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INTRODUCTION

The aim of this discussion is to reproduce the basic

features of stellar structure and ev01u_ion (as found from

accurate calculations) by purely analytic considerations

in order to gain physical insight into the evolution of

stars. We will not here attempt accurate calculations

of structures and evolutionary trackB. First we discuss

general properties of stellar structure and evolution.
/

Then, analytic modelsare constructed for the early homo-

geneous and the advanced inhomogeneous stages of evolution.

\
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I. EOUATIONS OF STELLAR STRUCTURE
--'-- _t ' in

The basic equations governing the structure of stars

are conservation of mass, conservation of momentum and

conservation of energy (Schwarzschild, 1958 and Wrubel,

1958). Rotation and magnetic fields will be neglected

so that a star will be spherically symmetric.

Hydrostatic Equilibrium

A star changes very slowly during most of its life

and so may be considered in hydrostatic equilibrium.

Two forces balance to keep a nonrotating star in hydrostatic

equilibrium: the gravitational force directed inwards

and the gas and radiation pressure force directed outward.

The equation of hydrostatic equilibrium is

dr
r _

The total pressure is the sum of gas and radiation pressure_

For an ideal gas

P = Pgas + Prad .

k

Pgas - _H oT , (1.2)

where H = 1.67 x i0-24g is the mass of a proton and _ is the

mean molecular weight.

-, Prad = 3 aT4 (1.3)
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Mr is the mass interior to r; the equation of mass con-

servation is

M r =

i

_0 4wr2D dr' (l.4a)

or, in differential form,

_r = 4w r2p. f-@

(l!.4b)

En ere_ Con s er.vation.

The total energy of an element of material is

s = u + n + K, (I.5)

where U is the internal energy of _he gas, _ is gravita,

tional potential energy, and K is the Kinetic energy of

large scale mass motion, which we are neglecting here.

The internal energy of a gas plus radiation-is

U = -- NkT + -- aT ,
y-I p

where y is the ratio of specific heats (y = 5/3 for a mon-

atomic ideal gas). The sources and sinks of energy are

(I) energy release due to nuclear reactions_ and (2) energy

transport into and out of the element of material.

Let _ be the net release of energy per gram per second,

and'F be the energy flux. The equation of conservation of

energy is then

dE = dU + d_ = _ IdivF
dt dt dt p

(per gram per second). The change of gravitational potential

?
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P

dn = -dW = P dv = -p-md_ .

Define the luminosity L r as the total net energy flux

through a spherical shell of radius r, so that

L r = 4_r2F •

Then the equation of energy conservation is

dLr = 4_r20[g + P do • dU ] (1.6)

Ener_, Transport

Energy is transported by radiation and convection,

and by conduction when the electrons are degenerate.

L r

4_r2
Fra d + Fconv . (1.7)

In the interior of a star, where the radiation is

almost isotropic, the momentum balance for radiation is

dPR = KO L r

dr c 4_r 2

1

where PR = _ aT4 is the radiation pressure, (_p)-I is

the photon mean free path, and c is the velocity of light.

That is, the force due to the gradient of the radiation

pressure is equal to the momentum absorbed from the radiation

beam in passing through matter. Thus, in the interior

°
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of the star, the radiative energy flux is

' 4acT _ dT

Frad = - 3_P dr "
(l.8)

and the gradient necessary to drive the radiation flux is

dt = _ 3 _0 L r
d--; 4ac " (1.9)

<,

The convective flux is (Spiegel, 1965), crudely, the

energy fluctuation (excess or deficiency) of an element of

gas, times its velocity, averaged over a spherical surface

in the star,

Fconv = p_w8 , (I.I0)

where w is the radial velocity fluctuation and 8 the tem-

perature fluctuations in the matter. The velocity and

temperature excess or deficiency of a convective element

depend on the superadiabatic gradient

Because convection is an extremely efficient energy trans-

port mechanism, the superadiabatic gradient is very small

and the temperature gradient will be very nearly equal

to" the adiabatic gradient,

0r-I
dr kdr_ ad

r- 1 T dP (1 12)

I_" P dr

where F is the effective ratio of specific heats, including

ionization, dissociation and radiation• Near the surface,
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where the photon mean free path is long, there is a leakage

of heat by radiation from the convective elements and the

convective temperature gradient is greater than the adiabatic

gradient.

St_lla r Structure

Order of magnitude estimates of the density, pressurej

and temperature of a star can easily be made from the con-

dition of hydrostatic equilibrium. The mean density is

H ' (1 13)D" - 4
.3 _R-3 •

In the equation of hydrostatic equilibrium (I,1), metting

dP/dr _ (Pc - PO )/R "

where Pc is _he central and Po the surface pressure, gives

G M 2' (1 141
iPc_ R _ --_

Since Po << Pc" Let B = Pgas/P, the ratio of gas pressure

to total pressure and assume that the material of the star

is a perfect gas. Then the central temperature is obtained

from the perfect gas law (equation 1.2),

• _$H G M
T c _ _BH Pc u k _ • (1.15)

k

The mean energy generation rate is
t

g'= L/M

• .Ji ° .

.'%-:
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L = 3.89 x 1033 ergs/sec,

M = 1.99 x 1033 g,

R ffi6.95 x I0I0 cm .

(1.16)

Thus the _ntenmal conditions of stars are of the order of

magnitude'

= 1.4.1 /M_._'_IM,_I g/cm3

'Pc = i.i X 1016 C___2 (.______4. dynes/era2

•o.. ,._,,,o,_,(_)l_) .,

'-"
as functions of the sta_s' mass, radius, and luminosity

given in solar units..

- For a more detailed account Qf the restrictions

imposed by hydrostatic equilibrium on stellar st_cture

see' Chandrasekhar (1939).

This section is concluded by presenting a derivation

of the expression for.the gravitational potential energy

of a sphere of uniform density, The gravitational potential

energy, iS

'O " ½ l'oK* d M(r) " -3 .,j'P dY, (1.18)

where _ is the gravitational-potential.

t

!
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For a sphere of uniform density the equation of hydro-

static equilibrium (I. 1) is

Upon integrating, using the boundary

at the surface, we get

d_
m

-d-_"

condition that P/p _ 0

- _ + _s = --P and _ _ __GM
p s R ;

th en

P

0_ -__ _o___Cr> __o_ ; __C_
GM 2 1

i GM2 I fRp dV = - ½--+ _ n
= -2 R 2 o R

Thus the gravitational potential energy of a sphere of

uniform density is • /,_

_= _ 3 _
, _ _ . (1.19)

•The absolute value of the gravitational potential energy

in an actual star will be somewhat larger, but of th'e same

order of magnitude.

,, •k.•. •
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II. STELLAR EVOLUTION

A star is a self-g_avitating mass of gas in space.

•The evolufionary trend of internal stellar conditions is

determined by hydrostatic equilibrium and its radiation of,

energy away into space. The life history of a star is

q

the progressive concentration of its mass towards its

center, pulled by its own gravitational field. This con-

traction,releases gravitational energy, heats up the gas,

and, as the gas becomes hotter, thermonuclear reactions

among various.nuclei become possible. At certain temperatures

the thermonuclear reactions can supply the energy losses,

the gas and radiation pressure can support thestar , :and
f

the gravitational contraction is temporarily halted.

A necessary condition for hydrostatic equilibrium

** +
is the virial theorem for a self-gravitating mass (Ch ndrasekhar,

1939), ..

2 K + fl = 3 (Y - I) U + n = 0 . (2.1)

Here K is the total thermal energy of the mass, U is its

" I
internal energy,, and G .._s its gravitational potential energy.

The virial theorem requires that the thermal energy of a
• !

star equal, half the absolute value of its gravitational i
potential energy (since fl is intrinsically negative).

As a star contracts and releases gravitational energy, Q

becomes more negative, and. the. thermal energy must

increase. Half of the gravitational "energy that is .released
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is stored as thermal energy, increasing the temperature

in the interior of the star 9 and half is radiated away.

The mean relation of temperature to density can be.

derived from the virial theorem. For a sphere of gas

. whose internal pressure is given by the perfect gas -law

with ratio of specific" heats _ = 5/39 the virial theorem

(2.1) becomes

' 2 u +_ = 0 . (2.2)

For a uniform density distribution the gravitational energy

is

__3 GM__2
5 R

_nd the internal energy is

u_ 3 _ M
2 5"-H" +_ •/:

6

where M/_H is the number of particles.

_ 1 _H M

Thus

(2.3)

(2.4)

The mean density (equation I. 13) is

___ + M
_=

4 rr R3 '

SO

•+ .. -+(-+)++ M2/3 pl/3 . (2.s)

Thus the relation between temperature and density for

stars with negligible radiation pressure is

' (_2/3 pl/3• T-4.1x 10 6

., ... °

"X. i(2.6)
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Here T and p are the local temperature and density at any

point in the star.
o

The above temperature-density relation does not hold.

for those stars whose ihternal pressures are predominantly

governed by the radiation pressure. Define the beundary

line between stars whose internal conditions obey the

4

perfect gas law and those whose internal conditions are _

regulated by radiation by an equality of pressures for the

<

two cases, i.e.,

1 T4 k
a - _ H 0T ,

t

or i

T "= 2.55 x 107 01/3 e !

• i

The boundary corresponding to this condition occurs at

5.5 _. For heavier stars radiation pressure."is predomlnanto'"

In such cases Y = 4/3iand the virial theorem givesU = - _.

Thus,

U = V a T 4 = 3 GM 2
s R "*" (2"7)

Expressing R in terms of the mean density (1.9) we obtain

the temperature-density relation i• i

T ffi1.92 x 107 M I/6 pl/3 • (2.8_

q-

The temperature depends on density as before (to the 1/3

power) but the effect of mass is less pronounced.

The temperature-density relations (2.6) and (2.8)

describe, the dependence of the temperature on the density

• °L

0

"#.
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inside a star. The evolution of stars consists of pro-

_essive gravitational contraction, increasing the central

density and temperature according to

T = 0 1/3 ,

interrupted at times by central nuclear burning. Some

simplified evolutionary tracks for internal stellar con- q

ditions are shown in Figure I.

When the central density of a Star gets very large,

the matter may become degenerate and the equation of state

thus changes. The boundary of degeneracy in terms of density

and temperature has the asymptotic forms for low and high

"density (nonrelativistic and relativistic energies),

T = 1.2 x 105 /hI_-) 2/3

- - 113
= i.4'9

low density,

(2.9)

high density.

The full boundary curve is derived by Chandrasekhar (1939).

This boundary is also plotted in Figure" I.

Stars of mass less than about 1.3 MQ enter the de-

generate region. For these stars the pressure due to

degenerate electrons is so high that further compression

is no longer possible. This is essentially the end point

in the evolution of a star of small mass. The star be-

comes a white dwarf, achieving in this process some max-

imum temperature which depends specifically on its mass.

i

• .-...

C '..
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Figure i. Simple evolutionary tracks for the

internal conditions of stars of various

masses.
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The general evolutionary trend of contraction, in-

creasing the central density and temperature, is interrupted _"

periodically by nuclear burning. The energy-generation

history of a star is a Succession of gravitational con-

tractions which raise the central temperature of the star

sufficiently to _litiate thermonuclear reactions; the

thermonuclear reactions transform a given type of fuel

nuclei into heavier nuclei and release energy; the supply
i

of the given fuel nuclei becomes exhausted and the core

resumes its gravitational contraction. The order of thermo-

nuclear reactions is detenmined by the nuclei present and

their ¢hargos. The larger the nuclear charge_ the higher

its Coulomb barrier and the higher the kinetic energy

(temperature) of the bombarding particles must be to

penetrate.the: barrier and initiate nuclear reactions.

A schematic sketch of the energy history of a star is shown

in Figure 2. During nuclear burning the temperature is

almost constant. During gravitational contraction the iso-

topic composition does not change.

The most abundant element is hydrogen, which also

has the lowest charge, one. It is transformed into He 4,

releasing 6 x 1018 "erg/g at temperatures above 10 7 °K (Reeves,

1965). Helium is transformed into C 12 at temperatures above

about 108 @K and at slightly higher temperatures the icarbon

reacts again with helium to form 016 . The amounts of I carbon

and oxygen produced in the core during helium bur nin_ depend

on the central temperature and therefore on the mass of the

star. The C and 0 curves in Figure 9. are the lower and upper

p _

,. , j "'.'

!
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Figure 2. Energy history of a star (schematic diagram).

Nuclear burning stages and the resulting composition

of the Core of the star are shown. Where two curves

are drawn they represent the lower and upper limits

of the range of nuclei produced. (H. Reeves:

Enerqy Sources, Goddard Institute for Space Studies,

NASA, 1963).
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limits respectively. Carbon reacts with itself at temp.-.

era'tures above about 7 x 108 °K; carbon burning produces

nuclei in the range 016 to Mg 25. The two curves again

are the upper and lowe_ limits. Neon photodisintegrates

and oxygen reacts with itself at still higher temperatures,

about 1.4 x 109 °K_ Neon burning predominantly produces

"016 and Mg 24. Oxygen produces isotopes in the mass range

A = 25 - 32 with a strong peak at Si 28 . The two curves

show the lower and upper limits.

The full chain of thermonuclear reactions does not

occur in all stars. For a star of given mass there is a

maximum central temperature attainable in a nondegenerate

core. The exclusion principle requires that the average

separation of particles be greater than the elect'ton wave-

length,

_/m_ 1/3 _

r = > ke J2 m e "kT " (2"10)

n

where r is the size of a cube containing one proton and

k e = h/P

(2-5) for _ and T_ we must have

,--"1/3

1 > mp]/3j2 mek_ =

Thus the condition for nondegeneracy requires

>

and P = _ mekT. Using expressions (1.13) and

.0914 _. \M _ _,'R-'[ "

(z.n)

The necessary central temperature for hydrogen burning is

(I

I
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T c -> 10 7 *K,

"SO that mass and radius must satisfy the condition, from
e

(1.13) and (2.5),

o

10 7

4.61 x 106 = 2.16 .

:Combining these two requirements, (2.11) and (2.12), the

minimum mass a star can have and burn hydrogen is

3/2 M _ 0.05 •

8

For hel_um burning _he central temperature must be I0

The maximum central temperature occurs when the hydrogen

burning shell has burnt its way almost to the surface, so

we can treat the core as a homogeneous star. The minimum
- j

mass for helium burning is thus

_3/2 M _ .278 or MO >_ .18" .

(2.1z)

(2.lS)

*K.

(2.14)

:!

The necessary central temperature for carbon burning is

about Tc = 7 x l0 8 *K. The minimum mass for carbon burning

_A3/2 M i- -- _: 1.19 . ' i (2.15)
c _o i

The necessary central temperature for neon and oxygen burning

10 9 Iis T = 1.3 x OK. The minimum mass for neon and oxygen
c

burning is

3/2 M
_c M-_ _ 1.9 . (2.16)
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": Oxygen and neon burning are the end point of thermo-

nuclear burning stages. Nuclear reactions among larger
L

mass nuclei (further photodisintegrations and recombin!ations)

109 i
would occur in the temperature range of 2 - 4 x °K.

However, at these temperatures the rate of energy dissipation
%

by neutrinos (which are produced in the core and escape

directly from the star) is so large that further nuclear

reactions are unable to halt, but can merely slow down,

the gravitational contraction. These reactions can, how&

ever, produce nuclei all _he way up to Fe 56, and the temp-

erature is high enough to produce statistical equilibrium

am0nE _he various nuclei.
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EARLY STAGES OF EVOLUTION - HOMOGENEOUS STARS

d

Hydrostatic equilibrium and overall energy conservation

determine the evolution of central stellar conditions.

For more of the details of evolution, including the star's

radius and luminosity, the mode of energy transport from

the interior to the surface must also be considered.

The equations of stellar structure--mass conservation,

hydrostatic equilibrium, energy conservation, and energy

transport--form a system of nonlinear differential equations

which must be integrated numerically. It is possible,

however, to obtain crude analytic stellar models by separat-

ing the condition of hydrostatic equilibrium from the energy

_ransport. In the previous section, the condition of over-

all hydrosta.tic equilibrium was expressed by the virial

theorem. Now, since a more detailed stellar model is

desired, we" assume an _ analytic density distribution,

•namely, that the density in a star varies lin'early from

the center to the surface. (Cameron, 1963). It is then

possible to integrate the equations of mass conservation,

hydrostatic equilibrium and energy generation through the

star. Hence, to_ether with the equation of state of an

ideal gas, the run of density, mass, pressure, temperature,

and llnninosity through the star are determined. Also, .

the central density, pressure and temperature, and the

total rate of energy generation are determined as a function

of the star's mass and radius. Finally, the different

modes of energy transpor't--radiative transport with Kramer's

or electron scattering opacity and convective transport--are

considered. The energy transport equation can be satisfied



-18-

at only one typical point of the star because of the

approximation made in assuming a given density distribution.

This gives a mass-luminosity-radius relation which gives

the evolutionary track of the star in the Hertzsprung-Russell

diagram.

To summarize: Hydrostatic equilibrium and energy

4

conservation determine the changes in the central stellar
-?

conditions, while hydrostatic equilibrium and the mode of

energy transport determine the changes in the surface con-

ditions--the track in the Hertzsprung-Russell diagram.

Lin@ar Stellar Model

Assume the density in a star varies linearly from

the center to the surface,
¶

r

pCr) = pc(1 -_) (3.l)

where R is the radius of the star. We call this a linear

star model. The equations of hydrostatic equilibrium and

energy generation can now be integrated but the energy

transport equation can only be satisfied at one point in

the star. The mass distribution is (from equation (1.411

.(r): 4 r2p(rldr
_ 4rr cr 3 3 r-.T _ (I - 7 _)" (3.21

Hence

Thus

M(R) = ! _pc R3.
3

Pc

•° '"({1 (3.3)
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The pressure is obtained from the equation of hydrostatic

equilibrium (I.I)

° p = p _-: _r GM(r)p(r)dr
c r 2 ' i

where P
C

is the pressure at the center. Hence

P= Pc _ 22 7 r. 3 r- cpcr (I - _ _-÷ _R--_) r
<

Applying.the boundary condition P(R) = 0, we get

5n Gp_R 2
Pc =

i3.4)

hence

28r3 _4

2

- 4.8 _/_ + 5.6

3 4
r r

R--_- 1.8 _-_) . (3.5)

Assume that the radiation pressure is negligible; the '
!.

temperature is then given by the perfect gas law equation (1.2),

where N O is Avagadro:ts number, the number of nucleons per

gram.

T=-- f_-
3 6 kN o

0c R2 (5 + 5r 19r 2 9r 3-f - R--fr-+ --_R)

r r__2= 9.62 x 106 _ (i • _ - 3.8 P.2

+ 1.8 _-_) . (3.6)

We now know how the density, temperature, and pressure
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vary throughout the interior of this linear star model. We

have found the condition of hydrostatic equilibrium. The
Q

run of pressure, temperature, and density through the star

is shown in Figure 3. We must now consider the condition

of energy conservation. The rate of thermonuclear energy

generation can be expressed in the form (Reeves, 1965)

• ergs/g-sec ,

The luminosity of the star varies as (equation 1.6)

2L r = 4rfr' _(r') _dr' .
O

For a linear density distribution the total energy gen-

"eration is

SO

RL =" 41TP (r)_r2dr
O

n

L 4_R3_o _2 T_To_ In

= 36 80 ( ._ G_H i )n
n i"2 k To

M(l+k+n)

R(3k+n) In •

Thus

(.962_ n n n+k+_l/Re_n+3k

(3.7)

where •

In = ]'I x2(1-x)n+k÷l (1 + 2x- loSx2)ndx

has values cf the order of I0 -I

temperature in units of 107 °K.

or I0-2_ and. To(7) Is the

The energy generation and

luminosity in a 1 _ star are shown in Figure 4.

0.
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Radiative Energy Transport

Finally, consider the equation that governs the flow

of energy through the star. First consider radiative energy

transport. The appropriate equation for radiative energy

transpor_ is_equation (1•8),

L = _ 4nr2 4ac
" r - 3

T3 dT

_p dr "

so the temperature gradient necessary to drive the radia-

tive flux through the star is

L r=
dr 4ac TO4ur _

We consider two types of opacity (Cox, 1965): (I)

"Kramer' s opacity_

which is a good appr0x/mation at intermediate internal

temperatures, and (2) electron scattering opacityj

= m e 20 (I + X) s

(3.8)

(3.9)

(Where X is the mass fraction of hydrogen), which is

dominant at high internal temperatures. We also assume

for convenience that all the energy is generated at th_

center of the star, so that

L = L = constant•
r

For Kramer's opacity

dT 3Ka PL L

• i

I

(3.lO)
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Compare this expression for dT/dr with the radial deriva-

tire of T from the linear model,

2

dr 36 _N o
(3.11)

For our analytic model, these two expressions for the

temperature gradient cannot be equal throughout the star.

We determine the luminosity by equating the above two

expressions at r = 0.SR.

6
2 TI _S d/_

L 41_ (.r_q/2 4ac
"" 3_o °21/2 1/2 )

where rl/2 = O.5R,

TI/2 =

Pl/Z =

31 _ R 2

288 kN o •

0"5Pc j

- 29w

144 kN o
PC R-

Now 3)4 r

PC = _ '

7 5 5.5

hence 3 29/31_6"5 a__c (_) " 7.5 ML = _ .-_--_) no __ 1_ R. 5 _ (3.12)

• i0 -15 i0 I0where a = 7 57 x ergs/cm 3 deg 4, c = 3 x cm/sec,

G = 6.67 x I0 -8 dynes cm2/g 2, k = 1.38 x 10 -16 ergs/deg_

{

i
!

and H ,= 1.67 x I0 -24 g. Hence, for population I stars

!
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L _ 28.6U.7. S fM_S'S('R.'_-0"5

and for population II stars

(3.13a)

Solar matter _s _ 2/3 hydrogen and 1/3

helium by weight. The mean molecular weight for 12 nucleons,

of which 8 are hydrogen atoms and 1 is a helium atom_ is

mass

number of particles

12

19
0.632

8 x i + I x 41

8 x 2+I x3'

7.5
= 0.0320.

Hence

L __ 3.36 x 1033 5.5 0.Serg/sec

For solar mass and radius

1033L® = 3.36 x ergs/sec, i

compared with the observed luminosity of the sun which is

L® = 3.89 x 1033 ergs/sec. Thus the linear star model

gives a result which is within 20_ Of the observed value.

The luminosity increases rapidly with the mass of the s_ar

and increases slightly with decreasing radius.

When electron scattering is the dominant opacity S the

_emperature gradient needed to transport the energy flux L is

aT= _ 3._p L
dr 4do _ _ " (3.14)

!i

i

f
l

t

i
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Determining the luminosity by equating this temperature

gradient with the expression for dT/dr obtained in the

linear model (3.11) at the midpoint r = 0.SR, gives

o

L = - 4,,r_/2 _'e _a/2 i,_/a/2 '

which is

i __ 292 (31 _3 QGH'_4 a_._c _4M3--_ _/ _ /2 t _e
(3.15)

Hence when electron scattering dominates,

L _ 17s _4/_\3
L® 1 + x L"b-/

(3.16)

The luminosity is independent of the radius and increases

with mass, although less sensitively than for Kramerls

opacity.

Equations (3.13) and (3.16) are the radiative mass-

luminosity-radius relations for Kramer's and electron

scattering opacity. The effective surface temperature is

defined by

4
Flux = _ T

elf

or

T
e

2 -_
= (L/4rrcr R ) 4 1 1

(3.17)

Convective Energy Transport

The convective energy flux is (equation i.i0)

FC= O Cpw8 ,

]

where w is the velocity and e the temperature fluctuation

of the moving convective element. Convection is extremely
i
i

'
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efficient, and therefore all the ener_y to be transported

can be moved by convection with only negligible adjustment

in the superadiabatic gradient - d_r - d(___)a_. The

energy flux is thus determined by the boundary layer of

the convective region (Spiegel, 1965).

If the star has a substantial region with radiative

transport, that region will determine the energy flux. If,

however, the star is completely convective, the boundary

layer determining the flux is the thin radiative photosphere

surrounding the convective zone, where the energy must be

transported by radiation since the material is becoming

optically thin. The luminosity of the star is then.de-

termined by the temperature of the gas at the point from

which photons can escape from the star, Fra d = aT 4, so

0 4
L = 4_R-qT e ,

where T e is the effective surface temperature of the star.

The depth in the star from which photons can escape

nearly coincides with the transition point between the

radiative and convective regions and occurs at an optical

depth of about 2/3. The radiative temperature gradient

drops rapidly as t_e density decreases, so the temperature

is practically constant from this point outward. We thus

assume an isothermal photosphere and take the effective

te._perature as the temperature at the transition point

between the convective and radiative regions (Hoyle and

Schwarzschild, 1955 and Hayashi, Hoshi and Sugimoto_ 1962).
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We assume an opacity law of the form

= paTb
X O -

Then• since the bottom of the photosphere is at an

optical depth 2/3,

_pdr = _ = _o e dr,
ph 3 ph

and from equation (I.I)

I dP
p =

g dr

so
a+l

2 _ _oTe- P dP -- t,
3 r _a÷l) g

P

where Pph is the pressure at the bottom of the photosphere.

.Thus• one relation between the temperature and pressure

(or density) at the bottom of the photosphere is

b a+l 2 GM

Te Pph -- 3 (a+l)
(3.18)

This relation is the boundary condition for the star

P-" Pph = 2 (a+l)
3 _ ph

as T- T
eff "

This condition is .just that the photon mean free path
-1

(_P) equals the scale height P/pg at the boundary so that

_he radiation can escape from the star at the effective

Lemperature.

A second condition on T and P can be obtained from
e ph

the condition for the boundary of the convective zone, namely,

FC = FR "
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In the expression for the convective flux (I.I0), let us

approximate the velocity w by half the sound velocity

c = d ykT/_H

since c is an upper limit to the velocity. Also let us

approximate o C 0 by y times the internal energy
P

_3pU = --_kT_ =
2 _H 2

Then the convective flux is

C

Fc = ½ pCpw_ _ ½ ¥ _ u

_3_, (.y ,.,\_ T"_-"U _/ P

The radiative flux is

• Fp. = _T4 " .
e

(3.19)

(3.20)

Thus, equating (3.19) and (3.20), the transition point is

•given by i

Pph - 3 Y _yk] _Te " (3.21)

The conditions (3.18:), and (3.21) can be combined to

determine the effective temperature, which is

Te = (l+a) _1+_"_. _ _,_)j
o (3.22)

In the outer layers of stars the opacity is due primarily

to H- and is an increasing function of pressure and tern-

perature, so a, b > O. The H- opacity is very temperature



I
i

l

°

-28-

sensitive, so b is large. Thus Tef f is nearly constant; _

it increases slightly with increasing mass and decreases

slightly with increasing radius.

The approximate power law form for the opacity ob,

rained from the detailed opacity calculations in the

region about 3500 °K is:

For population I stars (X = 0.6, Y = 0.38, Z = 0.02)

= 6.9 x l0 -26 p0"7TS"3,

and for population II stars (X = 0.9, Y = 0.099, Z = 0.001)

= 6.1 x 10 -40 p0"6T9"4

where X, Y, Z are the mass fractions of hydrogen, helium

and all the heavier elements respectively.

"is found by inverting equation (3.17),

The luminosity

L = 4nR2q 4 ( To _14 [R-_-_2Te/ : s.76 lO " (3.23)

Then the effective temperature and luminosity, are:

For population I
)

T e = 7.27 x 103 -0.075 (M _0"089/R'_0"178

:  .ss  -o.s i_ l °.ss61_ )l. -88
(3.24)

and for population II

-0.0533 (_)0. 0666(__50.133T e = 5.99 x 103 U . ,

L : -0.23S f_I2"2665tR \ 1"466 (3.25)

Lr )

2:ze effective temperature is less sensitive to the radius

for population II than for population I stars because the
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opacity is more sensitive to temperature. In population II

stars, there are fewer metals with low ionization potentials

to provide electrons to form H-. The electrons must now come

partly from the ionization of hydrogen which has a high

ionization potential, so the electron pressure will be very

temperature sensitive.

In stars with high surface density, the relation (3.21)

between the pressure and temperature at the bottom of the

photosphere is not valid, because in deriving it from the

boundary condition F C = FR we evaluaDed the convective flux

by assuming that the temperaLure fluctuation is of the order

of magnitude of the temperature itself. This assumption

is valid only in stars where convection is inefficient near

the surface due to low density and large radiative losses

from the convective elements. Tn stars with high surface

density, convection is very efficient and the temperature

gradient in the convective region is nearly adiabatic

throug'hout. In this case, the temperature fluctuations

are much smaller than the order of magnitude of the temper-

ature itself.

For stars with high surface density therefore we go

to the opposite extmeme from the low surface density case and

assume the temperature gradient is adiabatic throughout the

convective zone. We may then use the adiabatic relation

between pressure and temperature. In the interior,

P = K T ¥/(Y-I) -- K T 2"s
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since (neglecting radiation pressure) y = 5/3, except in

the hydrogen ionization zone• For a fully convective star

K = const = Pc/Tc 2"5

From the linear model (3-5) and (3.6),

O

GM"
p = •

c 4_ R 4 ' "

thus

5 _H M
T --

c i2 k R "

m __ G M-°" R

1.s3 x lO =_ -B.s [_-o.s (___-l.s

In particular, the above relation holds at the bottom of

the hydrogen ionization zone,

If we neglect the effect of hydrogen ionization,

which reduces y, then at the boundary between the convective

zone and the photosphere

2.5
Pph = K T e

with the same K as for the interior. This relation,

combined with the optical depth condition equation (3.18),

gives the effective temperature

Co GM -(l+a)_ i/[b + 2.5(I+a)]

% LT_-/IB/ <_. j c

2.5(I+a) 1.5+O.Sa 1.5a-0.5> ll[b+2"S(l+a)]
x_ M R

il
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For population I

Te = 2.6 x I03 _0.445 I_._0"194_')0"0576

L _ 0. 041 _

For population II

0.298 [M _ 1715 R._'0298
T = 3 01 x I03 _ _) ('_/e " k '

L = 0.075

The hydrogen ionization can, however, be treated

_- 2.5
exactly and we can relate K = P /i'ee • ph a_ the top of

2.5 Pc Tc2. atthe hydrogen ionization zone to K = Pb/Tb = / 5

its bottom. Since the temperature varies adiabatically

through the ionization zone, the entropy is constant

across it. The effect of the ionization zone is "to decrease

d lh T _ U - 1

dln P F

so that the temperature will decrease less than the pressure

going outward through the ionization zone. Then K < K
e

and Tef f will be increased. The entropy per unit mass is

S __ XI< C 5 X._ + !n/.2wH_3/2 /SnH)
_- L<I+x+6)_ " kT (--'_/ + 6 In<--_h

+ x In + (l+x+6) in-(_T)5/2(l+x+5)
p

where X is Zhe ionization energy of hydrogen, 6 = Y/4X, and

x is the fraction of hydrogen ionized. Evaluating S = con-

stant above and below the hydrogen ionization zone, that is,

for x = 0 and x = i, respectively, gives
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1

F r,.;,,.rrme\ 3 / 2 5/2]-

= (I+6) (2.49)-I/(I+6)YL_6_ @+6)/(I+6)

Thus the effective temperature is

<2 C_ C2.491/(1+5 )

Teff U (l+a)
*o-_ L 1 + 6

2.S(l+a)_ fM_l÷O.S(_+a)(2+6)/(l÷6)
'_ k_l

-2_Ti_ _b
[R \I" 5(l+a)l+ 6 -

L%) -,

1/[b + 2.S(i+a)]

(2+8)/(1+6)

J

(3.27)

-Again, in the high surface density as in the low surface

density case, "the effective temperature is very insensitive

L

to mass and radius•

For population I

0 829 /M _0.27 (_R._0"288T e = 3.66 x 103 _ " (>---_j G}

= 0 162 3.32 YM \1.08 (k_3.15• •
(3.28)

For population II

T = 3 75 x 103 0.59 [M h0.1925 (k_0.204
e ) ;

.< (k)= 0.1785 2.._6 M__h0"77.,,%]

(3.29)

Summary: The central conditions of a star in the

linear stellar model are

fM _ ." P'Kg'X,3
Pc = 5.64 b'_._]L'l_ ) ,

Pc 4 44 x I015 (k> 2/R0\4

(3.3')

I

(3.s')

i
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9.62 x lO 6 _ \_'7 "

The total rate of energy generation is

n

L____=
Lo 3s. s8 ejn f\To(7)l

,_n (_ ]n+k+l n+3k

where the rate of energy generation per gram is

and T
0(7)

8 = _ Ok IT\ n

o < TO/

"is in units of 10 7 degrees, and

in = _i xZ(l_x)n+k+l(l_2x_!.Sx2) n dx .

(3.6')

b !

.I!

•i_!i

:I
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The evolutionary tracks of stars in the Hertzsprung-Russell

diagram depend on: the mode of energ2; transport, which

determines the mass-luminosity-radius relation. For fully

convective stars, the luminosity is determined by'the

surface condition. Since the opacity is very temperature

sensitive, the effective temperature is nearly, constant,

independent of the radius, and the track in the Hertzsprung-

Russell diagram is a nearly vertical line. For stars with

radiative energy transport, the luminosity is nearly independent

of the radius and the track in the Hertzsprung-Russell

diagram nearly a ho'rizontal line. The changes in the stellar

radius depend on the sources of energy and the internal

structure of" the star.

i,

A. PRE-MATN SEQUENCE CONTRACTION PHASE

The linear stellar model is now applied to.the pre-

main sequence contraction stage of evolution. A" star is

formed from a condensation of the interstellar gas that
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is dense enough to become opaque to its own radiation.

Then as the gas contracts its temperature will rise. i As

the temperature rises, the gas, composed predominantly of

hydrogen and helium_ is ionized. Much energy is necessary

to ionize the gas_ which means that the temperature cannot

rise much above 104 =K until the hydrogen is ionized. The

ionization of the hydrogen and helium leads to gravitational

instability, since the energ_ released by the contraction

does not increase the kinetic enei_gy per particle (the

temperature) but goes into Dhe ionization energy/ of the atoms.

Hence_ the contraction of the gas does not raise the pressure

sufficiently to permit the gas _o remain in hydrostatic

equilibrium; the ratio of specific heats y falls below 4/3,

and the collapse must continue.

A stable star is not formed until the hydrogen and

helium are almost completely ionized throughou_ most of

the gas fra=_ment. In such a contracting star, with the

internal temperature of the order of I05"°K_'the opacity

is so high that the radiative transport of energy is impeded.

Further_ the extensive ionization zones increase the specific

heat and reduce y to "less than 4/3 throughout large regions

of the star. Thus the adiabatic gradient

dT 1 = y- 1 _H
_.'_r/ad y k g

will be small and the star will be unstable to convection

throughout most of its interior. Its luminosity will then
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be determined by the surface conditions. For a given star,

the rate of contraction is limited by the rate at which

ener_y can be radiated away

1 dR LR

R dt -- a

where _ _ 1. Thus the stellar structure with the highest

l_ninosity will be stable and the condition for a fully

convective star is that the ccnveczive luminosity exceed

the radiative luminosity. In_la±_y, stars that are not _

too massive will be fully convective. Very massive stars

(M > 12 MG for population I and M _ 16 >_ for. population II)

have Lra d >Lconv and never pass through a fully convective

_tage. Inclusion of the radiation pressure will, however,

modif?, this result by increasing the convective .instability.

We firs_ determine the conditions for the contracting

star to become stable. The condition for stability is that

all the hydrogen be ionized,

I
kT > --

3

or

13.6 volts

> 5.2 x 10 4 °K .

The mean temperature of an homogeneous star is

T

6 .-1= 5.71 x i0 _ L_) "

-:_s the maximum radius of a stable star is

(_)max = ll0 _ C_M--_ (3.30)
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The effective temperature and luminosity of such marginally

stable stars, as given by the fully convective linear model

for low surface density (3.24) and (3.25), are

T = 3..15 x 103 _
e

_ 0.988/,,L = 1.07 x 103

\"b/

Pop. I,

Pop. II.

These relations give the starting point for the evolution

of stars.

As a star contracts, when fully convective, the effective

temperature .is nearly constant. The track in the H-R

diagram follows the mass-luminosity-radius relation'for a

• . • /

fully convective star (equations 3.24,; 3.25,: 3.28,;

and 3.29)_o For population I (X = 0.6, Y = 0".38, Z = 0.02)

log =

- 7.236 log Te + log_- 0.843 log _ + 28.345

(low surface density),

I M_ (3.31)

10.94 log T e --1.874 log_)- 5.75 log _ - 39.77

(high surface density).

These tracks are shown in Figure 5.

(X = 0.9, Y: 0.099, Z = 0.001)

log = - II log T e + log -

log (_=

For population II

0.821 log _ + 41.485

(low surface density),

(3.32)

13.8 log T e - 1.887 log_- 5.78 log _ - 50.07

(high surface density).
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Figure S. Hertzsprung-Russelldiagram of the pre-main

sequence contraction evolutionary tracks and

initial main sequence. The tracks are labeled

with the type of energy transport determining

the direction of that portion of the track.

Dotted curve is observed main sequence (Hayashi,

Hoshi_ and Sugimoto, 1962, and Schwarzschild, 1957).
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These tracks are similar to, but slightly steeper than those

' for population I stars. !

As a star contracts, its centra_ temperature _ncreases

according to (equation 3.6),

_H GM _
T _
c k R

The increasing temperature increases the emission oi

tion and reduces the opacity. A central core which

radia-

is in

radiative equilibrium will develop. When about half the

star is in radiative equilibrium, the star will leave the

fully convective path. Theluminosity will now be deter-

mined by the radiative flux, which is proportional to

(equation 1.8)

t

1 dT
/ "

_ dr ,.

since T3/D is approx:imately constant.

/

!

The opacity decreases as the

temperature rises. Thus as the star contraots, the lure-

inosity will increase slightly, and Tef f must rise. The

star will then move to the left in the H-R diagram.

The radiative mass-luminosity-radius relation,'for

Kramer's opacity is given by equation (3.13) and the path

_n the H-R diagram will be

!ogI'_)= 0.8 log Te + 4.41 logl"'_) + 6 log l,I, - 2.02 *
e

If the'central temperature becomes very high and the central

density is low, the dominant opacity is due to electron

scattering. Then themass-luminosity-radius relation is

given by equation (3.16),

m_

i_', ¸ ,
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L+ = 17a,.4/Ma3 1
ii

• 4"+'-¼"--[_h_'4fR-"h-½ !
Te = 2.1. x 1o ¢1 x_ _=_] _} .

This is the path folloWedH RbY the...mass_ve stars, FTypicaII _Iradiative tracks in the - diagram are shown in ig_Fe 5.

.Time scale of Contraction !

%

The luminosity of a star is the rate of change o_
!

total energy

= aE I

The gravitational energy is (from equation 1,19)

SO

GM 2

.. R" <+/-

Thus the time scale of the contraction phase is

I GM 2
At = _ _-----

.LR

= I. 59 x 107 years.
(3.33)

Pre-main sequence'contraction times are listed in Table 1.

B, CENTRAL HYDROGEN BURNING

As a star contra6ts, its central temperature rises

until i% is high enough for, hydrogen thermonuclear reactions

_o produce the energy radiated away from the star. At this

I

point, the contraction stops and the star spends most of

: . . -

1-



Table 1- Evolutionary Time Scales

°.

.-'"

Mass

"2

.7

1

5

7

I0

15.6

Population

II

I

II

I

II

I

II

, I

II
J, ,

I

II

I

II

Pre-main

sequence

contraction

2 x 108

2 x 10 8

4 x 10 7

4 x 10 7

3 X '10 6

3 x 10 6

3 X 10 5

1 x 10 6

2 X 10 5

7 x 10 5

1 x lO 5

, 3 x 10 5

6 X 10 4

2 X 10 5

i i J

Central

hydrogen

burning

4 x i0l°

5 x I0 I0

8 x 10 9

9 x 10 9

5 x 10 8

7 x 10 8

3 x 10 7

8 x 10 7

x 10 7

4 x 10 7

7 x 10 6

2 x 10 7

3 x 10 6

1 X 10 7

(Y rs)

Hydr . 
shell

burning

i X 10 7

2 x 10 7

m.

6 x 10 6

.,-_"9 x 10 6

2 x 10 6

3 x 10 6

3 x 10 5

4 x 10 5

2 x 10 5

1 x 10 5

7 x 10 4

4 x 10 4

2 x 10 4

2 x 10 4

Central

helium

burning

6 x 10 7

4 x 10 7

3 x 10 7

2 x 10 7

1 x 10 7

9 x 10 6

2 x 10 7

2 x 10 7

8 x 10 6

8 x 10 6

3 x 10 6

3 x 10 6

1 x 10 6

1 x 10 6
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its lifetime burning hydrogen into helium. The locus of

luminosity vs effective surface temperature of such stars

(burning hydrogen in their cores and. still of nearly homo- _

geneous composition) defines the main sequence in the

Her_zsprung-Russell diagram.

The luminosity of a star is determined mainly by

I

the "thermal conductivity (radiative) of the stellar material.

The central temperature is determined by the adjustment of

the nuclear energy generation to maintain mechanical and

thermal equilibrium throughout the star. Nuclear energy

generation processes are very temperature-sensitive and
o

thus nuclear energy sources play the role of thermostats.

" The radius of the star depends on the temperature and mass

distribution.

- /

The basic features of the structure of homogeneous

stars can be determined by dimensional analysis. The

dependence of the central _emperature and density on

chemical composition, mass and radius is dete,_ined by
" i

the condition of hydrostatic equilibrium andthe equation

_of state (from equations 1.15 and 1..13)

" =_8 M
Tc _ ,

Pc = M/R3 " _3"34)

L

The luminosity and radius are then determined by the' energy

balance. The equation for radiative energy transport is (1.8)

4
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2, 16 a T 3

L =-4_r 3 aO

dT

dr

Ass_ing an opacity law of the form

the luminosity is

- 1 )4-b M _-a-b 3a+b
L = *o (_8 R" . (3.3S)

The rate of nuclear energy generation is (equation 1.6)

L = 4r;.[8Dr 2 dr .

Assuming the rate of nuclear energy generation per gram

has the form

n
g =_o 0 T ,

the total rate of energy generation is

l+k+n -3k-n
L = go (_8)n M R . (3.36)

When the rate of energy generation equals the rate of

energy loss (luminosity), then the dependence of the

radius, luminosity and effective temperature, on the mass

and chemical composition is

R oc (_oKo)I/L (_8)(n+b-4)/L M(k+n+a+b-2)/i

L = Ko -(n÷3k)/& _o (3a+b)/& (_8) [h(4+3a) + 3k(4-b)]/&

" x M [n(3+2a) + k(9-2b) + 3a + b]/L

(3.37J

T 4 = _. -(n+3k-2)/t 8o(3a+b-2)/¢
. e O

x (_8) ['n(2+3a) + 3k(4-b) - 2b+8]/_ M[n(l+2a)+k(7-2b)+a-b+4]/_
.

where ¢ = n + 3k + 3a + b and b K 0 in the interior. The _

central temperature and density are

.•..-

.-
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T =
C

Pc = (Co'o)-31¢

(4+3k+3a)/.5 2 (k+a+l)l_,
M

-3 (n+b-4)/t M-2 (n+b-3)/4,
@

Thus the radius, luminosity, effective temperature and

central temperature increase with mass, and the central

density increases with mass for the p-p chain, n = 4, but

decreases with mass for the CNO cycle, n _ 18.

The main sequence is the locus of points in the

luminosity-effective temperature diagram

n(3+2a) + k(9-Zb) + 3a + b
4 n (l+2a) +" k(7- 2b) + a- b + 4 log Te + const.

4 3n'_n++ 15.515..7log T e + const. (Kramerls)

(3.39)

4 n +113n+ 9 log T e + const. (electron scattering)

The central temperature of a contracting star is

Tc = 9-62 x I07"_ I_)C_--_ 1

Hydrogen burning starts at about Tc = 8 x 10 6 °K. 'Thus

a star will start generating its energy by nuclear reactions

when its radius is

1.2 _ . (3.40)

Stars of small mass, M < 2_, burn hydrogen by the

p-p chain at a temperature around 1.5 x 107 °K. The rate

of energy generation is approximately

T ..... 7
& =. go P .Sx

2

. "E,o = X H •

ergs/g-sec I
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Massive stars, M > 2MQ, burn hydrogen by the CNO cycle

at a temperature generation around 2 x 10 7 °K. The rate

of energy generation is approximately

T I 18= _o_ 2 x 107
ergs/g-sec

_O = 451 XHXCN 0 8

The energy generation rates for the linear model are (from

equation 3.7)

L

L

The properties of stars on the main sequence--burning

"hydrogen in their cores--are: For the p-p chain and

Kramer' s opacity

R

..%
L

-0.s38/M. 0.0769
0.312 _ _'M--00) '

49.1 _.7"77(_!5"46 ,

5.16 log T
e

T c = 3.05 x 107 _1.54 C_) 0"92S

Pc = 186 _1"615_) 0"769 .

- 0.74 log _ - 20.7 ,

(3.41)

For the CN0 cycle and Kramer's opacity

""i'
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T e =

l°gI_=

T:I

C

pC =

-43-

0.39s [,,__o.697
o.4sl _ _,_oJ "

43.s _7"3 (_) s'18 ,

1.63(a_o.8712.34 x I04_

5.948 log Te

1.98 x IO 7 _0.6o6 0.364.

65.8 _-0.455 M/__.7.."_0"909 .

\%/

- 2.39 log _ - 24.36,

(3.42)

Stars switch over from the p-p chain to the CNO cycle

at a central temperature about 2 x l0 7 °K, which occurs

i
1
I

I
I

i
I

at a mass of about M = 2_. For CNO cycle and electron

• scattering opacity

R 0.588 I._O/0"765RE) 0-454 I_. , ..

.

T

C

Pc =

8.16. log T
e

2.12 x 107 _0"412(_._ 0"235

60.3 -1.765 (_._-1.294 .

1.76 log _ - 34.15,

;; (3.43)

Stars switch over from Kramer's to electron scattering as

the dominant opacity for mass M > 3 MO for population I

and M > 2 MG for population If.

The evolutionary tracks for different mass stars
!

are shown in Figures S through 8. Duringthe pre-main

• . ' - -',' . , !



/

Figure 6. Evolutionary tracks of population I stars in

H-R diagram durin_ pre-main sequence contraction.

The main-sequence is also shown. Dotted curve is

observed main sequence.
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Figure 8. Evolutionary track in H-R diagram of star at
one solar mass. Solid and dotted curves are from

analytic models. Dashed-dot curve is results of

calculations using Henyey method by D. Ezer and

A.G.W. Cameron: This conference, p.
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sequence contraction the stars contract to release grav-

itational potential energy to supply the radiative energy

losses from the surface of the star. The radius of the

star decreases. The direction of the track is determined

by the mode of energy transport: convection with low surface

density, convection with high surface density, radiation

with electron scattering opacity, or radiation with Kramer's

opacity. Stars are fully convective when they first become

stable, except for very massive stars M > 12 MO (population I)

and M > 17 MO (population II). Stars become radiative when

the radiative luminosity is greater than the fully con-

vective luminosity.

The main-sequence is the region of the H-R diagram

where central hydrogen burning occurs. Here the central

temperature is high enough for the hydrogen thermonuclear

reactions to supply the energy radiated away. There are

three sections of the main sequence with different slopes,

depending on the mode of energy generation and the type

of opacity. Because the linear model is not sufficiently

centrally condensed, the main sequence is shifted to lower

effective temperature and slightly higher luminosity than

•obtained from accurate calculations. The radius must _

shrink in order to raise the central temperature to high
i

enough values to _enerate the luminosity.

Convective Core

A star which is .generating energy at its center by

?
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a very temperature sensitive thermonuclear reaction (all

processes except the equilibrium p-p chain) will have

a convective core. The energy generation region is very

smal_ so the luminosity increases very rapidly with radius.

The flux F = L/4_r 2 will then be extremely large, s!ince

the radius is very small• which forces the radiativ_

temperature gradient to become superadiabatic in order
.

to carry the flux. This causes instability to convection.

The boundary condition for the convective core is

Pad = ad
(3.44)

and

where

d(___) I T dP I T
• ad = (N+l)a d _ d--_ = - "(_N+lJad _

.

2

_,(N+l_ad 32 - 248 - 388 - 68
.,

= P_/P .

(3.4s)

(3146)

d/\ = _.L K.__D L 1 T dP

t J.tad - 16e T3 _ = (N+l)rad P d--_ '

where

where

(N+I) tad
16wcG(1-8 )My

L
r

• = 1 aT4/p(l-S) = Prad/_ 3

Thus the condition for convective instability is

(N+l)ra d _ (N+l)ad •

(3.47)

(3.48)

(3.49)
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Expressed in another form, the boundary of the convective

core will be at

Mr
q =  --ffi (N+l)ad

S _P L r

16nacG T _ M

I _Lr"

"(N+I) ad 16ncG (I-8)M " (S .50)

For a convective core to exist, the effective poljcropic

index must be Nad and decreasing inward at some point in the

star (Naur and Osterbrock, 1953), i.e., at the core boundary

Assuming x = x o 0

d In (N+l)md

d In r

a T-b then

Oe

d In (N+l)rad =

where

d In r

4 d In T + d In M r _ d In P

d in r d In r d In r

_.4+b+a ] d In P
_N--'_ (l+a). A d in r

["4+b+a= - (l+a v +

d In _t d in L r

d In r d In r

+ d in M r d In L r

d ir_ r d In r

U -- W,

d In Mr :4nr3_
U = =

d In r M r

d in P GMr_
V --

d in r rP

W - d In L r .
d In r

Expand Mr, P, Lr, and T about their central values,

= 4 n0cr3
Mr _ '

2 2
2nG 0 r

P = Pc- _ c '

Lr-- _4 n Dc 8c r3,

I T. I ._ T c 2 2T =:Tc - N+---I _ AP = Tc - _ . nG Z_c Oc r. .

At" the center, U c = 3, Vc = 0 and W c = 3, so "_ -:_
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d In (N+l)ra d / d in r = 0 at the center. Thus the condition

for a convective core

D = d In (N+l)rad = . #4 +b+a I_
d In r \_ a - / V + U - W _ 0

becomes

since D c = 0 and V increases outward.

Eva'luate dU/dV and dW/dV at the center. U = 3, so dU = O.

Thus we must develop 0 and M r to higher order.

UH P N 2

P = -_ = Pc (I - N+I 3 _S

2 __Ac .where C =--nG
3 Pc

Th en

SO

= Oc(l N c r 2)- N+----[

Then

Mr = 4n r_prZdr= 4_ oct3 (I 3 N• --_ - _ N+--icr2)"

Now consider W.

2 N
U _ 3(I -_ 3-+-I C r2),

V = 2Cr2_

dU 3 N

dV 5 N+I

Lr = 4U.8o j,_ pl+d T_ r2 dr

assuming an energy generation rate of the form 8 =

N
O = Pc(l - _ C r 2) and T = TO (l -----I C r2).

N+I

o

+.

i
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i:

Thus

Then

sO

and

Thus

= l+d r N(l+d)_ Cr2)(1 - _ Cr2)r2dr

3 cr2iZ+d v r34_ -_o P TO (I - --. -
=_-. c 5 N+I

J

3 _ + N(I+a) Cr2).
4n 6C Per3 (1 - --=T s _.+z

d " _ + _(1+d_ Cr2)]
W : 3 + d in r [in (I - 1-- 5 N+I

6 _ + N(l+d) Cr 2
=3- -_ N'+I

12 v + N(d+l_

dW=- T -N+I Cr dr )

dV = 4Cr dr •

dW 3 _ + N(l+d) •

dV 5 N+ 1 • ,

The criterion for the existence of a convective core

is thus

dD

dV

i- zs)
_(N+Ij (3_ + 3Nd + 5Na + 5N - 5b - 0,

(3.51)

where
32- 24$ -,3B 2

N'+I = 8 - 68

= _o 0

-b
K = KoDaT •

For Kramer's opacity and B = i, d : I, this becomes
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For a gravitationally contracting core _ -- T; for electron

scattering opacity the condition for a convective core is

then N > 2.4 which occurs for 8 = 0.75. For 8 = 0, no

temperature or density dependence of _ is needed

in order to have a convective core.

Assuming the existence of a convective core and L = L
r

at the core boundary, its size is given by

ql = "(N+!)ad _ L , (3.52)
1-8 16 ncGM

The size of the convective core depends on the mass of the

star only through the radiation pressure. Consider the

special case of negligible radiation pressure,

I _ 3P = _ 0 3k Pc

since 0/T 3 is approximately constant through a star. Then

t

Q

ql = (N+l)ad _ _3 3kL16nacG_HM
C

Apply dimensional analysis to this expression.

0c -3 M-2

For electron scattering _ = v.o and L _ 84 _, so

ql -- 8 (N+l)ad •

T3 •5
For Kramer's opacity K = 300

ql

T
C

~ -½ L[_c+,,_2 TC

8-2/(n+2.5) M6/(n+2.5)

L .',., [_
(Tn+22.5)/(n+2.5)M(Sn+lS.5)/(n+2.5)
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i

so

1 + 6/(n+2.5)

ql ~ s . '_
. 1

Now consider the case when radiatio_ pressure is Important,

• _.
8 < 1. Electron scattering will then be dominant, so,,

t

(N+a)a_ L i
qi ~ I-_ _ i

I

and

.__!__1 P .,, _-4 hi-2 L ,., 84 M 2
I-8 - _ _ while

Thus for massive stars

ql _ (N+l)ad '

•which increases by a factor of 2 as 8 decreases from 1

to _. Thus in all cases qi depends on the mass only

through the radiation pressure.

In the case of negligible radiation pressurejthe

size of the convective core can be found explicitly by

using the linear model

ql 128n GHa MO _,I_J\M-] _Tc3

For electron scattering

ql

and for Kramer's opacity

ql

= .22(I+X),

= 1.65(l+X)Z.
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IV. ADVANCED STAGES OF EVOLUTION-INHOMOGENEOUS STARS

A star spends most of its life burning hydrogen into

helium in its core. The advanced stages of evolution

•comprise the star's life after central hydrogen burning.

When the hydrogen in the core is completely transformed

into helium, the core of the star contracts and heats up.

The rising temperature enables hydrogen thermonuclear

reactions to occur in a hydrogen burning shell source

surrounding the core. A star in this stage is composed

of a helium core, a hydrogen burning shell source and a

hydrogen envelope. Depending on its mass, a star may

proceed on to helium, carbon, neon, and oxygen burning.

If the sta F is massive enough# the core continues to con-

tract and heat up, until, at about 108 °K, helium burning

thermonuclear react'_ons occur in the core.

As a star evolve_ each nuclear burning process starts

first in the core and burns outward as the star heats up.

Thus, a star that has passed through several nuclear

burning stages will be composed of concentric shells of

the products of the different processes, with a hydrogen

envelope on the outside and a core of the products of the

last nuclear burning stage through which the star has

passed. F_igure 9 illustrates the shell structure of a

star that has passed through all the nuclear burning stages.

!



4

i

Figure 9. Schematic shell structure of a massive scar at

the end of nuclea_ burning. The star is assumed to

have passed through all the nuclear burning stages plus

u _ approaching equilibrium among the nuclei in the core.



oJ

o



-52-

We first consider some general properties of stars in

advanced stages of evolution. The evolution of stars is

towards greater central condensation. Stars contract and

increase their central density and temperature. This con-

traction is occasionally interrupted (but the e_Jolutionary

trend is not altered) by nuclear burning in the core of

the star..

The increasing central density as a star evolves, to-

gether with the existence of nuclear burning shell sources,

causes the development of large radii and extended envelopes.

The large radii are caused by increasing central condensation,

that is, increasing central density but decreasing envelope

density. The degree of central condensation is measured by

U = d In M(r) 4nrSD = S o(r)
_--. _ ,

d In r M(r) Or

where Or is the mean d_nsity interior to r. "Since

1
d In r = -- d in q ,

U

the radius is

In R = ._i 1 d in q + In R 1 , (4.1)
ql U

where ql and R 1 refer to the core-envelope interface. Now,

from equation (1.15),

Tc_ _ M__l
k R 1 '

so

where M 1 is the mass of the core.

uc (4.2)
T c '

Thus the stellar _adius is
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ql _ d In q + In • (4.3)

The larger the central condensation, the smaller the U near

the shell source and the larger the stellar radius. All

stars in advanced stages of evolution have extended en-

velopes.

We digress now to discuss the nondimensio'nal variables

U, V, and N+l:

d In M(r) 4_r30
U _ =

d in r

• d In P GM(r)o _ 3
V m _ =

rP 2
d In r

N+I = d In P = 16 na c CM(r) T4
d In T 3 P_ L(r)

3 p(r)
%
GM(r)/r

P/p

At the center of a star U - 3, V _ O, and at the surface

U - O, V- _. The polytropic index N varies between 1.5

for a convective region and infinity for an isothermal

region. Also

d In T _ V
m

In r N+I

d In 0 = _ N___V

d In r N+I

(4.5)

(4.4)

/

:i!
i"

Thus the r - dependence of the physical variables is_given

in te_ns of U, V, N+I by

_(r) ~ r_

P _ r-V

T ~ r -V/(N+I),

o -- 1"-Nv/(_+l) •

(4.6)

From hydrostatic and thermal equilibrium, the phTsical

variables r, M(:r), P, and T must be continuous throughout a



i

J

<

-54-

star. A discontinuity in pressure would entail an infinite

acceleration, and a discontinuity in temperature would

entail an infinite energy flux. At a composition dis-

continuity then, the density will be discontinuous, but

p/_ will be continuous. Thus the continuity conditions

V_ • -"on U, N+I are

U V

, -- , _LrIN+lj'_ Continuous. (4.7/

The dependence of the radius on the central condensation

U can now be evaluated approximately,

_i 1in R = . _ d In q + in R 1 ,
ql

(4.1')

where R 1 is the radius of the base of the envelope. The

integral may be evaluated approximately by expanding U

about its value Ulatthe base of the envelope (from equations (4,6)

and (1.4))

/.RI_Nv/(_+l)
p = plL_ ] = Pl(l NVN+l DrRl ),

M(r) = M I + 4_r2plAr ,

SO

and

I/ --
oi

N+I R 1

M 1 + 4nRlZPlAr

4nRI3DI " NV _ U1 ) Ar
M1 (1 + 3 -_+--l- R-I

_vv Ul ) ar=  1(4- '

Rq 4_R13 D .U1

L

(4.8)
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thus

NV Ul) Aq . (4 9)Au= (3 N+l

The main contributions to the integral for the radius,

(4.1), come from thos_ regions ql < q < q0 where U but

not Aq is small; that is, not near q = i. Let U = U 1 + a(q-ql)

where _ = 3 - NV/(N+I) - U I. Then

ql U1 + _(q-ql ) q

_/ i _ In /qo U1 (_I0)

For U 1 << aql

For U 1 _ aql

A In R_

aq I

1
A in R_

aq I

\ u1
- ql>

qo

qo

For U 1 >> aql

A In R_ I In /qo_

U 1 _

Thus for great central condensation, small U1, the _'adius R

1

is large.

The increasing central condensation in advanced stages

of stellar evolution is caused by the increasing central

density in conjunction with the existence of a shell energy

source. Increasing the central density increases the pressure

gradient dP/dr =-0g. However, the core luminosity is less

&

than the total luminosity, the core tends toward an iso-

thermal condition, and the temperature varies by less than

T'= 01/3. Thus the density gradient in the core increlses,
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U 1 = 301/5 c decreases, and the stellar radius increases,

The composition discontinuity between the hydrogen envelope

and the helium core causes a decrease in Pl and so U 1 by

a factor of _c/_e, and also contributes to increasing the
z

stellar radius.

Although stellar radii tend to increase during the

advanced stages of evolution, their actual magnitude de-

pends on the detailed structure of the star. There is

a general empirical rule for determining the variation of

a star's radius: The direction of expansion or contraction

in a star is reversed at every nuclear burning shell source

and unaffected by any inactive shell. The reversal of

expansion or contraction of a nuclear burning shell source

is due to the thermostatic nature of a nuclear energy

source. A star ad.justs itself to maintain a constant

temperature in the nuclear energy source, which causes the

radii of the nuclear burning shell sources to tend to

remain nearly constant. The mechanism is similar to

that which keeps a main sequence• star in equilibrium.
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If the radii of the shell sources remain constant,

the contraction of a zone between two shells, for instance,

means that the density at the inner shell of the zone in-

creases but that the density at the outer shell must de-

crease, since the mass and volume of the zone remains con-

stant. Thus the density at the inner shell of the next

outer zone is decreasing and that zone is expanding (see

Figure .I0).

Consider the zone between two shells of radii R o < R I.

l L

Ro - _, R1

Let m be the mass of this zone and assume R 1 >> R o-

mean density of the zone is

The

Thus
._.-.

= M1 - Mo _ 3m (4•11)

 3o) R13 "
3

AR 1 _ 1 AO (4 12)

R I 3

We also assume the radiation pressure is negligible so 8 _ I.

Consider what happens when the radius of the inner shell

changes• Suppose R o changes by AR o. If the shell at R o is

not nuclear burning, its properties vary in a manner that pre-

serves hydrostatic equilibrium, that is approximately homo-

logously. Then, by equations (1.13) and (I.15),

o

1 1

. T = _ , 0 _ R--'_ '
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SO

AT__o = _ AR___o

TO Ro

Ao------q-° = - 3 AR----9." ,

Po : Ro

AP---_° = - 4 AR---_° .

Po Ro

(4.1s)

Then

ARI _ I APo _ ARo

RI 3 Po Ro

Thus when the inner shell is not nuclear burning the outer

shell's radius changes in the same way as the inner shell:s

radius, and the shell has no effect on the expansion or

contraction.

If the shell is nuclear burning the structure of the

shell initially changes homologously. However, due to

the change in the rate. of energy generation, there, is an

additional., nonhomologous, "change in the strupture. The

change in the rate of energy generation is

gN = go (P+Ap)(T+AT)n --

ARo)
= SNo (i- °

(i+ A0 + n--gN o p

so that

Ag.__.NN=-. (n÷3) __R---_O) ,
gN _ Ro 1

where L--_oj 1 is the initial change in R O. lnitialiy, thlis

net change in energy is deposited (or removed) where it is

generated and the material heats up (or cools down). The

temp.erature changes until the fractional change in luminosity

(rate of removal of energy from the region) is equal to the
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fractional change in. the rate of energy generation• Since

T 4 T 7 SL = -- = " then

2 -_ _--_ 7.--7 \ Ro/1

gives the additional• nonhomologous change in To• This

additional temperature change produces an additional

pressure change (besides that produced by the initial

homologous transformation),

kVJJ ( =
An increase, in pressure produced by a contraction of the

shell will push the shell back out; a decrease in pressure

i

produced by an expansion of the shell will Allow the shell

to fall back in. The pressure must return to its equilibrium

homologous value-and the shell must move back in the direction

from which it cam4 according to the homologous relation

AR _ 1 AP

The secondary correction to the radius of the shell is

hence

/ ARo'_ = /A Po'_ = - n+S (ARo" _

C_o)2 . - ¼ - t"_oJ :., 4.7.s _"_o) 1
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The secondary correction to the radius is thus

k'-'_o12 30 k, Ro/1 ", (4.14)

There is, therefore, a strong restoring force on the radii

of nuclea_ burning shells, tending to keep them constant.

The change_in density, if the radii are precisely con-

stant, can be found from the linear model,

_(r) = _o - (Oo_Pl) r- R o

R I - R o

where R o is the radius of the inner shell and R 1 the radius

of the outer shell. Then

R13 Po-P I 3 R _M1 _ Mo = 4TT [PO ( RO)]
3 RI_Ro _ 1 •

The change in the mean density is zero. If R o << RI, then

A_ o
5Pl _ (4.15)

3

and L changes in the opposite direction to Po" Therefore,

sin the radii of the nuclear burning shells tend to re-

ma . constant, the sign of the change in the density will

alternate from one shell to the next. Thus the direction

of expansion or contraction is reversed at a nuclear burning

shell.
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Apply the general rule for stellar radii changes

to the various stages of evolution. During the pre-main

sequence contraction stage, the core is contracting; there

are no shells, so the whole star is contracting. During

the hydrogen exhaustion phase, the core is contracting;

there are no shells, so the whole "star is contracting.

Then a hydroge_ burning shell is ignited, the helium

core continues to contract, but now there is one shell,

so the envelgpe expands. When the central helium burn- i

ing commences the core expands; there is one shell, so

the envelope contracts. These structural changes are

illustrated in Figure Ii. The structural changes d_ring

the stage of helium burning are illustrated in C. H_yashi:

"Advanced Stages of Evolution, " this conference, P'i

A.. CENTRAL HYDROGEN DEPLETION

We now consider in some detail the evolution of stars

from the depletion of hydrogen in the core to the onset

of helium burning in the core.

The depletion of a nuclear fuel in the core of a lstar

and the ignition of a shell source is a •process which i

"changes the basic structure of a star. We can there-I

fore not construct an analytic model for this phase but

only give some of its general properties.

During central hydrogen burning, the luminosity

of a star increases due to the increasing mean molecular



Figure 11.
structure from the pre-main sequence contraction
the •onset of central helium burning.

Schematic diagram of the changes in stellar
to
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weight as hydrogen is depleted in the core. Assuming

the homology relations for homogeneous stars are still

valid, in-small mass stars where Kramer's opacity is

dominant fr0m (3.13) and (3.35)

L = 7"5 ,

while in massive stars where electron scattering is

dominant from (3.16) and (3.35)

L = 4 .

The mean molecular weight increases by about a factor of

2 as hydrogen is consumed.

The energy generation rate has the form

= 8oXHX 2 0 /

where X 2 is X H for t_e p-p chain and is XCN O for the CNO

cycle. The temperature exponent is n _ 4 for the p-p

chain and n _ 17 for the CNO cycle. As the hydrogen

concentration in the core decreases, the central temp-

erature must rise in order to maintain the rate of energy

generation. The radius of the star will therefore tend to

shrink (see equation 4.2),

= M/T .R
C

The tendency of the radius to decrease due to the
/-

increasing central temperature is counteracted" by the

tendency of the radius to increase due to the growing

composition inhomogeneity _hich decreases UI+ _ gl-

at the bottom of the envelop6. •

i '

I

t
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The p-p chain is less sensitive to temperature and

more sensitive to hydrogen _oncentration than the CNO

!
cycle. The central temperature will thus increase much

i
more in small-mass than in large-mass stars. During

central hydrogen burning in small-mass star, the rapidly

increasing central temperature nearly balances the grOw-

ing composition inhomogeneity and the radius stays nearly

co.nstant. In massive stars, the central temperature

rises only slightly and the radius increases due to the

composition inhomogeneity. The evolutionary track of

a star in the H-R diagram during central hydrogen burning

is towards higher luminosity. For low-mass stars, where

_h_ radius is approximately constant, the track" is nearly

parallel to the main sequences For massive stars, where

the radius increases, the track turns off the main sequence

to lower effective temperatures.

The equation for the consumption of nuclear fuel is

dX

dt E

M2

dt BMI2 M 1

radiative zone)

convective zone/

where X is the concentration of fuel nuclei and E is the

energy released per gram of fuel consumed. This equation

can be solved for the time scale of central nuclear burning

M C

At _ _- E AX, (4.17)

where L_ c _ _, the mean rate of energy generation, E is

the energy release per gram, and AX ,_ i. Lifetimes of stars

" near the main sequence are given in Table I.

"" ! -

i
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As hydrogen is exhausted in the core of a star, the

central temperature increases in order to maintain the

rate of energy generation. The temperature farther out in

the star is then increased and the rate of hydrogen burning

outside the core (where-the hydrogen has not been ex-.

hausted) is therefore increased. Thus a shell burning source

is ignited.

When hydrogen becomes nearly exhausted in small mass

stars generating energy by the p-p chain, the central temper-

ature has aiready increased and raised the temperature in

Diz_ surrounding regions of higher hydrogen concentration

s:_fficiently to produce hydrogen thermonuclear reactions

L,,ere. When hydrogen becomes nearly exhausted in massive

_Lars, the central t_emperature has not yet increased much

due to the high temperature sensitivity of the CNO cycle.

The energy requirements of the star must still be met by

the core, so the central temperature must now increase

greatly. This causes the radius of the star to contract

and its tracM in the H-R diagram swings to higher effective

temperatures. Eventually the decrease in X c outruns the

n

increas_ in T and the rate of nuclear energy geDeration
C

in the core decreases. The core then starts to contract

and release gravitational energy to supplemen_ the de-

creasing rate of central nuclear energy generation. The

gravitational contraction raises the central temperature

i
|

°

R

i

, t
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T = Pc , and the shell temperature and ignites theC

sholl source. Tho more massive the sta_ the larger the

size of the initial convective core,,and the farther out

from the'center lie the hydrogen rich regions. Then the

temperature in the hydrogen rich,shell will be lower_ the

ignition of the shell source will be delayed, an4 the grav-

itational ene_ release will supplant nuclear energy

generation as _the star's primary energy source. Eventually

the contraction will raise the temperature enough to ig-

nite the shell source. Summarizing, as hydrogen; is ex-

hausted in the coro of a star the temperature increase_,

nuclear energy generation in the core decreases, and a',

hydrogen-burning shell source surrounding the core is

ignited.

When hydrogen is exhausted in the core and a shell

hur-ning source is set up, the pressure distribution in

the core is initially similar to that of a homogeneous

star. The value of U at the outside of the shell, UI+ ,

is then decreased because: (a) The composition discontinuity

_c/_e _ 2 reduces Dl+/p c and so UI+ by a factor of 2, _ and

(b) when nuclear energy generation in the core ceases,

the core tends to become isothermal. The reduced temper-

ature gradient increases the density gradient, which re-

duces _I+/DC somewhat further.

/
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The U - V locus of a star is given by

or

d lnU. 3 - U- NV
d In r N+I

d inV V
= U- I +--

d In r N+I

d In V U + V/(N+I) - 1

d in U = 3 - U - NV/(N+I)
/

t

•(4.18)

s

i
I

The points on the V - U curve with horizontal or vertical

tangent are given by

" U + V/(N+I) - 1 = 0

u + NV/(N+I) -3 = 0

(horizontal),

(vert ica i) .

(4.19)

These two lines intersect at the point

U= N- 3 N+I ,N - 1 / v = 2w-_I (4.20)

Thus for N > 3, the .intersection point is in the physical

re_ion and there is_a loop point corresponding to r - m.

Typical U - V curves for homogeneous and inhomogeneous

stars are shown in Figure 12.

For an isothermal core, N = m, so the U - V curve

has a loop point of U = I, V = 2. The maximum V thus

occurs for U = 1 and is somewhat larger than 2. Thus

for an isothermal core

UI+
U'e U _0 5
_c

An isothermal core, if too large, however, cannot

support the weight of the envelope• The critical size

of an isothermal core can be found from the virial theorem

(McCrea, 1957),

3 (y-l) U. + Q - 3PV = 0 " _
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-so

p ==

U In

(v--l) + -3v-

where U and V are now the internal energy and volume.

• I

For an isothermal sphere the internal ener_ iS, from _

equation (2.3),

U= 1 __k TM ,
¥-I _H

..

and for a sphere of uniform density the gravitational

• energy is, from equation (1.19),

3 GM 2
= _

S R

o.

The pressure at the boundary of the isothermal core is

therefore
2

3 k TM 3 1 GM

P = 4-_ _H R7 - 5 4" R_- "

There is a maximum pressure consistent with :the equilibrium

virial theorem, which is given by

dP

dR

9 kTM 12 GM 2

= .... -_ :::R 3- = 04_ _BR 4 20-

Thus there is a critical core radius

_4
Rcrit" 15 k T 1

(4.=i)

with stability possible only for R
core

maximum possible pressure is

Rcrit.. The

max 16rr k,,.IJ.H ) G3 M12 , (4.22)

which: decreases wi_h increasing core mass. To determine

the limiting mass of an isothermal core this Pmax must

he compared with the pressure necessary to support a star.

For the linear model, (equation 3.S),



i,_

2
5 GM

p ffi
c 4_ R 4
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Also for the linear model, (equation 3.6),

TI _ _ = 5 C_H M
21 k R

Thus the condition for a stable star, .that an isothermal

nondegenerate core can support the surrounding envelope, is

> P
P max _ c

Or

M1 < 0 16 , (4.23)
M

Accurate calculations (Schonberg and Chandrasekhar, 1942).

give ql < 0.I.

If the mass of the core is below the isothermal core

limiting mass (Schonberg-Chandrasekhar limit), the core

becomes isothermal and the central temperature may decrease.

In massive stars, the core exceeds the Schonberg-Chandrasekhar

li_it and gravitational contraction begins when nuclear
o

energy generat'ion ceases to support the star. In small

mass starsjthe core is initially below the limiting size,

but shell burning adds material to the core until in this

case, too, _he come exceeds thb Schonberg-Chandrasekhar

limit•

In all stars, therefore, to support the weight of

the envelope the pressure gradient in the core must in-

crease. This raises the central density and greatly re-

duces UI+ = 3DI+/_ c leading to very extended envelopes. •

The increased pressure gradient is achieved by two methods:

/ i
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For small mass stars the electrons become degenerate

and their degeneracy pressure greatly increases the pressure

gradient. For large mass stars the core contracts rapidly,

producing an increased density gradient and a nonzero

temperature _radient, both of which combine to incrsase

the pressure gradient.

The envelopes of stars in advanced stages of evolution

are therefore characterized by great extension, low density

and small U near the shell at the base of the envelope.

That is, the envelopes have a centrally condensed structure,

with the density iincreasing rapidly inward due to the

large pressure gradient at the edge of the core, but the

"mass M remaining nearly constant as r _ rshel I from above.
r

The _reater the central condensation the larger the stellar

radius. The most centrally condensed envelope structure is

p - _, as r- O. Since the mass, M r , must remain finite,

D = r-_ where'_ < 3. Then d0/dr is finite, so from equation

(4._) V is finite. Also, since dT/dr _ 0, from equation

(4.5) N is finite. From equation (4-4), since M r is ap-

proximately constant, V = (rT) -I, so

T 1/r . (4.24)

We can now determine the limiting values of the nondimensional

variables at the base of such an extremely centrally con-.

densed envelope. Since rshel I is very small, the values

at the base of the envelope will not be too different from

their valses in the limit r _ 0. For N < 3, the limit as

r - 0 is, from equations (4.6) and (4.24)

!
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i

71
{:7
I:

u- 0, v- N + 1 . (4.25)

o

Thus U _ O, the limit of extreme central condensation.

The radial dependence of the physical variables is

P _ r-(N+I), z _ r-l;

0 = r-N .
(4.26)

For N > 3, the limit as r _ 0 is a loop point given by

equation (4.20). In this case U > 0 and the envelope

is not so centrally condensed. The radial dependence

of the physical variables is

- 2 (N+I ) I (N-i) - 21 (N-l)
P_ r , T_ r

-2HI(N-l)
(4.27)

We now determine the effective poiytropic index at

the bas@ of a centrally condensed envelope.

nondimensi0nal variables/

GM 2

p = p

In terms of
h

k R

Mr= q M ,

i

r = x R,

the hydrostatic equilibrium equations are

d_R = _dx

dx t '

86,

:_. _-e & _: _l_e, and the flux equations are

(4.28)

o 2

a._2. = _ cKdx x 2 .5

dt = CE p
dx x--Z-_t4

(Kramer' s opacity),

(4.29)

(electron scattering).

i
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For Kramer's opacity, combining equations (4.28) and (4.29),

d 2 . . q ,
4 25 CK

s_near the surface and near the shell at the base of the

envelope, where U is very small and the mass fraction

q is nearly constant, the polytropic index is

N = 3.25 •

Thus at the shell

-2.89
D _ r

Similarly, for electron scattering,

(Kram_r' S) • (4.30)

dp q

dt 4 4 C E

so, near the surface and near the shell the polytropic

index is

N = 3-

Thus the density distribution at the shell is

-3
(electron scattering).

(4.31)

The only envelope model which can be readily solved

analytically is 0(r) _ r-3. This, as was just shown,

corresponds to the limiting case of extreme central con-

densation for both Kramer's and electron scattering opacity.

The internal structure will be well represented by such a

model, bgt because it is too central&y condensed the stellar

radii Will be much too large. To calculate the radii a

somewhat less centrally condensed model should be used.

• .
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!nhomo,_eneou_, Anal._ciq Stellar Hode_

o .'

We now construct an analytic model of a star with

one shell using a linear density distribution .in the core

and an r-3 density distribution in the envelope.

I. Core

In the core assume a linear density distribution

r

C)(r) Oc- (Pc- Pl ) Rq ' (4.32)

where D
c

the shell. Then the mass distribution in the core is,

by equation (1.4),

MCr)= ,j,r4n0 (r) r 2 dr
O

is the central density and 0 1 is the density at

= 4n r3 i0 c 3T -7 (°c

and the mass of the core is

_ 01 ) r__],
,, RI (4.33)

M 1 = _ RI3(_ + 301..)- (4 34)-
3 c

This relation can be turned around to give the radius of

the core

R1 =
(3Mo .1/3 )113 Uc -1/_3co° 3• ,,._ + _ °t.)

1.78 M 1 1/3 (0c + 3 _ P " i

• !

The pressure In the core is determined by hydrostatic

_quilibrium, equation (I.I),

GJ'r M(r)0(r)P (r) = P - - Z- dr
C 0 r

= Pc - _ G'_'c2r2 I1 - _(1- -) r-,.+ _(1-2p . )_]
3 R 1 c p c ;_ '"
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At the boundary of the core

P1 " _ " _ 2R2 _
_c_ DI-T I 'Pc " G0c 1 24 (5. +

2

i_ + 0!. _)'

so , 2

Pc __k _ GO c2R12(,L _c H P1_T1 + 36 5 + 10 D1-0c + 9 ) •

Thus the pressure" in the core is

k Tr 2

P(Y) = _-_c_ PI-TI + _ GOc2R1

2

01 -

(31-- + 9___ c[5 + i0 _c

2 .4

+ 28(1 - -)- - 9(1 - 2 +
RI3 Pc l_c _i+

(4.36)

and the central pressure is

p k 5_ c2Rl 2- p I_T1 + GOc _c H "_

2
-- Pl-[1 + 2 01- + 1.8 --'--2 3- (4.37)
0c 0c-

FoP a _perfect gas, with negligible nadiation pressure,

the temperature is, by equation (1.2),

T (r)- _ P(_)

_nus the temperature in the core is

_ -___3-1 Pl- _ _ 2T(r)- [I- (I-) R1 . [ _'c _TI + _ k {_cRI

2 r2 01- r 3 (4.38)
Dc--_/--01- R1- + 28(1 -+

5 + 10 oI___= + .9 24 _ .----')'"_
¢c +.c mf" 2

• 01_ _r 4 +
- 9(1 -2 01---=+ T--T-;.---'_J],

Oc 0 c K1

and the central temperature is

" 2
D1

2 _ 1.8"--01-
T = R 1 p c(l + 2" + )
c We P-_ TI + _ k 0c 0c 2 (4.39)

2 2

t/c 01 /RI_ 2 DI"_C + 1 8 _tc 012)= ----- T I + 0.17 x I07 _c Dc(l + 2 --- • --- .

_leDc + _I_/. I::)c P'e I.J.2 I:)c
" . ..- •

•_+!!

?t
.!

+!
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However, when the core is degenerate it is assumed to be

isothermal, so Tc = T 1 in a degenerate core. i

!
• i

2 • Envelope

In the envelope assume an r -3 density distribution

3
I_ (r), = D • (4.40)

Then the mass distribution is, from equation (1.4),

j.r dr
M (r) = M 1 + 4n01R13 RI- _-

where M 1 is the mass inside the shell.

tribution in the envelope is

Thus the mass dis-

M (r) = M 1 + 4n01R13

M = M 1 + 4nOiRl 3

In ( r/R I),

In (R/R 1 _.

(4.41)

The pressure is: determined by hydrostatic equilibrium,

equation (i.I),

_ [r M(_)o(_)
P(r) = PI. G r2 -- dr

• R 1

GozRI3 J'_l 3= PI - [MI + 4w01Rl

so

In(r/Rl)] _ dr,

M1 I_ 4 ) _ z 2
P(r) = _lj ¼GPl _1 (1- - 7 G_IEI

12RI 6 1 r+ _Gp _ (¼+ Zn_ ) .

The boundary condition P(R) = 0 determines Pi

P(R) = 0 = PI (_--!l>4 - '_G 2M----! (1-) 7 °l R12
- ¼GoI R1 6

2 R 1 R_..) ,
rrG0 1 R__4_ (1 + In R1
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So
6

• 2 ._(_ + inR_)
_Gp i R4 iR1

Thus the pressure in the envelope is

P(r)= _,G_1 RI -
(4.42)

and the pressure at the shell is

-_ (I- + _ Go,R12(1P1 = _G_IR1

( 14- wG012RI 2 In R_I

-4
Note that the pressure is proportional to r

(4.43)

except near

the surface.

The temperature for a perfect gas with negligible

radiation pressure is, from equation (1.2),

Z (r)- _H P (r)
k o (_

Thus the temperature in the envelope is

T(r) = G_eH MI "RI _

1R12 R1 R1 in rE--
+ TTp - ]_- +_ 4 _- RI

- '
-I

No_e i_hat the temperature is proportional to r

(4.44)

exc ep_ "

near the surface. The temperature of the shell is

T1 = @i'teH fM 1 (i_ {R It 4)+ rrR 2piFl-'_._4(i+41n R )!! ..:.4k LR_I " _R / I. _" _" J R1 .4S)
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The stellar radius is extremely sensitive to the

"degree of central condensation. For our envelope density

distribution 0 ._" r-3, the radius is obtained from the

mass relation (4.41),

k4 T_ _l

= R i exp i_ i _i _le])"

Thus the radiu_ depends exponentially on D c/D i. This.

leads to extremely large radii, much larger than are

observed. This is to be expected, since this envelope

corresponds to the maximum degree of central condensation.

Consider now less centrally condensed envelopes with

%

density distributions

/al_ n

o(r) = Pii--_._ (i.S < n < 3).. (4.47)
\rl

The mass distribution in the envelope is then

and

n .r 2-n

M (r) = M 1 + 4n01R I J RI r dr

MI + 4n n Rl3-n)3-n 0 IRI (r3-n -

4n n

M = M.i + _ _ iRl (R3-n

Thus the radius is

_. ?_L+ [ (3-_)C.-M1}]ll(3-n)
._-_ L4_ _j. Ri_''_

_ RI 3-n)

(4.48)

,_c i!!

Ii ¸
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i
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degree of central condensation. As a rough approximation

for all starsj we choose n = 2',_S• Then ; _i
4

_ _ _____(_ . __/__-, -__,!!R = 2 _ +, (l-q"l) _ . ..p
_": '_ " _.o"_ ,' ',"'o_ \R_) I ...!.!.

" _,_ + ,.-_ _.o-_(__c,-q.,)7_V',_.-_.ii_._)
"_ _'_.i _'f " _'_'. . , _.

, _
The internal :structure of the inhomogeneous model_

is shown in Figure 13. Figure 14 shows the tremendous

de_ree of central condensation of the mass as compared

with the homogeneous model.

We now turn from the hydrostatics to the energy balance

•in the envelope. The rate of thermonuclear energy gen-

eration in the shell is, equation (1.6),

• ;-RlP2R \.t-O[T_n ""L - 4_ o l_). r2 dr,

where we have assumed a nuclear _uer_ generation rate per

gram of the form

Then

_V
e. = _oOkTo/ .

L =" 4nF-, oP 12 (T!_n RI6+ n FR dr__.
k,To/ JR I rn_4. :.

= ..n+3 e°D _l_o//Tlhn ,tI- n+3

• •

"Thus the rate of therm, onuclear "energy release from a shell

source is

0

n+3

or

• L _O I_l _ _ (Tl_n,, _ i'.12 n+S DZ- \_o/ (4.5o)

The energy generation is confined to an extremely thin shell
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source as shown in Figure 15.

The luminosity for radiative energy transport is

L = 4_r2 _ T3-b dT"
- _ _ ,

3_o 01 a

assuming an opacity law of the form

= KoDaT b .

The temperature gradient determined from hydrostatic

equilibrium is

d T = _ T1 R 1d--_ . _ "

Thus the radiative luminosity is

64 _ T3-b

L = 3 _ RITI l+a "
o 0

Evaluating the luminosity at the shell gives

L __

64 _

3
O

64 _

3 _. o

T14-b

R1 l+a

7.5
T 1

R 1
0 1

4

R 1 T1

(Kramer's),

(4..51)

(Electron Scattering),

where for Kramer's opacity a = i, b = -3-5, and for electron

scattering a = b = O. Thus the radiative luminosity of

.

the envelope is, for population I (X = 0.6, Y = 0.38, Z = 0.02),

7.S

4.2. * loS Tz(7 .

' D1
L

= 2.18. lo3 T1,(7
._..

r

(Kramer' s)

(4.52)

(Electron Scattering)

i
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and for population II (X = 0.9, Y = 0.099, Z = 0.001),

L =

2.27 x 104 TI(7)7.5

(Kramer' s)

(4.53).

(Electron Scattering),

The effec_ive temperature is ziven by equation (3.17).

For a fully convective envelope, the luminosity and

effective temperature" are determined by the surface condition,

equations (3.24), (3.2.7), (3.28) and (3.29). The track is

the same as fop pre-main sequence fully convective con-

traction, but traversed in the opposite direction.

The time scale of evolution is determined by the rate

.of release of energy,

L = dE AE
-- d--t so At = "-L-- " (4.54)

The time scale during stages of core contraction is de-

termined by the gravitational energy release,

2

RR _,

The luminosity of the core is determined by the opacity

(usually electron scattering since the temperature is high,

10 7 °K) and temperature gradient. In stars with degenerate

cores, the central portion where degeneracy is stron_ is

isothermal and the temperature drop occurs in the outer

nondegenerate portion. The luminosity of a contracting

core will therefore be assumed to be

r
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Thus for a contracting core

-i "

= _.. AR/_
C>_2- (_) (R/Re) (R 'IR o )at

358 _c4.Le
" (4.55)

- ,'>,o,c'.;
8.94x lO4 "c4 \_) L(RclRo) (%,i_).$ye=rs,

"!

where R
c 'is the previous and R c the current core radius.

The amount of material added to the cote'by the hydrogen

burning shell during this time is

so

At L

AMc EH Xe '

aql = _ Xe _ _ at.
(4.56)

Evolution Dnrin_ the Hydrogen Shel] Burning Phase: i

"i

The evolution during the hydrogen shell burning phase is ,'::'

; I _

toward greater centnal density and temperature and larger atellar

radii. The central density, Oc' is chosen as the parameter

labeling the course of evolution, since during the con-

traction of the helium core, Od increases monotonically.

A sequence of models with increasing 0c describes the

course of evolution. It is necessary to choose an initial

.core size to start the sequence, since the details of the

setting up of a shell source cannot be followed analytically.

_%en Pc

be expressed as an explicit function of ql' M, and 0 c.

core radius is, from equation (4.35),

/_ _i/31_ ,-1/3
RI_ = " '_'I_ l_c

..8 tg) '

>> 01 and R I << R, the stellar structure can

The

q
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so R1 shrinMs with increasing 0 c.

The central temperature for a nondegenerate core is

found by substituting equation (4._7) for R1 in equation

(4.39) and neglecting the first term, Which'is negligible,

/_Mlh2/3/" Oc _iI/S

Tc = ._.4x lO7 _cL_./ LlO3/ " (4.ss)

The shell temperature is found by substituting equation

(4.57) for R I in equation (4.45) and neglecting the second

term, which is small2

 i/3
= 3.24 x 107 _e_.-_/ {kl--'_0} • (4.59)T 1

For a nondegenerate core

Tc/T 1 = 1.67 _c/_e .

In small mass stars, M < 3 - 4 MQ, the core is degenerate

and isothermal, so

T c = T] .

"1/3
Thus the core temperature increases as 0c . The shell

density is determined by the energy balance, luminosity

= energy generation rate. The energy generation race per

gram is assumed to be of the form

8-- Oo0(To) _

and all constants are evaluated for the CN0 cycle at

TO 2 x I07 °K = == , so _o 451 X H XCN 0 and n 18. The _o_I

energy generation rate is given by equation (4.50).

The luminosity depends on the opacity and the energy

transport mechanism,;and two cases are considered: _ad-

iative transfer with electron scattering opacity, equation
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(4.51), and convective transport "with low surface density,

equation (3.23) with equation (3.22). For electron scat-

feting

Where

-(n-4)/3 C._)--'_" (n-3) fpc __(n'6)/90l':- C 1 i;'te _103 / ., , (4.60a1

C1.. = 38,2 (population I) ::i
L42,8 (population IX) " : "

For a convective envelope

Pl ' C2_e -_2(3A-8)j _/ _ 3,,A-8 J,

[(n-lA)A+40] ) " (4.60b) "

where A = b" + 2.5(a+i) for an H- opacity law of the form

aTb -. .,_"
_. = Kop

A =' fll (population I)

, _15 (population II) ._

and

(population I)

(population If) "

The radius of the star is given by substituting equation

(4.57) for R I and.equation (4.60) for Pl in equation (4.49)

and neglecting the small first term. For electron scattering

R
m

.

where

(4n-9)/9 _. (4n-27)/9 2(n-4)/3 • :.

= C'3 (1-ql) ql *" ,',_C _.

f O. 21 (population I) ,/!.I"

"3 ." Lo.17 (population IX) * ._ ,,- . .: ._,:',
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envelope
-

- C4 i_ e t 3A-8

X

(4.61b)

(population I)

(population II).

Thus the stellar radius increases with increasing central

°

.

density.

equation

(4.s0).

The luminosity of the star is given by substituting

(4.60) for 01 and equation (4.59) for T1 in equation

For electron scattering

L " CS _e(n+8)/3 _Mo/(Mlh(2n+21)/9 /Pc _(n+3)/9 (4.62a),
where

C5 = .I x 10 3
•4 x 10 2

/

(population I)

(population II)

For a convective envelope

((n+2)A-4n-5]

(4.62b)

2 [(n+2)(A-4)]

x [(1-ql) ql

where

(population I)

(population IX)

The effective temperature of the star iS found from equation

(3.17) with equations (4.6_ and (4.61). For electron scattering

i

m _ . .,

•_.;_ '. T-_ ,_

• _" • :.,.,_,'. , , s I

,;. . . .
,I

._ _._. • |!.
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-_" • T

"" " I

(n-8)./4 [ Dc._-(n+l)/12

e- ' +

l
[

c 7 = _7.24 x 104. (population I)

" k7.55 x 104 (population II)

For a convective envelope

_ f2n+l. 5 (l+a)]

Te " C8 _'e L 3A-8

X

(4.63b)

[(1-q1)ql- (n-1)/3_ [_''_ (_0'_- "_ [_'

where

5.11 x 10 3

C8 = [4.62"x 10 3

(population I)

(population II)
I.

2)For radiative envelopes, the luminosity increases, (-- O ,
C

pc-2)and the effective temperature decreases, (-- , with

increasing central density. For convective envelopeKt,

4 !
the luminosity increases rapidly, (_ Oc *5), and the el-

l

-0.4)fective temperature decreases slowly, (_ Oc . , wit

increasing central, density. The mode of energy trans_rt

in the envelope switches from radiative toconvective!

when the convective flux becomes larger than the radiative

flux. "

The tip of the red giant sequence occurring in small

mass stars is determined by the onset of helium burning•

Helium burning commences in the center of a star when

Tc _ 10 8 "K. In stars of sma!.!:mass with degenerate•
+A, +

+_ ' ,. ;+ , " + +

: . , : :.. *. .,.,, '- _' _- • ,
• h • : : - - ._ .....

!+':.i;::+ ++' +' ++ •
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cores the core is nearly isothermal. For an isothermal

core

T c " T1 " 3.24 x 10 _e

i/3

so the central density at which helium burning commences is

Pc == 29.5 U.c -3 ._._,)-2

Thus the maximum luminosity at the tip of the red giant

branch, where the envelope is convective, is, from equation

(4.62b),

(9.54) 2 L 3A-8 J
• 2A- +a

-'- [_1L
_ m

I_ const .. _e

_19%) 4/(3A'8) (l-ql) [__ (4.64'
X _

\ ql

At T 9 ..S 107 ,! _i

I_m " (popUlationL "= .22 x lo5 (,_; O.lO8 ql " ',. , _'_,,

ax -94 !I05 (_v_ .156 fl-ql_l.125 ' i(4.65) 'X (population TI).

_ql /

Thus the luminosity at the tip of the red giant branch at

the onset of central helium burning is very insensitive to

the mass of the star, and is about two orders of magnitude

higher than obtained from accurate calculations (see Figure 20)

-due to the absence of any temperature gradient in the core.

The evolutionary changes in the central conditions are

shown in FiEure, 16. For low mass stars the core is i iso-

1
thermal and the central temperature is constant or may even

decrease slightly when the hydrogen in the core is exhausted

and a shell source is ignited. The central densitylincreases

with nearly Constant central temperature until the increasing
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i

j_
0

Figure 16. Evolution of central conditions during pre-main

sequence contraction, central hydrogen burning,

helium eox, e contraction and central helium burning.

The solid lines and shaded regions are from the analytic

models, the dashed dot-lines are interpolations.

The dashed lines are from Hayashi, Hoshi, and Sugimoto,
1962.
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"" ....-'_ luminosity along the red giant branch causes the shell

z/3
temperature rises much more rapidly than 0 c until it

!

approaches 108 "K and helium thermonuclear reaction$ are

/
ignited. The energy released by helium burning in the

l

degenerate core raises the central temperature, without

affecting the densitY, until the material becomes nonde-

generate. The core then expands reducing the central

temperature and density. Stars with masses less than about

3 - 4 M_ develop degenerate cores. 1

In massive stars an isothermal condition does not

develop. The core contraction provides an appreciable

pa_'t 0£ the starts luminosity £rom the beginning o£ I

I

- hydrogen shell burning. The central temperature and density

increase, with Tc increasing slightly less rapidly than

D c •

The evolutionary tracks of stars in the H-R diagram

during hydrogen shell burning are shown in _igures 17 to

21. The stars" move to-the right in the H-R diagram be-

cause their radii are increasing. The tracks depend in

their grossest features on whether or not the star is. small

enough to develop a degenerate core. Those stars that

develop isothermal degenerate cores must evolve to much

higher central densities and much greater central con-

densation than those that do not. Thus very small mass

stars develop very extensive envelopes,_,whlch are there-

fore fully convective and very luminous. These form the

' red giant branch (Figure 20). Intermediate mass',stars

• o

. " " "': _" ", ';" " " " : " '_ '_';'.'. " , . _i

I'%,

I
l

i•!
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Figure 17. Evolutionary tracks of stars in H-R diagram during

hydrogen shell burning with helium core contraction. The

nature of the energy, transport mechanism in the envelope,

which determines the slopes of the tracks is shown. The

shaded area is the region where stars have just started to
burn helium into carbon in their cores.
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.|
develop radii large enough to develop fully convective

fl

.I

but not such extensive envelopes, and their luminosity
4

does not greatly increase (Figure 21).. The very-maSsive

stars do not develop a very great central condensation

before their _entraltemperature has reached 108 "K, so

they do not develop convective envelopes before helium

burning.

• At the beginning of hydrogen shell burning the lumin-

osity, except for very small mass population I stars,

...........xis much too low because we have taken the most centrally con-
%

densed model throughout and have not allowed the degree

of central condensation of the envelope solutions tograd-

"ually increase. The temperature falls off extremely rap-

idly outside the shell and the hydrogen shell burning region

is therefore very thin, covering about 1% instead of an

initial 10% Of the mass, as found in accurate calculations.

•The total amount of energy generated is therefore too small.

Since the degree of central condensation and the thickness

of the shell are constant, the luminosity in our models in-

creases during evolution. Accurate calculations show, lhow-

eve_, %hat the shells are originally much thicker than ours,

and the narrowing of the shells, due to the steepen_ng_emp-

erature gradient and the exhaustion of fuel on their inside,

counteracts the rising shell temperature and the luminosity

stays fairly constant.

The time scales for evolution during the hydrogen shell

burning - contracting helium core stage are given in Table 1.

!

t
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Figure 20. Evolutionary track in H-R diagram of 1.2 MQ

star. Solid lines are from analytic models for pre-main

sequence contraction (PMSC), central hydrogen burning (H),

hydrogen shell burning red giants (KG), and central

helium burning (He). Dashed line is from Hoyle and

Schwarzschild, 1955 and Selberg and Schwarzschild.
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Figure 21. Evolutionary track in H-R diagram of 7MQ Star.
Solid lines are from analytic model for pre-main

sequence contraction (PMSC), central hydrogen burning
. (H), hydrogen shell burning (HSB), and central helium

burning (He). The dashed curve is from Hoffmeister_
Kippenhahn, and Weigert.



|
|

1 .
i
!
|

! ..'.

]

J
q

i

t
!

1

L
L
i

i

!

t

®

r,-

.II

,r.

I,--g

r,..,,
0

0
m

0

I lure

I

- o

I i

e'l/"1 _oI

I

0
i

• m.l .

• ,. ......_'

i



• , , •

-88-

Summarizing: The cause of the extended envelopes

of hydrogen shell burning stars is their central conden-

sation; the cause of their central condensation is as

follows. As the hydrogen in the core is exhausted, the

density and pressure distribution in the, core change-only

slightly, but a chemical composition discontinuity de-

velops and the density of the outside of the core (at

the shell) is decreased. Since _c/_ e = 2 and D/_ is

continuous across the shell_ the density at the outside

of the shell is halved. This decreases the ratio of the

"density at the shell to the c'entral density, i.e., increases

the oont_+_al Qondonsation, Whon _ho coro hydPoffon is

•_. exhausted and the thermonuclear energy generation occurs

in the shell, the core tends toward an isothermal state.

Then the density gradient in the core increases and this

further increases the central condensation. An isothermal

nondegenerate core cannot, however, support, the weight of

the envelope when the mass of the core is larger than

about 10% of the mass of the star. Then the pressure

gradient in the core must increase in order to support the

weight. This further increases the central condensation,

Ocenter/Oshell, t'o very large values.

C • CENTRAL HELI-UM. BURNING

When the central temperature of the helium core is
t

raised to about 10 8 °K, helium will begin to burn at

the center of the star. If the core was degenerate, a
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............helium flash will occur because the pressure of degenerate

matter depends only on the density, not the temperature, so

I

that the energy released by the onset, of helium burnlng_" will
l

increase the temperature without a corresponding increase

pressure. The increased temperature speeds up'.tSein

reactions, which further increases the temperature, until

the temperature is high enough for the matter to become

nondegenerate. The rapid increase in the helium reaction

rate continues until MT in the central degenerate region

rises above the Fermi level and the perfect gas law again

holds. In nondegenerate material, increasing the temper-

ature increases the pressure, which causes the core to ex-

" pand, thereby reducing the density and temperature and

damping th9 reaction. The core will then settle down to

' burning helium at a much lower density and slightly higher

temperature than at "the onset of the flash. In stars with

nondegenerate cores, there is no flash; the process of

ad.iustment is "small and occurs smoothly.

A star burning helium at its center will be much

more centrally hondensed than a main sequence hydrogen

burning star. The density at the shell where the com-

position discontinuity, and possibly hydrogen.burning,

occurs is much less than the central density. Thus the

core may be treated as a separate star with the densityj

but not the temperature, going to zero at its surface. The

luminosity of _e core is determined by the balance between

t •
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the radiative energy transport and the helium energy

generation rate. This energy balance determines the

central temperature, which together with hydrostatic

equilibrium determines the central density. The radius

of the core is determined by the density distribution_

•which we assume is linear. Thus for the model of a

star burning helium at its center, assume a linear density
+

distribution in its core, a _ _ r -S density distribution

in its envelope and treat the core as a separate star.

The helium energy generation rate is

_S_" C 12 i _o 02 (L_ n
kToJ ,

(4.66) _

for

TS_ 1

T 8 -- 2

10-8 2
n = 41,,£ O = 4.4 x XHe ,

n = 19, £o = 15 XHe •

The total helium burning energy generation rate is

where

since

Then

4n R13 3 nL ffi _o Dc T c Jn, (4.67)

1 2
Jn ffiIo x (l-x) n+3 (l+2x-l.8x2) n dx,

T(r) = T c [I + x - 3.8 x 2 + 1.8 x3].

L (_...__)n+S /RQ'_ n+6 _,_.6 x I06_ n- 2Ol +o+n cn \R1) Zo .(4.681

The luminosity, with electron scattering opacity is !given

+++,

m_

+ +

I • "

• } !';

. [
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by equation (3.16). The central temperature and density

are from equations (3.6) and (3.3)

Tc = 9.62 x 106 _c )

o c = 5.65

"_ The core structure' for Tc _ i .x 10 8 °K, .is

0
C

T = 1.16 x 108 t/c 0"213 C--_) 0"128C

9.9 x 103 _c 62,

R 1 - 0 787
= 8.27 x 10 2 U'c •

Lc = 179 C_ 3_c 4

(4.69)

The density and temperature at the shell are determined

by the conditions of hydrostatic equilibrium and energy

conservation. The shell temperature is given by equation

(4.45) with the small second term neglected and equation

(4.69) for RI,

f___!"_°-128
T 1 = 6'.97 x 107 (_e/_cO'787)_kMO /

• (4.70)

The shell densit_ is the solution of

Luminosity = Lcore + Lshell, (4.71)

where Lcore is the core luminosity, equation (4.69), Lshel 1

is the shell energy generation rate, equation (4.50), and
- !

the luminosity is given by equations (4.51), (3.24) or (3.25).

Once _I is know, the luminosity is found from equation (4.71).
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The effective temperature is given by equation (3.17)

and the radius is given by equation (4.49) as in the case of

hydrogen shell burning. , '

When helium burning commences in the core of a starj

the core expands, the central densitydecreases, and the

envelope contracts (Figure 16). In massive stars, where

the core was not degenerate, this adjustment is slight. In

small mass stars, which developed a degenerate core during

the helium core contraction, a helium flash occurs in which

the core becomes nondegenerate and the central density is

greatly reduced, the core expands and the envelope contracts.

The resulting radii are much smaller than in the red giant

stage, but still much larger than when on the main sequence.

For small mass stars that have passed through the

red giant stage, the luminosity during central helium

burning is insensitive to the mass. The luminosity depends

only on the core mass _see equations .(4.69)and (4.70)3, which

is approximately the same at the onset of the helium burning

in all such stars, since the smaller lthe mass of the star

the larger the fraction of mass in the core. Thus small

mass stars lie a_ the onset of central helium burning in

a strip of nearly constant luminosity_ but with varying ';

effective temperature depending on the mass. ,_

The locus of points in the H-R diagram where initial

central helium burning occurs is shown as the shaded

regions in Figures 17 to 19. The relative contributions

of hydrogen and helium burning to the luminosity are
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found to be: _ >> LHe for population I stars, while

LH << _e fop population II stars. The time scales fop

evolution duping the central helium .burning stage ape

given in Table I.

In the more advanced stages of evolution--helium

burning, carbon burning, neon and oxygen burning--the

cope of the star continues becoming dens'er and hotter,

a complicated shell structure develops, with some shells

active and others inactive, and the radius continues to

grow. A schematic picture of the stages of central.
..

nuclear buPnin_ and shell formation is given in Figure

5 of C. Hayashi, "Advanced Stages of Evolution, " this :

conference, p. . How far a star progresses through

these stages of nuclear burning depends, as we have shown,

on its mass.

!

i

o _. ...... -.
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FINAL STAGES OF EVOLUTION
, .... f ,

After a star has exhausted all the nuclear fuels it

is capable of burning, its only remaining sources of

energy are its gravitational potential energy, which it

can release by contracting, and its thermal energy, which

it can release by cooling. Such a star will contract, i'
[i

increasing its central density and temperature. The core

will, however, tend tobbe cooled off by energy losses from

neutrino emission. The rate of emission of neutrinos

increases with temperature, and since their mean free path

is larger than the radius of the star they remove energy

from the star. If neutrino pair emission is intense,

all stars in the stage of gravitational contraction after

the exhaustion of nuclear fuel will develop degenerate

co res.

If the central density resulting from _he gravitational

contraction is low, only electrons, not nucleons, are

degenerate and supply the pressure to support the star.

There is a maximum density.possible for a stable star

supported by degenerate electron pressure. At higher

densities the electrons are forced onto the protons,

creating neutrons. This process is a phase change and

absorbs a great deal of energy, causing instability.

The gravitational collapse of massive stars produces

cores with densities above the critical density. The core

of such a star will be composed of free degenerate neutrons

and other baryons. If the mass of the r4mmant from the



°

-95-

gravitational collapse is small enough, it can be sup-

ported by the pressure of the degenerate neutrons and

a stable neutron star will be formed. If the mass is

too large, the gravitational force, augmented by the

relativistic effect that the pressure contributes to the

effective mass, overwhelms the. nuclear forces, and the
•" I

star collapses indefinitely. What happens to such core

remnants remains to be discovered.

Structure of White Dwarfs

White dwarfs are stars whose support is provided by

the pressure o_ degenerate electrons throughout mos_ of

the mass of the star. In white dwarfs only electrons,

not nucleons, are degenerate. We assume that the electrons

are completely degenerate. This is, of course, not possible,

since in the surface layers the density is very low an!d

the electrons are nondegenerate. However, the surface

layers are extremely thin.

The equation of state of a degenerate gas is a compli-

cated function

P-P (0)

approaching the limiting forms

: = • 1°12 e) 5/3P K1 0 5/3 9 91 x (p/_ (5.1)

at low density where the electrons are nonrelativistic

(_ << meC) , and

=. = 1015 4/3p K2 _4/3 1.23 x (D/_e) (5.2)
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2

the mass, so the two forces will be in balance for only

one mass_ the limiting mass of a white dwarf star. For

larger masses the gravitational force always exceeds the

t

pressure force. ?

The mass-radius relation for a white dwarf can be

obtained from the virial theorem_ (Salpeter, 1964)
¢

s(y-z) u + n = o _ (2.1,)

where Q is the gravitational potential ener_y, given by

equation (I. 19),

GM 2

_ _- R "#

.and the internal energy U is the electron kinetic energy -

U=NK e .

_.

Here N is the number bf electrons and K is the kinetic
e

energy per electron. The mass of the star is

M =N_em p ,

where _e is the molecular weight per electron

Z -I

W e : Ix x I + Y (Yl+2Y2) + _]4

m

sO _e = 2 for a fully ionized gas if X = 0. Here mp is

the proton mass. Thus from the virial theorem

Gmp2_ e2N
Ke :' • (5.4)

S(y-Z)R

The electron kinetic energy is related to its momentum

by
2

Pe

Ke = 2m----_ Pe << meC 2

Ke. _ Pe c Pe >> meC
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The average electron momentum Pe is related to the average

interelectron spacing r e by the uncertainty principle

re Pe _ h .

>.

Using the equality sign gives for the kinetic energy

< Pe 2 2
Ke = -- = ½ me c

2m e

2
Ke = Pe c = me c

meCl
e) [Pe <<

(s.s)

Cry) CPe >> me _,

where r o = _/meC is the electron Compton wavelength.

These two limiting equations can be combined in the inter-

polaClon _ormula (Wheeler, 1984)

Ke = me c2[ 1 ] _5 6)s + 2S Z '

where s = re/r o . This formula is accurate to within 8_.

The radius of the star is expressed in terms of r e by

R = NI/3 r e. (5.7)

Equating the expressions (5.4) and (5.6) for the electron

kinetic energy gives the relation

I+ 2S =
_3 (Y-l) romeC_ 2/3

LG=p '_eZ .....I N-

= 3(Y-1) C_._o_2/3
2

I._e

(s.8)

3 (Y-I) t_o) 2) 3
e4/3'

where

N O
= 2.2 x 10 57

P

I

'!i_̧

il

-i
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f , -312 -2 = = 3.7 lO33 g
MO = _'_C/ mp Nom p

= 1.8.5 I_ .

For a nonrelativistic electron gas 7 = 5/3, and for an

extreme relativistic electron gas y = 4/3. The variation

- I
o_ 7 is given by Schatzman (1958), !

1 + 2s2 I
Y-1 = --

" t3 2
3+ s !

3(Y-I) varies between I and 2 and the above expression _

can be replaced by

3(Y-l) = 1 ÷ 2s
l+s

• with a maximum error of 27%. Thus

l+s-
• " IXe4/3 _,_} , -. (5.8')

°

First note that the minimum value of the left-hand

side of the above relation is I, so there is a maximum

mass for a white dwarf

-2 1.85 MO
Mmax = _e M0 - (5-9)

. _e z

However, long before the density becomes infinit_, inverse

8 reactions will occur and the above analysis will cease

to apply. The increasing density causes instability of

the white dwarf before the singularity is reached.

Second, the above relation can be written as a mass-

radius relation

-1/3
R = R° i.I,e [_e -4/3 (_o) -1/3 _ (_0)I/3], (5.lO)
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where

R o = No I/3 r o = 5 x 10 8 cm

Thus the radius of a white dwarf is very small and it

decreases as the mass increases."

The mean density of a white dwarf is

<

_' = _/C._._.R3)

:
4n Ro3

- l]

7.06 x lO6 _e ilXe-413 (_-D -2/3

-3

- l]-3.

Since a white dwarf has a very thin nondegenerate surface

layer, we may approximate it by a homogeneous model with

a linear density distribution. Then the central density

is

Pc = 40 = 2.83 x 107 U e [We - i]

There is a maximum density possible for a stable white

-3. (s.n)

-

dwarf. As the density increases the electron Fermi energy

,' • Iincreases. An electron with energy greater than the ,!

B-decay _ner_y,for electron emission from a nucleus!; (Z-I,; A) : i!

will produce inverse B-reactions _ '!

e- + (Z,A)-' (Z-I,,A) + 'v .

This process increases the value of _e in the interior,

and thus the maximum stable mass is reduced. The predominant

nuclei under white dwarf conditions are elements in the
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range neon to iron, for which inverse B-decay will•

occur at densities about 10 9 g/cm 3 . Thus the critical

density for a white dwarf is about 109 g/cm 3 . The relation

between central density and mass for a white dwarf is

shown in Figure 22, from Wheeler (1964). The stable con-

figurations shown at higher densities are the neutron

stars.

The degenerate interior of a white dwarf is practically

isothermal because heat conduction by degenerate electrons
l

is very efficient. This isothermal interior is blanketed

p•

by a nondegenerate surface layer, which is very thin and

contains only a minute fraction of the mass of the star.

.. The small extent of the surface layer is easily seen by

considering the scale height

P RT

og ug"

The temperature at the transition layer is 6f the order

of a million degrees_but g = GM/R 2 is extremely large

because R is very small. Assuming M _ M_, R _ R o and

T _ l0 6, then g _ 5 x 10 8 and 6 _ 10 6 cm = I0 km. The

density in the surface layer is less than about l0 3 g/cm 3

since it is nondegenerate. Again assuming T _ 10 6 , the

mass of the surface layer will be

M s = 4 rrR2 0 AR _ n" I027 _ 10 -6 MQ .

Therefore the equations for the surface layers may be

integrated explicitl_ sinoe g, M, and L are practically

constant.
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Figure 22. Schematic mass density relation for white dwarfs

and d_nser configurations from Wheeler (1964), calculated

for cold catalyzed matter.
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The surface layer is in hydrostatic equilibrium and

energy transport is by radiation. We will assume Kramer's

opacity_

_ = _ 0 T-3"5
O

Ko = 4.34 x 1023"
Z (l+X)

(t/_) '

where (t/_) is a quantum mechanical correction factor _ i0

in this case. Then the equations for the structure of the

envelope are (Schwarzschild, 1958 and Chandrasekhar, 1939)

dP GM

d--F = - VZ. P'

SO

dT 3 _0 L

dr i6a

dP = 64 nGGM T3

dT 3_L

,. ! .

64 _GGM __k p-I T7.5.

3KoL _H

Thus the pressure and density are related to the,temperature

by
±

P = C8_.25 64 noG_23 KoL_ H T4"25

°:
3 _ 0 Lk

(5.12)

The radial dependence of T can be found from the equation

of hydrostatic equilibrium

dP = _ _P ___H GM i
d--; ,T k _--_

and from equation (5.12)

dP

P
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___ 1 _H GM -E (4.25 k

These equations for T, P, and D can be used throughout

the nondegenerate surface layer, i

....;The properties of the transition layem between the

degenerate interior and the nondegenerate surface layer

can be found as a function of the luminosity of the white

dwarf (Schwarzschild, 1958). The isothermal nature of

the interior gives a relation between interior temperature

and the luminosity, which is constant through the surface

layers, as _ollows:

2 64 n_GM u H T 6"5

L = _.5 3 _o k 02 " (5.14)

Apply this to the transition layer. The boundary condition

is the equality of the electron pressures in the two regions

k__ f 2._,_513

9)Vs H-5/S ,0,2K1 = _mm = 9.91 x ,

so the boundamy condition is

"(kTt )s/2 -8_tr = _e _1 -- 2.4 x i0 _e Ttr312. (5.1S)

Then the luminosity and internal temperature, T c = Ttr , are

_ela_ed by

L -
2 64 nuGM (Hi4 U 3.5

8.5 3 _oKl 3' _ Tc

5 .7 x I0 25 ___Z l __e M__ 3.5_0(6)

(5.16)



The internal tempemature, transition density, and extent

of surface layer as a function of luminosity is shown in

the.following table for a I solar mass star with composition

_j
f
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• i'i

I

X = 0, Y = 0.9, Z = 0.i.

n/n o

10-2

10-3

10-4

I (1°6-K)

I 17

log Dtr

i
! 3.5
!

i
i 2.6
!

R - rtr

.I, I%

0.011

O.OO6

O.OO3
i 4

This table is taken from M. Schwarzschild:

and Evolution of Stars,. p. 238.

Structure

The source of energy for white dwarfs is the thermal:-

energy of the nondegenerate nuclei. The energy source

cannot be nuclear reactions. At the high densities found

in white dwarf interiors the Coulomb barriers of nuclei

are reduced. At den'sities ggeater than about 5 x l0 4 g/cm 3

hydrogen reactions occur and at densities g_eater than

about 5 x l0 8 g/cm 3 helium reactions occur. However,

•during a star's evolution before becoming a white dwarf,

".all the hydrogen in its core will have been exhausted,

whil e white dwarfs with central densities high enough for

i/

heli'um reactions are massive enough to have exhausted the
-, i

helium in their cores. In the surface layer, where _hydrogen

may be abundant, nuclear reactions would cause instability

because of their temperature sensitivity. D_ring a con-

traction, the rate of energy generation would increase

above and during an expansion, would decrease below its
i

t



• •

-104-

equilibrium value, thus feeding energy into the pulsations.

The energy source cannot be gravitational, because a star's

radius is fixed by the mass-radius relation after it has

become almost completely degenerate and no further con-

traction is possible. The energy source cannot be the

thermal energy of the electrons because they are degenerate

and most are already in their lowest possible energy state.

The evolution of a white dwarf is a continual slow

cooling at constant radius; its luminosity and effective

temperature decrease in time. Evolutionary paths in

th_e H-R diagram a_@ shown for several masses in Figure 2 S.
|

The luminosity of a white dwarf is the rape of change

of the thermal energy of the nondegenerate nuclei,

d 3 )L = - ( kT , (5.17)
_XAH

where _A is the molecular weight of the nuclei,

-I

_A = X + ¼Y. This equat;ion can be integrated to obtain

the cooling time of a white dwarf (Schwarzschild, 1958).

Using the expression for the luminosity, (5.16),

L = K(_,M) T 3.5

gives

dT
= C Tn ,

dt

2 K_AH Integration gives the
where n = 3-5 and C = - S kM "

cooling time from "infinite" temperature, setting the

integration constant equal to zero, which is the time

scale of evolution of white dwarfs
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Figure 23. Evolutionary tracks of white dwarfs in the H-R

diagram. Solid curves are from analytic expression (5.10),

the dashed curve is from Schwarzschild, 195_ !
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