J

J w

ro

v _ _

x ]
x I

o I
I
I

F.L

o

x
X.._ OA

_=_" x_o °XxX
Xx

E

0

X

°o x

I
l I I J

I I v I

I
x I

I )i

I
o r (

oxo i x

°_X X

(_)t° xO oo
, K , X ,

1 [ ! !

I o
I

I
I Xx

=dcb
_I

0 I
I

0 I

I
i

xx i
I

x

o
m

X

co

xo

x

o x

r _..x
(io_ o

x

I

I
-- i i I 1 I v

DEC. 2 (UT) 2100 _ 2120
I

I I I I I I

SEC UENCE 6100 6112 6124 6136

Figure 35-IMP I magnetic field data on expanded time scale in payload coordinates at time of December
2, 1963sudden commencement storm. Circles refer to fluxgate A data while crosses referencefluxgate B.



_olar stream. The interpretation assumes that the streaming angle provides a reasonable esti-

mate of the particle velocity (Figure 36) and gives the particle density and velocity that would be

consistent with the observed location of the magnetopause if the plasma were directly incident upon

the magnetopause. This density and velocity represent an effective description of the plasma flux

pressure, which is balanced by the magnetic field pressure. The actual solar wind velocity and

density must be adjusted in terms of the boundary conditions which exist at the shock wave. On

the assumption of particle velocities between 300-700 km//sec and the observed location of the

magnetopause boundary of 10.25 RE, it is seen that the corresponding proton density is between 1

and 5 protons/cm 3. This yields a flux value of 0.7 to 1.5 × 108 protons/cm2/sec, which is in good

agreement with previous plasma data extrapolated from Explorer X (Reference 6) and the direct

measurements on the Mariner II spacecraft (Reference 7).

MAGNETOHYDRODYNAMIC WAKE

OF THE MOON

A unique phenomena occurred in inter-

planetary space during the fifth orbit of the

satellite. At that time the interplanetary mag-

netic field was observed to fluctuate much 40oo

more so than had been previously observed or

was subsequently observed and also to reach

a maximum value of 14.6), for a period of 4 2o0o

hours on December 14, 1963. This high value

of both the magnitude and the variance had
1000

never been observed throughout the previous
L.)

4 orbits of the spacecraft when in the inter- o.

planetary medium and some concern was ex-
__ 500

pressed initially as to whether or not the u

operation of the instrument and/or the telem-

etry digitization system was proper at the

time. The integrity of the operation of the 2oo

telemetry system and the sensor has been

verified and the conclusion is irrevocable that

the basic data are valid. At this time the sat-

ellite was located between 28 to 31 RE from

the earth at approximately an angle of 40 ° to

the sun-earth line and far beyond the shock

wave location.

- t/6
B2

\ \ \ ec eE

S ---0.312 gau:s
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• . . _. 200
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RE (earth radii)

Figure 36--Theoretical stagnation point distance Re of
magnetopause boundary as Function of particle velocity
(or energy) and plasma density.

Investigation of solar conditions prior to the anomalous field behavior, extending from 0100

UT, December 14 to 1000 UT December 15, has not revealed any significant features that might

have led to disturbed conditions in interplanetary space. The characteristics of the fluctuations

are quite unlike those of the magnetic fields associated with the sudden commencement storm on
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December2, 1963.Indeedthecharacteristicsare similar to thoseobservedwhensamplingth_
transitionregionassociatedwith the solar windimpactingthegeomagneticfield.

Theexplanationofferedis that therelative locationof the sun,moonandsatellite wasunique
andthatthe interactionof thesolar windwith themoonandits magnetosphereformeda magneto-
spherictail whichIMP I traversed. This extendedfar behindthemoonmuchin themannerof
cometarytails (Reference75)andasmaybe thecaseof theearth's tail. Aninspectionof the
ephemeridesof themoon,sunandIMP I satellitehasshownthatthis is a reasonableinterpreta-
tion. Thusit providesthefirst direct measurementsof magneticfield phenomenaassociatedwith
the moonandindeedmayprovidequantitativeestimatesof thelunar field strengthuponsubsequent
detailedanalysis.

Theprojectedlocationsof therelevantcelestial objectsontheecliptic planeis shownin Fig-
ure 37. Toillustrate thefact that thesatellite wasnot samplingtheregionof interplanetaryspace
influencedby thepresenceof theearth thelocationof themagnetopauseandthe shockwave
boundariesare included. ThenumbersonboththeIMP I andmoonorbits indicatethe locationof
therespectiveobjectat 00hours UTontheparticular dayin December1963. Theprojectedview
of the samedayson the solar ecliptic YZplaneis shownin Figure 38. Certain physical

MOO N

12 -J

SOLAR "4/_

YSE

(R_)

-4O

TO
l I

SUN

SHOCK WAVE

15

16

60

MAGNETOPAUSE

Figure 37--Relatlve location of IMP I satellite, earth and moon during period December 12-16, 1963
when lunar magnetospheric wake was detected by the magnetic field experiment.
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"parametersimportantin specifyingthe relative locationof thesun,moonandIMP I aredefined
as-follows:

D = vector distance from satellite to moon,

D +D i,D : i x + Dy iy z *

[ :] :Dxy D# + D 1/2 projected distance in XY plane,

Dy_ = [D:+Dz2] 1/2 = projected distance in YZ plane,

cosine _xy = Dx/Dxy = cosine of angle between D and i x projected into XY plane,

cosine ky, = DjDy z = cosine of angle between D and i projected into YZ plane.

The distance Dy, and the angle ly, are illustrated in Figure 38. For an optical occultation By, = 0

while when ly, = 0 it implies that the sun, moon, and IMP I define a plane that is perpendicular to

the ecliptic plane.

A summary of the above critical parameters as a function of time in December is shown in

Figure 39 as well as the indicated traversals of the shock wave boundary. The parameter Dy, re-

fers to the projected distance on a plane rotated by 5 ° from the YZ plane to take into account the

aberration of the solar wind. The "closest" distance from the satellite to the moon is 7.9 RE in the

+10

\
EARTI"

-10

ZSE

16

16

15

IMP

- 10 -30 -40 YSE

13

Dyz

14

ECLIPTIC
I l PI._NE

Figure 38--Relative location of IMP I satellite, earth and moon projected on plane perpendicular to

earth-sun direction, the solar-ecliptlc, YZ plane during period December 12-16, 1963.
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+90° YZ plane where the satellite is 38 RE from the "

moon. Converted to lunar radii, RM, the length

of the moon's magnetospheric tail is at least
0

150 RMwhile the apparent diameter of the tail

at that distance is at least 30 RM. These values

-90 ° indicate a magnetospheric wake with a half-

cone angle of approximately 11 °, a value con-

sistent with the Mach angle associated with the

solar wind interaction with a moon possessing

a weak magnetic field.

The direct measurement of the lunar mag-

netic field and a precise determination of its

geometrical properties is of vital importance

in the study of the origin of the earth-moon

system. The interpretation of terrestrial data

suggests the non-existence of a lunar magnetic

TIME (days)

Figure 39--Critical parameters related to "shadowing"

by the moon°s magnetosphere or IMP I magnetic field
measurements during December 12-16, 1963. field similar in origin to the earth's in which a

dynamo system of currents circulates in a

fluid core. The presence of a lunar magnetic field may be indicative of a permanent state of mag-

netization which reflects an ancient field at the time of origin of the moon. It has been suggested

by Gold (Reference 20) that the streaming magnetized solar plasma may provide a mechanism

whereby the interplanetary magnetic field is captured by the finite electrical conductivity of the

moon. This would then lead to a magnetic field configuration which could be interpreted as a

lunar magnetic field.

Russian measurements of the lunar magnetic field on the second Cosmic rocket (Reference 76)

indicate a surface field of less than 50 to 100:_ which corresponds to a magnetization intensity of

less than 0.25 percent of the earth's. The streaming solar plasma is sufficiently strong that it will

greatly distort a lunar magnetic field regardless of its origin (Reference 77). Thus it can reason-

ably be expected that a cavity and geomagnetic tail similar to that observed on Explorer X (in the

anti-solar direction behind the earth) and thus far suggested by IMP I, will also develop around

the moon.

The detailed measurement and accurate vector mapping of such a lunar magnetic field and

associated magnetospheric tail can only be accomplished with a spacecraft orbiting the moon. The

present IMP I measurements may provide information sufficient to indicate the nature of the lunar

magnetic field. A detailed study of the magnetic field results is currently being conducted and a

future publication will discuss the lunar wake.

CONCLUSIONS

The IMP I satellite has provided the first direct measurements of interplanetary magnetic

fields with high accuracy. The spacecraft fields are found by analysis of inflight data to be less
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than+0.257. The observed field strengths in the interplanetary medium range generally from 4

to 77 with temporary excursions to values as low as 1 and as high as 107. The magnitude is im-

pressively steady although directional changes occur fairly frequently on time scales of several

hours. These steady magnitudes are a feature of the fields which had not been anticipated.

A significant feature of the vector field and the inferred interplanetary field configuration is

the gross feature of spiral structure associated with the rotation of the sun, in directions con-

sistent with observed solar plasma velocities. At times the field reverses directions on a time

scale of 5-20 minutes, going through zero rapidly, indicating neutral surfaces separating the fila-

mentary elements of magnetic fields. The overall Archemedian spiral structure in which the

distinctive filaments are imbedded strongly suggests a merging of theoretical field topologies --

as discussed by Parker (Reference 5) and Gold (Reference 20). However, the fields have only

been sampled recently and further analysis will be required to determine whether the "magnetic
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Figure 40--Illustration of IMP I magnetic field data interpretation showing solar wind_ interplane-

tary fields collislonless shock wave and magnetopause locations on ecliptic plane. The distances are
in thousand miles.
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bottles" of Gold (Reference 28) are also consistent with the data. Indeed with only one sample

point in space it may not be possible to delineate between such features.

The IMP I observations of the solar wind interactions have experimentally confirmed the ex-

istence of the collisionless shock wave predicted by theoretical analogies with supersonic gas

dynamics. Indeed the position of the shock wave is impressively consistent with the theoretical

models showing a departure of only a few percent. The magnetosphere boundary, the magneto-

pause, is clearly observed and found to be separated from the shock wave by a region of high

turbulence in the magnetic field. An interpretive graphical summary of the initial results of solar

wind interaction with the earth is shown in Figure 40. The geocentric distance to the magneto-

pause is found to be 10.25 Rz at the stagnation point. The distance to the shock wave is 13.4 RE

yielding a stand-off ratio of 1.31 + 1 percent.

The detection of the extended lunar magnetospheric wake into interplanetary space at least 150

lunar radii behind the moon is important evidence in confirming the general aspects of the under-

standing of solar wind interactions with planetary objects. The field strengths and directions are

indicative of the magnetohydrodynamic interaction of the solar wind with the moon's magnetosphere

and may provide evidence on the lunar magnetic field strength. The lunar wake geometry is illus-

trated in Figure 41.
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Figure 41--Interpretation of IMP I magnetic field data indicating characteristics of interplanetary and cislunar
space and MHD wake of the moon at time of lunar magnetosphere detection. The distances are in thousand
miles.
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THEORETICAL STUDIES OF PROTONSIN THE OUTER

RADIATION BELT

by

M. P. Nakada, J. W. Dungey* and W. N. Hess

Goddard Space Flight Center

The variations in the energy spectra with pitch angle and L of the relatively
stable 0.1 to 5 Mev protons in the outer radiation belt have been found to be in
good agreement with the results of a model that permits rapid motion of the
protons in L space. In this model, the protons violate the third adiabatic in-
variants. Changes in fluxes with L are not consistent with Liouville' s theorem.
Both the departure from Liouville's theorem and variations in energy spectra

seem to indicate that the source of these protons is at large L. _/b-_

Ir
INTRODUCTION

In the L = 2 to 5 range in the outer radiation belt, Davis, Hoffman, and Williamson (Refer-

ence 1) found that the spectra of the relatively stable 0.1 to 5 Mev protons show smooth but large

variations with L and equatorial pitch angle %. Protons near the earth and at a 0 near 90 ° are

more energetic than those at larger L and at smaller %. The spectra are well represented by

l-E/E0; E0 varies by about a factor of 10 with L and by a factor of 2 with %. In this study a model

is proposed for the explanation of these spectral variations.

Kellogg (Reference 2) first suggested that the radiation belt might be formed through magnetic

disturbances in which the third adiabatic invariant of trapped particles is violated without violating

the first and second invariants. Violation of the third invariant allows motion in L-space. As

particles move closer to the earth they tend to gain energy with the maintenance of the 1st invari-

ant since, for example, E/B is a constant for 90 ° pitch angles. Thus this process can accelerate

the protons. Kellogg's suggestion has been adopted for this study although the mechanism for

motion in L-space is unspecified. It has further been assumed that motion in L-space is rapid

compared to loss and scattering processes and that the geomagnetic field is sufficiently well repre-

sented by a dipole.

*Imperial College, London, England.
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ENERGY AND ANGLE VARIATIONS

Ifthe firstand second adiabatic invariants of trapped particles are maintained during motion

in L-space, changes in both_h¢ er_rgy and equatorial pitch angle can be calculated. The firstin-

variant is

E sin 2a 0 EL 3 sin 2 a 0

= Bo .312 , (1)

where B o is the equatorial magnetic field. The second invariant is:

3 = m _ vcoss
dS

where m is the mass, 'v the velocity, s the local pitch angle and S is along the guiding center.

The integration is over a complete north-south oscillation.

becomes

(2)

For a dipole magnetic field, Equation 2

with

j = vLF(ao) ,

where
r e

sin2%(4- 3 cos2 ) (4- 3 cos2 )
F(a0) = 4mr e - c---os---6 _

is the radius of the earth, _ is the latitude, and _m is the mirror latitude.

(3)

Since _ and J are constants, Equation 1 may be divided by the square of Equation 3 to give

[sin s o 72

L_F-V_o) j -- constant . (4)

From this, the changes in a o with respect to L can be evaluated as seen in Figure 1. Two features

of these results are worthy of note: (1) Changes in % with L are relatively small for L > 2.5

and, as Davis and Chang (Reference 3) have indicated, particles diffusing inwards assume flatter

helices; and (2) Changes in % with L are independent of energy for non-relativistic particles.

These changes in a 0 with L and Equation 1 may be used to find the variation in energy with

L and %. Results are shown in Figure 2 for protons having % values at L = 7 as indicated on

the curves. The energies shown are relative to energies at L = 7.
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COMPARISON OF SPECTRA WITH EXPERIMENTAL RESULTS

The proton spectrum that we would expect at some L and % depends on the location and

nature of the source and on the energy dependence of motion in L-space. The source is assumed

to be at a single L and to consist of a single proton spectrum. The result of the superposition of

sources at different L and of different spectra can be obtained by using the above assumption. The

energy dependence of motion in L-space has been examined for two processes where the third in-

variant only is violated. When the violation mechanism involves electric fields, the velocity of

L-space motion is proportional to the vector product of the electric and the magnetic fields and

does not depend on particle energy. Another process that violates only the third invariant depends

on asymmetric distortions of the geomagnetic field such as those occurring with sudden commence-

ments and sudden impulses (Reference 4). Motion in L-space for this process depends on the

guiding center of particles following magnetic field lines during rapid changes in the field and is

also independent of energy. Thus the motion in L-space, when only the third invariant is violated,

appears to be independent of energy.

With the above results and assumptions and the results and assumption of the previous sections,

changes in spectra for motion in L-space are readily obtained. If the injection spectrum is a power

law, the spectrum remains a power law with the same 'exponent. If the injection spectrum has an

exponential form, f-E/Eo, the spectrum remains exponential after L-space motion and E 0 varies

in the same way with L and a o as has been calculated for a single particle in the previous section.
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These two predictions of the model may be

compared with experiment. The first predic-

tion, that the spectrum retains its exponential

form, is in agreement with experiment. To test

the second prediction, measured E o (Refer-

ence 1) have been plotted in Figure 3 as a func-

tion of L with appropriate changes in a 0 with

L o The labels on these curves refer to values

of _o at L - 7. The dashed curves in Figure 3

are taken from Figure 2 for corresponding

changes in E with L and %. This comparison,

too, shows good agreement between the model

and experimental results.

If the dashed curves in Figure 3 are ex-

tended, they intersect near L = 10. This inter-

section is the L value where the spectrum is

independent of _0 and therefore may be inter-

preted as the source location.

COMPARISON WITH LIOUVILLE'S THEOREM
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Figure 3-Comparison between measured and predicted

variations in E0 with L and %.

I000

Thus far only the spectra of particles have

been compared with the model. Now, the fluxes

in L-space will be compared with predictions

of Liouville's theorem to see what might be 100

learned about the mechanisms of L-space mo-

tion. With motion in L-space, the fluxes may:

(1) Obey Liouville' s theorem; (2) Obey Liouville' s

theorem but be altered by loss processes;
La_

(3) Not obey Liouville's theorem. The third _ 10

possibility could occur, for example, if motion

in L-space is due to diffusion.

The measured directional fluxes, j(L, E,

%) , have been given in units of particles/cm 2- 1

sec-ster-Mev (Reference 1). If Liouville's the-

orem were to hold, the conserved quantity is

j/E. In the comparison between measurements

and Liouville's theorem both E and _0 are
0.

varied with L as is appropriate for following a

particle's trajectory when the first two adia-

batic invariants are maintained.

3 4 5 6

L (earth radii)

Figure 4-Relatlve variation of i/E with L.
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Figure 4 shows results which are typical of the experimental data. Since j/E

served, the first possibility above is ruled out.

is not con-

An interesting feature of Figure 4 is the fact that j/E increases monotonically with L. This

also indicates that the source is at large L.

CONCLUSIONS

In this study a rather simple model has been found which successfully explains spectral

changes of the protons in the outer radiation belt with respect to L and %. The trends in the vari-

ations in the spectra and in comparison of fluxes with Liouville's theorem both indicate that the

source is near the edge of the magnetosphere. According to this model, the protons are moved

within the outer radiation belt and accelerated by some mechanism that violates the third adia-

batic invariant of charged particle motion without violating the first two invariants. Since these

fluxes do not obey Liouville's theorem, the mechanism is of the diffusion type or one where losses

must be considered along with the motion of fluxes obeying Liouville's theorem.
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SOLARCYCLECHANGESIN INNERZONE PROTONS

by

Robert C. Blanchard*

and

Wilmot N. Hess

Goddard Space Flight Center

SUMMARY _(_¢

Time dependent calculations of the inner Van Allen belt proton population

show that large changes of the population, up to a factor of 50, will take place

during the solar cycle. The effect is most pronounced for the region of B-L

space corresponding to minimum altitudes of 300-700 kin. Because different

energy protons respond to the changing solar cycle at different rates the proton

energy spectra will change with time also.

INTRODUCTION

The purpose of this paper is to calculate the expected changes in inner zone proton popula-

tions with time in the solar cycle.

Freden and White (Reference 1) identified the penetrating component of the inner zone of the

Van Allen belt as that due to energetic protons and measured the energy spectrum of the protons

of E > 75 Mev. This and subsequent experimental work on Atlas rockets (References 2, 3, and 4)

has confirmed and extended this finding and we now have a well established proton energy spec-

trum at L _ 1.4, B _ .20 (which is about apogee for these flights) for near solar maximum (Figure 1).

The analysis of the spectrum (Reference 2) has shown conclusively that the protons are produced

by neutron decay.

One feature of this radiation belt component is the time constancy. Measurements after a

solar flare (Reference 3) gave essentially the same fluxes of protons as before tile flare. For

L > 1.6 changes in proton spectra are seen (References 5 and 6) to be associated with solar proton

events (Reference 7). These may be explainable in terms of neutrons produced in the polar re-

gions by solar protons (References 8 and 9). For L < 1.6 only gradual changes in the proton popu-

lations have been observed on Explorer VII (Reference 7). It was originally suggested (Reference

7) that such changes implied that neutrons could not produce all inner zone protons but this does

*Done as partial fulfillment of the requirements for a Master's Degree from the College of William and Mary.
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proton energy spectrum (Reference 3) for L "_ 1.4 B_ .20.

not seem to be the case. Hess (Reference 10)

showed that slow changes in proton population

were expected due to changes in the galactic

cosmic ray flux during the solar cycle and, more

importantly, due to changes in the upper at-

mospheric density during the solar cycle. We

will now make a quantitative discussion of the ex-

pected changes in proton populations for L < 1.6.

The continuity equation for protons is usu-

ally written (References 2, 11, and 12):

dN(E)
dt - *S(E) - L(E)

+_ (E)-a-£v : 0 , (1)

and this is solved for the steady state population

of protons N(E). However, we are now inter-

ested in time variations so we shall write this

equation in its time dependent form:

tiN(E, t) _
dt +S(E, t) - L(E, t)

d[ dE]+ d-E- N(E, t) Txx (t)v (2)

The source term S(E, t) will use the neutron

decay source strength of Hess (Reference 11)

for solar maximum S(E) multiplied by a func-

tion of time f(t)to consider the solar cycle

variation in galactic cosmic ray flux as deter-

mined by McDonald and Webber (Reference 13):

3

O. 8E-2. o r

S(E, t) = S(E) f(t) = UTTn r f(t) , (3)

where f(t) varies from 1.0at solar maximum to 1.25 at solar minimum in a way similar to that of

Figure 2.

For the loss term L(E, t) following Freden and White (Reference 2) we consider nuclear

collisions:

L(E, t) : N(E, t)v _-_ %pi (t)

i

(4)
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wherePi (t) is the average atmospheric den-

sit_ of atmospheric component i (02, o, N2 or

He)and % is the inelastic cross section for col-

lisions (assumed geometric).

The last term in Equation 2, the change in

proton population due to slowing down, varies

with the solar cycle due to the atmospheric den-

sity change:

[ 1
dx - 2.69x 1019 " ' (5)

where _(t)is the average atmospheric density

of equivalent oxygen atoms. The variation of _i

(t) and _(t)with time in the solar cycle is

the major reason for the change in proton

population.

AVERAGE ATMOSPHERIC DENSITIES
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Figure 2--Solar cycle used in these calculations Sis the
Harris and Prlester (References 14 and 15)model param-
eter which is related to but not the same as the 10 cm

flux intensity.

A major part of this problem was to determine the average atmospheric densities used in

calculating the loss rate of trapped protons by coulomb scattering. To do this the theoretical

model of the upper atmosphere developed by Harris and Priester (References 14 and 15) was

used. This model gives the time dependences of the atmosphere for both solar cycle and diurnal

variations. It agrees well with several measurements of density by satellite drag (References 16

and 17) and recently has been checked by preliminary density data from the Explorer XVII satellite

(Reference 18). This model atmosphere is the most complete description of the time dependence

of atmospheric densities available and agrees well with the current experimental data. We must

perform several operations on the H and P model data to get it in form to use for this problem.

Harris and Priester give the atom densities n_ of the several atmospheric constituents i in the

form

n i (h, t, S) ,

where h is altitude above the earth, t local time, and S a model parameter related to, but not the

same as, the intensity of the average 10-cm solar flux F, in watts/m2-cps × 10-22. Recent studies

of atmospheric densities (Reference 19) show that the model number S is the same as F near solar

maximum but near solar minimum s > F. For example, F = 70 corresponds to the model S = 100.

Figure 2 shows the solar cycle variation of S we have used based on the last solar cycle.
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missible to average the density in this fashion.

step.

The first operation on the H and P atmos-

phere is to average over local time. The protons

we shall consider live long enough so that they

will encounter the midday density bulge and the

nighttime minimum many times and will aver-

age them out.

Secondly, we shall perform a longitude

average. As the particles drift around the earth,

their mirror points do not stay at constant al-

titude but rather follow a certain path in B-L

space. Several such constant B-L rings are

shown in altitude-longitude coordinates (Fig-

ure 3). The particles dip lowest in the South

Atlantic due to the nature of the earth's mag-

netic field. A B-L map of minimum altitudes is

shown in Figure 4. Due to the variation in al-

titude of the protons' mirror point, longitude

averages were made using the B-L rings every

ten degrees in both northern and southern

hemispheres. This step gives the average mir-

ror point density for a proton's motion. Walt

has recently shown that the protons do not drift

in longitude at a constant rate because of the

variation of the magnetic field gradient and

field line curvature. This effect is ignored here.

It probably amounts to about a 20 percent cor-

rection on average densities. Values atmospheric

densities are not known that well now anyway.

The third operation on the H and P atmos-

phere is to average over a bounce from one

mirror point to the conjugate mirror point.

Since the protons live much longer than a bounce

period, and since no change in direction of the

proton is considered during slowing, it is per-

A dipole field is assumed in carrying out this

Ray (Reference 20) gave the bounce averaging process as
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where the element of length along the particle's orbit is

vdt d_
as = -cos _ co_ _ (7)

where d_ is the element of length along the field line. Using

d_2 = dr2 + u2d_2 (8)

and

r : Lcos 2 k (9)

with the mirror equation and the expression for the magnetic field variation along a field line and

combining and substituting in Equation 6, we obtain

]p_ (_) A(_)d_

= (lO)

where

A(_)
cos 4 k I+ 3 sin 2 k

[cos6 L (1 + 3 sin2 Kin)l/2 - cos6 km (1 + 3 sin2 _)] 1/2 (li)

Here, the subscript m corresponds to the particles' mirror point. This bounce averaged density

has been integrated on a computer.

The last step is to combine the five i constituents N2, 02, 0 , He, andH to give the averaged

number of equivalent oxygen atoms:

87 = 147 (N2) + _ (0) + 16_ (02) + 2_(He) + _(H) (12)

Values of _ at different times in the solar cycle for L = 1.25 are shown in Figure 5.

We can use the data on the rate of energy loss dE/dx for oxygen at NTP (Reference 21) in Equa-

tion 5 with this averaged density _ to calculate the loss rate.
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of protons to come within 1 percent of its final oscillat-

ing population for L = 1.25 starting with N(E) = 0 at

t=0.

RESULTS

Equation 2 is integrated stepwide starting

with N(E) = 0 at t = 0 to build up to an oscil-

lating proton population which is the same from

one solar cycle to the next. In Figure 6 is

shown the number of solar cycles after which

the population change per cycle is less than 1

percent for L = 1.25. After achieving this final

condition the proton energy spectrum varies

during one solar cycle as shown in Figures 7-11;

the dashed curves in these figures are what the

proton spectrum would be if steady state
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Figure 7--Proton energy spectra at different times in the

solar cycle for L = 1.40, B = .225; the curves are labeled

by the time in years from solar minimum.
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tions are seen in these figures.

shown in Figures 14 and 15.
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labeled by the time in years from solar minimum.

conditions were achieved at solar maximum and

solar minimum. Steady state clearly is not

achieved for high energy protons or for high

altitudes.

It is also interesting that this calculation

predicts a spectral peak above 100Mev for cer-

tain conditions (Figure 7, Year 3) owing to the

time lag in different energy protons adjusting

to solar cycle changes.

Figures 12 and 13 show time histories for

various conditions. Large variations from

solar maximum to solar minimum popula-

The amplitude of these changes for L = 1.25 and 1.40 are
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Figure 14--The amplitude of the proton population
change during the solar cycle for L = 1.25.

A comparison of past experimental results

and the calculations of this paper is shown in

Table 1. In discussing these experiments we

can consider three types of information.

In comparing time changes of the proton

fluxes two situations occur:

1. Some individual experiments run long

enough (a year or more) so that they

should see proton flux changes directly.

From Table 1, Experiments c and d are

of this time. Although in Experiment d

156



it is notoneexperimentononesatellite,
it is manyidenticalexperimentson es-
sentially identicalsatellites, andthere-
fore this experiment falls in this
category.

2. Differentexperimentson different sat-
ellites canbecomparedto provide data
onprotonflux changes.Dataof this type
is given in Experimentsa, e, andf of
Table 1.

Thethird typeof datais givenby:

3. Direct measurementof the proton en-
ergyspectrumin oneexperiment. Ex-
perimentsa, b, e, f, and g are of this
type.
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Figure 15--The amplitude of the proton population
change during the solar cycle for L = 1.4 and 1.6.

In comparing flux time change experiments of Type 1 with the calculations, the agreement is

good. Two experiments covering the period 1959 to 1962 give results consistent with the

calculations.

Comparison with Type 2 data does not work as well. The observed changes of flux with time

agree qualitatively with those predicted but not quantitatively. The experimental flux ratios are

smaller than the calculated ones. Two remarks are in order here. First, Type 2 data usually has

larger errors attached to it than Type 1 because it involves the systematic errors of two experi-

ments while Type 1 data involves no systematic errors--only staUstical errors are involved in the

time variations in the flux. Because of this the experimental flux ratios using Type 2 data are

probably not as accurate as those using Type 1 data. Secondly all the comparisons of Type 2 data

involve Explorer IV data; so there is no independent check of experimental consistency.

We may have over-estimated the amplitude of the change of proton populations in this present

calculation by as much as a factor of two because our solar cycle model uses s = 70 at solar

minimum while recent data of Harris and Priester (Reference 19) shows that S = 100 is probably

more appropriate. Changing the shape of the model solar cycle (Figure 2) will also affect the re-

sults of the calculation. The solar cycle must rise more rapidly towards solar maximum than

it falls to solar minimum in order to produce the changes in spectrum calculated herein. Solar

cycle 16 was quite symmetrical and should not give the calculated results.

Of the five experiments of Type 3 that help understand the proton energy spectrum the first

two, a and b, in 1960 showed a modest sized peak at about E = 40 Mev. The more recent experi-

ment, g, of Rowland et al. (Reference 22) in 1962 shown in Figure 16 does not show such a peak.

The solid curve on Figure 16 compared with the data of Rowland is the normalized results of the

present calculations. The agreement is fairly good. Recent experiments f and g show a large low

energy proton population but cannot be compared with early experiments because the early ones
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did notcoversuchlow energies. Figures7 through11showthatthe calculatedspectral shape
shouldnot changemuchduring theperiodof thesemeasurements--from6 to 9 yearssolar cycle
time. The proton fluxes shouldincreasebut the shapeof thespectrumstaysnearly the same.
Striking changesin spectralshapeshouldoccurontheupswingof the solar cycle. Theagreement
with spectralshapein Figure 16is notbadbut thepeaksin Experimentsa andb shouldnotoccur
at t = 6. It may be that a neutron absorption, as suggested by Freden and White (Reference 3), is

required to explain the peak.

All of the information presented so far on Figures 6 through 15 are mirror point fluxes M,

that is, the flux of protons mirroring per unit volume at one particular B and L. For low altitudes

where the atmosphere changes rapidly with altitude it is nearly correct to compare this flux with

measured omnidirectional flux values. For these low altitudes the omnidirectional flux is very

nearly the same as the mirror point flux. To show a more complete picture of the solar cycle

proton changes we have converted to omnidirectional fluxes using Equations 24 of Hess and Killeen

(Reference 23). Figure 17 shows a calculated R - _ map of the 25 Mev proton omnidirectional fluxes

J at solar maximum and solar minimum. An isoflux contour is clearly at lower 1_ for solar minimum.

In conclusion we have shown that large changes in proton fluxes will take place during the

solar cycle for those regions of B-L space corresponding roughly to minimum altitudes of about

300-700 km. Changes in proton spectra will occur also. Comparison of the calculations with

available experimental information are not conclusive. Some kinds of experimental data agree

quantitatively with the calculations. Other data

agrees qualitatively but not quantitatively. The

crucial tests of the calculations will involve

measuring changes in the proton flux and spectrum
10.0

÷

o.1 I I I I I
0 20 40 60 80 100

EN ERGY ( Mev )
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"_ 1.0
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o

Figure 16--The energy spectrum of inner zone protons
measured by Rowland (Reference 22) on an Atlas pod at
L = 1.27, B = .216 shown for comparison is the spectrum
calculated in tMs paper for L = 1.27, B = .207, t = 9.

J\

\\

I

I

I i

IJ

II

1.0 ! .2

R (earth radii

I

1.4 .6

Figure 17--An R - ;_ map of the omnidirectional flux
of E = 25 Mev protons at solar maximum (solid line)
and solar minimum (dashed line).
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asweapproachsolar maximumduring1966-68.Weknowexperimentally(Reference 16) that the

atmospheric density changes used in the calculation are reasonable. These calculated effects

must take place with about the magnitudes shown here unless there are features of the inner belt

protons which we do not now understand.
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SOLARX- RAYBURSTSIN THE20 TO100 KEV
RANGEOBSERVEDBYOSO-I

by

Kenneth J. Frost

Goddard Space Flight Center

SUMMARY

During the months of March, April, and May, 1962, instrumentation aboard
OSO-I observed five solar-flare associated high-energy x-ray bursts. The
instrumentationwhich observed these bursts was designed to monitor the solar
x-rayfluxinthe 20 to 100 key energy range. The beginning and the end of each
eventwas observed. All events were accompanied by radio bursts of impulsive
character inthe microwave range. Plots of flux density versus wavelength for
the associated microwave outbursts yield curves similar to the curves which

Kundu found to be associated with previously observed x-ray bursts. Sudden
ionospheric distrubances also accompany each high energy x-ray burst.

Consideration of the radio data, the short duration of the x-ray bursts, and the

energy of the bursts lead to the conclusion that we are observing a process

which is located in the chromosphere and is non-thermal in character. _l_k_.0

PC-
INTRODUCTION

Among the experiments carried by OSO-I (1962 _ 1) in the pointed section was a scintillation

counter designed to detect hard solar x-ray bursts in the 20 to 100 kev energy range. The scintil-

lation counter consisted of a cylindrical Nal(T1) crystal 0.3 cm high and 2.24 cm in diameter and

an RCA C-7151 photomultiplier tube. The photomultiplier tube and crystal assembly was placed

in a cylindrical copper shield which through an opening in the front end provided a field of view of

0.3 steradian. The copper shield had a wall thickness of 1 cm. The 3.8 cm 2 area of the front

surface of the crystal was held normal to the solar direction by the pointing of the satellite. An

aluminum disc of 0.08 cm thickness was placed over the front surface of the crystal. The effi-

ciency of the detector in the 20 to 100 key interval was approximately 0.90.

The electronics associated with the detector consisted of lower and upper level discriminator

circuits and a logarithmic ratemeter. The lower and upper level discriminator circuits were set

to select only those pulses from the photomultiplier which corresponded to an energy loss of be-

tween 20 to 100 kev in the crystal. The pulses accepted by the discriminator circuits were then

passed on to the logarithmic ratemeter. The output of the ratemeter was a voltage level between zero
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and 5 volts which co,rresponded to an input count rate between 10 and 10 4 counts/second. The out-

put of the ratemeter was able to respond to changes in count rate that occurred in a time longer

than 10 milliseconds.

The satellite telemetry system sampled the voltage level at the output of the ratemeter contin-

uously for 2 seconds once every 20 seconds. This sampling format was operative during the en-

tire daylight part of an orbit.

DATA

With the return of the first hundred orbits of reduced data the response of the detector to the

general spacecraft x-ray background and the response to the regions of trapped radiation was

determined. In addition it was found that the experiment responded to the electron warm spots

detected by an electron-proton spectrometer placed aboard the spacecraft by Schrader et al,

(Reference 1). When passing through regions not including trapped radiation or electron warm

spots the detector was found to produce a count rate for a 2-second sample that consistantly fell

between limits of 10.5 to 14.5 counts/second.

On March 17, 1962 a short-lived increase in count rate occurred while the satellite was pass-

ing through a region where the count rate normally fell in the background range of 10.5 to 14.5

counts/second. The increase in count rate started at 19:39:49 UT and ended at 19:40:08 UT. A

record of the satellite telemetry signal for the orbit containing this time period indicated conslu-

sively that the fluctuation in count rate was real and could not be attributed to telemetry noise

that had been erroneously digitized by the automatic data reduction system. Reference to the

available solar data revealed that a solar flare had been observed by the McMath-Hulbert and

Lockheed Observatories between the times of 1934 to 1959 UT and 1936 to 2003UT, respectively.

The flare was observed on the east limb of the sun and was classified by McMath-Hulbert as an

importance 1 flare and by Lockheed as an importance 2 flare. Also at this time an impulsive

radio burst of 3-minute duration beginning at 19:39 UT and reaching maximum at 19:40:12 UT

was observed at 2800 Mc/sec by Ottawa. Furthermore an SID accompanied the flare beginning

at 19:40 UT and reaching maximum at 19:44 UT. The very close correlation in the time for these

events and the fluctuation of the 20 to 100 kev count rate suggested that the most plausible expla-

nation of the fluctuation was a burst of energetic x-rays produced by the flare.

During succeeding orbits of the spacecraft four more instances of rapid excursions in count

rate were observed during the presence of a flare on the sun which produced an impulsive radio

burst in the microwave range and an SID. These excursions in count rate were also interpreted

as solar flare x-ray bursts. The history of these five events is presented graphically in Figures

1 through 5 (Reference 2).
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DISCUSSION _""-_

Prior to the launch of OSO-I eight occurrences of high energy x-ray bursts accompanying

solar flares had been observed (References 3 through 7). Kundu has analyzed the radio data

associated with each of these events (Reference 8). He found that an impulsive microwave burst

was associated with every x-ray burst whereas type III bursts and other meter wave events did

not show as strong a correlation. Furthermore the general character of the microwave spectrum

was found to be such that the peak flux observed at wavelengths in the 3 to 10 cm range was

stronger than that observed at wavelengths in 10 to 20 cm range. The radio data associated with

the OSO-I x-ray bursts as indicated in Figures 1 through 5 appear to lend strong support to

Kundu's analysis. Additional information of interest to this analysis is the fact that as far as can

be determined from spectral observations in the meter wave range, no type III bursts occurred

during the x-ray events.
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 10'r DETECTIONOF INTERPLANETARY3- TO 12-MEVELECTRONS

by

T. L. Cline, G. H. Ludwig,

and F. B. McDonald

Goddard Space Flight Center

In this Letter we report the direct observation of interplanetary electrons of energy above

3 Mev with the IMP 1 satellite (Explorer XVIII).

Electrons observed in the primary interplanetary radiation in the Bey energy region by Earl

(Reference 1) and in the 200-Mev energy region by Meyer and Vogt (Reference 2) are believed to

be of galactic origin because their energies are as high as those assumed to be necessary for

their penetration into the inner solar system and because their measured intensity agrees with

that which was anticipated to account for galactic radio emission. Support was lent to this hy-

pothesis when the modulation characteristics of these particles were observed (Reference 3) to be

similar to those of cosmic-ray protons and their positron-to-electron ratio was found to be com-

patible with an origin of at least half of them in meson-producing cosmic-ray interactions in the

interstellar medium (Reference 4). We feel that the existence of an interplanetary flux of elec-

trons lower in energy by orders of magnitude is interesting because of the possibility that these

too may have a cosmic origin. If so, their study should yield entirely new information about the

galactic electron sources and modulation characteristics. If they are of solar origin, there are

analogous implications. We wish to demonstrate here that the flux of lower-energy electrons we

observe is indeed a primary component of the interplanetary radiation, and to discuss its proper-

ties in terms of its possible origin, either galactic or solar.

The observations reported here were made with a scintillator telescope on Explorer XVIII, a

satellite placed in an elliptic orbit with an apogee height of 193,000 kilometers. Data were taken

from the launch, on 27 November 1963, until 6 May 1964 when the satellite passed into a long

period in the earth's shadow, causing failure of the detector. During this time interval the apogee

moved from the sunlit side of the earth beyond the magnetosphere (terminating at about 70,000 km)

and beyond the earth's shock front (observed with a magnetometer*) and plasma sensor (Refer-

ence 5 at about 100,000 kin) to the region behind the earth and inside the shock front. Electron

data taken only when the satellite was beyond 125,000 kilometers are reported here; throughout the

life of the instrument these data continued to be free from effects due to the trapped radiation.

*See pp.
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Thedetectorwasdeveloped(Reference6) to studylow-energycosmic-rayprotons,electrong
V

and light nuclei. It is £onlposed of three scintillators: two in coincidence, measuring energy lpss

and total energy, and a guard counter in anticoincidence. When a table of intensity versus meas-

ured energy loss versus measured total energy is constructed from data taken at apogee, there is

seen a distinct counting rate component of minimum-ionizing energy loss and of low apparent

energy. An analysis of the topology of distributions in energy loss and in total energy through

this minimum-ionizing component indicates that indeed it is composed of three distinct particle

groups: One group with total energies corresponding to electrons that stop within the detector, a

much smaller group with a high apparent total energy equal to or exceeding the energy loss of a

minimum-ionizing cosmic ray traversing the detector, and a third group with very low total ener-

gies. We believe that the latter two components are surely secondary radiations composed of,

respectively, cosmic rays that avoid detection by the guard counter (for example, by turning into

neutrals through reactions within the detector) and gamma rays made locally in the spacecraft,

producing random and coherent coincidences between'the energy loss and total energy detectors.

These secondary effects were eliminated to produce Figure la, which shows the energy spec-

trum of electrons obtained during the first orbit (27 to 30 November 1963) at a time when the ob-

served electron intensity was at a typical minimum and when there were no measurable time

variations. Figure lb shows, for comparison, a spectrum of the difference between the first

statistically significant intensity increase (13 to 16 January 1964) and the immediately preceding

intensity (9 to 12 January). No background corrections were necessary to produce the latter dis-

tribution since the electron intensity increase was unaccompanied by an increase of either second-
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Figure 1--Differential energy spectra of electrons ob-

served beyond 125,000 kilometers from the earth. The
first spectrum is from the apogee of the first orbit; the
second is the difference between measurements from the

13th and 12th orbits and indicates the first significant
increase in intensity.

ary gamma rays or spurious cosmic rays; it

was therefore possible to determine the inten-

sity to higher energies. The nearly identical

shapes of the two corrected spectra suggest

that the electrons seen daily may have the same

origin as the extra ones seen on days of in-

creased electron flux. The integral intensity

of electrons of energy between 2.7 and 7.5 Mev

is 210. ± 10. electrons/m2-sec-ster., and that

of the increase between 3. and 12.5 Mev an ad-

ditional 100. ± 10. electrons/m2-sec-ster.

To demonstrate that most of the observed

electrons are not of local or secondary origin

at the satellite (e.g., such as knock-on or

cascade-shower electrons produced in or near

the detector) we consider their time varia-

tions. Figure 2 shows the counting rate of these

electrons, partially corrected for slow gain

drifts in the detector, plotted in the form of

one-quarter-orbit averages throughout the
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Figure 2--Integral counting rate of electrons throughout the active life of the instrument plotted in quarter-orbit
averages. The counting rate "C" of cosmic rays into a thinly shielded scintillator and the times of one recurrent

minimum of the interplanetary index Kp are also shown. Recurrent Forbush decreases are seen in the cosmic rays
in early December and January and a small solar proton event occurs in March; other increases can be largely at-
tributed to the electron mixture in the cosmic rays.

active life of the instrument. (The gaps in the data occur at times when the satellite is within

125,000 kilometers; the other three points per orbit are plotted so that each center one represents

data taken from beyond 185,000 kilometers.) Also shown are a comparison plot "C" of the inte-

grated cosmic-ray flux into a scintillator with about 0.3 gram cm -2 shielding, and the times of a

recurrent minimum in the interplanetary magnetic activity index Kp with a period of one solar
rotation.

A dominant feature of the electron rate is the appearance of many statistically meaningful

intensity increases, including one series apparently coincident with the recurrent Kp minimum.

These electron intensity increases were not accompanied by comparable increases in the integral

cosmic-ray intensity above 15 Mev: the magnitude of the electron modulation is 50 percent on

occasions, while the cosmic rays undergo modulations of less than 5 percent. Further, following

the flare of 16 March 1964 there was a solar-proton event, accompanied by Type IV solar radio

emission*, during which the flux of protons of energy between 15 and 75 Mev briefly increased by

several orders of magnitude, while the 3- to 8-Mev electron flux rose less than 50 + 25 percent.

*A. MaxvOell, Private communication.
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(Figure 2 shows the quarter-orbit average of the total integrated cosmic ray flux increasing at

that time by about 10 percent.) These comparisons demonstrate that, at most, an insignificant

fraction of the electron modulation results from modulations of cosmic rays of energy about 15 Mev.

Modulations of protons with energies below 15 Mev, such as 27-day recurrent solar proton

events similar to those observed (Reference 7) with Explorer XII, were not monitored with our

apparatus; but these would be expected at the times of recurrent Forbush decreases and geomag-

netic activity, rather than at the time of our repeating electron increases. Several such 1- to

10-Mev proton intensity increases were observed early in the life of the satellite by Fan, Gloeckler

and Simpson (Reference 8) but these were about two weeks out of phase with our electron en-

hancements and appear to be accompanied by, if anything, decreases in the electron intensity and

in the galactic cosmic rays.

Finally, a study of 3-hour averages of the observed intensity of these electrons indicates no

variation with distance from the earth, either during orbits of minimum intensity or during times

of increased intensity; the electron rate is constant through the shock front to a distance of up to

50 percent beyond it. Further, the satellite's passage through the wake of the moon* was unac-

companied by an electron intensity variation. Thus, these electrons are not secondary to cosmic

rays or solar protons or due to geophysical processes.

We feel that the question of whether these primary electrons originate at the sun or in the

galaxy cannot be definitely answered on the basis of the available data; however, the following

properties of these electrons are consistent with their being galactic. _First, the differential

energy spectrum of this 3- to 12-Mev component fits smoothly onto a spectral plot of the cosmic-

ray electron intensities (References 1, 2, and 4) at much higher energies. Second, the time vari-

ations of the electrons can be compared to those of cosmic rays in that there is a strong correla-

tion between the electron intensity increases and quiet interplanetary conditions, evidenced by Kp

minima and very small sea-level cosmic-ray intensity increases. Third, there appears to be a

long-term increase of electron intensity after a correction of the same order is applied for a slow,

monitored drift in detector gain; if this increase is real, it is similar to the ll-year modulation

of cosmic rays as solar minimum is approached. However, the fact that the differential cosmic-

ray proton intensity is peaked at about 1 Bev/c rigidity and negligible below 150 Mev/c markedly

contrasts with the fact that electrons of rigidity >3.5 Mev/c are more abundant than those of

greater rigidity. Parker has recently pointed out (Reference 9) that particles with gyroradius

close to the idealized irregularity scale of the modulating medium should be deflected more than

those of either extreme; thus these electrons of low rigidity might originate in the galaxy and

penetrate the solar system as easily as those of great rigidity.

In spite of the foregoing arguments for galactic origin, it is not impossible that the electrons

come instead from the sun. Several possibilities present themselves. For example, relativistic

electrons might be generated over most of the upper surface of the solar atmosphere, in which

*See pp.
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caseregionsof enhancedandexpandedplasma(whichcontainrecurrent protonfluxes)wouldtend
tb containfewerelectronswhile regionsof quiet-time streamingwouldcontainmore,aswehave
observed. Further, the decelerationof the electrons in the enhancedplasmamight be much
greater thanthat in thequiet-time streaming. Alternatively,theelectronsmightbeassociated
with thedevelopmentof newsunspotregions,whichis acharacteristicof this phaseof thesolar
cycleandappearsto correlateweaklywith theobservedpatternof intensityincreases.* Wehave
not, however,founda correlationwithanysolar radio or opticalactivity.

Theresultswequoteherearepreliminary: anevaluationof thedetector response,providing
a moreexactspectrum,anda detailedinvestigationof thetime variationswill begivenelse-
where. Weare happyto acknowledgetheefforts of themanypeoplewhomadetheIMP1a success.
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MEASUREMENTOF LOWENERGYPRIMARY
COSMICRAYPROTONSON IMP 1 SATELLITE

by

F. B. McDonald

G. H. Ludwig

Goddard Space Flight Center

The first precise determination of the intensity and energy spectra of primary cosmic ray

protons in the 15-75 Mev interval has been made with a three element energy versus energy-loss

telescope aboard the IMP 1 (Explorer XVIII) satellite. This spacecraft had an apogee of 193,000

km and only data obtained well beyond the effects of the earth's magnetosphere are considered.

The measurements reported here cover the time interval 8 December 1963 to 6 May 1964 and are

considered to be representative of the period just prior to solar minimum. The proton intensity - i

in the range 15-75 Mev was observed to be 19 protons/m 2-sec-ster or approximately 1 percent of !

the total primary cosmic ray intensity and to

exhibit a steeply falling energy spectrum to-

ward lower energies, decreasing by a factor of

5 over this interval. One point for helium was

obtained in the range 65-75 Mev/nuc.

The E vs dE/dx telescope (Figure la) pro-

vides a means of studying this low energy

component in the presence of higher energy

cosmic rays (Reference 1). Because of the

background and low flux in this energy inter-

val, significant measurements cannot be

obtained by balloon or rocket techniques but

are dependent on satellite measurements. The

principal of operation of the telescope is shown

in Figure 1. For each particle which traverses

the /_E counter and stops in the E crystal (as

defined by the plastic scintillator anticoin-

cidence cup)measurements of /_E and E-LiE are

made by 512 channel pulse height analyzers and

transmitted over the satellite telemetry

systems. As shown in Figure lb, this provides

A

dE

d-"X" SCINTILLATOR

(CsI .45 G/cm 2 THICK

5cm DIAMETER)

E SCINTILLATOR
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Figure 1(a)--Schematic Drawing of E vs dE/dx telescope.
Particles which stop in the lower scintillator (a) are
accepted for analysis while those which enter the anti-
coincidence cup (b) are rejected.
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Figure l(b)--Mass and energy response of E [_(E - AE)]
and dE/dx (_ AE) telescope.

a measure of mass, charge and energy resolution for Z = 1, 2 particles. The electron data are

discussed in an accompanying paper.* Saturation effects prevented the alpha particle data from

being extended to lower energies. This does not affect the H or e data. Mass histograms have

been obtained in the proton region for six energy intervals of about 10 Mev each by summing the

data in 11 channels constructed parallel to and centered about the proton line of Figure lb. These

six energy intervals for H are shown in Figure 2. The clean resolution of the proton distribution

at all energies is striking. The background correction (illustrated by the dashed line of Figure 2)

has been applied using the experimental proton distribution obtained from the small solar cosmic

ray event of 16 March 1964. The rigidity and energy spectra obtained from the mass histogram

data of Figure 2 along with the single _ point is shown in Figure 3.

To search for long term variations, the data were divided into two intervals covering the

period 8 December 1963--14 March 1964 and 22 March 1964--6 May 1964. Except at the lowest

energy point, the data are consistent with a change of less than 10 percent in the proton flux in the

15-75 Mev region between these two periods. The increase on the low energy point may be due to

an increase in the galactic flux or, most probably, to the small solar proton event of 16 March 1964.

We cannot rule out large short time variations since the long times required to obtain meaningful

statistics preclude the possibility of observing variations occurring over a shorter time scale.

Proton and helium data obtained at higher energies from the balloon data of Balasubrahmanyan

and McDonald, (Reference 2) and Fichtel, et al., (Reference 3) are shown for comparison. It is

observed that at this period of the solar cycle just prior to solar minimum there is a sharp de-

crease in both spectra toward lower energies that extends to the lowest observed energy.

The flux of deuterium could not be resolved from the background and an upper limit of 8 per-

cent of the proton flux over the corresponding energy interval was placed on its abundance.

During the last solar minimum an arctic latitude survey by Meredith, et al., (Reference 4)

using a rocket borne single Geiger counter had indicated the cosmic ray intensity did not increase

*See pp.
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Figure 2--Mass histogram for 6 energy intervals in proton region.

strongly at low energies. The ionization chamber data of Neher (Reference 5) at balloon altitude

suggested a strong variation in the low energy range >100 Mev anticorrelated with solar activity.

The only previous satellite measurements in this region were made by Stone (Reference 6) in

late 1961 on a polar orbiting satellite. This study was based on 12 counts in the energy interval

11-125 Mev. They were consistent with a flat energy spectrum and served to place an upper limit

of about 1 proton/m 2-sec-Mev on the proton flux since an active anticoincidence device was not

• used. The data in Figure 3 show the highest energy point of the IMP data reported here is in

general agreement with the lowest energy point obtained in the June 1963 balloon flight by

Balasubrahmanyan and McDonald (Reference 2) and Fichtel, et al., (Reference 3). It is also con-

sistent with the upper limit of dJ/dE < .49 protons/m 2-sec-Mev obtained on a high latitude flight

of Brunstein in 1962 (Reference 7) and with the lowest energy points obtained by Freier and

Waddington (Reference 8) and Ornes and Webber (Reference 9) from 1963 balloon flights. Further

confirmation of the splitting of the normalized low rigidity spectra is also obtained.
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Q

The proton and alpha spectra as observed in interplanetary space result from a superposition

of three processes--initial acceleration, diffusion through the galaxy and solar modulation. To

illustrate these processes assume:

(1) Energy spectra at injection are of the form

104

#(E) = w(1 + E) 2"s pr°t°ns/mS-ster-bev

(2) Traversal of 2.5 gm/cm _ of hydrogen before reaching the solar system; and

(3) The solar modulation is of the form

(dE _IE- exp \-

where /_(g) is the density of cosmic rays with kinetic energy E, and dj/dE is the observed dif-

ferential energy spectrum while dj 0/dE is the unmodulated or stellar spectrum and w is the particle
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x}elocity.Assumption(1) is basedonanextrapolationto lowenergiesof observationsabove4Bev
(Rgference10). The2.5gm/cm2of His impliedby the relativeabundanceof Li, Be, andB in the
primary beam(Reference11)andthe solar modulationfunctionis a diffusionmodelproposedby
Parker (Reference12). In this modelanequilibriumstateis establishedbetweendiffusioninward
throughirregular magneticfields andremovalby outwardconvection.Thesolar modulation
effectshavebeenobtainedby normalizingat 200Mev. Thesecalculationsare shownbythedotted
curveof Figure3b. While it canbeconcludedthat eitherthe injectionspectraare steeperthana
simplepowerlaw (asonemighthypothesizefrom solar cosmicray studies)or thatthe effectsof
solar modulationare notas strongat low energies(in agreementwith the lackof significantlong
term time variations),theprimary effectof theseadmittedlycrudeassumptionsis to showthat
indeedtheproductionof theobservedsteepproton energyspectrumis notunexpectedon thebasis }

of other cosmic ray observations. It is to be expected that further observations over the period

of solar minimum coupled with low energy measurements of multiply charged primaries will

permit more accurate determinations of the source spectra and the solar modulation mechanism.
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of Goddard for testing and calibrating the detector system. The support of Paul Butler and the

IMP project team is gratefully acknowledged.

REFERENCES

1. Ludwig, G. H., and McDonald, F. B., "Proceedings of the International Symposium on Nuclear

Electronics," Paris 195, 1963.

2. Balasubrahmanyan, V. K., and McDonald, F. B., J. Geophys. Res. 69:3289, 1964.

3. Fichtel, C. E., Guss, D. E., Kniffen, D. A., and Neelakantan, K. A., J. Geophys. Res. 69:3293,
1964.

4. Meredith, L. H., Van Allen, J. A., and Gottlieb, M. B., Phys. Rev. 99:198, 1955.

5. Neher, H. V., Phys. Rev. 107:588, 1957.

6. Stone, E. C., J. Geophys. Res. 69:3939, 1964.

7. Brunstein, K. A., Phys. Rev. 133:B(1520), 1964.

8. Freier, P. S., and Waddington, C. J., Phys. Rev. Ltrs. 13:108, 1964.

9. Ormes, J., and Webber, W. R., Phys. Rev. Ltrs. 13:106, 1964.

10. McDonald, F. B., Phys. Rev. 109:1370, 1958.

11. Badhwar, G. D., Daniel, R. R., and Vijayalakshmi, B., Prog. Theor. Phys. 28:607, 1962.

12. Parker, E. N., "Interplanet Dynamical Processes," (Interscience, 1963) p. 199.

NASA-L_ngley.196_ G-586 179


