NASACONTRACTOR REPORT

\circ $\stackrel{\circ}{-}$ $\stackrel{-}{-}$
 NASA

FATIGUE-CRACK-PROPAGATION AND
FFACTURE-TOUGHNESS CHARACTERISTICS
OF 7079 ALUMINUM-ALLOY SHEETS AND
Plates in Three aged Conditions
by S. H. Smith, T. R. Porter, and W. D. Sump

Prepared by
THE BOEING COMPANY
Renton, Wash.
for Langley Research Center

NAIIONAL AERONAUTICS AND SPACE ADMINISTRATIDN • WASHINGTON, D. C. • FEBRUARY 1968

FATIGUE-CRACK-PROPAGATION AND

FRACTURE-TOUGHNESS CHARACTERISTICS OF 7079 ALUMINUM-ALLOY SHEETS AND PLATES IN THREE AGED CONDITIONS

By S. H. Smith, T. R. Porter, and W. D. Sump

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 1-6474 by
THE BOEING COMPANY
Renton, Wash.
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

[^0]This contractor report describes work accomplished under NASA Contract NAS $1-6474$ by The Boeing Company during the contract time period of July 18, 1966, to July 18, 1967. Boeing personnel who participated in the investigation include Mr. J. P. Butler, program manager; Mr. S. H. Smith, project leader; and Mr. T. R. Porter, research engineer. Structural testing of specimens was conducted by Mr. W. D. Sump under the supervision of Mr. W. C. Larson. Structural-testing instrumentation support was provided by Mr. D. C. English, and aging and heat-treatment support was provided by Mr. M. V. Hyatt and Mr. J. C. McMillan. Computer programming support was provided by Mr. M. G. Hellborg.
SUMMARY 1
INTRODUCTION 2
SYMBOLS 2
FATIGUE CRACK PROPAGATION AND FRACTURE- TOUGHNESS ANALYSIS 4
Fatigue Crack Propagation 5
Fracture-Toughness Analysis 6
EXPERIMENTAL PROGRAM AND SPECIMENS 9
TESTING MACHINES AND PROCEDURES 11
RESULTS AND DISCUSSION 13
Heat-Treatment Study 13
Through-the-Thickness Fatigue- Crack-Growth Behavior. 14
Through-the-Thickness Fracture
Toughness 16
Surface-Flaw Fatigue-Crack-Growth Behavior and Fracture Toughness 17
Verification Tensile Properties 17
Precracked Charpy Toughness 18
CONCLUSIONS 18
REFERENCES 20
FIGURES 21
TABLES 47

FRACTURE-TOUGHNESS CHARACTERISTICS OF 7079

ALUMINUM-ALLOY SHEETS AND PLATES

IN THREE AGED CONDITIONS

By S. H. Smith, T. R. Porter, and W. D. Sump

SUMMARY

This experimental research and development program was conducted to characterize the fatigue-crack-propagation behavior, residual strength, and fracture toughness of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions for thicknesses of $0.16,0.25,0.50$, and 0.63 inch. Tensile-property, fatigue-crack-propagation, and fracture-toughness tests were conducted to determine the effects of aging temperature and time, material thickness, specimen width, and configuration and physical environments of dry air, liquid nitrogen $\left(-65^{\circ} \mathrm{F}\right)$, and distilled water on these properties. The materials were available in 36 - by 96 -inch sheets or plates. Using centrally notched specimens, the crack-growth and fracture-toughness tests were performed on 36-, $12-$, and 8 -inch-wide panels with the latter two sizes of specimens being cut from the fractured halves of the large panels. Residualstrength characteristics were also determined with surface-flawed specimens in the 0.63 -inch-thickness tests. Precracked Charpy impact-toughness tests also were conducted for the three aged conditions and for the four panel thicknesses. Aging conditions were determined from tensile tests and were verified by tensile specimens cut from the fracture-tested material.

The results of the test program showed that 7079 peak-age (T6) material has a faster rate of fatigue crack growth and a lower fracture toughness and residual strength than underaged and overaged materials. Underaged material exhibited the greatest fracture toughness and essentially the same rate of fatigue crack growth as that of overaged material. A slower fatigue-crackgrowth rate was found for a decrease in plate thickness, an increase in panel width, a dry-air environment compared to distilled water, and a $-65^{\circ} \mathrm{F}$ temperature compared to room temperature. Higher fracture-toughness and residualstrength values were found for a decrease in plate thickness, an increase in panel width, a longitudinal grain direction compared to transverse grain, and an increase in test temperature from $-65^{\circ} \mathrm{F}$ to room temperature.

Many material and structural failures occur from cracks or flaws that pre-exist or that originate in the material or structure. These failures can occur at applied tensile stress levels well below the tensile ultimate or yield strength of the material due to the unidentified presence of the flaw. Therefore, to ensure the fracture-safe design of a structure, knowledge of the residualstrength or fracture-toughness characteristics of structural materials in the presence of these flaws must be established. In addition, the growth rate of cracks or flaws in the material subjected to cyclic loading must be known to establish the required inspection time intervals for structure subjected to fatigue loading.

This investigation was undertaken to determine the fatigue-crackpropagation behavior, plane-strain and plane-stress fracture toughnesses, and residual strength of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions. Sheet and plate thicknesses of $0.16,0.25,0.50$, and 0.63 inch were evaluated. The stress-intensity-factor method, or as it is sometimes referred to as linear elastic fracture mechanics, was applied in generating and presenting the fatigue-crack-propagation and fracture-toughness characteristics of 7079 aluminum alloy in the three aged conditions. Underaged and overaged transverse-yield-strength levels were 12.5 ± 2.5 percent below the peak transverse-yield-strength level. Tests were conducted at $-65^{\circ} \mathrm{F}$ and room temperature. Cyclic fatigue-crack-propagation tests were conducted in a controlled dry-air environment and in distilled water.

A total of 363 tests were conducted in the program, including 204 tensile tests, 72 center-cracked-panel fatigue-crack-growth and fracture-toughness tests, 15 surface-flaw fatigue-crack-growth and fracture-toughness tests, and 72 precracked Charpy impact-toughness tests.

SYMBOLS

A_{o} net area of precracked Charpy specimen, in.
b surface-flaw depth, in.
$\frac{d(2 a)}{d N}$ fatigue-crack-growth rate, microinches/cycle
E Young's modulus of elasticity, ksi
$\mathrm{F}(\mathrm{U})$ ultimate tensile strength, ksi
F(Y) 0.2-percent offset yield strength, ksi
f cyclic frequency, cpm
$\mathrm{G}_{\mathrm{c}} \quad$ plane-stress fracture toughness, in. - $\mathrm{lb} / \mathrm{in} .^{2}$
$\mathrm{K}_{\mathrm{I}} \quad$ opening-mode stress-intensity factor, ksi $\sqrt{\mathrm{in}}$.

W center-cracked-panel width, in.
W_{o} precracked Charpy impact energy, in. -lb/in. ${ }^{2}$
plastic-zone-corrected plane-stress fracture toughness, in. -lb/in. ${ }^{2}$ plastic-zone-corrected plane-strain fracture toughness, in. -lb/in. ${ }^{2}$ maximum-cyclic-stress-intensity factor, ksi $\sqrt{\mathrm{in}}$. plane-stress critical-stress-intensity factor, ksi $\sqrt{ } \mathrm{in}$. plastic-zone-corrected plane-stress critical-stress-intensity factor, ksi $\sqrt{\text { in. }}$ plane-strain critical-stress-intensity factor, ksi $\sqrt{\mathrm{in}}$. plastic-zone-corrected plane-strain critical-stress-intensity factor, $\mathrm{ksi} \sqrt{\mathrm{in}}$.
initial applied plane-strain stress-intensity level, ksi $\sqrt{\text { in }}$.
maximum cyclic stress-intensity factor, ksi $\sqrt{\mathrm{in}}$.
center-cracked-panel length, in.
constant in crack-growth-rate formula
fatigue cycles, cycles
surface-flaw cycles to failure, cycles
exponent in crack-growth-rate formula
ratio of minimum to maximum fatigue cyclic stress levels
reduction in area, percent
percent shear lip observed on fracture surface
thickness, in.
thickness, in.
ultimate tensile strength, ksi
ultimate tensile strength, ksi
plastic-zone width, in.

YS 0.2-percent offset yield strength, ksi
Θ angle describing a point on the surface-crack front, degrees
$\mu \quad$ Poisson's ratio
$\sigma_{\mathrm{g}} \quad$ gross-area stress, ksi
$\dot{\sigma}_{\mathrm{g}} \quad$ gross-area-stress rate, ksi/sec
$\sigma_{\text {net }} \quad$ net-area stress, ksi
$\sigma_{y s} \quad 0.2$-percent offset yield strength, ksi
$\sigma_{0} \quad$ gross-area stress level at pop-in, ksi

- complete elliptical integral of second kind

2A fatigue crack length, in.
2a fatigue crack length, in.
$2 \mathrm{a}_{\mathrm{cr}}$ critical crack length, in.
2c surface-flaw length, in.

FATIGUE-CRACK-PROPAGATION AND FRACTURETOUGHNESS ANALYSIS

The analysis methods used in investigating the fatigue crack propagation and fracture-toughness behaviors of 7079 aluminum alloys were based on linear elastic fracture mechanics or the stress-intensity-factor method. The stress-intensity-factor method of fracture mechanics has become a useful engineering tool in investigating the mechanics of subcritical crack growth and the final crack instability in metals due to static and fatigue loads, particularly where the material exhibits little net-section yielding. This method has been shown to be applicable in analyzing the subcritical fatigue-crack-growth behavior of surface or embedded flaws and through-the-thickness cracks in structure. Practical applications of the method are given in references 1, 2, and 3. Recently, the stress-intensity-factor method was used in determining the effects of humidity and liquid environments on the fatigue crack growth and sustained-load crack-growth behaviors of metals (refs. 4 through 7). The remainder of this discussion describes the stress-intensity-factor method and presents the stress-intensity-factor formulae for the specimen configurations and analysis used in this investigation. Additional analysis techniques used in analyzing the fatigue-crack-propagation and fracture-toughness data are also discussed.

The stress-intensity-factor parameter K is a measure of the localized stress field around the tip of a crack and is a function of the remotely applied stress and crack size. For crack growth due to constant-amplitude fatigue loading, the maximum stress-intensity level and the fluctuation in stressintensity level control the rate of fatigue crack growth (ref. 8). To compare the behavior of the rate of fatigue crack growth of different materials or to establish the effect of metallurgical, geometrical, or environmental variables on the rate of fatigue crack growth, identical levels of fatigue stressintensity factors can be compared.

In this investigation, the center-notched panel configuration was used in generating the majority of the data on fatigue crack propagation The stress-intensity-factor formula for the center-notched panel is given by Irwin (ref. 9) as:

$$
\mathrm{K}=\sigma_{\mathrm{g}} \sqrt{\pi \mathrm{a}}\left(\frac{\mathrm{~W}}{\pi \mathrm{a}} \tan \frac{\pi \mathrm{a}}{\mathrm{~W}}\right)^{1 / 2}
$$

Under fatigue cycling of a center-notched panel, a fatigue crack initiates at the notch tip and propagates at a steadily increasing rate for constant amplitude and maximum cyclic stress levels. The fatigue-crack-propagation data was recorded in the form of crack length at specific applied-load cycles until the fatigue crack propagated to a length of approximately 35 percent of the panel width.

A computer program was used to analyze the generated data on fatigue crack growth for growth-rate effects. The program computes the average maximum-cyclic-stress-intensity factor between measured crack-length-cycles data points and the corresponding average rate of fatigue crack growth. The application of a computerized curve-fitting process to the crack-length-cycles data to determine an analytical rate behavior was complicated by differences in the curves defined by the actual test points from the various test panels. A simple, single functional form for the crack-length-cycles data was not found to fit all the data. Hence, the crack-length-cycles curves were drawn through the actual measured data.

A regression analysis or a least-squares fit of the calculated values of stress-intensity factor and fatigue-crack-growth rate was performed with a computer program. This analysis fitted a straight line through a $\log -\log$ plot of maximum-cyclic-stress-intensity factor versus fatigue-crack-growth rate. Such a regression analysis as this reflects a power law for the rate of fatigue crack growth. According to Paris (ref. 10), the rate of fatigue crack growth over many log cycles of rate can be expressed as:

$$
\frac{d(2 a)}{d N}=\frac{K_{\max }}{M}
$$

or in logarithmic terms, is a linear equation:

$$
\log \frac{\mathrm{d} 2 \mathrm{a}}{\mathrm{dN}}=\operatorname{nlog} \mathrm{K}_{\max }-\log \mathrm{M}
$$

where n is suggested as 4 .
Curves of crack length versus cycles and maximum cyclic stressintensity factor versus the rate of fatigue crack growth were used to show the effects of heat treatment, material thickness, distilled water versus dry air, test temperature, and panel width on the behavior and rate of fatigue crack growth of the tested material.

The characteristics of low-cycle fatigue crack growth of thick plate were measured and analyzed by surface-flawed testing. The stress-intensity factor for a semi-elliptical surface crack in a plate is given by Irwin (ref. 11) as:

$$
\begin{gathered}
K_{I}=\frac{1.95 \sigma_{g} \sqrt{b}}{\phi} \\
\phi=\int_{0}^{\frac{\pi}{2}}\left(1-\frac{c^{2}-b^{2}}{c^{2}} \sin ^{2} \Theta\right)^{1 / 2} d \Theta
\end{gathered}
$$

Values of ϕ for various ratios of $b / 2 c$ were found in standard mathematical tables.

The technique for evaluating the behavior of low-cycle fatigue crack growth by surface-flaw testing was developed by Tiffany (ref. 2). This technique was used in this investigation by fatigue cycling surface-flawed specimens. Baseline plane-strain critical-stress-intensity levels KIc were first established for the different aged conditions. Then initial stress-intensity levels, which were a specific percentage of KIc , were applied to various surface-flawed specimens and fatigue cycled to failure at maximum cyclic stress levels corresponding to desired stress-intensity levels. The behavior of fatigue crack growth was characterized by data plots of $\mathrm{K}_{\mathrm{Ii}} / \mathrm{K}_{\mathrm{Ic}}$ versus fatigue cycles to failure, where K_{Ii} is the initial-applied-stress-intensity level.

Fracture-Toughness Analysis

Two typical types of failure modes can occur during material fracture and are described by the mechanics of crack growth. These two modes of failure are termed "plane stress" and "plane strain" and are a function of the threedimensional stress field near a crack front.

For a through-the-thickness crack in a sheet or a plate, both plane-strain and plane-stress failure modes or mixed-mode failure can occur. If the material is ductile or if test conditions are such that the local stress acting normal to the plane of the sheet or plate is zero during fracture, the mode of failure is plane stress. This type of failure is characterized by extensive shear lips on the fracture surface. On the other hand, if the material is brittle
pr if the test conditions are such that the local strain acting normal to the sheet or plate is zero, the failure mode is plane strain. This mode of failure is characterized by the appearance of a flat fracture surface. Mixed modes of failure are characterized by flat areas and shear-lip areas on the fracture face and are plane stress with the degree of plane stress being dependent on thickness.

The fracture-toughness values of plane-strain and plane-stress fracture modes are determined by the critical-stress-intensity levels K_{Ic} and K_{c} as measured during the static pull of the center-cracked panel. During the slowloading pull of the fatigue-cracked panel, the first possible mode of failure is that of plane strain KIc , and a pop-in or a local discontinuity in the load strain curve, often associated with an audible click, may occur. Slow crack growth follows pop-in, and the onset of rapid fracture is a plane-stress failure mode and is measured as K_{c}. If no pop-in is detected and slow crack growth is absent, the onset of rapid fracture is a plane-strain failure mode.

Plane-strain pop-in K_{Ic} and plastic-zone-corrected K_{Ic} values were determined from the following equations, respectively (ref. 12):

$$
\begin{gathered}
\mathrm{K}_{\mathrm{Ic}}=\sigma_{\mathrm{o}}\left(\mathrm{~W} \tan \frac{\pi \mathrm{a}}{\mathrm{~W}}\right)^{1 / 2} \\
\overline{\mathrm{~K}_{\mathrm{Ic}}}=\sigma_{\mathrm{o}}\left[\mathrm{~W} \tan \frac{\pi}{\mathrm{~W}}\left(\mathrm{a}+\frac{\mathrm{K}_{\mathrm{Ic}}{ }^{2}}{6 \pi \sigma_{\mathrm{ys}}^{2}}\right)\right]^{1 / 2}
\end{gathered}
$$

Plane stress K_{c} and plastic-zone-corrected K_{c} values were determined from the following equations:

For plane stress,

$$
\mathrm{K}_{\mathrm{c}}=\sigma_{\mathrm{g}}\left(\mathrm{~W} \tan \frac{\pi \mathrm{a}_{\mathrm{cr}}}{\mathrm{~W}}\right)^{1 / 2}
$$

For plastic-zone-corrected,

$$
\overline{\mathrm{K}_{\mathrm{c}}}=\sigma_{\mathrm{g}}\left[\mathrm{~W} \tan \frac{\pi}{\mathrm{~W}}\left(\mathrm{a}_{\mathrm{cr}}+\frac{\mathrm{K}_{\mathrm{c}}^{2}}{2 \pi \sigma_{\mathrm{ys}}^{2}}\right)\right]^{1 / 2}
$$

The plastic-zone widths were computed using the following equations:
For plane strain,

$$
\overline{\mathrm{w}}=\frac{\mathrm{K}_{\mathrm{Tc}}{ }^{2}}{6 \pi \sigma{ }_{\mathrm{ys}}^{2}}
$$

For plane stress,

$$
\overline{\mathrm{w}}=\frac{\mathrm{K}_{\mathrm{c}}^{2}}{2 \pi \sigma_{\mathrm{ys}}^{2}}
$$

Plane-strain and plane-stress fracture-toughness values were computed using the following equations:

For plane strain,

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{Ic}}=\left(1-\mu^{2}\right) \frac{\mathrm{K}_{\mathrm{Ic}}^{2}}{\mathrm{E}} \\
& \overline{\mathrm{G}_{\mathrm{Ic}}}=\left(1-\mu^{2}\right) \frac{\overline{\mathrm{K}}_{\mathrm{Ic}}}{\mathrm{E}}
\end{aligned}
$$

For plane stress,

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{c}}^{2}}{\mathrm{E}} \\
& \overline{\mathrm{G}_{\mathrm{c}}}=\frac{\overline{\mathrm{K}_{\mathrm{c}}^{2}}}{\mathrm{E}}
\end{aligned}
$$

For a surface crack in a plate, the stress state in the periphery of the crack is that of plane strain, thus resulting in a plane-strain failure mode.

The plane-strain critical-stress-intensity factor was computed from the following equation:

$$
\mathrm{K}_{\mathrm{Ic}}=\frac{1.95 \sigma_{\mathrm{g}} \sqrt{\mathrm{~b}}}{\emptyset}
$$

The plastic-zone-corrected K_{Ic} value was computed from the following equation:

$$
\overline{\mathrm{K}_{\mathrm{Ic}}}=\frac{1.95 \sigma_{\mathrm{g}} \sqrt{\mathrm{~b}}}{\left[\varphi^{2}-0.212\left(\frac{\sigma_{\mathrm{g}}}{\sigma_{\mathrm{ys}}}\right)^{2}\right]^{1 / 2}}
$$

Another measurement of material toughness is by a precracked Charpy impact test. The parameter W_{0} / A_{0} is impact toughness, where W_{0} is the impact energy in inch-pounds and A_{o} is the net fracture area. The different failure modes of plane strain and plane stress cannot be separated by this type of test; therefore, the test is used only as a qualitative measurement of fracture toughness.

This experimental research and development program was designed to characterize the fatigue-crack-propagation behavior, fracture toughness, and residual-strength properties of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions. The effects of aging temperature and time, material thickness, specimen configuration, and the physical environments of dry air, liquid nitrogen $\left(-65^{\circ} \mathrm{F}\right)$, and distilled water on these properties were evaluated.

The 7079 aluminum alloy used in this investigation was furnished by the Government. Twelve sheets or plates of 36 - by 96 -inch 7079 alloy materials in the underaged condition and aged for 4 hours at 245 to $255^{\circ} \mathrm{F}$ were received in nominal thicknesses of $0.16,0.25,0.50$, and 0.63 inch for testing. Asreceived mechanical properties and chemical composition as reported by the manufacturer are given in table I.

The experimental program consisted of two phases. The first phase was an aging and heat-treatment study to determine the time at temperature required to produce underaged and overaged tensile yield strengths 12.5 ± 2.5 percent below the peak-age (T6) condition. The second phase consisted of a study of fatigue crack propagation, residual strength, and fracture toughness utilizing center-notched, surface-flawed, and precracked Charpy impact specimens and associated testing techniques. Flow charts showing the detailed testing performed in this program are shown in figure 1.

The objective of the first phase of this program was to determine the time required at 250 and $290^{\circ} \mathrm{F}$ to age each thickness of material to the following conditions:
(1) Peak transverse yield strength (T6) using $250^{\circ} \mathrm{F}$ aging temperature
(2) Underage to 12.5 ± 2.5 pércent below peak transverse tensile yield strength using $250^{\circ} \mathrm{F}$ aging temperature
(3) Overaged to 12.5 ± 2.5 percent below peak transverse tensile yield strength using $290^{\circ} \mathrm{F}$ aging temperature

Considering the manufacturer's tensile-property data and aging curves, mechanical properties were determined for an aging temperature of $250^{\circ} \mathrm{F}$ and total aging times of $5,6,48,72$, and 120 hours. Likewise, mechanical properties were checked for an aging temperature of $290^{\circ} \mathrm{F}$ and aging times of 17 , $40,50,70,90,120$, and 160 hours. In materials of certain thicknesses, some different aging times were used to develop only that portion of the aging curves that was of primary interest.

The material for the aging study was taken from a 4-by 36 -inch strip from one end of one panel of each thickness. The specimens were fabricated in the transverse grain direction after aging. The sheet and round tensile used in this phase are shown in figure 2. The sheet specimen was used for panel thick-
nesses of 0.16 and 0.25 inch and the round specimen for panel thicknesses of 0.50 and 0.63 inch. All tensile testing for this phase was conducted at room temperature.

Fabricated tensile specimens not used in developing aging curves were heat treated with the 36 -inch-wide plates for additional verification of heat treatment.

After aging data and curves were obtained, aging times were selected to give the three desired strength levels. The four reduced-size 36 - by 92 -inch panels, from which the aging-mechanical-properties study was made, were used for the underaged condition. The remaining $36-$ by 96 -inch panels were aged to peak strength and overaged conditions. Material tensile properties of each panel were determined to verify heat treatment. This was done by obtaining longitudinal and transverse tensile properties from every 36 - by 96 -inch and 36 - by 92 -inch panel following testing of the large panels for fatigue-crack-growth rate and residual strength.

The evaluation of the effect of material thickness and heat treatment on fracture toughness, residual strength, and fatigue-crack-propagation behavior of 7079 aluminum alloy was based mainly on center-notched panels. Variables studied include thickness, panel width, grain direction, temperature, and wet and dry environments. In addition. some surface-flawed specimens and configurations fabricated only from 0.63 -inch-thick material were tested by fatigue cycling to determine the behavior of surface-flawed crack growth and to provide further residual-strength and fracture-toughness data. Figure 3 shows the specimen layout.

Room-temperature and dry-air fatigue-crack-propagation behaviors of each heat treatment and thickness were determined by fatigue cycling the 36- by 96 - or 92 -inch, 12 - by 36 -inch, and 8 - by 24 -inch center-notched panels of longitudinal grain direction. Dry air is an air environment with a relative humidity of less than 10 percent.

The effect of reduced temperature on the behavior of fatigue crack propagation was investigated at $-65^{\circ} \mathrm{F}$. Center-notched 12 - by 36 -inch panels of longitudinal grain direction were fatigue cycled at $-65^{\circ} \mathrm{F}$ and the crack-growth data were compared with the 12 - by 36 -inch-panel data obtained at room temperature.

The effects of a wet environment on the behavior of fatigue crack propagation was investigated for each thickness and heat treatment. This behavior was established by fatigue cycling center-notched panels (12 by 36 inches) of transverse grain direction. The behavior of fatigue crack growth in distilled water (complete immersion) was measured and compared with its behavior in dry air.

The behavior of the low-cycle fatigue crack growth of each heat treatment in dry air was determined by fatigue cycling surface-flawed specimens. Baseline plane-strain fracture toughness was established by fracture testing one of these specimens from each heat treatment. These specimens contained an initial machined flaw depth of 0.290 inch and a flaw length of 1.450 inches. The remainder of the surface-flawed specimens with an initial machined flaw depth
of 0.100 inch and length of 0.400 inch were fatigue cycled to failure at constant cyclic gross-area stress levels corresponding to initial maximum stress-intensity levels of $45,50,55$, and 60 percent of baseline plane-strain critical-stressintensity levels.

Hole patterns for grip attachments in all specimens were drilled in each end by a programmed tape-controlled automatic drill press to ensure uniformity among all specimens. All specimens were center-notched by first drilling a small hole in the center of the panel and then inserting a saw through the hole to saw the initial notch. Surface flaws were produced by an electrical-discharge machining process.

After fracture testing, the mechanical properties and complete curves of stress-strain to failure for each heat treatment and thickness of material were determined. The large-sheet tensile specimen used for thicknesses of 0.16 and 0.25 inch and the round tensile specimen used for thicknesses of 0.50 and 0.63 inch are shown in figure 2.

Longitudinal and transverse precracked Charpy impact toughnesses were determined for each thickness and heat treatment. A 0.16 -inch-thick specimen was used, and, for thicknesses greater than 0.16 inch, the specimens were fabricated at the surface of the material. The precracked Charpy specimen is shown in figure 2.

TESTING MACHINES AND PROCEDURES

The following paragraphs discuss the tensile, center-cracked-panel, surface-flaw, and Charpy impact-testing techniques and equipment used in this investigation.

The tensile specimens of the aging study were tested at room temperature, and the verification tensile specimens were tested at room temperature and $-65^{\circ} \mathrm{F}$. All specimens were tested in a 20 -kip universal testing machine. Aged tensile specimens were tested at an applied strain rate of $0.005 \mathrm{in} . / \mathrm{in} . / \mathrm{min}$. Stress-strain curves were only developed past the 0.2 -percent offset yield stress level. Complete curves of stress-strain to failure were developed in the verification tensile testing, and an applied strain rate of $0.005 \mathrm{in} . / \mathrm{in} . / \mathrm{min}$ was used past the 0.2 -percent offset yield strength and 0.100 or $0.020 \mathrm{in} . / \mathrm{in} . / \mathrm{min}$ was used to failure. A cold box using nitrogen gas released from a liquid-nitrogen tank was used for $-65^{\circ} \mathrm{F}$ tensile testing.

Fatigue cycling and fracture testing were performed in servovalvecontrolled hydraulic test machines. Five hydraulic machines were used having static load capacities of $125,180,250,300$, and 1000 kips. The 1000 -kip hydraulic machine is shown in figure 4; all 36 -inch-wide panels were tested in this machine. The 180 -, $250-$, and 300 -kip hydraulic load machines are shown in figure 4. All 12- and 8 -inch-wide panels were tested in these machines.

Pin-ended loading grips, which ensured axial loading, were bolted to the ends of the specimens in preparing them for fatigue cracking. The surface area adjacent to the initial saw cut and along the line of expected crack extension was polished for easy visualization and measuring of the fatigue crack growth.

Uniform applied gross-area stresses were applied hydraulically to the panels during fatigue cycling and were controlled by single-channel electronic load-control units. The maximum cyclic gross-area-stress levels applied to the panels was 12 ksi , except for one 36 -inch-wide panel in which a stress level of 8 ksi was applied. The ratio of minimum to maximum cyclic gross-area stresses R was 0.05 , except for the 12 -inch-wide transverse panels tested in distilled water and dry air and in which R was 0.67 . The cycling frequency varied from 35 to 120 cpm , depending on the panel thickness and hydraulic machine utilized. All 36 -inch-wide panels were buckling restrained by aluminum channel sections to prevent buckling in and out of the plane. Only the 0.16 - and 0.25 -inch-thick, 8 - and 12 -inch-wide panels were buckling restrained. No 8 -inchwide panels were restrained during fracture testing because of the small panel width. Figure 5 shows a sketch of the buckling restraints used for each panel width.

The dry-air environment with its relative humidity of less than 10 percent was maintained by passing bottled room air through a desiccating column and then into a plastic chamber mounted on the specimen around the crack area. The plastic chamber acted as an additional buckling restraint. Nitrogen gas from a liquid-nitrogen tank was used as a cooling media for $-65^{\circ} \mathrm{F}$ testing. Like the dry-air environment, the nitrogen gas was passed into plastic chambers mounted onto the panel. Temperature control was maintained by monitoring thermocouples mounted on the panels.

The fatigue-crack lengths in the 36 -inch-wide panels were measured to the nearest thousandths of an inch using a surveyor's transit and a steel scale mounted on the panel. The lengths of the fatigue cracks in the 12- and 8-inchwide panels were measured with a calibrated 50-power microscope. Fatigue cycling was interrupted to record crack lengths, and the static mean load level was maintained on the panels.

During the accumulation of fatigue-crack-growth data, a maximum allowable rate of fatigue crack growth of approximately 500 microinches per cycle was imposed in the testing so that panel fallure during fatigue cycling would not occur. If this rate level was reached prior to completion of the test, the maximum cyclic stress level was reduced in steps to maintain a rate less than 500 microinches per cycle.

Plane-strain and plane-stress fracture toughnesses were determined by static loading the panels to failure at a gross-area stress rate of $1000 \mathrm{psi} / \mathrm{sec}$ following fatigue-crack-growth testing. High-speed photography (1000 frames/ sec) was used to detect fatigue crack pop-in and to measure slow crack growth for determining critical crack length. Also during fracture toughness testing, an accelerometer and a linearly varying differential transducer (LVDT) were used to aid in detecting fatigue crack pop-in. The accelerometer was taped to one corner of the specimen and the transducer was mounted across the crack to measure crack-opening displacement. Load-time trace, accelerometer noise
trace, and transducer measurements were recorded simultaneously with highresponse galvonometers in a time-based oscillograph. Testing for fracture toughness at $-65^{\circ} \mathrm{F}$ did not use high-speed photography or transducers because of poor visability and the cold temperature of $-65^{\circ} \mathrm{F}$.

The crack growth of the baseline surface-flawed specimens was monitored with a 50 -power microscope, and, when the surface crack had fully initiated in the periphery of the flaw, fatigue cycling was stopped and the panel was fracturetested. A programmed gross-area stress rate of $1000 \mathrm{psi} / \mathrm{sec}$ was used. This test served as a baseline plane-strain critical-stress-intensity level, and the remaining four surface-flawed specimens were fatigue cycled to failure at selected, constant initial-stress-intensity levels. Crack growth measurements were taken with a 50 -power microscope, and all fatigue cycling was conducted in dry air.

The finished, machined Charpy specimens were precracked by fatigue in a precracking machine to form a crack at the root of the machined notch. This machine applies simple beam-bending loads to the specimen through an eccentric at 1800 cpm and shuts off automatically as the deflection of the specimen increases with the initiation of a crack. Uniform cracks approximately 0.050 inch deep were grown by this method. Impact testing was then accomplished in an impact tester of $288 \mathrm{in} .-\mathrm{lb}$ capacity and at a hammer velocity of 11.4 fps . The energy required to fracture was measured in inch-pounds.

RESULTS AND DISCUSSION

The following paragraphs discuss the experimental results of the aging study and the fatigue-crack-propagation and fracture-toughness study.

Heat-Treatment Study
Transverse tensile properties were determined for each of four thicknesses ($0.16,0.25,0.50$, and 0.63 inch) for various aging times at 250 and $290^{\circ} \mathrm{F}$. Table II lists the detailed transverse tensile properties for each of the specimens tested in the aging study. Aging times, temperature, ultimate strength, 0.2 -percent offset yield strength, percent elongation in 1 inch, and percent reduction in area values are given.

Aging curves at 250 and $290^{\circ} \mathrm{F}$ are given in figures 6 and 7. It is apparent from each of these aging curves that each thickness of material differs slightly in its aging behavior at 250 and $290^{\circ} \mathrm{F}$. The reason for this deviation may be due to the different quenching characteristics of the various panels or different processing techniques.

Based on the aging data presented above and a discussion with the contracting agency, the following heat treatments for the underaged, peak-age (T6), and overaged conditions were selected:
(1) Underaged- Use the as-received underaged condition of 4 hours at $250^{\circ} \mathrm{F}$.
(2) Peak-age (T6) condition-Heat treat at $250^{\circ} \mathrm{F}$ for 48 hours (standard commercial practice).
(3) Overaged-Heat treat at $290^{\circ} \mathrm{F}$ for $56,96,120$, and 90 hours for 0.16 -, $0.25-, 0.50-$, and 0.63 -inch thicknesses, respectively.

Through-The-Thickness Fatigue-Crack-Growth Behavior
Through-the-thickness fatigue-crack-growth data for all center-crackedpanel tests conducted in this program are tabulated in table III. Presented in the table are specimen identification and laboratory raw data in the form of measured crack length and cycles and the crack lengths at which the maximum cyclic stress levels were changed. A coding system was used to identify the aged condition, thickness, and grain direction of each panel. In the panel number, U is underaged, P is peak age (T6), O is overaged, T is transverse grain, and L is longitudinal grain. In addition, the numbers $1,2,5$, and 6 designate $0.16-, 0.25-, 0.50-$, and $0.63-$ inch thicknesses, respectively. Plots of the fatigue-crack-growth data are presented in figures 8 through 11 in the form of fatigue crack length versus cycles and rate of fatigue crack growth versus maximum cyclic stress-intensity factor. To simplify the graphical presentation of the data, only crack length-cycles curves are presented and the straight-line plots of fatigue-crack-growth rate versus maximum-cyclic-stress-intensity factor are the results of the least-squares fit of a straight-line behavior through the calculated points from the raw data.

The following subsections are discussions of the results of the effects of heat treatment, thickness, test temperature, and panel width on fatigue-crackgrowth behavior and a comparison of wet-air versus dry-air environments.

Effect of heat treatment. - The effect of heat treatment on fatigue-crack-growth behavior and rate of fatigue crack growth is shown in figures 8 through 11. Comparison of under aged, peak-age (T6), and overaged treatments of each thickness and for panel widths of 36,12 , and 8 inches are presented in figures 8 and 9. Figures 10 and 11 present data for further comparison of heat treatment.

In comparing the influence of the three aging treatments upon fatigue-crack-growth behavior and crack growth rates of the 7079 material tested in this program, no really consistent differences between overaging and underaging treatments were found. Generally, the peak-age (T6) condition tends to have somewhat faster crack growth or crack growth rates than either of the other two treatments. Looking at the crack-length-versus-cycles curves, it appears that figures 8 and 10 show some trend to favor underaging to obtain reduced crack-growth behavior. On the other hand, figures 8 and 10 show some data to indicate that overaging may require more cycles to develop a given crack length. With regard to the behavior of the crack growth rate, some of the curves for the overaged and underaged materials show diverging or converging K versus rate behavior over the test K -range. Other K-rate curves indicate overlapping likely due to scatter in the experimental data, whereas some curves show a reversal of rate severity over the range of data for the underaged and overaged conditions.
${ }^{2}$ Effect of thickness. - The effect of panel thickness on the behavior of fatigue crack growth and rate of fatigue crack growth can be seen in figures 8 through 11. Curves of $0.16-, 0.25-, 0.50$-, and 0.63 -inch thicknesses of underaged, peak-age (Tظ), and overaged treatments and of panel widths of 36,12 , and 8 inches are presented.

Comparing the rate of fatigue crack growth for each thickness over the range of cyclic stress-intensity levels shows that the rates generally fall into two groups. The slowest fatigue-crack-growth rate is exhibited by the 0.16and 0.25 -inch-thick panels. The fastest rate is shown to occur in the 0.50 - and 0.63 -inch-thick panels.

In considering the modes of fracture, these results are what would be expected. The mode of failure for through-the-thickness cracks in thick gages is predominantly plane strain. A plane-strain condition around the tip of a crack is more damaging because of the high degree of triaxiality and, thus, should produce a faster fatigue-crack-growth rate in thicker gages.

Effect of panel width. - The effect of panel width on fatigue crack growth is shown in figures 8 and 9. Curves of $36-$, 12 -, and 8 -inch-wide panels of each thickness and heat treatment are presented.

In comparing the rate of fatigue crack growth for the 36-, 12-, and 8-inchwide panels, the 36 -inch-wide panels generally showed the slowest rate of fatigue crack growth over the cyclic stress intensities tested. The 12- and 8 -inch-wide-panel fatigue-crack-growth rates were essentially the same and faster than the 36 -inch-wide-panel crack growth rates.

Effect of test temperature. - The effect of test temperature on fatigue-crackgrowth behavior and rate is shown in figures 10 and 11. Curves of room temperature and data on $-65^{\circ} \mathrm{F}$ tests of 12 -inch-wide panels of each thickness and heat treatment are given.

These results show that the fatigue-crack-growth rate at $-65^{\circ} \mathrm{F}$ is slower than that at room temperature for each thickness and heat-treatment condition.

Comparison of distilled-water and dry-air environments. - A comparison of fatigue-crack-growth behavior and rate in distilled-water and dry-air environments for underaged, peak-age (T6), and over aged treatments are shown in figures 10 and 11.

These comparative results for the transverse grain direction show the accelerating effect that distilled water has on fatigue-crack-growth rate over dry-air environment. The overaged material appears to have a lower crack growth rate than the underaged material. The peak-age (T6) material exhibits the fastest rate of all three conditions.

Plane-strain pop-in K_{Ic} and plane stress K_{c} results for 7079 underaged, peak-age (T6), and overaged conditions are given in table IV. In determining K_{c} for each test condition and at room temperature, slow-crack-growth measurements were taken with high-speed photography to establish the crack length at the onset of rapid crack growth (i.e. critical crack length). Data plots of gross area stress versus time before failure and of crack length versus time before failure as established from the oscillograph traces and motion picture results were developed. Typical examples of the slow-crack-growth measurements and the analysis are presented in figure 12.

There were two types of slow-crack-growth behavior. As the crack length increased with time, the velocity of crack growth was either constant or steadily increasing with time. The stress-time behavior was generally linear to failure. The critical crack length was established as the crack length at the onset of rapid crack growth and was determined by the nature of the slow-crack-growth curves. In the two examples given in figure 12, abrupt changes in crack velocity occurred at crack lengths of 3.30 and 5.25 inches and were, therefore, interpreted as the critical crack lengths. This procedure was used to establish the critical crack lengths from the slow-crack-growth curves.

Plane-strain pop-in K_{Ic}, plane stress K_{c}, and plastic-zone-corrected $\mathrm{K}_{\text {Ic }}$ and K_{c} values are given in table IV. Plane-strain, plane-stress, and plastic-zone-corrected fracture-toughness values are also given.

The effect of panel thickness on K_{c} and pop-in K_{Ic} is shown in figure 13. These data plots show that K_{Ic} and K_{c} decrease with an increase in panel thickness. An increase in panel thickness apparently changed the failure mode from predominately plane stress to predominately plane strain. In figure 13 it can be seen that the peak-age (T6) condition produced the lower levels of plane-strain and plane-stress critical stress intensities. The underaged condition produced the higher levels of K_{Ic} and K_{C} over the overaged condition.

In comparing the 12 - by 36 -inch-panel K_{Ic} and K_{c} test results, the transverse grain direction showed lower K_{Ic} and K_{c} values than the longitudinal-grain-direction values. A reduced temperature of $-65^{\circ} \mathrm{F}$ produced lower K_{Ic} and K_{C} values when compared to K_{Ic} and K_{c} at room temperature.

The effect of panel width on measured K_{c} is shown in figure 14 for the underaged, peak-age (T6), and overaged conditions. The general trend of the data shows an increase in K_{c} with an increase in panel width. The largest increases are seen for the under aged and overaged conditions. A slight increase in K_{c} with an increase in panel width is seen in the peak condition. The largest K_{c} values measured in the program were $198.0 \mathrm{ksi} \sqrt{\mathrm{in}}$. and $170.4 \mathrm{ksi} \sqrt{\mathrm{in}}$. for 0.16 -inch-thick underaged and overaged conditions.

Residual strength as measured by the ratio of gross-area-failure stress and ultimate strength shows the general trends as fracture toughness. These values are listed in table IV.

Figures 15, 16, and 17 are photographs of fracture surfaces of failed center-cracked panels. Some specimens, such as $6 \mathrm{P}-1 \mathrm{~T}$ (figure 18), show beach marks produced by constant-amplitude loading. The light areas are regions of slow crack growth with surfaces having striations, whereas the dark areas are regions of fast crack growth exhibiting the rapid-tearing, dimple-like fracture surface found in the electron-microscope study of fatigue fracture surfaces. Specimen 6U-3L shows delamination or fissures that was demonstrated in some of the panels. However, the delamination was not consistent within a single plate of material (36 by 96 inches) or grain direction. Photomicrographs of the delamination as exhibited by specimen $2 \mathrm{U}-2 \mathrm{~L}$ tested at $-65^{\circ} \mathrm{F}$ is shown in figure 19. Figure 19 also shows a photomicrograph of the variation of microstructure for underaged 0.63 -inch-thick material in contrast to a uniform microstructure for 0.25 -inch-thick material. This variation in microstructure may be the cause of increased $\mathrm{K}_{\mathcal{C}}$ for 0.63 -in. thickness over 0.50 -inch-thickness as shown in figure 13.

Surface-Flaw Crack-Growth Behavior and Fracture Toughness

Surface-flaw fatigue-crack-growth behaviors of underaged, peak-age (T6), and overaged 70790.63 -inch-thick plate are shown in figure 20. The surfaceflawed specimens were fatigue cycled at initial-stress-intensity levels K_{Ii} of $45,50,55$, and 60 percent of K_{Ic}. Surface-flaw K_{Ic} values are given in table V. Figure 21 is a comparison plot of $\mathrm{K}_{\mathrm{Ii}} / \mathrm{K}_{\mathrm{Ic}}$ versus number of load cycles to failure N_{f}.

These results show that overaged 7079 aluminum alloy produced the slowest surface-flaw crack growth rate and, thus, sustained the largest number of cycles. The peak-age (T6) condition sustained the lowest number of cycles and the underaged condition fell within peak and overaged conditions.

The K_{Ic} values for the three aged conditions showed essentially the same fracture toughness. Photographs showing the fracture surfaces of the failed surface-flaw specimens are shown in figure 22.

Verification Tensile Properties

The chemical analysis of each as-received panel thickness as determined by the manufacturer and Boeing is given in table VI.

Verification tensile properties as established by tensile testing of sheet and round tensile specimens are given in table VII for underaged, peak-age (T6), and over aged conditions. Additional verification tensile data for peak and overaged conditions are given in table VIII. The additional data are for tests of small tensile specimens. The specimens were heat treated with the 36 -inchwide panels. Tensile properties were determined for longitudinal and transverse grain directions at room temperature and for the longitudinal grain direction at $-65^{\circ} \mathrm{F}$.

Typical stress-strain curves to failure for 7079 underaged, peak-age (T6), and overaged conditions are shown in figures 23 through 26 . These curves are the average of three verification tensile specimens tested to failure for each condition evaluated. Typical curves are presented for thicknesses of 0.16 , $0.25,0.50$, and 0.63 inch of each of the three aged conditions for longitudinal and transverse grain directions at room temperature and for the longitudinal grain direction at $-65^{\circ} \mathrm{F}$.

Table IX shows a comparison of the verification transverse-tensile-yield strength and the estimated range of yield strength from the aging curves. The ranges are transverse yield strengths that are 12.5 ± 2.5 percent below peak transverse yield strengths as established from the aging curves generated for each thickness of material. These results show a good comparison of verified tensile properties and estimated values desired, except the 0.16 -inch-thick underaged and the 0.16 -inch-thick overaged materials, which were high and a little out of the range of desired values. However, the 0.16 -inch-thick underaged and overaged materials were of essentially the same transverse yield strengths.

Precracked Charpy Toughness

The precracked Charpy impact toughness W_{0} / A_{o} for each thickness and transverse and longitudinal grain directions for underaged, peak-age (T6), and overaged treatments are given in table X .

The trend of these results shows that the underaged aging treatment produced the highest toughness and the peak-age (T6) treatment produced the lowest toughness. Overaged toughness fell between the underaged and peak-age (T6) toughness levels. Transverse Charpy impact-toughness values were lower than the longitudinal values.

CONCLUSIONS

Based on the fatigue-crack-propagation and fracture-toughness data generated in this investigation, the following conclusions are made:
(1) The heat treatments selected for the underaged, peak-age (T6), and overaged conditions of 7079 aluminum alloy were selected as: (a) underagedused the as-received under aged condition of 4 hours at $250^{\circ} \mathrm{F}$; (b) peak-age (T6)— heat treated according to standard commercial practice of $250^{\circ} \mathrm{F}$ for 48 hours; and (c) overaged - heat treated at $290^{\circ} \mathrm{F}$ for $56,96,120$, and 90 hours for thicknesses of $0.16,0.25,0.50$, and 0.63 inch, respectively.
(2) Comparison of the through-the-thickness fatigue-crack-growth rate of underaged, peak-age (T6), and overaged 7079 aluminum alloys showed that there is no really consistent differences between underaging and overaging conditions. However, the peak-age (T6) condition generally exhibited the fastest fatigue-crack-growth rates than the other two treatments.
: (3) Comparison of the through-the-thickness fatigue-crack-growth rate of center-cracked panels with thicknesses of $0.16,0.25,0.50$, and 0.63 inch in the three aging conditions evaluated showed a thickness effect on fatigue-crack-growth rate; the slowest fatigue-crack-growth rate was exhibited by the 0.16 - and 0.25 -inch-thick panels and the fastest rate of fatigue crack growth occurred in the 0.50 - and 0.63 -inch-thick panels.
(4) A panel-width effect on the through-the-thickness fatigue-crackgrowth rate was found in testing center-cracked panel widths of 8,12 , and 36 inches of the three aged conditions. The 8 - and 12 -inch-wide panel fatigue-crack-growth rates were essentially the same and faster than the 36 -inch-wide-panel crack growth rates.
(5) The fatigue-crack-growth rate at $-65^{\circ} \mathrm{F}$ was slower than that at room temperature for each thickness and aging condition.
(6) A comparison of rate of fatigue crack growth in distilled-water and dry-air environments for underaged, peak-age (T6), and overaged materials showed an acceleration in fatigue-crack-growth rate in distilled water over the dry-air rate for the transverse grain direction. The overaged material exhibited the slowest fatigue-crack-growth rate in distilled water.
(7) Through-the-thickness fracture-toughness test results showed that underaged 7079 aluminum alloy produced the highest levels of K_{Ic} and K_{c} over peak-age (T6) and overaged conditions. Also, peak-age (T6) produced the lowest levels of K_{Ic} and K_{c}.
(8) An increase in panel thickness showed a decrease in K_{Ic} and K_{c} levels for each of the three aging conditions, and an increase in center-crackedpanel width produced an increase in K_{C}. A reduced temperature of $-65^{\circ} \mathrm{F}$ produced lower K_{Ic} and K_{c} values when compared to room temperature.
(9) Surface-flaw fatigue-crack-growth behavior measured as $K_{\text {Ii }} / K_{\text {Ic }}$ versus loading-cycle-to-failure showed overaged 7079 aluminum alloy to have the slowest rate of growth and peak-age (T6) 7079 aluminium alloy to have the fastest rate of growth. Surface-flaw K_{Ic} test results showed all three treatments to have essentially the same K_{Ic} values.
(10) The verification-tensile-test results showed that heat treatment was verified, except for the 0.16 -inch-thick underaged and the 0.16 -inch-thick overaged 7079 aluminum alloys, which were on the high side of the desired tensilestrength range.
(11) The precracked Charpy impact-toughness tests showed that underaged 7079 aluminum alloy produced the highest toughness and peak-age (T6) 7079 aluminum alloy produced the lowest toughness. Longitudinal Charpy impact toughness was higher than transverse toughness.

Commercial Airplane Division
The Boeing Company
Renton, Washington, September 15, 1967

REFERENCES

1. Tiffany, C. F; and Masters, J.N.: Fracture Toughness Testing and its Applications. ASTM STP 381, Applied Fracture Mechanics. Am. Soc. Testing Mats., 1965.
2. Tiffany, C. F.; and Lorenz, P. M. : An Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics. (AF ML-TDR-64-53, AF33(657)-10251) The Boeing Company, Aero-Space Division, May 1964.
3. Donaldson, D. R. ; and Anderson, W. E. : Crack Propagation Behavior of Some Airframe Materials. Proc. Crack Propagation Symposium, Cranfield, England, Sept. 1961.
4. Special ASTM Committee: Materials Research and Standards. vol. 4, no. 3, Progress in Measuring Fracture Toughness and Using Fracture Mechanics. Am. Soc. Testing Mats., March 1964.
5. Piper, D.E.; Smith, S. H. ; and Carter, R.V.: Corrosion Fatigue and StressCorrosion Cracking in Aqueous Environments. Paper presented at Materials for Oceanspace Symposium, Nat. Met. Congress, Chicago, Ill., 1966.
6. Dahlberg, E.P.: Fatigue Crack Propagation in High Strength 4340 Steel in Humid Air. Trans. ASM, vol. 58, 1965.
7. Brown, B. F.: Materials Research and Standards. vol. 6, no. 3, A New Stress-Corrosion Cracking Test Procedure for High-Strength Alloys. March 1966.
8. Paris, P. C.; Gomez, M. P.; and Anderson, W. E.: The Trend in Engineering. vol. 13, no. 1, A Rational Analytical Theory of Fatigue. University of Washington, Seattle, Wn., Jan. 1961.
9. Irwin, G. R.: Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech., Trans. ASME, vol. 24, no. 3, Sept. 1957.
10. Paris, P. C. ; and Erdogan, F.: A Critical Analysis of Crack Propagation Laws. J. Basic Eng., Trans. ASME, ser. D, vol. 85, no. 4, Dec. 1963.
11. Irwin, G. R.: Crack Extension Force for a Part Through Crack in a Plate. J. Appl. Mech., Trans. ASME, 62-WA-13.
12. Srawley, J.E.; and Brown, W. F.: Fracture Toughness Testing and Its Applications. STP 381, Fracture Toughness Testing. Am. Soc. Testing Mats., 1965.

- As-received material solution. heat treat to $835^{\circ} \mathrm{F}$-aged 4 hr @ $250^{\circ} \mathrm{F}$
- Thickness $=0.63,0.50,0.25$. 0.16 in.

3 sheets $/$ thickness $=12$ sheets

(a) AGING AND HEAT-TREATMENT STUDY

(b) FATIGUE-CRACK-PROPAGATION AND FRACTURE-TOUGHNESS STUDY

FIGURE 1.-FLOW CHARTS OF EXPERIMENTAL PROGRAM AND SPECIMENS

$A=0.248$ TO 0.252
$B=A+0.003$ TO 0.005
(a) AGING SHEET TENSILE SPECIMEN

(c) LARGE SHEET TENSILE SPECIMEN

$A=0.247$ TO 0.250
$B=A+0.003$ TO 0.005
(b) ROUND TENSILE SPECIMEN

(d) CHARPY IMPACT SPECIMEN

Note: All dimensions in inches

FIGURE 2.-CONFIGURATIONS OF TENSILE AND CHARPY IMPACT SPECIMENS

(a) 1000-KIP MACHINE

(b) 180-, 250-AND $300-$ KIP MACHINES

FIGURE 5.-SCHEMATIC DIAGRAM OF ALUMINUM-CHANNEL BUCKLING RESTRAINTS, TYPICAL INSTALLATION

i

(a) $t=0.16 \mathrm{IN}$.

(c) $\mathrm{t}=0.50 \mathrm{IN}$.

(b) $\mathrm{t}=0.25 \mathrm{iN}$.

(d) $t=0.63 \mathrm{IN}$.

$$
\begin{aligned}
& \text { Legend: } \\
& \longrightarrow \mathrm{t}=0.50 \mathrm{in} \text {. } \\
& \cdots-\cdots---t=0.25 \mathrm{in} \text {. } \\
& \text {--ー-- } \mathrm{t}=0.63 \mathrm{in} \text {. } \\
& -----\quad t=0.16 \mathrm{in} \text {. }
\end{aligned}
$$

FIGURE 8.-FATIGUE-CRACK-PROPAGATION CURVES, LONGITUDINAL GRAIN, ROOM-TEMPERATURE, DRY AIR, $\sigma \mathrm{g}=12 \mathrm{KSI}$ (EXCEPT AS NOTED), $\mathrm{R}=0.05, \mathrm{f}=35$ TO 120 CPM

UNDERAGED

Stress intensity factor, $K_{\text {max }}, \mathrm{ksi} \sqrt{\mathrm{Vin}}$.
UNDERAGED

PEAK AGE (T6)
(a) 8-IN. PANEL WIDTH

OVERAGED

PEAK AGE (T6)
(b) 12-IN. PANEL WIDTH

UNDERAGED

PEAK AGE (T6)
(c) 36-IN. PANEL WIDTH

Stress intensity factor, $K_{\text {max }}, \mathbf{k s i} \sqrt{\text { in }}$
OVERAGED

OVERAGED

Legend

$$
\begin{aligned}
& -t=0.50 \mathrm{IN} . \\
& ---t=0.25 \mathrm{IN} . \\
& --t=0.63 \mathrm{IN} . \\
& ---t=0.16 \mathrm{IN} .
\end{aligned}
$$

FIGURE 9.-RATE OF FATIGUE CRACK GROWTH VERSUS STRESS INTENSITY, LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR, $\sigma_{g}=12 \mathrm{KSI}$ (EXCEPT AS NOTED), $\mathrm{R}=0.05, \mathrm{f}=35 \mathrm{TO} 120 \mathrm{CPM}$

UNDERAGED

PEAK AGE (T6)

OVERAGED
(b) ROOM TEMPERATURE , TRANSVERSE GRAIN, DRY AIR, R $=0.67$

(c) ROOM TEMPERATURE, TRANSVERSE GRAIN, DISTILLED WATER, R = 0.67

Legend—— t	$=0.50 \mathrm{in}$.
$-m-t$	$=0.25 \mathrm{in}$.
$---t$	$=0.63 \mathrm{in}$.
$---t$	$=0.16 \mathrm{in}$.

FIGURE 10.-FATIGUE-CRACK-PROPAGATION CURVES, $12-I N$. PANEL WIDTH, $\sigma g=12 \mathrm{KSI}, \mathrm{f}=120 \mathrm{CPM}$

(a) $-65^{\circ} \mathrm{F}$, LONGITUDINAL GRAIN, $\mathrm{R}=0.05$

(b) ROOM TEMPERATURE, TRANSVERSE GRAIN, DRY AIR, $\mathrm{R}=0.67$

UNDERAGED

PEAK AGE(T6)

OVERAGED
(c) ROOM TEMPERATURE, TRANSVERSE GRAIN, DISTILLED WATER, R $=0.67$

$$
\text { Legend } \begin{aligned}
-\mathrm{t} & =0.50 \mathrm{in} . \\
--t & =0.25 \mathrm{in} . \\
--t & =0.63 \mathrm{in} . \\
--\mathrm{t} & =0.16 \mathrm{in} .
\end{aligned}
$$

FIGURE 11.-RATE OF FATIGUE CRACK GROWTH VERSUS STRESS INTENSITY, 12-IN. PANEL WIDTH, $\sigma_{g}=12 \mathrm{KSI}, \mathrm{f}=120 \mathrm{CPM}$

(a) SPECIMEN $1 \mathrm{U}-1 \mathrm{~T}, 2 \mathrm{a}_{\mathrm{cr}}=5.25 \mathrm{IN}$.

FIGURE 12.-TYPICAL SLOW-CRACK-GROWTH MEASUREMENTS

F

(a) 36-IN.-WIDE PANELS, ROOM TEMP,

Critical-stress-intensity factor, $\mathrm{ksi} \sqrt{\mathrm{in} .}$

Critical-stress-intensity factor, $\mathrm{ksi} \sqrt{\mathrm{in}}$.
(c) 8-IN.-WIDE PANELS, ROOM TEMP, LONGITUDINAL GRAIN

(b) 12-IN.-WIDE PANELS, ROOM TEMP,

(d) 12-IN.-WIDE PANELS, ROOM TEMP, TRANSVERSE GRAIN

Legend:

$\frac{\text { Kic }}{}$	$\frac{K_{c}}{}$	
σ	0	Underaged
Δ	Δ	Peak (T6)
σ	\square	Overaged

(e) 12-IN.-WIDE PANELS, $-65^{\circ} \mathrm{F}$, LONGITUDINAL GRAIN

FIGURE 13.-EFFECT OF THICKNESS ON POP-IN K ${ }_{\text {Ic }}$ AND K ${ }_{c}$

FIGURE 14.-EFFECT OF CENTER-CRACKED-PANEL WIDTH ON K $\mathrm{K}_{\mathbf{c}}$

Thickness, in.

Thickness, in.

PEAK AGE (T6)
Thickness, in.

OVERAGED
(a) LONGITUDINAL GRAIN, ROOM TEMPERATURE,
(b) LONGITUDINAL GRAIN, -65° F, LIOUID NITROGEN DRY AIR

Notes: 1. Length in inches
2. One-half of surface shown

FIGURE 15.-FRACTURE SURFACES OF FAILED 12-INCH-WIDE CENTER-CRACKED PANELS TESTED AT -65° F AND ROOM TEMPERATURE

Thickness, in.

UNDERAGED

Thickness, in.

PEAK AGE (T6)

Thickness, in.

OVERAGED
(a) TRANSVERSE GRAIN, ROOM TEMPERATURE, DISTILLED WATER

Notes: 1. Length in inches.
2. One-half of surface shown

FIGURE 16.-FRACTURE SURFACES OF FAILED 12-INCH-WIDE CENTER-CRACKED PANELS TESTED IN DRY AIR AND DISTILLED WATER

UNDERAGED

Thickness, in.
0.16
0.25
0.50
0.63

PEAK AGE (T6)

Thickness, in.
0.16
0.25
0.50
0.63

OVERAGED
FIGURE 17.-FRACTURE SURFACES OF FAILED 36 -INCH-WIDE CENTER-CRACKED PANELS TESTED,
LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR

Thickness, in.

UNDERAGED

Thickness, in.

PEAK AGE (T6)

Thickness, in.

OVERAGED

(b) DELAMINATION APPEARANCE

Peak age (T6), 0.63 in. thick, transverse grain
(c) BEACH MARKS, CONSTANTAMPLITUDE LOADING (12 IN. WIDE)
(a) LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR

Notes: 1. Length in inches
2. One-half of surface shown

FIGURE 18.-FRACTURE SURFACES OF FAILED 8-IN.-WIDE CENTER-CRACKED PANELS AND ONE 12-IN.-WIDE PANEL TESTED

MAGNIFICATION: 16.5X

MAGNIFICATION: 200X

MAGNIFICATION: 500X
(a) DELAMINATION

(b) VARIATION OF MICROSTRUCTURE

FIGURE 19.-DELAMINATION AND VARIATION OF MICROSTRUCTURE

FIGURE 20.-SURFACE-FLAW FATIGUE-CRACK-GROWTH CURVES FOR 0.63-IN.-THICK 7079 ALUMINUM ALLOY, LONGITUDINAL LOADING DIRECTION, DRY AIR, f = 60 TO 120 CPM

FIGURE 21.-COMPARISON OF $K_{l i} / K_{l c}$ VERSUS FATIGUE CYCLES TO FAILURE FOR 0.63-IN.-THICK 7079 UNDERAGED, PEAK-AGE (T6), AND OVERAGED MATERIALS

(a) UNDERAGED

(b) PEAK AGE (T6)

Note: Length in inches
(c) OVERAGED

FIGURE 22.-FRACTURE SURFACES OF SURFACE-FLAWED PANELS

FIGURE 23. -STRESS-STRAIN CURVES FOR 0.16-IN.-THICK 7079 ALUMINUM ALLOY

FIGURE 24. -STRESS-STRAIN CURVES FOR 0.25-IN.-THICK 7079 ALUMINUM ALLOY

(c) OVERAGED

FIGURE 25. -STRESS-STRAIN CURVES FOR $0.50-$ IN.-THICK 7079 ALUMINUM ALLOY

FIGURE 26.-STRESS-STRAIN CURVES FOR 0.63-IN.-THICK 7079 ALUMINUM ALLOY

TABLE I.-MECHANICAL PROPERTIES AND AGING CONDITIONS FOR 7079 MATERIALS AS REPORTED BY MANUFACTURER

Thickness, in.	Aging temp, ${ }^{\circ} \mathrm{F}$	Aging time, hr	UTS, ksi	YS, ksi	Elong (2 in.), \%
0.160	245 to 255	4	77.3	63.1	16.0
0.250		4	75.7	60.2	16.0
0.500		4	74.3	59.4	16.5
0.630	245 to 255	4	76.6	63.3	13.0

TABLE II. - TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 7079 ALUMINUM ALLOY AT ROOM TEMPERATURE

Speci- men	Thickness, in.	Aging Temp; ${ }^{\circ} \mathrm{F}$	Aging time, hr (a)	UTS, ksi	YS, ksi	Elong (1 in.), \%	RA, \%
1-19	0.160	-----	0	79.1	63.7	15	26
1-21	. 160	------	0	71.7	57.3	b_{8}	27
1-11	. 160	250	44	80.0	70.1	(c)	19
1-14	. 160	250	44	81.5	71.1	12	25
1-2	. 160	250	68	79.4	69.5	12	25
$1-8$. 160	250	68	78.8	68.1	11	24
$1-1$. 160	250	116	79.2	69.6	11	17
1-7	. 160	250	116	74.4	65.3	(c)	23
2-19	. 250	------	0	50.9	69.1	16	23
2-21	. 250	------	0	58.6	76.6	17	23
2-12	. 250	250	1	57.4	75.2	(c)	23
2-15	. 250	250	1	77.0	58.6	18	23
2-6	. 250	250	2	75.7	58.1	16	22
2-9	. 250	250	2	67.4	53.1	(c)	18
2-11	. 250	250	44	72.4	63.4	8	31
2-14	. 250	250	44	80.0	67.9	13	24
2-2	. 250	250	68	79.9	69.3	13	23
2-8	. 250	250	68	79.1	68.5	12	26
$2-1$. 250	250	116	79.1	68.9	11	20
2.7	. 250	250	116	80.6	70.3	12	20
5-18	. 500	------	0	75.1	58.9	17	30
5-20	. 500	-----	0	75.0	58.8	17	26
5-1	. 500	250	1	76.2	60.0	17	30
5-8	. 500	250	1	75.2	59.8	16	31
5-5	. 500	250	2	76.0	61.7	16	32
5-11	. 500	250	2	75.6	60.7	16	31
5-7	. 500	250	44	79.3	68.9	13	38
5-12	. 500	250	44	79.3	69.0	14	29
5-6	. 500	250	68	79.0	69.7	13	31
5-14	. 500	250	68	77.7	68.0	9	30

TABLE II. - TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 7079 ALUMINUM ALLOY AT ROOM TEMPERATURE - Continued

Speci- men	Thickness, in.	Aging temp, ${ }^{\circ} \mathrm{F}$	Aging time, hr (a)	UTS, ksi	YS, ksi	Elong $(1 \mathrm{in}),. \%$	RA, $\%$
$5-2$	0.500	250	116	78.6	69.2	13	29
$5-15$.500	250	116	79.0	69.5	16	32
$6-18$.630	---	0	77.5	62.3	15	26
$6-20$.630	----	0	77.2	60.8	15	25
$6-7$.630	250	44	81.1	71.1	12	25
$6-12$.630	250	44	81.2	70.8	12	26
$6-6$.630	250	68	80.8	71.2	13	27
$6-14$.630	250	68	81.2	71.9	13	27
$6-2$.630	250	116	80.4	70.1	13	27
$6-15$.630	250	116	80.0	68.8	13	28
$1-3$.160	290	13	78.4	66.5	12	20
$1-16$.160	290	13	77.5	66.6	13	23
$1-12$.160	290	36	75.8	64.0	12	21
$1-15$.160	290	36	75.5	63.4	12	20
$1-20$.160	290	46	74.7	62.5	12	22
$1-23$.160	290	46	75.0	62.8	11	18
$1-18$.160	290	66	75.5	62.9	11	21
$1-22$.160	290	66	74.5	61.9	13	27
$2-3$.250	290	13	78.8	67.0	11	22
$2-16$.250	290	13	78.4	66.2	12	24
$2-4$.250	290	86	75.6	61.7	12	18
$2-24$.250	290	86	74.3	59.8	12	23
$2-20$.250	290	116	74.2	59.8	12	20
$2-23$.250	290	116	74.0	63.4	12	22
$2-18$.250	290	156	72.6	57.2	12	19
$2-22$.250	290	156	73.3	58.1	11	18
$5-4$.500	290	13	76.5	67.0	12	29
$5-13$.500	290	13	77.8	67.7	12	30
$5-9$.500	290	86	73.9	62.1	12	30
-23	.500	290	86	73.7	61.5	13	31

TABLE II.-TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 7079 ALUMINUM ALLOY AT ROOM TEMPERATURE - Concluded

Speci- men	Thickness, in.	Aging temp, ${ }^{\circ} \mathrm{F}$	Aging time, $\mathrm{hr}(\mathrm{a})$	UTS, ksi	YS, ksi	Elong $(1 \mathrm{in}),. \%$	RA, $\%$
$5-19$	0.500	290	116	73.5	61.0	12	31
$5-22$.500	290	116	73.3	61.0	13	33
$5-17$.500	290	156	72.1	59.2	12	33
$5-21$.500	290	156	72.6	59.5	12	32
$6-4$.630	290	13	79.4	69.0	11	26
$6-13$.630	290	13	80.6	70.2	12	27
$6-9$.630	290	86	74.8	61.7	11	26
$6-23$.630	290	86	75.6	61.8	13	31
$6-19$.630	290	116	74.2	60.5	11	28
$6-22$.630	290	116	75.0	61.4	11	26
$6-17$.630	290	156	73.5	59.7	11	28
$6-21$.630	290	156	74.0	60.1	11	24

a Aging treatment performed by Boeing; the material had been aged 4 hr at $250^{\circ} \mathrm{F}$ when received by Boeing.
b Speciment 1-21 broke 0.09 in . from gage mark.
c Specimen broke outside of gage length; no elongation data available.

$$
\begin{array}{r}
21 \\
I N C H E S \\
.780 \\
.780 \\
.780 \\
.790 \\
.790 \\
.890 \\
.820 \\
.440 \\
.860 \\
.865 \\
.890 \\
.900 \\
.910 \\
.925 \\
.635 \\
.080 \\
.905 \\
1.030 \\
1.055 \\
1.110 \\
1.140 \\
1.190 \\
1.270 \\
1.260 \\
1.430 \\
1.510 \\
1.585 \\
1.850 \\
1.725
\end{array}
$$

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA

(a) Crack length versus cycles for underaged 7079 aluminum, specimen number CNL-1U
Crack SIGIMAX GROSSI HOIN F(UI-KSI FIYI-KSI GRAIN RESTRAINT $79.200 \quad 70.700$
SMAX REDUCED TO 4.63 KSI FOR $2 A=12.435 \mathrm{IN}$ SMAX RHANGED TOO.0 KSI WHEN $2 A=12.525$ IN $2 A$
INCHES
1.745
1.780
1.840
1.875
1.875
1.975
2.095
2.185
2.240
2.270
2.350
2.395
2.475
2.530
2.630
2.055
2.895
3.955
3.180
3.295
3.400
3.485
3.625
3.05
3.820
3.990
3.985
4.060
4.190
4.250

$$
\begin{aligned}
& \text { N } \\
& \text { KILOCYCLES } \\
& 489.000 \\
& 489.630 \\
& 490.000 \\
& 470.500 \\
& 491.000 \\
& 491.500 \\
& 492.000 \\
& 492.500 \\
& 493.000 \\
& 493.500 \\
& 494.000 \\
& 494.500 \\
& 495.000 \\
& 495.250 \\
& 498.000 \\
& 498.500 \\
& 503.000 \\
& 507.500 \\
& 508.000 \\
& 564.500 \\
& 518.042 \\
& 622.000 \\
& 623.000 \\
& 524.000 \\
& 629.000 \\
& 632.000 \\
& 538.500 \\
& 639.500 \\
& 640.500
\end{aligned}
$$

$\stackrel{N}{\text { KILOCYCLES }}$

$$
\begin{aligned}
& \text { INHES } \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\text { NJHM } \\
\text { NJH }
\end{gathered}
$$

$$
\begin{array}{r}
\text { N } \\
\text { KILOCYCLES } \\
9 . \\
10.000 \\
25.000 \\
32.500 \\
26.000 \\
42.500 \\
46.250 \\
54.500 \\
65.090 \\
79.500 \\
75.500 \\
20.750 \\
95.500 \\
91.250 \\
95.500 \\
106.500 \\
113.375 \\
118.250 \\
128.000 \\
139.750 \\
150.000 \\
160.000 \\
170.000 \\
180.000 \\
190.000 \\
200.500 \\
210.000 \\
220.000 \\
225.250 \\
2
\end{array}
$$

$$
\begin{aligned}
& \text { WHEN } \\
& \text { I WHEN }
\end{aligned}
$$

$$
63 \mathrm{KJI}
$$

IHEN

而

$$
\begin{gathered}
\text { KSI } \\
3 \text { KSI }
\end{gathered}
$$

SIFOR

$$
\begin{array}{lll}
0.8 & 8.000 & 36.00
\end{array}
$$

$$
\begin{aligned}
& 227.500 \\
& 230.500 \\
& 236.500 \\
& 240.000
\end{aligned}
$$

$$
\begin{aligned}
& 300.250 \\
& 310.000 \\
& 320.000 \\
& 325.000 \\
& 330.000 \\
& 334.250 \\
& 337.250 \\
& 342.500 \\
& 345.000 \\
& 349.500 \\
& 352.000 \\
& 355.500 \\
& 358.500 \\
& 362.790 \\
& 365.000
\end{aligned}
$$

$$
\begin{array}{ccccccc}
\text { L-IN SIGIMAXGROSS) W-IN } & \text { FIUI-KSI } & \text { F(Y)-KSI } & \text { GRAIN RESTRAINT } \\
36.0 & 12.000 & 12.04 & 79.200 & 70.700 & \mathrm{~L} & Y
\end{array}
$$

$$
2 A=4.094 \mathrm{lN}
$$

ENVIRONMENT
ORYRTAIR

$$
\begin{array}{cc}
0.02 t & \text { s<gI } \\
\text { hid } & \text { RI-1 }
\end{array}
$$

$$
\begin{aligned}
& 11.0 \mathrm{KSI} \text { FOR } 2 A=4.094 \mathrm{IN} \\
& 2 A
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENVIRONMENT } \\
& \text { DRYRTAIR }
\end{aligned}
$$

table III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
ENVIRONMENT
(c) Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2L
U

100

$\xrightarrow{\text { N }} \underset{54.500}{ }$
2A
INCHES
2.524

$\begin{array}{cc}\text { N } & \text { 2A } \\ \text { KILOCYCLES } & \text { INCHES } \\ 61.500 & 3.613\end{array}$
$\begin{array}{ccccccc}\text { L-IN SIGIMAX GROSS) } & \text { W-IN } & \text { F(U)-KSI } & \text { F(Y)-KSI } & \text { GRAIN RESTRAINT } \\ 36.0 & 12.000 & 12.01 & 81.800 & 74.000 & 1 & Y\end{array}$
$2 A=4.082 \mathrm{IN}$

$$
\begin{aligned}
& \text { 2A } \\
& \text { INCHES } \\
& 2.466 \\
& 2.694 \\
& 2.922 \\
& 3.120 \\
& 3.365
\end{aligned}
$$

KILOCYCLES

$$
\begin{aligned}
& \text { 2A } \\
& \text { INCHES }
\end{aligned} \quad \text { KILOCYCLES }
$$

62.550
63.550
63.900
64.500

[^1]TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
(f) Crack length versus cycles for underaged 7079 aluminum, specimen number CNL-2U Flul
77.500
SMAX REDUCED to 8.0 KSI WHEN $2 A=12.2$ IN
\[

$$
\begin{aligned}
& \text { INCHES }
\end{aligned}
$$
\]

TABLE III.-FATIGUE CRACK LENGTH-CYCLE DATA- Continued

(i) Crack length versus cycles for underaged 7079 aluminum, specimen number 2U-3L

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued SMAX REDUCED TO 10.0 KSI HHEN $2 A=8.69$ IN
SMAX REDUCED TO 8.0 KSI HHEN $2 A=10.285 \mathrm{IN}$
SMAX REDUCED TO 6.35 KSI HHEN $2 A=12.450$ IN

 N
KILOCYCLES
48.000
48.500
59.000
49.500
50.000
50.500
51.000
51.500
52.000
52.400
52.800
53.200
53.600
54.000
54.400
54.800
55.200
55.500
55.800
56.100
56.400
56.700
57.000
57.300
57.800
57.900

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
(m) Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-1L
ENVIRONMENT
 $\begin{array}{llll}36.500 & 3.384 & 40.800 & 4.162 \\ & & 41.000 & 4.204\end{array}$ (n) Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-2L
 SMAX REDUCED TO 11.0 KSI WHEN $2 A=4.096$ IN KILOCYCLES
29.100
2 C
 FIY)-KS
61.800
2A
INCHES
2.732
2.845
2.845
3.004
3.161
3.384

$\begin{aligned} & \frac{\alpha}{4} \\ & \stackrel{\sim}{\alpha} \\ & \stackrel{\infty}{\alpha} \end{aligned}$

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
ENVIRONMENT
DRYRT ABR
(p) Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-1T
grain restraint
KILOCN

KILOCYCLES	$\begin{gathered} \text { 2A } \\ \text { INCHES } \end{gathered}$	KILOCYCLES	2A	Kuocreles	${ }^{24}$
		kilocycles	INCHES	Kilocrcles	INCHES
90.000	1.044	180.400	1.965	229.100	3.596
100.000	1.098	190.700	2.149	231.300	3.794
110.500	1.171	200.000	2.348	233.000	3.975
120.000	1.237	207.000	2.534	234.000	4.068
130.000	1.311	212.600	2.718	234.300	4.109
140.000	1.403	216.100	2.847	235.000	4.126
130.350	1.526	220.000	3.018	235.500	4.155
160.000	1.646	224.000	3.224	235.703	4.197
170.000	1.799	227.000	3.423	235.103	4.197

2A
INCHES

[^2]F(u) kSI
74.900

$\mathrm{FIYI}-\mathrm{kS}$
58.700

ENVIRONMENT
DIST WATER
 $\underset{i}{0}$

SMAX REDUCED :O 11.0 KSI WHEN $2 A=4.092$ IN
SMAX REDUCED IO 11.0 KSI WHEN $2 A=4.092$ IN
R
$.67 \quad 0.5036$ $\begin{array}{cccc}\text { CPM } & \text { L-IN } & \text { SIG(mAX GROSS) } & \text { M-IN } \\ 120.0 & 36.0 & 12.000 & 12.01\end{array}$

58.000
62.000 62.000
65.000
68.000 68.000
70.000
72.000

 74.900

N
KILOC
KILOCYCLES
73.500

KILOCYCLES
.781
.797
.859
1.000
1.201
1.201
1.416

SMAX REDUCED TO

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
(s) Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-1L
$\begin{array}{lclllll}\text { L-IN } & \text { SIG(MAX GROSS } & \text { H-IN } & \text { F(U)-KSI } & \text { F(Y)-KSI } & \text { GRAIN RESTRAINT } \\ 36.0 & 12.000 & 12.02 & 80.000 & 67.400 & \text { L } & \end{array}$
$2 A=4.093$ IN
N
KILOCYCLES
21.500
23.000
24.500
25.500
26.600
27.500
29.000

(t) Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-2L
ENVIRONHENT
$\begin{array}{lll}\text { FIY)-KSI } \\ 71.400 & \text { GRAIN } & \text { RESTRAINT }\end{array}$
2A
INCHES
KILOCYCLES
39.000
39.800
40.800

F(U)-KSI
81.600
2A

$\stackrel{4}{\mathbf{I}}$

Og

F(U)-KSI F	F(Y)-KSI	GRAIN	RESTRAINT	ENVIRO	NMENT
80.000	67.400	L	N	ORY RT	AIR
N			N		2 A
kilocycles	$5 \quad$ INC		KILOC	Cles	INCHES
22.500				500	2.293
24.500				900	2.580
26.500				750	2.670
28.500				700	2.779

$\begin{array}{ccc}\text { L-IN SIG(MAX GROSS) } & \text { W-IN } \\ 24.0 & 12.000 & 8.03\end{array}$
$S 3 H O N I$
$\forall Z$

48080
30808
0001
10000
0
m

CPM
$120 . ?$

2A
INCHES
R
.05
$T-1 N$
.6340
KILOCYCLES
TO 11.0 KSI WHEN
SMAX REDUCED TO $\begin{array}{lccc}C P M & L-I N & S I G(M A X G R O S S) & W-I N \\ 80.0 & 36.0 & 12.000 & 11.97\end{array}$

2A 4.131 IN
$2 A=4.13$
KILOCYCLES
28.000
31.000
31.500
31.500
33.000
34.250
$\begin{array}{ll}51 C^{\circ} \mathrm{C} & 05 L^{\circ} 9 \varepsilon \\ 851 \cdot 2 & 00 \varsigma \cdot 5 \varepsilon \\ \varepsilon \angle 0^{\circ} \mathrm{Z} & 052^{\circ} \cdot \downarrow \varepsilon\end{array}$
35.750
36.750
$0 \leftrightarrows 2 \cdot 8 \varepsilon$
81を・2
-
0.
4.000
7.000
13.500
17.090
20.500
23.000
25.500

$$
\begin{aligned}
& 2 A \\
& \text { INCHES } \\
& .731 \\
& .759 \\
& .827 \\
& .998 \\
& 1.115 \\
& 1.251 \\
& 1.349 \\
& 1.487
\end{aligned}
$$

$$
\begin{gathered}
0 \\
2 \\
\\
\underset{\sim}{n} \\
\sim
\end{gathered}
$$

50°

$$
\begin{aligned}
& 1 \varepsilon 1^{\circ} \cdot \\
& 190^{\circ} \cdot \\
& 220^{\circ} \cdot \\
& 826^{\circ} \varepsilon \\
& 528^{\circ} \varepsilon \\
& 85 L^{\circ} \varepsilon \\
& S \exists H J N I
\end{aligned}
$$

24
INCHES
2.444
$\begin{array}{ll}2.444 & 48.500 \\ 2.974 & 49.000 \\ 3.269 & 49.500 \\ 3.363 & 59.750 \\ 3.416 & 50.000 \\ 3.491 & 51.250 \\ 3.600 & \end{array}$
$\begin{array}{ll}2.444 & 48.500 \\ 2.974 & 49.000 \\ 3.269 & 49.500 \\ 3.363 & 49.750 \\ 3.416 & 50.000 \\ 3.491 & 50.250 \\ 3.600 & 51.150\end{array}$

KILOCNCLES
44.000
45.600
46.000
46.000
46.600
47.150
(u) Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-3L

F(U)-KSI FIY)-KSI GRAIN RESTRAINT ENVIRONMENT
80.000

$$
\begin{array}{cc}
\text { N } & 2 A \\
\text { KILOCYCLES } & \text { INCHE } \\
48.500 & 3.75
\end{array}
$$

(
\square
(
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued (v) Crack length versus cycles for underaqed 7079 aluminum. specimen number 6U-1T													
$\begin{gathered} R \\ .67 \end{gathered}$	$\begin{aligned} & T-I N \\ & 0.330 \end{aligned}$	$\begin{gathered} \text { CPM } \\ 120.0 \end{gathered}$	$\begin{aligned} & L-I N \\ & 36.0 \end{aligned}$	Sig(max gross)12.000		$\begin{gathered} \text { H-IN } \\ 11.98 \end{gathered}$	$\begin{aligned} & F(U)-K S I \\ & 80.300 \end{aligned}$	$\begin{aligned} & \text { F(Y)-ks } \\ & 63.600 \end{aligned}$		grain	$\underset{N}{\text { aESTRAINT }}$	environment	
Smax reduced to 11.0 KSI WHEN $2 \mathrm{~A}=4.112$ In													
N	2A			N	2A		N		2 A		N		
kilocrcles	INCHES		KıLO	creles	Inche		kilocrches		nChes		KILOC	rcles	inches
0.	. 763			0.000	. 93		176.200		1.506			.000	2.776
10.000	. 763			0.000	. 97		186.70		1.609			. 000	2.947
20.000	. 763			0.000	1.00		196.000		1.71			.000	3.122
30.000	. 770			0.000	1.07		205.200		1.839			. 700	3.298
35.000	. 787			9.000	1.13		212.000		1.942				3.523
40.000	. 795			8.000	1.19		219.000		2.05			. 700	3.677
50.000	. 818			6.000	1.26		227.600		2.23			. 100	3.959
60.000 70.300	-843			5.000	1.33		235.400		2.414			. 000	4.112
70.300 80.000	.876 .906			5.500	1.41		241.200		2.583			. 500	4.217

(w) Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-2T

292\%	003:8		508.1		$005 \cdot 2$		$98 \mathrm{E} \cdot 1$		$000 \cdot 9$				
12102	$052 \cdot 8$$000 \cdot 8$		0 ¢9•1		$000{ }^{\circ} \mathrm{L}$		20201		005*5				
S00 STONI			$\underset{\forall Z}{S \exists H I I}$		sョacion		S3H2ni		Sヨาวว)				
\checkmark													
ẏivm 1510 INGMNOYIAN		N	NI	$\begin{array}{r} 009 \cdot \varepsilon 9 \\ 15 \times(1)] \end{array}$		$\begin{array}{r} 00 \varepsilon \cdot 08 \\ 1 S x-(n) y \end{array}$	$\begin{aligned} & 00 \cdot 2 \mathrm{II} \\ & \mathrm{NI}-\mathrm{m} \end{aligned}$	$000^{\circ} 21$ (SSO\&9 XVW)9IS					
		Ni-7											

(x) Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-2T
$\begin{array}{lllcc}\text { FIU)-KSI F(Y)-KSI GRAIN RESTRAINT } & \text { ENVIRONMENT } \\ \text { 81.900 } & 64.000 \quad \text { I } & \text { N } & \text { DIST WATER }\end{array}$
2A
 4.196
 2A
INCHES
3.513
3.651
3.693
3.883
3.952
3.976

CPM
80.0

$\begin{array}{ccc}R & T-I N & C P M \\ .67 & .5320 & 120.0\end{array}$ SECOND PART OF TEST

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA -Continued (y) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number CNL-1P
 SMAX REDUCED TO 11.0 WHEN $2 A=8.925$ IN
SMAX RECUCED TO 9.0 KSI
WHEN $2 A=11,800$ SMAX REDUEED TO 6.35 KSI WHEN $2 A=12.430$ IN

 SMAX REDUCED TO 8.0 KSI HHEN $2 A=12.285 \mathrm{IN}$

ENVIRONMENT

ㄱI-dl дəqunu uau!

$$
\begin{aligned}
& \text { ENVIRONMENT } \\
& \text { DRYRTAIRTM}
\end{aligned}
$$

KSI WHEN $2 A=3.998$ I
$\propto \stackrel{n}{0}$

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued

ninn

SMAX REDUCED TO 11.0 KSI WHEN $2 A=9.270$ IN
SMAX REDUCED TO 8.0 KSI WHEN $2 A=12.210$ IN

$$
\begin{gathered}
\text { N } \\
\text { KILOCYCLES } \\
\text { On AOO }
\end{gathered}
$$

$$
\begin{gathered}
\text { N } \\
\text { KILOCOCLES }
\end{gathered}
$$

$$
\begin{gathered}
2 \mathrm{~A} \\
\text { INCHES }
\end{gathered}
$$

$$
\begin{gathered}
2 \mathrm{~A} \\
\text { INCHES }
\end{gathered}
$$

$$
\begin{gathered}
2 A \\
\text { INCHES } \\
.744
\end{gathered}
$$

KILOCYCLES
$7 \mathrm{l}-\mathrm{dZ}$ 」əquinu uam!
GRAIN RESTRAINT ENVIROMMENT

2A NCHES

$$
\begin{gathered}
2 A \\
I N C: I E S
\end{gathered}
$$

KSI WHEN 2A $=4.061$ IN
KILOCYCLE
WHEN

$$
1=4.061 \text { IN }
$$

$$
\begin{gathered}
\text { GESZ } \\
\text { NI-1 }
\end{gathered}
$$

$$
\begin{gathered}
R \\
.05
\end{gathered}
$$

$$
k S I
$$

3.331
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA - Continued (ag) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-2L

(ah) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-3L

(ai) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-2T
ENVIRONMENT
OIST MATER

 rinaint
KILOC

TABLE III．－FATIGUE－CRACK LENGTH－CYCLE DATA－Continued
（al）Crack length versus cycles for peak－age（T6） 7079 aluminum，specimen number 5P－1L
L－IN SIG（MAX GROSS）W－IN F（UI－KSI FIY）－KSI GRAIN RESTRAINT ENVIRONMENT

SI WHEN $2 A=4.110$ IN

～
岂
2
岂
\vec{x}
16.000
KILOCYCLES
2A
INCHES
2.343
2.502
2.671
2.827
2.950
3.109
3.302

（am）Crack length versus cycles for peak－age（T6） 7079 aluminum，specimen number 5P－2L
$\begin{array}{lllll}\text { L－IN SIG（MAX GRESS）} & \text { H－IN } & \text { F（U）－KSI F（Y）－KSI GRAIN RESTRAINT ENVIRONRENT }\end{array}$
SMAX REDUCED TO 11.0 KSI WHEN $2 A=4.029$ IN
（an）Crack length versus cycles for peak－age（T6） 7079 aluminum，specimen number 5P－3L
 $\begin{array}{ll}78.500 & 71.500\end{array}$
KILOCYCLES

KILOCYCLES
33.000
33.400
33.800

> 2A NOHFS
$855^{\circ} \mathrm{Z}$
53 HONI
雨

$$
\begin{array}{rccc}
\text { 2A } & \text { N } & \text { 2A } & \text { N } \\
\text { INCHES } & \text { KILOCYCLES } & \text { INCHES } & \text { KILOCYCLES } \\
.763 & 19.000 & 1.586 & 27.000 \\
.806 & 21.000 & 1.760 & 28.000 \\
.917 & 23.000 & 2.037 & 29.000 \\
1.068 & 24.000 & 2.198 & 30.000 \\
1.229 & 25.000 & 2.352 & \\
1.442 & 26.000 & 2.469 &
\end{array}
$$

R
.05
.5000
$\begin{array}{lllll}\text { SMAX REDUCED TO } & 11.0 & \mathrm{~K} \\ \text { SMAX REDUCED TO } & 10.0 & \mathrm{~K}\end{array}$
KILOCYCLES CPM
120.0

$$
\begin{aligned}
& 2 A \\
& \text { 2ACHES } \\
& .795 \\
& .813 \\
& .831 \\
& .853 \\
& .911 \\
& .980 \\
& 1.082 \\
& 1.149
\end{aligned}
$$

R
.05

出
2A

0080
0 No
0 in
Nin
NN
$\begin{array}{lll}24.0 & 12.000 & 8.01\end{array}$
24.012 .000

120.0
2 2A
INCHES
.751
.799
.935
1.053
1.161
T－IN
.5020
N
KILOCYCLES
0.
3.200
6.700
9.000
11.000
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued (ao) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 5P-1T
 -
 (ap) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 5P-2T
t-in sig(max grossi u-in f(u)-ksi f(y)-ksi grain restraint environment
dist mater

N	2A	N	2A
KILOCYCLES	INCHES	KILOCYCLES	INCHES
61.300	3.174		
61.600	3.270	63.200	3.822
61.900	3.000	63.500	3.926
62.200	3.011	63.800	4.101
62.500	3.677	63.950	4.153
62.800	3.679	64.050	4.174
		64.120	4.192

(aq) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number CNL-6P

80.100

40.0

2 A
INCES
.70
.8330
. .975
1.070
1.220
1.400
1.640
1.900

$\begin{array}{ll}R & \text { T-IN } \\ .05 & .6290\end{array}$
crcled to fallure

kilocrycles
(as) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-2L
CPM
80.0 L-IN SIGIMAX GROSSI W-IN FIUI-KSI FIVI-KSI GRAIN RESTRAIMT ENVIRONMENT
SHAX REDUCED TO 11.0 KSI WHEN $24=4.078 \mathrm{IN}$
KILOCYCLES
(at) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-3L
ENYIRONMENT
ORY RT AIR

2A
$\begin{array}{ll}f(u)-K S I & F(Y)-K S I \\ 80.100 & 72.300\end{array}$
N
KILOCYCLES
20.300
21.500
22.800
24.300

80.100 F2
品
${ }_{2}^{2}, 123$
83.700

24.700
26.000
27.000
28.000
29.000
30.000
31.100

$T-I N$
.6320
NILOCYCLES
5.000
10.000
14.000
18.200
20.150
22.000
23.670

$$
\begin{aligned}
& 2 A \\
& \text { INCHES } \\
& .773 \\
& .802 \\
& .942 \\
& 1.063 \\
& 1.274 \\
& 1.392 \\
& 1.517 \\
& 1.682
\end{aligned}
$$

\mathbf{x}

$\begin{array}{cccc}C P M & L-I N & S I G(\max \text { GROSS) } & W-I N \\ 120.0 & 24.0 & 12.000 & 8.00\end{array}$
HEM

$$
1
$$

R
.05
.05
复
GRAIM RESTRAINT

N
RILOCYCLES
0.
5.500
9.000
11.000
TABLE III.-FATIGUE-CRACK LENGTH--CYCLE DATA-Continued
(au) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-1T
ENVIRONMENT
DRY RT AIR
マ 2
53 H 3 N
 Kilocycles

-2T
 $\begin{array}{lllllll}\text { CPM } & \text { L-IN SIG(MAXGROSS) WIN } & \text { F(U)-KSI F(Y)-KSI GRAIN RESTRAINT } \\ 80.0 & 36.0 & 12.000 & 12.00 & 79.800 & 69.900 & \text { T }\end{array}$ $\begin{array}{lllllll}\text { CPM } & \text { L-IN SIG(MAXGROSS) WIN } & \text { F(U)-KSI F(Y)-KSI GRAIN RESTRAINT } \\ 80.0 & 36.0 & 12.000 & 12.00 & 79.800 & 69.900 & \text { T }\end{array}$

SMAX RECUCEO TO 11.0 KSI WHEN $2 A=3.583$ IN

KILOCYCLES

 $\begin{array}{lllllll}\text { CPM } & \text { L-IN SIG(MAXGROSS) WIN } & \text { F(U)-KSI F(Y)-KSI GRAIN RESTRAINT } \\ 80.0 & 36.0 & 12.000 & 12.00 & 79.800 & 69.900 & \text { T }\end{array}$24

147.000
000° LヶI
F(U)-KSI
79.800

(aw) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-10

$\begin{array}{ccccc}C P M & L-I N & \text { SIGIMAXGROSSI } & W-I N \\ 66.0 & 96.0 & 12.000 & 36.06\end{array}$
SMAX REDUCED TO 11.0 KSI HHEN $2 A=11.485$ IN
SMAX REDUCED TO 8.0 KSI WHEN $2 A=12.215$ IN

KILOCYCLES
144.540
145.810
146.850
147.500
148.500
149.730
150.500
151.000
151.540
152.000
152.500
153.000
153.500
154.070
154.500
155.400
156.075
156.500
157.000
157.300

4

RILOCYCLES
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA - Continued

(az) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-3L											
R	$\begin{array}{ll} \mathrm{T}-\mathrm{IN} & \text { CPM } \\ -1590 & 120.0 \end{array}$	$\begin{array}{cc} - \text { IN } & \text { sig(max } \\ 4.0 & 12.000 \end{array}$			$\begin{aligned} & \mathrm{H}-\mathrm{IN} \\ & 3.00 \end{aligned}$	$\begin{aligned} & F(u)-k 51 \\ & 75.300 \end{aligned}$	$\begin{aligned} & F(y)-k S I \\ & 65.300 \end{aligned}$	${ }_{L}^{\text {grain }}$	$\operatorname{RESTRALNT}_{Y}$	ENVIRONMENT DRY RT AIR	
N	2 A		N	24		N	2		n		2 A
kilocrcles	inches	Kilo	CrCles	INCHES		Kilocrel	ES inch		kiloc	cles	INCHES
0.	. 747		3.000	1.151		23.00			30	500	2.559
2.500	. 763		6.000	1.309		25.50				400	2.716
6.000			9.400	1.513		27.50				800	2.805
10.000	1.014		1.100	1.622		29.20					

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
(ba) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-1T, first part
a) Crack $\begin{array}{cccc}\text { GPM } & \text { L-IN } & \text { SIGMax GROSS) } & \text { W-IV } \\ 120.0 & 3 \in .0 & 12.000 & 11.98\end{array}$
first part of test spec overloaded at 20 , 7 bo cycles
xilơycles incess
1 NCHES
1.329
1.402
1.501
1.806
1.735 1.735
1.851
(bb) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-1T, second part
 (bc) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-2T

$$
\begin{gathered}
R \\
.67
\end{gathered}
$$

\[

\]

224.000
227.000
230.200

$36.0 \quad 12.000$

$\begin{array}{cc}R & T-1 M \\ .67 & .1598\end{array}$
SHAX REOUCED

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued (bd) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-20 $\begin{array}{cccc}\text { L-IN } & \text { SIG(MAX GROSS) } & \text { N-IN } & \text { FiU)-kSI } \\ 96.0 & 12.000 & 36.02 & 73.300\end{array}$
$2 A=11.610 \mathrm{IN}$
$2 \mathrm{~A}=12.400 \mathrm{IN}$

$$
\mathbf{N}
$$

$$
\mathrm{N}
$$

$$
\begin{gathered}
\text { K } \\
\text { KILOCLES }
\end{gathered}
$$

$$
\begin{gathered}
24 \\
\text { INCHES }
\end{gathered}
$$

$$
\begin{gathered}
\text { N } \\
\text { KILOCYCLES }
\end{gathered}
$$ guxatit SMAX REDUCED TO 8.O KSI WHEN $2 A=12.225$ IM $\begin{array}{llll}\text { FiUS-KSI Firi-kSI GRAIN RESTRAINT } \\ 73.300 & 61.600 & L & Y\end{array}$

$$
\begin{array}{r}
2 A \\
\text { INCHS } \\
7.220 \\
7.370 \\
7.535 \\
7.700 \\
7.860 \\
8.075 \\
8.185 \\
8.345 \\
8.470 \\
8.630 \\
8.760 \\
8.920 \\
9.075 \\
9.235 \\
9.395 \\
9.535 \\
9.695 \\
9.910 \\
10.100 \\
10.260
\end{array}
$$

KILOCYCLES
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA -Continued
(bf) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-2L

$2 \mathrm{~A}=4.102 \mathrm{IN}$

(bg) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-3L

$\begin{aligned} & \mathrm{L}-1 \mathrm{IN} \\ & 24.0 \end{aligned}$	$\begin{aligned} & \text { SIG(max gross) } \\ & 12.000 \end{aligned}$		$\begin{aligned} & \text { W-IN } \\ & 8.01 \end{aligned}$	$\begin{aligned} & \text { F(u)-ksI } \\ & 73.300 \end{aligned}$	$\begin{aligned} & \text { FEri-kSI } \\ & 61.600 \end{aligned}$	$\mathrm{l}^{\text {grain }}$	RESTRAINT ENVI;	ENVI RONMENT DRY RT AIR
	N				24		KILOCYCLES	$\stackrel{2 \mathrm{Aa}}{\text { INCHE }}$
K1LO	Arcles	INCHES			ES INCH			
	13.000	1.200		22.000	- 1.8		28.000	2.424
	15.500	1.341		24.000			29.000	2.573
	18.000	1.500		25.500	2.1200		29.600	2.678
	20.000	1.644		27.000	2.30		30.300	2.909

(bh) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-1T

KSI NHEN $2 \mathrm{~A}=4.12$ IN
SMAX REDUCED TO 11.0 KSI WHEN $2 \mathrm{~A}=4.112$ in

$\stackrel{\sim}{W}$

130.000
140.400 152.000
 오웅
 옹 $000 \cdot 042$
0070
0 CPM
120.0 CPM
120.0

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued (bi) Crack length versus cycles tor overaged 7079 alumınum, specimen number 20-2T ENVIRONMENT
DIST WATER

 (bj) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-50

TABLE III.--FATIGUE-CRACK LENGTH-CYCLE DATA-Continued
(bk) Crack length versus cycles for overaged 7079 aluminum, specimen number $50-1 \mathrm{~L}$

(bl) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-2L

N	2A	N	2 A	N	24	N	24
Rilocrcles	I NCHES	kilocreles	INCHES	kilocycles	I NCHES	KILOCYCLES	[NCHES
0.	. 782	21.000	1.351	34.000	2.337	39.500	3.563
2.600	. 801	25.000	1.574	35.500	2.579	40.000	3.800
7.000	. 876	28.000	1.767	36.500	2.732	40.400	4.017
12.500	1.024	30.500	1.983	37.500	2.940	41.179	4.257
17.000	1.191	32.500	2.171	38.500	3.126		

(bm) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-3L
F(U)-KSI F(Y)-KSI GRAIN RESTRAINT ENVIRONMENT
2A
I NCHES
1.595
1.723
1.899
2.148

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued (bn) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-1T

$$
36.0
$$

$$
\begin{array}{r}
A=0.103 \mathrm{IN} \\
\text { N } \\
\text { KILOCYCLES } \\
100.300
\end{array}
$$

$$
\begin{aligned}
& 24 \\
& \text { IMCHES } \\
& .981
\end{aligned}
$$

$$
\begin{gathered}
\text { N } \\
\text { KILOCYCLES } \\
266.250
\end{gathered}
$$

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA-Continued

(br) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-2L

$\begin{array}{ccc}\text { SMAX RECUCED TO } 11.0 \mathrm{KSI} \text { WHEN } 2 A=3.134 \text { IN } \\ \text { N } & \text { 2A } & \\ \text { KILOCYCLES } & \text { INCHES } & \text { KILOCYCLES } \\ 0 . & .795 & 23.000 \\ 3.000 & .794 & 26.000 \\ 10.000 & .929 & 29.000 \\ 16.000 & 1.121 & 32.500 \\ 20.000 & 1.290 & \end{array}$
(bs) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-3L

$\begin{array}{cccc} & & & \\ \text { N } & \text { 2A } & \text { NA } \\ \text { KILOCYCLES } & \text { INCHES } & \text { KILOCYCLES } & \text { INCHES } \\ 13.200 & 1.094 & 24.100 & 1.708 \\ 16.000 & 1.229 & 27.200 & 1.957 \\ 18.800 & 1.373 & 29.300 & 2.155 \\ 21.500 & 1.537 & 33.000 & 2.516\end{array}$

$73.900 \quad 61.700$

$$
\stackrel{\text { NA }}{\text { NILOCLES }} \quad \text { INCHES }
$$

2A
INCHES
2.416

3.083
$\begin{array}{ccc}\text { N } & & \\ \text { KILOCLES } & \text { IA } & \text { NCHES } \\ 23.000 & 1.446 & \text { KILOCYCLES } \\ 26.000 & 1.625 & 34.500 \\ 29.000 & 1.855 & 36.000 \\ 32.500 & 2.185 & 37.500 \\ & & 38.500\end{array}$

R
.05
N
KILOCYCLES
0.
2.000
6.000
10.000
TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA - Concluded

(bt) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-1T													
$\begin{gathered} R \\ .67 \end{gathered}$	$\begin{aligned} & \mathrm{T}-1 \mathrm{~N} \\ & .6280 \end{aligned}$		$\begin{gathered} C P M \\ 120.0 \end{gathered}$	$\begin{aligned} & L-1 N \\ & 36.0 \end{aligned}$	$\begin{gathered} \text { SIG(mAX GROSS) } \\ 120.000 \end{gathered}$		$\begin{array}{r} W-1 N \\ 12.01 \end{array}$	$\begin{array}{ll} F(u)-k S I & F 1 \\ 74.100 & 60 \end{array}$	$\begin{aligned} & F(Y)-K S I \\ & 60.800 \end{aligned}$	$\underset{T}{\text { GRAIN }}$	$\underset{\text { RESTRAINT }}{\text { ENVIRONMENT }}$		
N		24			N	2A		N			N		2A
Kilocrcles		NCHES		KILO	CrCLES	1 MCH		kilocecles	5 INC		KILOC	yeles	INCHES
0.		. 763			94.000	. 9		196.500			292	. 500	2.476
10.000		. 763			5.000	. 9		211.500			302	. 000	2.731
20.000		. 763			16.000	. 9		220.000			307	. 500	2.924
27.000		. 774			6.400	1.0		230.000			312	. 600	3.165
38.000		. 790			7.800	1.06		240.000			318	. 100	3.618
49.000		. 807			8.200	1.105		250.000			321	. 000	4.068
62.400		. 830			9.000	1.1		260.000			321	. 250	4.117
72.000		. 850			7.000	1.2		270.000			322	. 000	4.182
83.000		. 879			4.500	1.2		280.500			322	. 150	4.205

[^3]TABLE IV.-FRACTURE-TOUGHNESS DATA FOR CENTER-CRACKED

Specimen (a)	$\begin{aligned} & \mathrm{t}_{\mathrm{in}} \end{aligned}$		$\begin{aligned} & \text { w, } \\ & \text { in. } \end{aligned}$	$\begin{gathered} \dot{\sigma}_{\mathrm{g}} \\ \mathrm{ksi} / \mathrm{sec} \end{gathered}$	$\begin{aligned} & 2 \mathrm{a}, \\ & \mathrm{in} . \end{aligned}$	${ }_{\text {2acr }}^{2}$	$\left\|\begin{array}{c} \sigma_{\mathrm{g}}^{\mathrm{at}} \\ \text { pop-in } \\ \mathrm{ksi} \end{array}\right\|$	$\begin{gathered} \frac{\sigma_{\text {net }}}{\mathrm{Ys}} \\ \text { pop-in } \end{gathered}$	$\left.\begin{gathered} \sigma_{g} \\ U_{\mathrm{G}} \mathrm{LT}, \\ \mathrm{ksi} \end{gathered} \right\rvert\,$	$\begin{array}{\|l\|} \hline \frac{\sigma_{\text {net }}}{Y \mathrm{~S}} \\ \mathrm{ULT} \\ \hline \end{array}$	$\frac{\sigma_{9}}{\text { UTS }}$	$\begin{aligned} & \mathrm{s}, \\ & \% \end{aligned}$	$\underset{\mathrm{k}_{\mathrm{tc}} \mathrm{ksi} \text { 注. }}{ }$	$\begin{gathered} \mathrm{K}_{\mathrm{c}}, \\ \mathrm{ksi} \sqrt{\mathrm{in}} . \end{gathered}$		$\underset{\text { in. }}{\mathrm{G}_{c_{1}} / \mathrm{in} .^{2}}$	$\begin{aligned} & \overline{\mathbf{w}}, \\ & \text { in. } \end{aligned}$	$\left[\begin{array}{c} \overline{\mathrm{w}} \\ \mathrm{v} \\ \text { in./in. } \end{array}\right.$	$\left\|\begin{array}{c} \bar{k}_{c c} \\ \mathrm{ksiv}^{2} \sqrt{\text { in }} \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{c} \bar{k}_{c_{i}} \\ \mathrm{ksi} \sqrt{\text { in }} \end{array}\right.\right] ;$	$\begin{gathered} \overline{\mathrm{G}}_{\mathrm{lc} .},{ }^{\text {in. } 1 \mathrm{bb} / \mathrm{in} .2} 2 \end{gathered}$	$\underset{\text { in. }}{\overline{\mathrm{G}}_{\mathrm{c},} \mathrm{bb} / \mathrm{in} .^{2}}$
CNL-1U	0.160	68	36.00	0.98	12.970	5.10	$\begin{aligned} & 28.0 \\ & 26.8 \end{aligned}$	$\begin{array}{r} 0.620, \\ .592 \end{array}$	37.4	0.912	0.473	75	$\begin{aligned} & 133.6, \\ & 127.9 \end{aligned}$	198.0	$\begin{aligned} & 1620, \\ & 1490 \end{aligned}$	3920	1.250	7.800	$\begin{aligned} & 136.5, \\ & 130.3 \end{aligned}$	229.0	$\begin{aligned} & 1660, \\ & 1513 \end{aligned}$	5250
14.12	. 158	70	12.04	72	4.204	4.95	(b)		33.1	. 796	418	75	...	100.6	...	1012	0.321	2.030		110.8		1229
${ }^{14.2 L}$. 159	-65	12.01	1.25	4.223	(c)	(b)		26.3	. 550	. 322	-	\ldots	71.8		517	. 150	. 840		75.0		563
14.3L	(d)																					
$1 \mathrm{U}-1 \mathrm{~T}$. 159	74	12.02	. 58	4.202	5.25	(b)	\cdots	26.8	. 743	. 336	60		84.3		710	. 274	1.720		90.5		819
14-2T	. 159	68	12.00	. 73	4.200	5.25	(b)		29.8	. 823	. 374	70		93.4		873	. 336	2.110		102.0		1042
CNL-2U	. 255	72	36.25	. 79	12.595	13.35	22.7	544	23.4	. 580	. 302	30	106.5	113.9	1011	1298	. 506	1.980	108.0	119.4	1040	1426
${ }^{2 \mathrm{~L}-12}$. 254	73	12.00	1.09	4.201	5.30	29.1	. 701	30.9	. 868	. 399	10	78.9	97.9	555	958	. 373	1.470	80.8	108.0	582	1167
$2 \mathrm{~L}-2 \mathrm{~L}$. 256	. 65	12.00	1.09	4.220	(c)	(b)		29.8	. 684	. 378	0	\ldots	81.0		656	. 231	. 900		86.5		749
2U-3L	. 256	75	8.03	. 86	2.805	3.15	(b)		34.8	. 899	. 450	30		83.2		693	. 270	1.050		92.8		861
${ }^{2 \mathrm{U}-1 \mathrm{~T}}$. 259	71	12.00	1.02	4.200	4.90	23.1	588	24.9	. 698	. 319	20	62.6	74.7	350	558	. 243	. 940	63.7	79.8	361	636
2 U -2T	. 259	71	12.00	1.00	4.202	5.00	(b)		24.8	. 703	. 318	30		75.4		568	. 247	. 950		80.4		647
CNL-5U	. 501	68	36.25	. 74	12.600	15.00	(b)		15.3	422	. 204	30		80.4		646	. 269	. 540		82.3		678
${ }^{50} .12$. 502	70	12.00	. 94	4.204	(e)	24.9	. 620	28.5	. 709	. 380	5	67.6	77.3	407	597	. 245	500	68.8	82.9	422	688
${ }^{50}-2 \mathrm{~L}$. 505	-65	12.01	1.03	4.201	(c)	(b)		22.8	. 559	. 309	0		62.0		385	. 154	. 310		64.9		421
5U.3L	. 504	64	8.00	. 64	2.798	3.55	23.7	590	27.1	. 788	. 361	2	52.5	70.2	245	492	. 205	. 410	53.3	76.1	253	579
$5 \mathrm{~S}-17$. 504	87	12.01	. 92	4.197	4.50	18.5	. 484	19.6	. 532	. 261	2	50.1	55.3	224	306	. 141	. 280	50.7	57.5	229	331
5 U -2T	. 504	82	12.01	1.02	4.230	4.80	18.2	. 479	19.0	. 540	. 254	2	49.6	56.2	219	316	. 146	290	50.1	58.5	224	342
CNL.6U	. 628	68	36.00	. 63	12.960	16.10	8.5	. 197	17.4	. 467	. 217	1	40.6	96.0	147	921	. 323	. 514	40.7	98.7	148	975
6U.1L	. 634	74	12.02	. 86	4.211	(e)	(b)		24.1	. 550	. 301	1		65.5		430	. 150	. 237		68.4		468
$6 \mathrm{U} \cdot 2 \mathrm{~L}$. 634	-65	12.02	. 80	4.258	(c)	(b)		26.4	. 571	. 323	0		72.0		520	. 162	. 255		75.4		569
6U-3L	. 633	70	8.03	1.00	2.779	(e)	29.0	. 658	29.3	. 665	. 366	0	64.0	64.5	364.0	416	. 145	. 229	65.2	68.7	379	472
$6 \mathrm{U}-17$. 632	73	11.98	. 94	4.217	5.15	10.7	. 258	17.6	483	. 215	2	29.1	54.4	75.4	296	. 115	. 182	29.2	56.1	76	315
6 U -2T	. 632	72	12.0	. 99	4.192	4.55	(b)		17.5	. 441	. 214	0		50.0	...	250	. 097	. 153		51.2		262

TABLE IV．－FRACTURE－TOUGHNESS DATA FOR CENTER－CRACKED 7079 ALUMINUM ALLOY－Continued
（b）Peak（T6）heat treatment

13.5	N
\％	圌
かか	
5	
${ }^{\circ}$	
สั๋	
๙゙．${ }^{\text {¢ }}$	O
－00 浐	
3.5	
寅U	
か．	

TABLE IV．－FRACTURE－TOUGHNESS DATA FOR CENTER－CRACKED 7079 ALUMINUM ALLOY－Concluded

	合通
	$\stackrel{\text { N }}{\text { N }}$
13	
	$\stackrel{\sim}{\sim}$
－0｜ 0°	
	N0
๙ึ．	
$\underline{5}$	
	¢
－	
鼌	으」かに

[^4]b No pop－in indicated by accelerometer．
c Slow crack growth measurements not taken at $-65^{\circ} \mathrm{F}$ ． d Panel failed because of malfunction in test equipment． e Critical crack length missed on film record．
f Panel failed during fatigue cycling．
g Previously loaded to 30.2 ksi and unloaded．
TABLE V. - FRACTURE-TOUGHNESS DATA FOR

	$\stackrel{\llcorner }{N}$	ก๊ํ	$\stackrel{\infty}{\sim}$
$\underline{\underline{v}} \cdot \frac{\dot{S}}{\underline{y}}$	$\begin{gathered} \text { N } \\ \text { Ò } \end{gathered}$	مٌ	$\begin{aligned} & \bullet \\ & \dot{F} \end{aligned}$
	$\stackrel{\infty}{\sim}$	\%	N
$\dot{\underline{x}} \stackrel{\dot{N}}{\underline{\underline{n}}}$	$\begin{aligned} & \text { M } \\ & \text { O్ల } \end{aligned}$	へ	$\stackrel{\text { 응 }}{ }$
$\bigcirc \sim^{\circ}$	$$	¢̣	へ̣
\bigcirc	$\begin{aligned} & \mathbb{N} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\square}{0}$	$\stackrel{10}{9}$
-0in	$$	$\stackrel{9}{¢}$	$\stackrel{\infty}{\text { N }}$
	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{5}{6}$	¢
$0^{\circ 0}$	$\begin{aligned} & \hline \stackrel{M}{\mathrm{~N}} \\ & \mathbf{N} \end{aligned}$	+	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\circ} \end{aligned}$
.0\% ${ }^{\circ}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	¢	8.
	ल	N	F
	N	N	$\stackrel{\infty}{\sim}$

${ }^{a} W=4.5$ in.,
$t=0.63$ in.
TABLE VI.-CHEMICAL ANALYSES OF 7079 ALUMINUM ALLOY

Thickness, in.	Mn, wt \%	Si , wt \%	Cr , wt \%	Cu , wt \%	$\begin{gathered} \mathrm{Zn}, \\ \mathrm{wt} \% \end{gathered}$	Ti, wt \%	Fe , wt \%	Mg, wt \%	Ni , wt \%	AI, wt \%
Manufacturer's analysis										
0.16	0.21	0.10	0.16	0.62	4.66	0.05	0.14	3.48	0.03	Balance
. 25	. 18	. 07	. 18	. 69	4.52	. 04	. 16	3.50	. 02	
. 50	. 21	. 10	. 16	. 62	4.66	. 05	. 14	3.48	. 03	
. 63	. 18	. 07	. 18	. 69	4.52	. 04	. 16	3.50	. 02	Balance
Boeing's analysis										
. 16	. 20	. 08	. 18	. 55	4.70	$<.01$. 15	3.36	(a)	Balance
. 25	. 17	. 07	. 19	. 60	4.72		. 14	3.60	(a)	\uparrow
. 50	. 20	. 07	. 18	. 55	4.71		. 14	3.32	(a)	
. 63	. 16	. 06	. 22	. 56	4.62	$<.01$. 12	3.51	(a)	Balance

a No nickel content recorded.

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY (a) Underaged heat treatment

Specimen (a)	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	YS, ksi	$\begin{gathered} \text { Elongation } \\ \text { (2 in } \mathbf{~}, \\ \% \end{gathered}$	$\begin{aligned} & \text { RA, } \\ & \% \end{aligned}$
0.16-in. thickness					
1U-3T	69	79.8	64.9	14.0	23.0
1U-4T	70	79.8	64.7	14.0	25.0
1U-5T	73	79.5	63.4	14.0	22.0
Average		79.7	64.3	14.0	23.3
1U-4L	73	79.0	70.4	14.0	25.0
1U-5L	74	79.2	71.1	13.0	22.0
1U-6L	74	79.4	70.6	13.0	24.0
Average		79.2	70.7	13.3	23.7
1U-7L	-65	82.3	75.0	14.0	21.0
1U-8L	-65	81.7	73.7	14.0	25.0
1U-9L	-65	81.4	73.4	14.0	25.0
Average		81.8	74.0	14.0	23.7
0.25-in. thickness					
2U-3T	RT	78.1	60.5	16.0	25.0
2U-4T	RT	77.7	60.4	15.0	24.0
2U-5T	RT	78.5	60.4	17.0	24.0
Average		78.1	60.4	16.0	24.3
2U-4L	RT	77.4	64.2	17.0	27.0
2U-5L	RT	77.6	63.8	17.0	25.0
2U-6L	RT	77.6	63.8	17.0	27.0
Average		77.5	63.9	17.0	26.3
2U-7L	-65	79.0	67.2	17.0	24.0
2U-8L	-65	78.8	67.4	17.0	27.0
2U-9L	-65	78.6	66.9	18.0	24.0
Average		78.8	67.2	17.3	25.0

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR
7079 ALUMINUM ALLOY - Continued
(a) Underaged heat treatment - Concluded

Specimen (a)	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	YS, ksi	Elongation (1 in.), \%	$\begin{aligned} & \text { RA, } \\ & \% \end{aligned}$
0.50-in. thickness					
5U-3T	RT	74.6	58.2	18.0	32.0
5U-4T	RT	75.1	59.1	17.0	31.0
5U-5T	RT	75.1	58.8	17.0	29.0
Average		74.9	58.7	17.3	30.7
5U-4L	RT	75.0	61.4	17.0	34.0
5U-5L	RT	75.6	61.9	18.0	35.0
5U-6L	RT	74.4	62.0	17.0	36.0
Average		75.0	61.8	17.3	35.0
5U.7L	-65	75.7	63.7	17.0	32.0
5U-8L	-65	75.1	62.2	16.0	33.0
5U-9L	-65	75.2	63.0	16.0	34.0
Average		75.3	63.0	16.3	33.0
0.63-in. thickness					
6U-3T	RT	80.3	63.3	16.0	25.0
6U-4T	RT	80.3	63.9	16.0	24.0
6U-5T	RT	${ }^{\text {b }} 85.2$	b 64.7	b 16.0	${ }^{\text {b }} 24.0$
Average		80.3	63.6	16.0	24.5
6U-4L	RT	80.5	67.8	17.0	32.0
6U-5L	RT	80.0	67.6	16.0	31.0
6U-6L	RT	79.6	66.9	16.0	25.0
Average		80.0	67.4	16.3	29.3
6U-7L	-65	81.5	70.6	16.0	26.0
6U-8L	-65	82.0	71.2	16.0	26.0
6U-9L	-65	81.3	72.4	15.0	23.0
Average		81.6	71.4	15.7	25.0

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY - Continued
(b) Peak age (T6) heat treatment

Specimen (a)	$\begin{aligned} & \text { Test } \\ & \text { temp, } \\ & { }^{\circ} \mathrm{F} \text {, } \end{aligned}$	UTS, ksi	YS, ksi	Elongation (2 in .). \%	$\begin{aligned} & \text { RA, } \\ & \% \end{aligned}$
0.16-in. thickness					
1P-3T	RT	77.6	68.4	11.0	24.0
1P-4T	RT	81.5	71.7	11.0	25.0
1P-5T	RT	81.2	71.4	11.0	25.0
Average		80.1	70.5	11.0	24.7
1P-4L	RT	79.7	73.7	11.0	25.0
1P-5L	RT	79.6	74.3	11.0	24.0
1P-6L	RT	79.5	73.6	11.0	25.0
Average		79.6	73.9	11.0	24.7
1P-7L	-65	84.5	78.2	12.0	22.0
1P-8L	-65	82.3	76.1	12.0	25.0
1P-9L	-65	84.5	78.2	13.0	25.0
Average		83.8	77.5	12.3	24.0
0.25-in. thickness					
2P-3T	RT	81.8	72.4	12.0	24.0
2P-4T	RT	82.0	72.7	12.0	23.0
2P-5T	RT	81.8	71.9	12.0	24.0
Average		81.9	72.3	12.0	23.7
2P-4L	RT	80.6	74.3	13.0	28.0
2P-5L	RT	80.5	74.1	13.0	28.0
2P-6L	RT	80.2	73.6	13.0	27.0
Average		80.4	74.0	13.0	27.7
2P-7L	-65	84.8	78.3	15.0	24.0
2P-8L	-65	83.8	75.7	13.0	23.0
2P-9L	-65	83.9	77.7	14.0	25.0
Average		84.3	77.2	14.0	24.0

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR
7079 ALUMINUM ALLOY - Continued
(b) Peak-age (T6) heat treatment - Concluded

Specimen (a)	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	YS, ksi	Elongation (1 in.), \%	$\begin{aligned} & \mathrm{RA}, \\ & \% \end{aligned}$
0.50-in. thickness					
5P-3T	RT	79.6	69.0	13.0	31.0
5P-4T	RT	79.3	69.5	13.0	29.0
5P-5T	RT	79.4	69.4	14.0	29.0
Average		79.4	69.3	13.3	29.7
5P-4L	RT	78.8	72.1	14.0	36.0
5P-5L	RT	78.0	70.8	14.0	35.0
5P-6L	RT	78.8	71.6	14.0	37.0
Average		78.5	71.5	14.0	36.0
5P.7L	-65	80.8	75.0	12.0	36.0
5P-8L	-65	81.0	74.4	14.0	34.0
5P.9L	-65	81.9	75.4	15.0	33.0
Average		81.2	74.9	13.7	34.3
0.63-in. thickness					
6P-3T	RT	79.3	69.0	12.0	23.0
6P.4T	RT	80.4	70.6	12.0	25.0
6P-5T	RT	79.8	70.0	11.0	24.0
Average		79.8	69.9	11.7	24.0
6P-4L	RT	80.9	73.4	13.0	35.0
6P-5L	RT	79.7	72.0	12.0	32.0
6P-6L	RT	79.6	71.8	12.0	29.0
Average		80.1	72.3	12.3	32.0
6P-7L	-65	84.5	74.5	12.0	28.0
6P-8L	-65	83.9	(c)	(c)	(c)
6P-9L	-65	82.7	76.4	13.0	24.0
Average		83.7	75.5	12.5	27.5

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR
7079 ALUMINUM ALLOY - Continued
(c) Overaged heat treatment

Specimen (a)	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	$\begin{aligned} & \mathrm{YS}, \\ & \mathrm{ksi} \end{aligned}$	Elongation (2 in), \%	$\begin{aligned} & \text { RA, } \\ & \% \end{aligned}$
0.16-in. thickness					
10-3T	RT	75.5	63.8	10.0	18.0
10-4T	RT	75.5	64.1	10.0	19.0
10-5T	RT	75.5	65.2	10.0	19.0
Average		75.5	64.4	10.0	18.7
10-4L	RT	75.0	65.2	12.0	27.0
10-5 L	RT	75.6	65.4	11.0	23.0
10-6L	RT	75.3	65.2	12.0	26.0
Average		75.3	65.3	11.7	25.3
10-7L	-65	78.9	66.8	12.0	27.0
10-8L	-65	79.0	67.5	11.0	24.0
10-9L	-65	79.1	67.3	12.0	26.0
Average		79.0	67.2	11.7	25.7
0.25-in. thickness					
20-3T	RT	74.7	61.2	12.0	26.0
20-4T	RT	74.5	61.6	11.0	21.0
20-5T	RT	74.7	61.4	10.0	15.0
Average		74.6	61.4	11.0	21.0
20-4L	RT	73.5	61.5	13.0	31.0
20-5L	RT	73.4	61.7	12.0	22.0
20-6L	RT	73.1	61.6	12.0	30.0
Average		73.3	61.6	12.3	27.7
20-7L	-65	78.7	64.5	13.0	29.0
20-8L	-65	78.5	63.5	14.0	26.0
20-9L	-65	78.1	64.6	14.0	29.0
Average		78.4	64.2	13.7	28.0

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR
7079 ALUMINUM ALLOY - Concluded
(c) Overaged heat treatment - Concluded

Specimen (a)	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	YS, ksi	Elongation (1 in.), \%	$\begin{aligned} & \text { RA, } \\ & \% \end{aligned}$
0.50-in. thickness					
50-3T	RT	73.0	60.3	13.0	33.0
50.4T	RT	72.8	60.1	13.0	34.0
50-5T	RT	72.6	59.9	13.0	31.0
Average		72.8	60.1	13.0	32.7
50-4L	RT	72.3	60.3	15.0	38.0
50-5L	RT	72.2	60.1	15.0	41.0
50-6L	RT	71.8	59.7	15.0	41.0
Average		72.1	60.0	15.0	40.0
50-7L	-65	76.3	62.9	15.0	37.0
50-8L	-65	76.2	62.6	15.0	38.0
50-9L	-65	74.6	61.2	15.0	38.0
Average		75.7	62.2	15.0	37.7
0.63-in. thickness					
60-3T	RT	74.0	60.8	13.0	32.0
60-4T	RT	73.9	60.7	13.0	29.0
60-5T	RT	74.3	61.0	13.0	30.0
Average		74.1	60.8	13.0	30.0
60-4L	RT	74.0	61.9	14.0	38.0
60-5L	RT	74.1	61.9	14.0	38.0
60-6L	RT	73.7	61.4	15.0	39.0
Average		73.9	61.7	14.3	38.3
60-7L	-65	77.3	63.5	14.0	36.0
60-8L	-65	77.7	63.5	15.0	33.0
60-9L	-65	77.7	64.3	15.0	37.0
Average		77.6	63.8	14.7	35.3

${ }^{a}$ Letters T and L indicate grain direction.
${ }^{\mathrm{b}}$ Sudden load change before failure. $\quad{ }^{\mathrm{c}}$ Clamps stepped prior to yield.

TABLE VIII.-ADDITIONAL VERIFICATION TENSILE PROPERTIES FOR PEAK AND OVERAGED 7079 ALUMINUM ALLOYS ${ }^{\text {a }}$

Specimen	Thickness, in.	Test temp, ${ }^{\circ} \mathrm{F}$	UTS, ksi	YS, ksì	Elongation (2 in.) \%	$\begin{gathered} \text { RA, } \\ \% \end{gathered}$
Peak-age (T6) heat treatment						
1-9	0.160	72	79.8	70.0	13.0	25.0
1-24	0.160	72	79.4	69.1	12.0	22.0
Average			79.6	69.6	12.5	23.5
2-5	0.250	72	80.4	69.9	12.0	19.0
6-3	0.630	71	80.6	72.7	11.0	25.0
6-24	0.630	70	81.1	71.9	11.0	24.0
Average			$\overline{80.8}$	$\overline{72.3}$	11.0	$\overline{24.5}$
Overaged heat treatment						
1-6	0.160	72	74.1	61.7	12.0	24.0
1-10	0.160	72	73.3	61.0	12.0	23.0
Average			73.7	61.4	12.0	23.5
2-13	0.250	72	73.2	59.8	12.0	21.0
2-17	0.250	72	71.5	57.6	12.0	22.0
Average			72.4	58.7	12.0	21.5
5-16	0.500	72	71.6	58.4	13.0	32.0
5-24	0.500	71	71.6	58.7	12.0	30.0
Average			71.6	58.6	12.5	31.0
6-5	0.630	69	73.6	60.5	12.0	28.0
6-16	0.630	69	73.6	60.3	11.0	26.0
Average			73.6	60.4	11.5	27.0

aTransverse grain direction

TABLE IX.-COMPARISON OF VERIFICATION YIELD STRENGTH AND ESTIMATED RANGE OF YIELD STRENGTH, FROM AGING CURVES FOR 7079 ALUMINUMi ALLOY

Thickness, in.	Peak Aging Time, hr	Transverse YS (aging curve), ksi	Estimated range from aging curve, $12.5 \pm 2.5 \%$, ksi-ksi	Verification transverse YS, ksi
Underaged heat treatment ${ }^{\text {a }}$				
0.16	$\begin{gathered} 4 \\ \text { (as received) } \end{gathered}$	70.8	60.2-63.7	64.3
0.25		70.0	59.5-63.0	60.4
0.50	\downarrow	69.2	58.8-62.3	58.7
0.63	$\begin{gathered} 4 \\ \text { (as received) } \end{gathered}$	71.6	60.9-64.4	63.6
Peak-age (T6) heat treatment ${ }^{\text {b }}$				
0.16	48	70.8	-	70.5
0.25	48	70.0	-	72.3
0.50	48	69.2	-	69.3
0.63	48	71.6	-	69.9
Overaged heat treatment ${ }^{\text {c }}$				
0.16	56	70.8	60.2-63.7	64.4
0.25	96	70.0	59.5-63.0	61.4
0.50	120	69.2	58.8-62.3	60.1
0.63	90	71.6	60.9-64.4	60.8

${ }^{2} 250^{\circ} \mathrm{F}$
${ }^{\mathrm{b}}$ Commercial practice, $250^{\circ} \mathrm{F}$
${ }^{\mathrm{c}} 290^{\circ} \mathrm{F}$

TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY
(a) Underaged heat treatment

Specimen (a)	Thickness, in.	Uncracked area, A in. 2	$\begin{aligned} & \text { Fracture, } \\ & W_{0}, \\ & \text { in. }-\mathrm{lb} \end{aligned}$	Impact toughness, W_{0} / A_{0}, in.-lb/in. ${ }^{2}$
$0.16-\mathrm{in}$. gage $^{\text {b }}$				
1UT1	0.157	0041	8.00	196
1 UT2	. 157	. 044	9.10	207
1 UT3	. 157	. 044	9.02	205
1UL4	. 157	. 042	12.12	286
1UL5	. 157	. 044	12.70	289
1UL6	. 147	. 041	11.35	278
0.25-in. gage ${ }^{\text {c }}$				
2UT1	0.161	0.043	15.55	362
2UT2	. 162	. 042	13.80	329
2UT3	. 161	. 042	14.55	346
2UL4	. 161	. 040	21.00	525
2UL5	. 161	. 046	24.20	526
2UL6	. 160	. 043	23.00	535
$0.50-$ in. gage ${ }^{\text {c }}$				
5UT1	0.161	0.043	9.10	212
5UT2	. 162	. 043	8.85	206
5UT3	. 162	. 042	8.60	204
5 UL4	. 162	. 043	12.35	287
5UL5	. 162	. 046	13.70	298
5UL6	. 162	. 043	12.75	296
0.63 -in. gage ${ }^{\text {c }}$				
6UT1	0.161	0.048	14.90	310
6UT2	. 162	. 049	14.40	294
6UT3	. 162	. 005	1.00	220
6UL4	. 162	. 049	27.80	567
6UL5	. 162	. 048	28.00	583
6UL6	. 162	. 049	27.30	557

TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY - Continued
(b) Peak-age (T6) heat treatment $\left(73^{\circ} \mathrm{F}\right.$ test temperature)

Specimen (a)	Thickness, in.	Uncracked area, A, in. 2	Fracture energy, W_{0}, in. Ib	Impact toughness, $\mathrm{W}_{\mathrm{o}} / \mathrm{A}_{\mathrm{O}}$ in.-lb/in. ${ }^{2}$
0.16-in. gage				
1PT1	0.158	0.040	5.80	145
1 PT 2	. 157	. 042	6.15	146
1PT3	. 147	. 042	6.10	145
1PL4	. 157	. 042	8.10	193
1PL5	. 157	. 040	7.80	195
1PL6	. 147	. 042	8.55	204
0.25-in. gage				
2PT1	0.161	0.043	8.90	207
2PT2	. 161	. 047	9.75	207
2PT3	. 161	. 042	8.55	204
2PL4	. 162	. 046	16.85	366
2PL5	. 161	. 044	15.70	357
2PL6	. 161	. 046	15.95	347
0.50-in. gage				
5PT1	0.162	0.045	6.90	153
5PT2	. 162	. 043	6.40	149
5PT3	. 161	. 045	6.80	151
5PL4	. 162	. 045	11.00	244
5PL5	. 162	. 045	10.75	239
5PL6	. 162	. 045	10.70	238
0.63-in. gage				
6PT1	0.161	0.050	6.55	131
6PT2	. 160	. 050	6.40	128
6PT3	. 160	. 049	6.50	133
6PL4	. 162	. 047	14.20	302
6PL5	. 160	. 047	13.95	297
6PL6	. 161	. 047	13.00	276

- TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY-Concluded
(c) Overaged heat treatment $\left(73^{\circ} \mathrm{F}\right.$ test temperature)

Specimen (a)	Thickness, in.	Uncracked area, A_{0}, in. ${ }^{2}$	Fracture energy, W_{0}, in.-lb	Impact toughness, W_{0} / A_{0} in.-lb/in. ${ }^{2}$

1OT1	0.159	0.043	9.25	215
1OT2	.159	.041	9.00	220
1OT3	.159	.041	8.80	215
1OL4	.159	.039	10.70	274
1OL5	.159	.045	12.25	272
10L6	.158	.046	11.60	252

5OT1	0.161	0.043	9.50	221
5OT2	.161	.043	9.50	221
5OT3	.161	.042	9.00	214
5OL4	.161	.040	11.80	295
50L5	.161	.044	14.30	325
50L6	.161	.044	14.30	325
0.63 -in. gage				
6OT1	0.162	0.044	8.40	191
6OT2	.161	.042	8.00	190
6OT3	.161	.044	8.20	186
6OL4	.161	.044	14.25	324
6OL5	.161	.044	14.50	330
6OL6	.161	.046	14.05	305

a Letters T and L indicate grain direction.
${ }^{\mathrm{b}} 76^{\circ} \mathrm{F}$ test temperature
${ }^{\mathrm{C}} 73^{\circ} \mathrm{F}$ test temperature

[^0]: For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $\$ 3.00$

[^1]: (e) Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T
)

 \circ
 $\stackrel{\circ}{\sim}$
 i

 \square

 HM 1

 $$
 \begin{gathered}
 R \\
 .67
 \end{gathered}
 $$

 $$
 2 \Delta=4.1 \text { IN }
 $$

 $\begin{array}{rc}0 \text { OSI } & \angle 9^{\circ} \\ \text { NI- } & 0\end{array}$

 N
 Kilocycles
 0.
 30.000
 50.000
 70.000

 $$
 \begin{array}{lr}
 \text { (MAX GROSS) } & H-1 \mathbf{1} \\
 12.000 & 12.00
 \end{array}
 $$

 $$
 \begin{aligned}
 & \text { F(u)-kSI } \\
 & 79.700
 \end{aligned}
 $$

 6.300 T
 70.000
 90.000
 00.000 90.000
 100.000
 115.000

[^2]: YAINT ENVIRONMENT
 DRYRTAIR
 KILOCYCLES IN
 INC

 \[

 \]

 (r) Crack length versus cycles for underaged 7079
 $\begin{array}{ccc}\text { L-IN } & \text { SIG(MAX GROSS) } & \text { W-IN } \\ 96.0 & 12.000 & 36.00\end{array}$
 $2 A=12.035$
 IN

 WHEN
 WHEN

 号
 \%in
 4.398
 4.725
 5.585
 5.855
 5.85
 5.145
 6.145
 6.625
 7.010
 7.185

 080
 0.
 0.
 0. 95.000
 100.000 105.000
 110.830

 122.000
 125.150
 127.250 125.120
 127.250
 128.000
 $\begin{array}{cc}R & T-1 N \\ .05 & .6280\end{array}$
 $\begin{array}{lllll}\text { SMAX REDUCED } \\ \text { SO } & 10.0 & \mathrm{KS} \\ \text { SMAX RECUCED }\end{array}$
 2A
 INCHES

 Kilocycles

 옹
 nin
 $0-1$ 5.000 40.000
 45.000

 $$
 \begin{aligned}
 & F(U)-K S I \\
 & 80.000
 \end{aligned}
 $$

 SMAX REDUCED TO \&.O 80
 08
 0.
 ni 08
 08
 $n 8$
 in
 n
 n 00
 0.
 0.
 0. 808
 088
 080
 ng
 or 75.000
 80.500

 $$
 \begin{aligned}
 & F(Y)-K S I \\
 & 67.400
 \end{aligned}
 $$

[^3]: (bu) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-2T

 L-IN SIGIMAXGROSS) GIN FIUI-KSI FIYI-KSI GRAIN RESTRAINT ENVIRONMEMT
 OIST WATE

 2 A
 INCHES
 2.499
 2.95
 2.873
 3.099
 3.293
 3.422
 3.563

 N
 KILOCYCLES
 120.000
 124.100
 127.100
 130.000
 132.000
 133.000
 134.000
 11.0 KSI WHEN 2A=4. 107 IN
 $\begin{array}{cc}R & T-1 N \\ .67 & .6330\end{array}$

[^4]: a Letters T and L indicate grain direction．

