A NOTE ON LAMBERT'S THEOREM

by
E. R. Lancaster*, R. C. Blanchard* and R. A. Devaney ${ }^{\dagger}$

February 1966

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

[^0]
A NOTE ON LAMBERT'S THEOREM

This note combines all the various cases of Lambert's Theorem into a single form which is particularly convenient for numerical work. This is made possible by appropriate choice of parameter and independent variable.

Suppose a particle in a gravitational central force field has distances r_{1} and r_{2} at times t_{1} and t_{2} from the center of attraction. Let c be the distance and θ the central angle between the positions of the particle at the two times. Define

$$
\begin{aligned}
& \mathrm{s}=\left(\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{c}\right) / 2 \\
& \mathrm{~K}=1-\mathrm{c} / \mathrm{s} \\
& \mathrm{q}= \pm \mathrm{K}^{1 / 2}
\end{aligned}
$$

The sign of q is taken care of by the angle θ if we make use of
$c^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}-2 r_{1} r_{2} \cos \theta$
to derive

$$
q=\left[\left(r_{1} r_{2}\right)^{1 / 2} / s\right] \cos (\theta / 2)
$$

We further define

G = universal gravitational constant
$M=$ mass of attracting body
$\mu=\mathbf{G M}$
a = semimajor axis of transfer orbit
E $=-\mathrm{s} / 2 \mathrm{a}$ for elliptic transfer
$=s / 2$ a for hyperbolic transfer
$T=(8 \mu / s)^{1 / 2}\left(t_{2}-t_{1}\right) / s$
$m=$ number of complete circuits during transfer time.
Note that $-1 \leq q \leq 1,0<\mathrm{E}<\infty$ for hyperbolic transfer, $-1 \leq \mathrm{E}<0$ for elliptic transfer, and $\mathrm{E}=0$ for parabolic transfer. Also $0 \leq \theta \leq \pi$ if $0 \leq \mathrm{q} \leq 1$ and $\pi<\theta \leq 2 \pi$ if $-1 \leq \mathrm{q}<0$.

Lambert's Theorem ${ }^{1}$ for elliptic transfer gives

$$
\begin{aligned}
& \mathrm{T}=(-\mathrm{E})^{-3 / 2}[2 \mathrm{~m} \pi+\alpha-\beta-(\sin \alpha-\sin \beta)] \\
& \mathbf{E}=-\sin ^{2}(\alpha / 2), 0 \leq \alpha \leq 2 \pi \\
& \sin (\beta / 2)=\mathrm{q} \sin (\alpha / 2), \quad-\pi \leq \beta \leq \pi
\end{aligned}
$$

For hyperbolic transfer,

$$
\begin{align*}
& T=-(E)^{-3 / 2}[\gamma-\delta-(\sinh \gamma-\sinh \delta)] \tag{2}\\
& E=\sinh ^{2}(\gamma / 2) \\
& \sinh (\delta / 2)=\mathrm{q} \mathrm{E}^{1 / 2}
\end{align*}
$$

If E is chosen ${ }^{2}$ as the independent variable, α is ambiguous. We avoid any ambiguity by choosing as the independent variable

$$
\begin{aligned}
\mathbf{x} & =\cos (\alpha / 2),-1 \leq x<1 \\
& =\cosh (\gamma / 2), \mathbf{x}>1
\end{aligned}
$$

For both elliptic and hyperbolic transfer
$\mathrm{E}=\mathrm{x}^{2}-1$.

For the elliptic case let

$$
\begin{aligned}
& \mathbf{y}=\sin (\alpha / 2)=(-E)^{1 / 2} \\
& \mathbf{z}=\cos (\beta / 2)=(1+\mathrm{KE})^{1 / 2} \\
& \mathbf{f}=\sin (1 / 2)(\alpha-\beta)=\mathbf{y}(\mathbf{z}-\mathbf{q} \mathbf{x}) \\
& \mathbf{g}=\cos (1 / 2)(\alpha-\beta)=\mathbf{x z}-\mathbf{q E} \\
& 0 \leq \alpha-\beta \leq 2 \pi \text { since } 0 \leq \mathbf{f} \leq 1 \\
& \mathbf{h}=(1 / 2)(\sin \alpha-\sin \beta)=\mathbf{y}(\mathbf{x}-\mathrm{qz}) \\
& \lambda=\arctan (\mathrm{f} / \mathrm{g}), 0 \leq \lambda \leq \pi
\end{aligned}
$$

It then follows for the elliptic case that

$$
\begin{equation*}
T=2(m \pi+\lambda-h) / y^{3} \tag{3}
\end{equation*}
$$

For the hyperbolic case let

$$
\begin{aligned}
& \mathbf{y}=\sinh (\gamma / 2)=\mathbf{E}^{1 / 2} \\
& z=\cosh (\delta / 2)=(1+K E)^{1 / 2} \\
& \mathbf{f}=\sinh (1 / 2)(\gamma-\delta)=\mathbf{y}(z-\mathbf{q} \mathbf{x}) \\
& \mathbf{g}=\cosh (1 / 2)(\gamma-\delta)=\mathbf{x z}-\mathbf{q E} \\
& 0 \leq \gamma-\delta<\infty \quad \text { since } 0 \leq f<\infty \\
& h=(1 / 2)(\sinh \gamma-\sinh \delta)=y(x-q z) \\
& (1 / 2)(\gamma-\delta)=\operatorname{arctanh}(f / g) \\
& =(1 / 2) \ln [(f+g) /(g-f)] \\
& =(1 / 2) \ln \left[(f+g)^{2} /\left(g^{2}-f^{2}\right)\right] \\
& =\ln (f+g)
\end{aligned}
$$

Thus for the hyperbolic case

$$
\begin{equation*}
T=2[h-\ln (f+g)] / y^{3} \tag{4}
\end{equation*}
$$

When $m=0$, equations (1), (2), (3) and (4) break down for $x=1$ and suffer from a critical loss of significant digits in the neighborhood of $x=1$. To remedy this (1) is written

$$
\begin{align*}
& \mathrm{T}=\phi(-\mathrm{E})-\mathrm{qK} \phi(-\mathrm{KE}), \tag{5}\\
& \phi(\mathrm{u})=2\left[\arcsin \mathrm{u}^{1 / 2}-\mathrm{u}^{1 / 2}(1-\mathrm{u})^{1 / 1}\right] / \mathrm{u}^{3 / 2} .
\end{align*}
$$

Replacing $\arcsin u^{1 / 2}$ and $(1-u)^{1 / 2}$ by series ${ }^{3}$,

$$
\begin{aligned}
& \phi(u)=4 / 3+\sum_{n=1}^{\infty} a_{n} u^{n},|u|<1 \\
& a_{n}=1 \cdot 3 \cdot 5 \cdots(2 n-1) / 2^{n-2}(2 n+3) n!
\end{aligned}
$$

A similar procedure produces the same series for the hyperbolic case. In fact (5) holds for the elliptic ($m=0$), parabolic, and hyperbolic cases provided $0<x<2$.

It is now apparent that, given q and x, the following steps produce T for all cases:

1. $\mathrm{K}=\mathrm{q}^{2}$
2. $E=x^{2}-1$
3. $\rho=|\mathbf{E}|$
4. If ρ is near 0 , compute T from (5).
5. $\mathrm{y}=\rho^{1 / 2}$
6. $z=(1+K E)^{1 / 2}$
7. $\mathrm{f}=\mathrm{y}(\mathrm{z}-\mathrm{qx})$

$$
\begin{aligned}
& \text { 8. } g=x z-q E \\
& \text { 9. If } E<0, \lambda=\arctan (f / g), d=m \pi+\lambda, 0 \leq \lambda \leq \pi \\
& \text { If } E>0, d=\ln (f+g)
\end{aligned}
$$

10. $T=2(x-q z-d / y) / E$

The following formula for the derivative holds for all cases except for $\mathrm{x}=0$ with $\mathrm{K}=1$ and for $\mathrm{x}=1$.

$$
\mathrm{dT} / \mathrm{d} \dot{\mathrm{x}}=(4-4 \mathrm{qKx} / \mathrm{z}-3 \mathrm{xT}) / \mathrm{E}
$$

If x is near 1 , the series representation should be differentiated. If $q=1$ we have a left-hand derivative of -8 and a right-hand derivative of 0 at $x=0$. If $q=-1$ we have a left-hand derivative of 0 and a right-hand derivative of -8 at $\mathrm{x}=0$. (See Figure 1.)

In the derivation of Lambert's Theorem for the elliptic case a and β are defined in such a way that

$$
\begin{equation*}
\mathbf{E}_{2}-\mathbf{E}_{1}=a-\beta+2 \mathrm{~m} \pi \tag{5}
\end{equation*}
$$

where E_{1} and E_{2} are the values of the eccentric anomaly at times t_{1} and t_{2}. Thus from equation (1)

$$
\begin{align*}
\mathbf{E}_{2}-\mathbf{E}_{1} & =(-E)^{3 / 2} T+\sin \alpha-\sin \beta \\
& =y^{3} T+2 y(x-q z) . \tag{6}
\end{align*}
$$

We now obtain a formula for the scalar product

$$
S_{1}=r_{1} \cdot v_{1}=r_{1} v_{1} \sin \psi_{1}
$$

of the position and velocity vectors at time t_{1}, v_{1} and ψ_{1} being the speed and flight path angle.

Kepler's equation can be written ${ }^{4}$

$$
\begin{aligned}
\left(\mu / a^{3}\right)^{1 / 2}\left(t_{2}-t_{1}\right)= & E_{2}-E_{1}+S_{1}\left[1-\cos \left(E_{2}-E_{1}\right)\right] /(\mu a)^{1 / 2} \\
& -\left(1-r_{1} / a\right) \sin \left(E_{2}-E_{1}\right) .
\end{aligned}
$$

Substituting $a=-s / 2 E, t_{2}-t_{1}=s^{3 / 2} T /(8 \mu)^{1 / 2}$, and making use of (5) and (6) we have, after some algebra,

$$
\mathrm{S}_{1}=(2 \mu \mathrm{~s})^{1 / 2}\left[\mathrm{q} z\left(\mathrm{~s}-\mathrm{r}_{1}\right)-\mathrm{x}\left(\mathrm{~s}-\mathrm{r}_{2}\right)\right] / \mathrm{c}
$$

A similar procedure produces the same formula for S_{1} in the hyperbolic case. It also holds for the parabolic case.

Figures 1 and 2 show T as a function of x for elliptic and hyperbolic transfer, the parabolic case occurring for $x=1$. We suggest the reader compare these curves with those in Reference 2 showing T as a double-valued function of E with infinite slope at $\mathrm{E}=-1$.

No solutions of Lambert's equation exist in the shaded regions of figures 1 and 2. $\mathrm{x}=1(\mathrm{~m}>0)$ and $\mathrm{x}=-1$ are vertical asymptotes. $\mathrm{T} \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$.

REFERENCES

1. Plummer, H. C. , "An Introductory Treatise on Dynamical Astronomy," Cambridge University Press, 1918, also Dover Publications, Inc., N. Y., 1960, paperback reprint, chapter 5.
2. Breakwell, John V., Gillespie, Rollin W., and Ross, Stanley, "Researches in Interplanetary Transfer," ARS J. 31, 201-208 (Feb. 1961).
3. Gedeon, G. S. , "Lambertian Mechanics," Proceedings of the XII International Astronautical Congress (Springer-Verlag, Wien, and Academic Press, Inc., New York, 1963).
4. Battin, Richard H. , "Astronautical Guidance," McGraw-Hill Book Co. , Inc. , 1964, page 46.

Figure 1-E vs. T for elliptic case

\times
Figure 2-E vs. T for hyperbolic case

[^0]: * Aerospace Engineer
 \dagger Mathematician

