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ANALYTICAL CALCULATION OF PARTIAL DERIVATIVES RELATING LUNAR 

AND PLANETARY MI DCOURSE CORRECTION REQUIREMENTS TO 

GUIDANCE SYSTEM INJECTION ERRORS 

by Fred Teren and Gary L. Cole 

Lewis Research Center  

SUMMARY 

This report describes a simplified analytical method for  calculating partial  deriva- 
tives relating midcourse correction velocity requirements to injection e r r o r s  resulting 
from guidance system e r r o r s  for  lunar and planetary missions. 

The analytical method uses  two-body equations of motion to describe the reference 
transfer orbit. 
changes in terminal state conditions to changes at injection and midcourse. 
derivatives a r e  then used to calculate the required correction velocity. 

very little computer time. 
locity components at injection from a reference trajectory. 

from a detailed N Body computer simulation. 
two lunar and five planetary missions. 
be less  than 14 percent fo r  all cases  simulated. 

These equations a r e  linearized to obtain partial derivatives relating 
The partial  

The analytical equations are easily programmed on a digital computer and require 
The only input variables required a r e  the position and ve- 

The analytical partial  derivatives are compared to exact partial derivatives obtained 
A comparison of resul ts  is presented for  

The e r r o r  in the approximate resul ts  is found to 

INTRODUCTION 

The predicted guidance system performance for  a space mission is usually mea- 
sured in t e rms  of a single number, called the figure of meri t  (FOM). F o r  lunar and 
planetary probes, the FOM is the expected value of the midcourse velocity correction, 
which is used to correct  mi s s  plus time of flight or  m i s s  only e r r o r s  at the target. 

matrix (ICM) and the FOM covariance matrix. The ICM gives a complete statistical 
The FOM may be calculated as the product of two matrices: the injection covariance 
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description of the injection e r r o r s  and may be obtained by integration of the adjoint of the 
equations of motion from launch to  termination of powered flight for  each guidance system 
e r r o r  source. The FOM covariance matrix consists of a set of partial  derivatives re- 
lating FOM to the injection e r r o r s .  The exact calculation of these partial  derivatives is 
a tedious one requiring an  N Body computer program and much computer time. The pur- 
pose of this report  is to  derive a n  approximate analytical method which allows these par-  
tial derivatives and, hence the FOM covariance matrix, to  be easily calculated. 

requirements for various combinations of trajectories,  launch vehicles and/or guidance 
hardware e r r o r  models. In such cases, the detailed mission requirements and launch 
opportunities usually have not been established; and targeted reference trajectories are 
not available. Also, the mission planner may not have a detailed N Body code at his  dis- 
posal, and therefore could not calculate exact (N Body) partial  derivatives. It is fo r  this 
type of problem that the authors decided to investigate possible analytical methods for  
generating the partial  derivatives required to compute the FOM. The analytical methods 
would be easy to  implement on a computer and require little computer time. 

derivatives of FOM with respect to injection state variables fo r  planetary and lunar 
probes. The analytical equations for  computing these derivatives are the same for  the 
two mission types, but the approach used is somewhat different. 
in arrival conditions a t  the target are related to injection e r r o r s  and to midcourse cor-  
rections by using a method described by Danby in references 1 and 2.  
Danby's method relates e r r o r s  between any two points on a two-body orbit by using a 
f i rs t -order  analysis. 

A digital computer program was written to  test  the analytical equations and to com- 
pare  the analytical resul ts  to the detailed N Body results.  A reference powered flight 
trajectory is required as input to the program. In addition, a typical guidance hardware 
e r r o r  model and e r r o r  values were assumed. These e r r o r s  provide the forcing function 
for  the linearized equations of motion, which are integrated in the program to obtain the 
injection covariance matrix. The reference t ransfer  orbit is obtained by using the injec- 
tion conditions from the reference powered flight trajectory in the two-body analytical 
equations. 

Analytical and N Body resul ts  are presented for  lunar and planetary missions, in- 
cluding Venus, Mars,  Mercury, and Jupiter. The resul ts  presented include the analyt- 
ical  and N Body FOM for  each e r r o r  source, as well as the total FOM. The analytical 
and N Body FOM covariance matr ices  are also presented. A sample problem is pre-  
sented wherein the trajectory resulting in the largest FOM for  a Mars  mission is deter-  
mined by using the analytical technique. This problem serves  to  illustrate the use of the 
analytical technique. 

In preliminary design studies, the mission planner may wish to investigate the FOM 

A s  a result  of this study, equations were developed for computing analytical partial 

In both cases,  changes 

Basically, 
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ANALYSIS 

General Equations fo r  FOM 

For planetary and lunar probe missions, the function of the launch vehicle guidance 
system is to s teer  the vehicle during its powered phases and to command cutoff, such 
that the resulting f r e e  flight trajectory will a r r ive  at the desired target, usually at some 
prespecified time. The guidance system performance fo r  these missions can be specified 
in t e r m s  of a single number, called the figure of merit  (FOM). The FOM is the expected 
value of the midcourse correction velocity, required to correct  miss  plus time of flight 
e r r o r s  at the target body or to correct  miss  only, if t ime of flight e r r o r s  a r e  not impor- 
tant. 

For a definite set of injection e r ro r s ,  the required midcourse correction can be  de- 
termined by simulating the dispersed trajectory to the target, and iterating on the mid- 
course correction to zero the e r r o r  in arrival conditions. Since injection position and 
velocity e r r o r s  due to guidance a r e  usually small, a f i rs t -order  analysis has generally 
been used to propagate state vector deviations from injection and midcourse to the target. 
The use of f i rs t -order  equations also allows the effects of various guidance system e r r o r  
sources to be statistically combined to obtain the FOM. 

ro r s  can be expressed as 
If a first-order analysis is used, the midcourse correction for  a set  of injection e r -  

ATc = G6S 

where G is a 3 X 6 matrix of partial  derivatives 

Gik = 

ask 

i = 1, 2, 3 

k = l ,  . . ., 6 

and 

Injection is defined here as the time of termination of powered flight. 
The correction velocity squared can be expressed as: 



where T denotes the transpose of a matrix. Equation (2) may be rewritten as: 

2 -T T (AvC) = 6s G G6S 

T The 6 X 6 matrix G G is defined as the FOM covariance matrix 

T A = G  G 

T By replacing G G with A, equation (3) may be rewritten in summation form as: 

( A V ~ ) ~  = 2 Aij6Si6Sj 

The expected value operator E can be applied to equation (4) to give: 

6 6  
(FOM)2 = E[(Av~)~]  = Aijaij 

i=l j = 1  

(4) 

(5) 

where 

D.. = E(6Si6S.) 
1J J 

The same A matrix applies fo r  either a definite or  a statistical set  of injection e r ro r s .  

Calculation of FOM Covariance Matrix - Planetary Mission 

For a planetary mission, the FOM is the midcourse velocity required to correct  
mi s s  plus time of flight e r r o r s  at the target planet. The correction is usually performed 
several  days after injection, after enough tracking data has been obtained to define the 
t ransfer  orbit. 

with the transition from the earth 's  field to heliocentric space occurring at the earth 's  
sphere of influence. The midcourse correction is assumed to take place a t  the earth 's  
sphere of influence. This gives a correction time of from 1 to 4 days (depending on the 
injection energy) which is consistent with the real case.  The following assumptions a r e  
a lso made: 

F o r  the analytical calculations, a ser ies  of two-body transfer conics is assumed, 
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(1) The e r r o r  in time at ear th  escape is negligible compared to the total t r ip  time. 
(2) The position e r r o r  at ear th  escape is negligible compared to heliocentric dimen- 

sions. 
With these assumptions, the effect of injection position and velocity e r r o r s  is simply to 
change the magnitude and direction of the hyperbolic velocity vector. Therefore, the 
midcourse correction velocity is equal to the e r r o r  in the hyperbolic velocity vector. 

injection. All reference orbit parameters  in this report  are calculated from the two- 
body equations tabulated in reference 3.  
tion (6) are illustrated in figure l. 

The first step in the analysis is to compute the reference trajectory parameters  a t  

Some of the orbit parameters  defined in equa- 

\ 
Outgoing i 
asymptote 

I 
I 
I 

/ // 

Trajectory 
Reference 
Disoersed ---- 

Figure 1. - Trajectory geometry for  Earth-centered phase of planetary mission. 
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Angular momentum: 

Similatus rectum: 

Energy: 

Eccentricity: 

I-1 

Perigee radius: 

Injection true anomaly: 

Asymptote true anomaly: 

r ]  a = cos-I(- 1\ 

Time from perigee: 

1 - e  e2 - 1 

+ &T tan - 
e sin r] 

1 + e cos r ]  

All symbols are defined in appendix A. 

scribed in references l and 2. Danby's method is briefly described in this report  in 
appendix B. 

The e r r o r  in the hyperbolic velocity vector is calculated by Danby's method as de- 
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For the planetary case, interest  lies in calculating the 67  at ear th  escape. 

ATc = 6Te = Ce16FI + De16TI 

where CeI = C(te, tI) and DeI = D(te, tI) are calculated from equation (B2) in appendix B. 

into the correction sensitivity matrix G: 
The form of equation (1) has been satisfied by equation (7) by combining C and D 

G = (CID) 

The A matrix is then given by 

T A = G  G 

By examining the equations in appendix B, it wi l l  be noted that the L and M ma- 
t r ices  go to infinity as time approaches infinity. However, the P and Q matr ices  re- 
main finite. Physically, this means that the position e r r o r s  increase without bound for  
any injection e r r o r s .  However, in keeping with the assumptions made earlier, the posi- 
tion errors are assumed negligible with respect to heliocentric dimensions and assumed 
to be zero for  this case.  
large so that earth escape occurs quickly and position e r r o r s  do not have t ime to build 
up appreciably. 

equations a r e  referenced to perigee. This is done as follows: 

This wi l l  be a good assumption if the hyperbolic velocity is 

It is necessary to compute the unit radial coordinate system a t  perigee since Danby's 

- -  
where r, v, and E a r e  determined at injection. 
expressed in this coordinate system. 

case is presented in appendix C. 

All state vector deviations must be 

The complete set of equations required to calculate the A matrix for  the planetary 
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Calculation of FOM Covariance Matrix - Lunar Mission 

The FOM for  the lunar case is the expected value of the midcourse ve&xi ty  required 
to correct  either mis s  plus time of flight to the moon o r  m i s s  only. This correction is 
usually made about 15 to 20 hours after injection, but can be  computed for  any desired 
correction time by using either the exact o r  analytical methods. 

in the planetary case and described in appendix B. The mis s  at the moon is calculated 
at the incoming asymptote at the lunar sphere of influence, relative to the reference 
geocentric conic trajectory. In this case, the following definitions are made: 

The Avc is calculated by using Danby's matr ices  - the Same technique that is used 

tc = time of midcourse correction 

tA = time of lunar arrival 

The uncorrected miss  at the moon is given by: 

where Amr = A(tm, tI) and BmI = B(tm, tI) a r e  calculated from equation (B2) in appen- 
dix B. 

- vA = arrival velocity at the moon 

- 
= moon's orbital velocity about the ear th  'm 

6tA = e r r o r  in a r r iva l  time 

The change in arrival position due to midcourse correction is: 

6Fm = BmC6vc - 

To correct miss  plus time, the time e r r o r  6tA must be zero.  Therefore, 
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where 

Therefor e, 

T A M T = G  G 

To correct mi s s  only, the arrival time tA may be optimized to give minimum Avc. 

where 

-1 - - 
V = -Bmc(TA - vm) 

The following is obtained by squaring equation (9): 

For optimum tA, 

Therefore, 

and 

The A matrix can be  constructed for  the mis s  only case by using equation (8): 
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where G refers to the mis s  plus time matrix; therefore, from equation (3), 

for the m i s s  only case.  

from the equations in appendix B .  The reference trajectory parameters  are the same as 
for  the planetary case (eq. (6)), except that t rue anomaly at lunar a r r iva l  is used in place 
of t rue anomaly at the outgoing asymptote. 

As in the planetary case, the elements of the A and B matr ices  a r e  calculated 

True anomaly at lunar arrival: 

The time from perigee equation is: 

Some of the trajectory parameters  a r e  illustrated in figure 2. For the lunar mission, 
vA and vm are calculated as follows: 
- - 

Unit vector to the moon: 

I, = COS 77 + sin 8 
A P  A P  

Velocity at  lunar arrival: 

- 
- e - *  h *  vA = - h X rp + x r A P 

10 



I 
--L 

I 
I 

. Lunar 
orbi t  

Trajectory 
Reference 
Dispersed 
Corrected 

- ---  

Figure 2. - Lunar  t ra jectory geometry. 

To calculate the lunar velocity, the following are assumed: 
(1) Lunar orbit is circular about the earth. 
(2) + is the inclination of the moon's orbit to the earth 's  equator 

A s  shown in appendix D, these assumptions result  in 

f 7 

1 2 
cos * (Im x ;) f 1 - ___ cos + [Im x Gm x .)I - .-=eL{- cos cp cos  cp f cos2cp 

where Q is the latitude of the moon at arrival: 

I 

The choice of sign in Vm depends on whether the moon is ascending o r  descending: 

+ sign indicates descending moon 

- sign indicates ascending moon 
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The complete set of equations required to calculate the A matrix is presented in appen- 
dix C. 

Calculation of Injection Errors 

In order to test the analytical equations for  FOM, it was necessary to generate an 
injection covariance matrix. This was done by choosing a typical guidance hardware 
e r r o r  model and integrating the linearized equations of motion. 

hardware e r r o r  model was chosen and is described in table I. Among the e r r o r s  con- 
sidered were accelerometer bias and scale factor,  gyro bias  and g-sensitive drift and 
platform misalinement. The e r ro r s ,  when applied to the nominal thrust acceleration 
profile, provide the forcing function 6% for  the linearized equations of motion. The 
platform is alined along the u, v, w inertial coordinate system which is established at 
liftoff. The u axis points in the pad azimuth direction. The w axis l ies  along the local 
plumbline and v completes the right-handed orthogonal set. 

tory in vector form are :  

Guidance hardware ~ e r r o r  model. - A typical platform inertial guidance system 

Linearized equations - of ~- motion. - The equations of motion for  the reference trajec- 
- 

where 
thrust acceleration. If the e r r o r  in sensed acceleration 6 8  is small, then the e r r o r  in 
total acceleration (i. e. , difference between measured and actual acceleration) may be ob- 
tained by linearizing equation (11). The result is: 

is the total acceleration, -,uF/r3 is the gravity acceleration, and Z is the 

The difference between the measured and actual state vectors, 65, is obtained by inte- 
grating equation (12). 

Injection e r ro r s .  - The injection state vector e r r o r  is defined by 

where the subscripts (act, ref, mes) re fer  to the (actual, reference, measured by the 
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e10 
e l l  
e12 

u Accelerometer 
v Accelerometer 
w Accelerometer 

e13 
e14 
e15 

u Gyro 
v Gyro 
w Gyro 

e16 
e17 
e18 

u Gyro 
v Gyro 
w Gyro 

e19 
e20 
e21 

u Gyro 
v Gyro 
w Gyro 

TABLE I. - DESCRIPTION OF HARDWARE ERROR MODEL 
____ ~~ 

Erro r  source E r r o r  Description E r r o r  E r r o r  source 
symbol value 

Er ro r  Description E r r o r  
symbol value 

Initial platform misalinement, e l  u Axis 0.054 Absolute accelerometer 
mrad e2 v h i s  .054 scale factor, percent 

e3 w Axis .090 

en=  accelerometer I 0 
La  

e26 v Accelerometer 
e27 w Accelerometer 

0 
0 

0.0094 
.0094 
.0094 

Accelerometer scale factor 
(quadratic term),  mg/g 2 

~~~ ~ 

e28 u Accelerometer 
e29 v Accelerometer 
e30 w Accelerometer 

0.050 
.050 
.055 

0.042 
,042 
.042 

Accelerometer input axis e4 v Relative to u 
misalinement, mrad e5 w Relative to u 

e6 w Relative to v 

Accelerometer preflight 
b i a s e r r o r ,  mg 

e7 u Accelerometer 
e8 v Accelerometer 
eg w- Accelerometer 

Accelerometer scale factor 
(cubic term),  mg/g 3 

u Accelerometer 
v Accelerometer 

w Accelerometer 

u Accelerometer 
v Accelerometer 
w Accelerometer 

0 
0 
0 

0.013 
.013 
,013 

e3 1 
e32 
e33 

e34 
e35 
e36 

Accelerometer scale factor 
(linear), percent 

Accelerometer cross-coupling 
(input-pendulous axes), mg/g 2 

0.051 
.051 
.051 

0.084 
.093 
.094 

0.173 
.190 
.177 

0.106 
. l o 1  
.114 

Gyro fixed torque drift, 
deg/hr 

u Accelerometer 
v Accelerometer 

w Accelerometer 

Accelerometer cross-coupling 
(input-output axes), mg/g 2 

0.012 
.012 
.012 

0.024 
.026 
.029 

0.009 
.009 
.009 

e37 

e39 
e38 

e 40 
e41 
e42 

e43 
e44 
e45 

Accelerometer inflight bias 
e r ro r ,  mg 

u Accelerometer 
v Accelerometer 

w Accelerometer 

Spin axis mass  unbalance 
drifts, deg/ (hr) (g) 

Input axis mass  unbalance 
drifts, deg/ (hr) (g) 

u Accelerometer 
v Accelerometer 

w Accelerometer 

Accelerometer bias e r r o r  
output axis loading (quadratic), 

mg/g2 

Anisoelastic drifts, 
deg/ (hr) (g2) 

Accelerometer cross-coupling 
(pendulous-output axes), 

mg/g2 

e 46 

e48 
e47 

u Accelerometer 
v Accelerometer 

w Accelerometer 

0.008 
.008 
.008 

0.009 
.009 
,009 



I '  

guidance system) trajectories.  If a guidance cutoff is used and perfect guidance software 
is assumed, then the midcourse correction requirement resul ts  solely from hardware 
e r ro r s ,  and 

AYC = G A s  = -G6S 

Therefore, the midcourse correction may be obtained by applying G to the 6s obtained 
by integration of equation (12). A guidance cutoff will normally be  used fo r  the lunar and 
planetary missions in order  to obtain the desired injection energy. 

Calculation of Injection Covariance Matrix 

The 6 X 6 matrix u is called the injection covariance matrix (ICM). The injection 
e r r o r s  result  from e r r o r s  in the guidance system accelerometers and gyros. Since the 
expected hardware e r r o r s  a r e  of a statistical nature, the elements of the ICM a r e  defined 
as the expected values of the products of the state variable deviations; that is: 

0.. = E(6Si6Sj) 
13 

i = l , .  . ., 6 
j = 1 , .  . ., 6 

The state variables Si a r e  the reference trajectory position and velocity components a t  
injection and the 6Si are the corresponding deviations in these state variables. 

For each guidance system e r r o r  source, the injection state deviation can be ex- 
pressed as: 

i = l ,  . . . ,  6 

where ek is the magnitude of the kth e r r o r  and Pik is the matrix of partial deriva- 
t ives i3Si/k3ek. The elements of the injection covariance matrix (for N guidance system 
e r r o r  sources) a r e  given by: 

N N  
u.. 1J = E(6Si6Sj) = PikPj2E(eke2) 

k=l  2 = 1  

If the various e r r o r  sources a r e  assumed to be independent, then the elements of the 
injection covariance matrix become: 
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N 

2 The total (FOM) is obtained by combining equations (5) and (14). 

N / 6  6 \ 

For any given e r r o r  model, the quantities in parentheses in equations (14) and (15) rep- 
resent the contribution of each e r r o r  source to the injection covariance matrix and to 
(FOM)2, respectively. Once these coefficients are calculated, the ICM and (FOM)' can 
be obtained for  any e r r o r  budget by performing the indicated summations in equations 
(14) and (15). The contribution of the individual e r r o r  sources can also be easily calcu- 
lated. 

6s for  each e r r o r  source. A FOM is then computed for each e r r o r  source. The total 
FOM is obtained by calculating the RSS of the individual FOM'S. 

In the computer program, the linearized equations of motion a r e  integrated to obtain 

RESULTS A N D  DISCUSSION 

In order  to determine the accuracy of the approximate analytical equations pre-  
sented, both analytical and exact (N Body) e r r o r  analysis resul ts  have been obtained and 
a r e  presented here for  comparison. For the N Body results,  targeted powered flight and 
f r ee  flight trajectories were obtained by using the procedures discussed ear l ier .  The 
lunar trajectories were targeted for  a vertical impact with a prespecified time of flight. 
The planetary cases  were also targeted to a prespecified flight time, but a close plane- 
t a ry  approach was used as the targeting cri teria.  After the targeted reference trajectory 
was obtained, the linearized equations of motion were integrated from powered flight in- 
jection to the target body and from the midcourse correction point to the target. The 
partial  derivatives obtained in this manner were then combined to give the exact FOM 
covariance matrix, as discussed earlier. 

from the targeted powered flight reference trajectory in the analytical equations pre- 
sented ear l ier .  It is important to note that injection conditions could have been obtained 
from many sources, such as references 4 and 5 .  As  stated ear l ier ,  it is not necessary 
to have targeted reference trajectories in order  to obtain analytical e r r o r  analysis re- 
sults. The targeted injection conditions are used here to insure an exact comparison 

The analytical FOM covariance matrix is obtained by using the injection conditions 
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between the analytical and N Body results.  
The position, velocity, and acceleration profiles from the reference trajectory are 

required as input to the e r r o r  analysis program. Several different configurations of the 
Atlas-Centaur launch vehicle were used to simulate the powered flight reference trajec- 
tories,  as shown in table II. These configurations do not necessarily represent existing 
or  planned launch vehicles or stages; however, the configurations used are realistic 
ones, and the resul ts  obtained can be  considered representative. 

TABLE II. - GENERAL DESCRTPTION OF TRAJECTORJES SIMULATED 

Cas1 Mission 

Aar s 

ba r s  

upiter 

Tenus 
dercury 

,unar 

.mar 

Ascent 
mode 

. .  ~ 

Direct 

Direct 

Direct 

Two-burn 
Two-burn 

Direct 

Two-burn 
-- ~ 

Launch 
date 

3/22/69 

2/13/66 

2/26/72 

8/13/70 
1/12/68 

6/3/66 

1/1/69 

Launch 
azimuth, 

deg 

__ - 
111 

120 

95 

90 
90 

93 

114 
~ 

Energy, 
h 2 / s e c 2  

~- 

14.45 

15.07 

114 

15.05 
45.36 

-1.20 

-1.22 

True  
anomaly 

deg 

-7.54 

16.67 

-2.41 

__-- -  
_ _ _ _ -  

. 0 3  

_---- 

Parking 
orbit 
coast 
time, 
s ec  

_ _ _ _  

_ _ _ _  

- _ _ _  

445 
1232 

---- 

1201 

Launch vehicle 

Atlas-Centaur - 
upper stage 

Atlas-Centaur - 
upper stage" 

Atlas-Centaur - 
Burner  II 

At la s -Centaur 
Atlas-Centaur 

a 

Atlas-Centaur - 
upper stagea 

Atlas-Centaur 
a .  High-energy cryogenic upper stage. 

For  the two-burn lunar, Venus and Mercury missions, an Atlas Centaur vehicle 
was simulated. The powered flight trajectory started with a boost into a 100-nautical 
mile parking orbit. The Atlas and Centaur were used to attain orbital altitude and 
velocity. The vehicle then coasted in orbit until the vehicle had "caught up" with the 
desired transfer conic. At this time, the Centaur stage was reignited and burned until 
the required final injection conditions had been achieved. 
during Atlas booster phase was essentially zero angle of attack in order to minimize 
aerodynamic heating and loads. Once the vehicle has exited from the sensible atmo- 
sphere, explicit guidance equations were used to s teer  the vehicle into parking orbit and 
later onto the desired t ransfer  trajectory. The guidance equations used are presented 
in reference 6. 

The direct ascent lunar, Mars ,  and Jupiter cases  used a three-stage version of the 
Atlas-Centaur launch vehicle. For the Jupiter case, the third stage was a Burner II, 

Steering of the launch vehicle 
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which is a small  solid stage. For the lunar and Mars  cases,  the third stage was an  as- 
sumed cryogenic upper stage. 

and e r r o r  values are required. The e r r o r  model and e r r o r  values used in all cases  are 
presented in table I. These e r r o r s  are used to calculate the e r r o r s  in sensed accelera- 
tion, which in turn, are used as driving functions in the integration of the linearized 
equations of motion. 

five planetary and two lunar. For the planetary cases,  the best  agreement is obtained 

Jupiter cases  are 4 and 6 percent, respectively; the two M a r s  cases  are in  e r r o r  by 
3.5 and 14 percent. The analytical and N Body resul ts  agree  within 2 .5  percent for  the 
lunar cases.  

The M a r s  N Body resul ts  were obtained for  midcourse correction t imes  of 2, 3, 5, 
and 10 days after injection, in order  to demonstrate that the required correction velocity 
does not change appreciably f o r  small  correction t imes compared to the total t r i p  time. 
These resul ts  a r e  shown in figure 3. 

In addition to the reference trajectory profiles, a guidance hardware e r r o r  model 

The resul ts  obtained are summarized in table III. Seven check cases  are presented, 

I f o r  the Mercury case, where the e r r o r  is 0 .2  percent. The e r r o r s  for the Venus and 

- _ _ _  

3.57 
3. 66 

Cas< 

1 
2 
3 
4 
5 

6 
7 

_ _ _ _  

3.66 
3. 57 

TABLE LU. - SUMMARY OF ERROR ANALYSIS RESULTS 

Mission 

M a r s  
M a r s  
J u p i t e r  
Venus 
Mercury  

Lunar 
Lunar 

Midcourse 
correct ion 

t i m e  

2.7 Days  
2.7 D a y s  
1.1 Days  
2.6 Days  
1.6 Days  

20 H r  
20 H r  

F igure  of m e r i t ,  m / s e c  

M i s s  p lus  t i m e  

Analytical  

3.90 
3.39 
8.07 
3. 78 
4. 81 

6.11 
6.03 

~ 

N Body 

3. 84 
2.97 
7.59 
3. 63 
4. 80 

6. 15 
5.90 

M i s s  only 

Analytical  I N Body 

4.4 

4.2 

4.0 

3.8 
m VI - 
E 

= 
L 

E 3.6 
L 
0 
G) 
L 

2 cn ._ 
IL 3.4 

3.2 

3.0 

Launch date 
0 March  22, 1969 
0 December 13, 1966 

- 0 Analytical 

2.8 
2 4 6 8 10 
Midcourse correct ion time, days after l aunch  

Figure 3. - Variation of required midcourse 
correct ion velocity w i th  correct ion t ime 
for direct ascent Earth-Mars trajectories. 
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TABLE IV. - COMPARISON OF ANALYTICAL AND N BODY RESULTS 

FOR VENUS T W E C T O R Y  - CASE 4 

[Figure of meri t ,  3.63 m/sec fo r  mis s  plus time of flight] 

Percent of 
figure of meri t  

squared 
(miss  plus time: 

(a) Analytical resul ts  

Error - 
Numbe 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

28 
29 
30 
34 
35 
36 

37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

Magnituc 

0.0540 
.0540 
.0900 
,0500 
.0500 
,0550 

,0420 
,0420 
,0420 
.0051 
,0051 
,0051 

.0840 
,0930 
,0940 
. 1730 
,1900 
.1770 

. 1060 
,1010 
.1140 
,0090 
,0090 
.0090 

,0094 
,0094 
,0094 
,0130 
,0130 
,0130 

,0120 
,0120 
.OlZO 
,0240 
.0260 
.0290 

.0090 
,0090 
too90 
,0080 
,0080 
,0080 

__ 

Figure of meri  
sensitivity 
coefficient 

(miss plus timc 

2.83 
12.06 
3.37 
6.50 
11.44 
2.64 

14.32 
4.21 
11.05 
241.34 
15.15 
102.10 

5.67 
20.02 
7.02 
4.93 
4.76 
4.14 

1.18 
19.72 
1.68 
2.27 
9.62 
1.68 

37.19 
.62 

21.81 
6.09 
.53 
2.67 

9. 15 
2.48 
11.27 
22.68 
6.10 
11.05 

2.29 
10.07 
14.39 
1.77 
1. 82 
3.44 

Figure of meril 
per  e r r o r  sourc 
(miss plus time: 

m/sec 

0.15 
.65 
.30 
.32 
.57 
.15 

.60 

.18 

.46 
1.23 
.08 
.52 

.48 
1. 86 
.66 
.85 
.90 
.73 

.12 
1.99 
.19 
.02 
.09 
.02 

.35 

.Ol 

.20 

.08 

.Ol 

.03 

.ll 

.03 

.14 

.54 

.16 

.32 

.02 

.09 

. 13 

.Ol 

.Ol 

.03 

0. 16 
2.97 
.64 
.74 
.29 
.15 

2.53 
.22 

1. 51 
10.61 
.04 
1.90 

1.59 
24.28 
3.05 
5.09 
5.72 
3.75 

. 11 
27.76 
.26 
. 00 
.05 
. 00 

.86 

. 00 

.29 

.04 

. 00 

.Ol 

.08 

.Ol 

.13 
2.07 
.18 
.72 

. 00 

.06 

.12 

. 00 

. 00 

.Ol 
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TABLE IV. - Concluded. COMPARISON O F  ANALYTICAL AND N BODY 

RESULTS FOR VENUS TRAJECTORY - CASE 4 

[Figure of merit ,  3.78 m/sec for mis s  plus t ime of flight] 

(b) N Body resul ts  

I 

Numbei 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

28 
29 
30 
34 
35 
36 

37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
41 
48 

'or 

Aagnitude 

0.0540 
,0540 
,0900 
,0500 
,0500 
.0550 

.0420 
,0420 
,0420 
,0051 
,0051 
,0051 

,0840 
.0930 
,0940 
. 1730 
.1900 
. 1770 

. 1060 

.lolo 

.1140 

.0090 
,0090 
.0090 

.0094 

.0094 
,0094 
,0130 
,0130 
.0130 

,0120 
,0120 
.0120 
.0240 
,0260 
,0290 

.0090 
,0090 
.0090 
,0080 
.0080 
,0080 

Figure of meri t  
sensitivity 
coefficient 

mi s s  plus time) 

3. 14 
11.67 
1.56 
6.00 
10.93 
2.52 

15.56 
3.77 
10.58 

251.84 
13.99 
105.54 

6.61 
19.43 
.33 

5.52 
4.55 
2.09 

1.32 
18.87 

.33 
2.53 
9.18 
.73 

38.91 
.58 

21.24 
6.56 
.73 

2.82 

9.58 
2.33 
11.81 
23.65 
5.62 
10.58 

2.40 
9.41 
13.65 
1.90 
2.75 
3.27 

Figure of meri t  
ier  e r r o r  source 
:miss plus time), 

m/sec 

0.17 
.63 
.14 
.30 
.55 
.14 

.65 

.16 

.44 
1.28 
.07 
.54 

.56 
1. 81 
.03 
.95 
.86 
.37 

.14 
1.91 
.04 
.02 
.08 
.Ol 

.37 

.Ol 

.20 

.09 

.Ol 

.04 

.12 

.03 

.14 

.57 

.15 

.31 

.02 

.08 

.12 

.02 

.02 

.03 

Percent of 
figure of meri t  

squared 
m i s s  plus time) 

0.22 
3.02 
.15 
.68 
2.27 
.15 

3. 25 
.19 
1.50 
12.54 
.04 

2.20 

2.34 
24.81 
.Ol 

6. 93 
5.68 
1.04 

.15 
27.61 
.Ol 
. 00 
.05 
. 00 

1.02 
. 00 
.30 
.06 
. 00 
.Ol 

.10 

.Ol 

.15 
2.45 
.16 
.72 

. 00 

.05 

.ll 

. 00 

. 00 

. 01 
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TABLE V. - COMPARISON OF ANALYTICAL AND N BODY RESULTS FOR LUNAR TRAJECTORY - CASE 6 

F i g u r e  of meri t ,  3.57 m/sec fo r  m i s s  only and 6.11 m/sec for  m i s s  plus t ime of flight] 

(a) Analytical resul ts  

Numb6 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

13  
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

28 
29 
30 
34 
35 
36 

37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

20 

aagnitud 

-. 

0.0540 
.0540 
.0900 
,0500 
,0500 
.0550 

.0420 

.0420 

.0420 
,0051 
,0051 
.0051 

.0840 

.0930 

.0940 
,1730 
.1900 
.1770 

. lo60  

. l o l o  

.1140 

.0090 

.0090 

.0090 

.0094 

.0094 
,0094 
,0130 
,0130 
,0130 

.0120 

.0120 

.0120 
.0240 
.0260 
,0290 

.0090 

.0090 

.0090 

.0080 

.0080 
f0080 

Figure of meri 
sensitivity 
coefficient 

(miss only) 

3. 88 
15.38 
1.05 
7.87 

12.97 
2 .81  

13.11 
3.11 

10.43 
318.79 
17.03 
43.59 

3.94 
17.17 

1.26 
4.22 
4.02 
1.33 

.92  
18.47 

.30  
1.93 
8.30 

.42 

50.64 
.62  

7.87 
3.94 

. 4 1  
1.45 

11.11 
2.80 
6.56 

27.26 
6.80 

10.43 

2 .45  
12.77 
18.52 

.87 
1. 87 
4.05 

Figure of merii 
)er  error sourc 

(miss only), 
m/sec 

0 .21  
. 8 3  
.09  
.39  
.65  
.15  

.55  

. 1 3  

.44  
1.63 
.09  
.22 

.33  
1.60 

.12  

.73  

.76  

.24  

.10 
1.87 
.03  
.02  
.07 
. 00 

.48  

. O l  

.07 

.05  

. 0 1  

.02 

.13  

.03  

. 08  
.65  
.18  
.30 

.02 

. 1 1  

. 17 

. O l  

. O l  

. 03  

Percent of 
Figure of m e r  

squared 
(miss only) 

0.34 
5.41 

.07 
1.21  
3. 30 

.19  

2.38 
. 1 3  

1 .51  
20.73 

.06 

. 39  

.86  
19.99 

. l l  
4.19 
4.58 

.44  

.07 
27.29 

. O l  

. 00 

.04 

. 00 

1.78 
. 00 
.04  
.02 
. 00 
. 00 

.14  

.01  

.05 
3.36 

.24  

.72 

. 00 

.10 

.22 

. 00 

. 00 

. 01 

Figure of mer i  
sensitivity 
coefficient 

mi s s  plus timt 

6.24 
28.58 

1 . 1 1  
14.92 
22.30 
4.84 

30. 37 
6.70 

17.68 
680.44 
32.30 
95.50 

5.36 
24.76 

1.29 
5.65 
5 .71  
1.38 

1.24 
26.17 

. 3 1  
2.77 

12.74 
.43  

108.47 
1.  15 

12.38 
9.40 

.51  
3.16 

23.80 
5.22 

14.30 
58.26 
12.78 
17.68 

5.24 
23.81 
30.57 
2.07 
2.30 
6.67 

Figure of merit  
?er  error sourci 
(miss  plus time) 

m/sec 

0.34 
1.54 
.10 
. 75  

1.12 
.27  

1.28 
.28  
.74  

3.47 
.16 
.49  

.45  
2.30 

. 1 2  

. 98  
1.09 
.24  

. 1 3  
2.64 

.04  

.02 

. 1 1  

. 00 

1.02 
. O l  
. 12  
.12  
.01 
. 04  

.29  

.06 

.17 
1.40 
.33  
.51  

.05  

. 2 1  

.28 

.02 

.02 

.05  

Percent of 
figure of merj  

squared 
(miss plus timc 

0.30 
6.38 

.03  
1.49 
3.33 

.19  

4.36 
. 2 1  

1.48 
32.28 

.07 

.64  

.54 
14.21 

.04  
2.56 
3.16 

.16  

.05  
18.72 

. 00 

. 00 

.04  

. 00 

2.79 
. 00 
.04  
.04  
. 00 
. 00 

.22 

. 0 1  

. 08  
5.24 

.30 

.70 

.01 

.12 

.20  

. 00 

. 00 

. O l  



TABLE V. - Concluded. COMPARISON OF ANALYTICAL AND N BODY RESULTS FOR LUNAR TRAJECTORY - CASE 6 

[Figure of meri t ,  3.66 m/sec for m i s s  only and 6.15 m/sec for m i s s  plus t ime of flight] 

(b) N Body resul ts  

Error 

Number 

1 
2 
3 
4 
5 
6 

7 
8 
9 
10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

28 
29 
30 
34 
35 
36 

37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

lagnitude 

0.0540 
.0540 
.0900 
.0500 
.0500 
.0550 

.0420 

.0420 

.0420 

.0051 

.0051 
,0051 

.0840 

.0930 
,0940 
.1730 
.1900 
.1770 

.lo60 

. IO10 

. 1140 

.0090 

.0090 
,0090 

,0094 
.0094 
.0094 
.0130 
,0130 
.0130 

.0120 

.0120 
,0120 
,0240 
,0260 
.0290 

.0090 

.0090 

.0090 

.0080 

.0080 

.0080 

'igure of mer i t  
sensitivity 
coefficient 
(miss  only) 

3.97 
15.91 
1.02 
8.21 
13.34 
2.89 

13.94 
3.28 
10. 71 
336.04 
17.76 
46.46 

3.96 
17.35 
1.23 
4.24 
4.06 
1.30 

.93 
18.64 
.30 
1.95 
8.43 
.41 

53.38 
.64 

8.01 
4. 15 
.41 
1.54 

11.71 
2.92 
6.99 
28.73 
7. 08 
10.71 

2.58 
13.29 
18.95 
.91 
1.87 
4. 14 

Figure of mer i t  
!er e r r o r  source 

(miss  only), 
m/sec 

0.21 
.86 
.09 
.41 
.67 
. 16 
.59 
.14 
.45 
1.71 
.09 
.24 

.33 
1. 61 
.12 
.73 
.77 
.23 

.10 
1.88 
.03 
.02 
.08 
. 00 

.50 

.Ol 

. 08  

.05 

.01 

.02 

. 14 

.04 

.08 

.69 

.18 

.31 

.02 

. 12 

. 17 

.Ol 

.Ol 

.03 

Percent  of 
figure of meri t  

squared 
(miss  only) 

0.34 
5.51 
.06 
1.26 
3.32 
.19 

2.56 
.14 
1.51 
21.90 
.06 
.42 

.83 
19.41 
.10 
4.01 
4.43 
.40 

.07 
26.42 
.01 
. 00 
.04 
. 00 

1.88 
. 00 
.04 
.02 
. 00 
. 00 

.15 

.01 

.05 
3.55 
.25 
.I2 

. 00 

.ll 

.22 

. 00 

. 00 

.Ol 

Figure of mer i t  
sensitivity 
coefficient 

m i s s  plus time) 

6.24 
28.80 
1.11 
15.19 

I 22.38 
4.85 

31.46 
6.92 
17.70 
696.05 
32.90 
98.77 

5.27 
24.46 
1.28 
5.55 
5.64 
1.37 

1.21 
25.81 
.31 

2.73 
12.65 
.43 

110.96 
1. 17 
12.30 
9. 60 
.50 

3.26 

24.34 
5.31 
14. 78 
59.60 
13.01 
17.70 

5.36 
24.22 
30.53 
2.11 
2.28 
6.66 

Figure of meri t  
ier e r r o r  source 
m i s s  plus time), 

m/sec 

0.34 
1.56 
.10 
.76 
1.12 
.27 

1.32 
.29 
.74 

3.55 
.17 
.50 

.44 
2.27 
.12 
.96 
1.07 
.24 

.13 
2.61 
.03 
.02 
.11 
. 00 

1. 04 
.Ol 
.12 
.12 
.01 
.04 

.29 

.06 

.18 
1.43 
.34 
.51 

.05 

.22 

.27 

.02 

.02 

.05 

Percent  of 
figure of meri t  

squared 
:miss plus time) 

0.30 
6.39 
.03 
1.53 
3.31 
.19 

4.61 
.22 
1.46 
33.30 
.07 
.67 

.52 
13.67 
.04 

2.44 
3.03 
.16 

.04 
17.96 

. 00 

. 00 

.03 

. 00 

2.87 
. 00 
.04 
.04 
. 00 
. 00 

.23 

.Ol 

.08 
5.41 
.30 
.70 

.01 

. 13 

.20 

. 00 

. 00 

.Ol 
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TABLE VI. - FIGURE O F  MERIT COVARIANCE MATRIX (MISS PLUS TIME) FOR VENUS TRAJECTORY - CASE 4 

(a) Analytical partials 

0 . 7 3 4 5 7 1 9 ~ 1 0 - ~  0. 5974771X10-6 -0. 1421085X10-12 0. 1587145x10-2 0. 8998715X10-2 -0. 7227641X10-10 
. 5974771X10-6 . 1997425X10-6 -. 2664535xP0-l4 . 3208562X10-3 . 6506040x10-3 -. 1 0 3 2 9 6 0 ~ 1 0 - ~  

-. 1421085X10-12 -. 2664535x10-l4 . 1997425X10-6 -. 1 0 4 6 4 2 7 ~ 1 0 - ~  -. 1594759X10-6 . 6 9 1 5 2 6 9 ~ 1 0 - ~  
. 1587145X10-2 . 3 2 0 8 5 6 2 ~ 1 0 - ~  -. 1 0 4 6 4 2 7 ~ 1 0 - ~  .5862252 1.8413685 -. 1 1 1 7 5 8 7 ~ 1 0 - ~  
. 8998715x1Om2 . 6506040x10-3 -. 1594759X10-6 1.8413685 11.067776 -. 2384186X10-6 

-. 7227641X10-10 -. 1032960x10-9 . 6 9 1 5 2 6 9 ~ 1 0 - ~  -. 1 1 1 7 5 8 7 ~ 1 0 - ~  -. 2384186X10-6 . 2394136x10-1 

(b) N Body partials 

0 . 7 4 5 6 7 1 3 ~ 1 0 - ~  0 . 6 6 5 1 1 5 0 ~ 1 0 - ~  - 0 . 6 6 7 5 1 2 8 ~ 1 0 - ~  0. 1764756X10-2 0 . 9 0 7 4 9 4 9 ~ 1 0 - ~  0 . 3 0 2 3 5 0 7 ~ 1 0 - ~  
. 6651150X10-6 . 2207393x10-6 -. 1500603x10-7 . 3 6 1 7 4 1 3 ~ 1 0 - ~  . 7 2 0 9 4 6 0 ~ 1 0 - ~  . 8 0 6 5 6 5 9 ~ 1 0 - ~  

-. 6 6 7 5 1 2 8 ~ 1 0 - ~  -. 1500603x10-7 . 2069464X10-6 -. 2 7 1 2 8 7 9 ~ 1 0 - ~  -. 7 6 6 3 9 0 4 ~ 1 0 - ~  -. 1109500x10-3 
. 1764756X10-2 . 3 6 1 7 4 1 3 ~ 1 0 - ~  -. 2 7 1 2 8 7 9 ~ 1 0 - ~  .6763185 2.0356938 . 1499715X10-1 
. 9074949X10-2 . 7209460X10-3 -. 7663904x10-4 2.0356938 11.092905 . 4544180X10-1 
. 3 9 2 3 5 0 7 ~ 1 0 - ~  . 8 0 6 5 6 5 9 ~ 1 0 - ~  -. 1 1 0 9 5 0 0 ~ 1 0 - ~  . 1499715X10-1 . 4544180X10-1 . 5948564x10-1 

I 



TABLE VII. - FIGURE OF MERIT COVARIANCE MAT= FOR LUNAR TRAJECTORY - CASE 6 

(a) Analytical partials; miss  plus time 

0 . 4 6 7 4 6 5 2 ~ 1 0 - ~  0 . 1 2 7 0 3 0 8 ~ 1 0 - ~  - 0 . 6 8 2 1 2 1 0 ~ 1 0 - ~ ~  0. 1515782x10-2 0 . 5 5 3 1 1 6 7 ~ 1 0 - ~  -0 .1564331~10-~  

-. 6821210X10-12 -. 7 1 0 5 4 2 7 ~ 1 0 - ~ ~  . 1543766X10-6 -. 3613799X10m8 -. 5540254X10-6 -. 1 6 0 2 2 4 1 ~ 1 0 - ~  
. 1 2 7 0 3 0 8 ~ 1 0 - ~  . 1648680X10-6 -. 7 1 0 5 4 2 7 ~ 1 0 - ~ ~  . 1958213X10-3 . 1488603X10-2 -. 4684253x10-l1 

. 1515782X10-2 . 1 9 5 8 2 1 3 ~ 1 0 - ~  -. 3613799X10-8 .2325870 1.7761296 -. 4656613X10-8 

. 5531167X10-1 . 1488603X10-2 -. 5540254X10-6 1.7761296 65.448912 -. 9536743X10-6 
-. 1 5 6 4 3 3 1 ~ 1 0 - ~  -. 4684253x10-l1 -. 1 6 0 2 2 4 1 ~ 1 0 - ~  -. 4656613X10-8 -. 9536743X10-6 . 1662929X10-2 

(b) Analytical partials; miss  only 

0 . 1 1 3 1 2 7 7 ~ 1 0 - ~  - 0 . 2 1 0 9 8 2 5 ~ 1 0 - ~  0 . 1 0 0 2 7 5 0 ~ 1 0 - ~  - 0 . 2 4 8 1 5 0 4 ~ 1 0 - ~  0 . 1 3 4 4 4 0 1 ~ 1 0 - ~  -0 .1040733~10-~  

.2  10982 5X10-6 . 1029433x10-6 , 4 1 9 1 9 5 1 ~ 1 0 - ~  . 1220812X10-3 -. 2 6 2 0 7 3 5 ~ 1 0 - ~  -. 4350733X10-5 

. 1002750X10-5 . 4 1 9 1 9 5 1 ~ 1 0 - ~  . 1259994X10-6 . 4 9 9 1 5 4 9 ~ 1 0 - ~  . 1184639X10-2 -. 1 3 0 7 7 2 1 ~ 1 0 - ~  
.1447765 -. 3081134 -. 5180882X10-2 

-. 1 0 4 0 7 3 3 ~ 1 0 - ~  -. 4 3 5 0 7 3 3 ~ 1 0 - ~  -. 1307721X10-4 -. 5180882X10-2 -. 1229724 . 1357254X10-2 

-. 2 4 8 1 5 0 4 ~ 1 0 - ~  . 1220812X10-3 . 4 9 9 1 5 4 9 ~ 1 0 - ~  
. 1344401x10-1 -. 2 6 2 0 7 3 5 ~ 1 0 - ~  . 1184639x10-2 -. 3081134 15.977962 -. 1229724 

(c) N Body partials; miss  plus time 
- ~~ 

0 . 4 8 6 9 0 8 6 ~ 1 0 - ~  0 . 1 1 8 1 6 5 6 ~ 1 0 - ~  - 0 . 1 4 9 5 9 2 9 ~ 1 0 - ~  0 . 1 7 9 1 5 3 1 ~ 1 0 - ~  0. 5762047X10-1 0 . 1 0 3 7 8 8 8 ~ 1 0 - ~  
. 1 1 8 1 6 5 6 ~ 1 0 - ~  . 1584029x10-6 -. 5109898X10-8 . 1 9 7 3 6 0 9 ~ 1 0 - ~  . 1382835X10-2 . 2036971X10-6 

-. 1495929X10-6 -. 5109898X10-8 . 1550908X10-6 -. 7 2 6 9 7 8 3 ~ 1 0 ~ ~  -. 1 7 7 0 7 9 9 ~ 1 0 - ~  -. 1587410X10-4 
. 1791531x10-2 . 1 9 7 3 6 0 9 ~ 1 0 - ~  -. 7 2 6 9 7 8 3 ~ 1 0 ~ ~  .2484564 2. 1016650 . 3 2 5 8 1 6 9 ~ 1 0 - ~  

. 1231161X10-1 . 5762047X10-1 . 1382835X1Om2 -. 1770799x10-3 2.1016650 68.189584 
. 1037888x10-4 . 2036971X10-6 -. 1587410X10-4 . 3 2 5 8 1 6 9 ~ 1 0 - ~  . 1231161X10-1 . 1625580X10-2 

(d) N Body partials; m i s s  only 

0 . 1 2 4 7 7 8 2 ~ 1 0 - ~  - 0 . 2 5 2 7 2 3 2 ~ 1 0 - ~  0. 1000962x10-5 - 0 . 1 9 9 9 5 6 2 ~ 1 0 - ~  0 . 1 4 8 3 1 1 5 ~ 1 0 - ~  -0 .1029777~10-~  

-. 2527232X10-6 . 1015879X10-6 . 4 0 4 6 2 9 9 ~ 1 0 - ~  . 1184792X10-3 -. 3 1 2 0 2 7 4 ~ 1 0 - ~  -. 4286299X10-5 

. 1000962x10-5 . 4 0 4 6 2 9 9 ~ 1 0 - ~  . 1185355X10-6 . 5 6 0 0 3 4 3 ~ 1 0 - ~  . 1182416X10-2 -. 1227255x10-4 

-. 1 9 9 9 5 6 2 ~ 1 0 - ~  . 1 1 8 4 7 9 2 ~ 1 0 - ~  . 5 6 0 0 3 4 3 ~ 1 0 - ~  ,1389373 -. 2514756 -. 5908076X10-2 

-. 1 0 2 9 7 7 7 ~ 1 0 - ~  -. 4 2 8 6 2 9 9 ~ 1 0 ~ ~  - .  1 2 2 7 2 5 5 ~ 1 0 ~ ~  -. 5908076X10-2 -. 1216305 . 1270743X10-2 
. 1483115X10-1 -. 3 1 2 0 2 7 4 ~ 1 0 - ~  . 1182416X10-2 -. 2514756 17.629724 -. 1216305 



The FOM results presented in table III a r e  obtained by statistically combining the 
effects of the guidance e r r o r  sources presented in table I. The contribution of each e r r o r  
source to the total FOM is presented for  Venus and lunar missions (cases 4 and 6) in 
tables IV and V. In addition to  the FOM per  e r r o r  source, the FOM sensitivity coeffi- 
cient (FOM per unit e r r o r  source) and percent of FOM squared are also presented for  
each e r r o r  source. These quantities allow the FOM to be  quickly recalculated fo r  differ- 
ent e r r o r  values. The analytical and N Body FOM covariance matrices are also pre-  
sented for  the same two cases  in tables VI and VII. 

Sample Problem 

Suppose it is desired to determine the trajectory resulting in the largest FOM for a 
particular planetary launch opportunity. Such a problem a r i s e s  in preliminary design 
studies, where it is necessary to size the midcourse propulsion system. If the analytical 
equations described in this report  a r e  used, the possible trajectories fo r  the opportunity 
may be  described in t e rms  of the powered flight trajectory variables. 
mission, these variables are launch azimuth, energy, and parking orbit coast time. F o r  
a direct  ascent mission, injection t rue anomaly replaces coast time as a variable. The 
largest FOM can then be determined by searching all possible values of the powered 
flight variables, the range of which may be found in the literature; for  example, refer-  
ences 4 and 5. 

Figure of merit  is plotted against injection energy for  different values of parking orbit 
coast time. The launch azimuth is constant on figure 4; therefore, other figures must 
be generated for  different launch azimuths. 
largest FOM may be easily determined from the figures. 

For a two-burn 

The use of this technique is illustrated on figure 4 for  a two-burn M a r s  mission. 

These figures a r e  not presented here. The 

r Parking orbi t  
coast t ime, 

m i n  

u 
W VI - 
E 

c 
L 

E - 
0 
W 
L 

3 m 
L L  
.- I - - T --- - - - _  

I I 1 1 -  I 1 
8 10 12 14 . 16- 18 20 

3L 

Inject ion energy, kmZ/secZ 

Figure 4. - Var iat ion of f igure of meri t  w i th  energy and coast t ime. 
Launch azimuth,  constant; two-burn Mars  mission. 
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After the values of the powered flight variables resulting in the largest FOM have 
been determined, an N Body trajectory corresponding to this case can be generated, if 
a more accurate estimate of FOM is desired. Even if the analytical FOM is in e r r o r  by 
a few percent, the t rends resulting in the choice of the worst case powered flight vari-  
ables can be assumed to be  correct .  

CONCLUSIONS 

Analytical equations have been developed for  computing partial derivatives relating 
midcourse correction velocity requirements to injection e r r o r s  for  planetary and lunar 
missions. 
The equations are easily programmed on a digital computer and require very little com- 
puter time. In addition, no free flight reference trajectories are required. Thus, e r r o r  
analysis resul ts  can be obtained without f i r s t  having to calculate detailed targeted trajec- 
tories,  a process which requires a powered flight-free flight (N Body) targeting program. 

missions. These resul ts  show good agreement between the analytical and N Body results.  
For the planetary cases,  the best agreement is obtained for  the Mercury case where the 
e r r o r  is 0.2 percent. The e r r o r s  for  the other planetary cases  vary between 2 and 
14 percent. 

Because of the accuracy of the results presented and the ease with which these re- 
sults may be obtained, the analytical equations provide a useful preliminary design tool 
for  estimating space mission FOM. The analytical technique can also be  readily ex- 
tended to apply to other mission types. 

These partial derivatives are used to calculate the guidance system FOM. 

Analytical and N Body resul ts  have been generated for  two lunar and five planetary 

For  the lunar cases,  the resul ts  agree within 2.5 percent. 

I 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 12, 1968, 
125- 17 -05-01 -22. 
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APPENDIX A 

SYMBOLS 

- a 

C 

E 

E[ 1 
e 

ek 

Gik 

h 

P, Q 

'ik 

S 

S 

t 

u, v 
- -  

- 
V 

Danby's matr ices  

thrust acceleration vector, 
2 

cos 77 (appendix B) 

energy, m /sec 

expected value operator 

m/sec 

2 2  

eccentricity 

k guidance hardware e r r o r  th 

source 

matrix of partial  derivatives, 
avi/ask 

2 angular momentum, m /sec 

Danby's matr ices  

matrix of partial  derivatives, 
asi/ aek 

semilatus rectum, m 

radius, m 

unit radial, tangential, normal 
coordinate system 

state variable 

sin 17 (appendix B) 

time 

vectors defined in equations (8) 
and (10) 

velocity, m/sec 

magnitude of midcourse correc-  
AvC 

tion velocity, m/sec 

A i c  midcourse correction velocity, 
m/sec 

A 

Z unit vector pointing at North 
Pole 

cy, 0, p 

Y flight path angle, rad 

A( 1 e r r o r  quantity 

6 (  1 linearized e r r o r  quantity 

17 t rue anomaly, rad 

A FOM covariance matrix 

P central  body gravitational con- 

coefficients used in appendix C 

3 2  stant, m /sec 

(sec1-l 
V variable defined in appendix B, 

(T injection covariance matrix 

cp latitude of moon a t  a r r iva l  with 
respect to ear th 's  equator, 
rad  

11/ inclination of lunar orbit to 
earth 's  equator, rad 

Subscripts: 

A ar r iva l  

a asymptote 

act actual 

C midcourse correction 

e ear th  escape 
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h normal 

I injection 

M miss  only 

MT miss  plus time 

m moon 

m e s  

nom nominal 

P perigee 

measured by the guidance system 

r radial  

t tangential 

Superscripts : 

T matrix transpose 
- vector 
4 unit vector 

General: 

vector dot product 

X vector cross product 

L 
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APPENDIX B 

DANBY'S METHOD AND MATRICES 

Errors  in position and velocity at any t ime t on a coast ellipse are related to e r r o r s  
at periapse by the following matrix: 

where L, M, P, and Q are 3 x 3 matrices,  the elements of which are presented later 
in this appendix as functions of e, r 
(neither at periapse), the following relation is applied: 

r, q, p, and (t - t ). To relate t imes t l  and t2 P' P 

where A, B, C, and D a r e  3 X 3 matrices and are of the form: 

The elements of the L, M, P, and Q matrices a r e  given by: 

s(t  - t ) 3 v  
P p2 + c(2 - e) - 21 + 

r (1  - e) L1l = 
(1 - e) (1 + e)  1/2 P 

28 
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s(1 - c) 
L12 = r (1 + e)  

P 

(c + e)  (t - t ) P 
3v S ( C 4 - 2 ) -  

rp(l - e)  (1 - e) (1 + e) 1/2 
L21 = 

L33 =: c 
P 

s(-c + 2 + e)  r 
3/2 vr (1 + e)  

M1l = 

P 

r 3 2(c - 1) (c + 2)  + - s( t  - t ) 
l - e  P 1/2 v r  (1 - e) ( e +  1) 

M12 = 

P 

(1 - c)2 r 

3/2 v r  (1 + e)  
M21  = 

P 

r ( c + e ) ( t - t )  2s(c + 1 + e) - ___ 
1/2 l - e  P M22 = 

v r  (1 - e) (1 + e)  
P 

S 
r 

1/2 vr (e + 1) 
M33 = 

P 

2 2  3 v  r 

r (1 - e)  
s(-ec2 - 2c + 1 - e)  + 

pll = 2 P 
p c(t - t ) V 

(1 - e) (e + 111/2 

(-ec3 - 2c2 + c + 1 + e) V 
p12 = 

(1 + e l3 l2  
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V 

1/2 (1 - e) (e + 1) 
p21 = 

2 2  
P 

3v r 3 (ec + 2c2 - ' c  - 1 - e) + 
2 r (1 - e )  

s(-ec2 - 2c + 1) V 
p22 = 

(1 + e)3/2 

S 
- V  

p33 = 
(1 + 

Q11= [-ec3 - 2c2 + 2c + ec + (1 + el2] 
(1 + e)2 

2 3 vr 
1 s(-2ec2 - 4c + 1 - e) + P (1 + c(t - tP) 

r 2 (1 - e)  Q12 = 
(1  - e)2 

Q 2 1 =  s(1 - c) (ec + 2 + e> 
(1 + el2 

2 3 vr 

r (1 - e) 

P (1 + e)1/2s(t - t "1. 2 P 
3 F e c  + 4c2 - c ( l +  e) -2 - e - e Q22 = 

(1 - e2) 

Q33 =l+e (c + e> 

where 

s = sin 

c = cos V 
, 

All matrix elements not listed a r e  equal to zero. 
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APPENDIX C 

ANALYTICAL EQUATIONS FOR CALCULATION OF FOM COVARIANCE MATRIX 

Planetary case: 
Calculate reference trajectory variables 

2 r  .- 

q a = cos- l  (2) 

i t - t  = o  a P  
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I '  

Calculate radial coordinate system at perigee. 

* v x h  r 
P ep -er 
r = - - -  

h =  

6 = f i  x; 
P P P  

Calculate Danby's matrices CaI and DaI using equation (B3) in appendix B. 

T A = G  G 

The injection e r r o r  vector must be expressed in the perigee coordinate system 

Lunar case: 

tions for  qa, (tI - tp), and (ta - t ) a r e  replaced by 
Calculate reference trajectory variables using equations (C 1) except that the equa- 

P 

-w qIA = cos 
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tA - t same as equation (C5) but with qA instead of qI 

same as equation (C5) but with qc instead of qI 

P 

tc - tp 

pmp, and &mp' 

Iterate on qc to satisfy tc - tI equals the desired midcourse correction time. 
Calculate Danby's matr ices  LIP, MIp, PIP, QIp, Lcp, Mcp,. Pep, Qcp, L mpp Mmp, 

Calculate radial coordinate system at perigee using equations (C2). Calculate posi- 
tion and velocity at lunar arrival. 

Calculate lunar velocity vector 

r 1 

where 

c o s c p =  7 1 -sin cp 

Express FA - Tm) in radial-perigee coordinate system. 
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Calculate Danby's matr ices  AmI, BmI, and Bmc using equations (B3) in appendix B. 

Miss plus time correction: 

nMT = G ~ G  

Miss  only correction: 

T--T 

-T- v v  
A =ANIT - G V V  G M 

The injection e r r o r  vector is expressed in the perigee-radial coordinate system, as in 
equation (C 3). 
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APPENDIX D 

CALCULATION OF UNIT LUNAR VELOCITY VECTOR, ?,,, 

Let jm be expressed as 

Three equations are available f o r  determining a!, p, and p based on the assumption that 
the moon's orbit about the ear th  is circular with an  inclination @ to the earth 's  equator. 

A 

v m .  vm = 1 

Gm - lm = 0 

(;mx;r ) G = - G  m .  (lm x 2) = cos  @ m 

Combining equations (Dl) and (D2) resul ts  in 

since the three vectors used in defining Gm are mutually orthogonal. But 

where cp is the latitude of the moon relative to the earth.  Also, 

pm x ( G m X i j y  = (lm x 2) - 2  = cos 2 cp 

Therefore, equation (D5) becomes 

2 2 2 2  
a! + (p  + p )cos cp = 1 

From equations (Dl) and (D3) it follows that 

G m .  Gm - - (Fm.  Im)a! = 0 

which implies that 
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a = O  

From equations (Dl) and (D4) 

A A2 vm - (Gm x i) = p(Fm x z) = -cos II/ 

or  

p=- -cos rc/ 
2 cos cp 

where equation (D6) has been used. Combining equations (D7) and (D9) results in 

2 

2 
cos II/ 

cos cp cos cp 
p=L i1 -- 

I 

Substituting equations (D8) to (D10) into equation (Dl) resul ts  in 

r I 1 

The ambiguity in sign in equation (D11) indicates that there  exist two possible velocity 
vectors satisfying equations (D2) to (D4). 
o r  setting moon. 

These two possibilities correspond to a rising 
Taking the dot product of equation (D11) with 2 resul ts  in 

Therefore, the sign choices in equation (D11) correspond to 

+ sign indicatss descending moon 

- sign indicates ascending moon 
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