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FATIGUE-CRACK-PROPAGATION AND 

FRA CTUR E-TOUGHNESS CHARACT ERISTICS 0 F 707 9 

ALUMINUM-ALLOY SHEETS AND PLATES 

IN THREE AGED CONDITIONS 

By S. H. Smith, T. R. Porter,  

and W. D. Sump 

SUMMARY 

This experimental research and development program was  conducted to 
characterize the fatigue-crack-propagation behavior, residual strength, and 
fracture toughness of 7079 aluminum alloy in the underaged, peak-age (T6), 
and overaged conditions for thicknesses of 0.16, 0.25, 0.50, and 0.63 inch. 
Tensile-property , fatigue -crack-propagation, and fracture-toughness tests were 
conducted to determine the effects of aging temperature and time, material 
thickness, specimen width, and configuration and physical environments of dry 
air, liquid nitrogen (-65" F), and distilled water on these properties. The 
materials were available in 36- by 96-inch sheets o r  plates. Using centrally 
notched specimens, the crack-growth and fracture-toughness tests were per- 
formed on 36-, 12-, and 8-inch-wide panels with the latter two sizes of 
specimens being cut from the fractured halves of the large panels. Residual- 
strength characteristics were also determined with surface-flawed specimens 
in the 0.63-inch-thickness tests. Precracked Charpy impact-toughness tests 
also were conducted for the three aged conditions and for the four panel 
thicknesses. Aging conditions were determined from tensile tests and were 
verified by tensile specimens cut from the fracture-tested material. 

The results of the test program showed that 7079 peak-age (T6) material 
has a faster rate of fatigue crack growth and a lower fracture toughness and 
residual strength than underaged and overaged materials. Underaged material 
exhibited the greatest fracture toughness and essentially the same rate of 
fatigue crack growth as that of overaged material. A slower fatigue-crack- 
growth rate was  found for a decrease in plate thickness, an increase in panel 
width, a dry-air environment compared to distilled water, and a -65" F temper- 
ature compared to room temperature. Higher fracture-toughness and residual- 
strength values were found for a decrease in plate thickness, an increase in 
panel width, a longitudinal grain direction compared to transverse grain, and 
an increase in test temperature from -65" F to room temperature. 
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INTRODUCTION 

Y 

Many material and structural failures occur from cracks o r  flaws that 
pre-exist o r  that originate in the material o r  structure. These failures can 
occur at applied tensile stress levels well below the tensile ultimate or yield 
strength of the material due to the unidentified presence of the flaw. Therefore, 
to ensure the fracture-safe design of a structure, knowledge of the residual- 
strength o r  fracture-toughness characteristics of structural materials in the 
presence of these flaws must be established. In addition, the growth rate of 
cracks o r  flaws in the material subjected to cyclic loading must be known to 
establish the required inspection time intervals for structure subjected to 
fatigue loading. 

This investigation was undertaken to determine the fatigue-crack- 
propagation behavior, plane -strain and plane-stress fracture toughnesses, and 
residual strength of 7079 aluminum alloy in the underaged, peak-age (T6), and 
overaged conditions. Sheet and plate thicknesses of 0.16, 0.25, 0.50, and 
0.63 inch were evaluated. The stress-intensity-factor method, o r  as it is 
sometimes referred to as linear elastic fracture mechanics, was applied in 
generating and presenting the fatigue-crack-propagation and fracture-toughness 
characteristics of 707 9 aluminum alloy in the three aged conditions. Underaged 
and overaged transverse-yield-strength levels were  12.5 f 2.5 percent below 
the peak transverse-yield-strength level. Tests were conducted at -65" F and 
room temperature. Cyclic fatigue-crack-propagation tests were conducted in 
a controlled dry-air environment and in distilled water. 

A total of 363 tests were conducted in the program, including 204 tensile 
tests,  72 center-cracked-panel fatigue-crack-growth and fracture-toughness 
tests,  15 surface-flaw fatigue -crack-growth and fracture-toughness tests,  
and 72 precracked Charpy impact-toughness tests. 

SYMBOLS 

A, 

b surface-flaw depth, in. 

net area of precracked Charpy specimen, in. 

fatigue-crack-growth rate,  microinches/cycle 
dN 

E 

F(U) ultimate tensile strength, ksi 

F(Y) 0.2-percent offset yield strength, ksi 

f cyclic frequency, cpm 

Young's modulus of elasticity, ksi 

Gc plane-stress fracture toughness, in. -lb/in. 2 
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5 
GIc 

plastic-zone-corrected plane-stress fracture toughness, in. -lb/in. 2 

plas tic-zone-cor r ected plane-str ain fracture toughness , in. -1 b/in. 

maximum-cyclic-stres s-intensity factor, ksiJin . K 

Kc plane-stress critical-stress-intensity factor, ksi$n. 

Kc plastic-zone-corrected plane-stress critical-stress-intensity 
- 

factor, ksiJin. 

KI opening-mode stress-intensity factor, ksi&n. 

KIc plane-strain critical-stress-intensity factor, ksiJin. 

KIc plastic-zone-corrected plane-strain critical-stress-intensity factor, 
- 

ksiJin. 

initial applied plane-strain stress-intensity level, ksiJ'ln. K I ~  

' m a  maximum cyclic stress-intensity factor, ksiJin. 

L center-cracked-panel length, in. 

M constant in crack-growth-rate formula 

N fatigue cycles, cycles 

Nf surface-flaw cycles to failure, cycles 

n exponent in crack-growth-rate formula 

R 

RA reduction in area, percent 

ratio of minimum to maximum fatigue cyclic stress levels 

S 

T thickness, in. 

percent shear lip observed on fracture surface 

t thickness, in. 

ULT ultimate tensile strength, ksi 

UTS ultimate tensile strength, ksi 

W center -cracked-panel width, in. 

Wo 

W plastic -zone width, in. 

2 precracked Charpy impact energy, in. -lb/in. 
- 
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2A 

2a 

2acr 

2c 

0.2-percent offset yield strength, ksi 

angle describing a point on the surface-crack front, degrees 

Poisson's ratio 

gross-area stress, ksi 

gross-area-stress rate, ksi/sec 

net-area stress, ksi 

0.2-percent offset yield strength, ksi 

gross-area stress level at pop-in, ksi 

complete elliptical integral of second kind 

fatigue crack length, in. 

fatigue crack length, in. 

critical crack length, in. 

surface-flaw length, in. 
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FATIGUE-CRACK-PROPAGATION AND FRACTURE- 
TOUGHNESS ANALYSIS 

The analysis methods used in investigating the fatigue crack propagation 
and fracture-toughness behaviors of 7079 aluminum alloys were based on 
linear elastic fracture mechanics o r  the stress-intensity-factor method. The 
stress-intensity-factor method of fracture mechanics has become a useful 
engineering tool in investigating the mechanics of subcritical crack growth and 
the final crack instability in metals due to static and fatigue loads, particularly 
where the material exhibits little net-section yielding. This method has been 
shown to be applicable in analyzing the subcritical fatigue-crack-growth 
behavior of surface o r  embedded flaws and through-the-thickness cracks in 
structure. Practical applications of the method are given in references 1, 2, 
and 3. Recently, the stress-intensity-factor method was used in determining 
the effects of humidity and liquid environments on the fatigue crack growth and 
sustained-load crack-growth behaviors of metals (refs. 4 through 7). The 
remainder of this discussion describes the stress-intensity-factor method and 
presents the stress-intensity-factor formulae for the specimen configurations 
and analysis used in this investigation. Additional analysis techniques used in 
analyzing the fatigue-crack-propagation and fracture-toughness data are also 
discussed. 
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c Fatigue Crack Propagation 
b 

The stress-intensity-factor parameter K is a measure of the localized 
s t ress  field around the tip of a crack and is a function of the remotely applied 
s t ress  and crack size. For crack growth due to constant-amplitude fatigue 
loading, the maximum stress-intensity level and the fluctuation in stress- 
intensity level control the rate  of fatigue crack growth (ref. 8). To compare 
the behavior of the rate of fatigue crack growth of different materials or  to 
establish the effect of metallurgical, geometrical, or environmental variables 
on the rate of fatigue crack growth, identical levels of fatigue stress- 
intensity factors can be compared. 

In this investigation, the center-notched panel configuration was used in 
generating the majority of the data on fatigue crack propagation The stress- 
intensity-factor formula for the center-notched panel is given by Irwin (ref. 9) 
as : 

1 f o  

Under fatigue cycling of a center-notched panel, a fatigue crack initiates 
at the notch tip and propagates at a steadily increasing rate for constant ampli- 
tude and maximum cyclic s t ress  levels. The fatigue-crack-propagation data 
was recorded in the form of crack length at specific applied-load cycles until 
the fatigue crack propagated to a length of approximately 35 percent of the 
panel width. 

A computer program was used to analyze the generated data on fatigue 
crack growth for growth-rate effects. The program computes the average 
maximum -cyclic-stress -intensity factor between measured crack-length-cycles 
data points and the corresponding average rate of fatigue crack growth. T.he 
application of a computerized curve-fitting process to the crack-length-cycles 
data to determine an analytical ra te  behavior was complicated by differences 
in the curves defined by the actual test points from the various test panels. A 
simple, single functional form for the crack-length-cycles data was not found 
to f i t  all the data. Hence, the crack-length-cycles curves were drawn through 
the actual measured data. 

A regression analysis or  a least-squares fi t  of the calculated values of 
stress-intensity factor and fatigue-crack-growth rate was performed with a 
computer program. This analysis fitted a straight line through a log-log plot 
of maximum-cyclic-stress-intensity factor versus fatigue-crack-growth rate. 
Such a regression analysis as this reflects a power law for the rate of fatigue 
crack growth. According to Paris (ref. l o ) ,  the rate of fatigue crack growth 
over many log cycles of rate can be expressed as: 

d(2aL = Kmaxn 
dN M 
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or  in logarithmic terms, is a linear equation: 

- log M d2a - log- - d N  nlog K.max 

where n is suggested as 4. 

Curves of crack length versus cycles and maximum cyclic stress- 
intensity factor versus the rate of fatigue crack growth were used to show the 
effects of heat treatment, material thickness, distilled water versus dry air, 
test temperature, and panel width on the behavior and rate of fatigue crack 
growth of the tested material. 

The characteristics of low-cycle fatigue crack growth of thick plate were 
measured and analyzed by surface-flawed testing. The stress-intensity factor 
for a semi-elliptical surface crack in a plate is given by Irwin (ref. 11) as: 

8 =  

Values of 8 for various 
tables. 

1. 95 IT J b  

8 KI = 

ratios of b/2c were found in standard mathematical 

The technique for evaluating the behavior of low-cycle fatigue crack 
growth by surface-flaw testing was developed by Tiffany (ref. 2) .  This 
technique was used in this investigation by fatigue cycling surface-flawed 
specimens. Baseline plane-strain critical-stress-intensity levels K I ~  were 
first established for the different aged conditions. Then initial stress-intensity 
levels, which were a specific percentage of K I ~  , were applied to various 
surface-flawed specimens and fatigue cycled to failure at maximum cyclic 
stress levels corresponding to desired stress-intensity levels. The behavior 
of fatigue crack growth was characterized by data plots of KIi/KIc versus 
fatigue cycles to failure, where KIi is the initial-applied-stress-intensity 
level. 

Fracture -Toughness Analysis 

Two typical types of failure modes can occur during material fracture and 
are described by the mechanics of crack growth. These two modes of failure 
are termed "plane stress" and "plane strain" and are a function of the three- 
dimensional stress field near a crack front. 

For a through-the-thickness crack in a sheet or  a plate, both plane-strain 
and plane-stress failure modes or  mixed-mode failure can occur. If the 
material is ductile or  i f  test conditions are such that the local stress acting 
normal to the plane of the sheet o r  plate is zero during fracture, the mode of 
failure is plane stress. This type of failure is characterized by extensive 
shear lips on the fracture surface. On the other hand, i f  the material is brittle 
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or if  the test conditions are such that the local strain acting normal to the sheet 
o r  platcis  zero, the failure mode is plane strain. This mode of failure is 
characterized by the appearance of a flat fracture surface. Mixed modes of 
failure are characterized by flat areas and shear-lip areas on the fracture face 
and are plane stress with the degree of plane stress being dependent on thickness. 

The fracture-toughness values of plane-strain and plane-stress fracture 
modes a re  determined by the critical-stress-intensity levels K I ~  and & as 
measured during the static pull of the center-cracked panel. During the slow- 
loading pull of the fatigue-cracked panel, the first possible mode of failure is 
that of plane strain K I ~  , and a pop-in o r  a local discontinuity in the load 
strain curve, often associated with an audible click, may occur. Slow crack 
growth follows pop-in, and the onset of rapid fracture is a plane-stress failure 
mode and is measured as Kc . If no pop-in is detected and slow crack growth 
is absent, the onset of rapid fracture is a plane-strain failure mode. 

Plane-strain pop-in KIc and plastic-zone-corrected K I ~  values were 
determined from the following equations, respectively (ref. 12): 

KIc = uo (w tan 

Plane stress Kc and plastic-zone-corrected Kc values were determined from 
the following equations: 

For plane stress, 

For plastic-zone-corrected, 

The plastic-zone widths were computed using the following equations: 

For plane strain, 
9 

- KIcO 
2 

w =  
6nu 

YS 
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For plane stress,  

Plane -strain and plane-str e s  s fracture -toughne ss values were computed using 
the following equations: 

For plane strain, 

For plane stress, 

For a surface crack in a plate, the s t ress  state in the periphery of the 
crack is that of plane strain, thus resulting in a plane-strain failure mode. 

The plane-strain critical-stress-intensity factor was computed from the 
following equation : 

1 . 9 5 ~  v b  
g 

K I C  = $ 

The plastic-zone-corrected 
equation: 

value was computed from the following KIc 

- - 
2 1/2 [ $2 - 0.212 (&) ] 

Another measurement of material toughness is by a precracked Charpy 
impact test. The parameter Wo/Ao is impact toughness, where Wo is the 
impact energy in inch-pounds and A, is the net fracture area. The different 
failure modes of plane strain and plane s t ress  cannot be separated by this type 
of test; therefore, the test is used only as a qualitative measurement of fracture 
toughness. 
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t EXPERIMENTAL PROGRAM AND SPECIMENS 

This experimental research and development program was designed to 
characterize the fatigue-crack-propagation behavior, fracture toughness, and 
residual- strength properties of 7079 aluminum alloy in the underaged, peak- age 
(T6), and overaged conditions. The effects of aging temperature and time, 
material thickness, specimen configuration, and the physical environments of 
dry air ,  liquid nitrogen (-65" F), and distilled water on these properties were 
evaluated. 

The 7079 aluminum alloy used in this investigation was furnished by the 
Government. Twelve sheets o r  plates of 36- by 96-inch 7079 alloy materials 
in the underaged condition and aged for 4 hours at 245 to 255°F were received 
in nominal thicknesses of 0.16, 0.25, 0.50, and 0.63 inch for testing. As- 
received mechanical properties and chemical composition as  reported by the 
manufacturer are given in table I. 

The experimental program consisted of two phases. The first phase was 
an aging and heat-treatment study to determine the time at temperature required 
to produce underaged and overaged tensile yield strengths 12.5 f 2.5 percent 
below the peak-age (T6) condition. The second phase consisted of a study of 
fatigue crack propagation, residual strength, and fracture toughness utilizing 
center-notched, surface-flawed, and precracked Charpy impact specimens and 
associated testing techniques. Flow charts showing the detailed testing performed 
in this program are  shown in figure 1. 

The objective of the first phase of this  program was to determine the time 
required at 250 and 290°F to age each thickness of material to the following 
conditions: 

(1) Peak transverse yield strength (T6) using 250" F aging temperature 

(2) Underage to 12.5 f 2.5-percent below peak transverse tensile yield 
strength using 250" F aging temperature 

(3) Overaged to 12.5 f 2.5 percent below peak transverse tensile yield 
strength using 290" F aging temperature 

Considering the manufacturer's tensile-property data and aging curves, 
mechanical properties were determined for an aging temperature of 250" F and 
total aging times of 5, 6, 48, 72, and 120 hours. Likewise, mechanical prop- 
ert ies were checked for an aging temperature of 290" F and aging times of 17, 
40, 50, 70, 90, 120, and 160 hours. In materials of certain thicknesses, some 
different aging times were used to develop only that portion of the aging curves 
that was of primary interest. 

The material for the aging study was taken from a 4- by 36-inch strip 
from one end of one panel of each thickness. The specimens were fabricated in 
the transverse grain direction after aging. The sheet and round tensile used in 
this phase a r e  shown in figure 2. The sheet specimen was used for panel thick- 
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nesses of 0.16 and 0.25 inch and the round specimen for panel thicknesses of 
0.50 and 0.63 inch. Al l  tensile testing for this phase was conducted at room 
temperature. 

Fabricated tensile specimens not used in developing aging curves were 
heat treated with the 36-inch-wide plates for additional verification of heat 
treatment. 

s 

A f t e r  aging data and curves were obtained, aging times were selected to 
give the three desired strength levels. The four reduced-size 36- by 92-inch 
panels, from which the aging-mechanical-properties study was made, were used 
for the underaged condition. The remaining 36- by 96-inch panels were aged to 
peak strength and overaged conditions. Material tensile properties of each panel 
were determined to verify heat treatment. This was done by obtaining longitudi- 
nal and transverse tensile properties from every 36- by 96-inch and 36- by 
92-inch panel following testing of the large panels for fatigue-crack-growth 
rate and residual strength. 

The evaluation of the effect of material thickness and heat treatment on 
fracture toughness , residual strength, and fatigue-crack-propagation behavior 
of 7079 aluminum alloy was based mainly on center-notched panels. Variables 
studied include thickness, panel width, grain direction, temperature, and wet 
and dry environments. In addition. some surface-flawed specimens and config- 
urations fabricated only from 0.63-inch-thick material were tested by fatigue 
cycling to determine the behavior of surface-flawed crack growth and to provide 
further residual-strength and fracture-toughness data. Figure 3 shows the 
specimen layout. 

Room- temperature and dry- air fatigue- crack- propagation behaviors of 
each heat treatment and thickness were determined by fatigue cycling the 36- by 
96- o r  92-inch, 12- by 36-inch, and 8- by 24-inch center-notched panels of 
longitudinal grain direction. Dry air is an air  environment with a relative 
humidity of less than 10 percent. 

The effect of reduced temperature on the behavior of fatigue crack propa- 
gation was investigated at -65" F. Center-notched 12- by 36-inch panels of 
longitudinal grain direction were fatigue cycled at -65" F and the crack-growth 
data were compared with the 12- by 36-inch-panel data obtained at room 
temperature. 

The effects of a wet environment on the behavior of fatigue crack propaga- 
tion was investigated for each thickness and heat treatment. This behavior was 
established by fatigue cycling center-notched panels (12 by 36 inches) of trans- 
verse grain direction. The behavior of fatigue crack growth in distilled water 
(complete immersion) was measured and compared with its behavior in dry air. 

The behavior of the low-cycle fatigue crack growth of each heat treatment 
in dry air was determined by fatigue cycling surface-flawed specimens. Base- 
line plane- strain fracture toughness was established by fracture testing one of 
these specimens from each heat treatment. These specimens contained an 
initial machined flaw depth of 0.290 inch and a flaw length of 1.450 inches. The 
remainder of the surface-flawed specimens with an initial machined flaw depth 
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gf 0.100 inch and length of 0.400 inch were fatigue cycled to failure a t  constant 
cyclic gross-area stress levels corresponding to initial maximum stress-intensity 
levels of 45, 50, 55, and 60 percent of baseline plane-strain critical-stress- 
intensity levels. 

Hole patterns for grip attachments in all specimens were drilled in each 
end by a programmed tape-controlled automatic drill press to ensure uniformity 
among all specimens. A l l  specimens were center-notched by first drilling a 
small hole in the center of the panel and then inserting a saw through the hole to 
saw the initial notch. Surface flaws were produced by an electrical-discharge 
machining process. 

I 
After fracture testing, the mechanical properties and complete curves of 

stress-strain to failure for each heat treatment and thickness of material were 
determined. The large-sheet tensile specimen used for thicknesses of 0.16 and 
0.25 inch and the round tensile specimen used for thicknesses of 0.50 and 0.63 
inch are shown in figure 2. 

Longitudinal and transverse precracked Charpy impact toughnesses were 
determined for each thickness and heat treatment. A 0.16-inch-thick specimen 
was used, and, for thicknesses greater than 0.16 inch, the specimens were 
fabricated at the surface of the material. The precracked Charpy specimen is 
shown in figure 2. 

TESTING MACHINES AND PROCEDURES 

The following paragraphs discuss the tensile , center-cracked-panel , 
surface-flaw, and Charpy impact-testing techniques and equipment used in 
this investigation. 

The tensile specimens of the aging study were tested at room temperature, 
and the verification tensile specimens were tested at room temperature and 
-65" F. Al l  specimens were tested in a 20-kip universal testing machine. Aged 
tensile specimens were tested at an applied strain rate of 0.005 in .  /in. /min. 
Stress-strain curves were only developed past the 0.2-percent offset yield stress 
level. Complete curves of stress-strain to failure were developed in the verifi- 
cation tensile testing, and an applied strain rate of 0.005 in. /in. /min was used 
past the 0.2-percent offset yield strength and 0.100 o r  0.020 in. /in. /min was 
used to failure. A cold box using nitrogen gas released from a liquid-nitrogen 
tank was used for -65" F tensile testing. 

Fatigue cycling and fracture testing were performed in servovalve- 
controlled hydraulic test machines. Five hydraulic machines were used having 
static load capacities of 125, 180, 250, 300, and 1000 kips. The 1000-kip 
hydraulic machine is shown in figure 4; all 36-inch-wide panels were tested in 
this machine. The 180-, 250-, and 300-kip hydraulic load machines are shown 
in figure 4. Al l  12- and 8-inch-wide panels were tested in these machines. 
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Pin-ended loading grips, which ensured axial loading, were bolted td the 
ends of the specimens in preparing them for fatigue cracking. The surface area 
adjacent to the initial saw cut and along the line of expected crack extension was 
polished for easy visualization and measuring of the fatigue crack growth. 

Uniform applied gross-area stresses were applied hydraulically to the 
panels during fatigue cycling and were controlled by single-channel electronic 
load-control units. The maximum cyclic gross-area-stress levels applied to 
the panels was  12 ksi, except for one 36-inch-wide panel in which a stress level 
of 8 ksi was applied. The ratio of minimum to maximum cyclic gross-area 
s t resses  R was 0.05, except for the 12-inch-wide transverse panels tested in 
distilled water and dry air and in which R was 0.67. The cycling frequency 
varied from 35 to 120 cpm, depending on the panel thickness and hydraulic 
machine utilized. All  36-inch-wide panels were buckling restrained by aluminum 
channel sections to prevent buckling in and out of the plane. Only the 0.16- and 
0.25-inch-thick, 8- and 12-inch-wide panels were buckling restrained. No 8-inch- 
wide panels were restrained during fracture testing because of the small panel 
width. Figure 5 shows a sketch of the buckling restraints used for each panel 
width. 

The dry-air environment with its relative humidity of less than 10 percent 
was maintained by passing bottled room air  through a desiccating column and 
then into a plastic chamber mounted on the specimen around the crack area. 
The plastic chamber acted as an additional buckling restraint. Nitrogen gas 
from a liquid-nitrogen tank was used as a cooling media for -65" F testing. Like 
the dry-air environment, the nitrogen gas was passed into plastic chambers 
mounted onto the panel. Temperature control was maintained by monitoring 
thermocouples mounted on the panels. 

The fatigue-crack lengths in the 36-inch-wide panels were measured to 
the nearest thousandths of an inch using a surveyor's transit and a steel scale 
mounted on the panel. The lengths of the fatigue cracks in the 12- and 8-inch- 
wide panels were measured with a calibrated 50-power microscope. Fatigue 
cycling was interrupted to record crack lengths, and the static mean load level 
was maintained on the panels. 

During the accumulation of fatigue-crack-growth data, a maximum allow- 
able rate of fatigue crack growth of approximately 500 microinches per cycle 
was imposed in the testing so that panel failure during fatigue cycling would not 
occur. If this rate level was reached prior to completion of the test, the max- 
imum cyclic stress level was reduced in steps to maintain a rate less than 500 
microinches per cycle. 

Plane-strain and plane-stress fracture toughnesses were determined by 
static loading the panels to failure at a gross-area s t ress  rate of 1000 psi/sec 
following fatigue-crack-growth testing. High-speed photography (1000 frames/ 
sec) was used to detect fatigue crack pop-in and to measure slow crack growth 
for determining critical crack length. Also during fracture toughness testing, 
an accelerometer and a linearly varying differential transducer (LVDT) were 
used to aid in detecting fatigue crack pop-in. The accelerometer was taped to 
one corner of the specimen and the transducer was mounted across the crack 
to measure crack-opening displacement. Load-time trace, accelerometer noise 
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$race, and transducer measurements were recorded simultaneously with high- 
response galvonometers in a time-based oscillograph. Testing for fracture 
toughness at -65" F did not use high-speed photography o r  transducers because 
of poor visability and the cold temperature of -65" F. 

The crack growth of the baseline surface-flawed specimens was monitored 
with a 50-power microscope,and,when the surface crack had fully initiated in 
the periphery of the flaw, fatigue cycling was stopped and the panel was fracture- 
tested. 
This test served as  a baseline plane-strain critical-stress-intensity level, and 
the remaining four surface-flawed specimens were fatigue cycled to failure 
at selected, constant initial-stress-intensity levels. Crack growth measure- 
ments were taken with a 50-power microscope, and all fatigue cycling was 
conducted in dry air. 

A programmed gross-area s t ress  ra te  of 1000 psi/sec was used. 

The finished, machined Charpy specimens were precracked by fatigue in 
a precracking machine to form a crack at the root of the machined notch. This 
machine applies simple beam-bending loads to the specimen through an eccentric 
at 1800 cpm and shuts off automatically as  the deflection of the specimen 
increases with the initiation of a crack. Uniform cracks approximately 0.050 
inch deep were grown by this method. Impact testing was then accomplished in 
an impact tes ter  of 288 in.-lb capacity and at a hammer velocity of 11.4 fps. 
The energy required to fracture was measured in inch-pounds. 

RESULTS AND DISCUSSION 

The following paragraphs discuss the experimental results of the aging 
study and the fatigue-crack-propagation and fracture-toughness study. 

Heat- Treatment Study 

Transverse tensile properties were determined for each of four thick- 
nesses (0.16, 0.25, 0.50, and 0.63 inch) for various aging times at 250 and 
290" F. Table I1 lists the detailed transverse tensile properties for each of 
the specimens tested in the aging study. Aging times, temperature, ultimate 
strength, 0.2-percent offset yield strength, percent elongation in 1 inch, and 
percent reduction in area values are given. 

Aging curves at 250 and 290" F are  given in figures 6 and 7. It is apparent 
from each of these aging curves that each thickness of material differs slightly 
in  its aging behavior at 250 and 290" F. The reason for this deviation may be 
due to the different quenching characteristics of the various panels o r  different 
processing techniques. 

Based on the aging data presented above and a discussion with the contrac- 
ting agency, the following heat treatments for the underaged, peak-age (T6), and 
overaged conditions were selected: 

(1) Underaged- U s e  the as-received underaged condition of 4 hours at 
250" F. 
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(2) Peak-age (T6) condition-Heat treat at 250" F for 48 hours (standard 
commercial practice). 

(3) Overaged-Heat treat at 290" F for 56, 96, 120, and 90 hours for 0.16-, 
0.25- , 0.50- , and 0.63-inch thicknesses, respectively. 

Through- The- Thickness Fatigue- Crack- Growth Behavior 

Through- the- thicknes s fatigue- c rack-growth data for all center- crac ked- 
panel tests conducted in this program are tabulated in table 111. Presented in 
the table are specimen identification and laboratory raw data in the form of 
measured crack length and cycles and the crack lengths at which the maximum 
cyclic stress levels were changed. A coding system was used to identify the 
aged condition, thickness, and grain direction of each panel. In the panel number, 
U is underaged, P is peak age (T6), 0 is overaged, T is transverse grain, 
and L is longitudinal grain. In addition, the numbers 1 ,  2 ,  5, and 6 designate 
0.16-, 0 .25- ,  0.50-, and 0.63-inch thicknesses, respectively. Plots of the 
fatigue-crack-growth data are presented in figures 8 through 11 in the form of 
fatigue crack length versus cycles and rate of fatigue crack growth versus 
maximum cyclic stress-intensity factor. To simplify the graphical presentation 
of the data, only crack length-cycles curves a re  presented and the straight-line 
plots of fatigue -crack-growth rate versus maximum -cyclic -stress -intensity 
factor a re  the results of the least-squares fit of a straight-line behavior through 
the calculated points from the raw data. 

The following subsections are  discussions of the results of the effects of 
heat treatment, thickness, test temperature, and panel width on fatigue-crack- 
growth behavior and a comparison of wet-air versus dry-air environments. 

Effect of heat treatment. - The effect of heat treatment on fatigue-crack-growth 
behavior and rate of fatigue crack growth is shown in figures 8 through 11. 
Comparison of underaged, peak-age (T6), and overaged treatments of each 
thickness and for panel widths of 36, 12, and 8 inches are presented in figures 8 
and 9. Figures 10 and 11 present data for further comparison of heat treatment. 

In comparing the influence of the three aging treatments upon fatigue- 
crack-growth behavior and crack growth rates of the 7079 material tested in 
this program, no really consistent differences between overaging and under- 
aging treatments were found. Generally, the peak-age (T6) condition tends 
to have somewhat faster crack growth o r  crack growth rates than either of the 
other two treatments. Looking at the crack-length-versus-cycles curves, it 
appears that figures 8 and 10 show some trend to favor underaging to obtain 
reduced crack-growth behavior. On the other hand, figures 8 and 10 show 
some data to indicate that overaging may require more cycles to develop a 
given crack length. With regard to the behavior of the crack growth rate, some 
of the curves for the overaged and underaged materials show diverging o r  
converging K versus rate behavior over the test K-range. Other K-rate curves 
indicate overlapping likely due to scatter in the experimental data, whereas some 
curves show a reversal of rate severity over the range of data for the underaged 
and overaged conditions. 
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'Effect of thickness. - The effect of panel thickness on the behavior of fatigue 
crack growth and rate of fatigue crack growth can be seen in figures 8 through 
11. Curves of 0.16-, 0.25-, 0.50-, and 0.63-inch thicknesses of underaged, 
peak-age (Th), and overaged treatments and of panel widths of 36, 12, and 8 
inches a re  presented. 

Comparing the rate of fatigue crack growth for each thickness over the 
range of cyclic stress-intensity levels shows that the rates generally fall into 
two groups. The slowest fatigue-crack-growth rate is exhibited by the 0.16- 
and 0.25-inch-thick panels. The fastest rate is shown to occur in the 0.50- and 
0.63-inch-thick panels. 

In considering the modes of fracture, these results are what would be 
expected. The mode of failure for through-the-thickness cracks in thick gages 
is predominantly plane strain. A plane-strain condition around the tip of a 
crack is more damaging because of the high degree of triaxiality and, thus, 
should produce a faster fatigue-crack-growth rate in thicker gages. 

Effect of panel width, - The effect of panel width on fatigue crack growth is 
shown in figures 8 and 9. Curves of 36-, 12-, and 8-inch-wide panels of each 
thickness and heat treatment are presented. 

In comparing the rate of fatigue crack growth for the 36-, 12-, and 8-inch- 
wide panels, the 36-inch-wide panels generally showed the slowest rate of 
fatigue crack growth over the cyclic stress intensities tested. The 12- and 
8-inch-wide-panel fatigue-crack-growth rates were essentially the same and 
faster than the 36-inch-wide-panel crack growth rates .  

Effect of test temperature. - The effect of test temperature on fatigue-crack- 
growth behavior and rate is shown in figures 10 and 11. Curves of room temper- 
ature and data on -65" F tests of 12-inch-wide panels of each thickness and heat 
treatment are given. 

These results show that the fatigue-crack-growth rate at -65" F is s lower 
than that at room temperature for each thickness and heat-treatment condition. 

Comparison of distilled-water and dry-air environments. - A comparison of 
fatigue-crack-growth behavior and rate in distilled-water and dry-air environ- 
ments for underaged, peak-age (T6), and overaged treatments are shown in 
figures 10 and 11. 

These comparative results for the transverse grain direction show the 
accelerating effect that distilled water has on fatigue-crack-growth rate over 
dry-air environment, The overaged material appears to have a lower crack 
growth rate than the underaged material. The peak-age (T6) material exhibits 
the fastest rate of all three conditions. 
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I Through- the- Thickness Fracture Toughness 

Plane-strain pop-in K I ~  and plane s t ress  Kc results for 7079 underaged, 
peak-age (T6), and overaged conditions are  given in table IV. In determining 
K, for each test condition and at room temperature, slow-crack-growth mea- 
surements were taken with high-speed photography to establish the crack length 
at the onset of rapid crack growth (i.e. critical crack length). Data plots of 
gross area s t ress  versus time before failure and of crack length versus time 
before failure as established from the oscillograph traces and motion picture 
results were developed. Typical examples of the slow-crack-growth measure- 
ments and the analysis are presented in figure 12. 

There were two types of slow-crack-growth behavior. A s  the crack length 
increased with time, the velocity of crack growth was either constant o r  steadily 
increasing with time. The stress-time behavior was generally linear to failure. 
The critical crack length was established as the crack length at the onset of 
rapid crack growth and was determined by the nature of the slow-crack-growth 
curves. In the two examples given in figure 12,  abrupt changes in crack velocity 
occurred at crack lengths of 3.30 and 5.25 inches and were, therefore, inter- 
preted as the critical crack lengths. This procedure was used to establish the 
critical crack lengths from the slow-crack-growth curves. 

Plane-strain pop-in KIc , p lane s t ress  Kc , and plastic-zonecorrected 
K 
pflstic-zone-corrected fracture-toughness values a r e  also given. 

and Kc values a r e  given in table IV. Plane-strain, plane-stress, and 

The effect of panel thickness on & and pop-in K I ~  is shown in figure 13. 
These data plots show that K I ~  and K, decrease with an increase in panel 
thickness. An increase in panel thickness apparently changed the failure mode 
from predominately plane s t ress  to predominately plane strain. In figure 13 
it can be seen that the peak-age (T6) condition produced the lower levels of 
plane-strain and plane-stress critical stress intensities. The underaged con- 
dition produced the higher levels of KlC and & over the overaged condition. 

In comparing the 12- by 36-inch-panel K I ~  and K, test  results, the 
transverse grain direction showed lower K I ~  and & values than the 
longitudinal-grain-direction values. A reduced temperature of - 65" F produced 
lower K I ~  and Kc values when compared to K I ~  and Kc at room temperature. 

The effect of panel width on measured Kc is shown in figure 14 for the 
underaged, peak-age (T6), and overaged conditions. The general trend of the 
data shows an increase in K, with an increase in panel width. The largest 
increases are  seen for the underaged and overaged conditions. A slight increase 
in K, with an increase in panel width is seen in the peak condition. The 
largest K, values measured in the program were 198.0 ksi  K n .  and 
170.4 ksi G. for 0.16-inch-thick underaged and overaged conditions. 

Residual strength as measured by the ratio of gross-area-failure s t ress  
and ultimate strength shows the general trends as fracture toughness. These 
values are  listed in table IV. 
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Figures 15, 16, and 17 are photographs of fracture surfaces of failed 
center-cracked panels. Some specimens, such as 6P-1T (figure 18), show 
beach marks produced by constant-amplitude loading. The light areas are 
regions of slow crack growth with surfaces having striations, whereas the dark 
areas are  regions of fast crack growth exhibiting the rapid-tearing, dimple-like 
fracture surface found in the electron-microscope study of fatigue fracture 
surfaces. Specimen 6U-3L shows delamination or  fissures that was demon- 
strated in some of the panels. However, the delamination was not consistent 
within a single plate of material (36 by 96 inches) or  grain direction. 
Photomicrographs of the delamination as  exhibited by specimen 2U-2L tested 
at  -65" F is shown in figure 19. Figure 19 also shows a photomicrograph of the 
variation of microstructure for underaged 0.63-inch-thick material in contrast 
to a uniform microstructure for 0.25-inch-thick material. This variation in 
microstructure may be the cause of increased K, for 0.63-in. thickness over 
0.50-inch-thickness as  shown in figure 13. 

3 

Surface-Flaw Crack-Growth Behavior and Fracture Toughness 

Surface-flaw fatigue-crack-growth behaviors of underaged, peak- age (T6), 
and overaged 7079 0.63-inch-thick plate are shown in figure 20. The surface- 
flawed specimens were fatigue cycled at initial- stress-intensity levels KIi of 
45, 50, 55, and 60 percent of K I ~  . Surface-flaw K I ~  values are  given in 
table V. Figure 2 1  is a comparison plot of K I ~ / K I ~  versus number of load 
cycles to failure Nf . 

These results show that overaged 7079 aluminum alloy produced the 
slowest surface-flaw crack growth rate and, thus, sustained the largest number 
of cycles. The peak-age (T6) condition sustained the lowest number of cycles 
and the underaged condition fell within peak and overaged conditions. 

The K I ~  values for the three aged conditions showed essentially the same 
fracture toughness. Photographs showing the fracture surfaces of the failed 
surface-flaw specimens are shown in figure 22. 

Verification Tensile Properties 

The chemical analysis of each as-received panel thickness as determined 
by the manufacturer and Boeing is given in table VI. 

Verification tensile properties as established by tensile testing of sheet 
and round tensile specimens are given in table VI1 for underaged, peak-age (T6), 
and overaged conditions. Additional verification tensile data for peak and over- 
aged conditions are given in table VIII. The additional data are  for tests of 
small tensile specimens. The specimens were heat treated with the 36-inch- 
wide panels. Tensile properties were determined for longitudinal and transverse 
grain directions at room temperature and for the longitudinal grain direction at 
-65" F. 
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s Typical stress-strain curves to failure for 7079 underaged, peak-age (T6), 
and overaged conditions are shown in figures 23 through 26. These curves are  
the average of three verification tensile specimens tested to failure for each 
condition evaluated. Typical curves are presented for thicknesses of 0.16, 
0.25, 0.50, and 0.63 inch of each of the three aged conditions for longitudinal 
and transverse grain directions at room temperature and for the longitudinal 
grain direction at -65" F. 

Table IX shows a comparison of the verification transverse- tensile-yield 
strength and the estimated range of yield strength from the aging curves. The 
ranges are transverse yield strengths that are  12.5 k 2.5 percent below peak 
transverse yield strengths as established from the aging curves generated for 
each thickness of material. These results show a good comparison of verified 
tensile properties and estimated values desired, except the 0.16-inch-thick 
underaged and the 0.16-inch-thick overaged materials, which were high and 
a little out of the range of desired values. However, the 0.16-inch-thick under- 
aged and overaged materials were of essentially the same transverse yield 
strengths. 

Precracked Charpy Toughness 

The precracked Charpy impact toughness W /Ao for each thickness and 
transverse and longitudinal grain directions for uderaged,  peak-age (T6), and 
overaged treatments are given in table X. 

The trend of these results shows that the underaged aging treatment 
produced the highest toughness and the peak-age (T6) treatment produced the 
lowest toughness. Overaged toughness fell between the underaged and peak-age 
(T6) toughness levels. Transverse Charpy impact- toughness values were lower 
than the longitudinal values. 

CON C LU SION S 

Based on the fatigue-crack-propagation and fracture-toughness data 
generated in this investigation, the following conclusions are made: 

(1) The heat treatments selected for the underaged, peak-age (T6), and 
overaged conditions of 7079 aluminum alloy were selected as: (a) underaged- 
used the as-received underaged condition of 4 hours at 250" F; (b) peak-age (T6)- 
heat treated according to standard commercial practice of 250" F for 48 hours; 
and (c) overaged -heat treated at 290" F for 56, 96, 120, and 90 hours for 
thicknesses of 0.16, 0.25, 0.50, and 0.63 inch, respectively. 

(2) Comparison of the through-the-thickness fatigue-crack-growth rate 
of underaged, peak-age (T6), and overaged 7079 aluminum alloys showed that 
there is no really consistent differences between underaging and overaging 
conditions. However, the peak- age (T6) condition generally exhibited the fastest 
fatigue-crack-growth rates than the other two treatments. 
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L (3) Comparison of the through-the-thickness fatigue-crack-growth rate 
of center-cracked panels with thicknesses of 0.16, 0.25, 0.50, and 0.63 inch 
in the three aging conditions evaluated showed a thickness effect on fatigue- 
crack-growth rate;  the slowest fatigue-crack-growth rate was exhibited by the 
0.16- and 0.25-inch-thick panels and the fastest rate of fatigue crack growth 
occurred in the 0.50-  and 0.63-inch-thick panels. 

(4) A panel-width effect on the through-the-thickness fatigue-crack- 
growth rate was found in testing center-cracked panel widths of 8, 12, and 
36 inches of the three aged conditions. The 8- and 12-inch-wide panel fatigue- 
crack-growth rates were essentially the same and faster than the 36-inch- 
wide-pane1 crack growth rates. 

(5) The fatigue-crack-growth rate at -65" F was slower than that at room 
temperature for each thickness and aging condition. 

(6) A comparison of rate of fatigue crack growth in distilled-water and 
dry-air environments for underaged, peak- age (T6), and overaged materials 
showed an acceleration in fatigue-crack-growth rate in distilled water over the 
dry-air rate for the transverse grain direction. The overaged material exhibited 
the slowest fatigue-crack-growth rate in distilled water. 

(7) Through-the-thickness fracture-toughness test results showed that 
underaged 7079 aluminum alloy produced the highest levels of K I ~  and Kc over 
peak-age (T6) and overaged conditions. Also, peak-age (T6) produced the lowest 
levels of K I ~  and Kc . 

(8) An increase in panel thickness showed a decrease in K I ~  and Kc 
levels for each of the three aging conditions, and an increase in center-cracked- 
panel width produced an increase in Kc . A reduced temperature of -65" F 
produced lower KIc and Kc values when compared to room temperature. 

versus loading-cycle-to-failure showed overaged 7079 aluminum alloy to have 
the slowest rate of growth and peak-age (T6) 7079 aluminium alloy to have the 
fastest rate of growth. Surface-flaw K I ~  test results showed all three treat- 
ments to have essentially the same K I ~  values. 

(9) Surface-flaw fatigue-crack-growth behavior measured as KIi/KIc 

(10) The verification-tensile-test results showed that heat treatment was 
verified, except for the 0.16-inch-thick underaged and the 0.16-inch-thick over- 
aged 7079 aluminum alloys, which were on the high side of the desired tensile- 
strength range. 

(11) The precracked Charpy impact-toughness tests showed that underaged 
7079 aluminum alloy produced the highest toughness and peak-age (T6) 7079 
aluminum alloy produced the lowest toughness. Longitudinal Charpy impact 
toughness was higher than transverse toughness. 

Commercial Airplane Division 
The Boeing Company 

Renton, Washington, September 15, 1967 
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FIGURE 3.-SPECIMEN LAYOUT, AND CENTER-NOTCHED AND SURFACE-FLAWED 

SPEC I MEN CON F I G U RAT IONS 
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(a) 1000-KIP MACHINE 

(b) 180-, 250- AND 300-KIP MACHINES 

FIGURE 4.-HYDRAULIC LOAD MACHINES 
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FIGURE 15.-FRACTURE SURFACES OF FAILED 12-INCH-WIDE CENTER-CRACKED PANELS TESTED AT 
-65OF AND ROOM TEMPERATURE 
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(a) UNDERAGED 

(b) PEAK AGE (T6) 

(c) OVERAGED 

FIGURE 22.-FRACTURE SURFACES OF SURFACE-F LAWED PANELS 

Note: Length in inches 
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Thickness, 
in. 

Aging Aging UTS, 
temp, O F  time, hr ksi 

TABLE I.-MECHANICAL PROPERTIES AND AGING CONDITIONS FOR 

7079 MATERIALS AS REPORTED BY MANUFACTURER 

YS, Elong 
ksi (2 in.), % 

0.160 

0.250 

0.500 

0.630 

245 to 255 

1 
4 77.3 63.1 16.0 

4 75.7 60.2 16.0 

4 74.3 59.4 16.5 

I 76.6 I 63.3 I 13.0 1 l 4  245 to 255 

47 



A 

TABLE II.  -TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 

7079 ALUMINUM ALLOY AT ROOM TEMPERATURE 

Speci- 

men 

1-19 

1-21 

1-1 1 

1-14 

1-2 

1-8 

1-1 

1-7 

2-19 
2-2 1 

2-1 2 

2-1 5 

2-6 

2-9 

2-1 1 

2-14 

2-2 

2-8 

2- 1 

2-7 

5-18 

5-20 

5- 1 

5-8 

5-5 

5-1 1 

5-7 

5-1 2 

5-6 

5-14 

Thickness, Aging Aging UTS, YS, Elong RA, 

in. TempPF time, hr (a) ksi ksi (1 in.), % % 

0.160 _-_-_- 0 79.1 63.7 15 26 

.160 -_-___ 0 71.7 57.3 b8 27 

.160 250 44 80.0 70.1 ( C) 19 

.160 250 44 81.5 71.1 12 25 

.160 250 68 79.4 69.5 12 25 

.160 250 68 78.8 68.1 11 24 

.160 250 116 79.2 69.6 11 17 

,160 250 116 74.4 65.3 (c) 23 

.250 ----_- 0 50.9 69.1 16 23 

.250 ------ 0 58.6 76.6 17 23 

.250 250 1 57.4 75.2 ( C) 23 

.250 250 1 77.0 58.6 18 23 

.250 250 2 75.7 58.1 16 22 

.250 250 2 67.4 53.1 ( C) 18 

.250 250 44 72.4 63.4 8 31 

,250 250 44 80.0 67.9 13 24 

.250 250 68 79.9 69.3 13 23 

.250 250 68 79.1 68.5 12 26 

.250 250 116 79.1 68.9 11 20 

.250 250 116 80.6 70.3 12 20 

.500 ------ 0 75.1 58.9 17 30 

.500 _-__-_ 0 75.0 58.8 17 26 

.500 250 1 76.2 60.0 17 30 

.500 250 1 75.2 59.8 16 31 

.500 250 2 76.0 61.7 16 32 

.500 250 2 75.6 60.7 16 31 

.500 250 44 79.3 68.9 13 38 

.500 250 44 79.3 69.0 14 29 

,500 250 68 79.0 69.7 13 31 

.500 250 68 77.7 68.0 9 30 
d 
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TABLE 11. -TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 

7079 ALUMINUM ALLOY A T  ROOM TEMPERATURE - Continued 

Speci- 
men 

5- 2 

5-1 5 

6-1 8 

6-20 

6-7 

6-1 2 

6-6 

6-1 4 

6-2 

6-1 5 

1-3 

1-16 

1-12 

1-1 5 

1-20 

1-23 

1-18 

1-22 
2-3 

2-16 

2-4 

2-24 

2-20 

2-23 

2-18 

2-22 

5-4 

5-1 3 

5-9 

5-23 

Thickness, 
in. 

0.500 

.500 

.630 

.630 

.630 

.630 

.630 

.630 

.630 

.630 

.160 

.160 

.160 

.160 

.160 

.160 

.160 

.160 

.250 

.250 

.250 

.250 

.250 

.250 

.250 

.250 

.500 

.500 

.500 

.500 

Aging 
tempref 

~ ~~ 

250 

250 
------ 

------ 

250 

250 

250 

250 

250 

250 

290 

290 

290 

290 

290 

290 

290 

290 
290 

290 

290 

290 

290 

290 

290 

290 

290 

290 

290 

290 

Aging 
time, hr (a) 

116 

116 

0 

0 

44 

44 

68 

68 

116 

116 

13 

13 

36 

36 

46 

46 

66 

66 
13 

13 

86 

86 

116 

116 

156 

156 

13 

13 

86 

86 

49 

UTS, 
ksi 

78.6 

79.0 

77.5 

77.2 

81.1 

81.2 

80.8 

81.2 

80.4 

80.0 

78.4 

77.5 

75.8 

75.5 

74.7 

75.0 

75.5 

74.5 
78.8 

78.4 

75.6 

74.3 

74.2 

74.0 

72.6 

73.3 

76.5 

77.8 

73.9 

73.7 

YS, 
ksi 

69.2 

69.5 

62.3 

60.8 

71.1 

70.8 

71.2 

71.9 

70.1 

68.8 

66.5 

66.6 

64.0 

63.4 

62.5 

62.8 

62.9 

61.9 
67.0 

66.2 

61.7 

59.8 

59.8 

63.4 

57.2 

58.1 

67.0 

67.7 

62.1 

61.5 

Elong 
(1 in.), % 

13 

16 

15 

15 

12 

12 

13 

13 

13 

13 

12 

13 

12 

12 

12 

11 

11 

13 
11 

12 

12 

12 

12 

12 

12 

11 

12 

12 

12 

13 

RA, 
% 

29 

32 

26 

25 

25 

26 

27 

27 

27 

28 

20 

23 

21 

20 

22 

18 

21 

27 
22 

24 

18 

23 

20 

22 

19 

18 

29 

30 

30 

31 



TABLE 11.-TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 
7079 ALUMINUM ALLOY AT ROOM TEMPERATURE -Concluded 

Speci- 
men 

5-19 
5-22 

5-1 7 
5-2 1 
6-4 
6-1 3 
6-9 
6-23 

6-1 9 
6-22 
6-1 7 
6-2 1 

r h ickness, 
in. 

0.500 
.500 

.500 
,500 

.630 

.630 

.630 

.630 

.630 

.630 

.630 

.630 

Aging 
temp," F 

290 
290 

290 
290 
290 
290 
290 
290 

290 

290 
290 
290 

Aging 
time, hr (a) 

116 
116 

156 
156 
13 
13 
86 
86 

116 

116 
156 
156 

UTS, 
ksi 

73.5 
73.3 

72.1 
72.6 
79.4 
80.6 
74.8 
75.6 

74.2 
75.0 
73.5 
74.0 

61 .O 

61 .O 

59.2 
59.5 
69.0 
70.2 
61.7 
61.8 

60.5 

61.4 
59.7 
60.1 

E long 
1 in.), % 

12 
13 

12 
12 
1 1  
12 
1 1  
13 

1 1  
1 1  
1 1  

1 1  

31 
33 

33 
32 
26 
27 
26 
31 

28 
26 
28 
24 

a Aging treatment performed by Boeing; the material had been aged 

4 hr at  250°F when received by Boeing. 

Speciment 1-21 broke 0.09 in. from gage mark. 

Specimen broke outside of gage length; no elongation data available. 
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Specimen 

(a) 

Elongation 
(2 in.), 

UTS , ys, 
"F % 

Test 
temp, ksi ksi 

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY 
(a) Underaged heat treatment 

16.0 
15.0 
17.0 

16.0 

25.0 
24.0 
24.0 

24.3 
- 

0.16-in. thickness 

17.0 
17.0 
18.0 

17.3 
- 

~ ~~~~~ 

1 U-3T 
1 U-4T 
1 U-5T 

Average 

1 U-4L 
1U-5L 
1U-6L 

Average 

1U-7L 
1 U-8L 
1u-9L 

Average 

24.0 
27.0 
24.0 

25.0 

2U-3T 
2U-4T 
2U-5T 

Average 

2U-4L 
2U-5L 
2U-6L 

Average 

2U-7L 
2U-8L 
2U-9L 

Average 

69 
70 
73 

73 
74 
74 

-65 
-65 
-65 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

79.8 
79.8 
79.5 

79.7 

79.0 
79.2 
79.4 

- 

79.2 

82.3 
81.7 
81.4 

81.8 

64.9 
64.7 
63.4 

64.3 

70.4 
71.1 
70.6 

70.7 

75.0 
73.7 
73.4 

74.0 

- 

0.25411. thickness 

78.1 
77.7 
78.5 

78.1 

77.4 
77.6 
77.6 

77.5 

79.0 
78.8 
78.6 

78.8 
- 

60.5 
60.4 
60.4 

60.4 

64.2 
63.8 
63.8 

63.9 

67.2 
67.4 
66.9 

67.2 

14.0 
14.0 
14.0 

14.0 

14.0 
13.0 
13.0 

13.3 

14.0 
14.0 
14.0 

14.0 

23.0 
25.0 
22.0 

23.3 

25.0 
22.0 
24.0 

23.7 

21 .o 
25.0 
25.0 

23.7 

17.0 
17.0 
17.0 

17.0 

27.0 
25.0 
27.0 

26.3 
- 
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Specimen 
(a) 

RA, 
% 

Elongation 
(1 in.), UTS, YS, 

Test 

ksi ksi temp, 
OF % 

5U-3T 
5U-4T 
5U-5T 

Average 

5u-4L 
5u-5L 
5U-6L 

Average 

5u-7 L 
5U-8L 
5u-9L 

Average 

6 U -3T 
6U-4T 
6U-5T 

Average 

6U-4L 
6U-5L 
6U-6L 

Average 

6U-7L 
6U-8L 
6U-9L 

Average 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

74.6 
75.1 
75.1 

74.9 

75.0 
75.6 
74.4 

75.0 

75.7 
75.1 
75.2 

75.3 

58.2 
59.1 
58.8 

58.7 

61.4 
61.9 
62.0 

61.8 

63.7 
62.2 
63.0 

63.0 

18.0 
17.0 
17.0 

17.3 

17.0 
18.0 
17.0 

17.3 

17.0 
16.0 
16.0 

16.3 

0.63-in. thickness 
I I I 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

80.3 
80.3 
85.2 

80.3 

80.5 
80.0 
79.6 

80.0 

81.5 
82.0 
81.3 

81.6 

63.3 
63.9 
64.7 

63.6 

67.8 
67.6 
66.9 

67.4 

70.6 
71.2 
72.4 

71.4 

16.0 
16.0 
16.0 

16.0 

17.0 
16.0 
16.0 

16.3 

16.0 
16.0 
15.0 

15.7 

32.0 
31 .O 
29.0 

30.7 

34.0 
35.0 
36.0 

35.0 

32.0 
33.0 
34.0 

33.0 

25.0 
24.0 
24.0 

24.5 

32.0 
31 .O 
25.0 

29.3 

26.0 
26.0 
23.0 

25.0 
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a 

4 TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 
7079 ALUMINUM ALLOY - Continued 

(b) Peak age (T6) heat treatment 

Specimen 
(a) 

RA, 
% 

Test Elongation 
temp, 

"F 
UTS, YS. (2 in.), ksi ksi 

% 

0.16-in. thickness 

1 P-3T 
1 P-4T 
1 P-5T 

Average 

1 P-4L 
1 P-5L 
1 P-6L 

Average 

1P-7L 
1 P-8L 
1 P-9L 

Average 

2P-3T 
2P-4T 
2P-5T 

Average 

2P-4L 
2P-5L 
2P-6L 

Average 

2P-7 L 
2P-8L 
2P-9L 

Average 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

77.6 
81.5 
81.2 

80.1 

79.7 
79.6 
79.5 

79.6 

84.5 
82.3 
84.5 

83.8 

68.4 
71.7 
71.4 

70.5 

73.7 
74.3 
73.6 

73.9 

78.2 
76.1 
78.2 

77.5 

0.25in. thickness 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

81.8 
82.0 
81.8 

81.9 

80.6 
80.5 
80.2 

80.4 

84.8 
83.8 
83.9 

84.3 

72.4 
72.7 
71.9 

72.3 

74.3 
74.1 
73.6 

74.0 

78.3 
75.7 
77.7 

77.2 

11.0 
11.0 
11.0 

11.0 

11.0 
11.0 
11.0 

11.0 

12.0 
12.0 
13.0 

12.3 

24.0 
25.0 
25.0 

24.7 

25.0 
24.0 
25.0 

24.7 

22.0 
25.0 
25.0 

24.0 

12.0 
12.0 
12.0 

12.0 

13.0 
13.0 
13.0 

13.0 

15.0 
13.0 
14.0 

14.0 

24.0 
23.0 
24.0 

23.7 

28.0 
28.0 
27.0 

27.7 

24.0 
23.0 
25.0 

24.0 
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TAB LE V I  I .-V E R I F I CAT I ON TE NSI LE PR OPE RT I ES FO R 6 

7079 ALUMINUM ALLOY - Continued 
(b) Peak-age (T6) heat treatment - Concluded 

Test 
temp, 

Specimen 

(a) "F 

Elongation 
(1 in.), 

% 

R A, UTS, YS, 
ksi ksi % 

0.50-in. thickness 
~ 

5P-3T 
5P-4T 
5P-5T 

Average 

5P-4L 
5P-5L 
5P-6L 

Average 

5P-7 L 
5P-8L 
5P-9L 

Average 

6P-3T 
6P-4T 
6P-5T 

Average 

6P-4L 
6P-5L 
6P-6L 

Average 

6P-7 L 
6P-8L 
6P-9L 

Average 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

~~ 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

79.6 
79.3 
79.4 

79.4 

78.8 
78.0 
78.8 

78.5 

80.8 
81 .O 
81.9 

81.2 

69.0 
69.5 
69.4 

69.3 

72.1 
70.8 
71.6 

71.5 

75.0 
74.4 
75.4 

74.9 

0.63-in. thickness 

79.3 
80.4 
79.8 

79.8 

80.9 
79.7 
79.6 

80.1 

84.5 
83.9 
82.7 

83.7 

69.0 
70.6 
70.0 

69.9 

73.4 
72.0 
71.8 

72.3 

74.5 
(C) 

76.4 

75.5 
I 

86 

13.0 
13.0 
14.0 

13.3 

14.0 
14.0 
14.0 

14.0 

12.0 
14.0 
15.0 

13.7 

12.0 
12.0 
11.0 

11.7 

13.0 
12.0 
12.0 

12.3 

12.0 
( C) 

13.0 

12.5 

31 .O 
29.0 
29.0 

29.7 

36.0 
35.0 
37.0 

36.0 

36.0 
34.0 
33.0 

34.3 

23.0 
25.0 
24.0 

24.0 

35.0 
32.0 
29.0 

32.0 

28.0 
( C) 

24.0 

27.5 



b 

i TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 
7079 ALUMINUM ALLOY - Continued 

(c) Overaged heat treatment 

Test 
temp, ksi 

Specimen UTS, 
(a) O F  

R A, 
% 

Elongation 

% 
(2 in 1, YS, 

ksi 

10-3T 
10-4T 
10-5T 

Average 

10-4L 
10-5L 
10-6L 

Average 

10-7L 
10-8L 
10-9L 

Average 

203T 
20-4T 
20-5T 

Average 

20-4L 
20-5L 
20-6L 

Average 

20-7 L 
20-8 L 
20-9L 

Average 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

0.16-in. thickness 

- 
75.5 64.4 

75.0 
75.6 
75.3 

75.3 

78.9 
79.0 
79.1 

79.0 

65.2 
65.4 
65.2 

65.3 

66.8 
67.5 
67.3 

67.2 

0.25-in. thickness 

74.7 
74.5 
74.7 

74.6 

73.5 
73.4 
73.1 

73.3 

78.7 
78.5 
78.1 

78.4 

61.2 
61.6 
61.4 

61.4 

61.5 
61.7 
61.6 

61.6 

64.5 
63.5 
64.6 

64.2 

10.0 
10.0 
10.0 

10.0 

12.0 
11.0 
12.0 

11.7 

12.0 
11.0 
12.0 

11.7 

12.0 
11.0 
10.0 

11.0 

13.0 
12.0 
12.0 

12.3 

13.0 
14.0 
14.0 

13.7 

18.0 
19.0 
19.0 

18.7 

27.0 
23.0 
26.0 

25.3 

27.0 
24.0 
26.0 

25.7 

26.0 
21.0 
15.0 

21 .o 

31 .O 
22.0 
30.0 

27.7 

29.0 
26.0 
29.0 

28.0 



a 

TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 
7079 ALUMINUM ALLOY - Concluded 
(c) Overaged heat treatment - Concluded 

t 

UTS, Test 
temp. 

Specimen 
ksi 

(a) OF 

Elongation 
(1 in.), 

% 

RA, 
% 

ys, 
ksi 

0.50-in. thickness 

50-3T 
50-4T 
50-5T 

Average 

50-4 L 
50-5 L 
50-6 L 

Average 

50-7 L 
50-8L 
50-9L 

Average 

60-3T 
60-4T 
60-5T 

Average 

60-4 L 
60-5L 
60-6L 

Average 

60-7 L 
60-8L 
60-9 L 

Average 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

~~ 

RT 
RT 
RT 

RT 
RT 
RT 

-65 
-65 
-65 

73.0 
72.8 
72.6 

72.8 

72.3 
72.2 
71.8 

72.1 

76.3 
76.2 
74.6 

75.7 

60.3 
60.1 
59.9 

60.1 

60.3 
60.1 
59.7 

60.0 

62.9 
62.6 
61.2 

62.2 

0.63-in. thickness 

74.0 
73.9 
74.3 

74.1 

74.0 
74.1 
73.7 

73.9 

77.3 
77.7 
77.7 

77.6 

60.8 
60.7 
61 .O 

60.8 

61.9 
61.9 
61.4 

61.7 

63.5 
63.5 
64.3 

63.8 

13.0 
13.0 
13.0 

13.0 

15.0 
15.0 
15.0 

15.0 

15.0 
15.0 
15.0 

15.0 

- 

13.0 
13.0 
13.0 

13.0 

14.0 
14.0 
15.0 

14.3 

14.0 
15.0 
15.0 

14.7 

Letters T and L indicate grain direction. 
Sudden load change before failure. Clamps stepped prior to yield. 

88 

33.0 
34.0 
31 .O 

32.7 

38.0 
41 .O 
41 .O 

40.0 

37.0 
38.0 
38.0 

37.7 

32.0 
29.0 
30.0 

30.0 

38.0 
38.0 
39.0 

38.3 

36.0 
33.0 
37.0 

35.3 



t 

TABLE VII1.-ADDITIONAL VERIFICATION TENSILE PROPERTIES FOR PEAK 
AND OVERAGED 7079 ALUMINUM ALLOYS a 

Specimen 

1-9 
1-24 

Average 

2-5 
6-3 
6-24 

Average 

1-6 
1-10 

Average 

2-13 
2-1 7 

Average 

5-1 6 
5-24 

Average 

6-5 
6-16 

Average 

Thickness, 
in. 

0.160 
0.160 

0.250 
0.630 
0.630 

0.160 
0.160 

0.250 
0.250 

0.500 
0.500 

0.630 
0.630 

RA, 
E longat ion Test UTS, ys, 

temp, OF 1 ksi I ksi 1 (2t’) I % 

Peak-age (T6) heat treatment 

72 
72 

72 
71 
70 

- 
79.8 
79.4 

79.6 

80.4 
80.6 
81.1 

80.8 

70.0 
69.1 

69.6 

69.9 
72.7 
71.9 

72.3 

- 

- 

Overaged heat treatment 

72 
72 

72 
72 

72 
71 

69 
69 

74.1 
73.3 

73.7 

73.2 
71.5 

72.4 

71.6 
71.6 

71.6 

73.6 
73.6 

73.6 

61.7 
61 .O 

61.4 

59.8 
57.6 

58.7 

58.4 
58.7 

58.6 

60.5 
60.3 

60.4 

- 

- 

- 

13.0 
12.0 

12.5 

12.0 
11.0 
11.0 

11.0 

12.0 
12.0 

12.0 

12.0 
12.0 

12.0 

13.0 
12.0 

12.5 

12.0 
11.0 

11.5 

25.0 
22.0 

23.5 

19.0 
25.0 
24.0 

24.5 

24.0 
23.0 

23.5 

21 .o 
22.0 

21.5 

32.0 
30.0 

31 .O 

28.0 
26.0 

27.0 

aTransverse grain direction 
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Estimated range Peak 
Aging 

in. Time, 

Transverse YS from aging 
(aging curve), curve, 

ksi 
hr ksi-ksi 

Thick ness, 

12.5 & 2.5%, 

TABLE IX.-COMPARISON OF VERIFICATION YIELD STRENGTtI AND ESTIMATED 
KANGE OF YIELD STRENGTH, FROM AGING CURVES FOR 7079 
ALUMtNUk ALLOY 

Verification 
transverse 

YS, ksi 

0.16 4 70.8 60.2-63.7 
(as received) 

70.0 59.5-63.0 

69.2 58.8-62.3 
4 

0.63 (as received) 71.6 60.9-64.4 
I 0.25 

0.50 

64.3 

60.4 

58.7 

63.6 

48 70.8 - 0.16 
0.25 48 70.0 

0.50 

0.63 

- 
48 69.2 - 

48 71.6 - 

a250 OF 

kommercial practice, 25OoF 

C290 O F 

70.5 

72.3 

69.3 

69.9 

90 

0.16 56 70.8 60.2-63.7 

0.25 96 70.0 59.5-63.0 

0.50 120 69.2 58.8-62.3 

0.63 90 71.6 60.9-64.4 

64.4 

61.4 

60.1 

60.8 



~ 

b 

'TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY 
(a) Underaged heat treatment 

.161 

.161 

.160 

Specimen 
(a) 

.040 

.046 

.043 

Thickness, 
in. 

5UT1 0.161 0.043 9.10 

5UT2 .162 .043 8.85 

U ncracked 
area, 

AOp2 in. 

212 

206 

Fracture, 

in.-lb 
WO, 

.162 

.162 

.162 

.162 

I mpact 
toughness, 

i n.4 bl i  n. 
WOIA,, 

.042 

.043 

.046 

.043 

1UT1 

1 UT2 

1 UT3 

1UL4 

1UL5 

1UL6 

8.60 

12.35 

13.70 

12.75 

2UT 1 

2UT2 

2UT3 

2u L4 

2u L5 

2U L6 

204 

287 

298 

296 

0.157 

.157 

.157 

.157 

.157 

.147 

6UT 1 

6UT2 

6UT3 

6U L4 

6U L5 

6U L6 

0.16-in. gageb 
0 041 

.044 

.044 

.042 

.044 

.04 1 

0.161 0.048 

.162 .049 

.162 .005 

.162 .049 

.162 .048 

.162 .049 

8.00 

9.10 

9.02 

12.12 

12.70 

11.35 

196 

207 

205 

286 

289 

278 

15.55 

13.80 

14.55 

21 .oo 
24.20 

23.00 

362 

329 

346 

525 

526 

535 

5UT3 

5u L4 

5 u  L5 

5U L6 

14.90 

14.40 

1 .oo 
27.80 

28.00 

27.30 

31 0 

294 

220 

567 

583 

557 

91 



3 

TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM 
ALLOY - Continued 

(b) Peak-age (T6) heat treatment (73OF test temperature) 

8.90 

9.75 

8.55 

16.85 

15.70 

207 

207 

204 

366 

357 

Specimen Thickness, 
in. 

(a) 

6PT 1 0.161 0.050 

6PT2 .160 .050 

6PT3 .160 .049 

6P L4 .162 .047 

6P L5 .160 .047 

6P L6 ,161 ,047 

1PT1 

1 PT2 

1 PT3 

1PL4 

1PL5 

1PL6 

6.55 

6.40 

6.50 

14.20 

13.95 

13.00 

2PT 1 

2PT2 

2PT3 

2P L4 

2P L5 

0.158 

.157 

.147 

.157 

. 1 57 

.147 

0.161 

.161 

.161 

.162 

.161 

Uncracked I Fracture I Impact 
energy I toughness 

in.-lb 

0.16-in. gage 

0.040 

.042 

.042 

.042 

.040 

.042 

0.25411. gage 

5.80 

6.15 

6.10 

8.10 

7.80 

8.55 

145 

146 

145 

193 

195 

204 

0.043 

.047 

.042 

.046 

.044 

2PL6 I .161 I .046 I 15.95 I 347 

5PT 1 

5PT2 

5PT3 

5P L4 

5P L5 

5P L6 

0.162 

.162 

.161 

.162 

.162 

.162 

0.50-in. gage 

0.045 

.043 

.045 

.045 

.045 

.045 

0.63-in. gage 

6.90 

6.40 

6.80 

11.00 

10.75 

10.70 

153 

149 

151 

244 

239 

238 

131 

128 

133 

302 

297 

276 

92 



- 

c 

9.25 

9.00 

8.80 

10.70 

12.25 

11.60 

i 

21 5 

220 

21 5 

274 

272 

252 

TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM 
ALLOY - Concluded 

4 (c) Overaged heat treatment (73OF test temperature) 

Specimen area, energy I toughness, 
Fracture Impact 

in.2 in.-lb in.- I b/i n. 

20T3 

20 L4 

10T1 

1 OT2 

1 OT3 

10L4 

10L5 

.162 

.161 

0.1 59 

.159 

.159 

.159 

.159 

60T1- 0.162 0.044 8.40 

60T2 .161 .042 8.00 

60T3 .161 .044 8.20 

60 L4 .161 .044 14.25 

60 L5 .161 .044 14.50 

60 L6 .161 .046 14.05 

0.1 6-in. gage 

0.043 

.04 1 

.041 

.039 

.045 

.046 

0.25-in. gage 

191 

190 

186 

324 

330 

305 

20T 1 0.161 I 20T2 1 .161 

50  L4 

50 L5 

0.043 

.042 

.043 

.043 

.043 

.043 

9.30 

9.00 

9.90 

13.40 

14.55 

13.40 

0.50-in. gage 

0.161 

.161 

.161 

.161 

.161 

.161 

0.043 

.043 

.042 

.040 

.044 

.044 

9.50 

9.50 

9.00 

11.80 

14.30 

14.30 

31 2 

22 1 

22 1 

214 

295 

325 

325 

32 CR-996 NASA-Langley, 1068 - 93 


