

FATIGUE-CRACK-PROPAGATION AND FRACTURE-TOUGHNESS CHARACTERISTICS OF 7079 ALUMINUM-ALLOY SHEETS AND PLATES IN THREE AGED CONDITIONS

by S. H. Smith, T. R. Porter, and W. D. Sump

|                             | CACCESSION NUMBER)               | (THRO)     |
|-----------------------------|----------------------------------|------------|
| Prepared by                 | 2 SW                             | ì          |
| THE BOEING COMPANY          | 日本 (PAGES)<br>日                  | (CODE      |
| Renton, Wash.               | C (NASĂ CR OR TM). OR AD NUMBER. | (CATEGORY) |
| for Langley Research Center | <b>L</b> .                       |            |

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1968

# FATIGUE-CRACK-PROPAGATION AND

# FRACTURE-TOUGHNESS CHARACTERISTICS OF 7079

## ALUMINUM-ALLOY SHEETS AND PLATES

## IN THREE AGED CONDITIONS

By S. H. Smith, T. R. Porter, and W. D. Sump

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

## Prepared under Contract No. NAS 1-6474 by THE BOEING COMPANY Renton, Wash.

## for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – CFSTI price \$3.00

PRECEDING FAGE BLANK NOT FILMED.

÷

#### FOREWORD

This contractor report describes work accomplished under NASA Contract NAS 1-6474 by The Boeing Company during the contract time period of July 18, 1966, to July 18, 1967. Boeing personnel who participated in the investigation include Mr. J. P. Butler, program manager; Mr. S. H. Smith, project leader; and Mr. T. R. Porter, research engineer. Structural testing of specimens was conducted by Mr. W. D. Sump under the supervision of Mr. W. C. Larson. Structural-testing instrumentation support was provided by Mr. D. C. English, and aging and heat-treatment support was provided by Mr. M. V. Hyatt and Mr. J. C. McMillan. Computer programming support was provided by Mr. M. G. Hellborg.

# PRECEDING FAGE BLANK NOT FILMED.

# CONTENTS

-

5

| SUMMARY                                                                         |
|---------------------------------------------------------------------------------|
| INTRODUCTION                                                                    |
| SYMBOLS                                                                         |
| FATIGUE CRACK PROPAGATION AND FRACTURE-TOUGHNESS ANALYSIS4                      |
| Fatigue Crack Propagation                                                       |
| Fracture-Toughness Analysis                                                     |
| EXPERIMENTAL PROGRAM AND SPECIMENS                                              |
| TESTING MACHINES AND PROCEDURES                                                 |
| RESULTS AND DISCUSSION                                                          |
| Heat-Treatment Study                                                            |
| Through-the-Thickness Fatigue-<br>Crack-Growth Behavior                         |
| Through-the-Thickness Fracture<br>Toughness • • • • • • • • • • • • • • • • • • |
| Surface-Flaw Fatigue-Crack-Growth<br>Behavior and Fracture Toughness            |
| Verification Tensile Properties                                                 |
| Precracked Charpy Toughness                                                     |
| CONCLUSIONS                                                                     |
| REFERENCES                                                                      |
| FIGURES                                                                         |
| TABLES                                                                          |

v

#### FATIGUE-CRACK-PROPAGATION AND

ŝ

## FRACTURE-TOUGHNESS CHARACTERISTICS OF 7079

### ALUMINUM-ALLOY SHEETS AND PLATES

#### IN THREE AGED CONDITIONS

By S. H. Smith, T. R. Porter, and W. D. Sump

#### SUMMARY

This experimental research and development program was conducted to characterize the fatigue-crack-propagation behavior, residual strength, and fracture toughness of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions for thicknesses of 0.16, 0.25, 0.50, and 0.63 inch. Tensile-property, fatigue-crack-propagation, and fracture-toughness tests were conducted to determine the effects of aging temperature and time, material thickness, specimen width, and configuration and physical environments of dry air, liquid nitrogen  $(-65^{\circ} F)$ , and distilled water on these properties. The materials were available in 36- by 96-inch sheets or plates. Using centrally notched specimens, the crack-growth and fracture-toughness tests were performed on 36-, 12-, and 8-inch-wide panels with the latter two sizes of specimens being cut from the fractured halves of the large panels. Residualstrength characteristics were also determined with surface-flawed specimens in the 0.63-inch-thickness tests. Precracked Charpy impact-toughness tests also were conducted for the three aged conditions and for the four panel thicknesses. Aging conditions were determined from tensile tests and were verified by tensile specimens cut from the fracture-tested material.

The results of the test program showed that 7079 peak-age (T6) material has a faster rate of fatigue crack growth and a lower fracture toughness and residual strength than underaged and overaged materials. Underaged material exhibited the greatest fracture toughness and essentially the same rate of fatigue crack growth as that of overaged material. A slower fatigue-crackgrowth rate was found for a decrease in plate thickness, an increase in panel width, a dry-air environment compared to distilled water, and a -65° F temperature compared to room temperature. Higher fracture-toughness and residualstrength values were found for a decrease in plate thickness, an increase in panel width, a longitudinal grain direction compared to transverse grain, and an increase in test temperature from  $-65^{\circ}$  F to room temperature.

#### INTRODUCTION

Many material and structural failures occur from cracks or flaws that pre-exist or that originate in the material or structure. These failures can occur at applied tensile stress levels well below the tensile ultimate or yield strength of the material due to the unidentified presence of the flaw. Therefore, to ensure the fracture-safe design of a structure, knowledge of the residualstrength or fracture-toughness characteristics of structural materials in the presence of these flaws must be established. In addition, the growth rate of cracks or flaws in the material subjected to cyclic loading must be known to establish the required inspection time intervals for structure subjected to fatigue loading.

This investigation was undertaken to determine the fatigue-crackpropagation behavior, plane-strain and plane-stress fracture toughnesses, and residual strength of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions. Sheet and plate thicknesses of 0.16, 0.25, 0.50, and 0.63 inch were evaluated. The stress-intensity-factor method, or as it is sometimes referred to as linear elastic fracture mechanics, was applied in generating and presenting the fatigue-crack-propagation and fracture-toughness characteristics of 7079 aluminum alloy in the three aged conditions. Underaged and overaged transverse-yield-strength levels were  $12.5 \pm 2.5$  percent below the peak transverse-yield-strength level. Tests were conducted at -65° F and room temperature. Cyclic fatigue-crack-propagation tests were conducted in a controlled dry-air environment and in distilled water.

A total of 363 tests were conducted in the program, including 204 tensile tests, 72 center-cracked-panel fatigue-crack-growth and fracture-toughness tests, 15 surface-flaw fatigue-crack-growth and fracture-toughness tests, and 72 precracked Charpy impact-toughness tests.

#### SYMBOLS

A<sub>0</sub> net area of precracked Charpy specimen, in.

b surface-flaw depth, in.

 $\frac{d(2a)}{dN}$  fatigue-crack-growth rate, microinches/cycle

- E Young's modulus of elasticity, ksi
- F(U) ultimate tensile strength, ksi
- F(Y) 0.2-percent offset yield strength, ksi

f cyclic frequency, cpm

 $G_c$  plane-stress fracture toughness, in.-lb/in.<sup>2</sup>

.

| $\mathbf{\tilde{G}_{c}}$ | plastic-zone-corrected plane-stress fracture toughness, inlb/in. $^2$                   |
|--------------------------|-----------------------------------------------------------------------------------------|
| $G_{IC}$                 | plastic-zone-corrected plane-strain fracture toughness, inlb/in. $^2$                   |
| Κ                        | maximum-cyclic-stress-intensity factor, ksi $\sqrt{in}$ .                               |
| К <sub>с</sub>           | plane-stress critical-stress-intensity factor, ksi $\sqrt{in}$ .                        |
| κ <sub>c</sub>           | plastic-zone-corrected plane-stress critical-stress-intensity<br>factor, ksi√in.        |
| КĮ                       | opening-mode stress-intensity factor, ksi $\sqrt{in}$ .                                 |
| К <sub>Ic</sub>          | plane-strain critical-stress-intensity factor, ksi $\sqrt{in}$ .                        |
| $\overline{K_{Ic}}$      | plastic-zone-corrected plane-strain critical-stress-intensity factor, ksi $\sqrt{in}$ . |
| К <sub>Ii</sub>          | initial applied plane-strain stress-intensity level, ksi $\sqrt{i}$ n.                  |
| к <sub>тах</sub>         | maximum cyclic stress-intensity factor, ksi $\sqrt{in}$ .                               |
| $\mathbf{L}$             | center-cracked-panel length, in.                                                        |
| м                        | constant in crack-growth-rate formula                                                   |
| Ν                        | fatigue cycles, cycles                                                                  |
| Nf                       | surface-flaw cycles to failure, cycles                                                  |
| n                        | exponent in crack-growth-rate formula                                                   |
| R                        | ratio of minimum to maximum fatigue cyclic stress levels                                |
| RA                       | reduction in area, percent                                                              |
| S                        | percent shear lip observed on fracture surface                                          |
| Т                        | thickness, in.                                                                          |
| t                        | thickness, in.                                                                          |
| ULT                      | ultimate tensile strength, ksi                                                          |
| UTS                      | ultimate tensile strength, ksi                                                          |
| W                        | center-cracked-panel width, in.                                                         |
| Wo                       | precracked Charpy impact energy, inlb/in. $^2$                                          |
| w                        | plastic-zone width, in.                                                                 |
|                          | 3                                                                                       |

- YS 0.2-percent offset yield strength, ksi
- $\Theta$  angle describing a point on the surface-crack front, degrees
- $\mu$  Poisson's ratio
- $\sigma_{\rm g}$  gross-area stress, ksi
- $\dot{\sigma}_{g}$  gross-area-stress rate, ksi/sec
- $\sigma_{\rm net}$  net-area stress, ksi
- $\sigma_{
  m vs}$  0.2-percent offset yield strength, ksi
- $\sigma_0$  gross-area stress level at pop-in, ksi
- *ø* complete elliptical integral of second kind
- 2A fatigue crack length, in.
- 2a fatigue crack length, in.
- 2a<sub>cr</sub> critical crack length, in.
- 2c surface-flaw length, in.

### FATIGUE-CRACK-PROPAGATION AND FRACTURE-TOUGHNESS ANALYSIS

The analysis methods used in investigating the fatigue crack propagation and fracture-toughness behaviors of 7079 aluminum alloys were based on linear elastic fracture mechanics or the stress-intensity-factor method. The stress-intensity-factor method of fracture mechanics has become a useful engineering tool in investigating the mechanics of subcritical crack growth and the final crack instability in metals due to static and fatigue loads, particularly where the material exhibits little net-section yielding. This method has been shown to be applicable in analyzing the subcritical fatigue-crack-growth behavior of surface or embedded flaws and through-the-thickness cracks in structure. Practical applications of the method are given in references 1, 2, and 3. Recently, the stress-intensity-factor method was used in determining the effects of humidity and liquid environments on the fatigue crack growth and sustained-load crack-growth behaviors of metals (refs. 4 through 7). The remainder of this discussion describes the stress-intensity-factor method and presents the stress-intensity-factor formulae for the specimen configurations and analysis used in this investigation. Additional analysis techniques used in analyzing the fatigue-crack-propagation and fracture-toughness data are also discussed.

#### Fatigue Crack Propagation

The stress-intensity-factor parameter K is a measure of the localized stress field around the tip of a crack and is a function of the remotely applied stress and crack size. For crack growth due to constant-amplitude fatigue loading, the maximum stress-intensity level and the fluctuation in stress-intensity level control the rate of fatigue crack growth (ref. 8). To compare the behavior of the rate of fatigue crack growth of different materials or to establish the effect of metallurgical, geometrical, or environmental variables on the rate of fatigue crack growth, identical levels of fatigue stress-intensity factors can be compared.

In this investigation, the center-notched panel configuration was used in generating the majority of the data on fatigue crack propagation The stressintensity-factor formula for the center-notched panel is given by Irwin (ref. 9) as:

$$K = \sigma_g \sqrt{\pi a} \left(\frac{W}{\pi a} \tan \frac{\pi a}{W}\right)^{1/2}$$

Under fatigue cycling of a center-notched panel, a fatigue crack initiates at the notch tip and propagates at a steadily increasing rate for constant amplitude and maximum cyclic stress levels. The fatigue-crack-propagation data was recorded in the form of crack length at specific applied-load cycles until the fatigue crack propagated to a length of approximately 35 percent of the panel width.

A computer program was used to analyze the generated data on fatigue crack growth for growth-rate effects. The program computes the average maximum-cyclic-stress-intensity factor between measured crack-length-cycles data points and the corresponding average rate of fatigue crack growth. The application of a computerized curve-fitting process to the crack-length-cycles data to determine an analytical rate behavior was complicated by differences in the curves defined by the actual test points from the various test panels. A simple, single functional form for the crack-length-cycles data was not found to fit all the data. Hence, the crack-length-cycles curves were drawn through the actual measured data.

A regression analysis or a least-squares fit of the calculated values of stress-intensity factor and fatigue-crack-growth rate was performed with a computer program. This analysis fitted a straight line through a log-log plot of maximum-cyclic-stress-intensity factor versus fatigue-crack-growth rate. Such a regression analysis as this reflects a power law for the rate of fatigue crack growth. According to Paris (ref. 10), the rate of fatigue crack growth over many log cycles of rate can be expressed as:

$$\frac{d(2a)}{dN} = \frac{K_{max}n}{M}$$

or in logarithmic terms, is a linear equation:

$$\log \frac{d2a}{dN} = n\log K_{max} - \log M$$

where n is suggested as 4.

Curves of crack length versus cycles and maximum cyclic stressintensity factor versus the rate of fatigue crack growth were used to show the effects of heat treatment, material thickness, distilled water versus dry air, test temperature, and panel width on the behavior and rate of fatigue crack growth of the tested material.

The characteristics of low-cycle fatigue crack growth of thick plate were measured and analyzed by surface-flawed testing. The stress-intensity factor for a semi-elliptical surface crack in a plate is given by Irwin (ref. 11) as:

$$K_{I} = \frac{1.95 \sigma_{g} \sqrt{b}}{\phi}$$
$$\phi = \int_{0}^{\frac{\pi}{2}} \left(1 - \frac{c^{2} - b^{2}}{c^{2}} \sin^{2}\Theta\right)^{1/2} d\Theta$$

Values of  $\phi$  for various ratios of b/2c were found in standard mathematical tables.

The technique for evaluating the behavior of low-cycle fatigue crack growth by surface-flaw testing was developed by Tiffany (ref. 2). This technique was used in this investigation by fatigue cycling surface-flawed specimens. Baseline plane-strain critical-stress-intensity levels  $K_{Ic}$  were first established for the different aged conditions. Then initial stress-intensity levels, which were a specific percentage of  $K_{Ic}$ , were applied to various surface-flawed specimens and fatigue cycled to failure at maximum cyclic stress levels corresponding to desired stress-intensity levels. The behavior of fatigue crack growth was characterized by data plots of  $K_{Ii}/K_{Ic}$  versus fatigue cycles to failure, where  $K_{Ii}$  is the initial-applied-stress-intensity level.

Fracture-Toughness Analysis

Two typical types of failure modes can occur during material fracture and are described by the mechanics of crack growth. These two modes of failure are termed "plane stress" and "plane strain" and are a function of the threedimensional stress field near a crack front.

For a through-the-thickness crack in a sheet or a plate, both plane-strain and plane-stress failure modes or mixed-mode failure can occur. If the material is ductile or if test conditions are such that the local stress acting normal to the plane of the sheet or plate is zero during fracture, the mode of failure is plane stress. This type of failure is characterized by extensive shear lips on the fracture surface. On the other hand, if the material is brittle or if the test conditions are such that the local strain acting normal to the sheet or plate is zero, the failure mode is plane strain. This mode of failure is characterized by the appearance of a flat fracture surface. Mixed modes of failure are characterized by flat areas and shear-lip areas on the fracture face and are plane stress with the degree of plane stress being dependent on thickness.

The fracture-toughness values of plane-strain and plane-stress fracture modes are determined by the critical-stress-intensity levels  $K_{IC}$  and  $K_{C}$  as measured during the static pull of the center-cracked panel. During the slow-loading pull of the fatigue-cracked panel, the first possible mode of failure is that of plane strain  $K_{IC}$ , and a pop-in or a local discontinuity in the load strain curve, often associated with an audible click, may occur. Slow crack growth follows pop-in, and the onset of rapid fracture is a plane-stress failure mode and is measured as  $K_{C}$ . If no pop-in is detected and slow crack growth is absent, the onset of rapid fracture is a plane-strain failure mode.

Plane-strain pop-in  $K_{Ic}$  and plastic-zone-corrected  $K_{Ic}$  values were determined from the following equations, respectively (ref. 12):

$$K_{Ic} = \sigma_{o} \left( W \tan \frac{\pi a}{W} \right)^{1/2}$$
$$\overline{K_{Ic}} = \sigma_{o} \left[ W \tan \frac{\pi}{W} \left( a + \frac{K_{Ic}^{2}}{6\pi \sigma_{ys}^{2}} \right) \right]^{1/2}$$

Plane stress  $K_c$  and plastic-zone-corrected  $K_c$  values were determined from the following equations:

For plane stress,

$$K_c = \sigma_g \left( W \tan \frac{\pi a_{cr}}{W} \right)^{1/2}$$

For plastic-zone-corrected,

$$\overline{K_{c}} = \sigma_{g} \left[ W \tan \frac{\pi}{W} \left( a_{cr} + \frac{K_{c}^{2}}{2\pi\sigma_{ys}^{2}} \right) \right]^{1/2}$$

The plastic-zone widths were computed using the following equations: For plane strain,

$$\overline{w} = \frac{K_{Ic}^{2}}{6\pi\sigma_{ys}^{2}}$$

For plane stress,

$$\overline{w} = \frac{K_c^2}{2\pi\sigma_{vs}^2}$$

Plane-strain and plane-stress fracture-toughness values were computed using the following equations:

For plane strain,

$$G_{IC} = (1 - \mu^2) \frac{K_{IC}^2}{E}$$
$$\overline{G_{IC}} = (1 - \mu^2) \frac{\overline{K_{IC}^2}}{E}$$

For plane stress,

$$G_{c} = \frac{K_{c}^{2}}{E}$$
$$\overline{G_{c}} = \frac{\overline{K_{c}^{2}}}{E}$$

For a surface crack in a plate, the stress state in the periphery of the crack is that of plane strain, thus resulting in a plane-strain failure mode.

The plane-strain critical-stress-intensity factor was computed from the following equation:

$$K_{Ic} = \frac{1.95 \sigma_g \sqrt{b}}{\phi}$$

The plastic-zone-corrected  $K_{Ic}$  value was computed from the following equation:

$$\overline{\mathbf{K}_{\mathrm{Ic}}} = \frac{1.95 \, \boldsymbol{\sigma}_{\mathrm{g}} \sqrt{\mathrm{b}}}{\left[ \boldsymbol{\phi}^2 - 0.212 \left( \frac{\boldsymbol{\sigma}_{\mathrm{g}}}{\boldsymbol{\sigma}_{\mathrm{ys}}} \right)^2 \right]^{1/2}}$$

Another measurement of material toughness is by a precracked Charpy impact test. The parameter  $W_0/A_0$  is impact toughness, where  $W_0$  is the impact energy in inch-pounds and  $A_0$  is the net fracture area. The different failure modes of plane strain and plane stress cannot be separated by this type of test; therefore, the test is used only as a qualitative measurement of fracture toughness.

### EXPERIMENTAL PROGRAM AND SPECIMENS

Z

This experimental research and development program was designed to characterize the fatigue-crack-propagation behavior, fracture toughness, and residual-strength properties of 7079 aluminum alloy in the underaged, peak-age (T6), and overaged conditions. The effects of aging temperature and time, material thickness, specimen configuration, and the physical environments of dry air, liquid nitrogen (-65° F), and distilled water on these properties were evaluated.

The 7079 aluminum alloy used in this investigation was furnished by the Government. Twelve sheets or plates of 36- by 96-inch 7079 alloy materials in the underaged condition and aged for 4 hours at 245 to  $255^{\circ}$  F were received in nominal thicknesses of 0.16, 0.25, 0.50, and 0.63 inch for testing. Asreceived mechanical properties and chemical composition as reported by the manufacturer are given in table I.

The experimental program consisted of two phases. The first phase was an aging and heat-treatment study to determine the time at temperature required to produce underaged and overaged tensile yield strengths  $12.5 \pm 2.5$  percent below the peak-age (T6) condition. The second phase consisted of a study of fatigue crack propagation, residual strength, and fracture toughness utilizing center-notched, surface-flawed, and precracked Charpy impact specimens and associated testing techniques. Flow charts showing the detailed testing performed in this program are shown in figure 1.

The objective of the first phase of this program was to determine the time required at 250 and 290°F to age each thickness of material to the following conditions:

(1) Peak transverse yield strength (T6) using 250° F aging temperature

(2) Underage to  $12.5 \pm 2.5$  percent below peak transverse tensile yield strength using 250° F aging temperature

(3) Overaged to  $12.5 \pm 2.5$  percent below peak transverse tensile yield strength using 290° F aging temperature

Considering the manufacturer's tensile-property data and aging curves, mechanical properties were determined for an aging temperature of 250° F and total aging times of 5, 6, 48, 72, and 120 hours. Likewise, mechanical properties were checked for an aging temperature of 290° F and aging times of 17, 40, 50, 70, 90, 120, and 160 hours. In materials of certain thicknesses, some different aging times were used to develop only that portion of the aging curves that was of primary interest.

The material for the aging study was taken from a 4- by 36-inch strip from one end of one panel of each thickness. The specimens were fabricated in the transverse grain direction after aging. The sheet and round tensile used in this phase are shown in figure 2. The sheet specimen was used for panel thick-

nesses of 0.16 and 0.25 inch and the round specimen for panel thicknesses of 0.50 and 0.63 inch. All tensile testing for this phase was conducted at room temperature.

Fabricated tensile specimens not used in developing aging curves were heat treated with the 36-inch-wide plates for additional verification of heat treatment.

After aging data and curves were obtained, aging times were selected to give the three desired strength levels. The four reduced-size 36- by 92-inch panels, from which the aging-mechanical-properties study was made, were used for the underaged condition. The remaining 36- by 96-inch panels were aged to peak strength and overaged conditions. Material tensile properties of each panel were determined to verify heat treatment. This was done by obtaining longitudinal and transverse tensile properties from every 36- by 96-inch and 36- by 92-inch panel following testing of the large panels for fatigue-crack-growth rate and residual strength.

The evaluation of the effect of material thickness and heat treatment on fracture toughness, residual strength, and fatigue-crack-propagation behavior of 7079 aluminum alloy was based mainly on center-notched panels. Variables studied include thickness, panel width, grain direction, temperature, and wet and dry environments. In addition. some surface-flawed specimens and configurations fabricated only from 0.63-inch-thick material were tested by fatigue cycling to determine the behavior of surface-flawed crack growth and to provide further residual-strength and fracture-toughness data. Figure 3 shows the specimen layout.

Room-temperature and dry-air fatigue-crack-propagation behaviors of each heat treatment and thickness were determined by fatigue cycling the 36- by 96- or 92-inch, 12- by 36-inch, and 8- by 24-inch center-notched panels of longitudinal grain direction. Dry air is an air environment with a relative humidity of less than 10 percent.

The effect of reduced temperature on the behavior of fatigue crack propagation was investigated at  $-65^{\circ}$  F. Center-notched 12- by 36-inch panels of longitudinal grain direction were fatigue cycled at  $-65^{\circ}$  F and the crack-growth data were compared with the 12- by 36-inch-panel data obtained at room temperature.

The effects of a wet environment on the behavior of fatigue crack propagation was investigated for each thickness and heat treatment. This behavior was established by fatigue cycling center-notched panels (12 by 36 inches) of transverse grain direction. The behavior of fatigue crack growth in distilled water (complete immersion) was measured and compared with its behavior in dry air.

The behavior of the low-cycle fatigue crack growth of each heat treatment in dry air was determined by fatigue cycling surface-flawed specimens. Baseline plane-strain fracture toughness was established by fracture testing one of these specimens from each heat treatment. These specimens contained an initial machined flaw depth of 0.290 inch and a flaw length of 1.450 inches. The remainder of the surface-flawed specimens with an initial machined flaw depth

of 0.100 inch and length of 0.400 inch were fatigue cycled to failure at constant cyclic gross-area stress levels corresponding to initial maximum stress-intensity levels of 45, 50, 55, and 60 percent of baseline plane-strain critical-stress-intensity levels.

Hole patterns for grip attachments in all specimens were drilled in each end by a programmed tape-controlled automatic drill press to ensure uniformity among all specimens. All specimens were center-notched by first drilling a small hole in the center of the panel and then inserting a saw through the hole to saw the initial notch. Surface flaws were produced by an electrical-discharge machining process.

After fracture testing, the mechanical properties and complete curves of stress-strain to failure for each heat treatment and thickness of material were determined. The large-sheet tensile specimen used for thicknesses of 0.16 and 0.25 inch and the round tensile specimen used for thicknesses of 0.50 and 0.63 inch are shown in figure 2.

Longitudinal and transverse precracked Charpy impact toughnesses were determined for each thickness and heat treatment. A 0.16-inch-thick specimen was used, and, for thicknesses greater than 0.16 inch, the specimens were fabricated at the surface of the material. The precracked Charpy specimen is shown in figure 2.

#### TESTING MACHINES AND PROCEDURES

The following paragraphs discuss the tensile, center-cracked-panel, surface-flaw, and Charpy impact-testing techniques and equipment used in this investigation.

The tensile specimens of the aging study were tested at room temperature, and the verification tensile specimens were tested at room temperature and  $-65^{\circ}$  F. All specimens were tested in a 20-kip universal testing machine. Aged tensile specimens were tested at an applied strain rate of 0.005 in./in./min. Stress-strain curves were only developed past the 0.2-percent offset yield stress level. Complete curves of stress-strain to failure were developed in the verification tensile testing, and an applied strain rate of 0.005 in./in./min was used past the 0.2-percent offset yield strength and 0.100 or 0.020 in./in./min was used to failure. A cold box using nitrogen gas released from a liquid-nitrogen tank was used for  $-65^{\circ}$  F tensile testing.

Fatigue cycling and fracture testing were performed in servovalvecontrolled hydraulic test machines. Five hydraulic machines were used having static load capacities of 125, 180, 250, 300, and 1000 kips. The 1000-kip hydraulic machine is shown in figure 4; all 36-inch-wide panels were tested in this machine. The 180-, 250-, and 300-kip hydraulic load machines are shown in figure 4. All 12- and 8-inch-wide panels were tested in these machines. Pin-ended loading grips, which ensured axial loading, were bolted to the ends of the specimens in preparing them for fatigue cracking. The surface area adjacent to the initial saw cut and along the line of expected crack extension was polished for easy visualization and measuring of the fatigue crack growth.

Uniform applied gross-area stresses were applied hydraulically to the panels during fatigue cycling and were controlled by single-channel electronic load-control units. The maximum cyclic gross-area-stress levels applied to the panels was 12 ksi, except for one 36-inch-wide panel in which a stress level of 8 ksi was applied. The ratio of minimum to maximum cyclic gross-area stresses R was 0.05, except for the 12-inch-wide transverse panels tested in distilled water and dry air and in which R was 0.67. The cycling frequency varied from 35 to 120 cpm, depending on the panel thickness and hydraulic machine utilized. All 36-inch-wide panels were buckling restrained by aluminum channel sections to prevent buckling in and out of the plane. Only the 0.16- and 0.25-inch-thick, 8- and 12-inch-wide panels were buckling restrained. No 8-inchwide panels were restrained during fracture testing because of the small panel width. Figure 5 shows a sketch of the buckling restraints used for each panel width.

The dry-air environment with its relative humidity of less than 10 percent was maintained by passing bottled room air through a desiccating column and then into a plastic chamber mounted on the specimen around the crack area. The plastic chamber acted as an additional buckling restraint. Nitrogen gas from a liquid-nitrogen tank was used as a cooling media for  $-65^{\circ}$  F testing. Like the dry-air environment, the nitrogen gas was passed into plastic chambers mounted onto the panel. Temperature control was maintained by monitoring thermocouples mounted on the panels.

The fatigue-crack lengths in the 36-inch-wide panels were measured to the nearest thousandths of an inch using a surveyor's transit and a steel scale mounted on the panel. The lengths of the fatigue cracks in the 12- and 8-inchwide panels were measured with a calibrated 50-power microscope. Fatigue cycling was interrupted to record crack lengths, and the static mean load level was maintained on the panels.

During the accumulation of fatigue-crack-growth data, a maximum allowable rate of fatigue crack growth of approximately 500 microinches per cycle was imposed in the testing so that panel failure during fatigue cycling would not occur. If this rate level was reached prior to completion of the test, the maximum cyclic stress level was reduced in steps to maintain a rate less than 500 microinches per cycle.

Plane-strain and plane-stress fracture toughnesses were determined by static loading the panels to failure at a gross-area stress rate of 1000 psi/sec following fatigue-crack-growth testing. High-speed photography (1000 frames/ sec) was used to detect fatigue crack pop-in and to measure slow crack growth for determining critical crack length. Also during fracture toughness testing, an accelerometer and a linearly varying differential transducer (LVDT) were used to aid in detecting fatigue crack pop-in. The accelerometer was taped to one corner of the specimen and the transducer was mounted across the crack to measure crack-opening displacement. Load-time trace, accelerometer noise

trace, and transducer measurements were recorded simultaneously with highresponse galvonometers in a time-based oscillograph. Testing for fracture toughness at  $-65^{\circ}$  F did not use high-speed photography or transducers because of poor visability and the cold temperature of  $-65^{\circ}$  F.

٠

The crack growth of the baseline surface-flawed specimens was monitored with a 50-power microscope, and, when the surface crack had fully initiated in the periphery of the flaw, fatigue cycling was stopped and the panel was fracturetested. A programmed gross-area stress rate of 1000 psi/sec was used. This test served as a baseline plane-strain critical-stress-intensity level, and the remaining four surface-flawed specimens were fatigue cycled to failure at selected, constant initial-stress-intensity levels. Crack growth measurements were taken with a 50-power microscope, and all fatigue cycling was conducted in dry air.

The finished, machined Charpy specimens were precracked by fatigue in a precracking machine to form a crack at the root of the machined notch. This machine applies simple beam-bending loads to the specimen through an eccentric at 1800 cpm and shuts off automatically as the deflection of the specimen increases with the initiation of a crack. Uniform cracks approximately 0.050 inch deep were grown by this method. Impact testing was then accomplished in an impact tester of 288 in.-lb capacity and at a hammer velocity of 11.4 fps. The energy required to fracture was measured in inch-pounds.

#### **RESULTS AND DISCUSSION**

The following paragraphs discuss the experimental results of the aging study and the fatigue-crack-propagation and fracture-toughness study.

#### Heat-Treatment Study

Transverse tensile properties were determined for each of four thicknesses (0.16, 0.25, 0.50, and 0.63 inch) for various aging times at 250 and 290° F. Table II lists the detailed transverse tensile properties for each of the specimens tested in the aging study. Aging times, temperature, ultimate strength, 0.2-percent offset yield strength, percent elongation in 1 inch, and percent reduction in area values are given.

Aging curves at 250 and 290° F are given in figures 6 and 7. It is apparent from each of these aging curves that each thickness of material differs slightly in its aging behavior at 250 and 290° F. The reason for this deviation may be due to the different quenching characteristics of the various panels or different processing techniques.

Based on the aging data presented above and a discussion with the contracting agency, the following heat treatments for the underaged, peak-age (T6), and overaged conditions were selected:

(1) Underaged— Use the as-received underaged condition of 4 hours at 250° F.

(2) Peak-age (T6) condition-Heat treat at 250° F for 48 hours (standard commercial practice).

(3) Overaged—Heat treat at  $290^{\circ}$  F for 56, 96, 120, and 90 hours for 0.16-, 0.25-, 0.50-, and 0.63-inch thicknesses, respectively.

Through-The-Thickness Fatigue-Crack-Growth Behavior

Through-the-thickness fatigue-crack-growth data for all center-crackedpanel tests conducted in this program are tabulated in table III. Presented in the table are specimen identification and laboratory raw data in the form of measured crack length and cycles and the crack lengths at which the maximum cyclic stress levels were changed. A coding system was used to identify the aged condition, thickness, and grain direction of each panel. In the panel number, U is underaged, P is peak age (T6), O is overaged, T is transverse grain, and L is longitudinal grain. In addition, the numbers 1, 2, 5, and 6 designate 0.16-, 0.25-, 0.50-, and 0.63-inch thicknesses, respectively. Plots of the fatigue-crack-growth data are presented in figures 8 through 11 in the form of fatigue crack length versus cycles and rate of fatigue crack growth versus maximum cyclic stress-intensity factor. To simplify the graphical presentation of the data, only crack length-cycles curves are presented and the straight-line plots of fatigue-crack-growth rate versus maximum-cyclic-stress-intensity factor are the results of the least-squares fit of a straight-line behavior through the calculated points from the raw data.

The following subsections are discussions of the results of the effects of heat treatment, thickness, test temperature, and panel width on fatigue-crackgrowth behavior and a comparison of wet-air versus dry-air environments.

Effect of heat treatment. — The effect of heat treatment on fatigue-crack-growth behavior and rate of fatigue crack growth is shown in figures 8 through 11. Comparison of underaged, peak-age (T6), and overaged treatments of each thickness and for panel widths of 36, 12, and 8 inches are presented in figures 8 and 9. Figures 10 and 11 present data for further comparison of heat treatment.

In comparing the influence of the three aging treatments upon fatiguecrack-growth behavior and crack growth rates of the 7079 material tested in this program, no really consistent differences between overaging and underaging treatments were found. Generally, the peak-age (T6) condition tends to have somewhat faster crack growth or crack growth rates than either of the other two treatments. Looking at the crack-length-versus-cycles curves, it appears that figures 8 and 10 show some trend to favor underaging to obtain reduced crack-growth behavior. On the other hand, figures 8 and 10 show some data to indicate that overaging may require more cycles to develop a given crack length. With regard to the behavior of the crack growth rate, some of the curves for the overaged and underaged materials show diverging or converging K versus rate behavior over the test K-range. Other K-rate curves indicate overlapping likely due to scatter in the experimental data, whereas some curves show a reversal of rate severity over the range of data for the underaged and overaged conditions. Effect of thickness. — The effect of panel thickness on the behavior of fatigue crack growth and rate of fatigue crack growth can be seen in figures 8 through 11. Curves of 0.16-, 0.25-, 0.50-, and 0.63-inch thicknesses of underaged, peak-age (Té), and overaged treatments and of panel widths of 36, 12, and 8 inches are presented.

.

Comparing the rate of fatigue crack growth for each thickness over the range of cyclic stress-intensity levels shows that the rates generally fall into two groups. The slowest fatigue-crack-growth rate is exhibited by the 0.16-and 0.25-inch-thick panels. The fastest rate is shown to occur in the 0.50- and 0.63-inch-thick panels.

In considering the modes of fracture, these results are what would be expected. The mode of failure for through-the-thickness cracks in thick gages is predominantly plane strain. A plane-strain condition around the tip of a crack is more damaging because of the high degree of triaxiality and, thus, should produce a faster fatigue-crack-growth rate in thicker gages.

Effect of panel width. — The effect of panel width on fatigue crack growth is shown in figures 8 and 9. Curves of 36-, 12-, and 8-inch-wide panels of each thickness and heat treatment are presented.

In comparing the rate of fatigue crack growth for the 36-, 12-, and 8-inchwide panels, the 36-inch-wide panels generally showed the slowest rate of fatigue crack growth over the cyclic stress intensities tested. The 12- and 8-inch-wide-panel fatigue-crack-growth rates were essentially the same and faster than the 36-inch-wide-panel crack growth rates.

Effect of test temperature. — The effect of test temperature on fatigue-crackgrowth behavior and rate is shown in figures 10 and 11. Curves of room temperature and data on  $-65^{\circ}$  F tests of 12-inch-wide panels of each thickness and heat treatment are given.

These results show that the fatigue-crack-growth rate at  $-65^{\circ}$  F is slower than that at room temperature for each thickness and heat-treatment condition.

Comparison of distilled-water and dry-air environments. — A comparison of fatigue-crack-growth behavior and rate in distilled-water and dry-air environments for underaged, peak-age (T6), and overaged treatments are shown in figures 10 and 11.

These comparative results for the transverse grain direction show the accelerating effect that distilled water has on fatigue-crack-growth rate over dry-air environment. The overaged material appears to have a lower crack growth rate than the underaged material. The peak-age (T6) material exhibits the fastest rate of all three conditions.

#### Through-the-Thickness Fracture Toughness

Plane-strain pop-in  $K_{IC}$  and plane stress  $K_C$  results for 7079 underaged, peak-age (T6), and overaged conditions are given in table IV. In determining  $K_C$  for each test condition and at room temperature, slow-crack-growth measurements were taken with high-speed photography to establish the crack length at the onset of rapid crack growth (i.e. critical crack length). Data plots of gross area stress versus time before failure and of crack length versus time before failure as established from the oscillograph traces and motion picture results were developed. Typical examples of the slow-crack-growth measurements and the analysis are presented in figure 12.

There were two types of slow-crack-growth behavior. As the crack length increased with time, the velocity of crack growth was either constant or steadily increasing with time. The stress-time behavior was generally linear to failure. The critical crack length was established as the crack length at the onset of rapid crack growth and was determined by the nature of the slow-crack-growth curves. In the two examples given in figure 12, abrupt changes in crack velocity occurred at crack lengths of 3.30 and 5.25 inches and were, therefore, interpreted as the critical crack lengths. This procedure was used to establish the critical crack lengths from the slow-crack-growth curves.

Plane-strain pop-in  $\rm K_{IC}$ , plane stress  $\rm K_{C}$ , and plastic-zone-corrected  $\rm K_{IC}$  and  $\rm K_{C}$  values are given in table IV. Plane-strain, plane-stress, and plastic-zone-corrected fracture-toughness values are also given.

The effect of panel thickness on  $K_C$  and pop-in  $K_{IC}$  is shown in figure 13. These data plots show that  $K_{IC}$  and  $K_C$  decrease with an increase in panel thickness. An increase in panel thickness apparently changed the failure mode from predominately plane stress to predominately plane strain. In figure 13 it can be seen that the peak-age (T6) condition produced the lower levels of plane-strain and plane-stress critical stress intensities. The underaged condition produced the higher levels of  $K_{IC}$  and  $K_C$  over the overaged condition.

In comparing the 12- by 36-inch-panel  $K_{IC}$  and  $K_{C}$  test results, the transverse grain direction showed lower  $K_{IC}$  and  $K_{C}$  values than the longitudinal-grain-direction values. A reduced temperature of -65° F produced lower  $K_{IC}$  and  $K_{C}$  values when compared to  $K_{IC}$  and  $K_{C}$  at room temperature.

The effect of panel width on measured  $K_c$  is shown in figure 14 for the underaged, peak-age (T6), and overaged conditions. The general trend of the data shows an increase in  $K_c$  with an increase in panel width. The largest increases are seen for the underaged and overaged conditions. A slight increase in  $K_c$  with an increase in panel width is seen in the peak condition. The largest  $K_c$  values measured in the program were 198.0 ksi  $\sqrt{in}$ . and 170.4 ksi  $\sqrt{in}$ . for 0.16-inch-thick underaged and overaged conditions.

Residual strength as measured by the ratio of gross-area-failure stress and ultimate strength shows the general trends as fracture toughness. These values are listed in table IV. Figures 15, 16, and 17 are photographs of fracture surfaces of failed center-cracked panels. Some specimens, such as 6P-1T (figure 18), show beach marks produced by constant-amplitude loading. The light areas are regions of slow crack growth with surfaces having striations, whereas the dark areas are regions of fast crack growth exhibiting the rapid-tearing, dimple-like fracture surface found in the electron-microscope study of fatigue fracture surfaces. Specimen 6U-3L shows delamination or fissures that was demonstrated in some of the panels. However, the delamination was not consistent within a single plate of material (36 by 96 inches) or grain direction. Photomicrographs of the delamination as exhibited by specimen 2U-2L tested at -65° F is shown in figure 19. Figure 19 also shows a photomicrograph of the variation of microstructure for 0.25-inch-thick material. This variation in microstructure may be the cause of increased  $K_c$  for 0.63-in. thickness over 0.50-inch-thickness as shown in figure 13.

ŝ

Surface-Flaw Crack-Growth Behavior and Fracture Toughness

Surface-flaw fatigue-crack-growth behaviors of underaged, peak-age (T6), and overaged 7079 0.63-inch-thick plate are shown in figure 20. The surface-flawed specimens were fatigue cycled at initial-stress-intensity levels  $K_{Ii}$  of 45, 50, 55, and 60 percent of  $K_{Ic}$ . Surface-flaw  $K_{Ic}$  values are given in table V. Figure 21 is a comparison plot of  $K_{Ii}/K_{Ic}$  versus number of load cycles to failure  $N_f$ .

These results show that overaged 7079 aluminum alloy produced the slowest surface-flaw crack growth rate and, thus, sustained the largest number of cycles. The peak-age (T6) condition sustained the lowest number of cycles and the underaged condition fell within peak and overaged conditions.

The  $K_{IC}$  values for the three aged conditions showed essentially the same fracture toughness. Photographs showing the fracture surfaces of the failed surface-flaw specimens are shown in figure 22.

#### Verification Tensile Properties

The chemical analysis of each as-received panel thickness as determined by the manufacturer and Boeing is given in table VI.

Verification tensile properties as established by tensile testing of sheet and round tensile specimens are given in table VII for underaged, peak-age (T6), and overaged conditions. Additional verification tensile data for peak and overaged conditions are given in table VIII. The additional data are for tests of small tensile specimens. The specimens were heat treated with the 36-inchwide panels. Tensile properties were determined for longitudinal and transverse grain directions at room temperature and for the longitudinal grain direction at  $-65^{\circ}$  F.

Typical stress-strain curves to failure for 7079 underaged, peak-age (T6), and overaged conditions are shown in figures 23 through 26. These curves are the average of three verification tensile specimens tested to failure for each condition evaluated. Typical curves are presented for thicknesses of 0.16, 0.25, 0.50, and 0.63 inch of each of the three aged conditions for longitudinal and transverse grain directions at room temperature and for the longitudinal grain direction at  $-65^{\circ}$  F.

Table IX shows a comparison of the verification transverse-tensile-yield strength and the estimated range of yield strength from the aging curves. The ranges are transverse yield strengths that are  $12.5 \pm 2.5$  percent below peak transverse yield strengths as established from the aging curves generated for each thickness of material. These results show a good comparison of verified tensile properties and estimated values desired, except the 0.16-inch-thick underaged and the 0.16-inch-thick overaged materials, which were high and a little out of the range of desired values. However, the 0.16-inch-thick underaged and overaged materials were of essentially the same transverse yield strengths.

#### Precracked Charpy Toughness

The precracked Charpy impact toughness  $W_0/A_0$  for each thickness and transverse and longitudinal grain directions for underaged, peak-age (T6), and overaged treatments are given in table X.

The trend of these results shows that the underaged aging treatment produced the highest toughness and the peak-age (T6) treatment produced the lowest toughness. Overaged toughness fell between the underaged and peak-age (T6) toughness levels. Transverse Charpy impact-toughness values were lower than the longitudinal values.

#### CONCLUSIONS

Based on the fatigue-crack-propagation and fracture-toughness data generated in this investigation, the following conclusions are made:

(1) The heat treatments selected for the underaged, peak-age (T6), and overaged conditions of 7079 aluminum alloy were selected as: (a) underaged—used the as-received underaged condition of 4 hours at  $250^{\circ}$  F; (b) peak-age (T6)—heat treated according to standard commercial practice of  $250^{\circ}$  F for 48 hours; and (c) overaged—heat treated at  $290^{\circ}$  F for 56, 96, 120, and 90 hours for thicknesses of 0.16, 0.25, 0.50, and 0.63 inch, respectively.

(2) Comparison of the through-the-thickness fatigue-crack-growth rate of underaged, peak-age (T6), and overaged 7079 aluminum alloys showed that there is no really consistent differences between underaging and overaging conditions. However, the peak-age (T6) condition generally exhibited the fastest fatigue-crack-growth rates than the other two treatments. (3) Comparison of the through-the-thickness fatigue-crack-growth rate of center-cracked panels with thicknesses of 0.16, 0.25, 0.50, and 0.63 inch in the three aging conditions evaluated showed a thickness effect on fatigue-crack-growth rate; the slowest fatigue-crack-growth rate was exhibited by the 0.16- and 0.25-inch-thick panels and the fastest rate of fatigue crack growth occurred in the 0.50- and 0.63-inch-thick panels.

1

(4) A panel-width effect on the through-the-thickness fatigue-crackgrowth rate was found in testing center-cracked panel widths of 8, 12, and 36 inches of the three aged conditions. The 8- and 12-inch-wide panel fatiguecrack-growth rates were essentially the same and faster than the 36-inchwide-panel crack growth rates.

(5) The fatigue-crack-growth rate at  $-65^{\circ}$  F was slower than that at room temperature for each thickness and aging condition.

(6) A comparison of rate of fatigue crack growth in distilled-water and dry-air environments for underaged, peak-age (T6), and overaged materials showed an acceleration in fatigue-crack-growth rate in distilled water over the dry-air rate for the transverse grain direction. The overaged material exhibited the slowest fatigue-crack-growth rate in distilled water.

(7) Through-the-thickness fracture-toughness test results showed that underaged 7079 aluminum alloy produced the highest levels of  $\rm K_{IC}$  and  $\rm K_{C}$  over peak-age (T6) and overaged conditions. Also, peak-age (T6) produced the lowest levels of  $\rm K_{IC}$  and  $\rm K_{C}$ .

(8) An increase in panel thickness showed a decrease in  $\rm K_{IC}$  and  $\rm K_{C}$  levels for each of the three aging conditions, and an increase in center-cracked-panel width produced an increase in  $\rm K_{C}$ . A reduced temperature of -65° F produced lower  $\rm K_{IC}$  and  $\rm K_{C}$  values when compared to room temperature.

(9) Surface-flaw fatigue-crack-growth behavior measured as  $K_{Ii}/K_{IC}$  versus loading-cycle-to-failure showed overaged 7079 aluminum alloy to have the slowest rate of growth and peak-age (T6) 7079 aluminium alloy to have the fastest rate of growth. Surface-flaw  $K_{IC}$  test results showed all three treatments to have essentially the same  $K_{IC}$  values.

(10) The verification-tensile-test results showed that heat treatment was verified, except for the 0.16-inch-thick underaged and the 0.16-inch-thick overaged 7079 aluminum alloys, which were on the high side of the desired tensilestrength range.

(11) The precracked Charpy impact-toughness tests showed that underaged 7079 aluminum alloy produced the highest toughness and peak-age (T6) 7079 aluminum alloy produced the lowest toughness. Longitudinal Charpy impact toughness was higher than transverse toughness.

Commercial Airplane Division The Boeing Company Renton, Washington, September 15, 1967

#### REFERENCES

- 1. Tiffany, C.F; and Masters, J.N.: Fracture Toughness Testing and its Applications. ASTM STP 381, Applied Fracture Mechanics. Am. Soc. Testing Mats., 1965.
- Tiffany, C. F.; and Lorenz, P. M.: An Investigation of Low-Cycle Fatigue Failures Using Applied Fracture Mechanics. (AF ML-TDR-64-53, AF33(657)-10251) The Boeing Company, Aero-Space Division, May 1964.
- 3. Donaldson, D. R.; and Anderson, W.E.: Crack Propagation Behavior of Some Airframe Materials. Proc. Crack Propagation Symposium, Cranfield, England, Sept. 1961.
- 4. Special ASTM Committee: Materials Research and Standards. vol. 4, no. 3, Progress in Measuring Fracture Toughness and Using Fracture Mechanics. Am. Soc. Testing Mats., March 1964.
- 5. Piper, D.E.; Smith, S.H.; and Carter, R.V.: Corrosion Fatigue and Stress-Corrosion Cracking in Aqueous Environments. Paper presented at Materials for Oceanspace Symposium, Nat. Met. Congress, Chicago, Ill., 1966.
- 6. Dahlberg, E.P.: Fatigue Crack Propagation in High Strength 4340 Steel in Humid Air. Trans. ASM, vol. 58, 1965.
- Brown, B.F.: Materials Research and Standards. vol. 6, no. 3, A New Stress-Corrosion Cracking Test Procedure for High-Strength Alloys. March 1966.
- 8. Paris, P.C.; Gomez, M.P.; and Anderson, W.E.: The Trend in Engineering. vol. 13, no. 1, A Rational Analytical Theory of Fatigue. University of Washington, Seattle, Wn., Jan. 1961.
- Irwin, G. R.: Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech., Trans. ASME, vol. 24, no. 3, Sept. 1957.
- 10. Paris, P.C.; and Erdogan, F.: A Critical Analysis of Crack Propagation Laws. J. Basic Eng., Trans. ASME, ser. D, vol. 85, no. 4, Dec. 1963.
- 11. Irwin, G. R.: Crack Extension Force for a Part Through Crack in a Plate. J. Appl. Mech., Trans. ASME, 62-WA-13.
- 12. Srawley, J.E.; and Brown, W.F.: Fracture Toughness Testing and Its Applications. STP 381, Fracture Toughness Testing. Am. Soc. Testing Mats., 1965.



(b) FATIGUE-CRACK-PROPAGATION AND FRACTURE-TOUGHNESS STUDY

#### FIGURE 1.-FLOW CHARTS OF EXPERIMENTAL PROGRAM AND SPECIMENS





(c) LARGE SHEET TENSILE SPECIMEN

(d) CHARPY IMPACT SPECIMEN

\$

1



FIGURE 2.-CONFIGURATIONS OF TENSILE AND CHARPY IMPACT SPECIMENS





2

(a) 1000-KIP MACHINE



(b) 180-, 250- AND 300-KIP MACHINES

FIGURE 4.--HYDRAULIC LOAD MACHINES



ì

ŝ

FIGURE 5.-SCHEMATIC DIAGRAM OF ALUMINUM-CHANNEL BUCKLING RESTRAINTS, TYPICAL INSTALLATION



(a) t = 0.16 IN.





(c) t = 0.50 IN.

(d) t = 0.63 IN.

FIGURE 6.-AGING CURVES FOR 7079 ALUMINUM ALLOY FOR AGING TEMPERATURE OF 250° F





1







(d) t = 0.63 IN.

FIGURE 7. -- AGING CURVES FOR 7079 ALUMINUM ALLOY FOR\_AGING TEMPERATURE OF 290° F.



FIGURE 8.—FATIGUE-CRACK-PROPAGATION CURVES, LONGITUDINAL GRAIN, ROOM-TEMPERATURE, DRY AIR,  $\sigma_g$  = 12 KSI (EXCEPT AS NOTED), R = 0.05, f = 35 TO 120 CPM





FIGURE 9.–RATE OF FATIGUE CRACK GROWTH VERSUS STRESS INTENSITY, LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR,  $\sigma_g$  = 12 KSI (EXCEPT AS NOTED), R = 0.05, f = 35 TO 120 CPM



FIGURE 10.—FATIGUE-CRACK-PROPAGATION CURVES, 12-IN. PANEL WIDTH,  $\sigma g$ = 12 KSI, f = 120 CPM



Legend ---- t = 0.50 in. ---- t = 0.25 in. ---- t = 0.63 in. ---- t = 0.16 in.

FIGURE 11.—RATE OF FATIGUE CRACK GROWTH VERSUS STRESS INTENSITY, 12-IN. PANEL WIDTH,  $\sigma_g = 12$  KSI, f = 120 CPM

.







FIGURE 12.-TYPICAL SLOW-CRACK-GROWTH MEASUREMENTS



FIGURE 13.-EFFECT OF THICKNESS ON POP-IN  $K_{1c}$  AND  $K_{c}$ 



(c) OVERAGED

FIGURE 14.-EFFECT OF CENTER-CRACKED-PANEL WIDTH ON Kc







PEAK AGE (T6)

Thickness, in.

.



(a) LONGITUDINAL GRAIN,
 ROOM TEMPERATURE,
 DRY AIR

b) LONGITUDINAL GRAIN, -65°F, LIQUID NITROGEN

Notes: 1. Length in inches 2. One-half of surface shown

FIGURE 15.–FRACTURE SURFACES OF FAILED 12-INCH-WIDE CENTER-CRACKED PANELS TESTED AT -65°F AND ROOM TEMPERATURE



UNDERAGED





PEAK AGE (T6)

Thickness, in. 0.16 0.25 50-21 0.50 0-2T 0.63 -11 **OVERAGED** (a) TRANSVERSE GRAIN, (b) TRANSVERSE GRAIN, ROOM TEMPERATURE, ROOM TEMPERATURE, DISTILLED WATER DRY AIR Notes: 1. Length in inches. 2. One-half of surface shown FIGURE 16.-FRACTURE SURFACES OF FAILED 12-INCH-WIDE CENTER-CRACKED PANELS TESTED IN DRY AIR AND DISTILLED WATER



.

### UNDERAGED



### PEAK AGE (T6)



## OVERAGED

FIGURE 17.-FRACTURE SURFACES OF FAILED 36-INCH-WIDE CENTER-CRACKED PANELS TESTED, LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR

#### Thickness, in.

Thickness, in. 0.16

0.25

0.50

0.63



1P-3L

2P-31

-31

UNDERAGED



(b) DELAMINATION APPEARANCE



Peak age (T6), 0.63 in. thick, transverse grain

(c) BEACH MARKS, CONSTANT-AMPLITUDE LOADING (12 IN. WIDE)



OVERAGED

(a) LONGITUDINAL GRAIN, ROOM TEMPERATURE, DRY AIR



2. One-half of surface shown

FIGURE 18.—FRACTURE SURFACES OF FAILED 8-IN.-WIDE CENTER-CRACKED PANELS AND ONE 12-IN.-WIDE PANEL TESTED



MAGNIFICATION: 16.5X

MAGNIFICATION: 200X



MAGNIFICATION: 500X

(a) DELAMINATION



0.65 IN. THICK,

(b) VARIATION OF MICROSTRUCTURE

FIGURE 19.-DELAMINATION AND VARIATION OF MICROSTRUCTURE







FIGURE 21.—COMPARISON OF K<sub>Ii</sub>/K<sub>Ic</sub> VERSUS FATIGUE CYCLES TO FAILURE FOR 0.63-IN.-THICK 7079 UNDERAGED, PEAK-AGE (T6), AND OVERAGED MATERIALS



(a) UNDERAGED



(b) PEAK AGE (T6)



(c) OVERAGED

Note: Length in inches

FIGURE 22.-FRACTURE SURFACES OF SURFACE-FLAWED PANELS



FIGURE 23. –STRESS-STRAIN CURVES FOR 0.16-IN.-THICK 7079 ALUMINUM ALLOY











FIGURE 26,-STRESS-STRAIN CURVES FOR 0.63-IN.-THICK 7079 ALUMINUM ALLOY

| Thickness,<br>in. | Aging<br>temp, <sup>o</sup> F | Aging<br>time, hr | UTS,<br>ksi  | YS,<br>ksi   | Elong<br>(2 in.), % |
|-------------------|-------------------------------|-------------------|--------------|--------------|---------------------|
| 0.160<br>0.250    | 245 to 255                    | 4                 | 77.3<br>75.7 | 63.1<br>60.2 | 16.0<br>16.0        |
| 0.500             | 245 to 255                    | 4                 | 74.3<br>76.6 | 59.4<br>63.3 | 16.5<br>13.0        |

# TABLE I.-MECHANICAL PROPERTIES AND AGING CONDITIONS FOR7079 MATERIALS AS REPORTED BY MANUFACTURER

| Speci- | Thickness, | Aging   | Aging          | UTS, | YS,              | Elong      | RA, |
|--------|------------|---------|----------------|------|------------------|------------|-----|
| men    | in.        | Temp,°F | time, hr (a)   | ksi  | ksi              | (1 in.), % | %   |
| 1-19   | 0.160      |         | 0              | 79.1 | 63.7             | 15         | 26  |
| 1-21   | .160       |         | 0              | 71.7 | 57.3             | b8         | 27  |
| 1-11   | .160       | 250     | 44             | 80.0 | 70.1             | (c)        | 19  |
| 1-14   | .160       | 250     | 44             | 81.5 | 71.1             | 12         | 25  |
| 1-2    | .160       | 250     | 68             | 79.4 | 69.5             | 12         | 25  |
| 1-8    | .160       | 250     | 68             | 78.8 | 68.1             | 11         | 24  |
| 1-1    | .160       | 250     | 116            | 79.2 | 69.6             | 11         | 17  |
| 1-7    | .160       | 250     | 116            | 74.4 | 65.3             | (c)        | 23  |
| 2-19   | .250       |         | 0              | 50.9 | 69.1             | 16         | 23  |
| 2-21   | .250       |         | 0              | 58.6 | 76.6             | 17         | 23  |
| 2-12   | .250       | 250     | 1              | 57.4 | 75.2             | (c)        | 23  |
| 2-15   | .250       | 250     | 1              | 77.0 | 58.6             | 18         | 23  |
| 2-6    | .250       | 250     | 2              | 75.7 | 58.1             | 16         | 22  |
| 2-9    | .250       | 250     | 2              | 67.4 | 53.1             | (c)        | 18  |
| 2-11   | .250       | 250     | 44             | 72.4 | 63.4             | 8          | 31  |
| 2-14   | .250       | 250     | 44             | 80.0 | 67. <del>9</del> | 13         | 24  |
| 2-2    | .250       | 250     | 68             | 79.9 | 69.3             | 13         | 23  |
| 2-8    | .250       | 250     | 68             | 79.1 | 68.5             | 12         | 26  |
| 2-1    | .250       | 250     | 116            | 79.1 | 68.9             | 11         | 20  |
| 2-7    | .250       | 250     | 116            | 80.6 | 70.3             | 12         | 20  |
| 5-18   | .500       |         | 0              | 75.1 | 58.9             | 17         | 30  |
| 5-20   | .500       |         | 0              | 75.0 | 58.8             | 17         | 26  |
| 5-1    | .500       | 250     | 1              | 76.2 | 60.0             | 17         | 30  |
| 5-8    | .500       | 250     | 1              | 75.2 | 59.8             | 16         | 31  |
| 5-5    | .500       | 250     | 2              | 76.0 | 61.7             | 16         | 32  |
| 5-11   | .500       | 250     | 2 <sup>.</sup> | 75.6 | 60.7             | 16         | 31  |
| 5-7    | .500       | 250     | 44             | 79.3 | 68.9             | 13         | 38  |
| 5-12   | .500       | 250     | 44             | 79.3 | 69.0             | 14         | 29  |
| 5-6    | .500       | 250     | 68             | 79.0 | 69.7             | 13         | 31  |
| 5-14   | .500       | 250     | 68             | 77.7 | 68.0             | 9          | 30  |

# TABLE II. – TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR7079 ALUMINUM ALLOY AT ROOM TEMPERATURE

| Speci-<br>men | Thickness,<br>in. | Aging<br>temp,°F | Aging<br>time, hr (a)                 | UTS,<br>ksi | YS,<br>ksi | Elong<br>(1 in.), % | RA,<br>% |
|---------------|-------------------|------------------|---------------------------------------|-------------|------------|---------------------|----------|
|               |                   | <u> </u>         | · · · · · · · · · · · · · · · · · · · |             |            | · · ·               |          |
| 5-2           | 0.500             | 250              | 116                                   | 78.6        | 69.2       | 13                  | 29       |
| 5-15          | .500              | 250              | 116                                   | 79.0        | 69.5       | 16                  | 32       |
| 6-18          | .630              |                  | 0                                     | 77.5        | 62.3       | 15                  | 26       |
| 6-20          | .630              |                  | 0                                     | 77.2        | 60.8       | 15                  | 25       |
| 6-7           | .630              | 250              | 44                                    | 81.1        | 71.1       | 12                  | 25       |
| 6-12          | .630              | 250              | 44                                    | 81.2        | 70.8       | 12                  | 26       |
| 6-6           | .630              | 250              | 68                                    | 80.8        | 71.2       | 13                  | 27       |
| 6-14          | .630              | 250              | 68                                    | 81.2        | 71.9       | 13                  | 27       |
| 6-2           | .630              | 250              | 116                                   | 80.4        | 70.1       | 13                  | 27       |
| 6-15          | .630              | 250              | 116                                   | 80.0        | 68.8       | 13                  | 28       |
| 1-3           | .160              | 290              | 13                                    | 78.4        | 66.5       | 12                  | 20       |
| 1-16          | .160              | 290              | 13                                    | 77.5        | 66.6       | 13                  | 23       |
| 1-12          | .160              | 290              | 36                                    | 75.8        | 64.0       | 12                  | 21       |
| 1-15          | .160              | <b>29</b> 0      | 36                                    | 75.5        | 63.4       | 12                  | 20       |
| 1-20          | .160              | 290              | 46                                    | 74.7        | 62.5       | 12                  | 22       |
| 1-23          | .160              | 290              | 46                                    | 75.0        | 62.8       | 11                  | 18       |
| 1-18          | .160              | 290              | 66                                    | 75.5        | 62.9       | 11                  | 21       |
| 1-22          | .160              | 290              | 66                                    | 74.5        | 61.9       | 13                  | 27       |
| 2-3           | .250              | 290              | 13                                    | 78.8        | 67.0       | 11                  | 22       |
| 2-16          | .250              | 290              | 13                                    | 78.4        | 66.2       | 12                  | 24       |
| 2-4           | .250              | 290              | 86                                    | 75.6        | 61.7       | 12                  | 18       |
| 2-24          | .250              | 290              | 86                                    | 74.3        | 59.8       | 12                  | 23       |
| 2-20          | .250              | 290              | 116                                   | 74.2        | 59.8       | 12                  | 20       |
| 2-23          | .250              | 290              | 116                                   | 74.0        | 63.4       | 12                  | 22       |
| 2-18          | .250              | 290              | 156                                   | 72.6        | 57.2       | 12                  | 19       |
| 2-22          | .250              | 290              | 156                                   | 73.3        | 58.1       | 11                  | 18       |
| 5-4           | .500              | 290              | 13                                    | 76.5        | 67.0       | 12                  | 29       |
| 5-13          | .500              | 290              | 13                                    | 77.8        | 67.7       | 12                  | 30       |
| 5-9           | .500              | 290              | 86                                    | 73.9        | 62.1       | 12                  | 30       |
| 5-23          | .500              | 290              | 86                                    | 73.7        | 61.5       | 13                  | 31       |

# TABLE II. – TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 7079 ALUMINUM ALLOY AT ROOM TEMPERATURE - Continued

| Speci-<br>men | Thickness,<br>in. | Aging<br>temp,°F | Aging<br>time, hr (a) | UTS,<br>ksi   | YS,<br>ksi | Elong<br>(1 in.), % | RA,<br>% |
|---------------|-------------------|------------------|-----------------------|---------------|------------|---------------------|----------|
| 5-19          | 0.500             | 290              | 116                   | 73.5          | 61.0       | 12                  | 31       |
| 5-22          | .500              | 290              | 116                   | 73.3          | 61.0       | 13                  | 33       |
| 5-17          | .500              | 290              | 156                   | 72.1          | 59.2       | 12                  | 33       |
| 5-21          | .500              | 290              | 156                   | 72.6          | 59.5       | 12                  | 32       |
| 6-4           | .630              | 290              | 13                    | 79.4          | 69.0       | 11                  | 26       |
| 6-13          | .630              | 290              | 13                    | 80.6          | 70.2       | 12                  | 27       |
| 6-9           | .630              | 290              | 86                    | 74.8          | 61.7       | 11                  | 26       |
| 6-23          | .630              | 290              | 86                    | 75.6          | 61.8       | 13                  | 31       |
| 6-19          | .630              | 290              | 116                   | 74.2          | 60.5       | 11                  | 28       |
| 6-22          | .630              | 290              | 116                   | 75 <i>.</i> 0 | 61.4       | 11                  | 26       |
| 6-17          | .630              | 290              | 156                   | 73.5          | 59.7       | 11                  | 28       |
| 6-21          | .630              | 290              | 156                   | 74.0          | 60.1       | 11                  | 24       |

## TABLE II.-TRANSVERSE TENSILE PROPERTIES AND AGING DATA FOR 7079 ALUMINUM ALLOY AT ROOM TEMPERATURE - Concluded

<sup>a</sup> Aging treatment performed by Boeing; the material had been aged 4 hr at 250° F when received by Boeing.

b Speciment 1-21 broke 0.09 in. from gage mark.

<sup>c</sup> Specimen broke outside of gage length; no elongation data available.

TABLE III.-FATIGUE-CRACK LENGTH - CYCLE DATA

4

(a) Crack length versus cycles for underaged 7079 aluminum, specimen number CNL-1U L-1N SIGEMAX GROSSI W-EN FEUI-KSI FEVI-KSI GRAIN RESTRAINT 92.8 8.000 36.00 79.200 70.700 L Y 60.0 CPM 1-1N .1600 • 05

SMAX REDUCED TO 4.0 KSI FOR 2A=12.2 IN PANEL DVERLOADED WHEN 2A=12.49 IN SMAX CHANGED TO 9.0 KSI WHEN 2A=12.525 IN SMAX REDUCED TO 4.63 KSI WHEN 2A=12.770 IN

ENVIRONMENT DRY RT AIR SMAX REDUCED TO 4.63 KSI FOR 2A=12.495 IN SMAX CHANGED TO6.0 KSI WHEN 2A=12.525 IN SMAX REDUCED TO 6.0 KSI AT 627 KILOCYCLES

| z                 | 44                |       | 2                    | V C                                                                           | 2                | × 0            | -               |                           | • 6      |
|-------------------|-------------------|-------|----------------------|-------------------------------------------------------------------------------|------------------|----------------|-----------------|---------------------------|----------|
|                   |                   |       |                      |                                                                               | 200              |                |                 |                           | 4 2      |
| <b>NILUCYULES</b> | INCHES            | ~     | KILUCYCLES           | INCHES                                                                        | KILUCYCLES       | H              |                 | K IL DC YCL E S           | I NCHE S |
| ••                | . 780             | 0     | 227.500              | 1.745                                                                         | 367.500          | 4.330          |                 | 489.000                   | 11.520   |
| 10.000            | .780              | ő     | 230.500              | 1.780                                                                         | 369.500          |                |                 | 489.630                   | 11.570   |
| 25.000            | . 780             | 00    | 236.500              | 1.840                                                                         | 375.100          | 4.520          | 064             | 490.000                   | 11.605   |
| 32.500            | 9.                | 0     | 240.000              | 1.875                                                                         | 378.000          | 4.680          | 004             | 490.500                   | 11.555   |
| 36.000            | 6 <b>2</b> •      | 04    | 250.000              | 1.975                                                                         | 383.250          | 4.800          | 165             | 491.000                   | 011.730  |
| 42.500            | .83               | 00    | 260.000              | 2.095                                                                         | 388.000          |                |                 | 491.500                   | 11.780   |
| 46.250            | • F 20            | 0     | 265.800              | 2.185                                                                         | 395.200          |                |                 | 492.000                   | 11.825   |
| 54.500            | 075.              | 0     | 271.000              | 2.240                                                                         | 401-000          |                |                 | 492.500                   | 11.935   |
| 6 5 4 0 0 0 0     | • <del>9</del> 60 | 0     | 275.000              | 2.270                                                                         | 405.000          |                |                 | 493.000                   | 11.950   |
| 70.500            | .865              | 5     | 279.080              | 2.350                                                                         | 410.000          | 6.020          | 493             | 493.500                   | 12.005   |
| 76.500            | 063.              | 0     | 282.000              | 2.395                                                                         | 415.500          | 6.280          | 494             | 494.000                   | 12.065   |
| 80.750            | 006.              | 0     | 295.000              | 2.475                                                                         | 420.500          | 6.545          | 494             | 494.500                   | 12.125   |
| 85.500            | .910              | 0     | 290.000              | 2.530                                                                         | 425.000          |                | 495             | 495.000                   | 12.160   |
| 91.250            | 2°.               | ŝ     | 295.500              | 2.630                                                                         | 430.300          |                |                 | 495.250                   | 12.200   |
| 96.500            | .c3f              | 5     | 300.250              | 2.705                                                                         | 435.000          | 7.215          |                 | 498.000                   | 12.205   |
| 106.500           | 80°               | 0     | 310.000              | 2.885                                                                         | 435.000          |                |                 | 498.500                   | 12.210   |
| 113.375           | 00.               | 5     | 320.000              | 3.095                                                                         | 445.300          |                |                 | 503.000                   | 12.260   |
| 118.250           | έċ•Į              | 01    | 325.000              | 3.180                                                                         | 450.000          | 8.300          | 507             | 507.500                   | 12.485   |
| 128.000           | 1.055             | 5     | 330.000              | 3.295                                                                         | 455.200          | 8.635          | 508             | 508.000                   | 12.497   |
| 139.750           | 1.110             | c     | 334.250              | 3.400                                                                         | 460.000          | 0*0*6          | 564             | 564.500                   | 12.525   |
| 150.000           | 1.140             | ø     | 337.250              | 3.485                                                                         | 465.000          | 9.410          | 518             | <b>518.042</b>            | 12.525   |
| 160.000           | 1.190             | 0     | 342.500              | 3.625                                                                         | 468.750          |                | 622             | 622.000                   | 12.550   |
| 170.000           | 1.270             | 0     | 345.000              | 3.705                                                                         | 473.500          | 10.125         | 623             | 623.000                   | 12.570   |
| 180.000           | 1.360             | ç     | 349.500              | 3.820                                                                         | 478.250          | 10.545         | 524             | 524.000                   | 12.585   |
| 190.000           | 1.430             | 0     | 352.000              | 3.890                                                                         | 481.500          | 10.820         | 529             | 629.000                   | 12.700   |
| 200.500           | 1.510             | 0     | 355.500              | 3.985                                                                         | 485.000          | 11.095         | 632             | 632.000                   | 12.770   |
| 210.000           | 1.58              | ŝ     | 358.500              | 4.060                                                                         | 487.500          | 11.445         | 538             | 538.500                   | 12.885   |
| 220.000           | 1.69              | 0     | 362.790              | 4.190                                                                         | 488.000          | 11.470         | 639             | 639.500                   | 12.950   |
| 225.250           | 1.72              | ¢۲    | 365.000              | 4.250                                                                         | 488.500          | 11.500         | 640             | .500                      | 12.970   |
|                   |                   | (q)   |                      | Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-1L | eraged 7079 alun | ninum, specime | en number 1U-1L |                           |          |
| α                 | 1-12              | N D N | I - IN SIGEMAX GROSS | CROSSI H-IN                                                                   | F1113-KST        | FLV1-KST C     | CPAIN DESTDAINT |                           |          |
| • 05              | .1575             | 120.0 |                      |                                                                               | 79.200           |                |                 | ENVIRONMENT<br>DRY RT AIR | MENT     |

SMAX REDUCED TO 11.0 KSI FOR 2A=4.094 IN

| 24  | I NCHE S   | 3.958    | 400.4  | 4.138  | 4.179  | 4.204  |        |
|-----|------------|----------|--------|--------|--------|--------|--------|
| z   | KILOCYCLES | 37.250   | 37.500 | 37.750 | 37.900 | 37.950 |        |
| 28  | INCHES     | 2.295    | 2.615  | 2.930  | 3.445  | 3.724  |        |
| z   | KILOCYCLES | 29.500   | 32.000 | 34.000 | 36.000 | 36.750 |        |
| 2 A | INCHES     | 1.376    | 1.520  | 1.648  | 1.787  | 1.906  | 2.081  |
| z   | K1LOCYCLES | 15.000   | 17.750 | 20.000 | 22.250 | 24.500 | 27.000 |
| 24  | I NCHES    | . 756    | . P45  | e10.   | 1.009  | 1.150  | 1.254  |
| z   | KILOCYCLES | <b>.</b> | 3.500  | 5.000  | 7.250  | 10.250 | 12.500 |

| REDUCED TO 11.0 KS1 FOR 24-4.082 IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ED TO 11.0 KSI FOR<br>2A<br>10056<br>1.150<br>1.150<br>1.1590<br>1.192<br>1.299<br>1.299<br>ED TO 11.0 KSI FOR<br>770<br>770<br>770<br>770<br>770<br>770<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.19                                                                                                        | о5         | 1-IN<br>1590  | C PM<br>120.0 | (c) Crack leng<br>L-IN SIG | ength versus cycl<br>signmax gross)<br>12.000 | Kength versus cycles for underaged 7079 aluminum, specimen number i SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN FESI | Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>36.0 12.000 12.01 81.800 74.000 L Y | uminum, spe<br>Fr Y ) - K S I<br>74.000 | cimen nur<br>GRAIN<br>L | mber 1U-2L<br>RESTRAINT | ENVIRON<br>-65 DEG | ENVIRONMENT<br>-65 deg |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------------|----------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|-------------------------|--------------------|------------------------|
| 24<br>1.005         KILOCYCLES         1.24<br>1.005         KILOCYCLES         1.24<br>1.005         KILOCYCLES         1.24<br>1.005         KILOCYCLES         KILOCYCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-IN CPM<br>1.195<br>1.195<br>1.195<br>1.195<br>1.195<br>1.195<br>1.195<br>1.196<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199                                                                                                       | SMAX REDUC | 11            | OKSI FOR      | 2 <b>4=4</b> .082          |                                               |                                                                                                                      |                                                                                                                                                                                    |                                         |                         |                         |                    |                        |
| INCRES         INCHES         INCRCLES         INCRCLES <th< td=""><td>INCHES<br/>-840<br/>-840<br/>-840<br/>-840<br/>-840<br/>-840<br/>-826<br/>1.192<br/>1.199<br/>-110<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-129<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-120<br/>-1</td><td>2</td><td>21</td><td></td><td>Z</td><td></td><td>28</td><td>z</td><td>2</td><td>•</td><td>Z</td><td></td><td>24</td></th<> | INCHES<br>-840<br>-840<br>-840<br>-840<br>-840<br>-840<br>-826<br>1.192<br>1.199<br>-110<br>-129<br>-129<br>-129<br>-129<br>-129<br>-129<br>-129<br>-129<br>-129<br>-129<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-120<br>-1    | 2          | 21            |               | Z                          |                                               | 28                                                                                                                   | z                                                                                                                                                                                  | 2                                       | •                       | Z                       |                    | 24                     |
| 775         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         76         75         76         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T-IN<br>T | K11 DCYCLE | -             | HES.          | KILOCYCL                   |                                               | NCHES                                                                                                                | KILOCYCL                                                                                                                                                                           |                                         | HES                     | KILOCY                  | CLES               | INCHES                 |
| 1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.100         1.1000         1.100         1.100 <t< td=""><td>T-IN CPM<br/>1.195<br/>1.195<br/>1.195<br/>1.195<br/>1.199<br/>T-IN CPM<br/>.1590 120.0<br/>.1590 120.0<br/>.951<br/>1.199<br/>.951<br/>1.199<br/>.951<br/>.951<br/>.951<br/>.1099<br/>.964<br/>.968<br/>.964<br/>.1099<br/>.1099<br/>.1099<br/>.1099<br/>.1099<br/>.1099<br/>.1096<br/>.1099<br/>.1096<br/>.1099<br/>.1099<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1007<br/>.1096<br/>.1096<br/>.1007<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096<br/>.1096</td><td></td><td></td><td></td><td>15.00</td><td></td><td>1.416</td><td>54.50</td><td></td><td>524</td><td><b>60.</b></td><td>000</td><td>3.545</td></t<>                                                                                                                                                                                                                           | T-IN CPM<br>1.195<br>1.195<br>1.195<br>1.195<br>1.199<br>T-IN CPM<br>.1590 120.0<br>.1590 120.0<br>.951<br>1.199<br>.951<br>1.199<br>.951<br>.951<br>.951<br>.1099<br>.964<br>.968<br>.964<br>.1099<br>.1099<br>.1099<br>.1099<br>.1099<br>.1099<br>.1096<br>.1099<br>.1096<br>.1099<br>.1099<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1007<br>.1096<br>.1096<br>.1007<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096<br>.1096                                                                                                         |            |               |               | 15.00                      |                                               | 1.416                                                                                                                | 54.50                                                                                                                                                                              |                                         | 524                     | <b>60.</b>              | 000                | 3.545                  |
| 1.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250         5.250 <th< td=""><td>T-IN CPM<br/>1.159<br/>1.159<br/>1.159<br/>1.159<br/>1.159<br/>1.299<br/>1.299<br/>2.2A<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>2.4<br/>2.4<br/>2.4<br/>1.199<br/>1.104<br/>1.104<br/>1.104<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106</td><td></td><td></td><td></td><td></td><td>, c</td><td>1 402</td><td>56.00</td><td></td><td>101</td><td>60.</td><td>500</td><td>3.696</td></th<>                                                                                                                                                                                                                             | T-IN CPM<br>1.159<br>1.159<br>1.159<br>1.159<br>1.159<br>1.299<br>1.299<br>2.2A<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>2.4<br>2.4<br>2.4<br>1.199<br>1.104<br>1.104<br>1.104<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106                                                                                                     |            |               |               |                            | , c                                           | 1 402                                                                                                                | 56.00                                                                                                                                                                              |                                         | 101                     | 60.                     | 500                | 3.696                  |
| 1:356         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150         5:150 <th< td=""><td>T-IN CPM<br/>1.1590<br/>1.1590<br/>1.1590<br/>1.1590<br/>1.1590<br/>1.1590<br/>1.2040<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199</td><td></td><td></td><td></td><td></td><td></td><td>1 737</td><td>57.50</td><td></td><td>476</td><td>.14</td><td>250</td><td>3.958</td></th<>                                                                                                                                                                                                                                      | T-IN CPM<br>1.1590<br>1.1590<br>1.1590<br>1.1590<br>1.1590<br>1.1590<br>1.2040<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199                                                                                                         |            |               |               |                            |                                               | 1 737                                                                                                                | 57.50                                                                                                                                                                              |                                         | 476                     | .14                     | 250                | 3.958                  |
| 1:100         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00         5::00 <th< td=""><td>T-IN CPM<br/>1.150<br/>1.150<br/>1.192<br/>1.192<br/>1.299<br/>1.299<br/>1.299<br/>1.299<br/>1.109<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106</td><td>10-000</td><td>•</td><td>110</td><td></td><td></td><td></td><td></td><td></td><td>141</td><td>. 14</td><td>0.05</td><td>4-082</td></th<>                                                                                                                                                                                                                                 | T-IN CPM<br>1.150<br>1.150<br>1.192<br>1.192<br>1.299<br>1.299<br>1.299<br>1.299<br>1.109<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106                                                                                                       | 10-000     | •             | 110           |                            |                                               |                                                                                                                      |                                                                                                                                                                                    |                                         | 141                     | . 14                    | 0.05               | 4-082                  |
| 1.1120         52.000         2.233         59.500         5.235         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550         52.550 <td>T-IN CPM<br/>1.192<br/>1.192<br/>1.190<br/>120.0<br/>CED T0 11.0 KS1 FOR<br/>120.0<br/>120.0<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.109<br/>1.109<br/>1.104<br/>1.104<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.106<br/>1.109<br/>1.109<br/>1.106<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109<br/>1.109</td> <td>10.00</td> <td>- 1</td> <td>000</td> <td></td> <td></td> <td>1.000</td> <td></td> <td></td> <td>040</td> <td></td> <td>020</td> <td>1 1 A Q</td>                                                                                                                                                                                                | T-IN CPM<br>1.192<br>1.192<br>1.190<br>120.0<br>CED T0 11.0 KS1 FOR<br>120.0<br>120.0<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.109<br>1.109<br>1.104<br>1.104<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.106<br>1.109<br>1.109<br>1.106<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109<br>1.109                                                                                                           | 10.00      | - 1           | 000           |                            |                                               | 1.000                                                                                                                |                                                                                                                                                                                    |                                         | 040                     |                         | 020                | 1 1 A Q                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T-IN CPM<br>.1590 120.0<br>.1590 120.0<br>CED TO 11.0 KSI FOR<br>.770<br>.770<br>.770<br>.869<br>.869<br>.869<br>.869<br>.869<br>.1071<br>1.199<br>.1071<br>1.199<br>.500<br>.500<br>.1590 120.0<br>.1590 120.0<br>.1590 120.0<br>.1590 120.0<br>.1590 120.0<br>.151<br>.104<br>.1162<br>.1162<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.1166<br>.116                                                                                                                  | 25.000     |               | 192           | 52.00                      | > <b>o</b>                                    | 2.253                                                                                                                | 29.50                                                                                                                                                                              |                                         | 398                     | 62.                     | 350                | 4.223                  |
| T-IN         CPM         L-IN         SIG(MAX GROSS)         W-IN         FUU-KSI         FUU-KSI         GAIN         RESTRAINT         EWURDWN           L1590         120-0         36-0         12.000         12.02         79.700         64.300         7         9         0151         MATI         WURDWN           CED T0         11.0         KS1 <fdr< td="">         ZA=         LIOK         DNE&lt;</fdr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T-IN CPM<br>.1590 120.0<br>.1590 120.0<br>.1596<br>.869<br>.951<br>1.071<br>1.199<br>.951<br>1.199<br>.951<br>1.199<br>.951<br>1.199<br>.964<br>.770<br>.954<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.1098<br>.10988<br>.10988<br>.10988<br>.10988<br>.1098                                                                                                        |            | -             |               | (d) Crack lend             | ath versus                                    | cvcles for un                                                                                                        | ideraged 7079 a                                                                                                                                                                    | luminum, sp                             | ecimen nu               | umber 1U-1T             |                    |                        |
| T-IN         CFM         L-IN         SIG(MAX GADSS)         W-IN         F(U)-KSI         F(Y)-KSI         GAIN         RESTRAINT         ENUTY         ENUTY <td>T-IN CPM<br/>.1590 120.0<br/>.1590 120.0<br/>CED TO 11.0 KSI FOR<br/>.770<br/>.770<br/>.770<br/>.770<br/>.869<br/>.869<br/>.869<br/>.869<br/>.869<br/>.869<br/>.1071<br/>1.199<br/>.971<br/>.1199<br/>.571<br/>.770<br/>.571<br/>.770<br/>.1290<br/>.20.0<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1200<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1001<br/>.1000<br/>.1001<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.1000<br/>.10000<br/>.10000<br/>.10000<br/>.10000<br/>.10000<br/>.100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                       | T-IN CPM<br>.1590 120.0<br>.1590 120.0<br>CED TO 11.0 KSI FOR<br>.770<br>.770<br>.770<br>.770<br>.869<br>.869<br>.869<br>.869<br>.869<br>.869<br>.1071<br>1.199<br>.971<br>.1199<br>.571<br>.770<br>.571<br>.770<br>.1290<br>.20.0<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1200<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1001<br>.1000<br>.1001<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.1000<br>.10000<br>.10000<br>.10000<br>.10000<br>.10000<br>.100                                                                                                          |            |               |               |                            |                                               |                                                                                                                      |                                                                                                                                                                                    | •                                       |                         |                         |                    |                        |
| CED T0         11.0         K31         FOR         ZA         L1.339         T0         3.           5         INCHES         K110CVCLES         INCHES         K1000         23.305         64.3000         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3500         63.3600         63.3600         63.3600         63.3600         63.3600         63.3600         63.3600         63.3600         63.3600         63.3600 <td< td=""><td>CED TO 11.0 KSI FOR<br/>2 A<br/>5 INCHES<br/>770<br/>770<br/>869<br/>869<br/>951<br/>1.071<br/>1.071<br/>1.071<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.199<br/>1.200<br/>822<br/>904<br/>904<br/>904<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.104<br/>1.1044<br/>1.104<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.1044<br/>1.10</td><td>к<br/>•67</td><td>1-IN<br/>•1590</td><td>CPM<br/>120.0</td><td></td><td>(MAX GRC<br/>12.000</td><td>-</td><td>F ( U) -K SI<br/>79. 700</td><td>F(Y)-KSI<br/>64.300</td><td>GRAIN</td><td>RESTRAINT<br/>Y</td><td>ENVIRO<br/>DIST</td><td>INMENT<br/>A T ER</td></td<>                                                                                                | CED TO 11.0 KSI FOR<br>2 A<br>5 INCHES<br>770<br>770<br>869<br>869<br>951<br>1.071<br>1.071<br>1.071<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.200<br>822<br>904<br>904<br>904<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.1044<br>1.104<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.10                                                                                                                                        | к<br>•67   | 1-IN<br>•1590 | CPM<br>120.0  |                            | (MAX GRC<br>12.000                            | -                                                                                                                    | F ( U) -K SI<br>79. 700                                                                                                                                                            | F(Y)-KSI<br>64.300                      | GRAIN                   | RESTRAINT<br>Y          | ENVIRO<br>DIST     | INMENT<br>A T ER       |
| S         INCHES         KILDCYCLES         ZA         KILDCYCLES         INCHES         INCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S INCHES<br>770<br>770<br>770<br>770<br>869<br>869<br>951<br>1.071<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>1.199<br>120.0<br>822<br>904<br>904<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.104<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.1044<br>1.10444<br>1.1044<br>1.1044<br>1.10444<br>1.1044<br>1.1044<br>1.1044<br>1                                                                                                                                    |            | 11            |               |                            |                                               |                                                                                                                      | SIDE                                                                                                                                                                               |                                         | THE                     | 2A=                     |                    | ŝ                      |
| S         INCHES         KILDCYCLES         ILL         S2.500         S2.550         S2.500         S2.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S INCHES<br>-770<br>-770<br>-770<br>-869<br>-869<br>-869<br>-869<br>-1071<br>1.071<br>1.199<br>1.199<br>1.199<br>-1071<br>1.199<br>-1071<br>1.199<br>-100<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200<br>-1200                                                                                                      | :          | Ċ             |               | i                          |                                               | ;                                                                                                                    | 2                                                                                                                                                                                  | ~                                       |                         | Z                       |                    | 24                     |
| >       770       710       710       55.50       54.500       5.466       61.500         770       770       36.250       1.562       54.500       2.494       62.550         969       41.000       1.768       54.500       2.494       62.550         951       49.000       1.768       54.500       3.365       63.550         1.071       49.000       2.730       50.000       3.365       64.500         1.071       49.000       2.730       50.000       3.365       64.500         1.071       49.000       2.730       50.000       3.365       64.500         1.071       1.071       49.000       2.230       50.000       3.365       64.500         1.071       1.071       49.000       2.230       50.000       5.466       61.500         1.071       1.071       1.071       1.071       57.50       53.550       64.500         1.107       CPM       L-1N       5100       12.000       12.000       12.000       12.000       54.300       7       7         1.590       120.00       12.000       12.000       12.000       12.000       54.300       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S INCRES<br>- 770<br>- 770<br>- 770<br>- 869<br>- 869<br>- 869<br>- 869<br>- 1071<br>1.199<br>1.199<br>- 1071<br>1.199<br>- 1290<br>- 1200<br>- 751<br>- 751<br>- 770<br>- 751<br>- 751<br>- 770<br>- 751<br>- 770<br>- 751<br>- 770<br>- 751<br>- 770<br>- 751<br>- 770<br>- 751<br>- 770<br>-                                                                                                       |            |               | ۲.<br>۱.      |                            |                                               | 2A<br>Wiles                                                                                                          |                                                                                                                                                                                    |                                         | HFS                     | KIFOCI                  | YCLES              | INCHES                 |
| 5.000       776       5.500       5.500       5.500       5.750       62.750         5.000       1.710       45.000       1.768       56.500       2.922       63.900         5.000       1.071       45.000       1.768       56.500       3.120       63.900         5.000       1.071       49.000       2.330       60.000       3.365       64.500         5.000       1.071       49.000       2.330       60.000       3.365       64.500         5.000       1.071       49.000       2.330       60.000       3.365       64.500         5.00       1.071       49.000       2.330       60.000       3.365       64.500         5.00       1.071       1.071       1.070       64.300       71.70       10.71         6       Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T       69.500       79.700       64.300       79.700         7       1.590       120.00       12.000       12.000       79.710       64.300       707       79.710         8       1.2000       12.000       12.000       12.000       12.000       2.31.700       226.500         7       1.1000       2.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.000     796       5.000     .951       5.250     1.071       5.250     1.071       5.200     1.199       5.000     1.199       5.000     1.199       5.000     1.199       5.000     1.071       5.000     1.199       5.000     1.199       6.000     1.19       7.100     120.0       7.100     11.0       7.100     770       0.000     770       0.000     770       0.000     1.104       0.000     1.162       0.000     1.162       0.000     1.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VILUCTURE  | 0             |               |                            |                                               | 1 330                                                                                                                | 52.00                                                                                                                                                                              |                                         | 406                     | 61.                     | .500               | 3.61                   |
| 0.2500       869       41.000       1.768       56.500       2.922       63.550         5.000       1.071       45.000       1.978       56.500       3.120       63.500         5.000       1.071       45.000       1.978       56.500       3.120       63.500         5.000       1.071       49.000       2.230       60.000       3.365       64.500         5.000       1.199       (e) Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T       (e) V. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.000<br>5.0000<br>5.000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.0000<br>5.00000<br>5.00000<br>5.00000<br>5.000000<br>5.00000<br>5.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0<br>-    |               | 202           |                            |                                               | 1 562                                                                                                                | 54.51                                                                                                                                                                              |                                         | 469                     | 62.                     | . 750              | 3.84                   |
| 5.000       591       45.000       5.390       63.900       53.365       64.500         5.000       1.011       49.000       2.230       60.000       3.365       64.500         5.000       1.011       (e)       Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T       (e)       Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T         7       1590       120.0       36.00       12.000       12.000       79.700       64.300       71       7         7       1590       120.0       12.000       12.000       12.000       79.700       64.300       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.000 1.199<br>5.000 1.071<br>5.000 1.071<br>5. 750 1.071<br>57 1.590 1.09<br>87 1.590 120.0<br>87 1.590 1.10 KSI MHE<br>770 1.000 8.22<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104<br>0.000 1.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               | 860           |                            |                                               | 1.768                                                                                                                | 56.5(                                                                                                                                                                              |                                         | 922                     | 63.                     | .550               | 4.031                  |
| 5.250         1.071         49.000         2.230         60.000         3.365         54.500           5.000         1.199         (e) Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T         (e) Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         54.500         77         77         77         77         77         77         77         77         77         77         77         77         77         77         24.000         77         74.000         24.000         726.500         24.000         24.000         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500         226.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.000 1.199<br>5.000 1.199<br>57 T-IN CPM<br>REDUCED TO 11.0 KSI WHE<br>REDUCED TO 11.0 KSI WHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.000     |               | 951           | 45.00                      | 0                                             | 978                                                                                                                  | 58.2                                                                                                                                                                               |                                         | 120                     | 63.                     | .900               | 4.104                  |
| (e)       Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T         (e)       Crack length versus cycles for underaged 7079 aluminum, specimen number 1U-2T         57       .1590       120.0       36.0       12.000       12.000       79.700       64.3000       7       7       0RY RT AI         REDUCED T0 11.0 KS1 WHEN 2A=4.1 IN       L - IN SIG(MAX GROSS) W-TN       F(U) - KS1       F(U) - KS1       GRAIN RESTRAINT       ENVIRONM         REDUCED T0 11.0 KS1 WHEN 2A=4.1 IN       REDUCED T0 11.0 KS1 WHEN 2A=4.1 IN       ZA       KILLOCVCLES       N       Y       DRY RT AI         V       .1590       120.00       12.000       12.000       12.000       12.000       12.000       T       Y       DRY RT AI         REDUCED T0 11.0 KS1 WHEN 2A=4.1 IN       REDUCED T0 11.0 KS1 WHEN 2A=4.1 IN       ZA       XILLOCVCLES       Y       DRY RT AI         V       2A       XILLOCVCLES       INCHES       XILLOCVCLES       ZA       XILLOCVCLES       ZA       XILLOCVCLES       ZA       XILLOCVCLES       ZA       XILLOCVCLES       ZA       XILLOCVCLES       ZA       ZA <td><pre>7 T-IN CPM<br/>57 .1590 120.0<br/>REDUCED TO 11.0 KSI WHE<br/>751<br/>1.000 .770<br/>1.000 .770<br/>0.000 .998<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104</pre></td> <td>20.250</td> <td></td> <td>199</td> <td>64</td> <td>0</td> <td>2.230</td> <td><b>60.</b>0(</td> <td></td> <td>365</td> <td>49</td> <td>• 500</td> <td>4.202</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>7 T-IN CPM<br/>57 .1590 120.0<br/>REDUCED TO 11.0 KSI WHE<br/>751<br/>1.000 .770<br/>1.000 .770<br/>0.000 .998<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104<br/>0.000 1.104</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.250     |               | 199           | 64                         | 0                                             | 2.230                                                                                                                | <b>60.</b> 0(                                                                                                                                                                      |                                         | 365                     | 49                      | • 500              | 4.202                  |
| T-IN         CPM         L-IN         SIGNAX GROSS)         H-IN         FIUJ-KSI         FIVJ-KSI         GRAIN         RESTRAINT         ENVIRONM           SF         .1590         120.0         36.0         12.000         12.00         79.700         64.300         7         7         0         7         0         7         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         7         0         0 <t< td=""><td>T-IN         CPM           57         .1590         120.0           REDUCED         TO         11.0         KSI           WHE         ZA         751           V         .770         .751           1.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .770           0.000         .770         .770           0.000         .770         .751           0.000         .770         .770           0.000         .994         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904</td><td></td><td></td><td></td><td>(e) Crack len</td><td>ath versus</td><td>s cycles for ur</td><td>deraged 7079 a</td><td>luminum, sp</td><td>ecimen nı</td><td>umber 1U-2T</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-IN         CPM           57         .1590         120.0           REDUCED         TO         11.0         KSI           WHE         ZA         751           V         .770         .751           1.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .751           0.000         .770         .770           0.000         .770         .770           0.000         .770         .751           0.000         .770         .770           0.000         .994         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904           0.000         1.104         .904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |               |               | (e) Crack len              | ath versus                                    | s cycles for ur                                                                                                      | deraged 7079 a                                                                                                                                                                     | luminum, sp                             | ecimen nı               | umber 1U-2T             |                    |                        |
| T-IN     CPM     L-IN     SIGRAX GRUSS J     TUT-SI     TUT-SI </td <td>T-IN       CPM       L-IN       SIGNAX GRUSS J       TOUTASI       TOUTASI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DECTOAINT</td> <td>ENVIR</td> <td>NMENT</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T-IN       CPM       L-IN       SIGNAX GRUSS J       TOUTASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |               |               |                            |                                               |                                                                                                                      |                                                                                                                                                                                    |                                         |                         | DECTOAINT               | ENVIR              | NMENT                  |
| REDUCED T0 11.0 KSI WHEN 2A=4.1 IN         ZA         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REDUCED TO 11.0 KSI WHEN 2A=4.1 IN         ZA         N         ZA         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | в<br>• 67  | 1-IN<br>1590  | CPM<br>120.0  |                            | 12.000                                        |                                                                                                                      | 79.700                                                                                                                                                                             | 64-300                                  | T                       |                         | DRY R              | AIR                    |
| ZA     N     ZA     N     ZA     N       1NCHES     KILDCYCLES     INCHES     KILDCYCLES     INCHES     KILDCYCLES     INCHES       751     125,000     1.289     197,000     2.537     224,000       .770     142,000     1.540     202,000     2.677     226,500       .822     150,000     1.696     207,000     2.835     231,500       .998     155,000     1.896     211,000     2.952     231,500       .998     155,000     1.896     215,000     3.087     233,500       1.104     175,000     2.082     219,000     3.245     234,650       1.1062     183,000     2.2206     2.22,000     3.365     237,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZA         N         ZA         N           1NCHES         KILDCYCLES         INCHES         KILDCYCLES         INCHES         KILDCYCLES         197.000           .751         125.000         1.289         197.000         197.000         197.000           .770         142.000         1.540         202.000         202.000           .822         159.000         1.696         207.000           .904         155.000         1.896         211.000           .998         155.000         1.896         215.000           1.104         175.000         2.982         219.000           1.162         183.000         2.384         222.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | ED TO 11      | •0 KSI        | 2A=4.1                     |                                               |                                                                                                                      |                                                                                                                                                                                    |                                         |                         |                         |                    |                        |
| INCHES         KILOCYCLES         INCHES         KILOCYCLES         INCHES         KILOCYCLES         INCHES         KILOCGCLES         INCHES         KILOCGCLES         I         I         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z <thz< th="">         Z         Z         &lt;</thz<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INCHES         KILOCYCLES         INCHES         KILOCYCLES         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< td=""><td>z</td><td>2</td><td>٩</td><td>z</td><td></td><td>2 A</td><td>z</td><td>N</td><td>A</td><td>Z</td><td></td><td>2 A</td></thi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z          | 2             | ٩             | z                          |                                               | 2 A                                                                                                                  | z                                                                                                                                                                                  | N                                       | A                       | Z                       |                    | 2 A                    |
| .751     125.000     1.289     197.000     2.537     224.000       .770     142.000     1.540     202.000     2.677     226.500       .822     150.000     1.540     207.000     2.695     229.500       .822     150.000     1.696     207.000     2.835     229.500       .998     155.000     1.890     211.000     2.952     231.500       .998     155.000     1.896     219.000     3.087     233.500       1.104     175.000     2.082     219.000     3.245     234.650       1.162     183.000     2.2206     222.000     3.365     237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .751     125.000     1.289     197.000       .770     142.000     1.540     202.000       .822     150.000     1.696     207.000       .904     155.000     1.896     211.000       1.104     175.000     2.082     219.000       1.162     183.000     2.384     222.000       1.240     191.500     2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KILDCYCLE  |               | HES           | KILOC YCL                  |                                               | INCHES                                                                                                               | KILOCYCI                                                                                                                                                                           | 1                                       | HES                     | KILDC                   | VCLES              | INCHE S                |
| .770     142.000     1.540     202.000     2.677     226.500       .822     1696     207.000     2.835     229.500       .904     150.000     1.696     211.000     2.952     231.500       .904     155.000     1.896     215.000     3.952     231.500       .904     155.000     1.896     219.000     3.245     233.500       1.104     175.000     2.082     219.000     3.245     234.650       1.105     1.104     3.245     237.000     2.2206     222.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .770     142.000     1.540     202.000       .822     159.000     1696     207.000       .904     155.000     1.696     211.000       .904     155.000     1.896     215.000       1.104     175.000     2.082     219.000       1.162     183.000     2.206     222.000       1.240     191.500     2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c          |               | 751           | 125.00                     | 0                                             | 1.289                                                                                                                | 197.0(                                                                                                                                                                             |                                         | 537                     | 224                     | • 000              | 3.44(                  |
| .822     150.000     1.696     207.000     2.835     229.500       .904     158.000     1.800     211.000     2.952     231.500       .998     155.000     1.896     215.000     3.087     233.500       1.104     175.000     2.082     219.000     3.345     234.650       1.162     183.000     2.2206     222.000     3.345     237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .822       150.000       1.696       207.000         .904       158.000       1.800       211.000         .998       155.000       1.896       215.000         1.104       175.000       2.082       219.000         1.162       183.000       2.206       222.000         1.240       191.500       2.384       222.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.000     |               | 770           | 142.00                     | 0                                             | 1.540                                                                                                                | 202.0(                                                                                                                                                                             |                                         | 677                     | 226.                    | .500               | 3.598                  |
| .904     158.000     1.800     211.000     2.952     231.500       .998     155.000     1.896     215.000     3.087     233.500       1.104     175.000     2.082     219.000     3.245     234.650       1.162     183.000     2.206     222.000     3.345     237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .904     158.000     1.800     211.000       .938     155.000     1.896     215.000       1.104     175.000     2.082     219.000       1.162     183.000     2.206     222.000       1.240     191.500     2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.000     |               | 822           | 150.00                     | 0                                             | 1.696                                                                                                                | 207.0(                                                                                                                                                                             |                                         | 835                     | 229.                    | .500               | 3.762                  |
| .998     155.000     1.896     215.000     3.087     233.500       1.104     175.000     2.082     219.000     3.245     234.650       1.162     183.000     2.206     222.000     3.365     237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .998     155.000     1.896     215.000       1.104     175.000     2.082     219.000       1.162     183.000     2.206     222.000       1.240     191.500     2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.000     |               | 904           | 158.00                     | 0                                             | 1.800                                                                                                                | 211.00                                                                                                                                                                             |                                         | 952                     | 2.91                    | .500               |                        |
| 1.104 175.000 2.082 219.000 3.245 234.000<br>1.162 183.000 2.206 222.000 3.365 237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.104 175.000 2.082 219.000<br>1.162 183.000 2.206 222.000<br>1.240 191.500 2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70.000     |               | 998           | 155.00                     | 0                                             | 1.896                                                                                                                | 215.0(                                                                                                                                                                             |                                         | 087                     | 233                     | 004.               |                        |
| 1.162 183.000 2.206 222.000 3.365 237.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.162 183.000 2.206 222.000<br>1.240 191.500 2.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.00      |               | 104           | 175.00                     | 0                                             | 2.082                                                                                                                | 219.01                                                                                                                                                                             |                                         | 242                     | 100                     |                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.000 1.240 191.500 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.000    |               | 162           | 183.00                     | 0                                             | 2.206                                                                                                                | 222.00                                                                                                                                                                             |                                         | 365                     | 237                     | • 000              | 4.20                   |

TABLE III.--FATIGUE-CRACK LENGTH--CYCLE DATA- Continued

ł

|                        |                                              | -                                              | f) Crac          | (f) Crack length versus cycles for underaged 7079 aluminum, specimen number CNL-2U | es for und     | eraged 7079 ali                         | uminum, spec                                           | imen nur   | nber CNL-2U |                           |
|------------------------|----------------------------------------------|------------------------------------------------|------------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------|--------------------------------------------------------|------------|-------------|---------------------------|
| 05                     | T-IN                                         | CPM<br>65.0                                    | L-1N<br>96.0     | L-IN SIG(MAX GROSS) W-IN<br>96.0 12.000 36.25                                      | W- IN<br>36.25 | F{U}-KSI<br>77.500                      | F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>77.500 63.900 L Y | GRAIN<br>L | RESTRAINT   | ENVIRONMENT<br>DRY RT AIR |
| SMAX REDU<br>SMAX REDU | SMAX REDUCED TO 10.0<br>SMAX REDUCED TO 6.35 | 0 KSI WHEN 2A=12.0 IN<br>5 KSI WHEN 2A=12.4 IN | 2A=12<br>  2A=12 | N 1 0                                                                              |                | SMAX REDUCED TO 8.0 KSI WHEN 2A=12.2 IN | 0 TO 8.0 KSI                                           | WHEN 2     | A=12.2 IN   |                           |

|                                |    |            |         | 077 11  |         | 060.11  |         | 12 040  |         | 12 140  | 001-21     | 12.200  | 12.205  | 12.310  | 12.370   | 12.400     | 12 406  |         |         |           | 676.71  | 12.565   | 12.580   | 12.500  | 16.170  |
|--------------------------------|----|------------|---------|---------|---------|---------|---------|---------|---------|---------|------------|---------|---------|---------|----------|------------|---------|---------|---------|-----------|---------|----------|----------|---------|---------|
|                                | 3  |            |         |         |         |         | 166-250 |         | 167.500 |         |            | 162.501 | 169.000 | 171.750 | 1 73,000 | 002 . 57 1 | 175.500 |         |         |           |         | 182.000  | 182.500  | 187 800 |         |
|                                | 40 | I NCHE C   | 7 - 400 | 7.585   | 7.850   | 8.050   | 8.310   | 8.490   | 8-650   |         |            | 0.000   | 002 * 6 | 9.410   | 9.560    | 9.795      | 9.970   | 10.175  |         |           |         | C21 • NI | 10.925   | 11.125  |         |
|                                | Z  | KILDCYCLES | 145.000 | 147.000 | 149-000 | 150.500 | 152.000 | 153-000 | 154-000 | 155.000 |            |         | 000.101 | 158.000 | 158.700  | 159.700    | 160.500 | 161-200 | 161-800 | 162 - 400 |         | 101.101  | 163.600  | 164.300 |         |
|                                | 24 | INCHES     | 3.620   | 3.800   | 3.980   | 4.205   | 4.385   | 4.590   | 4.710   | 4.870   | 5.010      |         |         | 9.320   | 5.490    | 5.710      | 5.850   | 5.960   | 6.170   | 6-350     |         |          | 6.760    | 6.935   | 7.180   |
| NI 4+71=47 NJ                  | z  | KILDCYCLES | 100.000 | 103.100 | 106.000 | 109.200 | 111.700 | 114.300 | 116.000 | 118.100 | 1 20 - 000 | 122.200 | 131 000 |         | 126.000  | 128.000    | 129.500 | 131.000 | 133.000 | 135,000   | 000-751 |          | 1 59.000 | 141.000 | 143.000 |
| THAT PERCENTED 10 04.33 NOT NH | 24 | INCHES     | .785    | .810    | .895    | . 995   | 1.105   | 1.250   | 1.390   | 1.520   | 1.690      | 1.855   |         |         | <0I.2    | 2.250      | 2.365   | 2.500   | 2.635   | 2.775     | 2.920   |          | 660.6    | 3.255   | 3.410   |
|                                | z  | KILOCYCLES | •       | 000*6   | 17.000  | 25.000  | 33.000  | 40.000  | 46.300  | 52.000  | 58.000     | 63.300  | 67 300  |         | 000.00   | 73.000     | 76.000  | 79.000  | 82.000  | 85.000    | 88.000  | 000 10   | 100016   | 94.000  | 97.000  |

(g) Crack length versus cycles for underaged 7079 aluminum, specimen number 2U-1L

| IENT<br>I.R                           |                               | 2  | INCHER     |        |        |        | 928.6  | 001.4              | 107.4  |
|---------------------------------------|-------------------------------|----|------------|--------|--------|--------|--------|--------------------|--------|
| RESTRAINT ENVIRONMEN'<br>Y DRY RT AIR |                               | Z  | KTLOCYCLES | 43-20U |        |        |        |                    |        |
| GRAIN                                 |                               | 28 | CHES       | 488    | . 470  |        |        | 212                |        |
| F(Y)-KSI<br>63.900                    |                               |    | -          |        |        |        |        |                    |        |
| F1U)-KSI<br>77.500                    |                               | Z  | KILDCYCI   | 32.6(  | 35.10  | 37.50  | 005-06 | 17 - 17<br>17 - 17 |        |
| GROSSJ W-IN<br>100 12.00              |                               | 24 | INCHES     | 1.467  | 1.794  | 2.041  | 2.154  | 5.73               |        |
| L-IN SIGEMAX GROSSA<br>36.0 12.000    | 2 <b>4=4.</b> 106 IN          | Z  | KILOCYCLES | 20.000 | 23.700 | 26-000 | 27.300 | 29.200             |        |
| CPM<br>0 120.0                        |                               | 24 | INCHES     | .757   | .791   | .932   | 1.111  | 1.216              | 1.211  |
| R T-IN<br>.05 .2540                   | SMAX REDUCED TO 11.0 KSI WHEN | z  | KILOCYCLES | ••     | 4.000  | 8.000  | 12.000 | 15.000             | 17.000 |
|                                       |                               |    | _          |        |        |        |        |                    |        |

| N<br>KILOCYCLES<br>43.200<br>44.500<br>45.500<br>46.400<br>47.400      |
|------------------------------------------------------------------------|
| 2A<br>INCHES<br>2.488<br>2.679<br>2.878<br>3.088<br>3.088              |
| N<br>81LDCYCLES<br>32.600<br>35.100<br>37.500<br>39.500<br>41.400      |
| 2A<br>INCHES<br>1.467<br>1.794<br>1.794<br>2.041<br>2.154<br>2.273     |
| N<br>KILDCYCLES<br>20.000<br>23.700<br>26.000<br>27.300<br>29.200      |
| 2A<br>INCHES<br>757<br>7791<br>7791<br>7932<br>1.111<br>1.216<br>1.311 |
| N<br>KILOCYCLES<br>0.<br>4.000<br>8.000<br>12.000<br>15.000<br>17.000  |

| ENVIRONMENT<br>-65 deg                                                                                                                                                                                                                   | INCHA<br>3.814<br>3.814<br>3.625<br>3.625<br>4.086<br>4.200                                   | ENVIRONMENT<br>DRY RT AIR                                                                                                                                                         | 2A<br>INCHES<br>2.297<br>2.530<br>2.621<br>2.805<br>2.805                           | ENVIRONMENT<br>DRY RT AIR                                                                                                                                                          | INCHES<br>3.571<br>3.571<br>3.770<br>3.770<br>3.770<br>3.770<br>3.770<br>3.770<br>4.149<br>4.149<br>4.149<br>4.149 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                          | N<br>KILDCYCLES<br>63.700<br>65.700<br>61.100<br>68.000<br>68.200                             |                                                                                                                                                                                   | N<br>KIL DCVCLES<br>33.150<br>35.200<br>36.100<br>37.850<br>37.850                  |                                                                                                                                                                                    | N<br>215-000<br>215-000<br>2218-000<br>2218-000<br>222-200<br>222-000<br>225-000<br>225-000<br>225-000<br>225-200  |
| TABLE IIIFATIGUE CRACK LENGTHCYCLE DATA - Continued<br>Crack length versus cycles for underaged 7079 aluminum, specimen number 2U-2L<br>-IN SIGIMAX GR0SSJ W-IN F1UJ-KSI F1YJ-KSI GRAIN RESTRAINT<br>56.0 12.000 12.00 78.800 67.200 L Y | 2<br>2<br>2<br>2<br>2                                                                         | Crack length versus cycles for underaged 7079 aluminum, specimen number 2U-3L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>24.0 12.000 8.03 77.500 63.900 L Y |                                                                                     | Crack length versus cycles for underaged 7079 aluminum, specimen number 2U-1T<br>L-IN SIGIMAX GRDSS) W-IN FIUI-KSI FIVI-KSI GRAIN RESTRAINT<br>36.0 12.000 12.00 78.100 60.400 T Y | K IL<br>21<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>222                                          |
| TABLE III.—FATIGUE CRACK LENGTH—CYCLE DATA- Continued<br>ck length versus cycles for underaged 7079 aluminum, specimen number<br>a sigimax grossi w-in Fiui-ksi Fivi-ksi grain res<br>b 12.000 12.00 78.800 67.200 L                     | 2A<br>1NCHES<br>2、204<br>2、304<br>2、304<br>2、304<br>2、986<br>2、986                            | cimen nul<br>GRAIN<br>L                                                                                                                                                           | 2A<br>1.6HES<br>1.6HES<br>1.670<br>1.770<br>1.902<br>2.134<br>2.134                 | ecimen nu<br>GRAIN<br>T                                                                                                                                                            | 2A<br>INCHES<br>1.960<br>2.042<br>2.503<br>2.503<br>2.50<br>2.750<br>2.750<br>3.158<br>3.372                       |
| YCLE DAT<br>minum, spe<br>f(Y)-KS1<br>67.200                                                                                                                                                                                             | 0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ninum, spe<br>F{                                                                                                                                                                  |                                                                                     | minum, spt<br>F ( Y ) - K S I<br>60 • 400                                                                                                                                          | **************************************                                                                             |
| 5THCY<br>079 alum<br>+KS1 F1<br>00 61                                                                                                                                                                                                    | N<br>54.000<br>56.000<br>58.000<br>60.750<br>61.900                                           | 079 alumi<br>-KSI F                                                                                                                                                               | KILDCYCLES<br>23.000<br>25.000<br>27.000<br>31.000                                  | 079 alum<br>KSJ F1                                                                                                                                                                 | KILDC CLES<br>160.000<br>170.000<br>180.800<br>195.500<br>201.000<br>201.000<br>211.000                            |
| CK LENGTH<br>Jeraged 7079<br>F(U)-KSI<br>78.800                                                                                                                                                                                          | ¥11                                                                                           | leraged 7079 a<br>F(U)-KSI<br>77.500                                                                                                                                              | H Y                                                                                 | deraged 7079<br>F(U)-KSI<br>78.100                                                                                                                                                 | Y Y                                                                                                                |
| UE CRA(<br>es for unc<br>w-rv<br>12.00                                                                                                                                                                                                   | 9513325233<br>9113329223                                                                      | es for unc<br>#-IN<br>8.03                                                                                                                                                        | 2A<br>2 MES<br>174<br>• 249<br>• 449<br>• 545                                       | les for und<br>w-IN<br>12.00                                                                                                                                                       | 2 A<br>C HE S<br>• 011<br>• 138<br>• 238<br>• 531<br>• 531<br>• 531                                                |
| BLE IIIFATIG<br>length versus cycl<br>sici Max cross)<br>12.000                                                                                                                                                                          | 2A<br>INCHES<br>1.373<br>1.522<br>1.523<br>1.629<br>1.733<br>1.733<br>2.095                   | ength versus cycl<br>sigemax grossi<br>12.000                                                                                                                                     | 2A<br>INCHES<br>1.174<br>1.294<br>1.443<br>1.443<br>1.545                           | length versus cyc<br>sIG(MAX GROSS)<br>12.000<br>9 IN                                                                                                                              | 2A<br>INCHES<br>1.001<br>1.067<br>1.067<br>1.138<br>1.330<br>1.531<br>1.533<br>1.748                               |
| ABLE III.<br>length ve<br>s161MAX<br>12.                                                                                                                                                                                                 | N<br>35.000<br>39.200<br>43.000<br>47.000<br>47.000<br>49.500<br>52.000                       | length ve<br>si Gemai<br>12,                                                                                                                                                      | KILOCYCLES<br>112.000<br>14.000<br>17.000<br>18.000<br>20.000                       | length v<br>srg(ma)<br>12.<br>12.                                                                                                                                                  | N<br>81.000<br>91.000<br>1100.000<br>1100.000<br>120.000<br>130.000<br>140.000                                     |
| T/<br>(h) Crack<br>L-IN<br>36.0                                                                                                                                                                                                          | - 00 m m 4 4 4 6<br>11<br>1                                                                   | (i) Crack<br>L-1N<br>24.0                                                                                                                                                         | 21111<br>21111<br>2                                                                 | (j) Crack le<br>L-1N S<br>36.0<br>N 2A=4.149                                                                                                                                       | К<br>10<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                              |
| CPM (1<br>120.0                                                                                                                                                                                                                          |                                                                                               | срм<br>120.0                                                                                                                                                                      |                                                                                     | CPM<br>120.0<br>KSI WHEN                                                                                                                                                           |                                                                                                                    |
|                                                                                                                                                                                                                                          | 2A<br>INCHES<br>737<br>755<br>755<br>7755<br>1001<br>1.001<br>1.215                           | 2 9                                                                                                                                                                               | 2A<br>1NCHES<br>779<br>779<br>779<br>7799<br>7799<br>7799<br>7799<br>7265<br>1.0966 | T-IN<br>.2590<br>D TO 11.0                                                                                                                                                         | 2A<br>INCHES<br>7599<br>7759<br>805<br>837<br>837<br>837<br>837<br>837<br>837<br>837                               |
| <b>T-IN</b><br>.2560                                                                                                                                                                                                                     | CLES<br>500<br>000<br>300<br>300                                                              | T-IN<br>.2560                                                                                                                                                                     | C L E S<br>2 5 0<br>2 0 0 0<br>5 0 0<br>5 0 0<br>5 0 0                              | R T-I<br>67 .25<br>REDUCED 1                                                                                                                                                       | CLES<br>000<br>000<br>000<br>000<br>000                                                                            |
| R<br>• 05                                                                                                                                                                                                                                | KILOCYCLES<br>0.<br>10.000<br>10.000<br>15.000<br>27.300                                      | ж.<br>С                                                                                                                                                                           | KILDCYCLES<br>0.<br>3.250<br>3.250<br>3.250<br>5.000<br>10.500                      | R<br>.67<br>SMAX RE                                                                                                                                                                | KILDCYCLE<br>0.<br>10.000<br>20.000<br>30.700<br>50.000<br>60.000<br>60.000                                        |

.

| ZA<br>INCHES         NIL<br>(NHES<br>(1.57)         NIL<br>(2.51)         NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =4.<br>K1L                            | -                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Ž                                                                |
| NI     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | K LL UC VCI ES                                                   |
| NIN     NIN <td>&gt;&gt;&gt;</td> <td>48.000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >>>                                   | 48.000                                                           |
| NI     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.100                                | 51.100                                                           |
| NI     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.300                                | 94.300                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000.16                                | 000.16                                                           |
| Constant         Constant         FIUI-KS1         FIUI-KS1         GRAIN         REVIROWE           2.000         35.25         H-IN         FIUI-KS1         FIVI-KS1         GRAIN         REVIROWE           2.000         35.25         HE         15.000         61.800         L         Y         N           2.000         35.25         HE         FIUI-KS1         FIVI-KS1         GRAIN         REVIROWE           2.000         35.25         HE         Y         N         N         N         N           2.000         51.800         61.800         L         80.0         N         N         N           2.000         53.500         61.800         L         80.0         S8.800         N         N           2.000         31.600         FIULCCCLE         10.0         KILLDCYCLE         N         N         N         N           2.000         59.000         7.365         K1LDCYCLE         N         N         N         N         N           2.48         N         N         2.48         N         Z         N         N         N         N           2.48         N         N         2.45 <td< td=""><td>62.500</td><td>62.500</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62.500                                | 62.500                                                           |
| W-IN         F(U)-KS1         F(V)-KS1         F(V)-KS1 <th< th=""><th>Crack length v</th><th>(I) Crack length v</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Crack length v                        | (I) Crack length v                                               |
| ZA       KEDUCED T0 10.0 KS1 WHEN ZA=8.69 IN<br>SMAX REDUCED T0 6.35 KS1 WHEN ZA=10.285 IN<br>SMAX REDUCED T0 6.35 KS1 WHEN ZA=10.285 IN<br>SMAX REDUCED T0 6.35 KS1 WHEN ZA=10.285 IN<br>SMAX REDUCED T0 6.35 KS1 WHEN ZA=12.450 IN<br>3.775 5.95000 7.130 59.2000         A       NCHES       KILDCVCES         3.775 3.6800 6.965 59.200<br>4.010 59.2000 7.130 59.200<br>4.9185 59.2000 7.130 59.200<br>4.9200 7.130 59.200<br>4.9310 59.2000 7.245 59.200<br>4.9310 59.2000 7.245 59.200<br>4.9310 59.200 7.245 59.200<br>4.940 59.200 7.245 59.200<br>4.9500 7.245 59.200<br>4.9500 7.245 59.200<br>5.1500 7.245 59.200<br>5.1500 7.245 59.200<br>5.1500 7.245 59.200<br>5.1500 8.795 59.200<br>5.1500 8.795 55.200<br>5.1750 9.2600 9.280<br>5.1750 55.200 9.290<br>5.1750 55.200 9.290<br>5.1750 55.200 9.290<br>5.1750 55.200 9.290<br>5.1750 55.200 9.290<br>5.1750 55.200 9.290<br>5.1750 55.200 9.2600<br>5.1750 55.200<br>5.1750 55.200 9.260<br>5.1750 55.200<br>5.1750 55.200 9.260<br>5.1750 55.200<br>5.1750 55 |                                       |                                                                  |
| KILUCN       ZA         KILUCKCLES       INCHES         48.500       6.850         59.000       5.965         59.000       7.130         59.000       7.130         59.000       7.130         59.500       7.145         59.500       7.150         50.500       7.245         51.500       7.245         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         52.400       8.240         52.400       8.390         52.400       8.390         52.400       8.390         52.400       8.390         52.400       8.450         52.400       8.450         52.400       8.450         52.400       8.450         52.400       8.450         52.400       8.450         52.400       8.450         52.400       8.450         52.4400       8.450<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A#5.575 IN<br>#9.585 IN<br>=12.090 IN | SI WHEN ZA=5.575 IN<br>I WHEN ZA=9.585 IN<br>I WHEN ZA=12.090 IN |
| KILDCYCLES       INCHES       KILDCYCLES         48.000       58.200       58.200         59.500       7.1365       59.500         59.500       7.245       59.500         50.000       7.245       59.500         51.000       7.245       59.500         51.000       7.245       59.500         51.000       7.245       59.500         51.000       7.480       60.700         51.500       7.480       60.700         51.500       7.480       61.500         51.500       8.040       61.500         52.400       8.220       61.500         52.400       8.220       61.100         52.400       8.220       61.100         52.400       8.780       61.100         53.200       8.790       62.000         54.400       8.790       62.600         54.400       8.790       64.000         55.200       9.790       65.000         55.200       9.790       65.000         55.200       9.740       65.000         55.200       9.740       65.000         55.200       9.56.000       65.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z                                     | Z                                                                |
| 48.500       6.850       58.200         548.500       7.245       59.500         50.500       7.245       59.500         51.500       7.245       59.500         51.500       7.245       59.500         51.500       7.245       59.500         51.500       7.245       59.500         51.500       7.480       60.100         51.500       8.220       60.100         52.400       8.220       61.100         52.400       8.220       6.100         52.400       8.220       6.100         52.400       8.220       6.100         55.200       8.220       6.2.000         55.200       9.280       6.100         55.200       9.280       6.4.000         55.200       9.280       6.4.000         55.200       9.280       6.4.000         55.200       9.55.000       9.55.000         55.200       9.280       6.4.000         55.200       9.55.000       9.55.000         55.200       9.490       6.4.000         55.200       9.55.000       9.55.000         55.200       9.490       6.4.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KILOCYCLES                            | KILOCYCLES                                                       |
| 59.900       7.130         50.500       7.245         51.500       7.245         51.500       7.245         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       7.480         51.500       8.040         51.500       8.220         8.220       8.040         8.220       8.220         8.220       8.220         8.220       8.220         8.220       8.220         8.220       8.220         8.400       8.400         8.795       62.400         9.4400       8.795         9.4400       8.795         9.4400       8.795         9.4400       8.790         9.4400       8.790         9.4400       8.790         9.4400       8.790         9.4400       8.790         9.4400       8.790         9.4400       8.790         9.4400       9.440     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.500                                | 35.500                                                           |
| 49.500       7.245       59.500         50.000       7.480       60.300         51.500       7.480       60.400         51.500       7.480       61.100         51.500       7.480       61.100         51.500       7.480       61.100         51.500       8.040       8.040         52.800       8.040       61.100         52.800       8.220       61.500         52.800       8.220       61.500         53.200       8.795       62.400         54.400       8.795       62.400         55.500       8.795       65.600         54.400       8.795       65.600         55.500       9.986       65.400         55.500       9.986       65.600         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400         55.500       9.55.600       65.400     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.000                                | 36.000                                                           |
| 50.000       7.365       59.900         51.500       7.480       60.700         51.500       7.480       61.100         51.500       7.480       61.100         51.500       7.480       61.100         51.500       8.040       8.040         51.500       8.040       8.040         52.400       8.220       8.220         52.400       8.220       8.220         53.200       8.795       64.000         54.400       8.795       64.500         54.400       8.795       64.600         54.400       9.795       64.000         54.400       9.795       64.000         55.200       9.280       64.800         55.400       9.280       64.900         55.400       9.560       65.600         55.400       9.560       65.600         55.400       9.560       65.100         55.400       9.740       65.600         55.400       9.740       65.700         55.400       9.740       65.700         55.400       9.740       65.700         55.400       9.740       65.700         55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.600                                | 36.600                                                           |
| 4.310       52.000       8.040       61.100         4.470       52.800       8.040       61.100         4.470       52.800       8.040       61.100         4.470       52.800       8.220       61.100         4.470       52.800       8.220       61.100         4.470       52.800       8.220       61.100         52.800       8.220       8.220       61.100         53.600       8.220       8.390       61.100         53.600       8.490       8.505       62.400         53.155       53.600       8.690       63.600         53.155       54.400       8.490       65.100         53.155       55.800       9.580       64.000         53.155       55.800       9.580       64.000         53.155       55.800       9.580       65.100         53.130       9.585       66.100       65.100         64.130       9.56100       9.56100       65.100         64.800       9.5600       9.5600       65.100         64.800       9.740       9.740       65.100         64.800       9.740       9.740       67.500         64.85 <td>27.500</td> <td>37.500</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.500                                | 37.500                                                           |
| 4.390       51.500       7.830       61.100         4.470       52.000       8.040       61.500         4.625       52.800       8.220       61.100         4.720       52.800       8.220       61.100         4.720       52.800       8.220       61.100         4.720       52.800       8.220       62.400         4.720       53.600       8.5360       63.600         5.155       54.400       8.795       64.500         5.155       54.400       8.795       64.500         5.155       54.400       8.540       64.500         5.155       54.400       8.930       64.500         5.155       54.400       9.580       64.500         5.155       54.400       9.580       64.500         5.130       9.580       9.580       64.500         5.130       9.585       64.700       65.100         5.130       9.585       64.700       65.100         6.335       55.600       9.5600       65.100         6.130       55.600       9.5600       65.100         6.130       65.100       9.57.500       65.7500         6.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.000                                | 38.000                                                           |
| 4.470       52.000       8.040       61.500         4.540       52.400       8.220       62.000         4.720       52.400       8.220       62.000         4.720       52.400       8.220       62.400         4.720       53.200       8.505       53.200         5.000       8.690       62.400       62.400         5.000       8.690       62.400       63.600         5.155       54.400       8.690       63.600         5.155       54.400       8.795       64.500         5.155       54.400       8.640       65.100         5.155       55.800       9.580       64.500         5.130       9.580       9.580       65.100         5.130       9.585       66.100       65.100         5.130       9.585       66.100       65.100         6.130       56.700       9.585       65.100         6.130       56.100       9.560       65.100         6.130       56.100       9.560       65.100         6.435       56.100       9.560       65.100         6.435       56.100       9.5700       65.100         6.435 <td< td=""><td>38.500</td><td>38+500</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38.500                                | 38+500                                                           |
| 4 - 540       8 - 220       62.000         4 - 7625       52.800       8 - 20         5 - 160       8 - 390       62.400         6 - 160       8 - 590       8 - 500         5 - 155       53.600       8 - 690         5 - 155       54.400       8 - 590         5 - 155       54.400       8 - 690         5 - 155       54.400       8 - 690         5 - 155       54.400       8 - 690         5 - 155       54.400       9 - 690         5 - 345       54.400       9 - 690         5 - 345       54.400       9 - 280         5 - 345       54.400       9 - 280         5 - 345       54.100       9 - 580         5 - 355       56.100       65.100         5 - 355       56.100       65.100         6 - 335       56.100       9 - 585         6 - 335       56.100       9 - 585         6 - 335       56.100       9 - 740         6 - 335       56.100       9 - 740         6 - 335       56.100       9 - 740         6 - 335       56.100       9 - 740         6 - 400       9 - 740       9 - 740         6 - 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.000                                | 39.000                                                           |
| 53.200       8.695       52.800         54.000       8.795       63.200         54.400       8.795       64.500         54.400       8.795       64.500         54.400       8.795       64.500         55.500       9.005       64.500         55.500       9.280       64.500         55.500       9.585       64.500         55.500       9.585       65.100         55.400       9.585       65.100         55.400       9.585       65.100         55.400       9.585       65.100         55.400       9.585       65.100         55.400       9.585       65.100         56.100       9.585       65.100         57.000       9.740       67.100         57.000       9.740       67.100         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000-04                                | 000-05                                                           |
| 53.600       8.690       8.795       63.200         54.000       8.795       64.000         54.400       8.795       64.500         54.400       8.795       64.800         55.200       9.095       64.800         55.200       9.393       64.800         55.200       9.393       64.800         55.800       9.393       65.000         55.400       9.585       64.100         55.400       9.585       65.100         55.400       9.585       67.900         56.100       9.585       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900         57.000       9.740       67.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.500                                | 40.500                                                           |
| 5,000 $5,795$ $63,600$ $5,155$ $54,400$ $8,795$ $64,000$ $5,155$ $54,400$ $8,930$ $64,000$ $5,155$ $54,800$ $9,280$ $64,500$ $5,720$ $9,280$ $9,390$ $65,000$ $5,875$ $55,500$ $9,390$ $65,000$ $5,875$ $55,800$ $9,585$ $66,100$ $5,955$ $56,100$ $9,585$ $67,000$ $5,955$ $56,100$ $9,585$ $67,100$ $6,130$ $56,100$ $9,780$ $67,100$ $6,235$ $57,000$ $9,780$ $67,700$ $6,435$ $57,000$ $9,780$ $67,700$ $6,435$ $57,000$ $9,780$ $67,700$ $6,435$ $57,000$ $9,780$ $68,700$ $6,435$ $57,000$ $9,950$ $68,700$ $6,555$ $57,000$ $9,950$ $69,200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.000                                | 41.000                                                           |
| 5.155       54.400       8.930       64.000         5.345       54.800       9.095       64.500         5.345       55.200       9.095       64.500         5.345       55.200       9.095       64.500         5.345       55.200       9.329       64.500         5.345       55.200       9.329       64.500         5.345       55.500       9.339       65.600         5.475       55.800       9.585       66.100         5.955       56.100       9.585       67.000         6.130       56.400       9.585       67.900         6.335       56.100       9.740       67.500         6.335       57.300       9.740       67.900         6.335       57.300       9.740       67.900         6.435       57.300       9.740       67.900         6.435       57.300       9.450       68.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.500                                | 41.500                                                           |
| 5:345       54.800       9.0°5       64.500         5:755       55.200       9.280       64.800         5:875       55.500       9.280       64.800         5:875       55.500       9.280       65.600         5:875       55.800       9.585       66.100         5:875       55.800       9.585       66.100         5:875       55.100       9.585       67.000         5:875       56.100       9.585       67.000         6:130       9.585       67.100       9.585         6:130       9.585       67.000         6:305       57.300       9.740       67.500         6:305       57.300       9.740       67.500         6:305       57.300       9.450       68.700         6:305       57.500       9.450       68.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.000                                | 42.000                                                           |
| 55.200       9.280       64.800         55.500       9.390       65.000         55.800       9.540       65.000         55.400       9.540       65.000         55.400       9.540       65.000         56.400       9.540       65.000         56.100       9.585       67.000         56.400       9.585       67.000         56.700       9.740       67.500         57.300       9.740       67.500         57.300       9.850       68.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.500                                | 42.500                                                           |
| 55,500       9,393       65,000         55,800       9,585       65,600         56,400       9,585       66,100         56,400       9,585       67,000         56,400       9,585       67,000         56,400       9,585       67,000         56,400       9,585       67,000         57,000       9,740       67,500         57,300       9,860       68,700         57,500       9,950       69,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.930                                | 42.930                                                           |
| 55.800       9.540       65.600         56.100       9.585       66.100         56.400       9.585       67.100         56.400       9.740       67.900         57.000       9.740       67.900         57.300       9.850       67.700         57.400       9.850       67.900         57.500       9.850       68.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.400                                | 43.400                                                           |
| 56.100     9.585     66.100       56.400     9.685     67.000       56.700     9.685     67.900       57.300     9.860     68.700       57.400     9.860     68.700       57.500     9.950     69.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.000                                | 44.000                                                           |
| 56.400     9.685     67.000       57.00     9.740     67.500       57.300     9.860     68.700       57.500     9.850     68.700       57.500     9.950     69.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.500                                | 44.500                                                           |
| 56.700     9.740     67.500       57.000     9.780     67.900       57.300     9.860     68.700       57.500     9.950     69.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000°47                                | 45.000                                                           |
| 51.000 9.780 61.900<br>57.300 9.860 68.700<br>57.600 9.950 69.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.500                                | 45.500                                                           |
| 435         57.300         9.860         68.700           555         57.600         9.950         69.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.000                                | 49°000                                                           |
| دده ۲۰۰۵ ۲۰۰۵ ۵۵٬۹۶۵ ۵۹٬۶۵۵ د.<br>۲۵۵ ۶۵ ۶۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000 27                                |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                  |

| F                                                                                                                                                                                                                    |                     | 24  | NCHE S         | 3.475  | 3.668  | 3.858  | 4.162  | <b>4</b> • 204   |                                                                               | 1                                                  |                      | 24 | NCHES      | 244.6  | 3.980  | 4.096  | 4.201                    |                                                                               | L a                                   | 24           | NCHES<br>2.440         | 2.681  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|----------------|--------|--------|--------|--------|------------------|-------------------------------------------------------------------------------|----------------------------------------------------|----------------------|----|------------|--------|--------|--------|--------------------------|-------------------------------------------------------------------------------|---------------------------------------|--------------|------------------------|--------|
| Jed<br>nder 5U-1L<br>Restraint environment<br>N Dry rtair                                                                                                                                                            |                     | z   | VCLES          |        |        |        |        | <b>41</b> .000   | su-2L                                                                         | RESTRAENT ENVIRONMENT<br>N -65 DEG                 |                      |    | s          | 000.52 |        | 54.500 | 55,300                   | U-3L                                                                          | RESTRAINT ENVIRONMENT<br>N DRY RT AIR |              | K1LUCYCLES 1<br>26.000 |        |
| DATA-Continued<br>, specimen number E<br>(SI GRAIN REST)                                                                                                                                                             |                     | 24  | <b>1</b> NCHES | 2.732  | 2.845  | 3.004  | 3.161  | 3.384            | specimen number {                                                             | GRAIN<br>L                                         |                      | 24 | I NCHES    | 2.78.8 | 2.970  | 3.078  | 3.237                    | specimen number 5                                                             | GRAIN<br>L                            | 24           | I NCHES<br>1.830       | 2.041  |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA-ContinuedCrack length versus cycles for underaged 7079 aluminum, specimen number 5U-1L-IN SIG(MAX GR0SS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT36.012.00012.00012.00012.000 |                     | z   | KILOCYCLES     | 31.000 | 32.100 | 33,500 | 35.000 | 36.500           | Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-2L | F(U)-KSI F(Y)-KSI<br>75-300 63-000                 |                      | Z  | KILOCYCLES | 42.400 | 49.000 | 50.000 | 51.100                   | Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-3L | F(U)-KSI F(Y)-KSI<br>75.000 61.800    | Z            | KILUCYCLES<br>21.000   | 23.200 |
| ATIGUE-CRACK<br>is cycles for unders<br>R055) W-IN<br>0 12.00                                                                                                                                                        |                     | 24  | INCHES         | 1.538  | 1.742  | 1.949  | 2.135  | 2.322<br>2.548   | s cycles for undera                                                           | ROSSJ N-IN<br>0 12.01                              |                      | 24 | INCHES     | 1.707  | 1.886  | 2.156  | 2.407                    | s cycles for undera                                                           | ROSS) W-IN<br>10 8.00                 | 24           | INCHES<br>1.248        | 1.366  |
|                                                                                                                                                                                                                      | 2 <b>a=4.162</b> In | z   | KILOC VCLES    | 17.000 | 20.100 | 23.000 | 25.500 | 27.600<br>29.500 | Crack length versu                                                            | L-IN <b>SIGIMAX GRO</b> SS)<br>36.0 12 <b>.000</b> | 2 <b>4=4.09</b> 6 IN | 2  | KILOCYCLES | 32.500 | 36.000 | 39.600 | 43.050                   | Crack length versu                                                            | L-IN SIG(MAX GROSS)<br>24.0 12.000    | Z            | KILUCYCLES<br>13.000   | 15.000 |
| (m)<br>CPM<br>120.0                                                                                                                                                                                                  | 11.0 KST WHEN 2     | 2 A | I NC HE S      | .793   | .809   | • 944  | 1.088  | 1.263<br>1.420   | (u)                                                                           | CPM<br>120.0                                       | II.0 KSI WHEN 2      | 24 | INCHES     | 797.   | 966    | 1.138  | 1.300<br>1.417           | (o)                                                                           | CPM<br>120.0                          | 2A<br>101150 | 110HES                 | .741   |
| R T-IN<br>.05 .5020                                                                                                                                                                                                  | SMAX REDUCED TO     |     | CLES           | •0     | 3.000  |        |        | 13.200           |                                                                               | R T-IN<br>.05 .5045                                | SMAX REDUCED TO      |    | CLES       | 5.200  | 13.000 | 19.000 | 23 <b>.200</b><br>26.200 |                                                                               | R T-IN<br>.05 .5040                   | N 10010      |                        | 1.500  |

| I ABLE IIIFATIGUE-CHACK LENGI H-CYCLE DATA-Continued         (p) Crack length versus cycles for underaged 7079 aluminum, specimen number 5U-1T         L-IN SIG(MAX GROSS) W-IN       F(U)-KSI       F(Y)-KSI       GRAIN         36.0       12.000       12.01       74.900       58.700       T |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN 2 <b>4=4.109</b>                                                                                                                                                                                                                                                                               |
| N<br>KTI DCVCI FA                                                                                                                                                                                                                                                                                 |
| 000 • 06                                                                                                                                                                                                                                                                                          |
| 100.000                                                                                                                                                                                                                                                                                           |
| 110.500                                                                                                                                                                                                                                                                                           |
| 120.000                                                                                                                                                                                                                                                                                           |
| 140,000                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                   |
| 170.000                                                                                                                                                                                                                                                                                           |
| (d) Crack length versus cycles for underaged 7079                                                                                                                                                                                                                                                 |
| L-IN SIG(MAK GROSS)<br>36.0 12.000                                                                                                                                                                                                                                                                |
| EN 2A=4.092 IN                                                                                                                                                                                                                                                                                    |
| 2                                                                                                                                                                                                                                                                                                 |
| K1LOCYCLES<br>58.000                                                                                                                                                                                                                                                                              |
| 62.000                                                                                                                                                                                                                                                                                            |
| 65.000                                                                                                                                                                                                                                                                                            |
| 70.000                                                                                                                                                                                                                                                                                            |
| (r) Crack length versus cycles for underaged 7079 aluminum, specimen number CNL-6U                                                                                                                                                                                                                |
| L-IN SIG(MAX GROSS)                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                   |
| N 2A=12.035<br>N 2A=12.430 IN                                                                                                                                                                                                                                                                     |
| Z                                                                                                                                                                                                                                                                                                 |
| KILUCYCLFS<br>R5.180                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                   |
| 95.000                                                                                                                                                                                                                                                                                            |
| 100.000                                                                                                                                                                                                                                                                                           |
| 105.000                                                                                                                                                                                                                                                                                           |
| 110.830                                                                                                                                                                                                                                                                                           |
| 113.500                                                                                                                                                                                                                                                                                           |
| 116.000                                                                                                                                                                                                                                                                                           |
| 119.000                                                                                                                                                                                                                                                                                           |
| 125.150                                                                                                                                                                                                                                                                                           |
| 127.250                                                                                                                                                                                                                                                                                           |
| 128.000                                                                                                                                                                                                                                                                                           |

| NMENT<br>. AIR                                                                                                                                                                                                 |                 | INCHES<br>3.452<br>3.452<br>3.9453<br>4.093<br>4.109<br>4.109                    | ENVIRONMENT<br>-65 DEG                                                                                                                                                          |                 | 24  | INCHES     | 3.758     | 010 0            | 4-022  | 4.067  | 4.131  | 4.258                   |                                                                               | ENVIRONMENT<br>ORY RI AIR          | 2A<br>INCHES<br>2.593<br>2.530<br>2.670<br>2.670                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|------------|-----------|------------------|--------|--------|--------|-------------------------|-------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|
| ued<br>ber 6U-1L<br>restraint environment<br>n dry rt air                                                                                                                                                      |                 | N<br>KILOCYCLES<br>39.000<br>39.800<br>41.600<br>41.600<br>43.250                | F                                                                                                                                                                               |                 | z   | KILDCYCLES | 48.500    | 44°000           | 49.750 | 50.000 | 50.250 | 51.150                  | nber 6U-3L                                                                    | RESTRAINT ENVIRO<br>N ORY RT       | N<br>KILOCYCLES<br>30.500<br>32.900<br>33.750<br>34.700           |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA - ContinuedCrack length versus cycles for underaged 7079 aluminum, specimen number 6U-1LL-INF(U)-KSIL-INSIG(MAX GROSS)M-INF(U)-KSI36.012.00012.00012.0280.00067.400LN |                 | 2A<br>2.694<br>2.694<br>3.028<br>3.197<br>3.619<br>3.619                         | Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-2L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAIN<br>36.0 12.000 11.97 81.600 71.400 L |                 | 2 A | INCHES     | 2 • 4 4 4 | 4/6-2            | 3.363  | 3.416  | 3.491  | 3.600                   | Crack length versus cycles for underaged 7079 aluminum, specimen number 6U-3L | F(Y)-KSI GRAIN<br>67.400 L         | 2A<br>INCHES<br>1.610<br>1.752<br>1.911<br>2.069                  |
| K LENGTH-CYCl.<br>aged 7079 aluminu<br>F(U)-KSI F(Y<br>80.000 67.                                                                                                                                              |                 | N<br>KILOCYCLES<br>30.500<br>32.200<br>35.700<br>36.700<br>38.000                | sraged 7079 alumin<br>F(U)-KSI F()<br>81.600 71                                                                                                                                 |                 | z   | KILOCUCLES | 40.000    | 44.000           | 000-94 | 46.600 | 47.150 | 47.809                  | leraged 7079 alumi                                                            | F(U)-KSI F()<br>80.000 67          | N<br>KILDCYCLES<br>22.500<br>24.500<br>26.500<br>28.500<br>28.500 |
| -FATIGUE-CRAC<br>us cycles for under<br>cross) w-in                                                                                                                                                            |                 | ZA<br>INCHES<br>1.729<br>1.729<br>2.069<br>2.169<br>2.301<br>2.526<br>2.526      | sus cycles for unde<br>GROSS) W-IN<br>000 11.97                                                                                                                                 |                 | 2 A | INCHES     | 1.609     | I•745            | 100-1  | 2.073  | 2.158  | 2.215<br>2.318          | ersus cycles for unc                                                          | GROSS) W-IN<br>000 P.03            | 2A<br>INCHES<br>1.054<br>1.177<br>1.308<br>1.472                  |
|                                                                                                                                                                                                                | 2A=4.093 IN     | N<br>21.500<br>23.000<br>24.500<br>25.500<br>25.500<br>27.500<br>29.000          | <ul> <li>(t) Crack length versus cycl</li> <li>L-IN SIG(MAX GROSS)</li> <li>36.0</li> </ul>                                                                                     | 2A=4.131 IN     | z   | KILOCYCLES | 28.000    | 30.000           | 000.55 | 34.250 | 35.500 | 36.750<br>38.250        | (u) Crack length ve                                                           | L-IN SIG(MAX GROSS)<br>24.0 12.000 | N<br>KILDCYCLES<br>13.000<br>19.000<br>19.000<br>20.500           |
| (S)<br>40 CPM<br>40 120.0                                                                                                                                                                                      | O 11.0 KSI WHEN | 2A<br>. 759<br>. 759<br>. 884<br>. 976<br>1.976<br>1.212<br>1.388<br>1.507       | С Р.Ж.<br>С Р.Ж.<br>О                                                                                                                                                           | 0 11.0 KSI WHEN | 24  | I NCHES    | .731      | • 759<br>• • • • | 173.   | 1.115  | 1.251  | 1.349<br>1.487          |                                                                               | N CPM<br>30 120-0                  | 2A<br>1 NCHES<br>• 755<br>• 815<br>• 958                          |
| R T-IN<br>.05 .6340                                                                                                                                                                                            | SMAX REDUCED TO | N<br>KILDCYCLES<br>0.<br>7.300<br>12.000<br>12.000<br>15.000<br>17.500<br>19.500 | R T-IN<br>. 05 .634                                                                                                                                                             | SMAX REDUCED TO | z   | KILOCYCLES | •         | 4.000            | 13 500 | 17.000 | 20.500 | <b>23.000</b><br>25.500 |                                                                               | R T-IN<br>•05 •633(                | N<br>KILDCYCLES<br>0.<br>5.000<br>10.000                          |

| IMENT<br>AIR                                                                                                                                                                        |                  | 2A<br>INCHES<br>2.776<br>2.947<br>3.122<br>3.222            | 3.523<br>3.677<br>3.677<br>4.112<br>4.217            |                      | ENVIRONMENT<br>Dist water           | 2A<br>INCHES<br>2.006<br>2.121<br>2.267    | ONMENT<br>WATER                                                                       | 2A<br>1 N CHE S<br>4 • 042<br>4 • 096<br>4 • 176<br>4 • 176<br>• 196                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------|-------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nued<br>nber 6U-1T<br>Restraint Environment<br>N DRY RT AIR                                                                                                                         |                  | N<br>KILDCYCLES<br>246.000<br>250.000<br>255.700            | 255,700<br>259,000<br>269,000<br>264,000<br>265,500  |                      | RESTRAINT ENVIR<br>N DIST           | N<br>KILDCYCLES<br>8.000<br>8.250<br>8.500 | ENVIR                                                                                 | N<br>KILDCYCLES<br>22.400<br>22.400<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>22.450<br>23.000 |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA- ContinuedCrack length versus cycles for underaged 7079 aluminum. specimen number 6U-11-IN SIG(MAX GROSS) W-INF(U)-KSI56.012.00036.012.000 |                  | 2A<br>INCHES<br>1.506<br>1.506<br>1.718<br>1.339            | 1.983<br>2.059<br>2.533<br>2.414<br>2.583<br>83      | ,<br>ŭ               | FTY)-KST GRAIN<br>63.600 T          | 2A<br>2A<br>1.488<br>1.630<br>1.805        | pecimen nur<br>GRAIN<br>T<br>KSL MHEN 2                                               | 2A<br>ICHES<br>• 513<br>• 651<br>• 693<br>• 952                                                                                                                                 |
| CK LENGTHCYC<br>eraged 7079 alumin<br>F(U)-KS1 F(Y<br>80.300 63.                                                                                                                    |                  | N<br>KILDCYCLES<br>176-200<br>196-700<br>196-200<br>205-200 | 2105-200<br>212-000<br>227-600<br>235-400<br>241-200 | leraged 7079 alumir  | F (U) - KSI<br>80. 300              | KILDCYCLES<br>6.500<br>7.000<br>7.500      | eraged 7079 aluminum, s<br>F(U)-KS1 F(Y)-KS1<br>81.900 64.000<br>SMAX REDUCED T0 11.0 | N<br>KILOCYCLES<br>20.350<br>20.900<br>21.300<br>21.800<br>22.100                                                                                                               |
| ABLE IIIFATIGUE-CRA(<br>length versus cycles for unde<br>s16(Max GR055) #-IN<br>12.000 11.98                                                                                        |                  | 2A<br>INCHES<br>936<br>936<br>1.008<br>1.008                | 1.135<br>1.135<br>1.269<br>1.411                     | ersus cycles for und | SIGINAX GRUSS) W-IN<br>12.000 12.00 | 2A<br>INCHES<br>1.190<br>1.292<br>1.386    | arsus cycles for und<br>GROSS) W-IN<br>300 12.00                                      | 2A<br>INCHES<br>2.711<br>2.864<br>3.021<br>3.255<br>3.255<br>3.255                                                                                                              |
| TABLE III<br>(v) Crack length ve<br>L-IN SIG(MAX<br>36-0 12.                                                                                                                        | 4 2A=4.112 IN    | N<br>KILDCYCLES<br>90.000<br>100.000<br>110.000<br>120.000  | 129.000<br>138.000<br>156.000<br>165.500             | (w) Crack length v   |                                     | KILOCYCLES<br>5.000<br>5.500<br>6.000      | (x) Crack length versus cyc<br>L-IN SIGIMAX GROSS)<br>36.0 12.000                     | N<br>KILDCYCLES<br>14.700<br>16.100<br>17.400<br>19.000<br>19.000                                                                                                               |
| IN CPM<br>320 120-0                                                                                                                                                                 | TO 11.0 KSI WHEN | INCHES<br>1633<br>1633<br>1763<br>1703                      | • • • • • • • • • • • • • • • • • • •                |                      |                                     | 2A<br>INCHES<br>757<br>.932<br>1.094       | IN CPM<br>520 120.0                                                                   | 1 NCHES<br>2 - 277<br>2 - 277<br>2 - 323<br>2 - 323<br>2 - 563<br>2 - 563<br>2 - 563<br>2 - 523                                                                                 |
| R T-IN<br>.63                                                                                                                                                                       | SMAX REDUCED 1   | K fL D CYCL ES<br>0<br>2 0.000<br>3 0.000                   | 80.000<br>80.000<br>80.000<br>80.000<br>80.000       | a                    | . 05<br>FIRST PART                  | N N N N N N N N N N N N N N N N N N N      | R T-IN<br>67 .532<br>SECOND PART OF                                                   | N<br>KILDCYCLES<br>8.750<br>9.500<br>10.500<br>11.600<br>13.650                                                                                                                 |

į

.

|                                                  | ٩                                                                              |
|--------------------------------------------------|--------------------------------------------------------------------------------|
|                                                  |                                                                                |
|                                                  | Z                                                                              |
| g                                                | 2                                                                              |
| ň                                                | qu                                                                             |
| nti                                              | Inc                                                                            |
| Ş                                                | ģ                                                                              |
| Ł                                                | Ĩ                                                                              |
| A                                                | Dec                                                                            |
| Õ                                                | S                                                                              |
| Щ                                                | - Mn                                                                           |
| 5                                                | U                                                                              |
| ပ                                                | lur                                                                            |
| H                                                | 00                                                                             |
| ğ                                                | 20                                                                             |
| μ                                                | 6                                                                              |
| ž                                                | Ē                                                                              |
| AC                                               | ge                                                                             |
| Ř                                                | -Y                                                                             |
| Щ                                                | Dea                                                                            |
| ΒŪ                                               | 5                                                                              |
| Ē                                                | ss f                                                                           |
| ₽                                                | ر<br>دار                                                                       |
| <u> </u>                                         | S                                                                              |
| TABLE III FATIGUE-CRACK LENGTH-CYCLE DATA - Cont | < length versus cycles for peak-age (T6) 7079 aluminum. specimen number CNL-11 |
| Щ                                                | ve                                                                             |
| AB                                               | dt                                                                             |
| F                                                | ence                                                                           |
|                                                  | 1                                                                              |

|                                                                                        | ENVIRONMENT                       | DRY RT AIR  | 7                                                                                       |
|----------------------------------------------------------------------------------------|-----------------------------------|-------------|-----------------------------------------------------------------------------------------|
| nber CNL-1P                                                                            | F(U)-KSI F(Y)-KSI GRAIN RESTRAINT | ۶           | SMAX REDUCED TO 10.0 KSI WHEN 2A=10.015 IN<br>SMAX REDUCED TO 8.0 KSI WHEN 2A=12.285 IN |
| imen nun                                                                               | GRAIN                             | Ļ           | SI WHEN<br>I WHEN 2                                                                     |
| uminum, spec                                                                           | F( Y)-KS1                         | 73.900      | 0 T0 10.0 K                                                                             |
| (T6) 7079 alt                                                                          | F(U)-KSI                          | 79.600      | SMAX REDUCEI                                                                            |
| r peak-age                                                                             | NI - M                            | 35.97       |                                                                                         |
| (y) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number CNL-1P | L-IN SIGIMAX GROSS) W-IN          | 96.0 12.000 | 00 IN                                                                                   |
| <b>Crack leng</b>                                                                      | L-IN                              | 96.0        | V 2A±8.925 IN<br>#HEN 2A=11.800                                                         |
| (X)                                                                                    | CPM                               | 45.0        | ) WHEN 2A=<br>KSI WHEN                                                                  |
|                                                                                        | 1-1N                              | .1570       | SMAX REDUCED TO 11.0 WHEN 2A=8.925 IN<br>SMAX REDUCED TO 9.0 KSI WHEN 2A=11.800 IN      |
|                                                                                        | ¢                                 | • 05        | SMAX REDU<br>SMAX REDU                                                                  |

SMAX REDUCED TO 9.0 KSI WHEN ZA=11.800 IN SMAX REDUCED TO 5.35 KSI WHEN ZA=12.430 IN

| 24 | I NCHE S    | 9.815   | 10.015  | 10.135  | 10.310  | 10.495  | 10.690  | 10.850  | 11.060  | 11.235  | 11.415  | 11.590  | 11.800  | 11.975  | 12.200   | 12.285  | 12.430  | 12.535  | 12.600  |        |
|----|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|--------|
| Z  | KILOCYCLES  | 126.400 | 126.800 | 127.200 | 127.700 | 128.200 | 128.700 | 129.100 | 129.600 | 130.000 | 130.400 | 130.800 | 131.200 | 131.800 | 132.400  | 132.600 | 133.400 | 134.700 | 135.300 |        |
| 24 | INCHES      | 6.810   | 7.085   | 7.245   | 7.460   | 7.625   | 7.800   | 7.975   | 8.255   | 8.455   | 8.585   | 8.730   | 8.825   | 8.925   | 9.020    | 9.160   | 9.335   | 9.495   | 9.630   |        |
| z  | KILDCYCLES  | 118.200 | 119.200 | 119-800 | 120.500 | 121.000 | 121.500 | 122.000 | 122.700 | 123.200 | 123.500 | 123.800 | 124.000 | 124.200 | 124. 500 | 124.900 | 125.300 | 125.700 | 126.000 |        |
| 24 | INCHES      | 3.500   | 3.700   | 3.870   | 4.005   | 4.300   | 4.460   | 4.645   | 4.825   | 5.010   | 5.235   | 5,395   | 5.555   | 5.715   | 5.885    | 6.085   | 6.310   | 6.510   | 6.665   |        |
| z  | KILOC YCLES | 93.500  | 96.000  | 98.000  | 100.000 | 102.500 | 104.000 | 105.600 | 107.000 | 108.500 | 110.000 | 111.000 | 112.000 | 113.000 | 114.000  | 115.000 | 116.100 | 117.000 | 117.600 |        |
| 20 | INCHES      | .760    | .815    | .850    | • 965   | 1.100   | 1.195   | 1.290   | 1.465   | 1.615   | . 740   | 1.900   | 2.050   | 2.200   | 2.280    | 2.420   | 2.615   | 2.855   | 3.080   | 3.355  |
| z  | KILDCYCLES  | •       | 6.500   | 10.000  | 20.000  | 30.000  | 35.000  | 40.000  | 47.700  | 53.000  | 57.000  | 62.000  | 66.250  | 70.000  | 71.800   | 75.050  | 79.100  | 83.500  | 87.500  | 91.600 |

(z) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 1P-1L

| NMENT<br>AIR             |                          | 24 | I NCHE S         | 3.885 | 3.998 | 4.053 | 4.125 | 4.175  | 4.208  |
|--------------------------|--------------------------|----|------------------|-------|-------|-------|-------|--------|--------|
| ENVIRONMEN<br>DRY RT AIR |                          |    | <b>1LOCYCLES</b> | .390  | . 700 |       | -000  | .100   | .150   |
| RESTRAINT<br>Y           |                          | Z  | KILOC            | 20    | 28    | 28    | 29    | 29     | 53     |
| GRAIN<br>L               |                          | •  | INCHES           | 597   | 894   | 067   | 238   | 435    | 613    |
| F(Y)-KSI<br>73.900       |                          |    | -                |       |       |       |       |        |        |
| F(U)-KSI<br>79.600       |                          | Z  | KILOCYCLES       | 24.60 | 25.90 | 26.50 | 27.00 | 27.50  | 27.90  |
| и-IN<br>11.97            |                          |    | IE S             | 28    | 25    | 56    | 35    | 4 U    | 33     |
| 516(MAX GROSS)<br>12.000 |                          | 24 | INCHES           | 1.5   | 1.7   | 1.8   | 2.0   | 2.2    | 2.4    |
| SIG(MAX<br>12.           | NI 86                    | 7  | ILDC YCLES       | 5.700 | 000   | 9.700 | 1.000 | 2.500  | 9.700  |
| L-IN<br>36.0             | 2A=3.998 IN              | ~  | KILDC            | 1     |       | 1     | 2     | ŝ      | 2      |
| СРМ<br>120.0             | O KST WHEN               |    | ES               | 61    | 26    | 61    | 63    | 33     | 43     |
| T-IN<br>.1580            | D TO 11.                 | 24 | INCH             | ~ ·   | ~ •   | 6.    | 1.1   | 1.2    | 1.343  |
| 05                       | SMAX REDUCED TO 11.0 KSI | z  | KILOCYCLES       | •0    | 1.800 | 6.100 | 0000  | 11.300 | 13.100 |

è

| N MENT<br>66                                                                                                                                                                                                                                  |                                        | 2A<br>1 NCHE S<br>3.583<br>3.583<br>3.9828<br>3.9828<br>4.128<br>4.128 |                                                                                        | MENT                                  | 2A<br>INCHE S<br>2.572<br>2.698<br>2.698<br>2.63<br>2.804                  | ENVIRONMENT<br>DRY RI AIR                                                                                                                                                                  | IX 22<br>3 01 14<br>3 01 14<br>3 01 14<br>3 01 14<br>4 01 01<br>4 01 01<br>1 01 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nued<br>number 1P-2L<br>RESTRAINT ENVIRDNMENT<br>Y -65 DEG                                                                                                                                                                                    | 2A=3.989 IN                            | K IL DC Y CL E S<br>35 - 500<br>36 - 700<br>36 - 700<br>37 - 000       | number 1P-3L                                                                           | RESTRAINT ENVIRONMENT<br>Y DRY RT AIR | N<br>KILDCYCLES<br>27.000<br>27.50<br>27.750<br>27.900                     |                                                                                                                                                                                            | N<br>197001ES<br>197000<br>209000<br>204.300<br>205.700<br>205.700<br>205.700<br>205.700<br>205.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA- Continued<br>Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 1P-2L<br>L-IN SIG(MAX GR0SS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>36.0 12.000 12.00 83.800 77.500 L Y | SMAX REDUCED TO 10.0 KSI WHEN 2A=3.989 | 24<br>INCHES<br>1.996<br>2.537<br>2.535<br>2.866<br>3.054              | (ab) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 1P-3L | F(Y)-KSI GRAIN<br>73.900 L            | 2A<br>INCHES<br>2.065<br>2.206<br>2.396<br>2.389<br>2.471                  | ac) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 1P-1T<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>36.0 12.000 12.00 80.100 70.500 T Y | 2A<br>INCHES<br>1,992<br>2,178<br>2,374<br>2,620<br>2,620<br>3,000<br>3,173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ACK LENGTHCY<br>ak-age (T6) 7079 al<br>F(U)KSI F<br>83.800                                                                                                                                                                                    | SMAX REDUCED T                         | KILOCYCLES<br>29.500<br>31.500<br>33.000<br>34.500                     | ak-age (T6) 7079 a                                                                     | F(U)-KSI F<br>79.600 7                | N<br>KILDCYCLES<br>24.000<br>25.000<br>25.000<br>26.500<br>26.500          | ak-age (TG) 7079 al<br>F1U) -KSI F1<br>80-100 70                                                                                                                                           | N<br>KILDCYCLES<br>151.000<br>161.000<br>170.000<br>170.000<br>170.000<br>195.500<br>194.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ABLE IIIFATIGUE-CR.<br>length versus cycles for pe<br>sicimax GROSS) w-in<br>12.000 12.00                                                                                                                                                     |                                        | 2A<br>INCHES<br>1.046<br>1.153<br>1.292<br>1.496<br>1.696              | rersus cycles for pe                                                                   | SIG(MAX GROSS) W-IN<br>12.000 8.00    | 2A<br>INCHES<br>I.424<br>1.424<br>1.529<br>1.752<br>I.943                  | length versus cycles for pe<br>SIC(MAX GROSS) W-IN<br>12.000 12.00                                                                                                                         | 2A<br>INCHES<br>1.2353<br>1.318<br>1.420<br>1.603<br>1.603<br>1.678<br>1.633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TABLE I<br>(aa) Crack length v<br>L-IN \$16(MA<br>36.0 12                                                                                                                                                                                     | EN 2A=3.583 IN                         | KILDCYCLES<br>13.000<br>16.000<br>19.500<br>23.500<br>26.500           | (ab) Crack length                                                                      | L-IN SIGEMA<br>24.0 12                | KILDCYCLES<br>KILDCYCLES<br>14.100<br>16.000<br>18.700<br>21.100<br>23.000 | (ac) Crack length v<br>L-IN SIGUMA<br>36.0 12                                                                                                                                              | N LOCYCLES<br>82.000<br>92.400<br>113.000<br>113.000<br>123.000<br>123.000<br>123.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T-IN CPM<br>.1590 120.0                                                                                                                                                                                                                       | TO 11.0 KSI WH                         | 2A<br>I NCHES<br>• 729<br>• 807<br>• 880<br>• 880                      |                                                                                        | T-IN CPM<br>.1585 120.0               | 2A<br>INCHES<br>• 750<br>• 779<br>• 921<br>1.079<br>1.208                  | T-IN CPM                                                                                                                                                                                   | 2A<br>NCHES<br>800<br>813<br>813<br>930<br>1.013<br>1.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R .                                                                                                                                                                                                                                           | SMAX REDUCED                           | KILOCYCLES<br>0.000<br>5.500<br>10.500                                 |                                                                                        | в<br>• 05                             | KILDCYCLES<br>KILDCYCLES<br>2.000<br>5.000<br>9.500<br>12.000              | ₹.<br>₹.                                                                                                                                                                                   | N<br>N<br>0.<br>10.000<br>14.200<br>23.500<br>36.500<br>36.000<br>49.000<br>61.000<br>71.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

•

.

| IENT<br>Fr                                                                                                                                                                                                              |                      | 24  | 3.461                | 3.665  | 3.885  | 4.136           | 4.201          |                                                   | IMENT               | AIK          |                                              | 24  | I NCHE S    | 10.785  | 10.950  | 001-11         |                 | 11.675    | 11.845  | 12.015  | 12.210  | 12.230  | 12.330  | 12.410  | 13 475     | 12.515     | 12.605  |               |                                                                                   | FNVIPONNENT  | RT AIR                              |                  | 2 <b>A</b> | INCHE S        | 5.28U          | 4.061  | 4.209  |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|----------------------|--------|--------|-----------------|----------------|---------------------------------------------------|---------------------|--------------|----------------------------------------------|-----|-------------|---------|---------|----------------|-----------------|-----------|---------|---------|---------|---------|---------|---------|------------|------------|---------|---------------|-----------------------------------------------------------------------------------|--------------|-------------------------------------|------------------|------------|----------------|----------------|--------|--------|--------|
| nued<br>Jmber 1P-2T<br>Restraint environment<br>Y dist water                                                                                                                                                            |                      | Z   | KILUUTULES<br>49.000 | 49.750 | 50.500 | 51.150          | 51.600         | Imber CNL-2P                                      | NVI RUN             |              | 2A=10.635 IN<br>2A=12.410 IN                 | z   | KILDCYCLES  | 133.500 | 134.000 | 134.000        | 125 500         | 1 35, 900 | 136.300 | 136.700 | 137.100 | 137.700 | 138.200 | 138.650 | 140 200    |            | 142.300 | ,             | umber 2P-1L                                                                       |              |                                     |                  | Z          | KILOCYCLES     | 28.800         | 29-100 | 30.100 |        |
| YCLE DATA - Contin<br>luminum, specimen nu<br>F(Y)-KSI GRAIN F<br>70-500 T                                                                                                                                              |                      | 2 A | INCHES               | 7.161  | 2.920  | 3.119           | 3.290          | aluminum, specimen number CNL-2P                  | F(Y)-KSI GRAIN      | 14*000 L     | 10.0 KSI WHEN 2<br>6.35 KSI WHEN 2           | 2 A | I NCHES     | 7.290   | 7.700   | 8.010          | 205             |           | 8.775   | 9.005   | 9.270   | 9.410   | 9.570   | 227 °9  | 10 165     | 10.345     | 10.635  | ;             | ninum, specimen n                                                                 | NIVEL LUA IN | 74.000 L                            |                  | 24         | INCHES         | 2.458<br>2.606 | 2.752  | 2.962  | 3.331  |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA- ContinuedCrack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 1P-2TL-INSIG(MAX GR0SS)W-INF(U)-KSIL-INSIG(MAX GR0SS)36.012.81012.81012.0080.10070.500TY |                      | z   | KILOCYCLES           |        | 46-500 | 47.500          | 48.250         | age (T6) 7079 alumi                               | F(U)-KSI F(Y        | 80.400 14.   | SMAX REDUCED TO<br>SMAX REDUCED TO           | z   | KILOCUCLES  | 124.000 | 125.450 | 125.450        |                 | 128,000   | 128-500 | 129.000 | 129.500 | 130.000 | 130.500 | 131.500 | 132 000    | 132 . 400  | 132.950 |               | Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-1L |              | 80.400 74                           |                  | Z          | KILDCYCLES     | 24.000         | 26.000 | 27.000 | 28.180 |
| -FATIGUE-CRAC<br>us cycles for peak-a<br>cross) w-rn<br>110 12.00                                                                                                                                                       |                      | 2 A | INCHES               | 1.727  | 1.688  | 110.42          | 2.470          | Crack length versus cycles for peak-age (T6) 7079 | SIG(MAX GROSS) W-IN | 12.000 36.75 |                                              | 2 A | INCHES      | 3.270   | 3.480   | 0.010<br>0.015 | 2.0.07<br>2.055 | 4.115     | 4.310   | 4.500   | 4.695   | 4.920   | 5.275   | 617 °C  |            | 0.4-0      |         | 7.030         | rsus cycles for peak                                                              |              | 5161MAX GRUSS) W-IN<br>12.000 12.00 |                  | 2 A        | INCHES         | 1.509          | 1.860  | 2.100  | 2.270  |
|                                                                                                                                                                                                                         | 2 <b>a=4.</b> 136 IN | Z   | KILDC YCLES          | 36.000 | 38.000 | 000 <b>*0</b> * | 43.500         |                                                   |                     |              | 2 <b>A=9.270 IN</b><br>2 <b>A=12.2</b> 10 IN | z   | KI LOCYCLES | 90.600  | 93.200  | 007.26         |                 |           | 103.400 | 105.700 | 108.000 | 110.000 | 112.800 | 115.900 | 1100.000   | 121.000    | 122.200 | 123.000       |                                                                                   |              | L-IN SIGINA<br>36.0 12              | N 24=4.061 IN    | z          | KILOC YCLES    | 15.000         | 10.100 | 21.200 | 22.500 |
| (ad)<br>N CPM<br>90 120-0                                                                                                                                                                                               | TO 11.0 KSI WHEN     | 4.6 | I NCHES              | .744   | .812   | . 995           | 1.206<br>1.366 | 1.590 (ae)                                        | N C D               | 9 9          | TO 11.0 KSI WHEN<br>TO 8.0 KSI WHEN          | 24  | I NC HES    | • 770   | .800    | .860           |                 | 1 195     | 1.310   | 1.460   | 1.625   | 1.860   | 2.035   | 2.180   | 2.31U      | 2.2.5      | 010.6   | 3.100         | (af)                                                                              |              | -IN CPM<br>2535 120.0               | TO 11.0 KSI WHEN | 2 A        | <b>1</b> NCHES | .762           | 191    | 1.066  | 32     |
| R T-IN<br>.67 .159                                                                                                                                                                                                      | SMAX REDUCED TO      | 3   | KILOCYCLES           |        | 0      | 20.000          | 30.000         | •                                                 | -                   | 5 •2         | SMAX REDUCED                                 | z   | KILDCYCLES  |         | å.      |                | • ⊂<br>• c      |           | 2<br>   | 3.5     | 8.2     | 9°2     | 2.2     | ~       | * C<br>• C | ) C<br>• C |         | $\circ \circ$ |                                                                                   | •            | к 1-<br>.05 .2                      | SMAX REDUCED     | z          | KILOCYCLES     |                |        | 8.000  | • • 0  |

•

| N MENT<br>G                                                                                                                                                                                          |                        | I NCHES<br>3.66HES<br>3.66HES<br>3.768<br>3.924<br>3.924<br>4.125<br>4.125<br>4.200 | ENVIRONMENT<br>ORY RT AIR                                                                                                                                                             | 2A<br>1MCHE 5<br>2 • 71 1<br>2 • 79 3<br>2 • 81 3<br>2 • 81 3               | MENT<br>TER                                                                                                                                                                            | IN 24<br>3.654<br>3.653<br>4.054<br>4.109<br>4.209                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| ued<br>umber 2P-2L<br>Restraint environment<br>Y -65 deg                                                                                                                                             |                        | N<br>KILDCYCLES<br>35.100<br>35.400<br>35.700<br>36.000<br>36.600                   |                                                                                                                                                                                       | N IL OC VCL ES<br>26.500<br>26.700<br>26.900<br>26.900<br>26.900            | umber 2P-2T<br>RESTRAINT ENVIRONMENT<br>Y DIST MATER                                                                                                                                   | N<br>KILDCYCLES<br>69.800<br>70.400<br>71.000<br>71.600<br>71.600           |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA - ContinuedCrack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-2LL-1NS16(MAX GR0SS)H-1NF(U)-KSI56.0012.00036.012.00012.00012.000 |                        | 2A<br>INCHES<br>2.728<br>2.937<br>3.065<br>3.232<br>3.538<br>3.538                  | Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-3L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>24.0 I2.000 8.05 80.400 74.000 L Υ | 2A<br>INCHES<br>2.093<br>2.247<br>2.506<br>2.610<br>2.610                   | Crack length versus cycles for peak-age (TG) 7079 aluminum, specimen number 2P-27<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>36.0 12.000 12.00 B1.900 72.300 T Y | NCTA<br>NCTA<br>NCTA<br>NCTA<br>NCTA<br>NCTA<br>NCTA<br>NCTA                |
| CK LENGTH-CYC<br>-age (T6) 7079 alun<br>F(U) -Ks1 F(<br>84.300 77                                                                                                                                    |                        | N<br>KILOCYCLES<br>32.200<br>33.000<br>33.500<br>34.000<br>34.400<br>34.800         | -age (T6) 7079 alur<br>F(U)-KS1 F(<br>80.400 74                                                                                                                                       | N<br>KILDCYCLES<br>23.000<br>24.000<br>25.000<br>25.500<br>25.000<br>25.000 | age (TG) 7079 alum<br>F ( U) – KSI                                                                                                                                                     | M<br>KILOCWCLES<br>62.070<br>64.000<br>65.500<br>68.000<br>68.000           |
| ABLE IIIFATIGUE-CRA<br>ingth versus cycles for peak<br>sigimax grossi w-in<br>12.000 12.000                                                                                                          |                        | 2A<br>INCHES<br>1.570<br>1.773<br>1.988<br>2.160<br>2.160<br>2.314                  | ingth versus cycles for peak<br>SIG(MAX GROSS) W-IN<br>12.000 8.05                                                                                                                    | 2A<br>INCHES<br>1.282<br>1.414<br>1.414<br>1.417<br>1.747<br>1.910          | ngth versus cycles for peak.<br>sic(MAX GROSS) W-IN<br>12.000 12.00<br>9 IN                                                                                                            | 2A<br>INCHES<br>1.600<br>1.748<br>1.856<br>1.856<br>1.856<br>2.106<br>2.272 |
| -                                                                                                                                                                                                    | N 2 <b>A</b> =3.924 IN | N<br>23.100<br>25.400<br>25.400<br>27.400<br>30.000<br>31.200                       |                                                                                                                                                                                       | N<br>14.000<br>14.000<br>16.000<br>20.000<br>22.000                         | - N                                                                                                                                                                                    | N<br>KILDCYCLES<br>49.000<br>52.000<br>54.000<br>54.100<br>58.000<br>60.000 |
| 1-1N СРЧ (ag)<br>-2550 120-0                                                                                                                                                                         | 0 TO 11.0 KSI WHEN     | 2A<br>INCHES<br>• 746<br>• 763<br>• 763<br>• 763<br>• 165<br>1.174<br>1.391         | (ah)<br>7-1N CPM<br>.2540 120.0                                                                                                                                                       | 2A<br>INCHES<br>• 763<br>• 793<br>• 983<br>1.088                            | (ai)<br>T-IN CPM<br>.2550 120.0<br>D TO 11.0 KS1 MHEN                                                                                                                                  | 2A<br>INCHES<br>743<br>772<br>872<br>1.049<br>1.226<br>1.443                |
| Со5                                                                                                                                                                                                  | SMAX REDUCED           | NIL OCYCLES<br>0.<br>7.100<br>12.300<br>12.300<br>16.300<br>20.100                  | ۳<br>05<br>• ٦                                                                                                                                                                        | NILOCYCLES<br>0.000<br>5.000<br>8.000<br>11.000                             | R T-IN<br>.67 .255<br>SMAX REDUCED TO                                                                                                                                                  | N<br>KILDCYCLES<br>0.000<br>20.000<br>38.000<br>38.000                      |

| T<br>Environment<br>Dry rt air                                                                                                                                                                                                              |                  | 46  | -          |         |         |         |         |         | 00 4.187 |                  |  | БР                                                                                     | ENVIRONMENT<br>DRY RT AIR |   |                             |                                    | ; |     | LES INCHES |                |                 |        |        |        |        |          |        |        |        |        |                |                  |         |        |        |        |        | ,<br>, |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|------------|---------|---------|---------|---------|---------|----------|------------------|--|----------------------------------------------------------------------------------------|---------------------------|---|-----------------------------|------------------------------------|---|-----|------------|----------------|-----------------|--------|--------|--------|--------|----------|--------|--------|--------|--------|----------------|------------------|---------|--------|--------|--------|--------|--------|
| inued<br>n number 2P-1T<br>RESTRAINT EI<br>Y D                                                                                                                                                                                              |                  | 2   |            | 187.000 | 188.000 | 189.900 | 190.300 | 191.000 | 191.400  | 191.600          |  | en number CNL-                                                                         | RESTRAINT E<br>Y D        |   | 2A=5.225 IN                 | 24=1.000 IN                        | : | Z   | KILOCYCLE  |                | 51.5            | 52.1   | 52.6   | 53.0   | 53.1   | 53•5     | 53.8   | 54.0   | 54.4   | 24.800 |                | 56.100           | 56.4    | 56.7   | 57.040 | 57.26  | 57.4   |        |
| YCLE DATA - Cont<br>aluminum, specime<br>Fty - KSI GRAIN<br>72,300 T                                                                                                                                                                        |                  | 16  | INCHES     | 2.176   | 2.373   | 2.620   | 2.842   | 3.086   | 3.355    | 3 <b>°</b> 595   |  | aluminum, specim                                                                       | F(Y)-KSI GRAIN            |   | 0 10.0 KSI WHEN 2A=5.225 IN |                                    | ě | 24  | I NCHES    | 7 505          | 7.665           | 7.70   | 7.980  | 8.040  | 8.195  | 8.410    | 8.545  | 8.760  | 8.920  | 9.150  | 7.207<br>0 200 | 0 560            | 9.585   | 9.690  | 9.785  | 9.870  | 9,965  | 2      |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA - Continued<br>Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 2P-1T<br>IN SIGMAX GROSSI W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT 6<br>36.0 12.000 12.00 81.900 72.300 T |                  | 2   | KTLOCYCLES | 158.000 | 164.000 | 170.000 | 175.000 | 180.000 | 184.000  | 186.000          |  | ak-age (T6) 7079 a                                                                     | F(U)-KSJ F(<br>78,500 71  |   | REDUCED                     | SMAX REDUCED TO                    | ; | Z   | KILOCYCLES | 41.500         | 000-14<br>7-100 | 42.500 | 43.000 | 43.500 | 44.000 | 44.600   | 45.000 | 45.600 | 46.000 | 46.500 | 000 P 4        | 41°000           | 47.600  | 48.000 | 48-500 | 44.000 | 005 07 |        |
| -FATIGUE-CRA<br>srsus cycles for pea<br>cross w-IN<br>200 12.00                                                                                                                                                                             |                  | 24  | INCHES     | 1.122   | 1.213   | 1.268   | 1.368   | 1.483   | 1.613    | 1.783<br>1.972   |  | rersus cycles for pe                                                                   | GROSS) W-IN               |   |                             |                                    |   | 24  | INCHES     | 618.6<br>050 1 | 0.00            | . 325  | 4.555  | 4.890  | 4.980  | 5.225    | 5.335  | 5.495  | 5.685  | 5.835  | 064.4          | 0.1.0            | 6.510   | 6.650  | 6-805  | 6.950  | 100    |        |
| TABLE IIIFATI(<br>aj) Crack length versus cyc<br>L-IN SIG(MAX GROSS)<br>36.0 12.000                                                                                                                                                         | 2A=4.1021N       | 2   | KILOCYCLES | 81.000  | 52.000  | 100.000 | 110.000 | 120.200 | 130.500  | 140.600          |  | ak) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number CNL-5P | L-IN SIG(MAX GROSS)       | • | 2A=4.890 IN                 | ZA=6.510 IN<br>2A= 9.540 IN        | : | z   | KILOCYCLES | 000°25         | 33,500          | 34.000 | 34.500 | 35.000 | 35.300 | 35.700   | 36.050 | 36.500 | 37.000 | 37.400 | 37.800         | 58•200<br>30 200 | 100.000 |        | 40.000 | 41.400 |        |        |
| 6 CPM                                                                                                                                                                                                                                       | TO 11.0 KSI WHEN | 2.4 | INCHES     | .740    | .740    | . 755   | .796    | .842    | • 895    | 。954<br>1.045    |  | ~                                                                                      | N CPM                     |   | 11.0 KSI                    | 10 9.0 KSI WHEN<br>TO 7.0 KSI WHEN |   | 2 A | INCHES     | .760           | 010.<br>000     | 1.025  | 1.190  | 1.310  | 1.450  | 1.590    | 1.785  | 1.930  | 2.030  | 2.200  | 2.355          | 2.443            | 2.030   | 050 5  | 3.215  | 3.390  |        |        |
| R T-IN<br>.67 .255                                                                                                                                                                                                                          | SMAX REDUCED TO  | 2   | KILDCYCLES | •       | 10.000  | 20.000  | 30.000  | 40.000  | 50.000   | 60.000<br>72.000 |  |                                                                                        | R T-I<br>06 2.0           |   | REDUCED                     | SMAX REDUCED T                     |   | z   | KILOCYCLES | ٠              | 3.UUU<br>5.EAA  | • •    |        | -      | ŝ      | <b>.</b> | •      | -      | ~      | 24.000 | ÷.             | ۰.               | 000 22  |        | 30.000 |        |        |        |

.

|                                                                                                                                                  | ENT<br>IR                             |                                     | 2A<br>INCHES<br>3.531<br>3.659<br>3.763<br>3.763<br>3.920<br>4.110<br>4.230                   | ENT                                                                                                                                                                                            | 2A<br>INCHES<br>3.660<br>4.029<br>4.126<br>4.203                                               | HENT<br>AIR                                                                                                                                                                                | 2A<br>INCHES<br>2.515<br>2.656<br>2.765<br>2.806                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| d<br>mber 5P-1L                                                                                                                                  | RESTRAINT ENVIRONMENT<br>N DRY RT AIR |                                     | N<br>87.900<br>37.900<br>38.500<br>39.500<br>39.500<br>40.200<br>40.200                       | n number 5P-2L<br>restraint environment<br>n -65 deg                                                                                                                                           | N<br>KILOCYCLES<br>33.000<br>33.400<br>34.350<br>34.350                                        | ENVIRON<br>DRY RT                                                                                                                                                                          | N<br>KJLOCYCLES<br>26,600<br>21,500<br>28,400<br>28,400           |
| TABLE III.—FATIGUE-CRACK LENGTH—CYCLE DATA - Continued<br>(al) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 5P-1L | F(Y)-KSI GRAIN RE<br>71.500 L         |                                     | 2A<br>2.197<br>2.197<br>2.343<br>2.502<br>2.671<br>2.671<br>2.671<br>2.950<br>3.109<br>3.302  | (am) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 5P-2L<br>L-IN SIGTMAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT EI<br>36.0 12.000 12.01 B1.200 74.900 L N | S INCHES<br>2.558<br>2.658<br>2.645<br>2.847<br>3.222<br>3.222                                 | (an) Crack length versus cycles for peak-age (TG) 7079 aluminum, specimen number 5P-3L<br>L-1N SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT 6<br>24.0 12.000 8.01 78.500 71.500 L | 2A<br>1NCHES<br>2.034<br>2.179<br>2.376<br>2.457                  |
| CK LENGTH-C<br>k-age (T6) 7079                                                                                                                   | F (U) -KSI<br>78.500                  |                                     | N<br>KILDCYCLES<br>28.000<br>31.500<br>31.500<br>32.000<br>35.000<br>35.000<br>35.000         | sak-age (T6) 707<br>F(U)-KSI<br>81.200                                                                                                                                                         | N<br>KILDCYCLES<br>27.000<br>28.000<br>30.000<br>32.000                                        | ak-age (T6) 7079<br>F(U) - KSI<br>78.500                                                                                                                                                   | N<br>KILDCYCLES<br>23.000<br>24.250<br>25.500<br>26.000           |
| : IIIFATIGUE-CRA<br>h versus cycles for pea                                                                                                      | STGEMAX GROSS) W-EN<br>12.000 12.00   | z                                   | 2 A<br>INCHES<br>1.250<br>1.359<br>1.359<br>1.359<br>1.725<br>1.725<br>2.020<br>2.113         | k length versus cycles for pe<br>sigt Max GROSS) H-IN<br>12.000 12.01                                                                                                                          | 2A<br>1NCHES<br>1.586<br>1.760<br>2.037<br>2.198<br>2.352<br>2.469                             | length versus cycles for pe<br>sig(mAx GROSS) w-in<br>12.000 8.01                                                                                                                          | S INCHES<br>1.263<br>1.263<br>1.399<br>1.599<br>1.752<br>1.889    |
| TABLE<br>(al) Crack lengt                                                                                                                        | L-IN SIG                              | IEN 2A=1.354 [N<br>IEN 2A= 4.110 IN | N<br>KILUCYCLES<br>16.000<br>17.000<br>19.000<br>21.000<br>23.500<br>24.500<br>26.900         |                                                                                                                                                                                                | IEN 24=+.027 IN<br>N 110CYCLES<br>K1LDCYCLES<br>21,000<br>23,000<br>23,000<br>25,000<br>26,000 | (an) Crack leng<br>L-1N SIG(<br>24.0                                                                                                                                                       | N<br>KILOCYCLES<br>13.000<br>15.200<br>18.000<br>19.700<br>21.500 |
|                                                                                                                                                  | T-IN CPM<br>-5000 120.0               | TO 11.0 KSI WHE<br>TO 10.0 KSI WHE  | ZA<br>INCHES<br>- 795<br>- 813<br>- 813<br>- 813<br>- 813<br>- 813<br>- 911<br>- 149<br>1.149 | . :                                                                                                                                                                                            | 11.00<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A<br>2 A                    | •5020 120.0                                                                                                                                                                                | 2A<br>INCHES<br>.751<br>.799<br>.935<br>1.161                     |
|                                                                                                                                                  | R T-<br>• 05 •5                       | SMAX REDUCED<br>SMAX REDUCED        | N<br>KILDCYCLES<br>0.<br>5.000<br>5.000<br>8.000<br>10.000<br>12.000<br>12.000                | R T-IN<br>.05 .503                                                                                                                                                                             | MILDCYCLES<br>N<br>3.700<br>10.500<br>14.000<br>17.200                                         | R<br>05<br>5                                                                                                                                                                               | N<br>KILDCYCLES<br>0.<br>3.200<br>6.700<br>9.000<br>11.000        |

í.

+

| T<br>Environment<br>Dry ri air                                                                                                                                                                                              | ZA<br>20<br>00<br>999<br>999                                 | ENVIRONMENT<br>DIST MATER                                                                                                                              | 2A<br>1. ES<br>100 3.926<br>3.926<br>3.926<br>3.926<br>4.101<br>4.174<br>5.0<br>4.192<br>5.0<br>4.192 | GP<br>Environment<br>DRY RT AIR                                                                                                                                                               | N 2A<br>DCYCLES INCHES<br>42.500 6.400<br>43.000 6.640<br>43.500 7.040<br>44.000 7.350<br>45.000 7.9735 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| tinued<br>en number 5P-1T<br>RESTRALNT EN<br>N DF                                                                                                                                                                           | N<br>70.000<br>80.000                                        | en number 5P-2T<br>i RESTRAINT E<br>N D<br>i 2a=3.677 IN                                                                                               | N<br>KILOCYCLES<br>63.200<br>63.500<br>63.950<br>64.120<br>64.120                                     | ien number CNL⊣<br>N RESTRAINT<br>Y                                                                                                                                                           | M<br>KILDCYCLES<br>42.500<br>43.500<br>44.600<br>45.000                                                 |
| YCLE DATA - Cont<br>aluminum, specime<br>F(Y) - KSI GRAIN<br>69.300 T                                                                                                                                                       | 2A<br>I NCHES<br>.897                                        | <ul> <li>c-age (T6) 7079 aluminum, specime</li> <li>F(U)-KS1 F(Y)-KS1 GRAIN</li> <li>79.400 69.300 T</li> <li>SMAX REDUCED TO 10.0 KS1 WHEN</li> </ul> | 2A<br>INCHES<br>3.174<br>3.270<br>3.400<br>3.677<br>3.677<br>3.677                                    | aluminum, specimel<br>F (Y) - KSI GRAIN<br>72,300 L                                                                                                                                           | 2A<br>1NCHES<br>4.780<br>5.000<br>5.450<br>5.450<br>5.857                                               |
| TABLE IIIFATIGUE-CRACK LENGTH-CYCLE DATA - ContinuedIo) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 5P-1TL-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT E36.012.00012.00012.000 | MILOCYCLES<br>50.000<br>60.000                               | 3ak-age (TG) 7079 a<br>F(U)-KSI F1<br>79.400 6'<br>SMAX REDUCED T1                                                                                     | N<br>KILDCYCLES<br>61.300<br>61.600<br>61.900<br>62.500<br>62.800<br>62.800                           | aq) Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number CNL-6P<br>L-IN SIG(MAX GROSS) W-IN FUJ-KSI F(Y)-KSI GRAIN RESTRAINT EN<br>96.0 12.000 36.25 80.100 72.300 L Y | KILDCYCLES<br>KILDCYCLES<br>39.500<br>40.100<br>41.500                                                  |
| ABLE IIIFATIGUE-CRA<br>length versus cycles for pe<br>sic(max_cross) w-in<br>i2.000 i2.00                                                                                                                                   | 2A<br>INCHES<br>.804                                         | length versus cycles for pe<br>sig(Max GROSS) W-IN<br>12.000 12.00<br>* IN                                                                             | 2A<br>INCHES<br>1.966<br>2.109<br>2.662<br>2.953<br>2.953                                             | length versus cycles for p<br>sig(MAX GROSS) W-IN<br>12.000 36.25                                                                                                                             | 2A<br>INCHES<br>2.230<br>2.520<br>2.820<br>3.145<br>3.145                                               |
| TABLE III<br>(ao) Crack length v<br>L-IN SIGMAX<br>36.0 12.                                                                                                                                                                 | PCL E S<br>K1 L DC YCL E S<br>30.000<br>40.000               | ap) Crack<br>L-IN<br>36.0<br>2A=4.101                                                                                                                  | N<br>54.000<br>56.000<br>58.000<br>60.000<br>60.900<br>60.900                                         | (aq) Crack length<br>L-IN SIG(MA<br>96.0 12                                                                                                                                                   | N<br>KILDCGCLES<br>26.000<br>28.000<br>30.000<br>32.000<br>34.000                                       |
| СРМ<br>120.0                                                                                                                                                                                                                | T 85.320 KILDCUCLES<br>2A<br>1NCHES<br>779<br>.779<br>.779   | CPM<br>120.0<br>11.0 KSI MH                                                                                                                            | 2A<br>INCHES<br>•761<br>•768<br>•868<br>•868<br>•996<br>1.218<br>1.642<br>1.642                       | T-IN СРМ<br>.6290 40.0<br>Fallure                                                                                                                                                             | 2A<br>INCHES<br>• 770<br>• 830<br>• 975<br>1 • 070                                                      |
| R T-IN<br>.67 .503                                                                                                                                                                                                          | PANEL FAILED AT<br>N<br>KildCvcles<br>0.<br>10.500<br>20.000 | R T-IN<br>.67 .5030<br>SMAX REDUCED TO<br>SMAX REDUCED TO                                                                                              | KILDCYCLES<br>0.<br>10.000<br>20.800<br>31.000<br>40.600<br>48.200<br>51.000                          | R T-IN<br>.05 .629<br>CYCLED TO FALLU                                                                                                                                                         | KILDCYCLES<br>6.600<br>9.600<br>11.200                                                                  |

| ALA                                                                                                                                                                                                                                                          | 2A<br>INCHES<br>3.819<br>3.952<br>4.096<br>4.107<br>4.107<br>4.223                        |                                                                                                                                                                                        | 2A<br>INCHE 5<br>3.911<br>4.014<br>4.078<br>4.078<br>4.111<br>4.111<br>4.201               | MMENT<br>AIR                                                                                                                                                                          | 2A<br>I NCHES<br>2.492<br>2.615<br>2.816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| inued<br>number 6P-1L<br>aestalat environment<br>y day at all                                                                                                                                                                                                | KILDCYCLES<br>37,800<br>38,350<br>38,350<br>39,000<br>39,400<br>39,400                    | number 6P-2L<br>Restraint Environment<br>N -65 deg                                                                                                                                     | M<br>KILDCYCL ES<br>35.500<br>35.810<br>35.810<br>35.950<br>35.950<br>36.180               | number 6P-3L<br>restraint environment<br>n orvrtair                                                                                                                                   | M<br>KILOCYCLES<br>25.500<br>26.300<br>27.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TABLE III.—FATIGUE-CRACK LENGTH—CYCLE DATA–Continued<br>Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-1L<br>L-IN StGIMAX GROSS) W-IN F1UJ-KSI F1Y)-KSI GAAIN RESTRAINT E<br>36.0 12.000 12.00 80.100 72.300 L Y C<br>CYCLFS | ZA<br>ZA<br>FINCHES<br>2.692<br>2.942<br>2.91<br>3.179<br>3.286<br>3.286<br>3.585         | Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-2L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>36.0 12.000 12.02 83.700 75.500 L N | 2A<br>1MCHES<br>2.736<br>2.872<br>3.070<br>3.161<br>3.542<br>3.542<br>3.612                | Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-31<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT<br>24.0 I2.000 8.00 80.100 72.300 L N | 2A<br>INCHES<br>1.893<br>1.995<br>2.141<br>2.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ACK LENGTH-CY<br>ik-age (T6) 7079 alu<br>f(U)-KSI f()<br>80.100 72.                                                                                                                                                                                          | KILDCYCLES<br>31.200<br>33.100<br>33.000<br>33.400<br>33.600<br>33.600<br>33.600          | sk-age (T6) 7079 alu<br>F (U) - KSI F (1<br>83.700 75.                                                                                                                                 | KILDCYCLES<br>31.500<br>32.000<br>33.500<br>33.600<br>33.670<br>33.670<br>34.750           | ak-age (TG) 7079 alu<br>F(U)-KSI F()<br>90.100                                                                                                                                        | N<br>KILDCYCLES<br>20.300<br>21.500<br>22.800<br>24.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABLE IIIFATIGUE-CR/<br>length versus cycles for pea<br>stormax cross) w-in<br>i2.000 i2.00                                                                                                                                                                   | 2A<br>INCHES<br>1.6550<br>1.550<br>1.750<br>2.024<br>2.150<br>2.555<br>2.555<br>2.555     | length versus cycles for pea<br>Sig(Max GROSS) W-IN<br>12.000 12.02<br>B IN                                                                                                            | ZA<br>INCHES<br>1.785<br>1.917<br>2.028<br>2.118<br>2.59<br>2.459<br>2.646                 | ength versus cycles for pes<br>sic(max Gross) w-in<br>i2.000 8.00                                                                                                                     | 2A<br>INCHES<br>1.282<br>1.445<br>1.634<br>1.747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ar)                                                                                                                                                                                                                                                          |                                                                                           | 3S)                                                                                                                                                                                    | N<br>KILOCYCLES<br>24.700<br>26.000<br>27.000<br>29.000<br>31.100<br>31.100                | (at) Crack length v<br>L−IN SIG(MA<br>24.0 12                                                                                                                                         | N<br>KILDCYCLES<br>13.500<br>15.700<br>17.800<br>19.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ()<br>1-IN CPM<br>-6320 77.0<br>AK OVERLOAD AT 33                                                                                                                                                                                                            | 2A<br>MCHES<br>8790<br>8790<br>8790<br>1.133<br>1.133<br>1.269<br>1.269<br>1.269<br>1.481 | ({<br>t-in cpm<br>.6320 80.0<br>d to 11.0 ksi whei                                                                                                                                     | IMCHES<br>MCHES<br>• 773<br>• 902<br>• 942<br>1.0442<br>1.274<br>1.517<br>1.517<br>1.682   | T-IN CPM                                                                                                                                                                              | ZA<br>INCHES<br>• 783<br>• 7863<br>• 7864<br>• 7864<br>• 7864<br>• 7863<br>• 7864<br>• 7 |
| R T<br>. 05 .                                                                                                                                                                                                                                                | N<br>007<br>5000<br>5000<br>112.000<br>117.150<br>20.000<br>20.000<br>20.000              | R T-<br>.05<br>SMAX REDUCED                                                                                                                                                            | M<br>MILDCYCLES<br>0.<br>5.000<br>14.000<br>18.200<br>18.200<br>20.150<br>22.000<br>23.670 | а.<br>• •                                                                                                                                                                             | KILDCYCLES<br>0.<br>5.500<br>9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\$

ł

| MENT<br>A I R                                                                                                                                                                                           |                               | 24 | INCHE S       | 2.094   | 2.957   | 00000<br>0100 |         | 007.1              |                                              | NMENT                   | ATER                                                                            | 24 | INCHES       | C 1 2 • 2 | 2.747  | 4.034        |        |                      | ENVIRONMENT<br>DRY RT AIR          |                                        | 2A | I NCHE S   | 11.630  | 11.775   | 12.105         | 12.170           | 12-215  | 12.220  | 12.240         | 12.325         | 12.365  | 12.400  | 12.400     | 12.405  | 12 444  | 12-510  | 12.555           | 12.595  | 12.600  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----|---------------|---------|---------|---------------|---------|--------------------|----------------------------------------------|-------------------------|---------------------------------------------------------------------------------|----|--------------|-----------|--------|--------------|--------|----------------------|------------------------------------|----------------------------------------|----|------------|---------|----------|----------------|------------------|---------|---------|----------------|----------------|---------|---------|------------|---------|---------|---------|------------------|---------|---------|
| nued<br>number 6P-1T<br>restraint environment<br>n dry rtair                                                                                                                                            |                               | z  | KILOCYCLES    | 153.100 | 158.900 | 274.461       | 000-101 | 617-101            | P-2T                                         | F                       | N DIST WATER                                                                    | Z  | KILOCYCLES   | 000 77    | 65.000 | 66.595       |        |                      | RESTRAINT ENVIROU                  | 2A=12。105 IN<br>2A=12。400 IN           | z  | KILOCYCLES | 157.700 | 158.050  | 158.800        | 159.100          | 159.250 | 160.000 | 160.500        | 141 200        | 161.600 | 161.900 | 162.900    | 163.700 |         | 166-000 | 166.900          | 167-500 | 7.55    |
| ATA - Continued<br>n, specimen numb<br>GRAIN RESTI                                                                                                                                                      |                               | 24 | ICHES         | . 405   | . 495   | 1.562         | 070.    | 1.864<br>1.864     | ecimen number 6                              |                         | T                                                                               | 24 | NCHES        | 1.598     | 1.856  | 2.015        |        | oecimen number C     | GRAIN<br>L                         | KSI WHEN<br>KSI WHEN                   | 28 | INCHES     | 7.350   | 7.615    | 1.865<br>9.020 | 8.280            | 8.595   | 8.815   | 8.975<br>0.145 | 9.140<br>0 200 | 9.450   | 9.620   | 9.815      | 10.045  | 10.220  | 005-01  | 11.120           | 11.400  | 11.485  |
| TABLE IIIFATIGUE-CRACK LENGTHCYCLE DATA - Continued<br>Crack length versus cycles for peak-age (T6) 7079 aluminum, specimen number 6P-1T<br>-IN SIGLMAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAINT E |                               | 2  |               | 115.000 |         | 129.000       |         |                    | 7079 aluminum specimen number 6P-2T          |                         | FUJ-KSI FUJ-KSI<br>79.800 69.900                                                |    | KILDCYCLES I |           | 56.000 |              |        | 'n                   | F(U)-KSI F(Y)-KSI<br>75.300 65.300 | X REDUCED TO 10.0<br>X REDUCED TO 6.35 | z  | YCLES      |         | 145.810  | 146.850        | 148.500          | 149.730 | 150.500 | 151.000        | 046-161        | 152.500 |         |            |         | 154.500 | 155.400 | 156.500          | 157.000 | 157.300 |
| ATIGUE-CRACK L<br>cycles for peak-age<br>ss) w-1N F(<br>12.00 79                                                                                                                                        |                               |    | NCHES         | 1.026   | 1.082   | 1.152         | 1.220   | 1.350<br>1.350     | Crack length versus cycles for Deak-age (T6) |                         | GROSS) W-IN FO                                                                  | 24 | INCHES       | .985      | 1.077  | 1.322        | 1.451  | s cycles for overage | N - N<br>90 • 96                   | S MA X<br>S MA X                       |    | INCHES     | 3.225   | 3.400    | 3.575          | 3. 450<br>3. 450 | 4.100   | 4.260   | 4.485          | 4.660          | 4.790   | 5.070   | 5.215      | 5.360   | 5.590   | 5.725   | 6. 000<br>6. 260 | 6.575   | 6.930   |
| TABLE IIIFATI<br>Crack length versus cyc<br>L-IN SIGIMAX GROSS)<br>36.0 12.000                                                                                                                          | 2 <b>4</b> =3 <b>.</b> 583 IN | 7  | KILOC VCLES 1 |         |         |               |         | 106.300<br>110.800 | lanath versus cvcles                         | ופווארוו גבו אתם כאבוכי | L-IN SIG(MAX GR(<br>36.0 12.000                                                 | Z  | YCLES        |           |        | 43.500       | 48.500 | Crack length versu:  | L-IN SIG(MAX GROSS)<br>96.0 12.000 | 24=11.485 IN<br>24=12.215 IN           | 2  | VCI ES     |         |          |                | 115 200          | 117.000 | 119.000 | 121.600        | 123.650        | 125.000 | 128-000 | 129.500    | 131.000 | 132.900 | 134.000 | 130.250          | 140.200 | 142.300 |
| (au) (<br>CPM L<br>80.0 3                                                                                                                                                                               | 11.0 KSI WHEN 2A              | i  | ZA<br>JCHFS   | . 794   | - 794   | .814          | .878    | •932<br>•973       | (116)                                        |                         | 19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>1 | 24 |              | 18        | .795   | .832<br>.871 | - 11   | (aw)                 | CPM<br>66.0                        | 11.0 KSI WHEN 2<br>8.0 KSI WHEN 2A     | ł  |            |         | · • •    | 5              | n n              | .05     | -       | .18            | $\sim$         | 4.      | ປີ 4    | 5 <b>6</b> | 6       | .13     | 5       | 10<br>1<br>1     |         | 2.980   |
| R T-IN<br>.67 .6330                                                                                                                                                                                     | SMAX RECUCED TO 1             |    |               |         |         |               |         | 46.000<br>56.400   |                                              |                         | R T-IN<br>•67 •6360                                                             | 2  | VCI EC       | 0.        | 8.0    | 11.000       |        |                      | R T-IN<br>.05 .1580                | SMAX REDUCED TO<br>Smax reduced to     | ä  |            | U.C.LES | <u>م</u> | ~              | å.               |         |         | å              |                | ÷.,     | • u     |            | 75.500  | ō       | ÷.      | r.               |         | 100.000 |

----

I

| •                                                                                                                                                                                      |                     |                                                                                                  |                                      |                                                                                                                                                                                                                                            |                                                                                                       |                                                                                                                                                                                    |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| IMENT<br>AIR                                                                                                                                                                           |                     | 2A<br>INCHES<br>3.807<br>4.006                                                                   | ••191<br>••205                       | LA ENT                                                                                                                                                                                                                                     | 2A<br>INCHES<br>3.6465<br>3.6465<br>3.6465<br>3.6465<br>3.6465<br>4.111<br>4.1131<br>4.1131<br>4.1131 | A I R                                                                                                                                                                              | 2A<br>INCHES<br>2.559<br>2.716<br>2.805                 |
| ENVIRONMENT<br>ORY RT AIR                                                                                                                                                              |                     | N<br>KILOCYCLES<br>34.000<br>34.500                                                              | 35.150                               | ENVIRONMENT<br>-65 DEG                                                                                                                                                                                                                     | N<br>KILDCYCL ES<br>41.540<br>42.000<br>42.400<br>42.550<br>42.726<br>42.726                          | ENVIRONMENT<br>DRY RT AIR                                                                                                                                                          | N<br>KILDCYCLES<br>30.500<br>31.400<br>31.800           |
| nued<br>nber 10-1L<br>RESTRAINT<br>Y                                                                                                                                                   |                     | 2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ו הי הי הי                           | nber 10-2L<br>RESTRAINT                                                                                                                                                                                                                    |                                                                                                       | lber 10-3L<br>RESTRAINT                                                                                                                                                            | <br><br>¥                                               |
| TA - Contir<br>cimen num<br>caara<br>L                                                                                                                                                 |                     | 2A<br>1 NCHES<br>2. 765<br>2.968                                                                 | 3.636<br>3.636<br>3.636<br>3.636     | cimen nurr<br>GRAIN<br>L                                                                                                                                                                                                                   | 2A<br>INCHES<br>2.6852<br>2.832<br>3.982<br>3.107<br>3.253<br>3.425                                   | cimen num<br>GRAIN<br>L                                                                                                                                                            | 2A<br>INCHES<br>1.758<br>1.947<br>2.153<br>2.356        |
| YCLE DA<br>ninum, spe<br>F1Y)-KSI<br>65.300                                                                                                                                            |                     | 1                                                                                                |                                      | ninum, spe<br>F1 Y J - K S I<br>67 • 200                                                                                                                                                                                                   |                                                                                                       | ninum, spe<br>F ( Y ) - Y S I<br>65 • 300                                                                                                                                          |                                                         |
| CK LENGTH-C<br>raged 7079 alur<br>f(u)-KS1<br>75.300                                                                                                                                   |                     | N<br>KILOCYCLES<br>30.000<br>31.000                                                              | 31.750<br>32.500<br>33.500<br>33.500 | raged 7079 alur<br>F(U)-KSI<br>79.000                                                                                                                                                                                                      | RILDCYCLES<br>KILDCYCLES<br>39.300<br>39.500<br>40.500<br>41.000<br>41.000                            | raged 7079 alun<br>F1U) - KSI<br>75, 300                                                                                                                                           | N<br>KILDCYCLES<br>23.000<br>25.500<br>27.500<br>29.200 |
| TABLE IIIFATIGUE-CRACK LENGTHCYCLE DATA - ContinuedCrack length versus cycles for overaged 7079 aluminum, specimen number 10-1L-IN5104 Max GR0551-IN5101-K515.012.00011.9875.3005.300L |                     | 2A<br>INCHES<br>1.654<br>1.846                                                                   | 2.040<br>2.202<br>2.599<br>2.599     | rsus cycles for ove<br>GROSSJ N-1N<br>00 11.99                                                                                                                                                                                             | 2A<br>INCHES<br>1.565<br>1.783<br>1.783<br>1.783<br>2.169<br>2.315<br>2.442<br>2.442                  | rsus cycles for ove<br>saoss) w-IN<br>30 8.00                                                                                                                                      | 24<br>INCHES<br>1.151<br>1.309<br>1.513<br>1.622        |
| TABLE IIIFATI<br>(ax) Crack length versus cy<br>L-IN 516(MAX GR055)<br>36.0                                                                                                            | 1 2 <b>4=4.</b> 106 | N<br>KILDCYCLES<br>20.500<br>22.700                                                              | 24.600<br>27.500<br>29.000<br>29.000 | <ul> <li>(ay) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-2L</li> <li>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIM RESTRAIN</li> <li>36.0 12.000 11.99 79.000 67.200 L</li> <li>Y 2A=4.111 IN</li> </ul> | N<br>1.000<br>1.200<br>31.200<br>35.000<br>35.000<br>35.000<br>37.000                                 | (az) Crack length versus cycles for overaged 7079 aluminum, specimen number 10-3L<br>L-IN SIG(MAX GROSS) W-IN F(U)-KSI F(Y)-KSI GRAIN RESTRAIN<br>24.0 12.000 8.00 75.300 65.300 L | N<br>KILOCYCLES<br>13.000<br>16.000<br>19.400<br>21.100 |
| CPM<br>120.0                                                                                                                                                                           | 11.0 KSI WHEN       | 2A<br>MCHES<br>• 748<br>• 767                                                                    | • 929<br>1.074<br>• 290<br>1.502     | (<br>cpm<br>120.0                                                                                                                                                                                                                          | 2A<br>INCHES<br>-732<br>-732<br>-918<br>-918<br>-937<br>1.082<br>1.251<br>1.404                       | с рч<br>120.0                                                                                                                                                                      | 2A<br>INCHES<br>• 747<br>• 763<br>• 857<br>1•014        |
| T-IN<br>.1580                                                                                                                                                                          | 2                   | Ĭ                                                                                                |                                      | T-IN<br>.1593<br>Ed To 1                                                                                                                                                                                                                   |                                                                                                       | T-IN<br>•1590                                                                                                                                                                      |                                                         |
| R .<br>50                                                                                                                                                                              | SMAX REDUCED        | N<br>KILDCYCLES<br>0.<br>2.200                                                                   | 7.500<br>11.000<br>15.100<br>18.400  | R T-IN<br>.05 .1593<br>SMAX REDUCED TO 11                                                                                                                                                                                                  | KILDCYCLES<br>0.2.200<br>7.000<br>17.000<br>17.000<br>22.000<br>25.100                                | R.<br>205                                                                                                                                                                          | KILDCYCLES<br>0.<br>2.500<br>6.000<br>10.000            |

ŝ

é

| FIRST PART OF TEST SPEC OVERLOADED AT 203,760 CVCLES       2.4       XILOCYCLES       2.4       XILOCYCLES       1.400       1.323       XILOCYCLES         CCCCLES       1.45       000       1.301       1.323       XILOCYCLES       1.400       1.402       1.41000       1.402       1.41000       1.402       1.4000       1.4000       1.4000       1.4000       1.4000       1.417       1.46.000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000       1.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | 64.400 T                   | RESTRAINT<br>V         | ENVIRONMENT<br>Dry rt Air |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|------------------------|---------------------------|
| ES INCHES<br>. 759<br>. 759<br>. 759<br>. 759<br>. 759<br>. 808<br>. 808                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                            |                        |                           |
| ES INCHES<br>.759<br>.759<br>.759<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.808<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.809<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.8000<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800<br>.800                                                                                                                                                                                                                                                                                                                                                            | z                                                                                           | 24                         | 7                      | ٥.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KILOCYCLES                                                                                  | S INCHES                   | KILOCYCLES             | INCHES                    |
| .759<br>.786<br>.898<br>.899<br>.899<br>.899<br>.899<br>.1580<br>.1580<br>.1580<br>.1580<br>.120.0<br>.1580<br>.120.0<br>.20.0<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.738<br>2.600<br>2.866<br>2.866<br>2.866<br>2.866<br>2.899<br>2.866<br>2.866<br>2.866<br>2.899<br>2.899<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.800<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.200<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.2000<br>2.20000<br>2.2000<br>2.2000<br>2.2000<br>2.20000<br>2.20000<br>2.20000<br>2.200000000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.000                                                                                     |                            | 177.000                | 1.990                     |
| . 786<br>. 808<br>. 855<br>. 855<br>. 855<br>. 860<br>. 120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>2.866<br>3.038<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126.000                                                                                     |                            | 134.000                | 2.099                     |
| .808<br>.855<br>.855<br>.855<br>.1580<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>2.866<br>3.038<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136.200                                                                                     |                            | 193.000                | 2.270                     |
| . 855<br>. 899<br>. 1580 (bb)<br>. 1580 120.0<br>. 1580 120.0<br>. 1284<br>. 1285<br>. 1298<br>. 120.0<br>. 2.866<br>. 3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146.000                                                                                     |                            | 200-000                | 2.412                     |
| .839<br>T-IN<br>.1580<br>(bb)<br>.1580<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100 | 157.700                                                                                     |                            | 207.000                | 2.587                     |
| T-IN<br>.1580<br>.1580<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120.0<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 167.200                                                                                     |                            |                        |                           |
| T DF TEST CRACK EX<br>2A<br>INCHES<br>2.738<br>2.750<br>2.750<br>3.038<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F(U)-KS[<br>75,500                                                                          | FEY)-KSI GRAIN             | RESTRAINT              | EVVIRONMENT<br>Dov bi Air |
| 2A<br>I NCHES<br>2 - 738<br>2 - 738<br>2 - 738<br>2 - 738<br>3 - 038<br>3 - 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 544X REDUCED TO 11.0                                                                        | K S I                      | γ<br>2 <b>Α</b> ≡4.115 |                           |
| 1 NCHES<br>2 - 738<br>2 - 750<br>2 - 866<br>3 - 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z                                                                                           | ¥ C                        | 7                      | ¥ C                       |
| 2.738<br>2.750<br>2.866<br>3.038<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K TI DC VCI FS                                                                              | 2                          |                        |                           |
| 2.750<br>2.866<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 232.100                                                                                     | •                          | 237.700                | 4.115                     |
| 2.866<br>3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 234.500                                                                                     | 3,833                      | 239-000                | 4.118                     |
| 3.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 236.050                                                                                     |                            | 239-200                | 4-200                     |
| (hol) Crack landth varies evidae for over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | 1                          |                        |                           |
| And a chart and chart and chart and chart and chart and chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | veraged 7079 al                                                                             | 'uminum, specimen i        | umber 10-2T            |                           |
| R T-IN CPM L-IN SIG(MAX GROSS) W-IN<br>.67 .1598 120.0 36.0 12.000 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F(U)-KSI<br>75.500                                                                          | F(Y)-KSI GRAIN<br>64.400 T |                        | ENVIRONMENT<br>DIST MATER |

- ---

2A INCHES 4.001 4.105 4.105 4.139 4.132 N KILDCYCLES 128.000 128.700 128.500 129.500 130.200 130.200 2A INCHES 2.767 2.918 3.106 3.364 3.593 3.593 3.871 N KILDCYCLES 111-500 114-200 114-200 117-250 121-000 125-600 125-600 125-600 2A INCHES 1.514 1.669 1.852 2.043 2.210 2.407 2.407 2.600 KILOCYCLES 75.100 82.000 89.000 95.000 100.000 104.700 108.500 2A INCHES -754 -770 -841 -923 1.042 1.179 1.326 KILOCYCLES 0. 12.000 34.500 34.000 45.000 55.800 55.100

.

٠

TABLE III.-FATIGUE-CRACK LENGTH-CYCLE DATA - Continued

|            |                                            |          | (bd) Cra            | (bd) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-20 | /cles for c | veraged 7079 ;                            | aluminum, sp       | ecimen nı  | umber CNL-2    | 0                                                                             |
|------------|--------------------------------------------|----------|---------------------|------------------------------------------------------------------------------------|-------------|-------------------------------------------|--------------------|------------|----------------|-------------------------------------------------------------------------------|
| <b>.</b> 5 | T-IN<br>•2520                              | 62.0     | L-1N<br>96.0        | L-IN SIGIMAX GROSS) W-IN<br>96.0 12.000 36.02                                      | 8-1N        | FLU)-KSL<br>73.300                        | F1Y)-KS1<br>61.600 | GRAIN<br>L | RESTRAINT<br>Y | FEUJ-KSI FEYJ-KSI GRAIN RESTRAINT ENVIRONMENT<br>73-300 b1.600 L Y DRY RT AIR |
| REDU       | SMAX REDUCED TO 10.0 KSI WHEN 2A=11.610 IN | KSI WHEN | I WHEN 24=11-610 IN | 610 IN                                                                             |             | SMAX REDUCED TO 8.0 KSI WHEN 2A=12.225 IN | 0 TO 8.0 KS        | I NHEN 2   | A=12.225 IN    |                                                                               |

ä

|                                    | <b>Z</b> | <b>ENCHES</b> | 10.430  | 10.610  | 10.790  | 10.980  | 11.180  | 11.380  | 11.610  | 11.675  | 11.895  | 12.010  | 12.225  | 12.275   | 12.325  | 12.390  | 12.400  | 12.475  | 12.470  | 12.575  | 12.595  |         |
|------------------------------------|----------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2A=12.225 IN                       | z        | KILOCYCLES    | 164.400 | 164.800 | 165-200 | 165.600 | 166.000 | 166.400 | 166.800 | 167.300 | 168.200 | 168.600 | 169.300 | 1 70.000 | 170.500 | 171-000 | 171.050 | 172.000 | 172.800 | 174.400 | 174.500 |         |
| 8.0 KSI WHEN 2                     | 24       | I NCHES       | 7.220   | 7.370   | 7.535   | 7.700   | 7.860   | 8.075   | 8.185   | 8.345   | 8.470   | 8.630   | 8.760   | 8.920    | 9.075   | 9.235   | 9.395   | 9.535   | 9.695   | 016.6   | 10.100  | 10.260  |
| SMAX REDUCED TO                    | z        | KILOCYCLES    | 153.250 | 154.000 | 154.750 | 155.500 | 156.200 | 157.000 | 157.500 | 158.100 | 158.600 | 159.100 | 159.600 | 160.100  | 160.600 | 161.100 | 161.600 | 162.000 | 162-500 | 163.100 | 163.600 | 164.000 |
|                                    | 2.4      | INCHES        | 2.720   | 2.860   | 3.010   | 3.165   | 3.320   | 3.485   | 3.685   | 3.895   | 4.080   | 4.285   | 4.485   | 4.670    | 4.860   | 5.190   | 5.440   | 5.715   | 5.990   | 6.330   | 6.615   | 6.965   |
| N 2A=11.610 [N<br>N 2A=12.400 [N   | z        | KILOC YCLES   | 106.300 | 109-200 | 112.000 | 114-500 | 117-000 | 119.600 | 122.400 | 125.200 | 127.500 | 130.000 | 132-200 | 134.200  | 136.100 | 139.200 | 141.500 | 143.700 | 145.700 | 148.000 | 149.900 | 151.900 |
| TO 10.0 KSI WHEN                   | 24       | INCHES        | .790    | .805    | .835    | .875    | 066.    | .985    | 1.030   | 1.120   | 1.260   | 1.385   | 1.510   | 1.605    | 1.700   | 1.845   | 1.965   | 2.075   | 2.185   | 2.330   | 2.445   | 2.580   |
| SMAX REDUCED TO<br>SMAX REDUCED TO | z        | KILOCYCLES    | •       | 10.000  | 15.000  | 20.000  | 27.000  | 32.000  | 37.000  | 45.000  | 55.400  | 63.000  | 69.000  | 73.400   | 77.500  | 83.000  | 87.400  | 90.300  | 93.400  | 97.000  | 100-000 | 103.200 |

(be) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-1L

| R .<br>05  | T-1N<br>.2535            | CPN<br>120.0 | L-1N<br>36.0     | L-IN SIG(MAX GROSS) W-IN<br>36.0 12.000 12.00 | 12.00 | F(U)-KSI<br>73.300 | F(Y)-KSI<br>61.600 | GRAIN RESTRAINT<br>L | ENVIRONMENT<br>DRY RT AIR |
|------------|--------------------------|--------------|------------------|-----------------------------------------------|-------|--------------------|--------------------|----------------------|---------------------------|
| SMAX REDUC | SMAX REDUCED TO 11.0 KSI |              | WHEN 24=4.117 IN | 17 IN                                         |       |                    |                    |                      |                           |

2

•

| 2A<br>INCHES             | 3.632  | 3.837  | 4.036  | 4.117  | 4.177  | 4.204  |
|--------------------------|--------|--------|--------|--------|--------|--------|
| N<br>KILOCYCLES          | 34.000 | 34.700 | 35.300 | 35.500 | 35.800 | 35.850 |
| 2A<br>INCHES             | 2.572  | 2.763  | 2.955  | 3.149  | 166.6  | 3.499  |
| N<br>KILOCYCLES          | 28.500 | 29.800 | 31.000 | 32.000 | 32.800 | 33.500 |
| 2A<br>INCHES             | 1.572  | 1.724  | 1.919  | 2.080  | 2.247  | 2*442  |
| N<br>K <b>iloc</b> ycles | 19.100 | 21.000 | 23.000 | 24.600 | 26.000 | 27.500 |
| 2A<br>I NCHES            | . 755  | .771   | .880   | 1.030  | 1.239  | 1.426  |
| N<br>KILOCYCLES          | •      | 2.200  | 6.200  | 10.000 | 14.000 | 17.000 |

| er (               | 1-1                       | CPM           | TABLE<br>(bf) Crack lengt<br>L-IN SIG( | ATIG<br>is cycl<br>oss )                                                          | CK LENGTH-CYC<br>eraged 7079 alumir | YCLE DATA - Conti<br>minum, specimen nu<br>F(Y)-KSI GRAIN | nued<br>mber 20-2L<br>restratint environment | Z E Z T        |
|--------------------|---------------------------|---------------|----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|----------------------------------------------|----------------|
| SMAX REDUCED TO 11 | ••••••                    | HN ISX        |                                        | 00.21 000.21                                                                      |                                     | 00+ CUU L                                                 |                                              | 0              |
| z                  | 24                        |               | z                                      |                                                                                   | Z                                   | 2.4                                                       | Z                                            | 24             |
| KILOCYCLES         | I NCHE                    | ~ ·           | KILOCYCLES                             | INCHES                                                                            | KILOCYCLES                          | INCHES                                                    | KILOCYCLES                                   | INCHES         |
| - 000<br>- 000     | 5C/ •                     | •             | 25.000                                 | 1./03<br>7 010                                                                    | 37.500<br>100                       | 2.973<br>2.122                                            | 000 04                                       | 3.776          |
|                    |                           | n #           |                                        |                                                                                   | 001 000                             |                                                           |                                              |                |
|                    | 114.                      | - 0           | 35.000<br>35.000                       |                                                                                   | 000 95                              | 5.214<br>2 200                                            |                                              |                |
| 19.000             | 1.258                     |               | 000.46                                 |                                                                                   | 000 • 66<br>9 • 600                 | 3.541                                                     |                                              | 4-1-4          |
| 22.000             | 1.571                     | ) en en       | 36.800                                 | 2.821                                                                             | 39.700                              | 3.660                                                     | 00+ 1+                                       | 4.243          |
|                    |                           |               | (bq) Crack leng                        | (bg) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-3L | reraged 7079 alumir                 | num, specimen nu                                          | mber 20-3L                                   |                |
|                    |                           |               | 5                                      | •                                                                                 | )                                   |                                                           |                                              |                |
| , 05<br>С          | T-1 <del>N</del><br>•2550 | C PM<br>120.0 | L-IN SIG                               | SIG(MAX GRDSS) W-IN<br>12.000 8.01                                                | F(U)-KSI F(<br>73.300 61            | FLY)-KSI GRAIN<br>61.600 L                                | RESTRAINT ENVIRONMENT<br>Y DRY RT AIR        | NMENT<br>Alr   |
| Z                  | 40                        |               | 2                                      | ¥C                                                                                | 2                                   |                                                           | 3                                            |                |
| KILOCYCLES         | Z                         | S             | KILOCYCLES                             | Z                                                                                 | KILOCYCLES                          | INCHES                                                    | K TLOCYCLES                                  | INCHES         |
| •0                 |                           | ę             | 13.000                                 | •                                                                                 | 22.000                              | 1.805                                                     | 28.000                                       | 2.424          |
| 2.000              | . 173                     | 5             | 15.500                                 |                                                                                   | 24.000                              | 1.979                                                     | 29.000                                       | 2.573          |
| <b>6.000</b>       | . 890                     | 0             | 18.000                                 | 1.500                                                                             | 25.500                              | 2.127                                                     | 29.600                                       | 2.678          |
| 10-100             | 1-064                     | •             | 20•000                                 | 1-644                                                                             | 27-000                              | 2.303                                                     | 30-300                                       | 2.809          |
|                    |                           |               |                                        |                                                                                   |                                     |                                                           |                                              |                |
|                    |                           |               | (bh) Crack leng                        | (bh) Crack length versus cycles for overaged 7079 aluminum, specimen number 20-1T | veraged 7079 alumi                  | num, specimen nı                                          | Imber 20-1T                                  |                |
| я<br>.67           | T-IN<br>•2550             | CPM<br>120.0  | L-IN SIG(P                             | SIG(MAX GROSS) W-IN<br>12.000 12.000                                              | F(U)-KSI F()<br>74.600 61           | F[Y]-KSI GRAIN<br>61.400 T                                | RESTRAINT ENVIRONMENT<br>Y DRY RT AIR        | NMENT<br>AIR   |
| SMAX REDUCED       | ED TO 11.0                | KSI WH        | EN 2A=4.112 IN                         |                                                                                   |                                     |                                                           |                                              |                |
| z                  | 24                        |               | Z                                      | 24                                                                                | Z                                   | 24                                                        | Z                                            | 24             |
| KILDCYCLES         | INCHE                     | s             | KILOC YCLES                            | I                                                                                 | KILOCYCLES                          | I NCHES                                                   | KILOCYCLES                                   | I NCHE S       |
| 0.                 | .781                      | -4 -          | 130.000                                | 1.092                                                                             | 248.500                             | 1.734                                                     | 342,000                                      | 3.231<br>2 476 |
| 21.000             | .785                      | - 10          | 152.000                                | 1-176                                                                             | 270-000                             | 1.876                                                     | 351.000                                      | 3.637          |
| 91.000             | . 796                     | . <b>.</b>    | 169.000                                | 1.241                                                                             | 281.000                             | 1.995                                                     | 353.000                                      | 3.751          |
| 46.000             | .825                      | ŝ             | 179.000                                | 1.291                                                                             | 290.000                             | 2.116                                                     | 355.000                                      | 3.880          |
| 64-000             | .866                      | ÷             | 190.000                                | 1.340                                                                             | 300.000                             | 2.265                                                     | 357.000                                      | <b>4.038</b>   |
| 77.000             | .913<br>                  | •             | 200.000                                | 1•391                                                                             | 310.000                             | 2.432                                                     | 357.800                                      | 4.112          |
| 004 900            | 946<br>076                | no w          | 210.000                                | 1 510                                                                             | 320°000                             | 2.031                                                     | 358.200                                      |                |
| 109.500            | 1.01                      | <b>. 6</b> 0  | 230.400                                |                                                                                   | 335.200                             | 3.016                                                     | 359.500                                      | 4.196          |
| 120.000            | 6                         | • •           | 240.000                                |                                                                                   |                                     |                                                           |                                              |                |

| -          |
|------------|
| nee        |
| Ì          |
| Ŝ          |
| Ĭ          |
| PT.        |
| ò          |
| Щ          |
| S          |
| Ş          |
| ÷          |
| Ē          |
| <b>NGT</b> |
| Ξ          |
| ¥          |
| ₽C         |
| H.         |
|            |
| IGUE-(     |
| ū          |
| 5          |
| Ľ.         |
| <u> </u>   |
| Ξ          |
| Ш          |
| B          |
| ₹<br>H     |
| •          |

| 20-2T           |
|-----------------|
| number          |
| specimen        |
| )79 aluminum, : |
| overaged 70     |
| ycles tor       |
| h versus c      |
| lengtl          |
| Crack           |
| (jq)            |

÷

| я.<br>79.     | T-IN<br>.2550            | СРМ<br>120.0 | L-IN<br>36.0 | SIGIMAX GROSS)<br>12.000 | N-IN<br>12.00 | F(U)-KSI<br>74.600 | Ff Y )-KS I<br>61.400 | GRAIN<br>T | RESTRAINT<br>Y | ENVIRONMENT | ient<br>er |
|---------------|--------------------------|--------------|--------------|--------------------------|---------------|--------------------|-----------------------|------------|----------------|-------------|------------|
| SMAX REDU     | SMAX REDUCED TO 11.0 KSI | O KSI WHEN   | 28=0.102 IN  | 02 IN                    |               |                    |                       |            |                |             |            |
| z             |                          |              | z            |                          |               | z                  |                       |            | ž              |             | 24         |
| KILOCYCLES    | _                        | INCHES       | KILOC        | ILDCYCLES INCH           | HE S          | KILOCYCLES         | ES INCHES             | le S       | KILOCYCLES     | CLES        | INCHES     |
| •             |                          | 62           | 100          |                          | 181           | 194.40(            |                       | 60         | 223.           | 000         | 3.863      |
| 10.000        |                          | 62           | 110          |                          | 156           | 200-000            |                       | 197        | 224.           | 500         | 4.016      |
| 20-000        |                          | .76          | 120          |                          | 51            | 204.200            |                       | 48         | 225.           | 000         | 4.059      |
| 30.000        |                          | .83          | 130          |                          | 45            | 208-100            |                       | 12         | 225            | 500         | 4-102      |
| 40.000        |                          | 66,          | 140          |                          | 168           | 212.000            |                       | 60         | 225            | 700         | 4-107      |
| 50.000        |                          | 133          | 150          |                          | 46            | 215-00(            |                       | 85         | 226.           | 000         | 4.130      |
| 60.500        |                          | 10           | 160          |                          | 82            | 217.000            |                       | 80         | 226.           | 500         | 4.166      |
| 70.000        |                          | 96           | 170          |                          | 138           | 219.000            |                       | 46         | 226.           | 006         | 4-190      |
| 80-000        |                          | 20           | 180          |                          | 040           | 221-000            |                       | 90         | 727.           | 000         | 4.200      |
| <b>000°06</b> |                          | 04           | 186          | 3.000 2.234              | 34            |                    |                       |            |                |             |            |
|               |                          |              |              |                          |               |                    |                       |            |                |             |            |

(bj) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-50

| 4 ° °                                  | T- [N<br>•4980 | 6PM           | L-1N<br>96.0                      | SIG(MAX GROSS)<br>12.000 | 36.12<br>36.12 | IN F [ U] - KSI<br>12 72-100 | F(Y)-KSI<br>60.000                                                         | GRAIN<br>L | RESTRAINT<br>Y             | ENVIRONMENT<br>DRY RT AIR | IENT<br>VIR |
|----------------------------------------|----------------|---------------|-----------------------------------|--------------------------|----------------|------------------------------|----------------------------------------------------------------------------|------------|----------------------------|---------------------------|-------------|
| SMAX RECUCED TO 1<br>SMAX REDUCED TO 3 | 0 TO 11.       | 11.0 KSI WHEN | HEN 2A=5.890 IN<br>En 2A=7.425 In | NI O                     |                | SMAX REDUCED<br>SMAX REDUCED | REDUCED TO 10.0 KSI WHEN 2A=6.335 1<br>Reduced to 8.0 KSI WHEN 2A=8.785 th | SI WHEN    | 2A=6.335 IN<br>A=8.785 IN  |                           |             |
| SMAX REDUCE                            | 0 10 7.0       | KSI WHEN      | 2A=10.39                          | NIO                      |                | SMAX REDUCED                 | T0 6.35 K                                                                  | SI WHEN    | 6.35 KSI WHEN 24=12.410 IN | _                         |             |
| z                                      | 24             | _             | Z                                 |                          | 24             | z                            |                                                                            | ,<br>A     | Z                          |                           | 24          |
| KILOCYCLES                             | INCHES         | iES           | XILOC                             | KILOCYCLES               | INCHES         | KILOCYCLES                   | 1                                                                          | HES        | KILOCYCLES                 | CL ES                     | I NCHE S    |
| •                                      |                | .75           | 40                                |                          | 3.830          | 49.100                       |                                                                            | 7.425      | 58.                        | 58.200                    | 10.790      |
| 8.500                                  | æ,             | .885          | 4                                 | 40.800                   | 4.080          | 50.000                       |                                                                            | 725        | 58.                        | 700                       | 10.910      |
| 13-000                                 | ъ.             | .970          | 14                                | .500                     | 4.300          | 50-50                        |                                                                            | 7.950      | 59.                        | 250                       | 11.050      |
| 16.000                                 | 1.0            | .080          | 42                                | .000                     | 4.465          | 51.00                        |                                                                            | 8.075      | 59.                        | 800                       | 11.220      |
| 19.000                                 | 1.2            | . 280         | 42                                | .800                     | 4.730          | 51.500                       |                                                                            | 8.285      | 60.                        | 200                       | 11.345      |
| 22.000                                 | 1.470          | 70            | <del>.</del> 4                    | .600                     | 5.040          | 52.000                       |                                                                            | 8.515      | 60.                        | 600                       | 11.480      |
| 23.000                                 | 1.5            | 55            | \$                                | • 400                    | 5.440          | 52.300                       |                                                                            | 8.635      | 61.                        | 000                       | 11.610      |
| 25.500                                 | 1.745          | .45           | 44                                | .100                     | 5.590          | 52.60                        |                                                                            | 8.785      | 61.                        | 61.400                    | 11.750      |
| 27.500                                 | 1.9            | 125           | 45                                | .300                     | 5.845          | 53.20                        |                                                                            | 8.925      | 61.                        | 800                       | 11.910      |
| 30.000                                 | 2.1            | 90            | <b>4</b> 5                        | .600                     | 5.975          | 53.700                       |                                                                            | 130        | 62.                        | 100                       | 12.020      |
| 32.000                                 | 2.4            | 25            | 40                                | .900                     | 6.115          | 54.250                       |                                                                            | 9.320      | 62.                        | 400                       | 12.130      |
| 33.000                                 | 2.5            | 55            | 4                                 | .200                     | <b>6.</b> 285  | 54.75                        |                                                                            | 530        | 62.                        | 700                       | 12.240      |
| 34.000                                 | 2.6            | 90            | 46                                | .500                     | 6.335          | 55.30                        |                                                                            | 9.800      | 63.                        | 000                       | 12.380      |
| 35.100                                 | 2.8            | 30            | 47                                | .000                     | 6.510          | 55.60                        |                                                                            | 930        | 63.                        | 100                       | 12.410      |
| 36.000                                 | 2.9            | 50            | 47                                | .500                     | 6.720          | 55.90                        |                                                                            | 035        | 63.                        | 400                       | 12.480      |
| 37.000                                 | 3.1            | 10            | 14                                | .800                     | 6.835          | 56.30                        | 0 10.215                                                                   | 215        | 63.                        | 800                       | 12.580      |
| 38,000                                 | 3.2            | .85           | 48                                | .300                     | 7.055          | 56.60                        |                                                                            | 390        | 63.                        | 006                       | 12.610      |
| 38.900                                 | 3.5            | :35           | 84                                | 48.800                   | 7.275          | 57.50                        |                                                                            | 575        |                            |                           |             |
|                                        |                |               |                                   |                          |                |                              |                                                                            |            |                            |                           |             |

|                   |                  |                | TABLE III.                         | -FATIGUE-CRAC                       | CK LENGTHCY        | TABLE IIIFATIGUE-CRACK LENGTHCYCLE DATA - Continued                               | ned                           |                           |
|-------------------|------------------|----------------|------------------------------------|-------------------------------------|--------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------------------|
|                   |                  |                | (bk) Crack length                  | versus cycles for o                 | weraged 7079 alu   | (bk) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-1L | umber 50-1L                   |                           |
| ₹<br>\$0.         | T- IN<br>.5010   | C PM<br>120.0  | L-IN SIGIMAX GROSS)<br>36.0 12.000 | GROSSJ W-IN<br>000 12.01            | F1U1-KS1<br>72.100 | F1Y)-KSI GRAIN<br>60.000 L                                                        | RESTRAINT ENVI<br>N DRY       | ENVIRONMENT<br>DRY RT AIR |
| SMAX REDUCED TO   | ED TO 11.0       | KSI WHE        | N 24=4.108 IN                      |                                     |                    |                                                                                   |                               |                           |
| Z                 |                  | -              | 2                                  | 24                                  | Z                  |                                                                                   |                               |                           |
| <b>KILOCYCLES</b> | 2                | 4E S           | KILOCYCLES                         | I TO HES                            | KILUCTULES         | -                                                                                 | AILUCTES                      |                           |
| •                 | •                | -744           | 18.000                             | 1.523                               | 27.000             | 2+200                                                                             | 11.00                         |                           |
| 1.700             |                  | .763           | 20.000                             | 1.697                               | 28.000             |                                                                                   | 004.26                        |                           |
| 9.000             |                  | 175            | 21 • 500                           | 1.850                               | 28.800             | 806.7                                                                             | 006.26                        |                           |
| 10.000            | 1.0              | 12(            | 000 . 52                           | 2.010                               | 005.62             |                                                                                   |                               |                           |
| 13.000            | 1.1              | 175            | 24.500                             | 2.197                               | 30.200             |                                                                                   | 005-55                        |                           |
| 15.500            | 1.3              | 1.337          | 26.100                             | 2.427                               | 001-16             |                                                                                   | 33 - 525                      | 102**                     |
|                   |                  |                |                                    |                                     |                    |                                                                                   |                               |                           |
|                   |                  |                | (bl) Crack length                  | versus cycles for o                 | veraged 7079 alu   | (bl) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-2L | umber 50-2L                   |                           |
| ж.<br>20°         | T-IN<br>.5030    | СРМ<br>120.0   | L-IN SIGIMAX<br>36.0 12.           | SIG(MAX GROSS) W-IN<br>12.000 12.01 | FLU)-KSI<br>75.700 | F(Y)-KSI GRAIN<br>62.200 L                                                        | RESTRAINT<br>N                | ENVIRONMENT<br>-65 deg    |
| SMAX REDUCED TO   | 11               | .0 KSI WHE     | EN 24=0.017                        |                                     |                    |                                                                                   |                               |                           |
| 1                 | č                |                | 3                                  | A C                                 | 2                  | 2.4                                                                               | Z                             | 24                        |
|                   |                  |                | KILOCYCLES                         | INCHES                              | KILOCYCLE          | I                                                                                 | KILOCYCLES                    |                           |
| 0.                |                  | 782            | 21.000                             | 1.351                               | 34.000             |                                                                                   | 39.500                        | 3.565                     |
| 2.600             |                  | 801            | 25.000                             | 1.574                               | 35.500             |                                                                                   | 40°00                         |                           |
| 7.000             |                  | 876            | 28.000                             | 1.767                               | 36.500             |                                                                                   | 40.400                        | 10.4                      |
| 12.500            | 1.(              | 1.024          | 30.500                             | 1.983                               | 37.500             |                                                                                   | 41.1.14                       | 1 6 7 • •                 |
| 17.000            | 1.1              | 161            | 32 • 500                           | 2.171                               | 000 - 85           | 9+140                                                                             |                               |                           |
|                   |                  |                |                                    |                                     |                    |                                                                                   |                               |                           |
|                   |                  |                |                                    |                                     |                    |                                                                                   |                               |                           |
|                   |                  |                | (bm) Crack lengtl                  | n versus cycles for                 | overaged 7079 al   | (bm) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-3L | number 50-3L                  |                           |
| я<br>• 05         | T- IN<br>• 501 5 | C P M<br>120.0 | L-IN SIGGMAN<br>24.0 12.           | SIG(MAX GROSS) W-IN<br>12.000 7.99  | F(U)-KSI<br>72.100 | F1YJ-KSI GRAIN<br>60.000 L                                                        | RESTRAINT ENVIROU<br>N DRY RT | ENVERONMENT               |
|                   |                  |                |                                    |                                     |                    |                                                                                   |                               |                           |
| Z                 |                  | ×              | Z                                  | 24                                  |                    | 2A<br>2A                                                                          |                               |                           |
| KILOCYCLES        | 2                | INCHES         | KILOCYCLES                         | IMCHES<br>1_154                     | Z1-000             | -                                                                                 | 29.600                        | •                         |
| 1.500             |                  | . 772          | 14.600                             | 1.224                               | 23.000             |                                                                                   | 31.000                        | 2.500                     |
| 5.500             |                  | .859           | 16.700                             | 1.326                               | 25.000             | 0 1.899<br>0 7.148                                                                | 32.500                        | 2.714<br>2.796            |
| 10-000            | -                | • 021          | 19-000                             | 1.434                               | 100*17             | J                                                                                 |                               |                           |

-

•

| ned     |
|---------|
| Contin  |
| ATA-    |
| CLE D   |
| H-CY    |
| ENGTI   |
| ACK L   |
| UE-CRAC |
| ATIGU   |
| ШF.     |
| ABLE    |
| ⊢-      |

|                                                                                   | F(U)-KSI F(Y)-KSI GRAIN RESTRAINT ENVIRONMENT<br>72-800 60.100 T n Dry RT AIR |                      |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|
| umber 50-1T                                                                       | RESTRAINT<br>N                                                                |                      |
| ecimen nu                                                                         | GRAIN                                                                         |                      |
| aluminum, sp                                                                      | F(Y)-KSI<br>60.100                                                            |                      |
| veraged 7079 aluminum, specimen number                                            | F(U)-KSI<br>72.800                                                            |                      |
| cycles for ov                                                                     | .) W-IN<br>12.01                                                              |                      |
| (bn) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-1T | L-IN SIG(MAX GROSS) W-IN<br>36+0 12+000 12+01                                 | S IN                 |
| (bn) Crac                                                                         | L-IN<br>36.0                                                                  | SI WHEN 24=0.165 IN  |
|                                                                                   | CPM<br>120.0                                                                  | ~                    |
|                                                                                   | T-IN<br>-5020                                                                 | CED TO 11.           |
|                                                                                   | 67                                                                            | SMAX REDUCED TO I1.0 |

è

4

| 40  | TNCLEC       |         | 3.143   | 1 247   | 103.0   | 3.416   | 3.510   |         | 3.712   | 2 2 2 2 | 20000   | 4.086   |         | 4.165   |         | 002.4   |  |                                                                                 |
|-----|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|---------------------------------------------------------------------------------|
| z   | KII UCYCI EC |         | 266.250 | 248.000 |         | 210-000 | 271-000 |         | 212.500 | 273 600 |         | 275.000 |         | 275.350 | 376 800 |         |  | mbar EO OT                                                                      |
| 2.4 | INCHES       |         | 1.020   | 1.744   |         | 1.013   | 2.060   |         | 217.2   | 2.461   |         | 2.726   |         | 24842   | 3,000   |         |  | num enonimon mu                                                                 |
| z   | KILOCYCLES   |         | 000.000 | 210.000 |         | 000.007 | 231.900 | 340 000 | 000-0-2 | 250-000 |         | 000-842 | 343 000 | 000.000 | 264.000 |         |  | Crack length versits cycles for oversided 7070 shiminim condition another 60 37 |
| 24  | INCHES       | L O D L |         | 1.026   | 1.067   |         | 1.129   | 1,170   |         | 1.226   | 000 1   | 1.630   | 1 244   |         | 1.441   | 1 540   |  | versus cycles for c                                                             |
| Z   | KILOC YCLES  | 100.300 |         | 110.100 | 120.200 |         | 000.001 | 140-600 |         | 100.001 | 140.000 |         | 170.000 |         | 180.000 | 190.000 |  | (bo) Crack length                                                               |
| 24  | INCHES       | .764    | 273     |         | .778    | 780     |         | . 795   | 9 T 9   | 070.    | .832    |         | .877    | 010     | 014.    | .943    |  |                                                                                 |
| Z   | ALUCTULES    | •0      | 11,200  |         | 20.400  | 30.500  |         | 000.04  | 50.000  |         | 60.000  |         | 000 00  | 000-08  |         | 000*06  |  |                                                                                 |

(bo) Crack length versus cycles for overaged 7079 aluminum, specimen number 50-2T

| MENT<br>Ter                              |                               | 24  | INCHE S     |         | 024 • 0  | 3.619   | 2 054     |         | 000.4  | 4.117   |         | 012.4   |
|------------------------------------------|-------------------------------|-----|-------------|---------|----------|---------|-----------|---------|--------|---------|---------|---------|
| IN RESTRAINT ENVIRONMENT<br>N DIST WATER |                               | z   | KILOCYCLES  | 151 100 |          | 153.100 | 154-900   |         |        | 156.650 | 157 000 |         |
| GRA1<br>T                                |                               | 24  | INCHES      | 2.300   |          | 044.7   | 2.603     | 7 7 8   |        | 2.936   | 108     |         |
| I F(Y)-KSI<br>60.100                     |                               |     | ILOCYCLES I |         |          |         |           |         |        |         |         |         |
| F ( U) -KSI<br>72.800                    |                               | Z   | KILOC       | 130     | 201      |         | 138       | 142     |        | C + 1   | 147     | •       |
| SIG(MAX GROSS) W-IN<br>12.000 12.00      |                               | 24  | INCHES      | 1.169   | 1 703    |         | 1.429     | 1.602   | 004    | 10/01   | 1.968   | 2.191   |
| L-IN SIG(MAX<br>36.0 12.                 | 2A=4.117 IN                   | Z   | KILOC YCLES | 70.000  | 80 . 000 |         | 90°*06    | 100.300 |        |         | 118.000 | 126.000 |
| СРМ<br>120.0                             | SMAX REDUCED TO 11.0 KSI WHEN | 24  |             | 746     | 752      |         | 210       | 835     | 807    |         |         | 082     |
| T-IN<br>.5030                            | UCED TO 11                    |     | -           |         |          |         |           |         |        |         |         |         |
| R<br>•67                                 | SMAX REDU                     | 200 | VILUCTUL    |         | 10.100   | 200 00  | 100 * 2 2 | 30.00   | 40.400 |         | J00°00  | 61.100  |

GRAIN RESTRAINT ENVIRONMENT L Y DRY RT AIR (bp) Crack length versus cycles for overaged 7079 aluminum, specimen number CNL-60 F(U)-KSI F(Y)-KSI 73-900 61.700 L-IN SIGIMAX GROSS) H-IN 96.0 12.000 36.31 C P M 40.0 T-IN .6300

~ <del>.</del>0

SMAX REDUCED TO 8.0 KSI WHEN 2A=12.250 IN SMAX REDUCED TO 10.0 KSI WHEN 24=12.020 IN SMAX REDUCED TO 6.35 KSI WHEN 24=12.410 IN KIL

| 2A               |          | 12.020    | 12 190 |        | 062.21 | 12.500 | 12-410 | 004 01 | 074-21 | 12.445 | 12.570          |        | 046.21 | 12.610                                |
|------------------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|--------|--------|---------------------------------------|
|                  | VILUCTES | 51.150    | 51-340 |        |        | 006.26 | 53.000 | 54 500 |        | 004-84 | 59-700          |        | 000000 | 60.100                                |
| 2A<br>1 NC HE C  |          | 8. 525    | 8.845  | 9.225  | 0 430  | 000.4  | 10.110 | 10.385 |        | 0.0.01 | 10.930          | 11 235 |        | 11.605                                |
| N<br>KTLOCYCE ES |          | 008 * 6 4 | 50.000 | 50-200 | 50.400 |        | 20.000 | 50.700 |        | 000.00 | 50.900          | 51,000 |        | 51.100                                |
| 2A<br>INCHES     | 067 7    |           | 4.825  | 5.275  | 5.790  |        | 0.110  | 6.530  | 7 120  |        | 7.425           | 7.720  |        | 8.190                                 |
| N<br>KILOCYCLES  | 44 000   |           | 45.000 | 46.000 | 47.000 |        |        | 48.000 | 48.700 |        | 000 <b>*</b> ** | 49.250 |        | 00 <b>9*6</b> 4                       |
| 2A<br>INCHES     | 790      |           | CC8.   | 1.070  | 1.210  | 1 570  |        | 1.975  | 2.510  |        | 667.6           | 3.730  |        | · · · · · · · · · · · · · · · · · · · |
| N<br>N<br>N      | č        |           | 10.00  | 17.000 | 19.500 | 25 200 |        | 30.000 | 35.200 |        | 000.000         | 41.500 | 000 67 |                                       |

.

| (bq) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-11         (cp, 1, 1, 1)         (c)       12,000       11,99       73,900       61,700       2,414       8174,141         (c)       12,000       11,99       73,900       61,700       2,414       8174,141         (c)       12,000       11,99       73,900       61,700       2,414       8174,141         (c)       12,000       11,99       73,900       61,700       2,481       3414       8170,931         (c)       12,000       1,595       31,000       2,481       31,500       3,311       35,50       31,500       3,351       35,50       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500       31,500 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Concluded |
|-----------|
| - ATA -   |
| YCLE D/   |
| ENGTH-C   |
| -         |
| E-CRACK   |
| ATIGU     |
| IIIF/     |
| TABLE III |

(bt) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-1T

| ₹.<br>•    | T- IN<br>.6280 | CPM<br>120.0 | L-IN SIG(MAX GROSS)<br>36.0 120.000 | GROSS) W-IN<br>00 12.01 | F(U)-KSI<br>74.100 | F(Y)-KSI<br>60.800 | GRAIN | RESTRAINT E<br>N D | ENVIRONMENT |        |
|------------|----------------|--------------|-------------------------------------|-------------------------|--------------------|--------------------|-------|--------------------|-------------|--------|
| Z          |                |              | z                                   | 24                      | Z                  |                    |       | z                  |             |        |
| KILOCYCLES | INCHES         | ~            | KILOC VCLES                         | INCHES                  | KILOCUCLES         | ES INCHES          | ES    | KILDCYC            | LES         | INCHES |
| •          |                | ~            | 94.000                              | .922                    | 196.500            |                    | 74    | 292.5              | 00          | 2.476  |
| 10.000     |                | ~            | 105.000                             | .961                    | 211.500            |                    | 88    | 302.0              | 00          | 2.731  |
| 20.000     |                | ~            | 116.000                             | .992                    | 220.000            |                    | 41    | 307.5              | 00          | 2.924  |
| 27.000     |                | <u>.</u>     | 126.400                             | 1.020                   | 230.000            |                    | 25    | 312.6              | 00          | 3.165  |
| 38.000     |                | ~            | 137.800                             | 1.065                   | 240.000            |                    | 05    | 318.1              | 00          | 3.618  |
| 49.000     |                | •            | 148.200                             | 1.105                   | 250.000            |                    | 00    | 321.0              | 00          | 4.068  |
| 62.400     |                | ~            | 159.000                             | 1.146                   | 260.000            |                    | 11    | 321.2              | 50          | 4.117  |
| 72.000     |                | ~            | 177.000                             | 1.246                   | 270-000            |                    | **    | 322.0              | 00          | 4.182  |
| 83-000     |                | ~            | 184.500                             | 1.284                   | 280.500            |                    | 32    | 322.150            | 50          | 4.205  |

.

(bu) Crack length versus cycles for overaged 7079 aluminum, specimen number 60-2T

| IMENT<br>LTER                        |                          | 24 | I NCHE S      | 3.784   | 3.924   | 4.029   | 4.107   | •.126   | 4.197   |         |
|--------------------------------------|--------------------------|----|---------------|---------|---------|---------|---------|---------|---------|---------|
| RESTRAINT ENVIRONMEN<br>N DIST WATER |                          | 2  | KILDCYCLES    | 135.200 | 136.000 | 136.500 | 136.800 | 137.000 | 137.300 |         |
| GRAIN<br>T                           |                          | 24 | NCHES         | 2.499   | 2.705   | 2.873   | 3.099   | 3.293   | 3.422   | 3.563   |
| F(Y)-KST<br>60+800                   |                          |    | CLES 1        | 000     | 100     | 100     | 000     | 000     | 000     | 000     |
| F1U)-KSI<br>74.100                   |                          | Z  | KILOCYCLES    | 120.    | 124.    | 127.    | 130.(   | 132.    | 133.    | 134.1   |
| GROSS) W-IN<br>100 12.01             |                          | 24 | <b>INCHES</b> | 1.351   | 1.510   | 1.710   | 1.890   | 2.041   | 2.160   | 2.301   |
| L-IN SIG(MAX GROSS)<br>36.0 12.000   | ZA=4.107 IN              | z  | KILOC VCLES   | 70.000  | 90.000  | 000 06  | 98.000  | 104.000 | 109.000 | 114.500 |
| C CPM                                | II.O KST WHEN            | 28 | INCHES        | .774    | +LL.    | .801    | .866    | .954    | 1.077   | 1.197   |
| R T-EN<br>.67 .6330                  | SMAX REDUCED TO 11.0 KSI | z  | KILOCYCLES    | ••      | 8.600   | 18.500  | 29.000  | 40.000  | 50.000  | 60.000  |

.

è

TABLE IV.-FRACTURE-TOUGHNESS DATA FOR CENTER-CRACKED 7079 ALUMINUM ALLOY (a) Underaged heat treatment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                 |        |       |            |       |        |       |       |       |       |       |        |       |       | ~     |       |       |        |       |       |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|--------|-------|------------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G <sub>c</sub> ,<br>inIb/in.2       | 5250            | . 1229 | 563   | 819        | 1042  | 1426   | 1167  | 749   | 861   | 636   | 647   | 678    | 688   | 421   | 579   | 331   | 342   | 975    | 468   | 569   | 472   | 315   | 262   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ğlc,<br>inlb/in.2                   | 1660,<br>1513   | •      | :     | : ;        | :     | 1040   | 582   | ;     | ;     | 361   | ;     | ;      | 422   | :     | 253   | 229   | 224   | 148    | :     | :     | 379   | 76    |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ksi , in.                           | 229.0           | 110.8  | 75.0  | 90.5       | 102.0 | 119.4  | 108.0 | 86.5  | 92.8  | 79.8  | 80.4  | 82.3   | 82.9  | 64.9  | 76.1  | 57.5  | 58.5  | 98.7   | 68.4  | 75.4  | 68.7  | 56.1  | 51.2  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Klc <sup>.</sup><br>ksi√in.         | 136.5,<br>130.3 |        | :     | : :        |       | •      |       |       |       |       |       | •      | 68.8  | :     | 53.3  | 50.7  | 50.1  | 40.7   | :     | :     | 65.2  | 29.2  | :     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in.∕in.                             | 7.800           | 2.030  | .840  | 1.720      | 2.110 | 1.980  | 1.470 | 006.  | 1.050 | .940  | .950  | .540   | .500  | .310  | .410  | .280  | .290  | .514   | .237  | .255  | .229  | .182  | .153  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 1.250           | 0.321  | .150  | .274       | .336  | .506   | .373  | .231  | .270  | .243  | .247  | .269   | .245  | .154  | .205  | .141  | .146  | .323   | .150  | .162  | .145  | .115  | .097  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G <sub>c</sub> ,<br>inIb/in.2       | 3920            | 1012   | 517   | 710        | 873   | 1298   | 958   | 656   | 693   | 558   | 568   | 646    | 597   | 385   | 492   | 306   | 316   | 921    | 430   | 520   | 416   | 296   | 250   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G <sub>lc</sub> ,<br>inIb/in.2      | 1620,<br>1490   | ;      |       | · · ·      |       | 1011   | 555   |       | ;     | 350   | :     | :      | 407   |       | 245   | 224   | 219   | 147    | ;     | : :   | 364.0 | 75.4  | :     |
| t.         Termp<br>in.         W,<br>or<br>order $\hat{\sigma}_{g}$<br>in. $2a_{g}$<br>vrs $\sigma_{g}$<br>vrs $\sigma_{r}$<br>vrs <th< td=""><td>ksi√in.</td><td>198.0</td><td>100.6</td><td>71.8</td><td>84.3</td><td>93.4</td><td>113.9</td><td>97.9</td><td>81.0</td><td>83.2</td><td>74.7</td><td>75.4</td><td>80.4</td><td>77.3</td><td>62.0</td><td>70.2</td><td>55.3</td><td>56.2</td><td>96.0</td><td>65.5</td><td>72.0</td><td>64.5</td><td>54.4</td><td>50.0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ksi√in.                             | 198.0           | 100.6  | 71.8  | 84.3       | 93.4  | 113.9  | 97.9  | 81.0  | 83.2  | 74.7  | 75.4  | 80.4   | 77.3  | 62.0  | 70.2  | 55.3  | 56.2  | 96.0   | 65.5  | 72.0  | 64.5  | 54.4  | 50.0  |
| t.         Temp,<br>in.         W,<br>or<br>F $\hat{\sigma}_{g}$ 2a,<br>in. $2a_{ort}$<br>in. $\sigma_{g}$<br>vsi<br>in. $\sigma_{rr}$<br>vsi<br>vsi<br>vsi<br>in. $\sigma_{rr}$<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi<br>vsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K¦c,<br>ksi√in.                     | 133.6,<br>127.9 |        |       | · · ·      |       | 106.5  | 78.9  | :     | :     | 62.6  | :     |        | 67.6  |       | 52.5  | 50.1  | 49.6  | 40.6   |       | :     | 64.0  | 29.1  | :     |
| t.         Temp,<br>in.         W,<br>$^{\circ}$ $^{\circ}$ $^{\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | °, %                                | 75              | 75     | 0     | 09         | 70    | 33     | 9     | 0     | g     | 20    | 8     | ဓ      | പ     | 0     | 2     | 2     | 2     | -      | -     | 0     | 0     | 2     | 0     |
| t.         Termp,<br>in.         W,<br>$^{\circ}$ $^{\circ}$ 2a,<br>in. $^{\circ}$ $^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ <u>g</u><br>UTS                   | 0.473           | .418   | .322  | .336       | .374  | .302   | 399   | .378  | .450  | .319  | .318  | .204   | .380  | 309   | .361  | .261  | .254  | .217   | .301  | .323  | .366  | .215  | .214  |
| t.         Temp,<br>in.         W,<br>$^{\sigma}$ $^{\sigma}$ 2a,<br>in. $^{\sigma}$ $^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onet<br>YS<br>ULT                   | 0.912           | .796   | .550  | .743       | .823  | .580   | 868   | .684  | 868   | 698.  | .703  | .422   | .709  | .559  | .788  | .532  | .540  | .467   | .550  | .571  | .665  | .483  | .441  |
| t, Temp, W, $\hat{\sigma}^{g}$ 2a, $2a$ , $2a_{cr}$ $\frac{\sigma_{g}}{\rho 0^{-111}}$ , r, $ksi/sec$ in. in. $ksi - p$<br>0.160 68 36.00 0.98 12.970 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 28.0 - 15.10 1.25 4.223 (c) (b) 1.25 4.223 (c) (b) 1.25 1.256 15 1.2 1.256 15 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | σ <sub>g</sub><br>ULT,<br>ksi       | 37.4            | 33.1   | 26.3  | 26.8       | 29.8  | 23.4   | 30.9  | 29.8  | 34.8  | 24.9  | 24.8  | 15.3   | 28.5  | 22.8  | 27.1  | 19.6  | 19.0  | 17.4   | 24.1  | 26.4  | 29.3  | 17.6  | 17.5  |
| t, Temp, W, $\hat{\sigma}$ g 2a, 2a, in. in. $\hat{\sigma}$ r in. $\hat{s}^{s/sec}$ in. in. in. $\hat{\sigma}$ r in. $\hat{s}^{s/sec}$ in. in. in. in. $\hat{\sigma}$ 2.158 70 12.04 1.25 4.203 (c) 15.10 1.59 68 12.00 0.98 12.970 15.10 1.59 1.59 68 12.00 7.3 4.203 5.25 1.59 68 12.00 7.3 4.200 5.25 1.59 68 12.00 1.09 4.201 5.30 2.256 75 8.03 86 2.805 3.15 2.50 1.09 4.201 5.30 2.55 75 8.03 86 2.805 3.15 2.50 1.09 4.201 5.30 2.55 75 8.03 86 2.805 3.15 2.50 1.09 4.201 5.30 2.55 75 8.03 86 2.805 3.15 5.30 2.55 75 8.03 86 2.805 3.15 5.30 2.55 74 12.00 1.09 4.201 5.30 2.55 75 8.03 86 2.805 3.15 2.50 6.5 75 8.03 86 2.805 3.15 5.30 2.50 6.5 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 5.55 75 8.03 86 2.805 3.15 5.30 6.53 73 11.98 9.4 1.202 8.63 7.3 11.98 9.4 4.217 5.15 6.33 7.3 11.98 9.4 4.217 5.15 6.33 7.3 11.98 9.4 4.217 5.15 6.32 7.3 11.98 9.4 4.217 5.15 6.33 7.3 11.98 9.4 4.217 5.15 6.33 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.98 9.4 4.217 5.15 6.35 7.3 11.59 0.59 16.10 0.5779 6.5 7.55 7.55 7.55 7.55 7.55 7.55 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onet<br>YS<br>pop-in                | 0.620,<br>.592  |        | ;     | : :        | :     | 544    | .701  | :     | :     | .588  | :     | ;      | .620  | :     | .590  | .484  | .479  | .197   | :     | :     | .658  | .258  |       |
| t.         Temp,<br>c         W,<br>c $\sigma_g$<br>c         2a,<br>c           0.160         68         36.00         0.98         12.970           .158         70         12.04         .72         4.204           .159         65         12.04         .72         4.204           .159         65         12.04         .72         4.204           .159         65         12.01         1.25         4.203           .159         65         12.00         .73         4.200           .159         65         12.00         1.09         4.201           .159         65         12.00         1.09         4.201           .254         73         12.00         1.09         4.201           .256         73         36.25         .74         12.695           .256         73         12.00         1.09         4.201           .256         73         12.00         1.09         4.201           .256         73         12.00         1.09         4.201           .256         70         1.200         1.09         4.201           .256         71         12.00         1.09 <t< td=""><td>σ<sub>g</sub> at<br/>pop-in,<br/>ksi</td><td>28.0<br/>26.8</td><td>(q)</td><td>(q</td><td>(q)</td><td>(q)</td><td>22.7</td><td>29.1</td><td>(q)</td><td>(q)</td><td>23.1</td><td>(q</td><td>(q)</td><td>24.9</td><td>(q)</td><td>23.7</td><td>18.5</td><td>18.2</td><td>8.5</td><td>(P</td><td>(q)</td><td>29.0</td><td>10.7</td><td>(q)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | σ <sub>g</sub> at<br>pop-in,<br>ksi | 28.0<br>26.8    | (q)    | (q    | (q)        | (q)   | 22.7   | 29.1  | (q)   | (q)   | 23.1  | (q    | (q)    | 24.9  | (q)   | 23.7  | 18.5  | 18.2  | 8.5    | (P    | (q)   | 29.0  | 10.7  | (q)   |
| t, temp, w, $\vec{\sigma}_{9}$<br>in. $\vec{\gamma}_{F}$ in. ksi/sec<br>0.160 68 36.00 0.98<br>.158 70 12.04 .72<br>.159 65 12.01 1.25<br>(d) 159 68 12.00 .73<br>.159 68 12.00 1.09<br>.255 72 36.25 .79<br>.256 73 12.00 1.09<br>.256 73 36.25 .74<br>.256 71 12.00 1.09<br>.256 71 12.00 1.09<br>.256 71 12.00 1.09<br>.256 71 12.00 1.09<br>.256 73 36.25 .74<br>.501 68 36.25 .74<br>.503 71 12.00 1.09<br>.256 71 12.00 1.09<br>.256 71 12.00 1.09<br>.256 73 12.00 1.09<br>.256 65 12.01 1.00<br>.503 70 12.00 64<br>.504 87 12.01 1.03<br>.504 87 12.01 1.03<br>.504 87 12.01 1.03<br>.503 70 8.03 66<br>.634 74 12.02 86<br>.634 74 12.02 86<br>.633 70 8.03 1.00<br>.632 73 11.98 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2a <sub>cr</sub> ,<br>in.           | 15.10           | 4.95   | (c)   | 5.25       | 5.25  | 13.35  | 5.30  | (c)   | 3.15  | 4.90  | 5.00  | 15.00  | (e)   | (C)   | 3.55  | 4.50  | 4.80  | 16.10  | (e)   | (c)   | (e)   | 5.15  | 4.55  |
| t, Temp, W, in. °F in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a,<br>in                            | 12.970          | 4.204  | 4.223 | 4.202      | 4.200 | 12.595 | 4.201 | 4.220 | 2.805 | 4.200 | 4.202 | 12.600 | 4.204 | 4.201 | 2.798 | 4.197 | 4.230 | 12.960 | 4.211 | 4.258 | 2.779 | 4.217 | 4.192 |
| t, Temp, W, in. °F in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ởg<br>ksi/sec                       | 0.98            | .72    | 1.25  | 58         | .73   | 67.    | 1.09  | 1.09  | 88.   | 1.02  | 1.00  | .74    | 94    | 1.03  | .64   | .92   | 1.02  | .63    | .86   | 80.   | 1.00  | 94    | 66.   |
| , t.<br>158<br>(d)<br>158<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>155<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>1 |                                     |                 | 12.04  | 12.01 | 12.02      | 12.00 | 36.25  | 12.00 | 12.00 | 8.03  | 12.00 | 12.00 | 36.25  | 12.00 | 12.01 | 8.00  | 12.01 | 12.01 | 36.00  | 12.02 | 12.02 | 8.03  | 11.98 | 12.00 |
| , t.<br>158<br>(d)<br>158<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>159<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>155<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>156<br>(d)<br>1 | Temp,<br>°F                         | 68              | 20     | -65   | 74         | 68    | 72     | 73    | -65   | 75    | 5     | 71    | 68     | 20    | -65   | 64    | 87    | 82    | 68     | 74    | -65   | 20    | 73    | 72    |
| Specimen<br>(a)<br>(a)<br>(b)<br>(b)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 0.160           | .158   | .159  | u)<br>.159 | .159  | .255   | .254  | .256  | .256  | .259  | .259  | .501   | .502  | .505  | .504  | .504  | .504  | .628   | .634  | .634  | .633  | .632  | .632  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specimen<br>(a)                     | CNL-1U          | 10-1L  | 10-2L | 10-31      | 1U-2T | CNL-2U | 2U-1L | 2U-2L | 2U-3L | 2U-1T | 2U-2T | CNL-5U | 5U-1L | 5U-2L | 5U-3L | 5U-1T | 5U-2T | CNL-6U | 6U-1L | 6U-2L | 6U-3L | 6U-1T | 6U-2T |

ŕ

ιů

À

# TABLE IV.-FRACTURE-TOUGHNESS DATA FOR CENTER-CRACKED 7079 ALUMINUM ALLOY – Continued

in.-Ib/in.2 in.-Ib/in.<sup>2</sup> ii ن وا 490 148 148 301 230 272 256 326 116 ÷ 123 95 134 ÷ ł ; 149 66 ksi√in. ů Y 91.6 79.8 87.6 77.6 63.6 67.5 48.8 47.8 45.9 99.4 53.1 59.1 58.3 51.9 45.3 38.2 52.4 54.4 45.4 29.9 32.8 59.7 43.7 ł R<sub>lc</sub>. ksi√in. 78.4 74.1 50.9 32.6 41.0 58.2 55.3 53.6 60.5 38.7 36.6 38.8 36.1 27.2 : 37.2 ł ÷ ÷ ł ; ÷ .140 .130 1.740 310 in./in. 1.380 .450 .790 .650 1.160 .850 .630 .400 .470 270 220 060 130 140 088 097 045 054 ÷ u≥ Ì≁ .215 .161 .102 .120 .070 0.273 .218 072 .125 .103 .185 .078 .109 .069 .053 .047 082 086 056 061 029 034 ; i≩`,≦ in.-Ib/in.<sup>2</sup> 936.0 746.0 270.0 431.0 320.0 577.0 739.0 552.0 381.0 414.0 229.0 258.0 350.0 221.0 186.0 205.0 142.0 271.0 281.0 199.0 200.0 87.7 105.6 °° ł G<sub>lc</sub>, in.-lb/in.2 65.8 123. 94. 133. 15. ÷ ÷ 293. 227. 267. 320. 132. ÷ 47. 485. 530. ÷ ÷ ÷ 254. (b) Peak (T6) heat treatment ksi∖in. ksi 96.6 86.4 52.0 65.6 56.7 76.0 86.1 74.4 61.7 64.4 47.9 50.8 47.0 43.2 45.2 44.6 59.1 37.7 52.0 53.3 44.7 29.7 32.5 ł K<sub>lc</sub>, ksi,∫in. 36.5 57.4 50.5 54.8 53.4 59.9 38.7 38.6 36.0 40.6 27.3 37.1 32.6 73.7 ÷ ÷ ÷ ÷ ;;; ÷ v, % - N O N ÷ 0 ഹ 0 C ° 80 20 2 2 2 0 1 0 0 0 1 0 -2 0.259 .363 .227 .227 .354 .354 .273 .201 .290 .271 .271 .271 .216 .216 .149 .196 .254 .150 .243 135 .197 .161 251 0 UTS ÷ 0.429 .380 614 .454 375 600 375 397 269 326 439 307 238 416 336 430 240 263 571 454 <sup>d</sup>net VS ULT .661 371 ; 21.9 16.2 23.3 22.8 26.2 20.6 28.9 19.0 28.2 19.7 17.7 17.9 15.9 12.0 19.5 16.5 ر ۲, ۳ 11.7 19.9 12.8 20.1 10.8 12.0 ksi 15.7 ÷ pop-in 0.327 .406 .440 .440 .169 246 .375 593 539 234 302 289 282 391 220 <sup>σ</sup>net YS : ; ÷ ł ł ÷ ÷ ł pop-in, σ<sub>g</sub> at 18.30 9.95 11.4 (b) 22.1 (b) (b) ž. 15.7 28.4 (b) 25.9 18.6 20.2 7.9 13.4 12.0 17.4 13.2 ł ł ÷ <u>9</u> 4.223 14.20 4.90 (c) 2.93 6.00 15.30 5.40 (c) 3.30 4.50 4.80 (e) (e) 4.20 2a<sub>cr</sub>, (e) 4.88 (c) 3.05 4.60 (e) .<u>c</u> £ £ <u></u> 12.605 4.210 4.199 4.210 2.816 4.200 2.813 12.610 4.203 2.806 4.192 4.223 4.200 4.266 2.800 4.202 4.201 4.230 11.000 4.250 12.600 4.208 Ë, 23, ksi/sec ۰°e 0.97 1.01 .91 .89 1.08 .96 0.1.08 1.04 8 8 .84 ÷ ł 36.21 12.00 12.01 8.00 12.00 12.00 36.75 12.00 12.00 8.05 12.00 12.00 12.00 11.97 12.00 8.01 12.00 36.25 12.00 12.02 8.00 12.00 11.98 35.97 ≥. ≤ Temp, °F 72 71 65 69 68 68 68 68 66 72 72 75 72 72 72 72 72 72 0.157 .158 .159 .159 .159 .159 255 255 255 255 255 255 255 255 255 499 503 503 503 503 629 632 632 633 633 633 633 ÷, ÷ Specimen CNL-1P CNL-5P CNL-6P 6P-1L 6P-2L 1P-1L 1P-2L 1P-3L 1P-1T 1P-2T CNL-2P 2P-1L 2P-2L 2P-3L 2P-1T 2P-2T 5P-1L 5P-2L 5P-3L 5P-1T 5P-2T 6P-3L 6P-1T 6P-2T (e)

TABLE IV. – FRACTURE-TOUGHNESS DATA FOR CENTER-CRACKED 7079 ALUMINUM ALLOY – Concluded

(c) Overaged heat treatment

|                                                       |           |              |                |            |                           |                        |                                  | F             | ŀ                |           |              |                      |              |                                |                               |        |         |                                |            |       |                               |
|-------------------------------------------------------|-----------|--------------|----------------|------------|---------------------------|------------------------|----------------------------------|---------------|------------------|-----------|--------------|----------------------|--------------|--------------------------------|-------------------------------|--------|---------|--------------------------------|------------|-------|-------------------------------|
| Specimen t,<br>(a) in.                                | Temp,     | , č          | °g,<br>ksi∕sec | 2a,<br>in: | 2a <sub>cr</sub> ,<br>in. | σgat<br>pop-in,<br>ksi | <sup>σ</sup> net<br>YS<br>pop-in | م<br>ULT, ksi | ret<br>VS<br>ULT | og<br>UTS | —<br>ج ک     | Klc,<br>ksi√in.<br>k | ksi√in.<br>i | G <sub>lc</sub> ,<br>inIb/in.2 | G <sub>c</sub> ,<br>inlb/in.2 | I\$, É | in.∕in. | R <sub>lc</sub> ,<br>ksi√in. k | š, k.<br>Š | lb/in | G <sub>c</sub> ,<br>inIb/in.2 |
| CNL-10 0.158                                          |           | <del> </del> | 1.35           | 12.600     | 13.50                     | 26.00                  | +                                | +             | + ···            | m         | 8            | -                    | 170.4        | 1                              | 2903.0                        |        | 6.860   | 124.3                          | 88.1       | 1377  | 3540                          |
|                                                       |           |              |                | 4.205      | 5.10                      | 31.50                  |                                  |               |                  |           | 35           |                      | 98.0         | 651                            | 951.0                         | 355    | 2.250   | 87.8                           | 107.2      | 687   | 1148                          |
| 10-2L .1                                              | 59 -65    |              |                | 4.200      | (c)                       | (q                     |                                  |               |                  |           | 20           |                      | 60.0         | :                              | 360.0                         | .126   | .790    | :                              | 62.1       | :     | 386                           |
|                                                       |           |              |                | 2.805      | 3.30                      | (q)                    |                                  |               |                  |           | 8            |                      | 88.7         | :                              | 782.0                         | .292   | 1.830   |                                | 99.4       |       | 66                            |
|                                                       |           |              |                | 4.200      | 4.60                      | 25.40                  |                                  |               |                  |           | 80           |                      | 73.9         | 423                            | 546.0                         | .209   | 1.320   | 70.1                           | 78.3       | 438   | 612                           |
|                                                       |           |              | 1.05           | 4.202      | 4.56                      | (q                     |                                  |               |                  |           | 80           |                      | 71.7         |                                | 514.0                         | .196   | 1.230   |                                | 75.6       | :     | 571                           |
| CNL-20 .2                                             |           |              |                | 12.595     | 14.20                     | (q)                    |                                  |               |                  |           | 20           | -                    | 119.7        | :                              | 1415.0                        | .594   | 2.350   |                                | 125.5      | ••••  | 1576                          |
|                                                       |           |              |                | 4.204      | (e)                       | (q                     |                                  |               |                  |           | 8            |                      | 88.5         | :                              | 783.5                         | .327   | 1.290   | :                              | 97.1       | :     | 944                           |
|                                                       |           |              |                | 4.243      | (c)                       | 19.50                  |                                  |               |                  |           | 5            |                      | 57.4         | 252                            | 331.0                         | .127   | .500    | 53.8                           | 59.7       | 258   | 356                           |
|                                                       | 55 77     |              |                | 2.809      | 3.45                      | <u>(</u>               |                                  |               |                  |           | 75           |                      | 86.9         | :                              | 755.0                         | .317   | 1.240   | ;                              | 98.5       | :     | 970                           |
|                                                       |           |              |                | 4.196      | 4.50                      | (q)                    |                                  |               |                  |           | ð            |                      | 61.6         | :                              | 380.0                         | .160   | .630    | ÷                              | 64.4       | :     | 415                           |
|                                                       |           |              |                | 4.200      | 5.10                      | 20.30                  |                                  |               |                  |           | <del>ç</del> |                      | 66.3         | 270                            | 439.0                         | .185   | .730    | 55.7                           | 69.7       | 277   | 485                           |
| CNL-50 .4                                             | .498 71   | 36.13        | .95            | 12.610     | 13.30                     | (q)                    |                                  |               |                  |           | 20           | :                    | 75.8         | :                              | 575.0                         | .254   | .510    | ;                              | 77.5       | :     | 602                           |
|                                                       |           | _            | ~~~            | 4.700      | 4.90                      | (q)                    |                                  |               |                  |           | 8            |                      | 96.5         | :                              | 930.0                         | .410   | .820    | :                              | 107.4      | :     | 1153                          |
|                                                       |           |              |                | 4.257      | (c)                       | <b>(</b> 9             |                                  |               |                  |           | 2            |                      | 43.1         | :                              | 185.0                         | .076   | .150    | ;                              | 44.0       | :     | 194                           |
|                                                       |           |              |                | 2.796      | 2.96                      | 25.80                  |                                  |               |                  |           | 10           |                      | 62.0         | 290                            | 385.0                         | .170   | .340    | 58.3                           | 66.7       | 303   | 444                           |
|                                                       |           |              |                | 4.200      | 4.50                      | (q)                    |                                  |               |                  |           | 2            |                      | 50.3         | :                              | 253.0                         | .111   | .220    | ;                              | 51.8       | :     | 268                           |
|                                                       |           | -            |                | 4.210      | 4.90                      | 15.70                  |                                  |               |                  |           | 2            |                      | 51.8         | 162                            | 268.0                         | .119   | .240    | 43.0                           | 53.6       | 165   | 288                           |
|                                                       | 30 70     | 36.31        |                | 12.610     | (e)                       | 8.08                   |                                  |               |                  |           | 15           |                      | 67.2         | 128                            | 452.0                         | .189   | 300     | 38.0                           | 68.5       | 129   | 469                           |
|                                                       |           |              |                | 4.202      | 4.80                      | 20.60                  |                                  |               |                  |           | 6            |                      | 65.6         | 278                            | 429.0                         | .179   | .280    | 56.6                           | 68.7       | 285   | 473                           |
|                                                       |           |              |                | 3.193      | <u></u>                   | (q                     |                                  |               |                  |           | 0            |                      | 47.8         | :                              | 229.0                         | 060    | 140     | :                              | 49.4       | :     | 244                           |
|                                                       | _         |              |                | 2.834      | 3.05                      | 20.70                  |                                  |               |                  |           | S            |                      | 54.8         | 189.0                          | 295.0                         | .124   | .197    | 46.8                           | 57.3       | 195   | 328                           |
|                                                       |           |              |                | 4.205      | 4.30                      | 11.80                  |                                  |               |                  |           | 2            |                      | 43.1         | 91.4                           | 186.0                         | .080   | .128    | 32.2                           | 44.1       | 92    | 195                           |
|                                                       |           |              |                | 4.197      | 5.00                      | (q                     |                                  |               |                  |           | 2            |                      | 48.7         | :                              | 237.0                         | .102   | .160    | :                              | 49.9       | :     | 249                           |
| <sup>a</sup> Letters T and L indicate grain direction | nd L indi | cate grai    | n directi      |            |                           |                        |                                  |               |                  | 1         | -            |                      |              |                                |                               |        |         |                                |            |       |                               |

b No pop-in indicated by accelerometer.

 $^{\rm C}$  Slow crack growth measurements not taken at -65°F.

d Panel failed because of malfunction in test equipment.

<sup>e</sup> Critical crack length missed on film record.

f Panel failed during fatigue cycling.

<sup>g</sup> Previously loaded to 30.2 ksi and unloaded.

TABLE V. – FRACTURE-TOUGHNESS DATA FOR SURFACE-FLAWED 7079 ALUMINUM ALLOY<sup>a</sup>

,

| Specimen                                     | Ten | n <sup>c</sup> g, <sup>c</sup> g, <sup>o</sup> g | ởg,<br>ksi/sec | σ <sub>g,</sub><br>ksi | σ <sub>g,</sub><br>UTS | <sup>σg,</sup> σg,<br>UTS YS          | à, rị | 2 <sup>с</sup> | K <sub>Ic,</sub><br>ksi√in. | G <sub>lc,</sub><br>inlb/in.2 | K <sub>Ic,</sub><br>ksi√in. | b, $\frac{b}{2c}$ $\frac{K_{Ic}}{ksi\sqrt{in}}$ $\frac{G_{Ic}}{inIb/in.2}$ $\frac{K_{Ic}}{ksi\sqrt{in}}$ inIb/in.2 |
|----------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------------------------|---------------------------------------|-------|----------------|-----------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| 6U-11<br>longitudinal<br>grain,<br>underaged | 72  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.78           | 52.3                   | 0.654                  | 0.78 52.3 0.654 0.777 0.32 0.216 39.3 | 0.32  | 0.216          | 39.3                        | 138                           | 49.2                        | 215                                                                                                                |
| 6P-11<br>longitudinal<br>grain,<br>peak (T6) | 72  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.             | 55.4                   | .691                   | .766                                  | .35   | .35 .236 42.7  | 42.7                        | 162                           | 53.3                        | 253                                                                                                                |
| 60-11<br>longitudinal<br>grain,<br>overaged  | 78  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06.            | 46.2                   | .625                   | .90 46.2 .625 .748 .35 .236 37.0      | .35   | .236           | 37.0                        | 122                           | 44.6                        | 178                                                                                                                |
| a – 1 E :n                                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                        |                        |                                       |       |                |                             |                               | 1                           |                                                                                                                    |

<sup>a</sup>W = 4.5 in., t = 0.63 in.

|                   |                         |         |          |      |         |                   |         |          | _    | _       |
|-------------------|-------------------------|---------|----------|------|---------|-------------------|---------|----------|------|---------|
| AI,<br>wt %       |                         | Balance | •        | •    | Balance |                   | Balance | <b>4</b> |      | Balance |
| Ni,<br>wt %       |                         | 0.03    | .02      | .03  | .02     |                   | (a)     | (a)      | (a)  | (a)     |
| Mg,<br>wt %       |                         | 3.48    | 3.50     | 3.48 | 3.50    |                   | 3.36    | 3.60     | 3.32 | 3.51    |
| Fe,<br>wt %       |                         | 0.14    | .16      | .14  | .16     |                   | .15     | .14      | .14  | .12     |
| Ti,<br>wt %       | Manufacturer's analysis | 0.05    | <u>6</u> | .05  | .04     | ıalysis           | <.01    | 4        |      | <.01    |
| Zn,<br>wt %       | sturer's                | 4.66    | 4.52     | 4.66 | 4.52    | Boeing's analysis | 4.70    | 4.72     | 4.71 | 4.62    |
| Cu,<br>wt %       | Manufac                 | 0.62    | 69.      | .62  | 69.     | Boe               | .55     | .60      | .55  | .56     |
| Cr,<br>wt %       |                         | 0.16    | .18      | .16  | .18     |                   | .18     | .19      | .18  | .22     |
| Si,<br>wt %       |                         | 0.10    | .07      | .10  | .07     |                   | .08     | .07      | .07  | 90.     |
| Mn,<br>wt %       |                         | 0.21    | .18      | .21  | .18     |                   | .20     | .17      | .20  | .16     |
| Thickness,<br>in. |                         | 0.16    | .25      | .50  | .63     |                   | .16     | .25      | .50  | .63     |

<sup>a</sup> No nickel content recorded.

| Specimen<br>(a)    | Test<br>temp,<br>°F | UTS,<br>ksi | YS,<br>ksi | Elongation<br>(2 in.),<br>% | RA,<br>% |  |  |  |  |
|--------------------|---------------------|-------------|------------|-----------------------------|----------|--|--|--|--|
| 0.16-in. thickness |                     |             |            |                             |          |  |  |  |  |
| 1U-3T              | 69                  | 79.8        | 64.9       | 14.0                        | 23.0     |  |  |  |  |
| 1U-4T              | 70                  | 79.8        | 64.7       | 14.0                        | 25.0     |  |  |  |  |
| 1U-5T              | 73                  | 79.5        | 63.4       | 14.0                        | 22.0     |  |  |  |  |
| Average            |                     | 79.7        | 64.3       | 14.0                        | 23.3     |  |  |  |  |
| 1U-4L              | 73                  | 79.0        | 70.4       | 14.0                        | 25.0     |  |  |  |  |
| 1U-5L              | 74                  | 79.2        | 71.1       | 13.0                        | 22.0     |  |  |  |  |
| 1U-6L              | 74                  | 79.4        | 70.6       | 13.0                        | 24.0     |  |  |  |  |
| Average            |                     | 79.2        | 70.7       | 13.3                        | 23.7     |  |  |  |  |
| 1U-7L              | -65                 | 82.3        | 75.0       | 14.0                        | 21.0     |  |  |  |  |
| 1U-8L              | -65                 | 81.7        | 73.7       | 14.0                        | 25.0     |  |  |  |  |
| 1U-9L              | -65                 | 81.4        | 73.4       | 14.0                        | 25.0     |  |  |  |  |
| Average            |                     | 81.8        | 74.0       | 14.0                        | 23.7     |  |  |  |  |
|                    |                     | 0.25-in. t  | hickness   |                             | <b>1</b> |  |  |  |  |
| 2U-3T              | RT                  | 78.1        | 60.5       | 16.0                        | 25.0     |  |  |  |  |
| 2U-4T              | RT                  | 77.7        | 60.4       | 15.0                        | 24.0     |  |  |  |  |
| 2U-5T              | RT                  | 78.5        | 60.4       | 17.0                        | 24.0     |  |  |  |  |
| Average            |                     | 78.1        | 60.4       | 16.0                        | 24.3     |  |  |  |  |
| 2U-4L              | RT                  | 77.4        | 64.2       | 17.0                        | 27.0     |  |  |  |  |
| 2U-5L              | RT                  | 77.6        | 63.8       | 17.0                        | 25.0     |  |  |  |  |
| 2U-6L              | RT                  | 77.6        | 63.8       | 17.0                        | 27.0     |  |  |  |  |
| Average            |                     | 77.5        | 63.9       | 17.0                        | 26.3     |  |  |  |  |
| 2U-7L              | -65                 | 79.0        | 67.2       | 17.0                        | 24.0     |  |  |  |  |
| 2U-8L              | -65                 | 78.8        | 67.4       | 17.0                        | 27.0     |  |  |  |  |
| 2U-9L              | -65                 | 78.6        | 66.9       | 18.0                        | 24.0     |  |  |  |  |
| Average            |                     | 78.8        | 67.2       | 17.3                        | 25.0     |  |  |  |  |

### TABLE VII.--VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY (a) Underaged heat treatment

•

| Specimen<br>(a) | Test<br>temp,<br>°F | UTS,<br>ksi       | YS,<br>ksi        | Elongation<br>(1 in.),<br>% | RA,<br>%          |
|-----------------|---------------------|-------------------|-------------------|-----------------------------|-------------------|
|                 | <b>.</b>            | 0.50-in.          | thickness         |                             |                   |
| 5U-3T           | RT                  | 74.6              | 58.2              | 18.0                        | 32.0              |
| 5U-4T           | RT                  | 75.1              | 59.1              | 17.0                        | 31.0              |
| 5U-5T           | RT                  | 75.1              | 58.8              | 17.0                        | 29.0              |
| Average         |                     | 74.9              | 58.7              | 17.3                        | 30.7              |
| 5U-4L           | RT                  | 75.0              | 61.4              | 17.0                        | 34.0              |
| 5U-5L           | RT                  | 75.6              | 61.9              | 18.0                        | 35.0              |
| 5U-6L           | RT                  | 74.4              | 62.0              | 17.0                        | 36.0              |
| Average         |                     | 75.0              | 61.8              | 17.3                        | 35.0              |
| 5U-7L           | 65                  | 75.7              | 63.7              | 17.0                        | 32.0              |
| 5U-8L           | -65                 | 75.1              | 62.2              | 16.0                        | 33.0              |
| 5U-9L           | -65                 | 75.2              | 63.0              | 16.0                        | 34.0              |
| Average         |                     | 75.3              | 63.0              | 16.3                        | 33.0              |
|                 |                     | 0.63-in.          | thickness         |                             |                   |
| 6U-3T           | RT                  | 80.3              | 63.3              | 16.0                        | 25.0              |
| 6U-4T           | RT                  | 80.3              | 63.9              | 16.0                        | 24.0              |
| 6U-5T           | RT                  | <sup>b</sup> 85.2 | <sup>b</sup> 64.7 | <sup>b</sup> 16.0           | <sup>b</sup> 24.0 |
| Average         |                     | 80.3              | 63.6              | 16.0                        | 24.5              |
| 6U-4L           | RT                  | 80.5              | 67.8              | 17.0                        | 32.0              |
| 6U-5L           | RT                  | 80.0              | 67.6              | 16.0                        | 31.0              |
| 6U-6L           | RT                  | 79.6              | 66.9              | 16.0                        | 25.0              |
| Average         |                     | 80.0              | 67.4              | 16.3                        | 29.3              |
| 6U-7L           | -65                 | 81.5              | 70.6              | 16.0                        | 26.0              |
| 6U-8L           | -65                 | 82.0              | 71.2              | 16.0                        | 26.0              |
| 6U-9L           | -65                 | 81.3              | 72.4              | 15.0                        | 23.0              |
| Average         |                     | 81.6              | 71.4              | 15.7                        | 25.0              |

### TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY - Continued (a) Underaged heat treatment - Concluded

| Specimen<br>(a) | Test<br>temp,<br>°F | UTS,<br>ksi | YS,<br>ksi | Elongation<br>(2 in.),<br>% | RA,<br>% |
|-----------------|---------------------|-------------|------------|-----------------------------|----------|
|                 |                     | 0.16-in.    | thickness  | Lu                          |          |
| 1P-3T           | RT                  | 77.6        | 68.4       | 11.0                        | 24.0     |
| 1P-4T           | RT                  | 81.5        | 71.7       | 11.0                        | 25.0     |
| 1P-5T           | RT                  | 81.2        | 71.4       | 11.0                        | 25.0     |
| Average         |                     | 80.1        | 70.5       | 11.0                        | 24.7     |
| 1P-4L           | RT                  | 79.7        | 73.7       | 11.0                        | 25.0     |
| 1P-5L           | RT                  | 79.6        | 74.3       | 11.0                        | 24.0     |
| 1P-6L           | RT                  | 79.5        | 73.6       | 11.0                        | 25.0     |
| Average         |                     | 79.6        | 73.9       | 11.0                        | 24.7     |
| 1P-7L           | 65                  | 84.5        | 78.2       | 12.0                        | 22.0     |
| 1P-8L           | -65                 | 82.3        | 76.1       | 12.0                        | 25.0     |
| 1P-9L           | 65                  | 84.5        | 78.2       | 13.0                        | 25.0     |
| Average         |                     | 83.8        | 77.5       | 12.3                        | 24.0     |
|                 |                     | 0.25-in. ti | hickness   |                             |          |
| 2P-3T           | RT                  | 81.8        | 72.4       | 12.0                        | 24.0     |
| 2P-4T           | RT                  | 82.0        | 72.7       | 12.0                        | 23.0     |
| 2P-5T           | RT                  | 81.8        | 71.9       | 12.0                        | 24.0     |
| Average         |                     | 81.9        | 72.3       | 12.0                        | 23.7     |
| 2P-4L           | RT                  | 80.6        | 74.3       | 13.0                        | 28.0     |
| 2P-5L           | RT                  | 80.5        | 74.1       | 13.0                        | 28.0     |
| 2P-6L           | RT                  | 80.2        | 73.6       | 13.0                        | 27.0     |
| Average         |                     | 80.4        | 74.0       | 13.0                        | 27.7     |
| 2P-7L           | 65                  | 84.8        | 78.3       | 15.0                        | 24.0     |
| 2P-8L           | -65                 | 83.8        | 75.7       | 13.0                        | 23.0     |
| 2P-9L           | 65                  | 83.9        | 77.7       | 14.0                        | 25.0     |
| Average         |                     | 84.3        | 77.2       | 14.0                        | 24.0     |

### TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY - Continued (b) Peak age (T6) heat treatment

.

# TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY - Continued

| Specimen<br>(a)    | Test<br>temp,<br>°F | UTS,<br>ksi | YS,<br>ksi | Elongation<br>(1 in.),<br>% | RA,<br>% |  |  |  |  |
|--------------------|---------------------|-------------|------------|-----------------------------|----------|--|--|--|--|
| 0.50-in. thickness |                     |             |            |                             |          |  |  |  |  |
| 5P-3T              | RT                  | 79.6        | 69.0       | 13.0                        | 31.0     |  |  |  |  |
| 5P-4T              | RT                  | 79.3        | 69.5       | 13.0                        | 29.0     |  |  |  |  |
| 5P-5T              | RT                  | 79.4        | 69.4       | 14.0                        | 29.0     |  |  |  |  |
| Average            |                     | 79.4        | 69.3       | 13.3                        | 29.7     |  |  |  |  |
| 5P-4L              | RT                  | 78.8        | 72.1       | 14.0                        | 36.0     |  |  |  |  |
| 5P-5L              | RT                  | 78.0        | 70.8       | 14.0                        | 35.0     |  |  |  |  |
| 5P-6L              | RT                  | 78.8        | 71.6       | 14.0                        | 37.0     |  |  |  |  |
| Average            |                     | 78.5        | 71.5       | 14.0                        | 36.0     |  |  |  |  |
| 5P-7L              | 65                  | 80.8        | 75.0       | 12.0                        | 36.0     |  |  |  |  |
| 5P-8L              | -65                 | 81.0        | 74.4       | 14.0                        | 34.0     |  |  |  |  |
| 5P-9L              | -65                 | 81.9        | 75.4       | 15.0                        | 33.0     |  |  |  |  |
| Average            |                     | 81.2        | 74.9       | 13.7                        | 34.3     |  |  |  |  |
|                    |                     | 0.63-in. tl | nickness   |                             |          |  |  |  |  |
| 6P-3T              | RT                  | 79.3        | 69.0       | 12.0                        | 23.0     |  |  |  |  |
| 6P-4T              | RT                  | 80.4        | 70.6       | 12.0                        | 25.0     |  |  |  |  |
| 6P-5T              | RT                  | 79.8        | 70.0       | 11.0                        | 24.0     |  |  |  |  |
| Average            |                     | 79.8        | 69.9       | 11.7                        | 24.0     |  |  |  |  |
| 6P-4L              | RT                  | 80.9        | 73.4       | 13.0                        | 35.0     |  |  |  |  |
| 6P-5L              | RT                  | 79.7        | 72.0       | 12.0                        | 32.0     |  |  |  |  |
| 6P-6L              | RT                  | 79.6        | 71.8       | 12.0                        | 29.0     |  |  |  |  |
| Average            |                     | 80.1        | 72.3       | 12.3                        | 32.0     |  |  |  |  |
| 6P-7L              | -65                 | 84.5        | 74.5       | 12.0                        | 28.0     |  |  |  |  |
| 6P-8L              | 65                  | 83.9        | (c)        | (c)                         | (c)      |  |  |  |  |
| 6P-9L              | -65                 | 82.7        | 76.4       | 13.0                        | 24.0     |  |  |  |  |
| Average            |                     | 83.7        | 75.5       | 12.5                        | 27.5     |  |  |  |  |

(b) Peak-age (T6) heat treatment – Concluded

### TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY - Continued (c) Overaged heat treatment

| Specimen<br>(a) | Test<br>temp,<br>°F | UTS,<br>ksi | YS,<br>ksi | Elongation<br>(2 in ) <sub>,</sub><br>% | RA,<br>% |
|-----------------|---------------------|-------------|------------|-----------------------------------------|----------|
| <b>_</b>        | I                   | 0.16-in. 1  | thickness  |                                         |          |
| 10-3T           | RT                  | 75.5        | 63.8       | 10.0                                    | 18.0     |
| 10-4T           | RT                  | 75.5        | 64.1       | 10.0                                    | 19.0     |
| 10-5T           | RT                  | 75.5        | 65.2       | 10.0                                    | 19.0     |
| Average         |                     | 75.5        | 64.4       | 10.0                                    | 18.7     |
| 10-4L           | RT                  | 75.0        | 65.2       | 12.0                                    | 27.0     |
| 10-5L           | RT                  | 75.6        | 65.4       | 11.0                                    | 23.0     |
| 10-6L           | RT                  | 75.3        | 65.2       | 12.0                                    | 26.0     |
| Average         |                     | 75.3        | 65.3       | 11.7                                    | 25.3     |
| 10-7L           | -65                 | 78.9        | 66.8       | 12.0                                    | 27.0     |
| 10-8L           | -65                 | 79.0        | 67.5       | 11.0                                    | 24.0     |
| 10-9L           | -65                 | 79.1        | 67.3       | 12.0                                    | 26.0     |
| Average         |                     | 79.0        | 67.2       | 11.7                                    | 25.7     |
|                 |                     | 0.25-in. 1  | thickness  |                                         |          |
| 20-3T           | RT                  | 74.7        | 61.2       | 12.0                                    | 26.0     |
| 20-4T           | RT                  | 74.5        | 61.6       | 11.0                                    | 21.0     |
| 20-5T           | RT                  | 74.7        | 61.4       | 10.0                                    | 15.0     |
| Average         |                     | 74.6        | 61.4       | 11.0                                    | 21.0     |
| 20-4L           | RT                  | 73.5        | 61.5       | 13.0                                    | 31.0     |
| 20-5L           | RT                  | 73.4        | 61.7       | 12.0                                    | 22.0     |
| 20-6L           | RT                  | 73.1        | 61.6       | 12.0                                    | 30.0     |
| Average         |                     | 73.3        | 61.6       | 12.3                                    | 27.7     |
| 20-7L           | 65                  | 78.7        | 64.5       | 13.0                                    | 29.0     |
| 20-8L           | -65                 | 78.5        | 63.5       | 14.0                                    | 26.0     |
| 20-9L           | -65                 | 78.1        | 64.6       | 14.0                                    | 29.0     |
| Average         |                     | 78.4        | 64.2       | 13.7                                    | 28.0     |

ŧ

| Specimen<br>(a) | Test<br>temp,<br>°F | UTS,<br>ksi | YS,<br>ksi | Elongation<br>(1 in.),<br>% | RA,<br>% |
|-----------------|---------------------|-------------|------------|-----------------------------|----------|
|                 |                     | 0.50-in. 1  | hickness   | I                           |          |
| 50-3T           | RT                  | 73.0        | 60.3       | 13.0                        | 33.0     |
| 50-4T           | RT                  | 72.8        | 60.1       | 13.0                        | 34.0     |
| 50-5T           | RT                  | 72.6        | 59.9       | 13.0                        | 31.0     |
| Average         |                     | 72.8        | 60.1       | 13.0                        | 32.7     |
| 50-4L           | RT                  | 72.3        | 60.3       | 15.0                        | 38.0     |
| 50-5L           | RT                  | 72.2        | 60.1       | 15.0                        | 41.0     |
| 50-6L           | RT                  | 71.8        | 59.7       | 15.0                        | 41.0     |
| Average         |                     | 72.1        | 60.0       | 15.0                        | 40.0     |
| 50-7L           | 65                  | 76.3        | 62.9       | 15.0                        | 37.0     |
| 50-8L           | -65                 | 76.2        | 62.6       | 15.0                        | 38.0     |
| 50-9L           | -65                 | 74.6        | 61.2       | 15.0                        | 38.0     |
| Average         |                     | 75.7        | 62.2       | 15.0                        | 37.7     |
|                 |                     | 0.63-in. 1  | hickness   |                             |          |
| 60-3T           | RT                  | 74.0        | 60.8       | 13.0                        | 32.0     |
| 60-4T           | RT                  | 73.9        | 60.7       | 13.0                        | 29.0     |
| 60-5T           | RT                  | 74.3        | 61.0       | 13.0                        | 30.0     |
| Average         |                     | 74.1        | 60.8       | 13.0                        | 30.0     |
| 60-4L           | RT                  | 74.0        | 61.9       | 14.0                        | 38.0     |
| 60-5L           | RT                  | 74.1        | 61.9       | 14.0                        | 38.0     |
| 60-6L           | RT                  | 73.7        | 61.4       | 15.0                        | 39.0     |
| Average         |                     | 73.9        | 61.7       | 14.3                        | 38.3     |
| 60-7L           | 65                  | 77.3        | 63.5       | 14.0                        | 36.0     |
| 60-8L           | -65                 | 77.7        | 63.5       | 15.0                        | 33.0     |
| 60-9L           | -65                 | 77.7        | 64.3       | 15.0                        | 37.0     |
| Average         |                     | 77.6        | 63.8       | 14.7                        | 35.3     |

### TABLE VII.-VERIFICATION TENSILE PROPERTIES FOR 7079 ALUMINUM ALLOY – Concluded (c) Overaged heat treatment – Concluded

<sup>a</sup> Letters T and L indicate grain direction.

<sup>b</sup> Sudden load change before failure.

<sup>c</sup> Clamps stepped prior to yield.

| Specimen                | Thickness,<br>in.       | Test<br>temp, °F | UTS,<br>ksi          | YS,<br>ksi           | Elongation<br>(2 in.)<br>%            | RA,<br>%             |
|-------------------------|-------------------------|------------------|----------------------|----------------------|---------------------------------------|----------------------|
|                         |                         | Peak-age         | (T6) heat tre        | atment               | · · · · · · · · · · · · · · · · · · · |                      |
| 1-9<br>1-24             | 0.160<br>0.160          | 72<br>72         | 79.8<br>79.4         | 70.0<br>69.1         | 13.0<br>12.0                          | 25.0<br>22.0         |
| Average                 |                         |                  | 79.6                 | 69.6                 | 12.5                                  | 23.5                 |
| 2-5<br>6-3<br>6-24      | 0.250<br>0.630<br>0.630 | 72<br>71<br>70   | 80.4<br>80.6<br>81.1 | 69.9<br>72.7<br>71.9 | 12.0<br>11.0<br>11.0                  | 19.0<br>25.0<br>24.0 |
| Average                 |                         |                  | 80.8                 | 72.3                 | 11.0                                  | 24.5                 |
|                         |                         | Overag           | ed heat trea         | tment                |                                       |                      |
| 1-6<br>1-10             | 0.160<br>0.160          | 72<br>72         | 74.1<br>73.3         | 61.7<br>61.0         | 12.0<br>12.0                          | 24.0<br>23.0         |
| Average                 |                         |                  | 73.7                 | 61.4                 | 12.0                                  | 23.5                 |
| 2-13<br>2-17<br>Average | 0.250<br>0.250          | 72<br>72         | 73.2<br>71.5<br>72.4 | 59.8<br>57.6<br>58.7 | 12.0<br>12.0<br>12.0                  | 21.0<br>22.0<br>21.5 |
| 5-16<br>5-24            | 0.500<br>0.500          | 72<br>71         | 71.6<br>71.6         | 58.4<br>58.7         | 13.0<br>12.0                          | 32.0<br>30.0         |
| Average                 |                         |                  | 71.6                 | 58.6                 | 12.5                                  | 31.0                 |
| 6-5<br>6-16             | 0.630<br>0.630          | 69<br>69         | 73.6<br>73.6         | 60.5<br>60.3         | 12.0<br>11.0                          | 28.0<br>26.0         |
| Average                 |                         |                  | 73.6                 | 60.4                 | 11.5                                  | 27.0                 |

## TABLE VIII.—ADDITIONAL VERIFICATION TENSILE PROPERTIES FOR PEAK AND OVERAGED 7079 ALUMINUM ALLOYS <sup>a</sup>

<sup>a</sup>Transverse grain direction

### TABLE IX.-COMPARISON OF VERIFICATION YIELD STRENGTH AND ESTIMATED RANGE OF YIELD STRENGTH, FROM AGING CURVES FOR 7079 ALUMINUM ALLOY

۳

| Thickness,<br>in.                         | Peak<br>Agıng<br>Time,<br>hr         | Transverse YS<br>(aging curve),<br>ksi | Estimated range<br>from aging<br>curve,<br>12.5 ± 2.5%,<br>ksi-ksi | Verification<br>transverse<br>YS, ksi |  |  |  |  |  |
|-------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
|                                           | Unde                                 | eraged heat treatm                     |                                                                    |                                       |  |  |  |  |  |
| 0.16                                      | 4<br>(as received)<br>∳              | 70.8                                   | 60.2-63.7                                                          | 64.3                                  |  |  |  |  |  |
| 0.25                                      |                                      | 70.0                                   | 59.5-63.0                                                          | 60.4                                  |  |  |  |  |  |
| 0.50                                      | ļ                                    | 69.2                                   | 58.8-62.3                                                          | 58.7                                  |  |  |  |  |  |
| 0.63                                      | 4<br>(as received)                   | 71.6                                   | 60.9-64.4                                                          | 63.6                                  |  |  |  |  |  |
| Peak-age (T6) heat treatment <sup>b</sup> |                                      |                                        |                                                                    |                                       |  |  |  |  |  |
| 0.16                                      | 48                                   | 70.8                                   |                                                                    | 70.5                                  |  |  |  |  |  |
| 0.25                                      | 48                                   | 70.0                                   |                                                                    | 72.3                                  |  |  |  |  |  |
| 0.50                                      | 48                                   | 69.2                                   |                                                                    | 69.3                                  |  |  |  |  |  |
| 0.63                                      | 48                                   | 71.6                                   |                                                                    | 69.9                                  |  |  |  |  |  |
|                                           | Overaged heat treatment <sup>C</sup> |                                        |                                                                    |                                       |  |  |  |  |  |
| 0.16                                      | 56                                   | 70.8                                   | 60.2-63.7                                                          | 64.4                                  |  |  |  |  |  |
| 0.25                                      | 96                                   | 70.0                                   | 59.5-63.0                                                          | 61.4                                  |  |  |  |  |  |
| 0.50                                      | 120                                  | 69.2                                   | 58.8-62.3                                                          | 60.1                                  |  |  |  |  |  |
| 0.63                                      | 90                                   | 71.6                                   | 60.9-64.4                                                          | 60.8                                  |  |  |  |  |  |

<sup>a</sup>250 °F

i

<sup>b</sup>Commercial practice, 250°F

<sup>c</sup>290°F

| · · · · · · · · · · · · · · · · · · · | (a) Underaged heat treatment |                                        |                               |                                                          |  |  |  |  |  |
|---------------------------------------|------------------------------|----------------------------------------|-------------------------------|----------------------------------------------------------|--|--|--|--|--|
| Specimen<br>(a)                       | Thickness,<br>in.            | Uncracked<br>area,<br>A <sub>o</sub> , | Fracture,<br>W <sub>O</sub> , | Impact<br>toughness,<br>W <sub>o</sub> /A <sub>o</sub> , |  |  |  |  |  |
| (-)                                   |                              | A <sub>o</sub> ,<br>in. <sup>2</sup>   | inIb                          | inlb/in. <sup>2</sup>                                    |  |  |  |  |  |
|                                       | 0.16-in. gage <sup>b</sup>   |                                        |                               |                                                          |  |  |  |  |  |
| 1UT1                                  | 0.157                        | 0 041                                  | 8.00                          | 196                                                      |  |  |  |  |  |
| 1UT2                                  | .157                         | .044                                   | 9.10                          | 207                                                      |  |  |  |  |  |
| 1UT3                                  | .157                         | .044                                   | 9.02                          | 205                                                      |  |  |  |  |  |
| 1UL4                                  | .157                         | .042                                   | 12.12                         | 286                                                      |  |  |  |  |  |
| 1UL5                                  | .157                         | .044                                   | 12.70                         | 289                                                      |  |  |  |  |  |
| 1UL6                                  | .147                         | .041                                   | 11.35                         | 278                                                      |  |  |  |  |  |
|                                       |                              | 0.25-in. gage <sup>c</sup>             |                               |                                                          |  |  |  |  |  |
| 2UT1                                  | 0.161                        | 0.043                                  | 15.55                         | 362                                                      |  |  |  |  |  |
| 2UT2                                  | .162                         | .042                                   | 13.80                         | 329                                                      |  |  |  |  |  |
| 2UT3                                  | .161                         | .042                                   | 14.55                         | 346                                                      |  |  |  |  |  |
| 2UL4                                  | .161                         | .040                                   | 21.00                         | 525                                                      |  |  |  |  |  |
| 2UL5                                  | .161                         | .046                                   | 24.20                         | 526                                                      |  |  |  |  |  |
| 2UL6                                  | .160                         | .043                                   | 23.00                         | 535                                                      |  |  |  |  |  |
|                                       |                              | 0.50-in. gage <sup>c</sup>             |                               |                                                          |  |  |  |  |  |
| 5UT1                                  | 0.161                        | 0.043                                  | 9.10                          | 212                                                      |  |  |  |  |  |
| 5UT2                                  | .162                         | .043                                   | 8.85                          | 206                                                      |  |  |  |  |  |
| 5UT3                                  | .162                         | .042                                   | 8.60                          | 204                                                      |  |  |  |  |  |
| 5UL4                                  | .162                         | .043                                   | 12.35                         | 287                                                      |  |  |  |  |  |
| 5UL5                                  | .162                         | .046                                   | 13.70                         | 298                                                      |  |  |  |  |  |
| 5UL6                                  | .162                         | .043                                   | 12.75                         | 296                                                      |  |  |  |  |  |
|                                       |                              | 0.63-in. gage <sup>c</sup>             |                               |                                                          |  |  |  |  |  |
| 6UT1                                  | Ö.161                        | 0.048                                  | 14.90                         | 310                                                      |  |  |  |  |  |
| 6UT2                                  | .162                         | .049                                   | 14.40                         | 294                                                      |  |  |  |  |  |
| 6UT3                                  | .162                         | .005                                   | 1.00                          | 220                                                      |  |  |  |  |  |
| 6UL4                                  | .162                         | .049                                   | 27.80                         | 567                                                      |  |  |  |  |  |
| 6UL5                                  | .162                         | .048                                   | 28.00                         | 583                                                      |  |  |  |  |  |
| 6UL6                                  | .162                         | .049                                   | 27.30                         | 557                                                      |  |  |  |  |  |

•TABLE X.–PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY (a) Underaged heat treatment

.

### TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY - Continued (b) Peak-age (T6) heat treatment (73°F test temperature)

| Specimen | Thickness,<br>in. | Uncracked<br>area,<br>A, | Fracture<br>energy,      | Impact<br>toughness,                          |
|----------|-------------------|--------------------------|--------------------------|-----------------------------------------------|
| (a)      |                   | in. <sup>2</sup>         | W <sub>o</sub> ,<br>inIb | W <sub>o</sub> /A <sub>o</sub> ,<br>inIb/in.2 |
|          |                   | 0.16-in. gage            |                          | ·                                             |
|          |                   |                          |                          |                                               |
| 1PT1     | 0.158             | 0.040                    | 5.80                     | 145                                           |
| 1PT2     | .157              | .042                     | 6.15                     | 146                                           |
| 1PT3     | .147              | .042                     | 6.10                     | 145                                           |
| 1PL4     | .157              | .042                     | 8.10                     | 193                                           |
| 1PL5     | .157              | .040                     | 7.80                     | 195                                           |
| 1PL6     | .147              | .042                     | 8.55                     | 204                                           |
|          |                   | 0.25-in. gage            |                          |                                               |
| 2PT1     | 0.161             | 0.043                    | 8.90                     | 207                                           |
| 2PT2     | .161              | .047                     | 9.75                     | 207                                           |
| 2РТ3     | .161              | .042                     | 8.55                     | 204                                           |
| 2PL4     | .162              | .046                     | 16.85                    | 366                                           |
| 2PL5     | .161              | .044                     | 15.70                    | 357                                           |
| 2PL6     | .161              | .046                     | 15.95                    | 347                                           |
|          |                   | 0.50-in. gage            | <u> </u>                 |                                               |
| 5PT1     | 0.162             | 0.045                    | 6.90                     | 153                                           |
| 5PT2     | .162              | .043                     | 6.40                     | 149                                           |
| 5PT3     | .161              | .045                     | 6.80                     | 151                                           |
| 5PL4     | .162              | .045                     | 11.00                    | 244                                           |
| 5PL5     | .162              | .045                     | 10.75                    | 239                                           |
| 5PL6     | .162              | .045                     | 10.70                    | 238                                           |
|          |                   | 0.63-in. gage            | <b>-</b>                 |                                               |
| 6PT1     | 0.161             | 0.050                    | 6.55                     | 131                                           |
| 6PT2     | .160              | .050                     | 6.40                     | 128                                           |
| 6PT3     | .160              | .049                     | 6.50                     | 133                                           |
| 6PL4     | .162              | .047                     | 14.20                    | 302                                           |
| 6PL5     | .160              | .047                     | 13.95                    | 297                                           |
| 6PL6     | .161              | .047                     | 13.00                    | 276                                           |

| (c) Overaged heat treatment (73°F test temperature) |                   |                                        |                                                 |                                                                       |
|-----------------------------------------------------|-------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|
| Specimen                                            | Thickness,<br>in. | Uncracked<br>area,<br>A <sub>O</sub> , | Fracture<br>energy,<br>W <sub>o</sub> ,<br>inIb | Impact<br>toughness,<br>W <sub>0</sub> /A <sub>0</sub> ,<br>inIb/in.2 |
| (a)                                                 |                   | in. <sup>2</sup><br>0.16-in. gage      | ui-in                                           | inib/in                                                               |
|                                                     |                   |                                        |                                                 |                                                                       |
| 10T1                                                | 0.159             | 0.043                                  | 9.25                                            | 215                                                                   |
| 10T2                                                | .159              | .041                                   | 9.00                                            | 220                                                                   |
| 10T3                                                | .159              | .041                                   | 8.80                                            | 215                                                                   |
| 10L4                                                | .159              | .039                                   | 10.70                                           | 274                                                                   |
| 10L5                                                | .159              | .045                                   | 12.25                                           | 272                                                                   |
| 10L6                                                | .158              | .046                                   | 11.60                                           | 252                                                                   |
| 0.25-in. gage                                       |                   |                                        |                                                 |                                                                       |
| 20T1                                                | 0.161             | 0.043                                  | 9.30                                            | 216                                                                   |
| 20T2                                                | .161              | .042                                   | 9.00                                            | 214                                                                   |
| 20T3                                                | .162              | .043                                   | 9.90                                            | 230                                                                   |
| 20L4                                                | .161              | .043                                   | 13.40                                           | 312                                                                   |
| 20L5                                                | .161              | .043                                   | 14.55                                           | 338                                                                   |
| 20L6                                                | .162              | .043                                   | 13.40                                           | 312                                                                   |
| 0.50-in. gage                                       |                   |                                        |                                                 |                                                                       |
| 50T1                                                | 0.161             | 0.043                                  | 9.50                                            | 221                                                                   |
| 50T2                                                | .161              | .043                                   | 9.50                                            | 221                                                                   |
| 50T3                                                | .161              | .042                                   | 9.00                                            | 214                                                                   |
| 50L4                                                | .161              | .040                                   | 11.80                                           | 295                                                                   |
| 50L5                                                | .161              | .044                                   | 14.30                                           | 325                                                                   |
| 50L6                                                | .161              | .044                                   | 14.30                                           | 325                                                                   |
| 0.63-in. gage                                       |                   |                                        |                                                 |                                                                       |
| 60T1_                                               | 0.162             | 0.044                                  | 8.40                                            | 191                                                                   |
| 6OT2                                                | .161              | .042                                   | 8.00                                            | 190                                                                   |
| 60Т3                                                | .161              | .044                                   | 8.20                                            | 186                                                                   |
| 60L4                                                | .161              | .044                                   | 14.25                                           | 324                                                                   |
| 60L5                                                | .161              | .044                                   | 14.50                                           | 330                                                                   |
| 60L6                                                | .161              | .046                                   | 14.05                                           | 305                                                                   |

TABLE X.-PRECRACKED CHARPY TOUGHNESS DATA FOR 7079 ALUMINUM ALLOY- Concluded
(a) Overseed best treatment (72°E test temperature)

<sup>a</sup>Letters T and L indicate grain direction.  ${}^{b}76^{\circ}F$  test temperature

<sup>c</sup>73<sup>°</sup>F test temperature