Technical Report 32-1052

Octave and One-Third Octave Acoustic Noise Spectrum Analysis

Charles D. Hayes

Michael D. Lamers

N67-16058

 JET PROPULSION LABORATORY California Institute of Technology •4800 Oak Grove Drive, Pasadena, California 91103

SUBJECT: Errata

Gentlemen:

Please note the following corrections to JPL Technical Report 32-1052, "Octave and One-Third Octave Acoustic Noise Spectrum Analysis," January 15, 1967.

In Table A-1 on page 10 , in third column from left and fifth data block down, 103 should read 113 as follows: 88, 7-113 and 113-141 (instead of 88.7-103 and 103-141).

In Table Col on page 13, make two changes: (1) in the C.G.S. column, fifth data block down, 2. $00(10)^{-4}$ dynes $/ \mathrm{cm}^{2}$ (instead of cm); and (2), in the in. $-1 b-\sec$ column, fourth data block down, 1.547l(10) ${ }^{-3} \mathrm{lb}-\mathrm{sec} / \mathrm{in} .^{3}$ (mass $/ \mathrm{in} .^{2}-\mathrm{sec}$), instead of $\mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{3}$.

Very truly yours,

Technical Report 32-1052

Octave and One-Third Octave Acoustic Noise Spectrum Analysis

Charles D. Hayes
Michael D. Lamers

Approved by:


```
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
    pASADENA, CALIFORNIA
    January 15,1967
```

Technical Report 32-1052

Copyright (c) 1967
 Jet Propulsion Laboratory California Institute of Technology

Prepared Under Contract No. NAS 7-100 National Aeronautics \& Space Administration

Contents

I. Technique for Combining the Decibel Levels of Either Octaves or Constant Bandwidths into an Overall Sound Pressure Spectrum Level 1
II. Technique for Determining the Octave Levels in a Second Octave System When the Levels in the First Octave System Are Known 2
III. Technique for Determining One-Third Octave Levels When the Octave Level and the Decibel-Per-Octave Slope Are Known 6
Appendix A. New and Old A.S.A. Tabular Data for Preferred Octave Designations; and Mathematical Expressions Defining These Bounds and Center Frequencies 10
Appendix B. Decibel-Equivalents Tabular Data 12
Appendix C. Conversion Tabular Data 12

Tables

1. Tabular values for Eq. (9) 2
2. Tabular values of α_{i} to be used with Eq. (21) or (22b) 4
3. Tabular values of Y vs X for Eq. (23) and (24) 5
4. Tabular values of Eq. (36), (37), and (38) 7
A-1. Table of the new and old A.S.A. recommended octave designations 10
B-1. Table of decibel equivalents for power, voltage, and pressure 12
C-1. Conversion tabie of some usefuil acoubtic constants 13

Figures

1. Plot of decibel increment (Y) to be added to the higher bandwidth level vs difference (X) in the bandwidth levels (Ref. Eq. 9) 2
2. Frequency and power distribution 3
3. Plot of decibel increment (Y) to be added to $A_{i}{ }^{\text {th }}$ sound level vs decibel increment (X) between upper and lower octave bandwidths for $\alpha_{i}=0.820$ (Ref. Eq. 23)

Contents (contd)

Figures (contd)

4. Plot of decibel increment (Y) to be added to $A_{i}{ }^{\text {th }}$ sound level vs decible increment (X) between upper and lower octave bandwidths for $\alpha_{i}=0.305$ (Ref. Eq. 24)5
5. Octave frequency spectrum 6
6. Plot of decibel increment $\left(Y_{1}\right)$ between first $1 / 3$ octave level and the octave level vs decibel/octave slope (X); Ref. Eq. (36)
7. Plot of decibel increment $\left(Y_{2}\right)$ between second $1 / 3$ octave level and the octave level vs decibel/octave slope (X); Ref. Eq. (37) 9
8. Plot of decibel increment $\left(Y_{3}\right)$ between third $1 / 3$ octave level and the octave level vs decibel/octave slope (X); Ref. Eq. (38) 9

Abstract

This Report is a compilation of derivations for analyzing acoustic noise spectra. These derivations consist of mathematical techniques for: 1. Combining the decibel levels of either octaves or constant bandwidths into an overall spectrum level; 2. Determining the octave levels in a second octave system when the levels in the first octave are known; 3. Determining one-third octave levels when the octave levels and the decibel-per-octave slope are known.

The Appendixes also contain the following useful tables: 1. Table of the New and Old A.S.A. (American Standards Association) Recommended Octave Designations 2. Table of Decibel Equivalents for Power, Voltage, and Pressure 3. Conversion Table for Some Useful Acoustic Constants

These mathematical techniques and tables provide useful information for the engineer or scientist working in the field of acoustics.

Octave and One-Third Octave Acoustic Noise Spectrum Analysis

I. Technique for Combining the Decibel Levels of Either Octaves or Constant Bandwidths into an Overall Sound Pressure Spectrum Level

The following derivation assumes that the energy in all defined bandwidths (octave, constant bandwidth, etc.) results from an effective "coherent" source, and therefore the bandwidth energies add directly to give the total energy. This derivation will be written for the addition of energy in two given bandwidths. ${ }^{1}$ By repeating this technique, the total eñergy (overall spectrum level) of all or part of a specified spectrum may be determined.

Let:

(A) be defined as the decibel reading of bandwidth 1 , and
(B) be defined as the decibel reading of bandwidth 2 (Note: we assume $B \geq A$)
Then:

$$
\begin{align*}
& A=10 \log _{10}\left(W_{1} / W_{0}\right) \tag{1}\\
& B=10 \log _{10}\left(W_{2} / W_{0}\right) \tag{2}
\end{align*}
$$

where:

$$
\begin{aligned}
& W_{1}=\text { energy contained in bandwidth } 1 \\
& W_{2}=\text { energy contained in bandwidth } 2 \\
& W_{0}=\text { reference energy level }
\end{aligned}
$$

Therefore:

$$
\begin{equation*}
W_{1}=W_{0} 10^{4 / 10} \tag{3}
\end{equation*}
$$

and:

$$
\begin{equation*}
W_{z}=W_{0} 10^{B / 10} \tag{4}
\end{equation*}
$$

Let (C) be defined as the decibel reading of the total energy of bandwidth 1 and 2 .

Then:

$$
\begin{equation*}
C=10 \log _{10}\left[\left(\frac{W_{0}}{W_{0}}\right)\left\{10^{4 / 10}+10^{B / 10}\right\}\right] \tag{5}
\end{equation*}
$$

[^0]Let:

$$
X \equiv B-A \quad \text { (The difference in the two }
$$ bandwidth decibel levels)

Then:

$$
\begin{equation*}
C=10 \log _{10}\left[10^{B / 10}\left\{1+10^{-X / 10}\right\}\right] \tag{7a}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
C=B+10 \log _{10}\left\{1+10^{-x / 10}\right\} \tag{7b}
\end{equation*}
$$

Let:
$Y \equiv C-B \quad$ (The decibel increment that must be added to the higher bandwidth level (B) to obtain the value of (C)

Therefore:

$$
\begin{equation*}
Y(\mathrm{db})=10 \log _{10}\left\{1+10^{-x / 10}\right\} \tag{9}
\end{equation*}
$$

Equation (9) is the equation which expresses the relationship between the original bandwidth decibel levels and the decibel level of their combination.

Figure 1 is a graph of Eq. (9). Tabular values for Eq. (9) are listed in Table 1 which gives the values of Y for a range of X between 0 db and 15 db .

Fig. 1. Plot of decibel increment (Y) to be added to the higher bandwidth level vs difference (X) in the bandwidth levels (Ref. Eq. 9)

Table 1. Tabular values for Eq. (9)

X	Y
(Difference between the levels being added) (db)	(Increment between two levels being added) (db)
0.00	3.01
0.50	2.77
1.00	2.54
1.50	2.32
2.00	2.12
2.50	1.94
3.00	1.76
3.50	1.60
4.00	1.46
4.50	1.32
5.00	1.19
5.50	1.08
6.00	0.97
6.50	0.88
7.00	0.79
7.50	0.71
8.00	0.64
8.50	0.57
9.00	0.51
9.50	0.46
10.00	0.41
10.50	0.37
11.00	0.33
11.50	0.30
12.00	0.27
12.50	0.14
13.00	
13.50	
14.00	
14.50	
15.00	

II. Technique for Determining the Octave Levels in a Second Octave Bandwidth System When the Levels in the First Octave System Are Known

With both the old and new American Standards Association (ASA) recommended octave bandwidths in wide use today, it is often required to convert from one octave set to the other. The following derivation allows one to convert from any given octave set to a second octave set. This derivation also assumes that the energy in the various bandwidths adds, as in Section I of this Report. To simplify the analysis, it is also assumed that the power spectrum in each given octave bandwidth has uniform distribution. See Fig. 2 for a definition of frequency and power distribution.

This derivation will be written for two consecutive octaves of the first system, with different decibel levels

Fig. 2. Frequency and power distribution
(A_{1} and A_{2}) and the resulting decibel level $\left(B_{1}\right)$ for the octave band of the second system which is contained partly in each of the octave bands of the first system.

The following notation is used:
A_{1} Sound Pressure Level (S.P.L.) in db of lower octave band of 1st system
A_{2} Sound Pressure Level (S.P.L.) in db of upper octave band of 1st system
B_{1} Sound Pressure Level (S.P.L.) in db of octave band of 2 nd system, which is contained in the two octave bands of the 1st system
f_{01} Lowest frequency bound (in Hz) of lower octave band of 1st system
f_{02} Upper frequency bound (in Hz) of lower octave band of 1st system; and lower frequency bound (in Hz) of upper octave band of 1st system
f_{03} Upper frequency bound (in Hz) of upper octave band of 1st system
W_{0} Reference energy level
$f_{N_{1}}$ Lower frequency bound (in Hz) of octave band of the 2 nd system
$f_{x=}$ Upper frequency bound (in Hz) of octave band of the 2 nd system

Then:

$$
\begin{align*}
& A_{1}=10 \log _{10}\left(W_{1} / W_{0}\right) \tag{10}\\
& A_{2}=10 \log _{10}\left(W_{2} / W_{0}\right) \tag{11}
\end{align*}
$$

where:
$W_{1}=$ energy contained in the lower bandwidth of the lst system
$W_{2}=$ energy contained in the upper bandwidth of the lst system

$$
\begin{align*}
W_{1} & =W_{0} 10^{4_{1} / 10} \tag{12}\\
W_{2} & =W_{0} 10^{4_{2} / 10} \tag{13}\\
B_{1} & =10 \log _{10}\left(W_{N} / W_{0}\right) \tag{14}
\end{align*}
$$

where:
$W_{N}=$ the total energy in the bandwidth of the 2nd system with contributions from the two octaves of the 1st system

Since we have assumed flat spectra within each bandwidth:
$W_{N}=\left(\frac{f_{02}-f_{N_{1}}}{f_{02}-f_{01}}\right) W_{1}+\left(\frac{f_{N 2}-f_{02}}{f_{03}-f_{02}}\right) W_{2}=\alpha W_{1}+\gamma W_{2}$
where:

$$
\alpha=\left(\frac{2 f_{01}-f_{N_{1}}}{f_{01}}\right) ; \text { since: } f_{02}=2 f_{01}
$$

and:

$$
\gamma=\left(\frac{f_{N_{1}}-f_{01}}{f_{01}}\right) ; \text { since: } f_{03}=2 f_{02} \text { and: } f_{N_{2}}=2 f_{v_{1}}
$$

Therefore:

$$
\begin{equation*}
W_{s}=W_{0}\left[\alpha 10^{1 / 1 / 10}+\gamma 10^{-12 / 10}\right] \tag{16a}
\end{equation*}
$$

Let:

$$
\begin{equation*}
X=A_{2}-A_{1} \tag{16b}
\end{equation*}
$$

be the decibel increment, positive, negative or zero, between the upper and lower octave bandwidths.

$$
\begin{equation*}
W_{N}=W_{n} 10^{1 / 1 / 10}\left[\alpha+\gamma 10^{x / 10}\right] \tag{17}
\end{equation*}
$$

and:

$$
\begin{align*}
B_{1} & =10 \log _{10}\left\{10^{1_{1 / 10}}\left(\frac{W_{0}}{W_{0}}\right)\left[\alpha+\gamma 10^{x / 10}\right]\right\} \tag{18}\\
& =A_{1}+10 \log _{10}\left[\alpha+\gamma 10^{x / 10}\right]
\end{align*}
$$

Since:

$$
\begin{equation*}
\alpha+\gamma=1 \tag{19}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
B_{1}=A_{1}+10 \log _{10}\left[\alpha+(1-\alpha) 10^{x / 10}\right] \tag{20}
\end{equation*}
$$

In general, for any two consecutive octaves, we may write:

$$
\begin{equation*}
B_{i}=A_{i}+10 \log _{10}\left[\alpha_{i}+\left(1-\alpha_{i}\right) 10^{x / 10}\right] \tag{21}
\end{equation*}
$$

with

$$
X \equiv A_{i+1}-A_{i}
$$

(Note: As in Eq. (16b), X may be positive, negative, or zero.) Equation 21 may be put into the same form as in Fig. 1 by the following definition:

$$
\begin{gather*}
Y_{i}=B_{i}-A_{i} \tag{22a}\\
Y_{i}=10 \log _{11}\left[\alpha_{i}+\left(1-\alpha_{i}\right) 10^{x / 10}\right] \tag{22~b}
\end{gather*}
$$

where $\left(Y_{i}\right)$ is the decibel increment that must be added to the $\left(A_{i}\right)^{\text {th }}$ or lower* octave sound intensity level to obtain the level in the included octave of the second octave system.

Table 2 lists the tabulated values of α_{i} to be used with Eq. (21) or (22b) for the two octave band designations of
*Note: The term "lower" has to do only with the octaves' position in the frequency spectrum, and not with relative intensity levels.

Table 2. Tabular values of α_{i} to be used with Eq. (21) or (22b)

Old to New		Nsw to Old	
$f_{01}\left(H_{z}\right)$	α_{i}	$f_{11}\left(H_{z}\right)$	α_{i}
4.7	0.787	5.7	0.322
9.4	0.796	11.3	0.333
18.7	0.803	22.4	0.317
37.5	0.813	44.5	0.310
75	0.817	88.7	0.306
150	0.820	177	0.305
300	0.820	354	0.303
600	0.822	707	0.303
1200	0.822	1414	0.304
2400	0.821	2830	0.304
4800	0.821	5600	0.298
9600	0.823	11300	0.288
19200	0.833		
Note: List of α_{i} for converting between old ond new A.S.A. designated octove			
froquency bonds (Ref. Eq. 15, using Table A.1).			

the American Standards Association (as listed in Table A-1 of Appendix A).

Let us consider the following examples for Case I and Case II:

Case I. Consider where f_{01} refers to the ($150 \mathrm{~Hz}-300 \mathrm{~Hz}$) octave system, and f_{w} refers to the $(177 \mathrm{~Hz}$ 354 Hz) octave system.
Therefore, for this special case $\alpha_{i}=0.820$; using Eq. (22a) gives

$$
\begin{equation*}
Y=10 \log _{10}\left[(0.820)+(0.180) 10^{x / 10}\right] \tag{23}
\end{equation*}
$$

Case II. Consider where f_{01} refers to the $(177 \mathrm{~Hz}-354 \mathrm{~Hz})$ octave system, and f_{w}, refers to the $(300 \mathrm{~Hz}$ 600 Hz) octave system.
Therefore, for this special case $\alpha_{i}=0.305$; using Eq. (22a) gives

$$
\begin{equation*}
Y=10 \log _{11}\left[(0.305)+(0.695) 10^{x / 10}\right] \tag{24}
\end{equation*}
$$

Equations (23) and (24) are the equations which express the relationship between the octave bandwidth decibel levels of the two octave systems of Cases I and II.

Table 3 gives values of (\boldsymbol{Y}) for a range of (X) between -15 db and +15 db for Cases I and $I I$, with graphical displays in Figs. 3 and 4, respectively.

Fig. 3. Plot of decibel increment (Y) to be added to $A_{i}{ }^{\text {th }}$ sound level vs decibel increment (X) between upper and lower octave bandwidths for $\alpha_{i}=0.820$ (Ref. Eq. 23)

Fig. 4. Plot of decibel increment (Y) to be added to $A_{i}{ }^{\text {th }}$ sound level vs decibel increment (X) between upper and lower octave bandwidths for $\alpha_{i}=0.305$ (Ref. Eq. 24)

Table 3. Tabular values of Y vs X for Eq. (23) and (24)

X	Y	
The level difference (db) between the higher and octave bands of the 1 st system)	(The decibel increment that must be added to the $A_{i}{ }^{\text {th }}$ (or lower) octave level to obtain the level (db) in the included octove of the 2nd octave system)	
	Case 1 (Refers to Eq. 23 where $\alpha_{i}=0.820$)	Case II (Refers to Eq. 24 where $\left.\alpha_{i}=0.305\right)$
-15.00		
		-4.85
	-0.83	-4.82
-14.00	-0.82	-4.78
-13.50	-0.82	-4.74
- 13.00	-0.81	-4.69
-12.50	-0.81	-4.63
-12.00	-0.80	-4.57
-11.50	-0.79	-4.51
-11.00	-0.79	-4.43
-10.50	-0.78	-4.35
-10.00	-0.77	-4.27
- 9.50	-0.76	-4.17
-9.00	-0.74	-4.06
-8.50	-0.73	-3.95
-8.00	-0.71	-3.82
-7.50	-0.70	-3.68
--7.00	-0.68	-3.53
-6.50	-0.65	-3.37
- 6.00	-0.63	-3.19
-5.50	-0.60	-3.00
-5.00	-0.57	-2.80

Table 3 (contd)

X	\boldsymbol{r}	
(The level difference (db) between the higher and octave bands of the 1 st system)	(The decibel increment that must be added to the $A_{i}{ }^{\text {th }}$ (or lower) octave level to obtain the level (db) in the included octave of the 2 nd octave system)	
$=A_{i+1}-A_{i}$	Cose 1 (Refers to Eq. 23 where $\alpha_{i}=\mathbf{0 . 8 2 0}$)	Case 11 (Refers to Eq. 24 where $\alpha_{i}=0.305$)
-4.50	-0.54	-2.58
-4.00	-0.50	-2.35
-3.50	-0.46	-2.11
- 3.00	-0.41	-1.85
- 2.50	-0.36	-1.58
- 2.00	-0.30	-1.29
-1.50	-0.23	-0.99
-1.00	-0.16	-0.67
-0.50	-0.09	-0.34
0.00	0.00	0.00
0.50	0.09	0.35
1.00	0.20	0.72
1.50	0.31	1.09
2.00	0.43	1.48
2.50	0.57	1.88
3.00	0.72	2.28
3.50	0.87	2.70
4.00	1.05	3.12
4.50	1.23	3.55
5.00	1.43	3.98
5.50	1.64	4.43
6.00	1.87	4.87
6.50	2.11	5.33
7.00	2.36	5.78
7.50	2.63	6.25
8.00	2.91	6.71
8.50	3.21	7.18
9.00	3.52	7.65
9.50	3.85	8.13
10.00	4.18	8.61
10.50	4.53	9.09
11.00	4.89	9.57
1150	5.27	10.05
12.00	5.65	10.54
12.50	6.04	11.03
13.00	6.45	11.51
13.50	6.86	12.00
14.00	7.28	12.50
14.50	7.70	12.99
15.00	8.14	13.48

Note: When converting between the old and new A.S.A. octave bands as listed in Table A-1 of Appendix A, the values in Table 3 will have some error, since the values of α_{i} vary slightly as shown in Table 2, and since Eq. (19) is precisely correct only for perfect octave systems.

III. Technique for Determining One-Third Octave Levels When the Octave Level and the Decibel-Per-Octave Slope Are Known

The method of determining one-third octave levels uses the following information:

1. The octave level : $A_{T}(\mathrm{db})$
2. The decibel-per-octave slope: X (db/octave)

This octave frequency spectrum is described in Fig. 5.
The following derivation assumes that the energies in the various one-third octaves add, as in Sections I and II of this Report.

Let:
$W_{T}=$ total energy in the three $1 / 3$ octave bands
$W_{1}=$ the energy in the first $1 / 3$ octave band
$W_{2}=$ the energy in the second $1 / 3$ octave band
$W_{3}=$ the energy in the third $1 / 3$ octave band
$A_{1}=$ the power level, in db , of the first $1 / 3$ octave band
$A_{2}=$ the power level, in db , of the second $1 / 3$ octave band
$A_{3}=$ the power level, in db , of the third $1 / 3$ octave band
$A_{T}=$ the power level, in db , of the octave band which is made up of the three $1 / 3$ octave bands
$W_{0}=$ the reference energy level
Then:

$$
\begin{gather*}
A_{T}=10 \log _{10}\left(W_{T} / W_{0}\right) \tag{25}\\
W_{1}+W_{2}+W_{3}=W_{T} \tag{26}\\
A_{3}-A_{2}=A_{2}-A_{1}=X / 3 \tag{27}\\
X / 3=10 \log _{10}\left(W_{3} / W_{2}\right)=10 \log _{10}\left(W_{2} / W_{1}\right) \tag{28}
\end{gather*}
$$

Therefore:

$$
\begin{equation*}
W_{3}=W_{2} 10^{x^{/ 30}} \tag{29a}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2}=W_{1} 10^{x / 30} \tag{29b}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
W_{3}=W_{1} 10^{x / 15} \tag{30}
\end{equation*}
$$

Fig. 5. Octave frequency spectrum
and

$$
\begin{equation*}
W_{r}=W_{1}\left(1+10^{x / 15}+10^{x / 30}\right) \tag{31}
\end{equation*}
$$

Let:
$Y_{i} \equiv A_{T}-A_{i} ; \quad i=1,2,3$
(The difference, in db levels, between the octave level A_{T} and a contained one-third octave level A_{i})

Therefore:

$$
\begin{equation*}
Y_{1}=10 \log _{11}\left(W_{T} / W_{1}\right)=10 \log _{10}\left(1+10^{x / 15}+10^{x / 30}\right) \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}=A_{T}-10 \log _{10}\left(1+10^{x y 15}+10^{x / 30}\right) \tag{33}
\end{equation*}
$$

which gives the decibel level of the first $1 / 3$ octave band

$$
\begin{equation*}
A_{2}=A_{1}+X / 3 \tag{34a}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{z}=A_{T}+X / 3-10 \log _{10}\left(1+10^{X / 15}+10^{x / 30}\right) \tag{34b}
\end{equation*}
$$

which gives the decibel level for the second $1 / 3$ octave band, and

$$
\begin{equation*}
A_{3}=A_{2}+X / 3=A_{1}+2 X / 3 \tag{35a}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{3}=A_{T}+\frac{2 X}{3}-10 \log _{10}\left(1+10^{x / 15}+10^{x / 30}\right) \tag{35b}
\end{equation*}
$$

which gives the decibel level for the third $11 / 3$ octave band.

We may rewrite Eq. (33), (34b) and (35b):

$$
\begin{align*}
& Y_{1}=10 \log _{10}\left[1+10^{x / 25}+10^{x / 30}\right] \tag{36}\\
& Y_{2}=10 \log _{10}\left[1+10^{x / 15}+10^{x / 30}\right]-X / 3 \tag{37}
\end{align*}
$$

and

$$
\begin{equation*}
Y_{3}=10 \log _{10}\left[1+10^{x / 15}+10^{x / 30}\right]-2 X / 3 \tag{38}
\end{equation*}
$$

Equations (36), (37) and (38) express the relationship between the overall octave level and the three $1 / 3$ octave levels of which it is comprised.

Tabular values of Eq. (36), (37) and (38) are listed in Table 4 which gives the values of $\left(Y_{i}\right) i=1,2,3$ for a range of (X) between -30 db and +30 db , with graphical displays for Eq. (36), (37) and (38) in Fig. 6, 7, and 8, respectively.

Table 4. Tabular values of Eq. (36), (37), and (38)

x	Y_{1}	\mathbf{Y}_{2}	\mathbf{Y}_{3}
(Spectrum slope within the octave) (db/octave)	IIncrement that must be subtracted from the octave level to obtain the lowest frequency $1 / 3$ octave level) (db)	(Increment that must be subtracted from the octave level to obtain the middle frequency $1 / 3$ octave level (db)	(Increment that must be subtracted from the octave level to obtain the highest frequency $1 / 3$ octave levell (db)
-30	0.4532	10.4532	20.4532
-29	0.4908	10.1574	19.8241
-28	0.5315	9.8648	19.1982
-27	0.5757	9.5757	18.5757
-26	0.6236	9.2903	17.9569
-25	0.6756	9.0090	17.3423
-24	0.7321	8.7321	16.7321
-23	0.7933	8.4600	16.1267
-22	0.8598	8.1931	15.5265
-21	0.9319	7.9319	14.9319
-20	1.0101	7.6768	14.3434
-19	1.0949	7.4283	13.7616
- 18	1.1869	7.1869	13.1869
-17	1.2865	6.9532	12.6199
- 16	1.3945	6.7278	12.0612
-15	1.5113	6.5113	11.5113
-14	1.6377	6.3044	10.9710
-13	1.7743	6.1076	10.4410
-12	1.9218	5.9218	9.9218
-11	2.0808	5.7475	9.4141
-10	2.2521	5.5854	8.9187
- 9	2.4363	5.4363	8.4363
-- 8	2.6341	5.3007	7.9674
-7	2.8461	5.1794	7.5128
- 6	3.0730	5.0730	7.0730
- 5	3.3152	$4.98 \overline{\text { i }}$	K. 6485
- 4	3.5733	4.9066	6.2399
- 3	3.8476	4.8476	5.8476
- 2	4.1386	4.8053	5.4719
-1	4.4464	4.7797	5.1131
0	4.7712	4.7712	4.7712
1	5.1131	4.7797	4.4464
2	5.4719	4.8053	4.1386
3	5.8476	4.8476	3.8476
4	6.2399	4.9066	3.5733
5	6.6485	4.9819	3.3152
6	7.0730	5.0730	3.0730
7	7.5128	5.1794	2.8461
8	7.9674	5.3007	2.6341
9	8.4363	5.4363	2.4363

Table 4 (contd)

X	\mathbf{Y}_{1}	γ_{2}	\boldsymbol{Y}_{3}
(Spectrum slope within the octave) (db/octave)	(Increment that must be subtracted from the octave level to obtain the lowest frequency $1 / 3$ octave levell (db)	Increment that must be subtracted from the octave level to obtain the middle frequency $1 / 3$ octave level) (db)	IIncrement that must be subtracted from the octave level to obtain the highest frequency $1 / 3$ octave level) (db)
10	8.9187	5.5854	2.2521
11	9.4141	5.7475	2.0808
12	9.9218	5.9218	1.9218
13	10.4410	6.1076	1.7743
14	10.9710	6.3044	1.6377
15	11.5113	6.5113	1.5113
16	12.0612	6.7278	1.3945
17	12.6199	6.9532	1.2865
18	13.1869	7.1869	1.1869
19	13.7616	7.4283	1.0949
20	14.3434	7.6768	1.0101
21	14.9319	7.9319	0.9319
22	15.5265	8.1931	0.8598
23	16.1267	8.4600	0.7933
24	16.7321	8.7321	0.7321
25	17.3423	9.0090	0.6756
26	17.9569	9.2903	0.6236
27	18.5757	9.5757	0.5757
28	19.1982	9.8648	0.5315
29	19.8241	10.1574	0.4908
30	20.4532	10.4532	0.4532

 and the octave level vs decibel/octave slope (X);

Ref. Eq. (36)

Appendix A. New and Old A.S.A. Tabular Data for Preferred Octave Designations; and Mathematical Expressions Defining These Bounds and Center Frequencies

Table A-1. Table of new and old A.S.A. recommended octave designations

Old ${ }^{1}$		New ${ }^{2}$			
Frequency band	Center frequency (geometric mean)	Frequency band		Center frequency (geometric mean)	
(Hz)	(Hz)	1/3 octave	Octave	1/3 octave	Octave
		(Hz)	(Hz)	(Hz)	(Hz)
4.7-9.4	6.6	$\begin{aligned} & 5.7-7.1 \\ & 7.1-8.8 \\ & 8.8-11.3 \end{aligned}$	5.7-11.3	$\begin{array}{r} 6.3 \\ 8.0 \\ 10.0 \\ \hline \end{array}$	8.0
9.4-18.7	13.2	$\begin{aligned} & 11.3-14.2 \\ & 14.2-17.7 \\ & 17.7-22.4 \end{aligned}$	11.3-22.4	$\begin{aligned} & 12.5 \\ & 16.0 \\ & 20.0 \end{aligned}$	16.0
18.7-37.5	26.5	$\begin{aligned} & 22.4-28.3 \\ & 28.3-35.4 \\ & 35.4-44.5 \end{aligned}$	22.4-44.5	$\begin{aligned} & 25.0 \\ & 31.5 \\ & 40.0 \end{aligned}$	31.5
37.5-75	53.0	$\begin{aligned} & 44.5-56.5 \\ & 56.5-70.7 \\ & 70.7-88.7 \end{aligned}$	44.5-88.7	$\begin{aligned} & 50.0 \\ & 63.0 \\ & 80.0 \end{aligned}$	63.0
75-150	106	$\begin{array}{r} 88.7-103 \\ 103-141 \\ 141-177 \end{array}$	88.7-177	$\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$	125
150-300	212	$\begin{aligned} & 177-224 \\ & 224-283 \\ & 283-354 \end{aligned}$	177-354	$\begin{aligned} & 200 \\ & 250 \\ & 315 \end{aligned}$	250
300-600	424	$\begin{aligned} & 354-445 \\ & 445-566 \\ & 566-707 \end{aligned}$	354-707	$\begin{aligned} & 400 \\ & 500 \\ & 630 \end{aligned}$	500
600-1200	848	$\begin{gathered} 707-887 \\ 887-1130 \\ 1130-1414 \end{gathered}$	707-1414	$\begin{array}{r} 800 \\ 1000 \\ 1250 \end{array}$	1000
1200-2400	1696	$\begin{aligned} & 1414-1770 \\ & 1770-2240 \\ & 2240-2830 \end{aligned}$	1414-2830	$\begin{aligned} & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	2000
2400-4800	3392	$\begin{aligned} & 2830-3540 \\ & 3540-4450 \\ & 4450-5660 \end{aligned}$	2830-5660	$\begin{aligned} & 3150 \\ & 4000 \\ & 5000 \end{aligned}$	4000
4800-9600	6784	$\begin{aligned} & 5660-7070 \\ & 7070-8870 \\ & 8870-11300 \end{aligned}$	5660-11300	$\begin{array}{r} 6300 \\ 8000 \\ 10000 \end{array}$	8000
9600-19200	13568	$\begin{aligned} & 11300-14140 \\ & 14140-17700 \\ & 17700-22400 \end{aligned}$	11300-22400	$\begin{aligned} & 12500 \\ & 16000 \\ & 20000 \end{aligned}$	16000
19200-38400	27136	$\begin{aligned} & 22400-28300 \\ & 28300-35400 \\ & 35400-44500 \end{aligned}$	22400-44500	$\begin{aligned} & 25000 \\ & 31500 \\ & 40000 \end{aligned}$	31500
1"Octave-Band Filter Set for the Analysis of Noise and Other Sounds," American Standards Association, Specification 224.10-1953. 2''Preferred Frequencies for Acousticol Measurements," American Standards Association, Specification S1.6-1960.					

Fig. 7. Plot of decibel increment $\left(Y_{2}\right)$ between second $1 / 3$ octave level and the octave level vs decibel/octave slope (X); Ref. Eq. (37)

Fig. 8. Plot of decibel increment $\left(Y_{3}\right)$ between third $1 / 3$ octave level and the octave level vs decibel/octave slope (X); Ref. Eq. (38)

The equations defining an octave system are as follows:

1. The ratio of center frequency (C.F.) of the $(i)^{\text {th }}$ to the $(i+N)^{\text {th }}$ octave is:

$$
\begin{equation*}
\frac{(C . F .)_{i+N}}{(C . F .)_{i}}=2^{N} \tag{A-1}
\end{equation*}
$$

2. The ratio of the bandwidths (B.W.) of the $(i)^{\text {th }}$ octave to the $(i+N)^{\text {th }}$ octave is:

$$
\begin{equation*}
\frac{(B . W .)_{i+v}}{(B . W .)_{i}}=2^{N} \tag{A-2}
\end{equation*}
$$

3. The lower limit frequency $\left(f_{L}\right)$ of a given octave is:

$$
\begin{equation*}
f_{L}=\frac{(C . F .)}{\sqrt{2}} \tag{A-3}
\end{equation*}
$$

4. The upper limit frequency $\left(f_{u}\right)$ of any given octave is:

$$
\begin{equation*}
f_{u}=\sqrt{2}(\text { C.F. }) \tag{A-4}
\end{equation*}
$$

The equations defining a one-third octave system are as follows:

1. The ratio of center frequency (C.F.) of the $(i)^{\text {th }}$ to the $(i+N)^{\text {th }}$ one-third octave is:

$$
\begin{equation*}
\frac{(\text { C.F. })_{i+N}}{(\text { C.F. })_{i}}=2^{N / 3} \tag{A-5}
\end{equation*}
$$

2. The ratio of the bandwidth (B.W.) of the $(i)^{\text {th }}$ octave to the $(i+N)^{\text {th }}$ one-third octave is:

$$
\begin{equation*}
\frac{(B . W .)_{i+N}}{(B . W .)_{i}}=2^{v / 3} \tag{A-6}
\end{equation*}
$$

3. The lower limit frequency (f_{L}) of any given one-third octave is:

$$
\begin{equation*}
f_{L}=\frac{(C . F .)}{2^{1 / 6}} \tag{A-7}
\end{equation*}
$$

4. The upper limit frequency (f_{u}) of any given one-third octave is:

$$
\begin{equation*}
f_{u}=2^{1 / 6}(\text { C.F. }) \tag{A-8}
\end{equation*}
$$

Appendix B. Decibel-Equivalents Tabular Data

Table B-1. Table of decibel equivalents for power, valtage, and pressure

Power$\left[\Delta d \mathrm{~b}=10 \log \left(W_{1} / W_{2}\right)\right]$				Voltage and pressure$\left[\begin{array}{c} \Delta \mathrm{db}=20 \log \left(V_{1} / V_{2}\right) \\ \Delta \mathrm{db}=20 \log \left(P_{1} / P_{2}\right) \end{array}\right]$			
W_{1} / W_{2}	$\Delta \mathrm{db}$	W_{1} / W_{2}	$\Delta \mathrm{db}$	$\frac{V_{1}}{V_{2}}$ or $\frac{P_{1}}{P_{2}}$	$\Delta \mathrm{db}$	$\frac{V_{1}}{V_{2}}$ or $\frac{P_{1}}{P_{2}}$	$\Delta \mathrm{db}$
1.00	0	0.1	-10.00	1.00	0	0.1	-20.00
1.12	0.5	0.2	-7.00	1.06	0.5	0.2	-14.00
1.26	1.0	0.3	-5.23	1.12	1.0	0.3	-10.46
1.41	1.5	0.4	-4.00	1.19	1.5	0.4	-8.00
1.59	2.0	0.5	-3.00	1.26	2.0	0.5	-6.00
1.78	2.5	0.6	-2.22	1.33	2.5	0.6	-4.44
2.00	3.0	0.7	-1.55	1.41	3.0	0.7	-3.10
2.24	3.5	0.8	-0.97	1.50	3.5	0.8	-1.94
2.52	4.0	0.9	-0.46	1.59	4.0	0.9	-0.92
2.62	4.5	1.0	0	1.68	4.5	1.0	0
3.16	5.0	1.5	1.78	1.78	5.0	1.5	3.52
3.54	5.5	2.0	3.00	1.88	5.5	2.0	6.00
4.00	6.0	2.5	3.98	2.0	6.0	2.5	8.00
4.46	6.5	3.0	4.77	2.12	6.5	3.0	9.54
5.00	7.0	3.5	5.44	2.24	7.0	3.5	10.88
5.62	7.5	4.0	6.00	2.37	7.5	4.0	12.00
6.30	8.0	4.5	6.54	2.52	8.0	4.5	13.07
7.07	8.5	5.0	7.00	2.66	8.5	5.0	14.00
7.95	9.0	5.5	7.41	2.82	9.0	5.5	14.82
8.90	9.5	6.0	7.78	2.98	9.5	6.0	15.56
10.0	10.0	6.5	8.14	3.16	10.0	6.5	16.26
100.0	20.0	7.0	8.45	10.0	20.0	7.0	16.91
1,000.0	30.0	7.5	8.75	31.6	30.0	7.5	17.00
10,000.0	40.0	8.0	9.00	100.0	40.0	8.0	18.06
100,000.0	50.0	8.5	9.30	316.0	50.0	8.5	18.60
1,000,000.0	60.0	9.0	9.54	1.000 .0	60.0	9.0	19.10
10,000,000.0	70.0	9.5	9.78	3,160.0	70.0	9.5	19.56
100,000,000.0	80.0	10.0	10.00	10,000.0	80.0	10.0	20.00

Note: If $(+\Delta) \mathrm{db}=10 \log (\mathrm{~A} / \mathrm{B})$, then $(-\Delta) \mathrm{db}=10 \log (B / A)$.

Appendix C. Conversion Tabular Data

The conversion listing of some useful acoustics constants is as follows:

1 in.	$=2.54 \mathrm{~cm}$	1 slug	$=14.6188 \mathrm{Kgm}$
1 cm	$=0.3937 \mathrm{in}$.	1 lb	$=4.448(10)^{5}$ dynes
1 ft	$=30.48 \mathrm{~cm}$	1 newton $=10^{5}$ dynes	
1 ft	$=0.3048$ meter	1 dyne $/ \mathrm{cm}^{2}=1 \mu \mathrm{bar}$	
1 cm	$=3.281(10)^{-2} \mathrm{ft}$	1 dyne $/ \mathrm{cm}^{2}=14.5(10)^{-6} \mathrm{lb} / \mathrm{in}^{2} .^{2}$	
1 meter	$=100 \mathrm{~cm}$	$1 \mathrm{lb} / \mathrm{in.}^{2}=6.895(10)^{4}$ dynes $/ \mathrm{cm}^{2}$	
1 dyne	$=2.248(10)^{-6} \mathrm{lb}$		

Table C-1. Conversion table of some useful acoustic constants

System Element	C.G.S.	M.K.S.	English	
			ft-lb-sec	in.-lb-sec
$\mathbf{P}_{a} *$ standard atmos. pressure	$\begin{gathered} 1.013(10)^{6} \\ \text { dynes } / \mathrm{cm}^{2} \end{gathered}$	$\begin{aligned} & 1.013(10)^{5} \\ & \text { Newtons } / \mathrm{M}^{2} \end{aligned}$	$\begin{gathered} 2.116(10)^{3} \\ \text { lbs } / \mathrm{ft}^{2} \end{gathered}$	$\begin{aligned} & 14.70 \\ & \text { lbs/in. }{ }^{2} \end{aligned}$
air density	$\begin{gathered} 1.2250(10)^{-3} \\ \text { grams } / \mathrm{cm}^{3} \end{gathered}$	$\begin{aligned} & 1.2250 \\ & \mathrm{Kgm} / \mathrm{M}^{3} \end{aligned}$	$\begin{gathered} 2.3760(10)^{-3} \\ \text { slugs } / \mathrm{ft}^{3} \end{gathered}$	$\begin{aligned} & 1.1453(10)^{-7} \\ & 1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{in}^{4} \\ & \left(\mathrm{mass} / \mathrm{in}^{3}{ }^{3}\right) \end{aligned}$
speed of sound in air	$\begin{gathered} 3.4340(10)^{4} \\ \mathrm{~cm} / \mathrm{sec} \end{gathered}$	$\begin{aligned} & 3.4340(10)^{2} \\ & \text { meters } / \mathrm{sec} \end{aligned}$	$\begin{gathered} 1.1266(10)^{3} \\ \mathrm{ft} / \mathrm{sec} \end{gathered}$	$\begin{gathered} 1.3520(10)^{4} \\ \text { in. } / \mathrm{sec} \end{gathered}$
$\begin{aligned} & \rho_{\mathrm{c}} \text { (Rayls) } \\ & \text { impedance } \end{aligned}$	$\begin{aligned} & 42.067 \\ & \quad \text { grams } / \mathrm{cm}^{2}-\mathrm{sec} \end{aligned}$	$\begin{aligned} & 420.67 \\ & \mathrm{Kgm} / \mathrm{M}^{2}-\mathrm{sec} \end{aligned}$	$\begin{aligned} & 2.6734 \\ & \text { slugs } / \mathrm{ft}^{2}-\mathrm{sec} \end{aligned}$	$\begin{aligned} & 1.5471(10)^{-3} \\ & \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{3} \\ & \left(\mathrm{mass} / \mathrm{in}^{2} .^{-}-\mathrm{sec}\right) \end{aligned}$
P_{0} " 0 " db reference pressure level	$\begin{aligned} & 2.00(10)^{-4} \\ & \text { dynes } / \mathrm{cm} \end{aligned}$	$2.00(10)^{-5}$ Newtons/M ${ }^{2}$	$\begin{gathered} 4.18(10)^{-7} \\ \mathrm{lb} / \mathrm{ft}^{2} \end{gathered}$	$\begin{gathered} 2.90(10)^{-9} \\ \mathrm{lb} / \mathrm{in}^{2} .^{2} \end{gathered}$
I_{0} " 0 " db reference intensity level	$\begin{aligned} & 1.000(10)^{-11} \\ & \text { dynes } / \mathrm{cm}^{2} \cdot \mathrm{sec} \end{aligned}$	$\begin{gathered} 1.000(10)^{-12} \\ \text { watts } / \mathrm{M}^{2} \end{gathered}$	$\begin{gathered} 6.8470(10)^{-14} \\ \mathrm{lb} / \mathrm{ft}-\mathrm{sec} \end{gathered}$	$\begin{gathered} 5.7058(10)^{-15} \\ \mathrm{lb} / \mathrm{in} .-\mathrm{sec} \end{gathered}$
W_{0} " 0 " db reference energy level	$\begin{aligned} & 1.00(10)^{-6} \\ & \text { dynes-cm/sec } \end{aligned}$	$\begin{aligned} & 1.00(10)^{-13} \\ & \text { watts } \end{aligned}$	$\begin{gathered} 7.37(10)^{-14} \\ \mathrm{ft}-\mathrm{lb} / \mathrm{sec} \end{gathered}$	$\begin{gathered} 8.84(10)^{-13} \\ \text { in. }-\mathrm{lb} / \mathrm{sec} \end{gathered}$
1.000 horsepower		746 watts	$\begin{aligned} & 550 \\ & f t-\mathrm{lb} / \mathrm{sec} \end{aligned}$	
$1.341(10)^{-3}$ horsepower		$\begin{aligned} & 1.000 \\ & \text { watts } \end{aligned}$	$\begin{aligned} & 0.737 \\ & \mathrm{ft}-\mathrm{lb} / \mathrm{sec} \end{aligned}$	
$1.818(10)^{-3}$ horsepower		$\begin{aligned} & 1.356 \\ & \text { watts } \end{aligned}$	$\begin{aligned} & 1.000 \\ & \mathrm{ft}-\mathrm{lb} / \mathrm{sec} \end{aligned}$	
*Note: All values of P_{a}, ρ, and e are given for "standard" atmospheric conditions.				

[^0]: ${ }^{1}$ Note: These bandwidths can have identical or different frequency bounds, as long as they meet the requirements stated above.

