NASA TECHNICAL NOTE

THE GENERATION OF A RANDOM SAMPLE-COVARIANCE MATRIX

by Alan H. Feiveson Manned Spacecraft Center Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1966

NASA TN D-3207

All setting of the set

THE GENERATION OF A RANDOM SAMPLE-COVARIANCE MATRIX

1

Ł

By Alan H. Feiveson

Manned Spacecraft Center Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – Price \$1.00

ABSTRACT

In simulating trajectory estimation problems, a rapid procedure is desirable for generating random sample-covariance matrices based on large numbers of observations. By using existing random-number generators, an economical method is developed that yields a matrix S^{*} whose elements have the same joint distribution as the elements of the sample-covariance matrix S.

ĥ

ł

THE GENERATION OF A RANDOM SAMPLE-COVARIANCE MATRIX

By Alan H. Feiveson Manned Spacecraft Center

SUMMARY

Trajectory estimation simulation problems make desirable a rapid procedure for generating random sample-covariance matrices based on large numbers of observations. This paper first presents an algorithm for such a procedure and then shows its derivation from the Cochran-Fisher Theorem concerning quadratic forms. Finally, an example is given.

INTRODUCTION

In trajectory analysis, the "best" estimate of the state is a function of the covariance matrices R_i associated with the observation stations. For practical use, estimates must be substituted for the unknown exact R_i . In some cases, estimating the R_i directly from the observations may be desirable.

The well-known "best", or unbiased-maximum-likelihood-based (u.m.l.b.), estimator of a covariance matrix R_i is given by

$$S = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - X \right) \left(X_{i} - X^{T} \right)$$
(1)

where the X_{i} are the observation vectors and n is the sample size. To simulate a procedure where u.m.l.b. estimates are used, random matrices must be generated that have the same distribution as these estimates.

The obvious method of generating a matrix S^* , having the same distribution as S, is to generate the n observation vectors $\{X_i; i = 1, ..., n\}$. But if each vector X_i has p components, generating n observation vectors necessitates generating at least np handom numbers. This paper presents an alternate method of generating S^* which requires using only p(p + 1)/2 random numbers - usually a much smaller quantity than np.

SYMBOLS

$A, A^*, B, B^*, C, R, W, S, S^*$	matrices		
A _i	matrices in Cochran's Theorem		
^b ij	ij th element of B		
b [*] ij	ij^{th} element of B^{\star}		
c^{T}	transpose of the matrix C		
I	identity matrix		
i, j, k	indices of summation		
$N(\phi, R)$	normally distributed with mean ϕ and covariance matrix R		
N _j , N _{ij}	standardized normal random variates		
n	sample size		
p	size of covariance matrix (number of variables in one observation)		
Q	matrix equal to I - $\sum_{k=1}^{j-l} \ \textbf{Q}_k$		
Q _i	matrix equal to $y_i^T y_i / y_i y_i^T$		
rj	j th row of matrix W		
rj ^T	transpose of rj		

÷

2

$$t_k$$
transpose of t_k v_j random variable w_{ij} ij^{th} element of Wx $l x (n - 1)$ random vector in
Cochran's Theorem y_j j^{th} of a set of orthogonal $l x (n - 1)$
vectors y_j^T transpose of y_j z_k, t_k $p x l$ vectors $x^2 (n - j)$ chi-square with $n - j$ degrees of freedom
rank of A_i
 ϕ ϕ $p x l$ null vector \sim is distributed as

METHOD

Let S = A/(n - 1) be the u.m.l.b. estimator of a $p \ge p$ covariance matrix R from an independent normally distributed sample of size n. It can be shown (ref. 1) that

$$A = \sum_{k=1}^{n-1} z_k z_k^{T}$$
(2)

where the p x l vectors $\{z_k; k = 1, 2, ..., n - l\}$ are independent and normally distributed with zero mean and covariance matrix R.

ł

Since R is a covariance matrix, it is semipositive definite. Therefore, a matrix C exists such that

$$CC^{T} = R$$
 (3)

It follows that the vector z_k can be written

$$z_k = Ct_k \tag{4}$$

where

$$t_k \sim N(\phi, I)$$

Let

$$B = \left\{ b_{ij} \right\} = \sum_{k=1}^{n-1} t_k t_k^{T}$$
(5)

Then,

$$CBC^{T} = C \sum_{k=1}^{n-1} t_{k} t_{k}^{T} C^{T} = A$$
(6)

Generation of A

Let A^* be a generated matrix whose elements have the same joint distribution as those of A. To obtain $S^* = A^*/(n - 1)$, it is necessary only to generate a matrix B^* whose elements are distributed as the elements of B. Then, A^* is computed so that

$$A^* = CB^*C^T$$
(7)

Hence, the problem is reduced to generating the random symmetric matrix B^* . An algorithm for generating B^* is given below. For a justification of this procedure, refer to the Analysis.

Generation of
$$B^{\star}$$

1. Generate p independent χ^2 variables v_j , j = 1, ...p, having n - j degrees of freedom. One method of obtaining v_j is to generate a standard normal variate N_j and substitute it into the Wilson-Hilferty χ^2 approximation (ref. 2). The approximation can be written

$$v_j \approx (n - j) \left[1 - \frac{2}{9(n - j)} + N_j \sqrt{\frac{2}{9(n - j)}} \right]^3$$

2. Generate p(p - 1)/2 independent standard normal variates N_{ij} , i < j, and j = 1, 2, ...p.

3. Form the diagonal elements of $B \begin{pmatrix} * \\ b \\ jj \end{pmatrix}$, $j = 1, \dots p$ as follows:

$$b_{jj}^{*} = v_{j} + \sum_{i=1}^{j-1} N_{ij}^{2}(j > 1)$$

4. Form the off-diagonal elements of B^{\star} as follows:

$$b_{1j}^{*} = b_{j1}^{*} = N_{1j}\sqrt{v_{1}}$$

$$b_{ij}^{*} = b_{ji}^{*} = N_{ij}\sqrt{v_{i}} + \sum_{k=1}^{i-1} N_{ki}N_{kj} (i > 1)$$

Once B^* has been generated, A^* follows from equation (7).

ANALYSIS

Using the notation of the Method section and noting that by joining the vectors t_k and k = 1, 2, ..., n - 1 as columns, a $p \ge (n-1)$ matrix W can be formed

$$W = \left\{ w_{i,j} \right\} = \left(\begin{bmatrix} t_1 \end{bmatrix} \begin{bmatrix} t_2 \end{bmatrix} \dots \begin{bmatrix} t_{n-1} \end{bmatrix} \right) = \left(\begin{bmatrix} \frac{r_1}{r_2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ p \end{bmatrix} \right)$$

where r_j is the jth lx (n - l) row vector of W. Thus, the ijth element of B, b_{ij} , is equal to $r_i r_j^T$.

By using the Schmidt orthogonalization process, a set of orthogonal vectors $\{y_j, j = 1, 2, ..., p\}$ can be generated where

$$y_{j} = r_{j} - r_{j} y_{1}^{T} y / y_{1} y_{1}^{T} - \cdots r_{j} y_{j-1}^{T} y_{j-1} / y_{j-1} y_{j-1}^{T}$$
$$= r_{j} (I - Q_{1} - Q_{2} - \cdots Q_{j-1})$$
$$= r_{j} Q$$
(8)

where $Q_i = y_i^T y_i / y_i y_i^T$, $Q = I - \sum_{k=1}^{J^{-\perp}} Q_k$ and I is the $(n - 1) \times (n - 1)$ identity matrix.

The matrices Q, Q₁, ... Q_{j-1} have the following significant properties: 1. Q₁, Q₂, ... Q_{j-1} have a rank of one. 2. Q_iQ_j = 0 for $i \neq j$. 3. Q, Q₁, ... Q_{j-1} are symmetric idempotents. 4. Q has rank n - j.

Proof

1. The vector y_i clearly spans the entire range space of Q_i .

2.
$$Q_{i}Q_{j} = \frac{y_{i}^{T}y_{i}y_{j}^{T}y_{j}}{\left(y_{j}y_{i}^{T}\right)\left(y_{j}y_{j}^{T}\right)} = 0$$
 because $y_{i}y_{j}^{T} = 0$ for $i \neq j$.

3. Clearly \textbf{Q}_i is symmetric. To show idempotence,

$$Q_{i}Q_{i} = \frac{y_{i}^{T} \left(y_{i}y_{i}^{T}\right)y_{i}}{\left(y_{i}y_{i}^{T}\right) \left(y_{i}y_{i}^{T}\right)} = \frac{y_{i}^{T}y_{i}}{y_{i}y_{i}} = Q_{i}$$

and

$$QQ = \left(I - Q_{1} - \dots Q_{j-1}\right) \left(I - Q_{1} - \dots Q_{j-1}\right)$$
$$= I - 2 \left(Q_{1} + \dots Q_{j-1}\right) + \left(Q_{1} + \dots Q_{j-1}\right)$$
$$= I - \left(Q_{1} + \dots Q_{j+1}\right) = Q$$

4. This follows from elementary theorems on idempotent matrices (ref. 3). Consider the following form of the Cochran-Fisher Theorem.

Theorem

If x is a l x (n - 1) random vector distributed N (
$$\emptyset$$
, I), and if
 $xx^{T} = \sum_{i=1}^{k} xA_{i}x^{T}$ the rank of the sum of the A_{i} 's equalling the sum of the
ranks of the separate A_{i} 's is a necessary and sufficient condition for $xA_{i}x^{T}$
to be distributed as central x^{2} with v_{i} degrees of freedom (where v_{i} is
the rank of A_{i}), and for $xA_{1}x^{T}$, $xA_{2}x^{T}$, ... $xA_{k}x^{T}$ to be jointly independent
(ref. 4).

Note that the inner product $r_j r_j^T$ can be written

r

$${}_{j}r_{j}^{T} = r_{j}Ir_{j}^{T} = r_{j} \left(Q + Q_{1} + \dots Q_{j-1} \right) r_{j}^{T}$$
$$= r_{j}Qr_{j}^{T} + \sum_{k=1}^{j-1} r_{j}Q_{k}r_{j}^{T}$$
(9)

Equation (9) satisfies the condition of the Theorem where the matrices Q, Q_1 , \dots Q_{j-1} play the role of the A_i . It therefore follows that

$$\mathbf{r}_{j}\mathbf{Q}\mathbf{r}_{j}^{\mathrm{T}} = \mathbf{r}_{j}\mathbf{Q}\mathbf{Q}^{\mathrm{T}}\mathbf{r}_{j}^{\mathrm{T}} = \mathbf{r}_{j}\mathbf{Q} \left(\mathbf{r}_{j}\mathbf{Q}\right)^{\mathrm{T}} = \mathbf{y}_{j}\mathbf{y}_{j}^{\mathrm{T}} \sim \chi^{2}(n - j)$$

Since the y_j are mutually orthogonal and normally distributed, the quantities $y_j y_j^T$, (j = 1, 2, ..., p), are mutually independent. They can be generated independently using random variables v_j , having the χ^2 distribution with n - j degrees of freedom.

Once the set
$$\left\{ y_{j}y_{j}^{T}, j = 1 \dots p \right\}$$
 is given, the quantities

$$\sigma_{ij} = \left(r_{j}q_{i}r_{j}^{T} \right)^{1/2} = \left(\frac{r_{j}y_{i}^{T}y_{i}r_{j}^{T}}{y_{i}y_{i}^{T}} \right)^{1/2} = \frac{r_{j}y_{i}^{T}}{\left(y_{i}y_{i}^{T} \right)^{1/2}}$$
(10)

being normalized linear combinations of N(0,1) variates, are themselves, N(0,1) variates.

Since all the elements of the matrix W are mutually independent, σ_{ij} is independent of $\sigma_{i'j'}$, for $j \neq j'$, i < j, i' < j'. Furthermore, as a consequence of the Theorem, it is known that for $i \neq i'$, σ_{ij} is independent

of $\sigma_{i'j}$. Therefore, the p(p + 1)/2 quantities, $y_j y_j^T$ and $\sigma_{ij}(j = 1, p;$ i < j), can be generated independently, using the χ^2 random variable v_j for $y_j y_j^T$ and standardized normal variates N_{ij} , for σ_{ij} .

The diagonal elements of B^* are easily computed from equation (9). Let

$$b^{*}_{ll} = v_{l}$$

 $b^{*}_{jj} = v_{j} + \sum_{i=l}^{j-l} N_{ij}^{2} (j > l)$

Since $\sigma_{ij} \sqrt{y_i y_i^T} = r_j y_i^T$, it follows that

$$N_{ij} \sqrt{v_i} \sim r_j y_i^T$$

From equation (7) for i < j,

$$r_{j} y_{i}^{T} = r_{j} \left[r_{i}^{T} - \frac{\left(r_{i} y_{1}^{T}\right)}{\left(y_{1} y_{1}^{T}\right)} y_{1}^{T} - \frac{\left(r_{i} y_{2}^{T}\right)}{\left(y_{2} y_{2}^{T}\right)} y_{2}^{T} - \dots \frac{\left(r_{i} y_{i-1}^{T}\right)}{\left(y_{i-1} y_{i-1}^{T}\right)} y_{i-1}^{T} \right]$$

$$\sim r_{j} r_{i}^{T} - \left[\frac{N_{1i}}{\sqrt{v_{1}}} \left(r_{j} y_{2}^{T}\right) + \frac{N_{2i}}{\sqrt{v_{2}}} \left(r_{j} y_{2}^{T}\right) + \dots \frac{N_{i-1i}}{\sqrt{v_{i-1}}} \left(r_{j} y_{i-1}^{T}\right) \right]$$

$$\sim b_{ji} - \left(N_{1i} N_{1j} + N_{2i} N_{2j} + \dots N_{i-1i} N_{i-1j}\right)$$

Therefore, $b_{ij}^* = b_{ji}^*$ can be generated by

$$b_{ij}^{*} = N_{ij} \sqrt{v_{l}}$$

$$b_{ij}^{*} = N_{ij} \sqrt{v_{i}} + \sum_{k=l}^{i-l} N_{ki} N_{kj} (i - l).$$

Example

Consider the generation of S^{\star} based on 101 observations

when R is given to be $\begin{bmatrix} .45 & -.21 & 0 \\ -.21 & .50 & .05 \\ 0 & .05 & .25 \end{bmatrix}$

Then
$$n \approx 101$$
, $p = 3$, and $C = \begin{bmatrix} .6 & -.3 & 0 \\ 0 & .7 & .1 \\ 0 & 0 & .5 \end{bmatrix}$

It is necessary to generate only 6 (instead of 606) random numbers from an N(0,1) population. They are:

Nl	=	-0.258	N ₁₂	=	-0.585
^N 2	=	-0.882	N ₁₃	=	0.332
N 3	=	1.869	^N 23	=	-0.110

The Wilson-Hilferty χ^2 approximation gives:

$$v_{1} = 100 \left[1 - \frac{2}{(9)(100)} + \frac{(-0.238)\sqrt{2}}{\sqrt{900}} \right]^{3} = 96.027$$

$$v_{2} = 99 \left[1 - \frac{2}{(9)(99)} + \frac{(-0.882)\sqrt{2}}{\sqrt{891}} \right]^{3} = 86.492$$

$$v_{3} = 98 \left[1 - \frac{2}{(9)(98)} + \frac{(-1.869)\sqrt{2}}{\sqrt{882}} \right]^{3} = 125.769$$

Finally, the procedure given in the Method section yields

$$b_{11}^{*} = 96.027$$

$$b_{22}^{*} = 86.492 + (-0.585)^{2} = 86.835$$

$$b_{33}^{*} = 125.769 + (0.332)^{2} + (-0.110)^{2} = 125.891$$

$$b_{12}^{*} = -0.585 \sqrt{96.027} = -5.734$$

$$b_{13}^{*} = 0.332 \sqrt{96.027} = 3.250$$

$$b_{23}^{*} = -0.110 \sqrt{86.492} + (-0.585) (0.332) = -1.216$$

Thus,

$$A^{*} = C^{T}B^{*}C$$
$$= \begin{bmatrix} 44.449 & -20.412 & 1.157 \\ -20.412 & 43.638 & 5.869 \\ 1.157 & 5.869 & 31.473 \end{bmatrix}$$

11

_

$$s^* = A^*/(n-1) = \begin{bmatrix} 0.444 & -0.204 & 0.012 \\ -0.204 & 0.436 & 0.059 \\ 0.012 & 0.059 & 0.315 \end{bmatrix}$$

CONCLUDING REMARKS

This report has presented an economical method of generating a $p \ge p$ sample covariance matrix based on n observations. The method requires the generation of only p(p + 1)/2 random numbers instead of the usually much larger quantity np. The matrix C referred to in the Method section may be obtained by methods readily adaptable to computers.

Manned Spacecraft Center National Aeronautics and Space Administration Houston, Texas, October 18, 1965

REFERENCES

- 1. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, Inc., 1958, p. 53.
- 2. Wilson, E. B.; and Hilferty, M. M.: The Distribution of Chi-Square. Proc. Nat. Acad. Sci., USA 17, 1931, pp. 684-688.
- 3. Graybill, F. A.: An Introduction to Linear Statistical Models, Vol. 1. McGraw-Hill Book Co., Inc., 1961, pp. 16, 86.
- 4. Perlis, S.: Theory of Matrices. Addison-Wesley, 1952, p. 89.

and

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546