NASA TECHNICAL NOTE

NASA TN D-3207

THE GENERATION OF A RANDOM SAMPLE-COVARIANCE MATRIX

by Alan H. Feiveson

Manned Spacecraft Center
Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1966

THE GENERATION OF A RANDOM SAMPLE-COVARIANCE MATRIX

By Alan H. Feiveson

Manned Spacecraft Center
 Houston, Texas

ABSTRACT

[^0]By Alan H. Feiveson
Manned Spacecraft Center

SUMMARY

Trajectory estimation simulation problems make desirable a rapid procedure for generating random sample-covariance matrices based on large numbers of observations. This paper first presents an algorithm for such a procedure and then shows its derivation from the Cochran-Fisher Theorem concerning quadratic forms. Finally, an example is given.

INTRODUCTION

In trajectory analysis, the "best" estimate of the state is a function of the covariance matrices R_{i} associated with the observation stations. For practical use, estimates must be substituted for the unknown exact R_{i}. In some cases, estimating the R_{i} directly from the observations may be desirable.

The well-known "best", or unbiased-maximum-likelihood-based (u.m.l.b.), estimator of a covariance matrix R_{i} is given by

$$
\begin{equation*}
S=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-x\right)\left(X_{i}-x^{T}\right) \tag{1}
\end{equation*}
$$

where the X_{i} are the observation vectors and n is the sample size. To simulate a procedure where u.m.l.b. estimates are used, random matrices must be generated that have the same distribution as these estimates.

The obvious method of generating a matrix S^{*}, having the same distribution as S, is to generate the n observation vectors $\left\{X_{i} ; \quad i=1, \ldots n\right\}$. But if each vector X_{i} has p components, generating n observation vectors necessitates generating at least np i indom numbers.

This paper presents an alternate method of generating S^{*} which requires using only $p(p+l) / 2$ random numbers - usually a much smaller quantity than np .

SYMBOLS

$A, A^{*}, B, B^{*}, C, R, W, S, S^{*}$
A_{i}
$b_{i j}$
$b_{i j}^{*}$
C^{T}
I
i, j, k
$\mathbb{N}(\emptyset, R)$
$\mathbb{N}_{j}, N_{i j}$
n
p
transpose of the matrix C
identity matrix
indices of summation
normally distributed with mean \varnothing and covariance matrix R
standardized normal random variates
sample size
size of covariance matrix (number of variables in one observation)
Q
matrix equal to $I-\sum_{k=1}^{j-1} Q_{k}$
Q_{i}
r_{j}
matrix equal to $y_{i}^{T} y_{i} / y_{i} y_{i}^{T}$
$j^{\text {th }}$ row of matrix W
$r_{j}{ }^{T}$
transpose of r_{j}

```
t T
v
w ij
x
' j
y ['
z
x
vi
\phi
~
```

```
transpose of th
```

transpose of th
random variable
random variable

```
ij}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ element of W
```

ij}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ element of W
I x (n - I) random vector in
I x (n - I) random vector in
Cochran's Theorem
Cochran's Theorem
jth}\mathrm{ of a set of orthogonal 1 x (n - 1)
jth}\mathrm{ of a set of orthogonal 1 x (n - 1)
vectors
vectors
transpose of }\mp@subsup{y}{j}{
transpose of }\mp@subsup{y}{j}{
p x I vectors
p x I vectors
chi-square with n - j degrees of freedom
chi-square with n - j degrees of freedom
rank of A}\mp@subsup{A}{i}{
rank of A}\mp@subsup{A}{i}{
p x l null vector
p x l null vector
is distributed as

```
is distributed as
```

METHOD

Let $S=A /(n-1)$ be the $u . m . l . b$. estimator of $a p x p$ covariance matrix R from an independent normally distributed sample of size n. It can be shown (ref. l) that

$$
\begin{equation*}
A=\sum_{k=1}^{n-1} z_{k} z_{k} T^{T} \tag{2}
\end{equation*}
$$

where the $p \times l$ vectors $\left\{z_{k} ; k=1,2, \ldots n-1\right\}$ are independent and normally distributed with zero mean and covariance matrix R.

Since R is a covariance matrix, it is semipositive definite. Therefore, a matrix C exists such that

$$
\begin{equation*}
C C^{T}=R \tag{3}
\end{equation*}
$$

It follows that the vector z_{k} can be written

$$
\begin{equation*}
z_{k}=c t_{k} \tag{4}
\end{equation*}
$$

where

$$
t_{k} \sim \mathbb{N}(\phi, I)
$$

Let

$$
\begin{equation*}
B=\left\{b_{i j}\right\}=\sum_{k=1}^{n-1} t_{k} t_{k}^{T} \tag{5}
\end{equation*}
$$

Then,

$$
\begin{gather*}
C B C^{T}=C \sum_{k=1}^{n-1} t_{k} t_{k}{ }^{T} C^{T}=A \tag{6}\\
\text { Generation of } A^{*}
\end{gather*}
$$

Let A^{*} be a generated matrix whose elements have the same joint distribution as those of A. To obtain $S^{*}=A^{*} /(n-1)$, it is necessary only to generate a matrix B^{*} whose elements are distributed as the elements of B. Then, A^{*} is computed so that

$$
\begin{equation*}
A^{*}=C B^{*} C^{T} \tag{7}
\end{equation*}
$$

Hence, the problem is reduced to generating the random symmetric matrix B^{*}. An algorithm for generating B^{*} is given below. For a justification of this procedure, refer to the Analysis.

$$
\text { Generation of } B^{*}
$$

1. Generate p independent x^{2} variables $v_{j}, j=1, \ldots p$, having $n-j$ degrees of freedom. One method of obtaining v_{j} is to generate a standard normal variate ${ }^{\mathbb{N}}{ }_{j}$ and substitute it into the Wilson-Hilferty X^{2} approximation (ref. 2). The approximation can be written

$$
v_{j} \approx(n-j)\left[I-\frac{2}{9(n-j)}+N_{j} \sqrt{\frac{2}{9(n-j)}}\right]^{3}
$$

2. Generate $p(p-1) / 2$ independent standard normal variates $N_{i j}$, $i<j$, and $j=1,2, \ldots p$.
3. Form the diagonal elements of $B^{*}\left(b_{j j}^{*}, j=l, \ldots p\right)$ as follows:

$$
\begin{gathered}
b_{l l}^{*}=v_{l} \\
b^{*}{ }_{j j}=v_{j}+\sum_{i=1}^{j-l} N_{i j}{ }^{2}(j>l)
\end{gathered}
$$

4. Form the off-diagonal elements of B^{*} as follows:

$$
\begin{gathered}
b_{l j}^{*}=b_{j l}^{*}=N_{l j} \sqrt{v_{l}} \\
b_{i j}^{*}=b_{j i}^{*}=N_{i j} \sqrt{v_{i}}+\sum_{k=1}^{i-1} N_{k i} N_{k j}(i>1)
\end{gathered}
$$

Once B^{*} has been generated, A^{*} follows from equation (7).

Using the notation of the Method section and noting that by joining the vectors t_{k} and $k=1,2, \ldots n-1$ as columns, a $p x(n-1)$ matrix W can be formed

$$
W=\left\{w_{i j}\right\}=\left(\left[t_{1}\right]\left[t_{2}\right] \quad \cdots \quad\left[t_{n-1}\right]\right)=\left(\begin{array}{c}
\sqrt{r_{1}} \\
\stackrel{r_{1}}{r_{2}} \\
\vdots \\
\frac{r_{p}}{r_{p}}
\end{array}\right)
$$

where r_{j} is the $j^{\text {th }} 1 \mathrm{x}(\mathrm{n}-1)$ row vector of W. Thus, the id th alemont of $B, b_{i j}$, is equal to $r_{i} r_{j}{ }^{T}$.

By using the Schmidt orthogonalization process, a set of orthogonal vectors $\left\{y_{j}, j=1,2, \cdot \cdots p\right\}$ can be generated where

$$
\begin{align*}
y_{j} & =r_{j}-r_{j} y_{l}^{T} y / y_{1} y_{l}^{T}-\ldots r_{j} y_{j-1}^{T}{ }_{y_{j-1}} / y_{j-1} y_{j-1}^{T} \\
& =r_{j}\left(I-Q_{l}-Q_{2}-\cdots Q_{j-1}\right) \\
& =r_{j} Q \tag{8}
\end{align*}
$$

where $Q_{i}=y_{i} T_{y_{i}} / y_{i} y_{i}^{T}, Q=I-\sum_{k=1}^{j-I} Q_{k}$ and I is the $(n-I) x(n-I)$ identity matrix.

The matrices $Q, Q_{1}, \ldots Q_{j-1}$ have the following significant properties:

1. $Q_{1}, Q_{2}, \ldots Q_{j-1}$ have a rank of one.
2. $Q_{i} Q_{j}=0$ for $i \neq j$.
3. $Q, Q_{1}, \ldots Q_{j-1}$ are symmetric idempotent.
4. Q has rank $n-j$.

Proof
l. The vector y_{i} clearly spans the entire range space of Q_{i}.
2. $Q_{i} Q_{j}=\frac{y_{i}{ }^{T} y_{i} y_{j}{ }^{T} y_{j}}{\left(y_{i} y_{i}{ }^{T}\right)\left(y_{j} y_{j}^{T}\right)}=0$ because $y_{i}{ }^{T}{ }^{T}=0$ for $i \neq j$.
3. Clearly Q_{i} is symmetric. To show idempotence,

$$
Q_{i} Q_{i}=\frac{y_{i}^{T}\left(y_{i} y_{i}^{T}\right) y_{i}}{\left|y_{i} y_{i}^{T}\right|\left|y_{i} y_{i}^{T}\right|}=\frac{y_{i}^{T} y_{i}}{y_{i} y_{i}^{T}}=Q_{i}
$$

and

$$
\begin{aligned}
Q Q & =\left(I-Q_{1}-\ldots Q_{j-1}\right)\left(I-Q_{1}-\ldots Q_{j-1}\right) \\
& =I-2\left(Q_{1}+\ldots Q_{j-1}\right)+\left(Q_{1}+\ldots Q_{j-1}\right) \\
& =I-\left(Q_{1}+\ldots Q_{j+1}\right)=Q
\end{aligned}
$$

4. This follows from elementary theorems on idempotent matrices (ref. 5). Consider the following form of the Cochran-Fisher Theorem.

Theorem

If x is a $1 \times(n-1)$ random vector distributed $N(\phi, I)$, and if $x x^{T}=\sum_{i=1}^{k} x A_{i} x^{T}$ the rank of the sum of the A_{i} 's equalling the sum of tree ranks of the separate A_{i} 's is a necessary and sufficient condition for $X A X^{T}$ to be distributed as central x^{2} with v_{i} degrees of freedom (where v_{i} is the rank of A_{i}), and for $x A_{1} x^{T}, ~ x A_{2} x^{T}, \ldots x A_{k} x^{T}$ to be jointly independent (ref. 4).

Note that the inner product $r_{j} r_{j}{ }^{T}$ can be written

$$
\begin{align*}
r_{j} r_{j}^{T} & =r_{j} I r_{j}^{T}=r_{j}\left(Q+Q_{1}+\ldots Q_{j-1}\right) r_{j}^{T} \\
& =r_{j} Q r_{j}^{T}+\sum_{k=1}^{j-1} r_{j} Q_{k} r_{j}^{T} \tag{9}
\end{align*}
$$

Equation (9) satisfies the condition of the Theorem where the matrices $Q, Q_{1}, \cdots Q_{j-1}$ play the role of the A_{i}. It therefore follows that

$$
r_{j} Q r_{j}^{T}=r_{j} Q Q^{T} r_{j}^{T}=r_{j} Q\left(r_{j}\right)^{T}=y_{j} y_{j}^{T} \sim \chi^{2}(n-j)
$$

Since the y_{j} are mutually orthogonal and normally distributed, the quantities $y_{j} y_{j}^{T}, \quad(j=1,2, \ldots p)$, are mutually independent. They can be generated independently using random variables v_{j}, having the x^{2} distribution with n - j degrees of freedom.

$$
\begin{align*}
& \text { Once the set }\left\{y_{j} y_{j}^{T}, j=1 \ldots p\right\} \text { is given, the quantities } \\
& \sigma_{i j}=\left(r_{j} Q_{i} r_{j}^{T}\right)^{I / 2}=\left(\frac{r_{j} y_{i}^{T} y_{i} r_{j}^{T}}{y_{i} y_{i}^{T}}\right)^{1 / 2}=\frac{r_{j} y_{i}^{T}}{\left(\left.y_{i} y_{i}^{T}\right|^{I / 2}\right.} \tag{10}
\end{align*}
$$

being normalized linear combinations of $N(0, l)$ variates, are themselves, $N(0,1)$ variates.

Since all the elements of the matrix W are mutually independent, $\sigma_{i j}$ is independent of $\sigma_{i \prime j}$, for $j \neq j^{\prime}$, $i<j$, $i^{\prime}<j^{\prime}$. Furthermore, as a consequence of the Theorem, it is known that for $i \neq i^{\prime}, \sigma_{i j}$ is independent
of $\sigma_{i \prime j}$. Therefore, the $p(p+1) / 2$ quantities, $y_{j} y_{j}^{T}$ and $\sigma_{i j}(j=1, p$; $i<j$), can be generated independently, using the x^{2} random variable v_{j} for $y_{j} y_{j}^{T}$ and standardized normal variates $N_{i j}$, for $\sigma_{i j}$.

The diagonal elements of B^{*} are easily computed from equation (9). Let

$$
\begin{aligned}
& b_{l I}^{*}=v_{1} \\
& b_{j j}^{*}=v_{j}+\sum_{i=1}^{j-1} N_{i j}^{2}(j>1)
\end{aligned}
$$

Since $\sigma_{i j} \sqrt{y_{i} y_{i}{ }^{T}}=r_{j} y_{i}{ }^{T}$, it follows that

$$
N_{i j} \sqrt{\bar{v}_{i}} \sim r_{j} \mathrm{y}_{i}^{\mathrm{T}}
$$

From equation (7) for i < j,

$$
\begin{aligned}
& \sim r_{j} r_{i}^{T}-\left[\frac{N_{l i}}{\sqrt{V_{l}}}\left(r_{j} y_{2}^{T}\right)+\frac{N_{2 i}}{\sqrt{V_{2}}}\left(r_{j} y_{2}^{T}\right)+\ldots \frac{N_{i-l i}}{\sqrt{v_{i-1}}}\left(r_{j} y_{i-1}^{T}\right)\right] \\
& \sim b_{j i}-\left(\mathbb{N}_{1 i} \mathbb{N}_{1 j}+N_{2 i} \mathbb{N}_{2 j}+\ldots \mathbb{N}_{i-l i} \mathbb{N}_{i-1 j}\right)
\end{aligned}
$$

Therefore, $b^{*}{ }_{i j}=b_{j i}^{*}$ can be generated by

$$
\begin{aligned}
& b_{i j}^{*}=N_{i j} \sqrt{v_{I}} \\
& b_{i j}^{*}=N_{i j} \sqrt{v_{i}}+\sum_{k=1}^{i-1} N_{k i} N_{k j}(i-1) .
\end{aligned}
$$

Example

Consider the generation of S^{*} based on 101 observations
when R is given to be $\left[\begin{array}{ccc}.45 & -.21 & 0 \\ -.21 & .50 & .05 \\ 0 & .05 & .25\end{array}\right]$

Then $n=101, p=3$, and $c=\left[\begin{array}{ccc}.6 & -.3 & 0 \\ 0 & .7 & .1 \\ 0 & 0 & .5\end{array}\right]$
It is necessary to generate only 6 (instead of 606) random numbers from an $\mathbb{N}(0,1)$ population. They are:

$$
\begin{array}{ll}
\mathrm{N}_{1}=-0.258 & \mathrm{~N}_{12}=-0.585 \\
\mathrm{~N}_{2}=-0.882 & \mathrm{~N}_{13}=0.332 \\
\mathrm{~N}_{3}=1.869 & \mathrm{~N}_{23}=-0.110
\end{array}
$$

The Wilson-Hilferty x^{2} approximation gives:

$$
\begin{aligned}
& v_{1}=100\left[1-\frac{2}{(9)(100)}+\frac{(-0.238) \sqrt{2}}{\sqrt{900}}\right]^{3}=96.027 \\
& v_{2}=99\left[1-\frac{2}{(9)(99)}+\frac{(-0.882) \sqrt{2}}{\sqrt{891}}\right]^{3}=86.492 \\
& v_{3}=98\left[1-\frac{2}{(9)(98)}+\frac{(-1.869) \sqrt{2}}{\sqrt{882}}\right]^{3}=125.769
\end{aligned}
$$

Finally, the procedure given in the Method section yields

$$
\begin{aligned}
& b_{11}^{*}=96.027 \\
& b^{*}{ }_{22}=86.492+(-0.585)^{2}=86.835 \\
& b^{*}=125.769+(0.332)^{2}+(-0.110)^{2}=125.891 \\
& b^{*}=-0.585 \sqrt{96.027}=-5.734 \\
& b_{12}^{*}=0.332 \sqrt{96.027}=3.250 \\
& b^{*}{ }_{23}=-0.110 \sqrt{86.492}+(-0.585)(0.332)=-1.216
\end{aligned}
$$

Thus,

$$
\begin{aligned}
A^{*} & =C^{T_{B}^{*}}{ }^{*} \mathrm{C} \\
& =\left[\begin{array}{rrr}
44.449 & -20.412 & 1.157 \\
-20.412 & 43.638 & 5.869 \\
1.157 & 5.869 & 31.473
\end{array}\right]
\end{aligned}
$$

and

$$
S^{*}=A^{*} /(n-1)=\left[\begin{array}{rrr}
0.444 & -0.204 & 0.012 \\
-0.204 & 0.436 & 0.059 \\
0.012 & 0.059 & 0.315
\end{array}\right]
$$

CONCLUDING REMARKS

This report has presented an economical method of generating a $p x p$ sample covariance matrix based on n observations. The method requires the generation of only $p(p+1) / 2$ random numbers instead of the usually much larger quantity np. The matrix C referred to in the Method section may be obtained by methods readily adaptable to computers.

Manned Spacecraft Center
National Aeronautics and Space Administration Houston, Texas, October 18, 1965

REFERENCES

1. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, Inc., 1958, p. 53.
2. Wilson, E. B.; and Hilferty, M. M.: The Distribution of Chi-Square. Proc. Nat. Acad. Sci., USA 17, 1931, pp. 684-688.
3. Graybill, F. A.: An Introduction to Linear Statistical Models, Vol. l. McGraw-Hill Book Co., Inc., 1961, pp. 16, 86.
4. Perlis, S.: Theory of Matrices. Addison-Wesley, 1952, p. 89.
> "The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its attivities and the results thereof."

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washingłon, D.C. 20546

[^0]: In simulating trajectory estimation problems, a rapid procedure is desirable for generating random sample-covariance matrices based on large numbers of observations. By using existing random-number generators, an economical method is developed that yields a matrix S^{*} whose elements have the same joint distribution as the elements of the sample-covariance matrix S.

