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SOME EFFECTS O F  MACH NUMBER AND GEOMETRY ON SONIC BOOM' 

By Raymond M. Hicks, J o e l  P . Mendoza, 
and Lynn W .  Hunton 

Ames Research Center 

SUMMARY 

A study has been conducted t o  determine t h e  e f f ec t s  of Mach nuzziber and 

This study consisted of 
geometry on the  l eve l  of sonic boom overpressure and on the  app l i cab i l i t y  of 
t he  Whitham theory t o  the  calculat ion of sonic boom. 
wind-tunnel t e s t s  and a theo re t i ca l  analysis  of t he  sonic boom charac te r i s t ics  
of a 7 . 5 O  half  -angle cone-cylinder and a model of t he  X-15 a i rplane over a 
Mach number range from 2 t o  5.5 t o  compare experiment with theory. 
geometric e f f ec t  w a s  examined i n  t e s t s  of th ree  hypersonic t ransport  config- 
urations over the  same Mach number range. This study shows the  W h i t h a m  theory 
gives good predictions of sonic boom overpressure up t o  a Mach number of about 
3, but deviates rapidly from experiment above a Mach number of 3. It a l s o  
shows t h a t  configuration geometry can have a considerable influence on the  
l e v e l  of sonic boom overpressure a t  low hypersonic Mach numbers. 

The 

INTRODUCTION 

Experience gained i n  the  development of the supersonic t ransport  has 
shown t h a t  an important area of hypersonic t ransport  research i s  the  sonic 
boom. 
the supersonic counterpart because of the  d i f fe ren t  configuration geometry 
charac te r i s t ic  o f  cryogenic fueled hypersonic a i r c r a f t .  This report  w i l l  
present some answers t o  t w o  questions raised by the sonic boom problem a t  
hypersonic Mach numbers: (1) W i l l  the  good cor re la t ion  between experiment 
and the Whitham theory a t  moderate supersonic Mach numbers p e r s i s t  a t  
hypersonic Mach numbers? (2) How w i l l  changing the  geometry of hypersonic 
configurations change the l eve l  of sonic boom? The va l id i ty  of the Whitham 
theory a t  hypersonic speeds w i l l  be considered by comparing experiment and 
theory f o r  a body of revolution and a complete a i rplane configuration. The 
e f f ec t  of geometry w i l l  be examined by presenting data f o r  three d i f fe ren t  
hypersonic t ransport  a i r c r a f t .  

The problem a t  hypersonic Mach nunibers may be somewhat d i f fe ren t  from 

NOMENCLATURE 

CL l i f t  coef f ic ien t  

h a l t i t u d e  

'Presented a t  NASA Conference on Hypersonic Aircraf t  Technology, Ames 
Research Center, May 16-18, 1967. 
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a? 

a 

body length 

Mach number 

reference pressure 

sonic boom overpressure 

angle of a t tack  

shock angle minus Mach angle 

MODELS AND APPARATUS 

The models i n  t h i s  study were a 7 . 5 O  half-angle cone-cylinder, a model of 
the  X - 1 5  airplane,  and three hypersonic t ransport  models - a blended-wing-body, 
a delta-wing-body, and an all-body configuration. The three hypersonic t rans-  
por t  configurations and the  cone-cylinder were manufactured from mild s t e e l  
and the X - 1 5  model was cas t  from beryllium copper. The three t ransport  models 
and the  cone-cylinder were 4 inches long, and the  X-15  model was 4.8 inches 
long. 

The t e s t s  were conducted a t  Mach numbers of 2 and 3 i n  the  Ames 9- by 
7-Foot and 8- by 7-Foot Wind Tunnels, respectively,  and a t  Mach numbers of 4 
and 5.5 i n  the  21-Inch Hypersonic Wind Tunnel of the J e t  Propulsion Laboratory. 

All models were mounted on a two-component i n t e rna l  strain-gage balance 
which was manufactured in t eg ra l  with the  s t i ng  support. The s t a t i c  probe 
used t o  measure the  pressures i n  the model shock system was manufactured from 
s t a in l e s s  s teel  i n  two sect ions.  
half-angle cone; the  a f t  section, a l so  10 inches long, was a 1-1/4' half-angle 
cone. 

The f ron t  section w a s  a 10-lnch long, 1/2O 

The pressure transducers used i n  the  study were of the  capacitance type 
and had a maximum load capabi l i ty  of 10 mm of mercury. 

TEST TECHNIQUE 

The comparison between experiment and theory was made f o r  an a l t i t u d e  of 
100 body lengths (an a l t i t u d e  f o r  which the  Whitham theory is  known t o  
pred ic t  sonic boom charac te r i s t ics  accurately a t  moderate supersonic Mach 
numbers). Since it was not p r a c t i c a l  t o  obtain wind-tunnel data a t  an 
a l t i t u d e  of 100 body lengths, an experimental technique developed a t  Ames 
f o r  deriving sonic boom charac te r i s t ics  from near f i e l d  data f o r  m y  greater  
a l t i t ude  was used. 
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An expeditious way t o  describe the  experimental technique i s  t o  compare 
it with the standard theore t ica l  procedure. This comparison i s  presented i n  
f igure  1. 
calculat ion of the cross-sectional area d is t r ibu t ion ,  l i f t  dis t r ibut ion,  and 
interference l i f t  d is t r ibu t ion  before the F-f’unction and the desired pressure 
signature can be calculated.  One of the main d i f f i c u l t i e s  with the theoret-  
i c a l  procedure i s  the i n a b i l i t y  of ex is t ing  theories  t o  define the  l i f t  d i s -  
t r i bu t ion  accurately.  (For a complete description of t h i s  procedure, see 
ref.  2 . )  The only requirement for applying the experimental procedure shown 
a t  the  r igh t  i s  t h a t  a near f i e l d  pressure signature be measured i n  a wind 
tunnel (or other  sui table  experimental f a c i l i t y ) .  
an experimental F-function and then the  pressure signature a t  any higher 
a l t i t ude  can be calculated.  

The theore t ica l  procedure shown a t  the l e f t  requires a detai led 

Once t h i s  has been done, 

An evaluation of the va l id i ty  of the experimental procedure used f o r  
deriving sonic boom charac te r i s t ics  from measurements of near f i e l d  pressure 
signatures i s  presented i n  f igure  2. M = 1.8 and the  X-15 a t  
M = 5.5 were used as  t e s t  cases.  The two pressure signatures shown a t  the  top 
of the f igure  were measured i n  a wind tunnel a t  a r a t i o  of a l t i t ude  t o  body 
length (h/Z) of 1. 
f i e l d  pressure signatures were used t o  calculate  pressure signatures (here- 
a f t e r  ca l led  derived pressure signatures) f o r  a l t i tude-length r a t i o s  of 4.5 
and 290 f o r  the  XB-70 and f o r  an al t i tude-length r a t i o  of 1770 f o r  the  X - 1 5 .  
These derived pressure signatures are  compared with experimental data obtained 
a t  the same al t i tude-length r a t i o s .  A s  can be seen, the derived pressure 
signatures and the experimental data agree w e l l ,  except for the  location and 
s t rength  of the  r ea r  shock f o r  the X - l 5  a t  h/ l  = 1770. 
schl ieren photographs has indicated t h a t  t h i s  discrepancy i s  due t o  i n t e r -  
ference with the  t r a i l i n g  shock on the X - 1 5  wind-tunnel model caused by a 
shock emanating from the model support system. 
severe a t  high Mach numbers and, t o  obtain r e l i ab le  data for the  t r a i l i n g  
shock, would require a longer s t i ng  than tha t  employed i n  t h i s  t e s t .  This 
experimental procedure has been used t o  derive the experimental sonic boom 
charac te r i s t ics  shown f o r  a l l  configurations i n  the remainder of t h i s  repor t .  

The XB-70 a t  

The experimental F-functions calculated from these near 

An analysis of 

This problem i s  pa r t i cu la r ly  

RESULTS AND DISCUSSION 

The f i rs t  question t o  be considered here concerns the va l id i ty  of the  
modified l i nea r  theory of Whitham a t  hypersogic speeds. 
experiment with the  Whitham theory f o r  a 7.5 
h/l = 100 i s  shown i n  f igure  3. 
theory i s  good a t  Mach numbers of 2 and 3 while the  Whitham theory i s  seen 
t o  underpredict the s t rength of the bow shock a t  Mach numbers of 4 and 5.5.  
This t rend i s  not surpr is ing since the assumptions used i n  the development of 
the Whitham theory place a def in i te  Mach number l imi ta t ion  on the theory 
(see ref. 3 ) .  This underprediction of t he  bow shock s t rength a t  low hyper- 
sonic Mach numbers has been noted before ( ref .  4) on a 7 . 5 O  half-angle cone 
a t  M = 5.14. 

A comparison of 
half-angle cone-cylinder a t  

The correlat ion between experiment and 
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Figure 4 shows a comparison of experiment with theory f o r  t he  X-15 a t  
the  l i f t  coeff ic ients  indicated.  Again, it i s  evident t h a t  t h e  correlat ion 
between experiment and theory is  f a i r l y  good a t  the  low Mach numbers but  not 
as good as f o r  the  slender, nonl i f t ing configuration shown i n  f igure  3. A t  
Mach numbers of 4 and 5.5 the  theory again underpredicts t he  s t rength of t he  
bow shock. 
signatures for t he  X-15 were based on experimental pressure d is t r ibu t ions  
(see r e f s .  5-7). 
cannot be blamed on inaccurate loading d is t r ibu t ions .  

I n  the  calculat ion of sonic boom, the  theo re t i ca l  overpressure 

Hence, t he  lack of cor re la t ion  between experiment and theory 

Another measure of t he  accuracy of a sonic boom theory i s  the  degree of 
correlat ion between experimental and theo re t i ca l  shock angle. This comparison 
i s  made i n  f igure  5 by p lo t t i ng  shock angle minus free-stream Mach angle f o r  
a 7.5' half  -angle cone. Two theories  ( the  Whitham theory and the  cone t ab le s )  
a r e  presented along with an experimental value a t  M = 5.5. It can be seen 
t h a t  t he  cone tables  qui te  accurately pred ic t  t he  shock angle a t  M = 5.5. 
If the  cone tab les  a r e  accepted as a good estimate of shock angle throughout 
t h e  Mach number range shown i n  t h i s  f igure,  it can be seen that the  Whitham 
theory predicts  the  shock angle well  t o  about M = 3 and then deviates 
rapidly from experiment above M = 3. It is  in te res t ing  t h a t  the  bow shock 
angle predicted by the  Whitham method i s  grea te r  than the  experimental shock 
angle a t  high Mach numbers while the  opposite i s  t r u e  f o r  the  pressure jump 
a t  the  bow shock (see f i g s .  3 and 4 ) .  This anomaly has not yet  been explained. 

The second question t o  be considered here is the  e f f ec t  of geometry on 
the  l e v e l  of sonic boom. This question has been examined i n  tests of t he  
three  hypersonic t ransport  configurations shown i n  f igure 6 a t  Mach numbers of 
2, 3, 4, and 5.5. The three configurations chosen w e r e  a blended wing body, 
a de l t a  wing body, and an a l l  body. A l l  models, complete with empennage and 
simulated engine in l e t s ,  were 4 inches long. These models were not designed 
t o  minimize sonic boom, but  were chosen as being typ ica l  of current thinking 
on hypersonic t ransports ;  hence, the l e v e l  of sonic boom overpressure pre-  
sented may be somewhat higher than could be achieved i f  the  configuration 
geometry were reshaped. 
which is  a p l o t  of maximum overpressure divided by the  reference pressure 
versus Mach number f o r  the  three  hypersonic configurations f ly ing  a t  a con- 
s t a n t  a l t i t u d e  of 50,000 feet  and a constant weight of 600,000 pounds. A l l  
a i r c r a f t  had the  same volume. A s  shown by the  s i lhouet tes  of the  configu- 
ra t ions  i n  f igure  7, however, t he  lengths f o r  constant volume were d i f f e ren t  
f o r  each a i r c r a f t .  The r e s u l t s  of t h i s  study indicate  t h a t  f o r  the Mach 
number range shown, the leve l  of sonic boom generated by the  blended wing 
body i s  about t he  same as t h a t  generated by the de l t a  wing body, both being 
l e s s  than t h a t  f o r  the all-body configuration. It should be pointed out t h a t  
the  assumption of constant weight may have penalized the  all-body configu- 
r a t ion  s ince preliminary mission analysis  s tudies  indicate  t h a t  t he  weight of 
t he  a l l  body may be l e s s  than the  weight of t he  other two configurations f o r  
t he  same mission. This would r e s u l t  i n  a somewhat lower sonic boom 
overpressure. 

The r e s u l t s  of t h i s  study are presented i n  f igure  7, 

Now t h a t  t he  relative leve ls  of sonic boom overpressure have been 
established f o r  t he  three hypersonic t ransport  configurations, it is  of 
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i n t e r e s t  t o  see what l e v e l  of sonic boom ( i n  pounds per  square foo t )  would be 
generated by the  blended wing body f ly ing  a typ ica l  mission p r o f i l e .  
p l o t  a t  the  l e f t  i n  f igure  8, the  so l id  curve defines the  basic  mission 
p r o f i l e .  The mission begins a t  M = 2 since t e s t s  were not conducted a t  Mach 
numbers below 2.  
the  blended wing body f ly ing  the basic  mission a r e  shown by the so l id  curve a t  
the r igh t  i n  the  f igure.  
l a t i n g  the  M = 5.5 values. ) A s  can be seen, overpressures would be ra ther  
large between 
cruise .  The 1 psf value is  lower than t h a t  ant ic ipated f o r  the  supersonic 
t ransport  because of the  higher cruise  a l t i t u d e  for t he  hypersonic t ranspor t .  
If engines were avai lable  t h a t  would permit a l t e r a t i o n  of the  climb l eg  of the  
mission p r o f i l e  t o  t h a t  shown by the  dashed curve a t  the  le f t ,  t he  l e v e l  of 
sonic boom overpressure could be reduced during climb t o  the l e v e l  shown by 
the  dashed curve a t  the  r igh t .  

In  the  

The overpressures t h a t  would be generated on t h e  ground by 

(The values f o r  

M = 2 and 3 but  would drop rapidly t o  about 1 psf a t  t he  end of 

M = 6 were obtained by extrapo- 

CONCLUSIONS 

The following conclusions can be drawn from t h i s  study: 

1. The modified l i n e a r  theory of Whitham predic t s  sonic boom character-  
i s t i c s  f a i r l y  well  f o r  slender configurations up t o  a Mach number of about 3 
but  deviates rapidly from experiment above Mach 3.  

2. The sonic boom overpressure generated by the  delta-wing configuration 
is  approximately the same as t h a t  generated by the blended-wing-body config- 
uration, both being considerably below the  overpressure l e v e l  of the all-body 
configuration f o r  the conditions and Mach number range of t h i s  study. 

3. The use of near f i e l d  data t o  derive sonic boom charac te r i s t ics  a t  
any larger  a l t i t ude  appears t o  have appl icat ion up t o  low hypersonic Mach 
numbers. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif  ., 94035, May 16, 1967 
720 -0 1-00 -02 -00 -21 
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DESCRl PTlON OF THEORETICAL AND EXPERIMENTAL PROCEDURE 
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Figure 1 

EVALUATION OF EXPERIMENTAL PROCEDURE 
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Figure 2 
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COMPARISON OF EXPERIMENT WITH THEORY 
7.5' HALF ANGLE CONE CYLINDER 
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Figure 3 
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COMPARISON OF WHITHAM'S THEORY WITH THE CONE 
TABLES AND EXPERIMENT 
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Figure 6 
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CONFIGURATION EFFECT 
ALTITUDE=50,000 f t  WEIGHT = 600,000 Ib CONSTANT VOLUME 
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Figure 7 

MAXIMUM OVERPRESSURE FOR MISSION PROFILE 
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