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FOREWORD

The intent of this Shell Analysis Manual is to provide specific
instructions, procedures, basic solutions, and recommendations to
facilitate the expedient static structural analysis of shell-type space-
craft structures, and to provide an introduction to and reference for
the practical static structural analysis of shells.

This document was prepared by the Structures and Dynamics
Department of North American Aviation, Inc., Space and Information
Systems Division, Downey, California, under Contract NAS9-4387 for
the National Aeronautics and Space Administration, Manned Spacecraft
Center, Houston, Texas. Mr. Herbert C. Kavanaugh, Jr., was the NASA
Technical Representative for the program. Mr. F. L. Rish of the NAA
Space and Information Systems Division was the Program Manager.
The program was performed between May 1965 and June 1966.

Generally, the information contained in this document is a con-
densation of material published by U.S. Government agencies,
universities, scientific and technical journals, text hooks, aerospace

industries, including North American Aviation, Inc., and foreign

iii



publications. Particular credit is given to the following publishers
who granted NAA permission to use their publications:

American Concrete Institute

American Institute of Aeronautics and Astronautics

American Society of Civil Engineers

Leibniz-Verlag, West Germany

Springer-Verlag, West Germany

This manual was authored by Drs. E.H. Baker, A. P, Cappelli,
L. Kovalevsky, and R.M. Verette under the direction of F. L. Rish,
The authors are indebted to Messrs. R. M. Bereznak, R. W, Johnson,
A.H. McHugh, K.E. Pauley, D. Salinas, and A.E. Zagorski for

technical assistance.

NOTE

Comments and suggestions for revisions and editions to this Mamual
will be appreciated and should be sent to: Chief, Structures and
Mechanics Division, Code ES, NASA Manned Spacecraft Center, Houston,

Texas T7058.
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ABSTRACT

This Shell Analysis Manual provides specific instructions, pro-
cedures, basic solutions, and recommendations to facilitate the
expedient static structural analysis of shell-type spacecraft structures.
It also provides an introduction to and reference for the practical static
structural analysis of shells.

The manual comprises the following chapters:

1. 00 Introduction to Shell Theory

2.00 Procedures for Static Analysis of Shell Structures

3.00 Procedures for Stability Analysis of Shell Structures

4,00 Minimum Weight Shell Design

5,00 Optimum Use of Computer Programs

Chapter 1.00 presents a derivation of general shell theory
from concepts of the linear theory of elasticity and includes the basic
relationships of shell geometry, geometry of strain, stress-strain, and
equilibrium. The various shell theories are classified according to
the simplifications made to a higher-order theory. Approximate
theories and simplifications that have made the solution to these
theories possible are delineated. A presentation of nonlinear shell

theory to be used for large deflection analysis of shells is included. This



development is based on variational principles and the concept of
stationary potential energy. Structural stability shell theory is
discussed. The shell stability equations are presented and techniques
for determining buckling loads using variational procedures are outlined,
A discussion of the discrepancies between the thecretical and experi-
mental results is included.

In Chapter 2.00, instructions, procedures, basic solutions, and
recommendations are presented to determine static deflections and
internal load and stress distributions in shells under various loading
conditions. This chapter also includes membrane solutions for various
loading conditicns, unit edge loading solutions, and combined solutions
for various shell geometries and constructions, loadings, and boundary
conditions. Factor of safety concepts, failure criteria, and margin of
safety calculation under uniaxial and biaxial loading conditions are also
presented.

Methods of analysis for the static instability (buckling) of shell
structures are presented in Chapter 3.00. This chapter presents
methods for obtaining the design allowable buckling loads for unstiffened
cylinders, cones, spherical caps, and curved panels under various
loading conditions. Also included are procedures for the stability analysis
of orthotropic shells, stiffened cylinders, and sandwich shells. Analyses

for inelastic buckling and combined loading conditions are also presented.
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Chapter 4.00 presents methods of analysis to be
used in preliminary design to determine the lightest shell wall for
various constructions subjected to specific loading conditions. A
survey of pertinent literature is also included in this chapter.

An introduction to the fundamentals of computer utilization is
presented in Chapter 5.00. The basic computer characteristics are
described. An introduction to matrix algebra is included in this
chapter, in addition to a description of the techniques used in solving
shell problems and discussions of the use of computers in conjunction

with these techniques.
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(Section 3. 50)
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orthotropic shell (Paragraph 3.32, 1)
Overall depth of waffle
Height of shallow spherical cap

Distance between the centroids of the facing
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Effective moment of inertia
Moment of inertia of frame
Polar moment of inertia of stringer
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Designation of the edge of the cone or lower edge
of the spherical segment; part number, layer

number
Torsion constant for stringer cross section
Buckling coefficient
Buckling coefficient for intracell buckling
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of the spherical segment; spring constant for

Va-pd)
\/tx cot a°

m

torsional instability;

4\’3(1-uz)
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ik

Mt

Negative of slope of C_ versus V_ curve

Spring constant for torsional instability of stringer

Waffle constants (Paragraph 3,32, 4)

Length of cylinder; slant height of cone

Distance between bulkheads along the meridian

Effective length of column

Equivalent length (cones)

Height of cone

Body bending moment

Bending moment at edge i
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Bending moment per unit length acting at section
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Mxe

X

Bending moment per unit length acting at section

¢ = constant for sphere

Twisting moment per unit length acting at section

x = constant for cone and cylinder

Twisting moment per unit length acting at section

6 = constant for cone and cylinder

Twisting moment per unit length acting at section

8= constant for sphere

Twisting moment per unit length acting at section
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Bending moment per unit length acting in

meridional coordinate direction

Bending moment per unit length acting in circum-

ferential coordinate direction
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Nxe

X

Number of layers or parts

Longitudinal inplane force per unit length acting

at section x = constant for cone and cylinder

Circumferential inplane force per unit length

acting at section 8 = constant

Meridional inplane force per unit length acting

at section ¢ = constant for sphere

Shear per unit length acting at section x = constant

for cylinder and cone

Shear per unit length acting at section 6 = constant

for cylinder and cone

Shear per unit length acting at section 6= constant

for sphere

Shear per unit length at section ¢ = constant for

sphere

Inplane force per unit length acting in meridional

coordinate direction (Fig. 1.12-14)
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cr

an Pg

Inplane force per unit length acting in circum-

ferential coordinate direction (Fig. 1.12-14)

Shear per unit length acting perpendicular to §1
coordinate in a direction of §2 (le = NZI)

(Fig. 1.12-14)
Number of buckles

Total axial compressive load for a cylinder, cone,

or sheet stringer panel
Loading component in meridional direction
Loading component in circumferential direction
Design-allowable external buckling pressure
Pressure parameters (Paragraph 3.43.1)

Transverse shear per unit length acting on coordi-
nate line parallel to §, acting in Z direction

(Fig. 1.12-14)

Transverse shear per unit length acting on coordi-
nate line parallel to El acting in Z direction

(Fig. 1.12-14)
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i

Dimensionless parameter for buckling analysis
of frame and stringer stiffened cylinders

subjected to bending

Horizontal load atedge i sphere, cone, and cylinder

Horizontal load atedge k sphere, cone, and cylinder

Transverse shear at section x = constant for cone

and cylinder

Transverse shear at section 6 = constant for cone,

sphere, and cylinder,

Transverse shear at section ¢ = constant for sphere

Loading component in the normal direction to the

surface

Radius of cylinder measured from the axis of
rotation to the centroidal surface of the
cylinder wall; radius of sphere measured
from the center of the sphere to the middle

surface of sphere wall
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Radii of curvature (i = 1, 2 for §1 and 52.

respectively; i = 0 means initial value)
Radii for cones (Fig. 3. 34-1)
Stress ratios
Equivalent radius

Radius of circumferential circle; coordinate
in polar coordinates; local radius of

curvature of stringer.
Base radius of spherical cap
Local radius for waffle type construction
Ratio of principal stresses (Section 3. 52)

Factors for the degree of fixity on boundaries

of cylindrical or spherical shell.
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, respectively
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(Dx Be)/(D6 Bx)' D Dx /Dg ., G Bx /BB

respectively
Arc length
Torque
Shell thickness
Sheet thickness for stiffened cylinders
Web thickness of stiffener

Stiffener width for integrally stiffened waffle

construction
Facing sheet thickness for sandwich construction

An admissible variation of displacements from

the equilibrium configuration

Displacements corresponding to equilibrium

configurations

Potential energy (internal strain energy)

Xxxvi



U, Uy Uy,
Uz: Us

u

v

V., V.,V

Wy, W

=l

Orthotropic cylinder parameters

(Paragraph 3.33, 1)

Displacement in direction of x; displacement in

direction of meridional coordinate

= U - W = total potential energy

Sandwich cylinder shear stiffness parameters

(Section 3. 53)

Displacement in direction of circumferential

coordinate

Weight of sandwich bond and core, respectively

Potential energy (external work due to applied

loads)

Weight of sandwich

Displacement in direction of normal coordinate

(perpendicular to u and v displacements)

Effective sheet width

Assumed initial imperfection displacement

function

xxxvii



X
X
xor§=l_‘ii
X

x)

x2

Loading component in meridional direction

Coordinate along the length of the cylinder;
coordinate measured along the generator of

a cone surface

For the upper portion of cylinder from discontinuity

Coordinate along the cone-meridian, measured
from the upper bulkhead k for segment of

the cone

For the lower portion of cylinder from

discontinuity

Distance between the apex and a point on the cone-
meridian that corresponds to half of the
distance between the upper and lower

bulkheads

Coordinate that locates the upper edge of the cone

with respect to the apex, along the meridian

Coordinate that locates the lower edge of the cone

with respect to the apex, along the meridian

xxxviii



Loading component in tangent-direction to the

circumference (psi)

Coordinate of any circumferential surface with

respect to the apex

, L, |1/2 2 1/2
[Be (1- Px"‘e)} L/[R (12D,) ]. for

unstiffened isotropic shell Z = Lz (1- pz)/(Rt)

or loading component in the normal direction

to the surface

Orthotropic cylinder parameter (Paragraphs 3.33.4

and 3.33,2, respectively)

Coordinate in direction of surface normal

Cone angle (Fig. 3.34-1); reduced Lamé
Ay
parameter 1+ Z/Ri

Angle between the radius on the circumferential

surface and the meridian of the cone

Rotation meridional angle; rotation angle of

tangents on meridional line

XXXix



Pri

pln pZ
B, B

r

Y. Y. Y,

Yi2r Y130 Y23

[ o 0
Yie Y2r Y2

Ar

Forced rotation of tangent on meridian at edge i

for sphere and cone

Forced rotation of tangent on meridian at edge k

for sphere and cone

Rotation of middle surface in §l and §2 directions,

respectively (Eq. 1.13-24)

Rotation of middle surface for equilibrium and
admissible variation, from equilibrium

position respectively
Torsional bending constant

Correction factors for stability analysis; shape

parameter

Linear shear strains (Y13 = le and Y23 = YZz are

usually called traverse shear strains)

Components of middle surface in-plane shear

strains

Change of radius

x1



Ar, Forced change of radius at upper bulkhead i for

sphere and cone

Forced change of radius at lower bulkhead k for

sphere and cone
Ay Bgr Ay Byg Parameters for layered shells (Paragraph 3.32. 2)
€; Parameter for layered shells (Fig. 3.32-1)

§1, §2 Contribution to the middle surface twist

(Eq. 1.13-22c)

€ € Linear extensional shear strains (normally €3 = 0

for thin shells) (See Eq. 1l.12-6a-c)

¢l°. ¢Z° Components of the middle surface extensional
(in-plane) strains in §1, F,Z directions,

regpectively

M Npr Mg Plasticity correction factor

6 Angle defining the location of the point under
consideration on the circumference of the
sphere or cone; angle for locating meridians

for cylinder (0= 6<2n); polar coordinate

x1i



10 K2 12

A, (1=G)

"2’ K3

i B Mt

Hx,*

' Fe

Change in curvature and twist of the middle

surfaces and bending distortions

Parameter for shallow spherical caps

(Paragraph 3. 25, 1)

Arbitrarily small parameter used in non-linear

and stability analysis

Lame parameters (engineering technical

constants) (G = modulus of shear)

Torsional buckling parameter (Paragraph 3. 42. 2)

Parametersused for frame stiffened cylinders

(Fig. 3.43-5)

Poisson's ratio, amplitude of imperfection as a

fraction of shell thickness

Poisson's ratios for an orthotropic shell

(Paragraph 3,32, 1)

Poisson's ratios for an orthotropic layer

(Section 3, 32)

x1ii



Pgr Pg

cC

cl

U'i. O’ii

x/L {0s g <1), meridional coordinate
Curvilinear coordinates

Coordinate in direction of normal surface
Radius of gyration; wavelength parameter

Radii of gyration of frame sheet combination and

stringer sheet combination, respectively
Stringer crippling stress
"Classical" buckling stress
Sheet stringer lateral buckling stress
Design allowable buckling stress
Buckling stress of sheets between stringers
Stringer torsion instability stress
Compressive yield stress

Normal stresses {(fori =1, 2, 3)in §1, ﬁz, §3
coordinate directions, respectively

(0'33 = 0 for thin shells)

x1iii



a.® cz', m Z.

cr

Components of stress corresponding to the

equilibrium configuration
In-plane shear stresses (i, j=1, 2, 3)

Associated stress of admissible variations
from the equilibrium position stresses

(¢,° 05° 75°) (Eq. 1.25-21)

Stress level at which initial dimpling occurs for

sandwich construction with cellular core
Design allowable shear buckling stress
Waffle angle

Angle defining the location of the point under

consideration on the meridian
¢ at edge {
¢ at edge k

Angle between tangents to curvilinear coordinate
lines (for orthogonal coordinates X = 90°);

ratio of different values as shown in the text

xliv



nL
A 27R

Wy wpr w3 Parameters for orthotropic cylinders

(Paragraph 3.33.1)

°
Superscripted () or barred (—) notations used on the internal loads
represent equilibrium and incremental variation from the equilibrium

configurations, respectively

x1lv






1.00 INTRODUCTION TO THE THEORY OF SHELLS

1.01 GENERAL

The theory of shells constitutes that part of the theory of elasticity
concerned with the study of deformations of thin elastic bodies under the
influence of loads. Theories of thin shells may be broadly classified
according to the fundamental theories of elasticity which they approximate:
(classical) linear or nonlinear elasticity. Shells in the inelastic range will
not be discussed in this chapter.

The most common shell theories are those based on linear elasticity
concepts. Linear shell theories adequately predict stresses and deformations
for shells exhibiting small elastic deformations. By small deformations, it
is assumed that the equilibrium equation conditions for deformed elements
are the same as if they were not deformed.

The nonlinear theory of elasticity forms the basis for the finite
deflection and stability theories of shells. Large deflection theories are
often required when dealing with shallow shells, highly elastic membranes,
and buckling problems. The nonlinear shell equations are considerably more
difficult to solve and for this reason are more limited in use.

An essential problem in the analysis of shells is that of shell stability.
The buckling analysis of shells requires the determination of the stability of

the equilibrium states obtained from nonlinear elasticity theories. The



stability of shells will be treated in a unified manner with linearized and
nonlinear shell theories in such a manner as to indicate the essential unity
of shell theory.

This chapter is divided into three sections. The first is concerned
with the shell theories based on linear elasticity., The linear theory of
shells is presented starting from basic relationships of three-dimensional
elasticity., The basic assumptions necessary in the development of linear
shell theory from elasticity considerations are outlined along with a variety

of simplifications.

The second section considers the problem of shells when displacements
or, to be more precise, displacement gradients can no longer be consi&ered
negligible. Inthis case, the shell theory developed must be based on
concepts of nonlinear elasticity. A presentation of nonlinear shell theory
follows from minimum potential energy considerations as derived from
calculus of variations.

The third section is devoted to the theory of shell stability or buckling.
A discussion of the concept of stability together with the stability equations
is included.

This chapter presents a brief review and summary of shell theories;
the intent is to supply the analyst with the theoretical background necessary

for use of subsequent chapters of the manual.



1.10 LINEAR SHELL THEORY

1.11 INTRODUCTION

The theory of small deflections of thin elastic shells is now considered.
The relationships governing the behavior of thin elastic shells are based
upon the equations of the mathematical theory of linear elasticity,

The geometry of shells (i.e., one dimension much smaller than the
other dimensions) does not warrant, in general, the consideration of the
complete three-dimensional elasticity field equations. In fact, the consider-
ation of the complete elasticity equations leads to expressions and equations
which are so complicated that it becomes impossible to obtain solutions for
shell problems of practical interest.

Fortunately, sufficiently accurate analyses of thin plates and shells
can be obtained using simplified versions of the general elasticity equations.
In the development of thin shell theories, this is accomplished by attempting
to reduce the shell problem to the study of the deformations of the middle
(or reference) surface of the shell. In all cases, one begins with the
governing equations in the three-dimensional theory of elasticity and attempts
to reduce the system of equations, involving three independent space vari-
ables, to a new system involving only two space variables. These two
variables are more conveniently taken as coordinates on the middle (or

reference) surface of the shell.



Shell theories of varying degrees of accuracy may be derived
depending upon the degree to which the elasticity equations are simplified.
The approximations necessary for the development of an adequate theory
of shells have been the subject of considerable controversy among the
investigators in the field.

Historically, the first attempt to formulate a general bending theory
for elastic shells from the general equations of elasticity is credited to
Aron (Ref. 1-1). The first apparently successful approximate theory was
presented by Love (Ref. 1-2)in 1888. Love applied an analogy to the
Navier hypothesis (elementary beam theory) or Kirchhoff assumption (plates)
in the treatment of shell problems. This theory, often referred to as Love's
first approximation, has since occupied a position of prominence. In spite
of its popularity, the development given by Love is not free from inadequacies
in that it is inconsistent with regard to small terms. Many investigators,
including Love (Ref. 1-3) himself, have attempted to improve on the approxi-
mations to arrive at a consistent linear shell theory. (See Ref. 1-4.)
However, Novozhilov (Ref. 1-5) has indicated that the inconsistencies
obtained using Love's approximations are, in general, not of great impor-
tance in the practical analysis of most shell problems. The simplicity and
complete analogy with the corresponding formulas of the theory of plates,
makes Love's first approximation an important tool in the development of

shell theory.



To better understand the theory of shells, the subsequent development
of the theory will start from consideration of the general elasticity equations.
The various shell theories will be classified and the assumptions and simpli-
fications necessary in the development of each shell theory will be specified
and their effects assessed. A linear shell theory based on Love's first
approximations will be completely developed from elasticity considerations.
The limitations or range of applicability of Love's assumptions will be
pointed out. Other approximate or specialized theories will be discussed

as they appear.



1.12 BASIC RELATIONSHIPS FOR THE THEORY OF THIN SHELLS

In this section the basic formulas pertaining to the analysis of stress
and strain in terms of orthogonal curvilinear coordinates are presented.
These are given for reference and serve as a basis for the subsequent

developments of linear shell theory.

1.12.1 Geometry of Shells

A, Arbitrary Shell

Before discussing shell theory, the geometry of a shell in three-
dimensional space is defined. The geometry of a shell is entirely defined
by specifying the form of the middle surface and the thickness of the shell
at each point. To describe the form of the middle surface it is necessary
to present some of the important geometrical properties of a surface. A
more detailed presentation of the theory of surfaces can be found in books
on tensor analysis and differential geometry (Refs. 1-6, 1-7, and 1-8).

The position of points on any smooth surface can be described in
terms of two independent parameters (€1, £,). If the range of these param-
eters is restricted so that every point on the surface corresponds to one
and only one pair of values { €1» §2 ); then the parameters (€1, £2)
constitute a curvilinear coordinate system for points on the surface,

Equations §1 = constant and §2 = constant represent families of curves

on the surface (Fig. 1.12-1). These parametric curves are called



52 =C5'

FIG. 1.12-1. Families of Curves on a Surface

coordinate lines of the surface. Thus, a surface can be completely
described by a doubly infinite set of such parametric curves where the
position of any point on the surface is determined by the values of £ and
£€-. (A simple illustration of this concept is the lines of latitude and
longitude on a world globe. Geographical locations are given by latitude
and longitude. These lines can be thought of as coordinate lines.) The
distance between two neighboring points on a surface can be related by the
differential distance (ds).

The square of the linear element (ds) of any curve traced on the

surface is given by an expression of the form:

ds 2 = alzdglz + azzdgzz + 2ajaz2cosXdf)dEp (1.12 =)



where X is the angle between the tangents to the coordinate lines £ and €2
at any point. Eq. 1.12.1-1 is called the first quadratic form of arc length in
the theory of surfaces. For orthogonal coordinate systems, the angle X is
equal to 90° and Eq. 1.12,1-1 is considerably simpler because the last term
vanishes. The coefficients o) and @2 are, in general, functions of £] and
§2 and represent the first fundamental magnitudes of the surface (for ortho-
gonal systems). The quantities @], a2 are sometimes called Lamé
parameters or coefficients.

Lamé Parameters can be interpreted geometrically as lengths of
linear elements along constant coordinate lines of the surface when the
increment (differential) of one of the two independent variables has a unit

value (Fig. 1.12-2),

&

I
\.,

FIG,. 1.12-2. Length of Linear Elements Along Constant Coordinate Lines



The quadratic form for a given surface will have different expressions
in different systems of curvilinear orthogonal coordinates (€1, €2). In
other words, for particularly selected coordinates (£;, €2) there will
correspond specific expressions for ¢ and e 3. To illustrate, consider
the specialized curvilinear coordinate systems: Cartesian and polar coord-
inates. In Cartesian coordinates (two dimensions), the quadratic form

(Eq. 1.12-1) is given by

2 2 2

ds® = dx” + dy

—_—

where, in this case, £, = x,£, =y and

dYLds the Lamé parameters become o) = @9 = 1
dx

Consider now a system of polar coordinates. The quadratic form in

this case becomes
ds? = dr2 + r2de?

and noting that £, =r, £, = 8 the Lame

parameters are given by a) = l,ep =1

For convenience, the orthogonal curvilinear system of coordinates

is chosen to simplify the formulas for the surface. Such a system is that



in which the two families of coordinate curves are simultaneously lines of
principal curvature of the surface. A line of curvature is a curve in the
surface which possesses the property that normals to the surface at consecu-
tive points on the curve intersect. In the general case, the curvature of

this line varies with its orientation on the surface, The directions at which
the curvature reaches extremes are the directions of the lines of principal
curvature. The direction of the lines of principal curvature can be shown

to be orthogonal (Fig. 1.12-3), Quantities R), R, denote principal radii

FIG. 1.12-3. Principal Radii of Curvatures

of curvature of the surface at a point (P), R) being the radius of curvature
at that section drawn through the normal at the point (P) which contains the
tangent to the curve of the family £1-

The position points in a surface have been shown to be related by the

curvilinear coordinates £) and £,. The location of a point on a shell with

10



thickness, t, can be related by three parameters. Two (g1, & Z) vary on
the middle surface of the shell, and the third (z) varies along the normal to
the middle surface.

The position of an arbitrary point, M, in space is fixed by three
parameters; the coordinates £) = ¢), £ = ¢, of the base of the perpendic-

ular, and the length of the perpendicular z = ¢3 (Fig. 1. 12-4).

£27¢2

FIG. 1.12-4., Position at an Arbitrary Point in Space
In such a triorthogonal system of curvilinear coordinates, the square

of a linear element in space would have the form
2 2 2 2 2 2
ds”™ = A, d§ " t A, dg," + Ajdz (1.12-2)

where the Lamé parameters are now written as

z
"O’l l+-R'—1

e
'

(1.12-3)
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The geometrical significance of Eq. 1.12-3 can be seen by exami-
nation of Fig. 1.12-5 which shows the cross section of a shell element

cut along a coordinate axis.

a(l +-;—) d& =ds*

MIDDLE SURFACE

FIG. 1.12-5. Geometrical Significance of .ame Parameters

ayr ays Rl' R2 in Eq. 1.12-3 are functions of §1 and §2 and must satisfy
the three relationships from the theory of surfaces. Two of these relation-

ships, known as the condition of Codazzi, are given by

1 day 3 a1
R, " % (R))
da ) (az)

1
Ry 9§ ¥ \R;

(1.12-4a)
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The other relation, called the condition of Gauss, is
Jda 1 d¢ a,a
3 [1 9% ) ( 1 192
: — + — = - (1.12-4b)
d a 0 d o 0
§l < . €1> £, 5 £, R,R,

Equations 1.12-4a and -4b are presented for reference. For a more

complete description of the Gauss -Codazzi relationships, see Ref. 1-5.

B. Shells of Revolution

In the engineering application of thin shells, a shell whose refer-
ence surface is in the form of a surface of revolution has extensive
usage. The previous section considered the differential geometry of any
surface. This discussion will now be restricted to surfaces of revolu-
tion. A surface of revolution is obtained by rotation of a plane curve
about an axis lying in the plane of the curve. This curve is called the
meridian, and its plane is the meridian plane. The intersection of the
surface with planes perpendicular to the axis of rotation are parallel
circles and are called parallels.

For such shells the lines of principal curvature are its meridians
and parallels. Accordingly, a convenient selection of coordinates of the
middle surface are the angle ¢ (between the normal to the middle sur-
face and the axis of rotation) and the angle 8, determining the position

of a point on the corresponding parallel circle (Figs. 1. 12-6 and 7).

13



MERIDIAN

!
R -RZSINA,

/

FIG. 1.12-6, Coordinates on a FIG. 1.,12-7., Coordinates on a
Surface of Revolution Surface of Revolution

Let R} be the radius of curvature of the meridian. The second
radius of curvature Rz will always be the length of the intercept of the
normal to the middle surface between the surface and the axis of the
shell since, considering two adjacent points on the same circle, the
normal from these points intersect on the axis of the shell,

The element of arc of a meridian will be given by

dsl = Rld¢
Correspondingly, the element of arc of a parallel circle is given by

ds, = R, sin¢ de

14



In this case, the Lamé parameters are

|

Ry

R, sin ¢ (1.12-5)

where

§1=¢

t2

6

Thus, the middle surface of a shell of revolution is completely
determined by knowledge of its principal radii of curvature Ry, Ry,
which will be functions of only one of the curvilinear coordinates,
namely ¢.

Table 1.12-1 presents the radii of curvature expressions

generated by the rotation of second order curves about their axes of

symmetry.
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TABLE 1.12-1.

GEOMETRY OF SHELLS OF REVOLUTION

Increment of Arc
2
as = a ld¢’-

where Lamé parameters are of the

2. .2
+°2d6

form:
al = Rl
02 = Rz sin ¢ = R
Shell
Shape R, R,
Sphere Y=0
R R
Paraboloid |[Y=1 2 372 2 172
(1 +Ysin“¢) (1 + Ysin¢)
Ellipsoid y>-1
R, = Radius of curvature at¢ =
Hyperboloid |Y< -1| Y = Shell shape parameter
Degenerate Cases )\
e
Increment of Arc
ds? =a2ax? +o246?

Lamé€ parameters of form:

al =1
@, =Ry
»: 3 Ry
Cylinder ® R
Cone © R
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1.12.2 Geometry of Strain

As stated previously, the theory of shells is concerned, among other
things, with the determination of small deformations due to load. Some of
the basic geometrical properties of deformation (strain) will be examined in
this section.

The basic problem of the determination of strain at a point in the shell
requires relating the position of points in the shell before deformation with
their location after deformation.

The deformation condition in an elastic body can be described, in
general, by three displacement quantities or by six strain quantities. The
three displacements must be independent of each other to uniquely define
the deformed condition of the body. Since both deformation quantities
(displacements or strain) describe the same state of affairs, three relation-
ships relating the six dependent components of strain must exist. These
relationships are the compatibility conditions of the state of strain (Ref. 1-5).

As previously stated, the displacement components and the components
of strain describe the same state of deformations in the shell; therefore,
they can be linked by virtue of this state. The relating of strains to dis-
placements is purely a geometrical problem requiring the consideration of
shell geometry before and after deformation. A detailed development of
the strain equations based on geometrical considerations can be found in

many of the books on elasticity (Refs. 1-3, 1-9, and 1-10).
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The strain displacement relationships appropriate for linear shell
analysis can be readily obtained in terms of a system of orthogonal curvi-
linear coordinates from the corresponding relations for a general elastic
body. The general strain equations of three dimensional elasticity are
introduced to illustrate the assumptions inherent in the development of a
linear shell theory from elasticity considerations.

For small deformation theory, the components of normal strain
(¢ Ir € 2» € 3) and of shear strain (Y12, Y 13» Y 23) are related to displacement
components (U, V, W) measured along tangents to the coordinates lines of the

orthogonal coordinate system (él, §2. §3) as follows:

oA dA
18U+V 1+W 1

"LEAL % T AA; T, AjAz 98, (1-12-62)
< =_Al_2 ggfz + Allez Z‘Zi + A;’VA3 Z‘;i (1. 12-6b)
3 = Kl; %\% A\;AZ a;ﬁ\: ¥ ALIJA3 ;2: (1.12-6c)
Y12 =2_1 %({3) +‘% %(X_l) (1. 12-64)
Y13 =:—; %(%‘) +:_i‘53€1-<%) (1.12-6e)
Y53 =i—§ % <.AW_3> 4 : 323 (Xz) (1. 12-6f)

where (Al’ AZ' A3) are the Lame parameters which are basic quantities in

the characterization of the coordinate system, 51. €0 €4 (see

Section 1,12, 1-A,),

18



In describing the geometry of shells, in Sec. 1.12.1, the coordinates

( gl, §,2) were specialized to correspond to the parametric curves consisting

of lines of curvature 51 = constant, §2 - constant of a reference surface

within the shell wall, and z was taken to correspond to §3, where z is a

coordinate measured along the normal to this surface such that (gl, §2, z)

form a right-hand coordinate system. (See Fig. 1.12-8.)

FIG. 1.12-8. Surface Coordinates for a Right -Hand Curvalinear
Coordinate System

The Lamé parameters when specialized for a shell coordinate system
are described by Eq. 1.12-3.

In the development of the small deformation strain displacement
1.12-6), the assumptions consistent with classical elasticity

equations (Eq.

have been introduced. These assumptions are as follows:

19



1. Strains are small in comparison with unity, i.e., e << 1
2. Displacement gradients are of the order of magnitude of strain and

assumed small in comparison with unity, i.e., terms such as

W U

——, , etc... <<l
9" 3%
3. Displacements are small (compared with linear dimensions of the

shell), i.e., in a shell of thickness t . &t’- << 1
Assumptions 2 and 3 imply that rotation expressions are small in comparison
with unity. These assumptions permit higher order terms in the strain
displacement equations to be neglected. The more complicated strain

equations of nonlinear elasticity will be discussed in Sec. 1. 20.

1.12.3 Stress and Stress Resultants

In the next two subsections, the basic relationships for shells obtained
from the law of statics are presented. The concept of stress resultants will
be introduced together with relationships for static equilibrium.

When a shell is under the action of external forces, it undergoes
distortion, and the effect of the forces is transmitted throughout the body.
Across any small internal plane area of the body, forces are exerted by the
part of the body on one side of the area upon the part of the body on the other
side. The term ''stress'' denotes this internal force per unit area. (See

Fig. 1.12-9),
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AA

) Stress = o0 = ;X?oo (—2—1—-{:) (1.12-7)

AF

FIG, 1.12-9

Consider a st:essed element of shell of thickness t, cut along

coordinate lines &), £ +d§;, £ and £, + d§, (Fig. 1.12-10).

)

FIG. 1.12-10. Internal Stresses on a Shell Element
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The internal stresses shown in this figure are described as follows:

9)11* 922 are normal stresses, acting on the faces of the element.

TIZ, TZI are in-plane shear stresses acting parallel to the middle
surface.

T3 T3 are transverse shear stresses acting normal to the middle
surface.

The positive directions of stresses are as shown in Fig. 1.12-10, i.e.,
normal stresses acting on the faces which coincide with positive directions
are positive.

For purposes of obtaining a two-dimensional theory of shells, it will be
convenient to introduce statically equivalent forces and bending moments
instead of these stresses. The introductionof stress resultants and couples
permits the elimination of the z coordinate in the equilibrium equations,

As an example, consider a simple linearly varying stress distribution
acting on a faceof an element of shell; this stress, which will be called 911,
can be considered a combination of a uniform and bending type of stress

distribution (Fig. 1.12-11).

;

“n
x—= v -
E < h = G <
! ) & £
M
= N + (
N-fh- o, dz M-fh-’"xdx

FIG. 1.12-11. Statically Equivalent Force System
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The resultants (forces per unit length of given arc length) acting on a

shell element with arc lengths on their principal lines of curvature,

(ds; = A1dg) and ds, = Az d€3), are for stresses 01], T12, T]3,... etc.,
t/2
N :f opp 1+ = )dz
t/2
N = / T l +—£ dz
12 °© t/2 12( RZ)
t/2
Ql = [ 713(1 + —z->dz
2 2
-t/ (1. 12-8a)
t/2
NZ_J' 0’22<1 + -2 \dz
t/2 Ry
t/2 2
N =f TZI 1+E. dz
t/2 , 2
Q2 = [ T23[1 + — \dz
Jot/2 R)
and for the stress resultants for moments,
.t/2 2
Ml = / z 0'11 1 + —\dz
J-t/2 R2
Mlz = z TlZ 1 + —z— dz
t/2 R,
(1. 12-8b)

L. )
M, = ,/t/Z . cr22<1 ; ﬁz‘-l)dz
fon )

t/2
z Toy <]_ + Z
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In the above expression, the term (l + %)is present to account for the
trapezoidal shape of the shell element resulting from the curvature of the
shell. Fig. 1.12-5 illustrates how an incremental portion of shell a distance
z from the middle surface is augmented by an amount z.

By replacing the stresses by their equivalent forces and moments, one
may, in the future, consider instead of the space element cut from the shell
the corresponding element of the middle surface on the sides of which act

these resultant forces and moments (Fig. 1.12-12),
The significance of the ten resultants so defined is suggested simply
by the laws of statics, irrespective of material or of the state of deforma-

tion of elements in the shell,

FIG. 1.12-12. Resultant Forces on a Typical Shell Element
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1.12.4 Equilibrium Equations for a Shell

The shell element in the state of stress described in the previous
section will now be considered and the conditions for its equilibrium
under the influence of all external and internal loads will be determined.
The equations arising by virtue of the demands of equilibrium and the
compatibility of deformations will be derived by considering an indi-
vidual differential element. These equations, therefore, are relations
between differential quantities or between differential changes in the
internal forces and, therefore, are called differential equations,

The external loads are comprised of body forces that act on the
element and surface forces (stresses) that act on the upper and lower
boundaries of the element, which are sections of the curved surfaces
bounding the shell. The internal forces will be stress resultants acting
on the faces of the shell element,

In the preceding section, all the internal stresses were trans-
ferred to the boundaries of the section of the middle surface corre-
sponding to the considered element of the shell and they were replaced
by statically equivalent forces and moments. An analogous operation
for reducing the shell problem to a two-dimensional one can be exec-
uted for the external forces by replacing them by statically equivalent
stresses distributed at the middle surfaces. The middle surface is

thus loaded by forces as well as moments.
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Now, instead of considering the equilibrium of an element of a

shell one may study the equilibrium of the corresponding element of the
middle surface. The stresses, in general, vary from point to point in the

shell and as a result the stress resultants will also vary.,
Consider now the stress resultants of concern applied to the middle

surface of the shell as shown in Figs. 1.12-13 and 14.

FIG. 1.12-13. Typical Shell Reference Element With Axial
and In-Plane Shear Forces

N

oM

oM
M, +—J

M
1770, df, 12

12
Oe‘ df,

FIG. 1.12-14, Typical Shell Reference Element With Transverse
Shear, Bending, and Twisting Elements
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The equilibrium of the shell in the £, €,, and z coordinate

directions respectively are given by the following equations:

3 3 1273 -N23 1 1 =
g1 gz §2. g1 R}
aalNZ aalez N aaz N aal . alaz ,
- _— [+ 8N4 = -

o€, t o, ' Neleg Nigg tQ2T Tt f1%2f2 (1.12-9a)
3,0, 97Q; N} N

ot ] IR Y M

1 gz R) R

where p), Py and q are components of the effective external force

per unit area applied to the middle surface of the shell, (The details

of obtaining the expressions for curvilinear coordinate systems

can be found in Refs. 1-5, 1-9, and 1-11.)

The equilibrium of moments about the gl, 52, and z coordinates

result in the following moment equilibrium expressions.

da.M da, M 9o oo
1™M21 2M1 2 1
3t 3t Mz—a?-+M12‘a—§—-Qlalaz=0 (1.12-9b)
2 1 1 2
M M
Npp - Npp 4——2 - —Zho0
Ry Ry

The force components of the last equilibrium expression are due

to warping of the faces and result from in-plane shears and twisting

moments.
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In the equilibrium equations presented here, changes in the
dimensions and in the shape of the element of the middle surface
arising from its deformation have been neglected. This simplification
arises from the assumption of small deformations.

The form of the equilibrium equations is simplified when shells
of revolution are considered. Examples of conical and spherical shells

follow:

Example 1: Equilibrium Equations for a Cone

Noting Fig. 1.12-15, if the coordinate axes are expressed as
€1 = x distance along generatrix
§2 =8 angle between two meridians in the plane of a
parallel
Z =z a direction normal to the middle surface formed
by the other two coordinates

7
and the l.ame parameters become

al=1,az=R=R°+xsina

the principal radii of curvatures of a cone are then expressed as

R Ro

cosa cosa

+ x tana

Rl =R¢=CD, R2=
where

@ = 1/2 apex angle and is constant

28



FIG. 1.12-15, Shell Coordinates for a Cone (or Cylinder with o = 0)

By inserting the above coefficients into the general equilibrium

equations we arrive at the equilibrium equations for a cone, namely

8N

] . . 0 -
5o (Nyxx) sine + R, 5‘?;(Nx) - Ngsina + —2%+p R = 0
8Ng 3 2
TN +-$ (Nygx) sina + Ro—a—x-(Nxe) + Ngx sine + Qg cosa + Pg R=0
-N cosa+-a£Q+—a-(Q x) sina + R, -2-(Q,) +qR=0 (1.12-10)

6 26 ax X ox \mx T4 :
Mg 5 2
36 +"a_;(Mx6x) sina+Ro-5;(Mx9)+Mex sino - QgR =0
9 . ) . 8Mgyx -
-é—;(Mxx) sina + ROE-;(MX) - Me sina +—-—a—é—- Qx R=0

M
0x

Nyxg-Nox - —fg— =0
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Egs. 1.12-10 become the equilibrium equations for a cylindrical

shell when the angle a is set equal to zero.

In this case, Ro

represents the radius of curvature of the cylinder (Ro = R = RZ)'

Example 2. Equilibrium Equations for a Spherical Shell

If the coordinate axes were to be specified as

§1 = ¢ an angle along a meridian of the shell
§2 = 0 an angle along the parallel of the shell
z = a direction along the normal to the surface formed by

the above two coordinates

the Lamé parameters become
@, = R, a, = R sin ¢
where R is the radius of a
sphere and the principal radii
of curvature are
Rg = Rg = R = const.
then these coefficients may be

inserted into the general thin

shell equilibrium equations

(Eqs. 1.12-9a, b) and the differential equations for a sphere

become:
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.} . aN6¢ . .
26 (N¢s1n¢) - Ng cos ¢ + 36 +Q¢sm¢+Rp¢sm¢=O

aN
-Teg + 3—% (N¢esin¢) +Ne¢cos¢+Qe sin ¢ + Rpg sin ¢ =0
aQ

Ng sin ¢ + Ng sin ¢ - Teg - —8% (Q¢sin ¢) - Rgsing =0 (1.12-11)
oM

866 + 8—1 (M¢9 sin ¢) +Me¢ cos & - QgR sin ¢ = 0

5 . Mg .

Er (Mg sin ¢) - Mgcos ¢t 5o QgR sin ¢ =0

1.12.5 Stress-Strain Relations

The relations derived in preceding sections were based upon
purely geometrical or static considerations. The two concepts are
tied together by consideration of material properties of the shell. For
a complete description of the problem of analyzing thin shells. the
relations between components of stress and components of strain as the
shell is subjected to its history of applied loads is required, It will be
assumed that a continuous body satisfies the generalized Hooke's Law,
that is that stresses are linear functions of strains and thus the propor-
tionality coefficients are constant for the range of materials under
consideration. Materials which do not possess this linear law should be

treated by a nonlinear theory of stress versus strain,
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This section is devoted to a brief description of the basic ideas

governing the relationships between stress and strain when considering

anisotropic, orthotropic, and isotropic materials.

A,

Anisotropic Bodies

In the general case of a uniform anisotropic body, i.e., a material

body whose physical properties may vary in any direction, the generalized

Hooke's Law expressed for a differential element in a curvilinear 5ys-

tem of coordinates §1, €5 £ 3 takes the form (Fig. 1.12-16):

Differential Element in a General Curvilinear

Coordinate System

FIG. 1.12-16.
011 *A1] €1t Ay et A3
022 ZA21 € tApp ¢ + Ajg
033 = A3] €] + A3 €2 + A3j
T23 = Ag) €] YAy e T Ays
T31 S Ag5] €] + Agp €2 t Agy
T12 T Ap) €] T Agp €p + Ags

€3

€3

tA1av23 t A5 viz tA6 Y12
tAzay23 tAzsv13 t A2 V12
tA3gy23 tAzs y13 + A3 yI12
tAgav23 tA4s vi13tAge vi2
*Asqy23 tAssy 13 tAse vz

TAsgay 23 T Ags v 13t Ags yvi2
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As shown in Ref. 1-12, the 36 coefficients reduce to 21 when
symmetry is noted; i.e., Ayj = Aji (i, j =1, 2, 3---,6).

The inverse of Eq. 1.12-12 is possible if strains as a function
of stresses are desired. The Aj;'s are material constants. Space and
the very limited usefulness of such a general system prohibits enclosure
of the coefficient definitions here. Of much more practical usage and
applicability to the majority of shell problems is the consideration of
materials where certain planes of elastic symmetry are present. For
the more important cases, the generalized Hooke's relations of
Eq. 1.12-12 or its inverse reduce to forms which are considerably

simplified.

B. Orthotropic Bodies

If a solid body with three mutually perpendicular planes of
symmetry is considered, then the body is said to be orthotropic.
Materials such as wood and synthetic fiberboard possess this property.

For this case, the generalized Hooke's Law reduces to
011 = By 9t Eabpp 2 * E3rsg o3

+E, e, +E

= E| pyp ¢ TEy ¢t E3Hy; €

o
22
(1.12-13)

c33 = E| b3 ¢ T Ey Hp3 €5 T Eg €3
G

T =G =G

23 23 Yo3r 731 = G3y Y3 T2 G2 Yp2

By virtue of symmetry, the coefficients are reduced to nine independent

constants., The symmetry conditions are

E; Bp; = By k120 Ej k32 = Ep k230 By #y3 = E3 #3) (1. 12-14)
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C. Isotropic Bodies

Many bodies have elastic properties which do not vary with respect
to orientation in the body. Metals such as steel and aluminum very closely
resemble this property. Hooke's Law for this class of material is

011 =2 pe, + Ne

1
Tap T 2By the (1. 12-15)
cr33 =2 ﬁe3 + e
T12 = 2 fvize T13 =2 fivyss T3 = 2 Rypg
where
A = pE
T+p) (1-2m)
o= E (1.12-16)

2(1+pm)

e = ‘l + ‘2 + 53
and E, G and pare called the engineering technical constants. The number
of independent elastic constants has been reduced to two.

For a plane stress problem, the stress-strain relations are given as

follows:
0—1 :—-LZ(-II + |.L€2)
l-p
. E 1.12-17
o, = ——— (e + pey) (1. )
2 1 - pl 2 1
E
=QGY T ———
T12 127 31w 12

for convenience, these simplified stress-strain relationships will be utilized

freely in the subsequent developments.
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1.13 CLASSIFICATION OF SHELL THEORIES

In the preceding sections the basic relations for shells were
developed either from the law of statics or from purely geometrical
considerations. As in the theory of elasticity, a relationship for
connecting the geometric and static phenomena is presented by the
introduction of a generalized Hooke's Law.

The physical hypothesis expressed by these relations is sufficient
for the description of the state of deformation or stress in the shell.
To be able to establish a connection between forces, moments, and
. deformation components of the middle surface it is necessary to know
how either the stresses or strains vary across the shell thickness.
This situation arises from attempts to reduce the shell problem from
a three-dimensional elasticity problem to a two-dimensional one.

The essential problem in the development of a theory of shells;
i.e., the formulation of appropriate constitutive relationships or
stress-strain relationships, has now beendetermined. The problem can
now be resolved to one of arbitrarily choosing quantities to represent the
state of deformation in the shell. The introduction of certain assumptions
permit the evaluation of stress resultant equations (Eqs. 1.12-8) in
order that approximate relationships between force and deformations

can be established.
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The selection of the proper form of these approximations has
been the subject of considerable controversy among the many investi-
gators in the field. As a result, there is a large number of general
and specialized thin shell theories in existence, developed within the
framework of linear elasticity. It will be desirable in the subsequent
discussion to discuss the most commonly encountered theories and
classify them according to the as sumptions for which they are based.

For the purpose of discussion, the various linear shell theories
will be classified into five basic categories:

1. First-Order Approximation Shell Theory

2. Second-Order Approximation Shell Theory

3. Shear Deformation Shell Theory

4. Specialized Theories for Shells of Revolution

5. Membrane Shell Theory
The order of a particular approximate theory will be established by the
order of the terms in the thickness coordinate that are retained in the
strain and constitutive equations.

In the case of thin shells, the simplified bending theories of shells
are (in general) based on Love's first-approximation and second-
approximation shell theories. Although some theories do not adhere

strictly to Love's original approximations, they can be considered as
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modifications thereof and as either first- or second-order approximate
theories. Theories which neglect transverse shear deformations may be
distinguished from those which include the shear effect. Linear mem-
brane theory is understood to be the limiting case corresponding to a
zero-order approximation or momentless state. Under specialized
shell theories are included several engineering theories that are
usually restricted to particular shell shapes or types of loading (e. g.,
shallow shell theory, Geckeler's approximation for symmetrically
loaded shells, etc.)

Although the Shear Deformation and Specialized Shell Theories
presented are based on Love's first-approximation; they are classified

separately because of their particular physical significance.

1.13.1 First-Order Approximation Shell Theory

Love was the first investigator to present a successful approxi-
mate shell theory based on classical elasticity. To simplify the
strain-displacement relationships and, consequently, the constitutive
relations, Love (Ref. 1-3) introduced the following assumptions, known
as first approximations and commonly termed the Kirchhoff-Love hypothesis:

1. The shell thickness, t, is negligibly small in comparison to

the least radius of curvature, Ry jn, of the middle surface;
z

¢ _
i.e. — « 1 (therefore, terms—=<1).
Rmin R
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2. Linear elements normal to the unstrained middle surface
remain straight during deformation and suffer no extensions.

3. Normals to the undeformed middle surface remain normal to
the deformed middle surface.

4. The component of stress normal to the middle surface is
small compared to other components of stress, and may be
neglected in the stress-strain relationships.

5.. Strains and displacements are small so that quantities con-
taining second- and h{gher-order terms are neglected in
comparison to first-order terms in the strain equations.

The last assumption is consistent with the formulation of the

classical theory of linear elasticity. The other assumptions will be

used to simplify the elasticity relations.

A. Strain-Displacement Relations
The Kirchhoff-Love assumptions outlined will now be used to
simplify the strain Eq. 1. 12-6 of linear elasticity presented earlier.
The inextensibility of normals from assumption (2) implies that

the normal strain vanishes (i.e., from Eq. 1.12-6).

aw
¢z=-a—z=Q (1.13-18)

Utilizing this requirement, the deflection, W, is independent of the z

coordinate,
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Assumption (2) of Love's first approximation is analogous to
Navier's hypothesis in elementary beam theory which requires that
plane sections remain plane. Thus, displacements of a point on the

shell can be expressed, as a first approximation, by relationships of

the form
U=u+tzp,
V=v+tz2p, (1.13-19)
W=w

where u, v, and w are displacements of the middle (or reference)
surface (i.e., z = 0) and P 1+ B, are rotations that represent changes
of slope of the normal to the middle surface. It should be noted that
terms u, v, w, B |, andp , are functions of coordinates €1, &€ 2 only.

It can be seen that the displacement functions at any point in the shell
can be described in terms of middle surface displacements, utilizing
the linear relationships in the coordinate z previously described.
Substituting the displacement relationships (Eq. 1.13-19) and Lame
parameter expressions (Eq. 1.12-3) into the general strain expressions

(Eqs. 1.12-6 a, b, d) yields relationships for the shell in the form

(Ref. 1-13):
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(1.13-20)

12 z -
1 + — 1 +—
R} 2

where
€ = : <au + Y aal)+‘” ;e = : <av + - aa2>+w (1.13-21)
1" o, \otE, "o, 86 )R 27 o  \se . " oT i)t R - 13-
@ \8¢; oy 9, 1 @2 86, o) 8¢ 2
are extensional strains at the middle surface and

e LT I
1 o, aél a 6,

(1.13-22a)

l B
] F P o
2% 13 ¥ o a, 9t

2 2 172 1

are changes in curvature of the middle surface directions §l. and §2,
respectively,
0
Contributions Y1 and Yoz to the inplane shear strain and & 1» 6 2

to the rotation of the middle surface are given by
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1 v u 301 1 du v 802

I G R ety e
1 8{32 B aal 1 3By B2 do,

6, :"—1(—%1—- a_z'ag—)‘ 62=;;<a_§2---al— a’é,.I) (1.13-22c)

The validity of the second assumption in the case of thin shells
follows from the small strain assumption, By this assumption is
meant, any possible secondary displacements, over and above those
derivable from a translation and a rotation of the original normal line,
must have infinitesimal gradients which vanish at z = 0. The thinness
condition requires that such secondary displacements cannot build up

to noticeable values away from z = 0. (See Fig. 1-13-1.)

2 a P
UNDEFORMED DEFORMED

FIG. 1.13-1.

The strain equations (Eq. 1-12-6) are further simplified by
assumption (3) which implies that transverse shear deformations are
neglected. Consequently, normals to the middle plane not only remain
straight but remain normal and suffer the same rotation as the middle

surface. The angle change between the middle surface and normal is
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given by the transverse shear strains, Yiz* Y22 (evaluated at z = 0).
Since the angle between normal and middle surface does not change,
the transverse shear deformations vanishes; therefore,

1
2 142\ 3 R
Ry

(1.13-23)

Y = 1 _1- ow - _v. + p =0
22 1+2\ep 96, R, 2
R
With this requirement, the rotation terms, [31. (32 are now

determinate and can be expressed in terms of displacement u, v, and

w of the middle surface. These rotation expressions, upon evaluation

of Eq 1.13-23 become

(1. 13-24)
6 =Y L aw
2 R, o, 3%

The degree of error introduced by this assumption naturally
depends on the magnitude of the transverse shearing forces, For dis-
continuous loads and local areas around a shells edge, sheaf deforma-
tions may be comparable to bending and axial deformation, and cannot

be ignored. Generally, however, shells with continuously distributed
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surface forces, having flexibly supported edges, are usually
assumed to have negligible transverse shear deformation.

When shear deformations cannot be neglected, the rotation terms
cannot be expressed strictly in terms of displacements and the trans-
verse shear strains must be included in the shell analysis. See
Paragraph 1.13. 3.

From the thinness assumption (1), terms fz{ are small in compari-
son with unity, and can be neglected in the strain and stress resultant
expressions. Utilizing this assumption, the strains are distributed
linearly across the thickness of the shell. For this case, from
Eq. 1.13-20, the in-plane strain expressions reduce to

€. = €9 + 2z«

1 1 1
)]
€= & tzx, (1. 13-25)

_ o
Y12 = Y2t zx12
°
where the shear strain, Yjj, of the middle surface from Eq. 1.13-22b

is given by

o o ° 1 (8” u aal) 1 (3“ v aﬂ'z

Y =Y+ == - — $+ —[— - — —— (1_13-263)
2 o C

12 1 @y 8§1 2 352 )

and the twisting distortion, «,,, is described by

12
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1 /. 1
op B, o ap B, da
<, = 8 + 62=_('—2°_l_i>+_<a_l'izfz (1.13-26b)
12 1\ @y 35,/ o, \3E, o 3E

The above are the kinematical relationships for Love's first
approximation, where middle surface strains ( €t{, ‘g, Yloz) and
measures of bending distortion (k1 k3, xyp) are given by Egs, 1.13-21,
22a, and 26,

Love's equation for (x12) leads to inconsistencies in that strains
do not vanish for small rigid body rotations.. Other versions of these
equations have been proposed by Novozhilov, (Ref.1-5) Sanders,
(Ref.1-14), and others. This inconsistency vanishes for axisymmet-
rically loaded shells of revolution. It should be pointed out that from
Love's first approximation, the strain equations include terms up to
the first order in the thickness coordinate. Thus, the distribution of

strains is linear across the thickness.

B. Constitutive Relationships (Stress —Strain Equations)

Utilizing the strain equations developed in the previous section
together with the fourth assumption, it is now possible to describe the
constitutive or stress—strain relations of Love's first approximation
theory.

Assumption (4) is based not on geometry but on the statics of the
problem. An order of magnitude consideration of the equilibrium equa-

tions for stresses shows that, unless the surface loads are highly
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concentrated, the traverse normal stress, 0,, is generally of smaller
order of magnitude than the in-plane stresses o, and o,. Consequently,
it is conventional to neglect the term involving o, in the general stress
strain relationships. For simplicity, consider isotropic material
behavior. In this case, the stress-strain relationships corresponding

to a plane stress condition are given by (Eq. 1. 13-27),

E
o = Zlel+pe2|
1 -p
E
0, = AL e (1. 13-27)
1 -p
E

T —_— Y

From assumption (2) it is assumed that ¢, = 0. A theory which
includes the two hypotheses ¢, = 0 and ¢, = 0 would lead to a contra-
diction (as pointed out in Ref. 1-15).

This difficuliy is usually avoided by neglecting o, in the stress
strain relationships and then determining ¢, from the resulting
expressions. To remove the resultant inconsistency, it would be
necessary to correct the original assumption for W by the addition of
terms which are linear and quadratic in z. (See Naghdi Ref. 1-13,) If
no boundary layers, of width on the order of thickness t, are present

these additional terms are small in comparison with the leading term, W,
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Thus, to obtain a first approximation theory the additional terms may
be neglected in introducing W into the expressions for strains ¢ 1°
€5, and le.
Utilizing these assumptions, the appropriate stress strain or
constitutive relations can be determined. The thinness assumption
that terms % can be neglected in comparison with unity permits
simplification of the stress resultants note (Eq. 1.12-8a, b)
t/2 t/2
N; = f oy dgs N2=f o, d,, ...etc. (1. 13-28)
-t/2 -t/2
In this case, le = N> and MlZ = MZI' Thus, the number of
resultants reduce to eight.
For an isotropic shell, utilizing Eqs. 1.13-25, 27, and 28, the

following constitutive equations are obtained relating stress resultants

and couples to components of strain

Et ro

N, = —/— _e¢ + pe
1 l-pz 1 2
o
Et [ ]

N, = €5 + €

2 [

2 I-Hz_ 1
Et 0

12 = Npj T2 (1 +p) Y12

S
'

=D ["l + ple (1. 13-29)
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M, = Dlx2+p.x1|
(1.13-29 cont)

1 -p

2

S

My, = D«yp

where

Et3

12 (1 - k%)
0

and where (middle surface) strains (e(l), €50 Y;z) are given in

equations 1.13-21 and 26a and change in curvature and twist terms

(xl, Koo KIZ) are given in Eqs. 1.13-22a and 1.13-26b,

C. Shell Equilibrium Equations

The constitutive relations described in the previous section
together with the shell equilibrium equations define the state of
deformation of thin walls. The number of equilibrium equations
necessary for consideration in Love's theory can be reduced from
six to three by the assumption that shear deformations are to be
neglected. The reasoning for this is described in statements that
follow.

It is essential to note that in assuming normals remain normal

the shear displacements corresponding to the stresses 7,3, 7,5 are
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neglected. Thus it might be thought that one should neglect shear
forces Qj, Qp, and consequently assume that the shearing forces are
zero. However, this is not correct, since the shear forces play an
essential role in the equilibrium equations. The hypothesis which
requires normals to remain normal is one applied to determine the
law of deformation of a shell parallel to the middle surface. In the
development of the equilibrium equations this condition is not used.
In this case, the shear forces Q), Q cannot be determined from
stress resultant expressions but are instead determined from con-
sideration of the equilibrium Eq. 1.12-9b, Substituting the resulting
expressions for Q) and Q; into the first three equilibrium equations

(Eq. 1.13-9a) yields:

N N M
9a2 ) + da) s + Ny, de) N, Y- 2) + dap ]
agl 9¢ » agz agl Rla§l

a. M M M .
day 21 1 day 12 9a) -
- R + R . + al az pl 0
R 88 R 9f 1 9%
(1. 13-30)

N M
dal 2 + dap N + N o2 aal + dap 1z+
3 , 9, 12 21 3t 3, R, 3L,

M
de] 2 1 aol+ Zl Z+a

1 % P2=0
R, %, R, %, R, 0 2
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M M
3 1 [/ 3a da da? 90|
.__[__( 121, 9%2 12, 2024 My, ||+
1

3gy | ay \ 35, 88 2 8t 9E;
M M
5 [ ! [8a02 12, 3al1 21 daj
-M + (1.13-30 cont)
3, 2 < 98 2t, L 3¢,
0ap o) 22 ajaz ., -

It is worthwhile to note that the substitution of Eq. 1. 13-29 into the
general equilibrium equations (Eq. 1. 12-9) do not identically satisfy
these relationships. In the usual derivation of the equations of
Love's first approximation theory, the distinction between N, and
N>, and betwec Vi, and My, is dropped and the last of equation
(Eq. 1.12-9b) . suppressed. (See Ref. 1-16.)

In a straightforward manner, the substitution of the force-
displacement relations (Egs. l. 13-21, 22, 24, and 29) into the
equilibrium Eq. 1.13-30 transforms these equations into three
simultaneous partial differential equations for the three middle
surface displacements u, v, w. Hence, the solution of these
equations determines the deformed position of the shell from which
repeated use of the elastic relations also determines the internal

forces.
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D. Boundary Conditions

The equations describing Love's first approximation theory
natually, as yet, do not completely determine the state of stress in a
shell and, hence, do not have solutions as long as they are subject to
boundary conditions (i.e., until a certain number of relations between
forces, moments, displacements or functions of these quantities at the

supporting edge of the shell are specified),

In prescribing boundary conditions for approximate theories,
consideration must be given to the interdependence of the assumed
force and moment resultants.

On each edge of a shell element (Fig. 1.12-12) five different
resultants have been defined. However, for theories which assume
zero transverse shear strains, only four conditions are required to be
prescribed on a boundary in order to ensure a solution. This require -
ment comes about due to the fact that in neglecting shear strains the
first approximation theory yields an eight order set of field equations
which requires four boundary conditions at each boundary.

The five resultants are reduced to four by noting that the distribu-

tion of twisting moments across an edge is statically equivalent to a

50



distribution of shear forces. This leads to shell boundary conditions
corresponding to the Kirchhoff boundary conditions for a flat plate.
Love has derived the required shell edge conditions for an arbitrary
boundary curve. For an edge §1= a constant, the conditions that must
be specified are that either

Ng oru

Mj2

(1.13-31)
aM>
r w

Q, -——— o
2 A,08,

had ibed
M, or Y are prescribed,

(Note the restrictions, i.e., N and u for instance cannot be used
simultaneously. )

The above boundary conditions apply to Love's approximation
theories. The modification of these when considering shear deforma-

tion will be discussed later.

E. Remarks on First-Order Shell Theory
The theory presented was first given by Love (Ref. 1-2)andis referred
to as Love's first approximation theory. It will be classified as a first

order theory because the strain Eq. 1.13-25 and constitutive relationships,
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Eq. 1.13-29, include terms up to the first order in the thickness
coordinate z. This approach will offer a convenient way for classifica-
tion of shell theories.

Reissner in Ref. 1-11 presented a straightforward derivation of
Love's theory. Since then Sanders (Ref, 1-14) has developed animproved
form of the first approximation theory. Sanders selected a more
realistic set of strain displacement relations in that all strains vanish
for small rigid body rotations ot the shell whereas for Love's theory
they do not. The equilibrium equations of Sanders are similar to
Eq. 1.12-9 with modified forms for the in-plane force and twisting
moment expressions. A tensor formulation of Sanders first order
linear shell theory is given in Ref. 1-17. Sander's modified theory
has removed some of the inconsistencies in Love's theory. However,
it is generally believed (Ref. 1-5) that Love's formulation of the
problem contains all the essential facts necessary for the treatment
of practical problems in their shells, as long as special conditions do
not require inclusion of the effect of transverse shear and normal

stresses.

Practically speaking, the solution of the simultaneous differential
equations of Love's theory is possible only in rare cases or with additional

approximations. In the case of a loaded structure, the general solution of
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the nonhomogeneous differential equations consists of a particular solution
of the nonhomogeneous differential equation and the general solution of the
homogeneous differential equations. In the case of an unloaded structure the
solution consists of only the general solution of the homogeneous differential
equation.

The nonhomogeneous solution of Love's equation, to a first approxi-
mation, equals the solution of the corresponding extensional (pure membrane)
problem. The homogeneous solution is a self equilibrating system of stress
resultants which satisfy compatibility conditions at the edges of the shell
("edge effect'') and in other regions of discontinuity. The general solution is
generally of the mixed type, involving both boundary and middle plane stresses,
but for some problems, such as a shell under concentrated loads, the homo-
geneous solution may be assumed to be of the inextensional type.

Thus, there are two extreme cases possible within the first approxi-
mation; (1) the inextensional or pure bending case in which middle plane
strains are neglected compared to flexural strains and (2) the extensional or
membrane case in which only middle plane strains are considered. The
general or mixed case lies between these two extremes. The significance of

this is discussed in Chapter 2. 00 on practical analysis of shells,
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1.13.2 Second-Order Approximation Shell Theories

Several writers (Fligge, Ref. 1-18; Bryne, Ref, 1-19; Biezeno,
Ref. 1-20, etc.) have attempted to improve on Love's first
approximation theory by retaining %terms in the strains and stresses
resultants (Eqs. 1,13-20 and 1, 12-8),

The basic procedure used by these investigators has been to
expand the denominators in the strain equations (Eq. 1.13-20) in terms

of power series expansions. For example,

2

1 =l__z+z

1+ = R, R
R

Utilizing these expansions, the strain equations can be expressed
in power series of z, retaining second-order terms in z; the in-plane

strains can be written as

€ 2 t"i’
‘1=€¢1)+z 3 -—l- + %= Ky =

(1.13-32)
¥e
Y_ _Y v©° z 5 Yo
12= 112 (5 - 1)+—<—' 1) t'2
yo vo
+z 62- 2 +zz 2-6
R, Ry \R;
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If these expressions are substituted into the stress resultant

expressions, retaining second-order terms in z, the constitutive

equations (Eq. 1,13-29) are replaced by

2 1 ?
N - Et (€o+peo)__t_ _1___ . __e—l_
11 > 1 2 1
1-p¢| 12\R] R; R,
I [o]
_ Et o, 00 £ [V I €2
Np2 = (et = — 2T
1-0°1L Ry Ry Rz
2 o]
Y
t 1 1
N, =Gt - —'—><"12“E
12 12\ R; R, R,
o
_ vo t {1 1 Y12
Nzl Gt 12 - — — - —— KIZ - — (1. 13-33)
12 \R Rj3/ ! R
3
My = Et () + BK2) - _L-_l_. eo
12 (1 - k%) R1 R2
Et3 1 1 o}
My, = s e o — =%
12 (1 - p7) R, Ry
Gt3 11 ]
Mp=— |T-| —-— "1
12 R; R3
3 -
=1 PR W P
12 R, R,
where
Y20 Y;°
2k =T ¥ 2 +—-l—
Ry Ry
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The preceding equations are characteristic of the Fligge-Byrne
theory. They are identical in form to the results obtained by Lure
(Ref. 1-21) as described by Novozhilov (Ref. 1-5). The form of the
stress resultants in this case identically satisfies the sixth equilibrium
equation, (See Novozhilov, Ref. 1-5.)

Application of the Fligge-Byrne equations has generally been
restricted to circular cylindrical shapes for which solutions have been
obtained by Fliigge (Ref. 1-18) and Kempner (Ref. 1-22).

It is important to note that although explicit use was not made of
the assumption _zﬁ << 1, such an assumption is implicit in these equations
inasmuch as Eq. 1.13-32 are reasonable approximations only if z<<R,
since they can be considered as truncations of the Taylor series expan-
sions. In addition, although the results are elegant, the retention of
small terms in the wall thickness leads to relations that contain terms
of the same order of magnitude as would also be obtained if less basic
restrictive assumptions were made (e.g., if normal stress effects
were included, see Ref 1-13, 15).

Comparing these formulas with Eq. 1.13-29, it is seen that they
are considerably more cumbersome, and it is clear from the preceding

discussion that these additional terms introduce corrections into the

theory which do not exceed the accuracy of the initial assumptions.
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Hence, these formulas are regarded as inconsistent and, for shells of
arbitrary form, introduce quite unnecessary complications.

From this discussion, it is apparent that although this theory con-
tains second-order terms in the thickness coordinate, it essentially
offers a first-order approximate theory. However, because in the
strain and constitutive relationships, second-order terms in z are
retained, this theory, according to our classification, is a second
approximation.

Love attempted to improve on his first approximation by intro-
ducing three types of corrections. In his second approximation, Love
states that such modifications are unnecessary unless flexural strains
(z K1s ZK3, zx)p) are large in comparison with extensional strains
(G?, eg, Ylg). In the problem of highly curved shells the shell thickness
can no longer be considered small in relation to the radius of curvature.
Thus, higher-order terms are required in the strain equations. Love
attempted to improve his first approximation by retaining second-order
terms in the strain equations in a manner as previously described in
this section. However, in relaxing restrictions on LR ratios, Love
realized that the corresponding displacements are no longer negligible.

By considering the second-order effects of such normal displacements,

the strain components parallel to the middle surface are nonlinearly
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distributed or, as before, terms up to and including the second power

in the thickness coordinate are retained. This description essentially

gives the characteristic difference between Love's first and second

approximate theories. This classification can be used to categorize

many of the various shell theories.

In his second approximation, Love considered, as a first modifi-

cation, the transverse displacement (Eq. 1.13-19) to be expressed in

a more flexible form

w =w+\?"(§l: gzo z)

(1.13-34)

The second modification consists in not neglecting _zli with respect

to unity but assuming

Z
1 + —
R,

(1.13-35)

These modifications, together with additional approximations as

described in Ref. 1-15, were used by Love to obtain the following

expressions for strains
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and

kzE
(1 -F)E,

W =

[z(e?+eg)+izz(xl+ KZ)] (1.13-37)
2

From a third modification, the stress o, is not neglected in the
stress strain equations. Using these approximations, the constitutive

equations become

2
1

= (e?+peg)-£— —--l— 3
1 - p2 12 \R} R,

2
- E_ PZE ._l- + _E. Kl + KZ 13.38
12 (1 -#)E, |\R; Ry (1.13-38)

Kyt By Ky B K \
+ +
R, R,

together with an analogous expression for Nj,.

A comparison of Eq. 1.13-38 with the first equation of Eq. 1.13-33

9

shows that similar terms are present in both (except that _R% terms are
neglected). More important, however, is the fact that new terms are
introduced as a result of including the partial effect of normal stress.
Furthermore, these terms do not vanish when Rl = RZ' It also should

be noted that no consideration has been given the possible effects of

transverse shear strains,
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As can be seen, Love's second approximation contains some
degree of refinements over the first approximation.

It is characteristic of second approximation theories that strains
and constitutive relations contain second-order terms in the thickness
coordinate, z. Another second approximate theory of significance was
deveioped by Vlasov (Ref. 1-16) in considering a thick shell.

Other refinements to shell theories have been presented by

Bassett (Ref. 1-23), Treffty (Ref. 1-24), and others (e.g., Ref. 1-15).

1.13.3 Shear Deformation Shell Theories

In the development of Love's first and second approximation
theories in the previous paragraphs, the effects of transverse shear
deformations were neglected, This neglect resulted because of the geo -
metrical assumptions that normals remainnormal. Itis possible thatfor
some loads or shell configurations, the transverse shear strains can
no longer be neglected and, therefore, these effects must be included
in the theory. A shear defcrmation theory for shells will be developed
in the following paragraphs.

It will be necessary in the subsequent development to refer to
equations presented in Paragraph 1.12.4. Paragraph 1.13.1 A, Strain-
Displacement Relations, indicates that, from the as sumption of normals

remaining normal, the rotations could be expressed in terms of
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displacements u, v, w, and their derivatives. When the effects of

shear deformations are included, the shear strains (Eq. 1.13-23) no
longer vanish and, as a result, the rotation expressions are no longer
determinate. The rotation expressions must be considered as unknown
variables. Since the shear stresses are no longer considered negligible,

the shear forces are expressed by

t
2
Ql =[ le dz
b
2
(1.13-39)
L
2
Qz =f Tzzdz
_t
2

where, for simplicity, the terms (1 + -zR—) have been approximated by

unity. This assumption is not necessary for the inclusion of shear
deformation effects. Therefore, shear deformation theories can be
classified as first- or second-order approximations, depending on
whether terms are neglected or retained in the strain and constitutive
equations.

Since the shear forces are now related to deformations,

they cannot be eliminated from equilibrium equations as was
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done in Paragraph 1.12.4. Thus, when shear effects are included,

the following five equilibrium equations must be considered

da2 N da )N o el

az 4 ;1; 2Ny, 201 'N2_802+Ql-1—;+“1°z Pr=0
£ £, §2 9§, R
da1N2 3a2Nj; da2 da) @22

+ tN2y - N —+Q taja, Py =0

%, | 0% 958 lag, Ry 172
3291 5019, @la2 @192
+ - N - Ny -2 & = -

1 2 1 2
da2M12 5a1Mp do 2 e

9 te, M St Mz - Q5 = 0
3 2 %, %6
da 1M ga; M 9a da

1721, azg 1 .M _£+M12__-Q1a1a2=0
473 1 8¢, o¢

For these equations, five boundary conditions are necessary at
each boundary. It is not necessary to use the Kirchhoff hypothesis to
obtain an equivalent shear condition as was done previously, The
boundary conditions in this case become:

N, oru
Ujyorv
M, or ﬂl
M2 or Bz

Qorw
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Reissner (Ref. 1-25) was one of the first investigators to incor-
porate the effects of shear deformation in plate theory. The extension
to shells is presented by Hildebrand, etal. (Ref. 1-15). Many investi-
gators have attempted to improve upon shear deformation described in
Ref. 1-15. For example, Naghdi (Ref. 1-13).

1.13.4 Specialized Theories for Shells of Revolution

The bending shell theories previously presented can be simplified
considerably for specialized conditions of geometry and loading. In
this section, some of the simplified shell theories resulting from con-
sideration - :-hells of revolution of specific geometry will be presented.
These thcrics are based on Love's first approximation; however, for
purposes of illustration they are classified separately to better illus-
trate the assumptions introduced.

In this section, the simplified shell equations are presented for
shells of particular interest. Included are the Reissner-Meissner
equations, Geckeler's approximations, shallow-shell theory, Donnell's

theory, and others.

A. General Shells of Revolution Axisymmetrically Loaded
Love's first approximation equations for a general shell of

revolution are obtained by inserting the geometric parameters from
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Eq. 1.12-5 into relationships developed in section 1,13. Forthe particular
case of axisymmetric deformations, the displacement V is zero, and

all derivatives of displacement components with respect to @ vanish., In
this case, middle surface strain-displacement Eqs. 1.13-21 and

1.13-26a reduce to

=(°=L
¢ R

—
sle
o)

[

(1.13-41a)

and the curvature (Egq. 1.13-22a) and twist (Eq. 1. 13-26b) expressions

become

k = x=.1 4d (1 dw_u
! R} dé \R] dé& R

] 1 dR,] [d

Ky = Kg == — |eotd + — 2| |V (1.13-41b)
R} R, dé | |dé

[ 4 - -

12= "¢ =0
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For a general surface of revolution, the expressions :—%and

dR,
are as follows for R = R, sin ¢
dé
(—i—R‘ = Rl C08¢
dé
(1.13-42)
dR;

:;— = (Rl - Rz)COt¢

Inserting the above values of derivatives into Eq. 1.13-41 yields

u cot w
¢ +

R, R,

X cotd |dw
2 RiRz [dé

while the remaining strain-displacement equations of 1.13-41 are

(1.13-43)

unchanged. Consequently, the resultant forces Ngg, Qg, and moments

Mgg vanish and the equilibrium relations from Eq. 1. 12-9 become

d(NgR
—-(—¢'—)=-N R,cos$ +QuR+R,Rp =0
01 $ 1
dé
d(QyR
2R N4R; - NgRy siné + RjRq=0  (1.13-44)

dé

d(MgR)
___!;4_:_- MgR; cosé - RjRQy = 0
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where the second, fourth, and sixth equations of Eq. 1.12-9 have been
identically satisfied.

The above relations are identical with those shown by Timoshenko
(Ref. 1-26). By eliminating Q¢ between the first and last equilibrium
equations and determining the force resultants from Eq. 1.13-29, -42
and -43, two second order ordinary differential equations in the two
unknown displacement components u and w are obtained. Rather than
obtain equations in this manner, however, a transformation of dependent
variables can be performed leading to a more manageable pair of
equations which, for shells of constant meridional curvature and con-
stant thickness, combine into a single fourth order equation solvable
in terms of a hypergeometric series. Historically (Ref. 1-4), trans-
formation of variables was first introduced by H. Reissner (Ref. 1-27)
for spherical shells and then generalized to all shells of constant
thickness and constant meridional curvature by E. Meissner (Ref. 1-28).
Meissner (Ref. 1-29) shows that the equations for a general shell of
revolution are transformable to Reissner-Meissner type equations
provided the thickness t and the radius R, both vary in a way to
satisfy a certain relationship for all values of ¢, (the '"Meissner

condition, ')
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The transformation to the Reissner-Meissner equations is

accomplished by introducing, as new variables, the angular rotation

-1 [u.dw -
V= R <u d¢> (1.13-45)

and the quantity
U= RzQ¢

This substitution of variables leads to two second order differential
equations in ¥ and ¥V replacing the corresponding two equations in u
and w. The details of this transformation are illustrated in Ref. 1-26.

For shells of constant thickness and constant meridional curvature
or, in fact, for any shell of revolution satisfying the Meissner con-
dition, the transformed pair of equations can be combined into a single
fourth order equation, the solution of which is determined from the
solution of a second order complex equation. For shells of the above
description, the shell equations can be represented in the simplified

form

(1.13-46)
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where the operator

2
Rp d 1 [d /R R d
L(y-2220) 1 1d [Re £ 32 o] 22
RZ a6  R; [d¢\R;/ R, d¢
(1.13-47)
Rlcot2¢
RyR;

From the above system of two simultaneous differential equations
of second order an equation of fourth order is obtained for each unknown.

Following operations described in Ref. 1-26 yields an equation of the

form
LL(u)+T4yu=0 (1.13-48)
where
4 Et p2
r - — 1013-49
D Ef— ( )

The solution of the fourth order equation can be considered the
solution of two second order complex equations of the form

2G5 =0 (1.13-50)

L(0) #ir

Reissner-Meissner type equations are the most convenient and
widely employed forms of the first approximation theory for axisym-
metrically loaded shells of revolution. They follow exactly from the

relations of Love's first approximation when the meridional curvature

and thickness are constant, as they are for cylindrical, conical,
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spherical, and toroidal shells of uniform thickness. Furthermore,
they follow directly from Love's equations in the more general case,
provided special restraints on the variation of thickness and geometry
are satisfied.

Using the modified Reissner-Meissner equations (Ref. 1-30),
toroidal shells of constant thickness were investigated by Clark
(Ref. 1-31) and ellipsoidal shells of constant thickness by Naghdi and
DeSilva (Ref. 1-32). In the latter case, the Meissner-type condition,
which would require the radius R; to be constant, is obviously not
satisfied. However, it was shown that assuming the Meissner condition
to be satisfied was indeed a justifiable approximation for ellipsoidal shells,
A version of the Reissner-Meissner equations including the effects of

transverse shear distortion has been presented by Naghdi (Ref. 1-33).

B. Spherical Shells

The general case of an arbitrarily loaded spherical shell is con-
sidered by Love in the classical manner, employing expansions of the
displacement components into Fourier series (Ref. 1-3). Novozhilov
(Ref. 1-5) introduces complex force resultants into the equilibrium

equations of the shell to solve the problem.
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For axisymmetrically loaded spherical shells of constant thick-
ness, the variable F becomes equal to RQ¢ and the Reissner-Meissner
equations reduce to form (Ref. 1-26)

2
dﬂ + cot¢£9- (cot2¢-P)Q¢ -EtV =0

2
a¢ ¢ (1.13-51)

2 T R2Q
d—v + cot4>gz-- (cot2¢+P) F+——2-9
d¢? dé D

The homogeneous form of the equations, omitting all surface
forces, is given above. It is assumed that the nonhomogeneous solution
corresponds to the pure membrane case for the first approximation.

Eq. 1.13-51 can be reduced to a single fourth order equation in
Q¢ and it leads to the solution of a second order hypergeometric equatiorn
(Ref. 1-26). Eq. 1.13-51 can also be solved by methods of asymptotic
integration (Ref. 1-34).

Two simplified versions of the Reissner-Meissner equations are
of engineering interest, namely Geckeler's approximation (Ref. 1-3 5)
for nonshallow spherical shells and the Esslinger approximation for
shallow shells (Ref. 1-36).

As described in Ref. 1-37, the fourth order equation obtained by

the elimination of ¥ between Eq. 1.13-51 is
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and

4 3
dQ d Qg
——; + A3 3 + AZ
dé dé
2

A =l-3cac4¢-u

cotd (2 +3 csczcb)

A1=
=1 -3cscz¢
A3=2cot¢
2
s -rf i
t

sz¢

+A1

dQ¢

— + A Q¢ + 4\
0

dé¢

Y9y =0 (1.13-52)

In the Geckeler approximation, all terms except the first and

last in Eq. 1.13-52 are neglected, leaving

4

d Q¢
o4

+4X4Q¢=°

(1.13-53)

Geckeler's Eq. 1.13-53 is seen to be the same form of equation as

for the beam on an elastic foundation.

This approximation is valid for large values of \ and high

angles ¢ ; that is, for thin. nonshallow spherical shells.

This can be

seen from the fact that Q¢ is a rapidly damped function of the form

4
e Ao , so that its fourth derivative is of the order A Q¢. while the

lesser derivatives are of correspondingly lower' order.
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coefficients Ao, - A3 are small for high angles ¢, all the terms
involving these coefficients are lower than order X3Q¢ and therefore,
for large A, are negligible compared to the X4 terms. The approxi-
mation is particularly good in the vicinity of ¢ = 900, for at that value
A3 = 0 and only terms of order )\ZQ¢ are neglected relative to K4Q¢.
The Geckeler approximation is, however, considered to be sufficiently
accurate down to angles as low as ¢ = 20° (Ref. 1-38).

A slightly more accurate approximation for nonshallow shells
presented by Blumenthal (Ref. 1-39) is based on the introduction of the

transformation
Q4 = Qq V siné (1.13-54)

into Eq. 1.13-52. Following similar order of magnitude approxima-
tions, an equation of form similar to Eq. 1.13-53 results by replacing
Qg by 6¢ (Eq. 1.13-54), Complete solutions of the approximate
equations were given by Hetenyi (Ref. 1-40).

For small angles ¢, Reissner-Meissner Eqgs. 1.13-51 or 52 can

be approximated by making the usual small angle assumption that

sin® = ¢ and cos ¢ = 1, a simplification considered in detail by
Esslinger (Ref. 1-36). The angle being small, only the highest power

of (1/¢) is retained in each coefficient of Eq. 1.13-52, i.e.,
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(1 R “o4

A 3
1% "3
3
A2= --6-2

2

A3-T

and Eq. 1.13-52 becomes
da. 2d8q, 3 d&q, 3 4, 3
—'—‘9+“ : —24-——2 -_Q¢+4X4Q¢=O (1.13-55)

d¢4 ¢ a6 6% a4 &3 g4 ¢t

which may be rewritten as

) 140 1] fdfes 1age 1 4
>+ -5 >t dé - 5 Q| +4x Qe =0 (1.13-56)
a¢” ¢ dé ¢ dé ¢

This equation can be solved by solving the following second-order

equation:

aQy 1 dy 1 )
o --—2-Q¢ +2iA"Qg=10 (1.13-57)
dé ¢ d¢ ¢

The general solution of Eq. 1.13-57 can be found in Ref. 1-26.
Particular applications of both the Geckeler and Es slinger
approximations are considered in Chapter 2.00. Since each approxi-

mation is a limiting version of the Reissner-Meissner equations, a
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measure of their relative accuracy at a particular angle ¢ can be
obtained by inserting solutions of approximate Eqs, 1.13-53 and -57
into true Eq, 1.13-51,

The approximate versions of the Reissner-Meissner equations
considered above for spherical shells can be generalized for arbitrary
shell shapes by returning to the variables U = Rz Q¢ and writing \ in

its general form 4
R

A =31 - pd (1.13-58)

2.2
th

Solutions of the approximate equations can be obtained by considering A\

to be constant over short segments of the shell (Refs, 1-26 and 1-41),

C. Shallow Spherical Caps

An approximate form of the Reissner-Meissner equations were

presented in the previous section for the analysis of shallow spherical
T segments. Reissner (Ref. 1-42)

— derived and obtained solutions for a

¥
h/ ._ j\ i
[ I r~— more exact set of equations for

spherical caps. The criteria for

o shallowness of a spherical shell
segment used by Reissner is that
if the ratio of height to base dia-

meter is less than say 1/8., The

FIG. 1.13.2
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analysis is applicable to shells that are not shallow when the stresses

are effectively restricted to a shallow zone.

The differential equations can be obtained from Eq. 1.13-40

by substitution of the quantities

6 =«
£,= 0
0’2 =r

Rj = Rz = R = Const.

The strains of the middle surface are obtained from Egs.
1.13-21, --22, and -26 by the appropriate substitution of the above
identities. If the effects of transverse shear distortion are neglected
and, from the geometry of shallow shells it is assumed that -g. -;—i <1,

R

then the bending strains are given by

A=W
K = =
) 8:2
(L L Btw 1 aw (1.13-60)
° rz 862 r or
.22 (1w
re Zar(r =5

The bending distortion expressions are the same as in the theory

of plates,

The observation can be made that for shallow shells the effect of

transverse shear terms Qj, Q3 in the two equations of force
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equilibrium (Eq. 1.13-40) in the meridional and circumferential
directions are negligible. Proceeding on this assumption, these two
equations reduce to the equilibrium equations of plane stress,

As in the theory of plane stress from elasticity, these equations

may be satisfied by means of a stress function F which is obtained by

setting

N 82F

g =

arz
2
N =l23F 1 8°F (1.13-61)
r r dr r2 302
=2 (_1_ BF)
re or \r 30

For convenience, the load potential has been neglected. The complete
expressions are given in Ref, 1-42,

As in the theory of plane stress, a differential equation for F can
be obtained by utilizing the appropriate compatibility condition, which

results in an expression of the form

22 tE 2 .
vVVvE-RgVWS (1.13-62)
where
2
v2=09%2 138 ., 128"
arZ rar rz aez
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The second differential equation involving F and w is obtained by
substitution of the moment equilibrium equations (Eq. 1. 12 -9b) into the
transverse force equilibrium equation. This gives a second

fundamental equation

2
DV V2w+-llinF=O (1.13-63)

For the case of rotationally symmetric bending of shells, exact
solutions for the above equations can be obtained in terms of Thomson-
Kelvin functions (Ref. 1-42). Naghdi (Ref. 1-33) presented a similar
set of shallow spherical shell equations for the case when the effects of

transverse shear deformations are included.

D. Circular Cylindrical Shells

For the case of circular cylindrical shells arbitrarily loaded,
two first approximate theories are of prime importance; Love's first
approximation theory and its simplified version due to Donnell.

For cylindrical shells, al =1, az = R, Rl =, R2 = R are set
with coordinate axes (s, 8) measured along the generator of the cylinder
and the circumferential direction, respectively.

Substitution of these results into the strain displacement equations

yields
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The equilibrium equations become
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The final system of three partial differential equations in the three
displacement components are obtained by eliminating Qx and Qg from
equilibrium Eq. 1.13-65 and inserting the force-displacement relations
obtained using Eq. 1.13-64. The resulting three equations contain cer-
tain terms which higher approximation theories have shown to be
negligible. It is therefore permissible to simplify the equations by
omitting such terms, as shown by Timoshenko (Ref. 1-26). Solutions
to these Love-Timoshenko equations are also presented in Ref. 1-26 for
particular problems of unsymmetrically loaded circular cylinders.

For the case of axisymmetrically loaded circular cylinders,

Love's Eqs. 1.13-64 and -65 readily reduce to

du

El =E, Ez

(€

1 2 (1.13-66)

Yig =z =%2=0

and
dN
X =
el
@Q N (1.13-67)
= _8,4=0
dx R
dM
= %0
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If only pressure is considered, Py, = 0 and q = p, and the above
equations lead to a single fourth order equation in w. For a constant

-thickness shell the equation is (Ref. 1-26)

4
AW, 4pty =% (1.13-68)
ot

where

2 3
3(1 -4 Et
4 _ ( ) D

B 22 D=

R%t 1201 -wd)
Eq. 1.13-68 is identical to that for a beam on an elastic foundation.,
Particular solutions are given in Refs, 1-26 and 1-43, and are
summarized in Chapter 2. 00,
Donnell simplified the strain displacement relations (Eq. 1.13-64)
by ignoring the influence of the original shell curvature on the deforma-

tions due to bending and twisting moments. The change in hoop

curvature and the change in twist thus become

2 2

s K= .22 (1.13-69)
2 R% pe2° 127 "R oaeax '

while the remainder of expressions (Eq. 1.13-64) are unchanged. By
this approximation the relations between moments and change in curva-
ture and twist become the same as for flat plates. A similar simplifi-

cation was made in the previous section for shallow spherical shells,
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fad ] are also

Following Donnell's approximation, the terms g
neglected in the second equilibrium equations so that the first two
equations reduce in form to the corresponding equations of plane stress,

A stress function F to defined for cylindrical coordinates as

2
F o°F
Nx=az,N,=ﬁ—F,Nx'-- ' (1.13-70)
38 axz dxos
where
2.1
3s R 006
and the compatibility expression is obtained as
véF = =% aw 1.13-71)
=R > (1.13-

Following a similar procedure to that described in the last section

for shallow spherical caps, the equilibrium equations become
4 1
Dv w+-§——-q=0 (1.13-72)

Elimination of the function F between the two equations above

yields an eighth order partial differential equation in w of the form

4
ow + S B ¥ . & g (1.13-73)

DRz ox

which is known as Donnell's linear theory (Ref. 1-44). A slightly more

complex form of the above equation was obtained by Naghdi (Ref. 1-33)
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when transverse shear distortion was considered. Donnell also pro-
posed a simplified version of cylinder stability equations in the expanded
form of the above equations. The details of this will be discussed in the

section on shell stability.

E. Second-Order Approximation Theories for Shells of Revolution

The second order approximation theory of Flugge (Ref. 1-18) and
Byrne (Ref. 1-19) retain the iz__ terms in comparison to unity in the stress
resultant equations and in the strain-displacement relations. Fligge-
Byrne type equations for a general shell are discussed by Kempner
(Ref. 1-22) who obtains them as a special case of a unified thin-shell
theory. Applications of this second approximation theory have
generally been restricted to circular cylindrical shapes, for which
case solutions are obtained in Refs., 1-19 and 1-45. In the latter
reference, the Flligge-Byrne type equations are considered as a
standard against which simplified first approximation theories are
compared,

Secondorder approximationequations are derived by Vlasov (Ref. 1-16)
directly from the general three-dimensional linear elasticity equations
for a thick shell. The assumption €3 = chz =Y¢6 = 0 is made, and the
remaining strains are represented by the first three terms of their

series expansion. The assumption of zero normal strain as well as
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zero transverse shear strains permits a rapid transition from the
three-dimensional theory to the two-dimensional equations of shell
theory, but it should not be interpreted in its strict sense as implying

a state of plane strain. Rather, it is a convenient as sumption equivalent
to the basic Kirchhoff-Love hypothesis that normal lines remain normal
and their extensions are negligible. An excellent discussion of this

assumption is given by Novozhilov (Ref. 1-5).

1.13.5 Membrane Theory of Shells

The shell theories studied in the previous sections are generally
referred to as ‘'bending'' theories of shells because this development
includes the consideration of the flexural behavior of shells. 1If, in the
study of equilibrium of a shell, all moment expressions are neglected,
the resulting theory is the so-called ''membrane' theory of shells.

A shell can be considered to act as a membrane if flexural strains
are zero or negligible compared to direct axial strains. Jt is apparent
that two types of shells comply with this definition of a membrane:

(1) shells that lose stiffness sufficiently so that it is physically incapable
of resisting bending, or (2) shells that are flexurally stiff but loaded
and supported in a manner that avoids the introduction of bending strains.
The state of stress in a membrane is referred to as a ''momentless"

state of stress. For an absolutely flexible shell, since it offers no
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resistance to bending, only a momentless state of stress is possible,

For shells with finite stiffness, such a state of stress is only one of the
possible stress conditions and for amomentless state, several supplementary
conditions relating to the shape of the shell, character of load applied,

and support of its edges must be fulfilled.

Due to small thicknesses, shells badly adapt themselves to
bending so that relatively small bending moments generate considerable
stresses and deflections. Therefore, the pure bending stress con-
dition is to be avoided and is technically disadvantageous to shells,

The momentless state of stress condition is a desirable feature in the
design of shell structures because it offers the advantage of uniform
utilization of the strength capabilities of the shell material, in most
cases using less material and, thus, resulting in less weight. The
study of membrane theory is considerably simpler than the bending
theory and, for this reason, his.torically preceded the latter theory.
The first contributions to membrane theory were furnished by Lam{
and Clapeyron early in the 19th century. These works considered
symmetrical loading on shells of revolution. On the assumption that no
moments could exist in the shell, the loading could only produce normal

forces. On this basis, the calculation of the shell could be '"statically
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determined" (i. e., the analysis could be performed solely with the help
of the force equilibrium equations without the need of the deformation
relations).

The equilibrium equations for membrane theory are summarized
in the following paragraph. These equations are based on the azsumption
of small deflections, and follow directly from the zero -ordered approxi-

mation to the linear theory of shells.

A. Equilibrium Equations

The equations of membrane theory can be obtained directly from
the equations of general shell theory (Eq. 1.12-9). Since membrane
theory, according to our classification of shells, represents a zero-
ordered approximation, the strains are assumed to be uniform across

the shell thickness and from Eq. 1-13-20 we find that

(1 =¢(l)

< =¢g (1.13-74)
.0

Y12 =Y 12

where it is noticed that curvature and rotation terms are neglected.
Accordingly, it is assumed that, although the shell may be

resistant to bending, in view of the smallness of curvature and rotation,

the moment terms inthe equations of equilibrium for the shell element

are unimportant. Therefore, from the consideration of Eq. 1.13-29,

85



M =M, = M, =0 (1.13-75)
which implies the neglection of transverse shear forces from Eq. 1.12-9b
Q, = Q,=0 (1.13-76)
and that in-plane shear forces are
Nj2 = Np; (1.13-77)
Introducing the preceding values into Eq. 1. 12-9.a yields the

equilibrium equations for a shell membrane

da_N 3o N d