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FOREWORD

The intent of this Shell Analysis Manual is to provide specific

instructions, procedures, basic solutions, and recommendations to

facilitate the expedient static structural analysis of shell-type space-

craft structures, and to provide an introduction to and reference for

the practical static structural analysis of shells.

This document was prepared by the Structures and Dynamics

Department of North American Aviation, Inc., Space and Information

Systems Division, Downey, California, under Contract NAS9-4387 for

the National Aeronautics and Space Administration, Manned Spacecraft

Center, Houston, Texas. Mr. Herbert C. Kavanaugh, Jr., was the NASA

Technical Representative for the program. Mr. F.L. Rish of the NAA

Space and Information Systems Division was the Program Manager.

The program was performed between May 1965 and June 1966.

Generally, the information contained in this document is a con-

densation of material published by U.S. Government agencieB,

universities, scientific and technical journals, text l_ooks, aerospace

industries, including North American Aviation, Inc., and foreign
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publications. Particular credit is given to the following publishers

who granted NAA permission to use their publications:

American Concrete Institute

American Institute of Aeronautics and Astronautics

American Society of Civil Engineers

Leibniz-Verlag, West Germany

Springer-Verlag, West Germany

This manual was authored by Drs. E.H. Baker, A.P. Cappelli,

L. Kovalevsky, and R.M. Verette under the direction of F.L. Rish.

The authors are indebted to Messrs. R.M. Bereznakj R.W. Johnson,

A.H. McHugh, K.E. Pauley0 D. Salinas, and A.E. Zagorskifor

technical assistance.

NOTE

Comments and suggestions for revisions and editions to this Manual

will be appreciated and should be sent to: Chief, Structures and

Mechanics Division, Code ES, NASA Manned Spacecraft Center, Houston,

Texas 77058.
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ABSTRACT

This Shell Analysis Manual provides specific instructions, pro-

cedures, basic solutions, and recommendations to facilitate the

expedient static structural analysis of she11-type spacecraft structures.

It also provides an introduction to and reference for the practical static

structural analysis of shells.

The manual comprises the following chapters:

I. 00 Introduction to Shell Theory

2.00 Procedures for Static Analysis of Shell Structures

3.00 Procedures for Stability Analysis of Shell Structures

4.00 Minimum Weight Shell Design

5.00 Optimum Use of Computer Programs

Chapter 1.00 presents a derivation of general shell theory

from concepts of the linear theory of elasticity and includes the basic

relationships of shell geometry, geometry of strain, stress-strain, and

equilibrium. The various shell theories are classified according to

the simplifications made to a higher-order theory. Approximate

theories and simplifications that have made the solution to these

theories possible are delineated. A presentation of nonlinear shell

theory to be used for large deflection analysis of shells is included. This

V



development is based on v_riational principles and the concept of

stationary potential energy. Structural stability shell theory is

discussed. The shell stability equations are presented and techniques

for determining buckling loads using variational procedures are outlined.

A discussion of the discrepancies between the theoretical and experi-

mental results is included.

In Chapter Z.00, instructions, procedures, basic solutions, and

recommendations are presented to determine static deflections and

internal load and stress distributions in shells under various loading

conditions. This chapter also includes membrane solutions for various

loading conditions, unit edge loading solutions, and combined solutions

for various shell geometries and constructions, loadings, and boundary

conditions. Factor of safety concepts, failure criteria, and margin of

safety calculation under uniaxial and biaxial loading conditions are also

presented.

Methods of analysis for the static instability (buckling) of shell

structures are presented in Chapter 3.00. This chapter presents

methods for obtaining the design allowable buckling loads for unstiffened

cylinders, cones, spherical caps, and curved panels under various

loading conditions. Also included are procedures for the stability analysis

of orthotropic shells, stiffened cylinders, and sandwich shells. Analyses

for inelastic buckling and combined loading conditions are also presented.
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Chapter 4.00 presents methods of analysis to be

used in preliminary design to determine the lightest shell wall for

various constructions subjected to specific loading conditions. A

survey of pertinent literature is also included in this chapter.

An introduction to the fundamentals of computer utilization is

presented in Chapter 5.00. The basic computer characteristics are

described. An introduction to matrix algebra is included in this

chapter, in addition to a description of the techniques used in solving

shell problems and discussions of the use of computers in conjunction

with these techniques.
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NOMENCLATURE

Af Frame area

A i Cross-sectional area; Lame parameters

Aij Generaliz'ed Hookers law coefficients

Ast Stringer cross-sectional area

A s A x ,
J AWsP

Ax e, A 8

Waffle constants (Paragraph 3.32.4)

a Panel width or length

aij

B

Coefficients in assumed displacement function

Et
Extensional stiffness (rigidity), for homo-

1 - _2

geneous isotropic shells; plasticity curve

B x, B e Extensional stiffnesses (rigidities) for orthotropic

shells (Section 3.32)

b Stringer spacing; panel length; flange length

bf Stringer flange width

b w Web depth

xxv



C Rigidity
Et

4(1 - 2)
; buckling coefficient for stiffened

cylinder; plasticity curve

C b , C c , C s Buckling coefficients for circular cylinders and

cones subjected to bending, axial compression,

and torsion, respectively

ACb, ACc ' ACs Increase in the buckling coefficients due to internal

pressure for the loading cases of bending,

axial compression, and torsion, respectively

C
e Material and shape parameter for crippling

Cp Buckling coefficient for spheres or cylinders sub-

jected to external pressure

Cx i, C8 i, C}_i Layered construction material constants

(Section 3.32)

C Sandwich core depth; column fixity coefficient

Cf

D

Frame stiffness parameter for stiffened shell

(Paragraph 3.42.2)

Bending stiffness (rigidity) Et3 for homo°

12(1- _ 2 )

geneous isotropic shells; plasticity curve

xxvi



D
Dx 8/Dx + }_e

D x, D 8, Dx8,

DOx, DQy

Stiffness rigidities for orthotropic shells

(Paragraph 3.32. l)

d Frame spacing for stiffened cylinders

d e Effective width of sheet acting with frame

E Modulus of elasticity; plasticity curve

E C Flatwise compression modulus of core

Ex I EO t
Modulus of elasticity for orthotropic material

(Section 3.32)

(EI)f Flexural stiffness of frame

ell, e22, el2 Non-linear in-plane strains

0 o 0

e l, e 2, el2 Components of nonlinear in-plane middle surface

strains; also, strains corresponding to

equilibrium configuration

• l, • 2, el2,

• l, • 2, el2

Admissible variations of the strains from

equilibrium position

xxvii



e lz' ezz
Non-linear transverse shear strainl

(Eq. l. ZZ-lb)

F Functions: F i (_) = F_ (kL_) and F i = F i (kL);

G Shear modulus; shear stress functions; plasticity

curve

B 0 (l-Fx}_) i

2Gxe " _8

Gxz, Gez, G c Transverse shear moduli of the sandwich core

(Section 3.50)

Gxe i
In-plane shear modulus of material (Section 3.3_-)

Gxe In-plane shear stiffness of the wall of an

orthotropic shell (Paragraph 3.32. I)

H Overall depth of waffle

Hp Height of shallow spherical cap

h Distance between the centroids of the facing

sheets for a sandwich element

Moment of inertia
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I e
Effective moment of inertia

If Moment of inertia of frame

Ip Polar moment of inertia of stringer

I s , Iw , Ix,
s

Ix0. I o

_raffle constants (Paragraph 3.32.4)

Designation of the edge of the cone or lower edge

of the, spherical segment; part number, layer

numb e r

Torsion constant for stringer cross section

K b, K c, Kp, K s Buckling coefficient

K L Buckling coefficient for intracell buckling

k Designation of the edge of the cone or upper edge

of the spherical segment; spring constant for

tots ional instability;

4v s (1.

xxix



kZ Negative of s,lope of C c versus V c curve

ksheet' kweb Spring constant for torsional instability of stringer

k w
S

Waffle constants (Paragraph 3.3Z, 4)

L Length of cylinder; slant height of cone

L Distance between bulkheads along the meridian

L Effective length of column

L e Equivalent length (cones)

Height of cone

M Body bending moment

Mi k Bending moment at edge i

Mki Bending moment at edge k

S x Bending moment per unit length acting at section

x = constant for cone and cylinder

M e Bending moment per unit length acting at section

6= constant for cone and cylinder

XXX



%r

M_ Bending moment per unit length acting at section

= constant for sphere

Mx0 Twisting moment per unit length acting at section

x = constant for cone and cylinder

Mex Twisting moment per unit length acting at section

8 = constant for cone and cylinder

Me_
Twisting moment per unit length acting at section

e : constant for sphere

M_e Twisting moment per unit length acting at section

4= constant for sphere

M I Bending moment per unit length acting in

meridional coordinate direction

M z Bending moment per unit length acting in circum-

ferential coordinate direction

MI2 Twisting moment per unit length acting on

coordinate line parallel to g2 and acting about

the coordinate Iine _1 (MI2 = M2I)

xxxi



m Number of layers or parts

N x Longitudinal inplane force per unit length acting

at section x = constant for cone and cylinder

N 8 Circumferential inplane force per unit length

acting at section 8 = constant

N_ Meridional inplane force per unit length acting

at section ¢ = constant for sphere

Nx8 Shear per unit length acting at section x = constant

for cylinder and cone

Nsx Shear per unit length acting at section e = constant

for cylinder and cone

Ne_ Shear per unit length acting at section 8 = constant

for sphere

Nse Shear per unit length at section _b= constant for

sphere

N Inplane force per unit length acting in meridional

coordinate direction (Fig. I. IZ-14)

xxxii



N2 Inplane force per unit length acting in circum-

ferential coordinate direction (Fig, I. 12-14)

NI2 Shear per unit length acting perpendicular to 6 1

coordinate in a direction of 6 2 (NIz = NZl)

(Fig. 1. 12-14)

n Number of buckles

P
cr

Total axial compI'essive load for a cylinder, cone,

or sheet stringer panel

Pl
Loading component in meridional direction

P2
Loading component in circumferential direction

Pcr
Design-allowable external buckling pressure

P£' Ps Pressure parameters (Paragraph 3.43. I)

Q Transverse shear per unit length acting on coordi-

nate line parallel to _2 acting in Z direction

(Fig. 1.12-14)

Q2 Transverse shear per unit length acting on coordi-

nate line parallel to _i acting in Z direction

(Fig. 1.12-14)

xxxiii



Qb

Qik

O-ki

Q
X

QO

Q¢

q

R

Di_vlensionless parameter for buckling analysis

of frame and stringer stiffened cylinders

subjected to bending
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Radius of cylinder measured from the axis of

rotation to the centroidal surface of the

cylinder wall; radius of sphere measured

from the center of the sphere to the middle

surface of sphere wall
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the equilibrium configuration
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g

V = U - W = total potential energy
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P Radius of gyration; wavelength parameter
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Buckling stress of sheets between stringers

Vct Stringer torsion instability stress

Vcy
Compressive yield stress

v i, vii Normal stresses (for i = I, Z, 3) in _I' _2' _3

coordinate directions, respectively
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Components of stress corresponding to the
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0.i j" vij (i _ j) In-plane shear stresses (i, j - 1, Z, 3)

m w i

°'1' 0.2' Vl. 2'
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Associated stress of admissible variations
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0"O Stress level at which initial dimpling occurs for

sandwich construction with cellular core

Tcr
Design allowable shear buckling stress

T Waffle angle

Angle defining the location of the point under

consideration on the meridian

at edge t

at edge k

X Angle between tangents to curvillnear coordinate

lines (for orthogonal coordinates X - 90");

ratio of different values as shown in the text
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o
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1.00 INTRODUCTION TO THE THEORY OF SHELLS

1.01 GENERAL

The theory of shells constitutes that part of the theory of elasticity

concerned \vith the study of deformations of thin elastic bodies under the

influence of loads. Theories of thin shells may be broadly classified

according to the fundamental theories of elasticity which they approximate:

(classical) linear or nonlinear elasticity. Shells in the inelastic range will

not be discussed in this chapter.

The most corr_rr_on shell theories are those based on linear elasticity

concepts. Linear shell theories adequately predict stresses and deformations

for shells exhibiting small elastic deformations. By small deformations, it

is assumed that the equilibrium equation conditions for deformed elements

are the same as if they were not deformed.

The nonlinear theory of elasticity forms the basis for the finite

deflection and stability theories of shells. Large deflection theories are

often required when dealing with shallow shells, highly elastic membranes,

and buckling problems. The nonlinear shell equations are considerably more

difficult to solve and for this reason are more limited in use.

An essential problem in the analysis of shells is that of shell stability.

The buckling analysis of shells requires the determination of the stability of

the equilibrium states obtained from nonlinear elasticity theories. The



st_lbility of shells will be treated in a unified manner with linearized and

nonline,_r shell theories in such a manner as to indicate the essential unity

of shell theory.

This chapter is divided into three sections. The first is concerned

xvith the shell theories based on linear elasticity. The linear theory of

shells is presented starting from basic relationships of three-dimensional

elasticity. The basic assumptions necessary in the development of linear

shell theory from elasticity consiaerations are outlined along with a variety

of simplifications,

The second section considers the problem of shells when displacements

or, to be more precise, displacement gradients can no longer be considered

negligible. In this case, the shell theory developed must be based on

concepts of nonlinear elasticity. A presentation of nonlinear shell theory

follows from minimum potential energy considerations as derived from

calculus of variations.

The third section is devoted to the theory of shell stability or buckling.

A discussion of the concept of stability together with the stability equations

is included.

This chapter presents a brief review and summary of shell theories;

the intent is to supply the analyst with the theoretical background necessary

for use of subsequent chapters of the manual.
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I. I0 LINEAR SHELL THEORY

I. II INTRODUCTION

The theory of small deflections of thin elastic shells is now considered.

The relationships governing the behavior of thin elastic shells are based

upon the equations of the mathematical theory of linear elasticity.

The geometry of shells (i. e., one dimension much smaller than the

other dimensions) does not warrant, in general, the consideration of the

complete three-dimensional elasticity field equations. In fact, the consider-

ation of the complete elasticity equations leads to expressions and equations

which are so complicated that it becomes impossible to obtain solutions for

shell problems of practical interest.

Fortunately, sufficiently accurate analyses of thin plates and shells

can be obtained using simplified versions of the general elasticity equations.

In the development of thin shell theories, this is accomplished by attempting

to reduce the shell problem to the study of the deformations of the middle

(or reference) surface of the shell. In all cases, one begins with the

governing equations in the three-dimensional theory of elasticity and attempts

to reduce the system of equations, involving three independent space vari-

ables, to a new system involving only two space variables. These two

variables are more conveniently taken as coordinates on the middle (or

reference) surface of the shell.



Shell theories of varying degrees of accuracy may be derived

depending upon the degree to which the elasticity equations are simplified.

The approximations necessary for the development of an adequate theory

of shells have been the subject of considerable controversy among the

investigators in the field.

Historically, the first attempt to formulate a generalbending theory

for elastic shells from the general equations of elasticity is credited to

Aron (Ref. 1-1). The first apparently successful approximate theory was

presented by Love (Ref. 1-2) in 1888. Love applied an analogy to the

Navier hypothesis (elementary beam theory) or Kirchhoff assumption (plates)

in the treatment of shell problems. This theory, often referred to as Love's

first approximation, has since occupied a position of prominence. In spite

of its popularity, the develop_*nent given by Love is not free from inadequacies

in that it is inconsistent with regard to small terms. Many investigators,

including Love (Ref. 1-3) himself, have attempted to improve on the approxi-

mations to arrive at a consistent linear shell theory. {See Ref. 1-4.)

However, Novozhilov (Ref. 1-5) has indicated that the inconsistencies

obtained using Love_s approximations are, in general, not of great impor-

tance in the practical analysis of most shell problems. The simplicity and

complete analogy with the corresponding formulas of the theory of plates,

makes Love's first approximation an important tool in the development of

shell theory.
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To better understand the theory of shells, the subsequent development

of the theory will start from consideration of the general elasticity equations.

The various shell theories will be classified and the assumptions and simpli-

fications necessary in the development of each shell theory will be specified

and their effects assessed. A linear shell theory based on Love's first

approximations will be completely developed from elasticity considerations.

The limitations or range of applicability of Love's assumptions will be

pointed out. Other approximate or specialized theories will be discussed

as they appear.
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I. 12 BASIC RELATIONSHIPS FOR THE THEORY OF THIN SHELLS

In this section the basic formulas pertaining to the analysis of stress

and strain in terms of orthogonal curvilinear coordinates are presented.

These are given for reference and serve as a basis for the subsequent

developments of linear shell theory.

1. 12. 1 Geometry of Shells

A. Arbitrary Shell

Before discussing shell theory, the geometry of a shell in three-

dimensional space is defined. The geometry of a shell is entirely defined

by specifying the form of the middle surface and the thickness of the shell

at each point. To describe the form of the middle surface it is necessary

to present some of the important geometrical properties of a surface. A

more detailed presentation of the theory of surfaces can be found in books

on tensor analysis and differential geometry (Refs. 1-6, 1-7, and 1-8).

The position of points on any smooth surface can be described in

terms of two independent parameters (61, 6 2)" If the range of these param-

eters is restricted so that every point on the surface corresponds to one

and only one pair of values (61, _2 ); then the parameters (610 62)

constitute a curvilinear coordinate system for points on the surface.

Equations 61 = constant and 6 z = constant represent families of curves

on the surface (Fig. 1. 12-I), These parametric curves are called



_'1 = C3 _'1 = C4
. ,,_ _1 = C5

_I=C 1 _1_

=c2'

= 124,

e2 \

FIGo 1.12-1. Families of Curves on a Surface

coordinate lines of the surface. Thus, a surface can be completely

described by a doubly infinite set of such parametric curves where the

position of any point on the surface is determined by the values of _ 1 and

_2. (A simple illustration of this concept is the lines of latitude and

longitude on a world globe. Geographical locations are given by latitude

and longitude. These lines can be thought of as coordinate lines,) The

distance between two neighboring points on a surface can be related by the

differential distance (ds).

The square of the linear element (ds) of any curve traced on the

surface is given by an expression of the form:

ds 2= algdgl2 +c_22dg2Z + gala2CosXd_ldg2 (1. 12 -1)



where X is the angle between the tangents to the coordinate lines gl and _2

at any point. Eq. 1.12. I-I is called the first quadratic form of arc length in

the theory of surfaces. For orthogonal coordinate systems, the angle X is

equalto 90 ° and Eq. I. 12. I-I is considerably simpler because the last term

vanishes. The coefficients al ands2 are, in general, functions of gl and

g2 and represent the first fundamental magnitudes of the surface {for ortho-

gonal systems). The quantities _I, c_2 are sometimes called Lam_

parameters or coefficients.

Lame parameters can be interpreted geometrically as lengths of

linear elements along constant coordinate lines of the surface when the

increment (differential) of one of the two independent variables has a unit

value (Fig. I. 12-2).

FIG. I. 12-2. Length of Linear Elements Along Constant Coordinate Lines

8



The quadratic form for a given surface will have different expressions

in different systems of curvilinear orthogonal coordinates (_l, _2 )" In

other words, for particularly selected coordinates (El, _2 ) there will

correspond specific expressions for Ol andaz. To illustrate, consider

the specialized curvilinear coordinate systems: Cartesian and polar coord-

inates. In Cartesian coordinates (two dimensions), the quadratic form

(Eq. I. 12-I) is given by

_x

ds 2 = dx 2 + dy 2

where, in this case, _i = x,_2 = Y and

the Lam_ parameters become _I - (>2 " I

Consider now a system of polar coordinates. The quadratic form in

this case becomes

ds 2 = dr 2 + r2d6 2

and noting that _i = r, g2 = 8 the Lame'

parameters are given by a 1 = I, cr 2 = r

For convenience, the orthogonal curvilinear system of coordinates

is chosen to simplify the formulas for the surface. Such a system is that

9



in which the two families of coordinate curves are simultaneously lines of

principal curvature of the surface. A line of curvature is a curve in the

surface which possesses the property that normals to the surface at consecu-

tire points on the curve intersect. In the general case, the curvature of

this line varies with its orientation on the surface. The directions at which

the curvature reaches extremes are the directions of the lines of principal

curvature. The direction of the lines of principal curvature can be shown

to be orthogonal (Fig. 1. IZ-3). Quantities R 1, i%2 denote principal radii

_'2 "C' p

FIG. 1. 1Z-3. Principal Radii of Curvatures

of curvature of the surface at a point (P), R I being the radius of curvature

at that section drawn through the normal at the point (P) which contains the

tangent to the curve of the family _1.

The position points in a surface have been shown to be related by the

curvilinear coordinates _i and _ Z" The location of a point on a shell with

10



thickness,

the middle surface of the shell,

the middle surface.

The position of an arbitrary point,

t, can be related by three parameters. Two (_1, _ 2) vary on

and the third (z) varies along the normal to

M, in space is fixed by three

parameters; the coordinates E1 = Cl, _2 = c2 of the base of the perpendic-

ular, and the length of the perpendicular z = c 3 (Fig. 1. 12-4).

M

FIG. 1.12-4. Position at an Arbitrary Point in Space

In such a triorthogonal system of curvilinear coordinates,

of a linear element in space would have the form

dS 2 = Al2d_l Z + Az2d_22 + A3dz2

where the Lame parameters are now written as

AI=O 1 I+

A2=cr 2 1 +

A3= 1

the square

(l.iz-z)

(1. xz-3)
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The geometrical significance of Eq. I. 12-3 can be seen by exami-

nation of Fig. I. IZ-5 which shows the cross section of a shell element

cut along a coordinate axis.

"L
FACE

FIG. 1.12-5. Geometrical Significance of Lame' Parameters

_I' cz2' RI' R2 in Eq. I. 12-3 are functions of _ I and _Z and must satisfy

the three relationships from the theory of surfaces. Two of these relation-

ships, known as the condition of Codazzi, are given by

I aal_ 8 IO'l

1 a_2 a /°2
(I. IZ-4a)
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The other relation, called the condition of Gauss, is

aa2) + --_} ( 1 aal )= _ ala2a_l a¢2 a2 _2 RIR2

Equations 1. 12-4a and -4b are presented for reference.

complete description of the Gauss-Codazzi relationships,

(1. 12-4b)

For a more

see Ref. I-5.

B. Shells of Revolution

In the engineering application of thin shells, a shell whose refer-

ence surface is in the form of a surface of revolution has extensive

usage. The previous section considered the differential geometry of any

surface. This discussion will now be restricted to surfaces of revolu-

tion. A surface of revolution is obtained by rotation of a plane curve

about an axis lying in the plane of the curve. This curve is called the

meridian, and its plane is the meridian plane. The intersection of the

surface with planes perpendicular to the axis of rotation are parallel

circles and are called parallels.

For such shells the lines of principal curvature are its meridians

and parallels. Accordingly, a convenient selection of coordinates of the

middle surface are the angle ¢b (between the normal to the middle sur-

face and the axis of rotation) and the angle 0, determining the position

of a point on the corresponding parallel circle (Figs. 1. 12-6 and 7).

13



I R2< 5,

FIG. 1.12-6. Coordinates on a FIG. 1.12-7. Coordinates on a

Surface of Revolution Surface of Revolution

Let R I be the radius of curvature of the meridian. The second

radius of curvature R7 will always be the length of the intercept of the

normal to the middle surface between the surface and the axis of the

shell since, considering two adjacent points on the same circle, the

normal from these points intersect on the axis of the shell.

The element of arc of a meridian will be given by

ds I = Rld_

Correspondingly, the element of arc of a parallel circle is given by

ds 2 = R 7 sin_b dO

14



In this case, the Lam_ parameters are

a I = R 1

a 2 = R 2 sin d_ (1. 12-5)

where

f'l =_

gz=e

Thus, the middle surface of a shell of revolution is completely

determined by knowledge of its principal radii of curvature R 1, RZ,

which will be functions of only one of the curvilinear coordinates,

.amely _.

Table I. 12-I presents the radii of curvature expressions

generated by the rotation of second order curves about their axes of

symmetry.
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TABLE I. IZ-l. GEOMETRY OF SHELLS OF REVOLUTION

Increment of Arc

2 2 2 2
ds2 =a Ida) +a2d O

where Lame parameters are of the

form:

a I =RI

a 2 = R 2 sin _ = R

Sphere _ = 0

Paraboloid ¥ = I

Ellipsoid ¥> - I

Hyperboloid _< -I

R 1 R 2

Z o

(1 + Y sin2_ )3/2

RQ
1/2

(1 + Y sin2_b )

R o = Radius of curvature at _ = 0
_¢ = Shell shape parameter

Degenerate Cases

Increment of Arc

= 2 2 Ide2ds 2 aldX +o

Lam_ parameters of form:

Ul=l

a 2 =R 2 [

• R I R 2

Cylinder m R

Cone ¢o R
t

$in,(90" -u)
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I. IZ. Z Geometry of Strain

As stated previously, the theory of shells is concerned, among other

things, with the determination of small deformations due to load. Some of

the basic geometrical properties of deformation (strain) will be examined in

this section.

The basic problem of the determination of strain at a point in the shell

requires relating the position of points in the shell before deformation with

their location after deformation.

The deformation condition in an elastic body can be described, in

general, by three displacement quantities or by six strain quantities. The

three displacements must be independent of each other to uniquely define

the deformed condition of the body. Since both deformation quantities

(displacements or strain) describe the same state of affairs, three relation-

ships relating the six dependent components of strain must exist. These

relationships are the compatibility conditions of the state of strain (Ref. 1-5).

As previously stated, the displacement components and the components

of strain describe the same state of deformations in the shell; therefore,

they can be linked by virtue of this state. The relating of strains to dis-

placements is purely a geometrical problem requiring the consideration of

shell geometry before and after deformation. A detailed development of

the strain equations based on geometrical considerations can be found in

many of the books on elasticity (Refs. 1-3, 1-9, and 1-10).

17



The strain displacement relationships appropriate for linear shell

analysis can be readily obtained in terms of a system of orthogonal curvi-

linear coordinates from the corresponding relations for a general elastic

body. The general strain equations of three dimensional elasticity are

introduced to illustrate the assumptions inherent in the development of a

linear shell theory from elasticity considerations.

For small deformation theory, the components of normal strain

( (I' ( 2' c 3) and of shear strain (_12, _ 13' _ 23) are related to displacement

components (U, V, W) measured along tangents to the coordinates lines of the

orthogonal coordinate system (_I' 62' _3 ) as follows:

1 aU V aAl W aAl
= + + (I. 12-6a)

'1 A1 0_ 1 AIA2 a_ 2 AIA3 a_ 3

1 av + u 8A2 W 8A2( =-- + (1. lZ-ab)
2 Ap_ _2 A1A2 8_1 A2A3 0_3

I 8W V aA3 U gAB

(3 ='_3 _ +- + (I. 12-6c)A3A2_ XlA3

VlZ-AI _ _ AZ 0-'G" ¢l. lZ-6d)

'_13- A3 _ +'XT a-_; el. IZ-Se)

A3 0 (A_)+ A2 0 (A_) {I. 12-6f)Y23 - A2 _ A3 8_'-=_

where (A1, A_, A3) are the Lame parameters which are basic quantities in

the characterization of the coordinate system, g1'_2'_3' (see

Section 1.12.1-A.).
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of lines of curvature

within the shell wall,

coordinate measured along the normal to this surface such that (_1,

form a right-hand coordinate system. (See Fig. 1. 12-8.)

In describing the geometry of shells, in Sec. 1. 12. 1, the coordinates

_2) were specialized to correspond to the parametric curves consisting

_1 = constant, _2 = constant of a reference surface

and z was taken to correspond to _3' where z is a

z)

w

FIG. 1. 12-8. Surface Coordinates for a Right-Hand Curvalinear

Coordinate System

The Lamt parameters when specialized for a shell coordinate system

are described by Eq. 1. 12-3.

In the development of the small deformation strain displacement

equations (Eq. 1. 12-6), the assumptions consistent with Classical elasticity

have been introduced. These assumptions are as follows:
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I. Strains are small in comparison with unity, i. e. , _ << I

Z. Displacement gradients are of the order of magnitude of strain and

assumed small in comparison with unity, i.e., terms such as

aW _)U

_-_, _.-_, etc... << I

3. Displacements are small (compared with linear dimensions of the

shell), i.e., in a shell of thickness t, W << I
t

Assumptions 2 and 3 imply that rotation expressions are small in comparison

with unity. These assumptions permit higher order terms in the strain

displacement equations to be neglected. The more complicated strain

equations of nonlinear elasticity will be discussed in Sec. I. Z0.

1. lZ. 3 Stress and Stress Resultants

In the next two subsections, the basic relationships for shells obtained

from the law of statics are presented. The concept of stress resultants will

be introduced together with relationships for static equilibrium.

When a shell is under the action of external forces, it undergoes

distortion, and the effect of the forces is transmitted throughout the body.

Across any small internal plane area of the body, forces are exerted by the

part of the body on one side of the area upon the part of the body on the other

side. The term "stress" denotes this internal force per unit area. (See

Fig. 1. 12-9).
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AF

Stress = • =
Z_A_ 0

(l. 1 -7)

FIG. I. 12-9

Consider a stLessed element of shell of thickness t, cut along

coordinate lines El, El + d_l, g2 and _2 + d_2 (Fig. I. 12-I0).

÷

FIG. I. 12-i0. Internal Stresses on a Shell Element
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The internal stresses shown in this figure are described as follows:

_II' _22 are normal stresses, acting on the faces oft}le element,

T , T are in-plane shear stresses acting parallelto the middle
12 21

surface.

r13, T23 are transverse shear stresses acting normal to the middle

surface.

The positive directions of stresses are as shown in Fig. I. 12oi0, i.e,,

normal stresses acting on the faces which coincide with positive directions

are positive.

For purposes of obtaining a two-dimensionaltheory of shells, it will be

convenient to introduce statically equivalent forces and bending moments

instead of these stresses. The introduction of stress resultants and couples

permits the elimination of the z coordinate in the equilibrium equations,

As an example, consider a simple linearly varying stress distribution

acting on a faceof an elementof shell; this stress, which willbe called _II,

can be considered a combination of a uniform and bending type of stress

distribution (Fig. 1. IZ-ll).

FIG.

= N

M

1. 12-II. Statically Equivalent Force System
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The resultants (forces per unit length of given arc length) acting on a

shell element with arc lengths on their principal lines of curvature,

(ds I = Ald_l and ds z = A 2 d£2), are for stresses _11, T12, T13 .... etc.,

t/2

N1 J-t/Z

NlZ =.-t/Z TI2 [ + z" dz

t/Z (f r13 l+ z_dz°l = RZ]
_ _ t _ _ /

(1. lZ-8a)

N z =
_t/2 ( Z_dz

e22 1 +

J-t/Z R1]

,,2 )Nf d21 t/2. 1 R 1

OZ =

t/2.

J-t/z R1

and for the stress resultants for moments,

..t]2 /\
MI = / z a ll_l + z

.l-t/Z

dz

= /t/z
MlZ ./- t/2

.t/2

Mz-J -t/z

dz

dz

(I. 12-8b)

= z T21 + d _-
M21 J-tlZ
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Inthoaboveexpressontheterm(pros,nttoaccountfor,h.
trapezoidal shape of the shell element resulting from the curvature of the

shell. Fig. 1. 12-5 illustrates how an incremental portion of shell a distance

z
z from the middle surface is augmented by an amount --.

R

By replacing the stresses by their equivalent forces and" moments, one

may, in the future, consider instead of the space element cut from the shell

the corresponding element of the middle surface on the sides of which act

these resultant forces and moments (Fig. 1. 12-12).

The significance of the ten resultants so defined is suggested simPlY

by the laws of statics, irrespective of material or of the state of deforma-

tion of elements in the shell.

z

Qt T Q2

_I_ N2 _"b_2

N ! 21

FIG. 1. 12-12. Resultant Forces on a Typical Shell Element
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1. 12.4 Equilibrium Equations for a Shell

The shell element in the state of stress described in the previous

section will now be considered and the conditions for its equilibrium

under the influence of all external and internal loads will be determined.

The equations arising by virtue of the demands of equilibrium and the

compatibility of deformations will be derived by considering an indi-

vidual differential element. These equations, therefore, are relations

between differential quantities or between differential changes in the

internal forces and, therefore, are called differential equations.

The external loads are comprised of body forces that act on the

element and surface forces (stresses) that act on the upper and lower

boundaries of the element, which are sections of the curved surfaces

bounding the shell. The internal forces will be stress resultants acting

on the faces of the shell element.

In the preceding section, all the internal stresses were trans-

ferred to the boundaries of the section of the middle surface corre-

sponding to the considered element of the shell and they were replaced

by statically equivalent forces and moments. An analogous operation

for reducing the shell problem to a two-dimensional one can be exec-

uted for the external forces by replacing them by statically equivalent

stresses distributed at the middle surfaces. The middle surface is

thus loaded by forces as well as momenta.
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Now, instead of considering the equilibrium of an element of a

shell one may study the equilibrium of the corresponding element of the

middle surface. The stresses, in general, vary from point to point in the

shell and as a result the stress resultants willalso vary.

Consider now the stress resultants of concern applied to the middle

surface of the shell as shown in Figs. I. 12-13 and 14.

Z

N21 HI2 _ /

21 + e_2 d_2

aN, . \N._+_--_lld.

FIG. 1. 12-13. Typical Shell Reference Element With Axial
and In-Plane Shear Forces

z

T

o l ^ '°2

Ol _1l

/ I _ #MI2

oM 12 e_! d_!MI +_'"1 M +_

FIG. I. 12-14. Typical Shell Reference Element With Transverse

Shear, Bending, and Twisting Elements

26



The equilibrium of the shell in the E l, _2' and z coordinate

directions respectively are given by the following equations:

aa I 8c_ 2 C_l_ 2
+NI2-- NZ--+QI_+ °l°2Pl = 0

a6z - agl R I

8a 2 8_ I ala 2

N21 861 --+Qz--+ c_ic_2P 2 = 0+ _- N 1 862 R2

8_2Q 1 a_lQ 2
+--

°_ l a_ z
ala2q = 0

where PI' P2' and q are components of the effective external force

per unit area applied to the middle surface of the shell. (The details

(I. 12- 9a)

of obtaining the expressions for curvilinear coordinate systems

can be found in Refs. I-5, 1-9, and I-II.)

The equilibrium of moments about the El, _2' and z coordinates

result in the following moment equilibrium expressions.

aa 2 8o I M E
--MI2+
O_l a_z

Oa I 8g 2

- M I _ + M21 0"_"_"1 - Q2. O'1o'2 = 0

aa 2 aa 1
BalM21 + aa2Ml - M 2 + M - QI a a Z 0

°ez lz l -- (1. 1_-- 9b)

MI2 M21
NI2 - NZ 1 + - 0

R 1 R 2

The force components of the last equilibrium expression are due

to warping of the faces and result from in-plane shears and twisting

moments.
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In the equilibrium equations presented here, changes in the

dimensions and in the shape of the element of the middle surface

arising from its deformation have been neglected. This simplification

arises from the assumption of small deformations.

The form of the equilibrium equations is simplified when shells

of revolution are considered. Examples of conical and spherical shells

follow:

Example I: Equilibrium Equations for a Cone

Noting Fig. I. 12-15, if the coordinate axes are expressed as

1 = x distance along generatrix

_Z =0 angle between two meridians in the plane of a

parallel

z = z a direction normal to the middle surface formed

by the other two coordinates

and the I,amg parameters become

a I = 1, a 2 = R = R o + x sina

the principal radii of curvatures of a cone are then expressed as

RI =R¢_= oo, RZ=--
R R o

=- + x tan
COSOl COS_

wher e

a = 1/2 apex angle and is constant
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FIG. 1. lZ-15. Shell Coordinates for a Cone (or Cylinder with a = 0)

By inserting the above coefficients into the general equilibrium

equations we arrive at the equilibrium equations for a cone, namely

_x ONox(Nxx) sin_ + R O (Nx) - N O sina + -- + Px R = 0
ax 0O

aNe a

a---_+ _ (Nxex)
a

sinc_ + Ro-_x (NxO) + NOx sin_ + 0 8 cosa + Pe R = 0

a°e a _x- N e cos _ + _ + _ (OxX) sin'_ + R o (Ox) + q R = 0 (*.lZ-10)

aM8 a

a---6-+ _ (UxeX)
a

sin_ + R o _x (Mxe) + Mex sin_ - (De R = 0

__a sin+ + a aMex
(MxX) Ro_x(Mx) - M 8 sin_ +-- 0 x R =

0
ax a8

Mex

Nx8 - NSx R = 0
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Eqs.

shell when the angle a is set equal to zero. In this

represents the radius of curvature of the cylinder (R °

Example 2. Equilibrium Equations for a Spherical Shell

If the coordinate axes were to be specified as

1. 12-10 become the equilibrium equations for a cylindrical

casej R 0

= R = Rz).

¢_ an angle along a meridian of the shell

6 an angle along the parallel of the shell

= a direction along the normal to the surface formed by

the above two coordinates

_l =

Z

the Lame parameters become

a I = R, a Z = R sin

where R is the radius of a

sphere and the principal radii

of curvature are

R_ = R 8 = R = const.

then these coefficients may be

inserted into the general thin

shell equilibrium equations

z

(Eqs. 1. 12-9a, b) and the differential equations for a sphere

become:
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8 6
a@ (N@ sin _) - N O cos _ + 8N0-80 + Q_ sin _ + Rp_ sin _ = 0

aN e
sin _) + Ne_ cos _ + (De sin _ + RPe sin _ = 0

N 0 sin 0 + Ne sin 0
aQe a

ae a0 (Oosin 0) - Rq sin 0 = 0

aM8

0O -_ (M00 sin 0) + MOO cos _ = O0R sin _ = 0

o OM_o

0-=_ (M 0sin _) - M e cos 0 + 00 QoR sin 0 = 0

(1. 12-11)

M00- MOO +NooR- NooR = 0

I. 12. 5 Stress-Strain Relations

The relations derived in preceding sections were based upon

purely geometrical or static considerations. The two concepts are

tied together by consideration of material properties of the shell. For

a complete description of the problem of analyzing thin shells, the

relations between components of stress and components of strain as the

shell is subjected to its history of applied loads is required. It willbe

assumed that a continuous body satisfies the generalized Hooke's Law,

that is that stresses are linear functions of strains and thus the propor-

tionality coefficients are constant for the range of materials under

consideration. Materials which do not possess this linear law should be

treated by a nonlinear theory of stress versus strain.
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This section is devoted to a brief description of the basic ideas

governing the relationships between stress and strain when considering

anisotropic, orthotropic, and isotropic materials.

A. Anisotropic Bodies

In the general case of a uniform anisotropic body, i.e., a material

body whose physical properties may vary in any direction, the generalized

Hooke's Law expressed for a differential element in a curvilinear sys-

tern of coordinates El , gZ' 65 takes the form (Fig. 1. 12-16):

!

FIG. 1. 12-16. Differential Element in a General Curvilinear

Coordinate System

vii =All Cl +AI2 E2+AI3 _3 +AI4Y23 +AI5 YI3 +AI6 Y12

• 22 "- A21 _I + A22 E2 + A23 _3 + A24y 23 + A25 Yl3 + A26 _/12

_33 = A31

T23 = A41

El + A32 E2 + A33 _ 3 + A34y23 + A35 Y13 + A36 YI2

E 1 + A42 c_ + A43 c3 + A44y23 + A45 _ 13 + A46 ¥12

{1. 12-12}

"r31 =A51 E1 +A52 _2 +A53 _3 +A54y23 +A55 y 13 +A56 y12

"r12 =A61 (1 +A62 (2 +A63 c3 _-A64Y 23 +A65Y 13 +A66 Y12
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As shown in Ref. 1-12, the 36 coefficients reduce to 21 when

symmetry is noted; i.e., Aij = Aji {i, j = I, 2, 3---,6}.

The inverse of Eq.

of stresses are desired.

1. 12-12 is possible if strains as a function

The AijJs are material constants. Space and

the very limited usefulness of such a general system prohibits enclosure

of the coefficient definitions here. Of much more practical usage and

applicability to the majority of shell problems is the consideration of

materials where certain planes of elastic symmetry are present. For

the more important cases, the generalized Hooke's relation8 of

Eq. 1. 12-12 or its inverse reduce to forms which are considerably

simplified.

B. Orthotropic Bodies

If a solid body with three mutually perpendicular planes of

symmetry is considered, then the body is said to be orthotropic.

Materials such as wood and synthetic fiberboard possess this property.

For this case, the generalized Hooke's Law reduces to

Crll = E1 el + E2 _t21 e2 + E3tz31 e3

¢22 = E1 _12 Cl + E2 (2 + E3 _32 c3 (I. 12-13)

¢33 = E1 _t13 el + E2 _t23 c2 + E3 c3

v23 = G23 ¥23' v31 = G31 ¥31' r12 = GI2 _/12

By virtue of symmetry, the coefficients are reduced to nine independent

constants. The symmetry conditions are

E2 _21 = E1 _12' E3 _t32 = E21_23 , El _t13 = E3 la31 (1. 12-14)
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C. Isotropic Bodies

Many bodies have elastic properties which do not vary with respect

to orientation in the body. Metals such as steel and aluminum very closely

resemble this property.

¢11 - 2 _el + Xe

_Z2 - 2 _E 2 + Xe

_33 = 2 _3 + _ •

r12 = 2 _Y12'

where

Hooke's Law for this class of material is

TI3 = Z _13' T23 = 2 _23

(1 +_)(l-Z_)

(1. lZ-lS)

_._ E - G (1. 1Z-16)
z (1 + _)

e = ¢1 + ¢2 + _3

and E, G and _are called the engineering technical constants. The number

of independent elastic constants has been reduced to two.

For a plane stress problem, the stress-strain relations are given as

fol 1ow s :

E (_1 + _EZ)
_I = 2

I -

_ E
o.z (, + ,1 ) (l. 12-17)

1 - I_2 2

E

TI2= G YI2- 2 (l+_)Yt2

for convenience, these simplified stress-strain relationships will be utilized

freely in the subsequent developments,

34



I. 13 CLASSIFICATION OF SHELL THEORIES

In the preceding sections the basic relations for shells were

developed either from the law of statics or from purely geometrical

considerations. As in the theory of elasticity, a relationship for

connecting the geometric and static phenomena is presented by the

introduction of a generalized Hooke's Law.

The physical hypothesis expressed by these relations is sufficient

for the description of the state of deformation or stress in the shell.

To be able to establish a connection between forces, moments, and

deformation components of the middle surface it is necessary to know

how either the stresses or strains vary across the shellthickness.

This situation arises from attempts to reduce the shell problem from

a three-dimensional elasticity problem to a two-dimensional one.

The essential problem in the development of a theory of shells;

i.e., the formulation of appropriate constitutive relationships or

stress-strain relationships, has now been determined. The problem can

now be resolved to one of arbitrarily choosing quantities to represent the

state of deformation in the shell. The introduction of certain assumptions

permit the evaluation of stress resultant equations (Eqs. I. 12-8) in

order that approximate relationships between force and deformations

can be established.
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The selection of the proper form of these approximations has

been the subject of considerable controversy among the many investi-

gators in the field. As a result, there is a large number of general

and specialized thin shell theories in existence, developed within the

framework of linear elasticity. It will be desirable in the subsequent

discussion to discuss the most commonly encountered theories and

classify them according to the assumptions for which they are based.

For the purpose of discussion, the various linear shell theories

will be classified into five basic categories:

I. First-Order Approximation Shell Theory

2. Second-Order Approximation Shell Theory

3. Shear Deformation Shell Theory

4. Specialized Theories for Shells of Revolution

5. Membrane Shell Theory

The order of a particular approximate theory will be established by the

order of the terms in the thickness coordinate that are retained in the

strain and constitutive equations.

In the case of thin shells, the simplified bending theories of shells

are (in general) based on Love's first-approximation and second-

approximation shelltheories. Although some theories do not adhere

strictly to Love's original approximations, they can be considered as
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modifications thereof and as either first- or second-order approximate

theories. Theories which neglect transverse shear deformations may be

distinguished from those which include the shear effect. Linear mem-

brane theory is understood to be the limiting case corresponding to a

zero-order approximation or momentless state. Under specialized

shell theories are included several engineering theories that are

usually restricted to particular shell shapes or types of loading (e. g. ,

shallow shell theory, Geckeler's approximation for symmetrically

loaded shells, etc.)

Although the Shear Deformation and Specialized Shell Theories

presented are based on Love's first-approximation; they are classified

separately because of their particular physical significance.

1. 13. 1 First-Order Approximation Shell Theory

Love was the first investigator to present a successful approxi-

mate shell theory based on classical elasticity. To simplify the

strain-displacement relationships and, consequently, the constitutive

relations, Love (Ref. I-3) introduced the following assumptions, known

as fir st approximations and commonly termed the Kirchhoff-Love hypothesis:

1. The shell thickness, t, is negligibly small in comparison to

the least radius of curvature, Rmi n, of the middle surfaces

t z
i. e. -- << 1 (therefore, terms _<<1).Rmin
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2. Linear elements normal to the unstrained middle surface

remain straight during deformation and suffer no extensions.

3. Normals to the undeformed middle surface remain normal to

the deformed middle surface.

4. The component of stress normal to the middle surface is

small compared to other components of stress, and may be

neglected in the stress-strain relationships.

5. Strains and displacements are small so that quantities con-

taining second- and higher-order terms are neglected in

comparison to first-order terms in the strain equations.

The last assumption is consistent with the formulation of the

classical theory of linear elasticity. The other assumptions wiUbe

used to simplif 7 the elasticit 7 relations.

A. Strain-Displacement Relations

The Kirchhoff-Love assumptions outlined will now be used to

simplify the strain Eq. 1. 12-6 of linear elasticity presented earller.

The inextensibility of normals from assumption (2) implies that

the normal strain vanishes (i. e., from Eq.

8W

,z =-_-= 0

Utilizing this requirement, the deflection, W,

coordinate.

1.12-6).

(I. 13-18)

is independent of the z
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Assumption (2) of Love's first approximation is analogous to

Navier's hypothesis in elementary beam theory which requires that

plane sections remain plane. Thus, displacements of a point on the

shell can be expressed, as a first approximation, by relationships of

the form

U = u + Z_l

V = v + z_2 (I. 13-19)

W=w

and w are displacements of the middle (or reference)where u, v,

surface (i.e., z = 0) and _ 1' _32 are rotations that represent changes

of slope of the normal to the middle surface. It should be noted that

terms u, v, w, _ 1' and_ 2 are functions of coordinates _ 1, _ 2 only.

It can be seen that the displacement functions at any point in the shell

can be described in terms of middle surface displacements, utilizing

the linear relationships in the coordinate z previously described.

Substituting the displacement relationships (Eq. 1. 13-19) and Lam_

parameter expressions (Eq. 1.12-3) into the general strain expressions

(Eqs. 1. 12-6 a, b, d) yields relationships for the shell in the form

(Ref. 1-13):
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z

1 +R---1

E2 =_
z

1 +--
R z

(1. 13-20)

YIZ
y°I + z 81 y_+ z52

- +

z Z
I+--

I +R1 R2

where

are extensional strains at the middle surface and

1 0_1 _ 2 aal
- +

1 a_2 _ I De_2

2 _ 2 a_2 _1 aZ a_l

are changes in curvature of the middle surface directions _I'

r e spec tively.

o 0

Contributions YI and YZ to the inplane shear strain and 61' 62

(1. 13-21)

(I.13-22a)

to the rotation of the middle surface are given by
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(I. 13-22b)

(1. 13-22c)

The validity of the second assumption in the case of thin shells

follows from the small strain assumption. By this assumption is

meant, any possible secondary displacements, over and above those

derivable from a translation and a rotation of the original normal line,

must have infinitesimal gradients which vanish at z = 0. The thinness

condition requires that such secondary displacements cannot build up

to noticeable values away from z = 0. {See Fig. 1-13-1.)

....
UNDEFORMED DEFOR_O

FIG. 1. 13°1.

The strain equations (Eq. 1-12-6) are further simplified by

assumption (3) which implies that transverse shear deformations are

neglected. Consequently, normals to the middle plane not only remain

straight but remain normal and suffer the same rotation as the middle

surface. The angle change between the middle surface and normal is
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given by the transverse shear strains, Ylz' N2z (evaluated at z = 0).

Since the angle between normal and middle surface does not change,

the transverse shear deformations vanishes; therefore,

z I + z I _I RI + _I = 0

R I

V2z 1 1--_z I aw v = 0.
R2 _2 RZ + P2

(l. 13-23)

With this requirement, the rotation terms, _I' _2 are now

determinate and can be expressed in terms of displacement u, v, and

w of the middle surface. These rotation expressions, upon evaluation

of Eq I. 13-23 become

u I 0w

v 1 _w
_2-

R2 _ 2 _Z

(1. 13-24)

The degree of error introduced by this assumption naturally

depends on the magnitude of the transverse shearing forces. For dis-

continuous loads and local areas around a shells edge, shea_ deforma-

tions may be comparable to bending and axial deformation, and cannot

be ignored. Generally, however, shells with continuously distributed
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surface forces, having flexibly supported edges, are usually

assumed to have negligible transverse shear deformation.

When shear deformations cannot be neglected, the rotation terms

cannot be expressed strictly in terms of displacements and the trans-

verse shear strains must be included in the shell analysis. See

Paragraph 1. 13.3.

z
From the thinness assumption (1), terms _. are small in compari-

son with unity, and can be neglected in the stra-;n and stress resultant

expressions. Utilizing this assumption, the strains are distributed

linearly across the thickness of the shell. For this case, from

Eq. 1. 13-20, the in-plane strain expressions reduce to

where the shear strain,

is given by

1

0 = 0 t . 0 =

VI 2 YI Y2 _ I

and the twisting distortion,

= °+zx IEl eI

0

_2 = c2 + z K2

o

YI2 = YI2 + zK12

o

Y 12' of the middle surface from Eq.

I _)v u a_l\___2)+I I_)u v a_218_I_I a 2 _ _2 _I

is described byKI2,

(1. 13-25)

1.13-22b

(1. 13-26a)
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•12 ÷ 62- ol

The above are the kinematical relationships for Love's first

approximation, where middle surface strains ( _], ¢_, _l°Z)and

measures of bending distortion (K I, K Z, KIt)are given by Eqs.

Z2a, and 26.

do not vanish for small rigid body rotations..

equations have been proposed by Novozhilov, (Ref. l-5) Sanders,

(Ref. l-14), and others. This inconsistency vanishes for axisymmet-

rically loaded shells of revolution. It should be pointed out that from

Love's first approximation, the strain equations include terms up to

the first order in the thickness coordinate. Thus, the distribution of

_l. 13-Z6b)

1.13-21,

Love's equation for (K12)leads to inconsistencies in that strains

Other versions of these

strains is linear across the thickness.

B. Constitutive Relationships (Stress--Strain Equations)

Utilizing the strain equations developed in the previous section

together with the fourth assumption, it is now possible to describe the

constitutive or stressmstrain relations of Love's first approximation

theo r y.

Assumption (4) is based not on geometry but on the statics of the

problem. An order of magnitude consideration of the equilibrium equa-

tions for stresses shows that, unless the surface loads are highly
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concentrated, the traverse normal stress, _z. is generally of smaller

order of magnitude than the in-plane stresses cr1, and _Z" Consequently,

it is conventional to neglect the term involving _z in the general stress

strain relationships. For simplicity, consider isotropic material

behavior. In this case, the stress-strain relationships corresponding

to a plane stress condition are given by (Eq. I. 13-Z7),

E[ I°'1 = 2 el +_c2
1 -_

E[ I°'Z = Z _Z +l_Cl
l -_

(1. 13-27)

E

vlZ = Z (I +_)YIZ

From assumption (2) it is assumed that c z = 0. A theory which

includes the two hypotheses ¢z = 0 and Cz = 0 would lead to a contra-

diction (as pointed out in Ref. 1-1 5).

This difficulty is usually avoided by neglecting _z in the stress

strain relationships and then "determining c z from the resulting

expressions. To remove the resultant inconsistency, it would be

necessary to correct the original assumption for W by the addition of

terms which are linear and quadratic in z. (See Naghdi Ref. 1-13.) If

no boundary layers, of width on the order of thickness t, are present

these additional terms are small in comparison with the leading term, W.
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Thus, to obtain a first approximation theory the additional terms may

be neglected in introducing W into the expressions for strains el,

_2' and YI2"

Utilizing these assumptions, the appropriate stress strain or

constitutive relations can be determined. The thinness assumption

Z

that terms _ can be neglected in comparison with unity permits

simplification of the stress resultants note (Eq. 1.12-8a, b}

tlz tlz

NI= _ _idz, NZ=_
-t/z -t/2

¢2 dz' "''etc" (1. 13-28)

In this case, NI2 = N21 and MI2 = M21. Thus, the number of

resultants reduce to eight.

For anisotropic shell, utilizing Eqs. I. 13-25, 27, and 28, the

following constitutive equations are obtained relating stress resultants

and couples to components of strain

[0 o]Et _I + _E2
NI = I -I _2

N?, - [°Et e2 +_1: z

N12 = N21 =
Et

Z{l +_)

0

YI2

MI = D[KI + _K21 (I. 13-29)
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M12 = M2! = 2 DK12

where

Et 3
D =

IZ (I -

0 0 °2) are given inand where (middle surface) strains (c I, c2, Y1

equations I. 13-21 and Z6a and change in curvature and twist terms

(_l' K2' KlZ) are given in Eqs. 1. 13-ZZa and 1. 13-20b.

(I.13-29 cont)

C. Shell Equilibrium Equations

The constitutive relations described in the previous section

together with the shell equilibrium equations define the state of

deformation of thin walls. The number of equilibrium equations

necessary for consideration in Love's theory can be reduced from

six to three by the assumption that shear deformations are to be

neglected. The reasoning for this is described in statements that

follow.

It is essential to note that in assuming normals remain normal

the shear displacements corresponding to the stresses v13, v23 are
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neglected. Thus it might be thought that one should neglect shear

forces 01 , 02, and consequently assume that the shearing forces are

zero. However, this is not correct, since the shear forces play an

essential role in the equilibrium equations. The hypothesis which

requires normals to remain normal is one applied to determine the

law of deformation of a shell parallel to the middle surface. In the

development of the equilibrium equations this condition is not used.

In this case, the shear forces O1, Q2 cannot be determined from

stress resultant expressions but are instead determined from con-

sideration of the equilibrium Eq. 1. 12-9b. Substituting the resulting

expressions for Q1 and Q 2 into the first three equilibrium equations

(Eq. 1. 13-9a) yields:

+
8alN21 + NI2 _2 - N2 --aaZ + Da2M1 +a _ z a_ 1 R 1 a _l

M
aal 2

m z a_z

M 1 aa z M12 _)a 1

+ + al a2 P l = 0
R1 _¢Z al _._Z

+ NZ l agI -_

M 1 ao 1 + M21 _.._.+

RZ RZ ah a I azP2 =0

(l. 1B-B0)
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I M ao2Mi2
a 1 aal 21 +

z 1
aa2+MI \I+

12+ aal 21 M1a_ 2 a_ 1 a_z

a*2_] °l "2 *1 oz
M21 a_lJ j - N1 R 1 N2 R----2 + °l q'zq - 0

(1.13-30 cont)

It is worthwhile to note that the substitution of Eq. 1. 13-29 into the

general equilibrium equations (Eq. 1. 12-9) do not identically satisfy

these relationships. In the usual derivation of the equations of

Lovers first approximation theory, the distinction between N12 and

N21 and betwe, "¢:12 and M21 i._ dropped and the last of equation

(Eq. 1. 12-9b):= suppressed. (See Ref. 1-16.)

In a straightforward manner, the substitution of the force-

displacement relations (Eqs. 1. 13-21, 22, 24, and 29) into the

equilibrium Eq. 1. 13-30 transforms these equations into three

simultaneous partial differential equations for the three middle

surface displacements u, v, w. Hence, the solution of these

equations determines the deformed position of the shell from which

repeated use of the elastic relations also determines the internal

forces.
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D. Boundary Conditions

The equations describing Love's first approximation theory

natually, as yet, do not completely determine the state of stress in a

shell and, hence, do not have solutions as long as they are subject to

boundary conditions (i. e. 0 until a certain number of relations between

forces, moments, displacements or functions of these quantities at the

supporting edge of the shell are specffied).

In prescribing boundary conditions for approximate theories,

consideration must be given to the interdependence of the assumed

force and moment resultants.

On each edge of a shell element (Fig. I. 12-12) five different

resultants have been defined. However, for theories which assume

zero transverse shear strains, only four conditions are required to be

prescribed on aboundary in order to ensure a solution. This require-

ment comes about due to the fact that in neglecting shear strains the

first approximation theory yields an eight order set of field equations

which requires four boundary conditions at each boundary.

The five resultants are reduced to four by noting that the distribu-

tion of twisting moments across an edge is statically equivalent to a
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boundary curve. For an edge _1

be specified are that either

distribution of shear forces. This leads to shell boundary conditions

corresponding to the Kirchhoff boundary conditions for a flat plate.

Love has derived the required shell edge conditions for an arbitrary

= a constant,

N_ or u

MlZ

Q1 "_ or v
R 2

the conditions that must

(1. 13-31)

are prescribed.

(Note the restrictions, i.e.,

simultaneously. )

The above boundary conditions apply to Love'

theories.

N and u for instance cannot be used

s approximation

The modification of these when considering shear deforma-

tion will be discussed later.

E. Remarks on First-Order Shell Theory

The theory presented was first given by Love (Ref. 1-2)andis referred

to as Love's first approximation theory. It will be classi_ed as a firJt

order theory because the strain Eq. 1. 13-25 and constitutive relationship=,
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Eq. I. 13-29, include terms up to the first order in the thicknese

coordinate z. This approach will offer a convenient way for classifica-

tion of shell theories.

Reissner in Ref. l-ll presented a straightforward derivation of

Love's theory. Since then Sanders (Ref. 1-14) has developed an improved

form of the first approximation theory. Sanders selected a more

realistic set of strain displacement relations in that all strains vanish

for small rigid body rotations ot the shell whereas for Love's theory

they do not. The equilibrium equations of Sanders are similar to

Eq. I. 12-9 with modified forms for the in-plane force and twisting

moment expressions. A tensor formulation of Sanders first order

linear shell theory is given in Ref. 1-17. Sander's modified theory

has removed some of the inconsistencies in Love's theory. However,

it is generally believed (Ref. I-5_ that Love's formulation of the

problem contains a11 the essential facts necessary for the treatment

of practical problems in their shells, as long as special conditions do

not require inclusion of the effect of transverse shear and normal

stresses.

Practically speaking, the solution of the simultaneous differential

equations of Love's theory is possible only in rare cases or with additional

approximations. In the case of a loaded structure, the general solution of
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the nonhomogeneous differential equations consists of a particular solution

of the nonhomogeneous differential equation and the general solution of the

homogeneous differential equations. In the case of an unloaded structure the

solution consists of only the general solution of the homogeneous differential

equation.

The nonhomogeneous solution of Love's equation, to a first approxi-

mation, equals the solution of the corresponding extensional (pure membrane)

problem. The homogeneous solution is a self equilibrating system of stress

resultants which satisfy compatibility conditions at the edges of the shell

("edge effect") and in other regions of discontinuity. The general solution is

_enerally of the mixed type, involving both boundary and middle plane stresses,

but for some problems, such as a shell under concentrated loads, the homo-

geneous solution may be assumed to be of the inextensional type.

Thus, there are two extreme cases possible within the first approxi-

mation; (1) the inextensional or pure bending case in which middle plane

strains are neglected compared to flexural strains and (2) the extensional or

membrane case in which only middle plane strains are considered. The

generalor mixed case lies between these two extremes. The significance of

this is discussed in Chapter 2.00 on practical analysis of shells.
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I. 13. Z Second-Order Approximation Shell Theoriem

Several writers (Fl_gge, Ref. 1-18; Bryne, Ref. 1-19; Biezeno,

Ref. 1-20, etc.) have attempted to improve on Love's first

Z

approximation theory by retaining _terms in the strains and stresses

resultants {Eqs. I. 13-20 and I. 12-8).

The basic procedure used by these investigators has been to

expand the denominators in the strain equations {Eq. I. 13-20) in terms

of power series expansions. For example,

1 z z Z
= I - +

1+_

R 1

Utilizing these expansions, the strain equations can be expressed

in power series of z, retaining second-order terms in z; the in-plane

strains can be written as

o
l = Cl + z KI " + _l "

R1 Rl/

O

EZ=_2+z

= " - 61 +¥2

(1.13-32)

+ z 2 " R2/ R2 \R 2
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If these expressions are substituted into the stress resultant

expressions, retaining second-order terms in z, the constitutive

equations (Eq. 1. 13-29) are replaced by

 t[oN11 = (¢ + _t )_
._2 1 121

Et [ (e o o tZN22 = 2 2 + _Cl) ""_
I -_ - K2 - RZ%j

t 2 1 1

NI2 = Gt . o KI 2_z'_ R1 Ez R1/J

No t 2 1 1 _;12
= _ _ KI2

N21 Gt 12 12 2 P-1 K2
(1.13-33)

MI1 = I ( )°]Et 3 ( KI + _K2) _ _1 . _1 Cl

lz 11 -_z) R1 Rz

 t3[M22 = (X 2 + P-K1) - _
iz (I - _z) R2 R.1

Gt 3
MI2 =

M2 1

[ (1 o"r. _. YI

12 R 1

12 R_.

where

Y2 ° _tlO

2x12 = T +'_'1 +-'_" 2
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The preceding equations are characteristic of the F1Ligge-Byrne

theory. They are identical in form to the results obtainedby Lur_

(Ref. l-Z1) as described by Novozhilov (Ref. 1-5). The form of the

stress resultants in this case identically satisfies the sixth equilibrium

equation. (See Novozhilov, 1Ref. 1-S,)

Application of the Fliigge-Byrne equations has generally been

restricted to circular cylindrical shapes for which solutions have been

obtained by Fl_igge (Ref. 1-18) and Kempner (Rei. 1-22).

It is important to note that although explicit use was not made of

z
the assumption _ << I, such an assumption is implicit in these equations

inasmuch as Eq. I. 13-3Z are reasonable approximations only if z<<R,

since they can be considered as truncations of the Taylor series expan-

sions. In addition, although the results are elegant, the retention of

small terms in the wall thickness leads to relations that contain terms

of the same order of magnitude as would also be obtained if less basic

restrictive assumptions were made (e.g., if normal stress effects

were included, see Ref 1-13, 15).

Comparing these formulas with Eq. 1.13-29, it is seen that they

are considerably more cumbersome, and it is clear from the preceding

discussion that these additional terms introduce corrections into the

theory which do not exceed the accuracy of the initial assumptions.
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Hence, these formulas are regarded as inconsistent and, for shells of

arbitrary form, introduce quite unnecessary complications.

From this discussion, it is apparent that although this theory con-

tains second-order terms in the thickness coordinate, it essentially

offers a first-order approximate theory. However, because in the

strain and constitutive relationships, second-order terms in z are

retained, this theory, according to our classification, is a second

approximation.

Love attempted to improve on his first approximation by intro-

ducing three types of corrections. In his second approximation, Love

states that such modifications are unnecessary unless flexural strains

(ZKl, zx 2, ZXl2 ) are large in comparison with extensional strains

(c_, c_, YI_). In the problem of highly curved shells the shell thickness

can no longer be considered small in relation to the radius of curvature.

Thus, higher-order terms are required in the strain equations. Love

attempted to improve his first approximation by retaining second-order

terms in the strain equations in a manner as previously described in

this section. However, in relaxing restrictions on--_ ratios, Love

realized that the corresponding displacements are no longer negligible.

By considering the second-order effects of such normal displacements,

the strain components parallel to the middle surface are non.linearly
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distributed or, as before, terms up to and including the second power

in the thickness coordinate are retained. This description essentially

gives the characteristic difference between Love's first and second

approximate theories. This classification can be used to categorize

many of the various shell theories.

In his second approximation, Love considered, as a first modifi-

cation, the transverse displacement (Eq. I. 13-19) to be expressed in

a more flexible form

w z)

Z

The second modification consists in not neglecting _ with respect

to unity but assuming

(I. 13-34)

Z

I+N

R I

=l---z (I.13-35)
Rl

These modifications, together with additional approximations as

were used by Love to obtain the followingdescribed in Kef. 1-15,

expressions for strains

o(,) 0I "_II _ +

(I. 13-36|
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and

w= _zE [ ° ° I _- ]z(E1 +E2)+_z (K1 + K2) (1.13-37)
(1 - _) Z z z

Froma thirdmodHication, the stress _z is not neglected in the

stress strain equations. Using these approximations, the constitutive

equations become

N
II

Et o o __ Xl
I C'l+ Iz 1

.-- + KI +
IZ (1 - _)E z

(I. 13-38)

KI + _K2 + KZ + bt_I]
R I R2

together with an analogous expression for NZ2.

A comparison of Eq. I. 13-38 with the first equation of Eq. 1.13-33

shows that similar terms are present in both (except that mc_ terms are
RI

neglected). Mo_e important, however, is the fact that new terms are

introduced as a result of including the partial effect of normal stress.

Furthermore, these terms do not vanish when R I = R 2. It also should

be noted that no consideration has been given the possible effects of

transverse shear strains.
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As can be seen, Love's second approximation contains some

degree of refinements over the first approximation.

It is characteristic of second approximation theories that strains

and constitutive relations contain second-order terms in the thickness

coordinate, z. Another second approximate theory of significance was

developed byVlasov (Re[. 1-16) in considering a thick shell.

Other refinements to shell theories have been presented by

Bassett (Ref. 1-23), Treffty (Ref. 1-24), and others (e.g., Ref. 1-15}.

I. 13.3 Shear Deformation Shell Theories

In the development of Love's first and second approximation

theories in the previous paragraphs, the effects of transverse shear

deformations were neglected. This neglectresultedbecauseofthegeo-

metrical assumptions that normals rernainnormal. Itispossiblethatfor

some loads or shell cor_figurations, the transverse shear strains can

no longer be neglected and, therefore, these effects must be included

in the theory. A shear defermation theory for shells will be developed

in the following paragraphs.

It will be necessary in the subsequent development to refer to

equations presented in Paragraph 1.12.4. Paragraph 1.13.1 A, Strain-

Displacement Relations, indicates that, from the assumption of norrnals

remaining normal, the rotations could be expressed in terms of
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displacements u, v, w, and their derivatives. When the effects of

shear deformations are included, the shear strains (Eq. I. 13-23) no

longer vanish and, as a result, the rotation expressions are no longer

determinate. The rotation expressions must be considered as unknown

variables. Since the shear stresses are no longer considered negligible,

the shear forces are expressed by

dz
Iz

t

2

Ql= / v

t

2

t

2

Q2 =/ r2zdz

.t
2

( z)the terms 1 +_ have been

(l,13-391

where, for simplicity, approximated b_

unity. This assumption is not necessary for the inclusion of shear

deformation effects. Therefore, shear deformation theories can be

classified as first- or second-order approximations, depending on

whether terms are neglected or retained in the strain and constitutive

equations.

Since the

they

shear forces are now related to deformations,

cannot be eliminated from equilibrium equations as was
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done in Paragraph 1. 12.4. Thus, when shear effects are included,

the following five equilibrium equations must be considered

ac_lN21 a a 1 aa2 Ula 2
8c_2N1 + + N12 NZ-- + Q1 -- + ala'2 Pl = 0

a_,I a_ z atJ z aP,I R l

aalNZ acrZN12
+

aP+z a_ 1
--. -- ala2
8a2 N1 aal + QZ + alCr 2 P2+ NZl a_l a_.z

=0

a o, 2Q1 aal Q 2 ala2 ¢rla 2
N z-+alcr2 q = 0

+ a_ 2 NI R. 1 R 2
(I. 13-40)

a_zM12

all

act IM21 +ac_2Ml

a._z a_,I

a o, lM2 ao 1 8 o,2

+ a_ 2 - M 1 --+ M21--- Q2Ula' 2 = 0a_z a_l

M2 au2 + Ml2aUl - Q u 2 0
a_ 2 _ lUl =

For these equations, five boundary conditions are necessary at

each boundary. It is not necessary to use the Kirchhoff hypothesis to

obtain an equivalent shear condition as was done previously. The

boundary conditions in this case become:

N 1 or u

U 2 or v

M 1 or #1

M 2 or _2

Qorw
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Reissner (Ref.

porate the effects of shear deformation in plate theory.

to shells is presented by Hildebrand, etal. (Ref. 1-15).

1-25) was one of the first investigators to incor-

The extension

Many investi-

gators have attempted to improve upon shear deformation described in

Ref. 1-15. For example, Naghdi (Ref. 1-13}.

i. 13.4 Specialized Theories for Shells of Revolution

The bending shell theories previously presented can be simplified

considerably for specialized conditions of geometry and loading. In

this section, some of the simplified shell theories resulting from con-

sideration " _hells of revolution of specific geometry will be presented.

These thc::r_es are based on Love's first approximation; however, for

purposes of illustration they are classified separately to better Ulus-

trate the assumptions introduced.

In this section, the simplified shell equations are presented for

shells of particular interest. Included are the Reissner-Meissner

equations, Geckeler's approximations, shallow- shell theory, Donnellts

theory, and otherm.

A. General Shells of Revolution Axisymmetrically Loaded

Love's first approximation equations for a general shell of

revolution are obtained by inserting the geometric parameters from
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Eq. 1. 17--5 into relationships developed in section 1. 13. For the particular

case of axisymmetric deformations, the displacement V is zero, and

all derivatives of displacement components with respect to 8 vanish. In

this case, middle surface strain-displacement Eqs. 1. 13-21 and

1. 13-26a reduce to

El = E__ 1 du+ w
• R 1 d@ R 1

o o u cot_ u dR 2
E 2 =G B - + + w._

R1 R1Rzd_ R 2

O O

Y12 =Y@e = 0

(1.13-41a)

and the curvature (Eq. 1.13-ZZa) and twist (Eq. 1. 13-Z6b) expressions

become

1
1

x Z = xe -

_ - K- _ = 01Z

cot_ + ! dRz I dw

(1.13-41b)
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dR and
For a general surface of revolution, the expressions d-_

dR 2
are as follows

de
for R = R 2 sin

dR
= R 1 cosO

dO

dR 2

de
- (R l - RZ)cot@

(i.13-4z)

Inserting the above values of derivatives into Eq. 1. 13-41 yieldl

u cot4_ w

2
R 2 R 2

(1.13-43)

while the remaining strain-displacement equations of I. 13-41 are

unchanged. Consequently, the resultant forces N_b 8, QS' and moments

M_O vanish and the equilibrium relations from Eq. I. 12-9 become

N 0R Icosd_ + Q4_R + RIR p = 0

NdpR 1 - NsR 1 sin_b + RIR q = 0 (1.13 -44)

d(l_R)

d#
MoR I cos_b - RIRQ @ = 0
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where the second, fourth, and sixth equations of Eq. I. 12-9 have been

identically satisfied.

The above relations are identical with those shown by Timoshenko

(Ref. 1-26). By eliminating Q_bbetween the first and last equ£1ibrium

equations and determining the force resultants from Eq. 1.13-29,=42

nnd =43, two second order ordinary differential equations in the two

unknown displacement components u andw are obtained. Rather than

obtain equations in this manner, however, a transformation of dependent

variables can be performed leading to a more manageable pair of

equations which, for shells of constant meridional curvature and con-

stant thickness, combine into a single fourth order equation solvable

in terms of a hypergeometric series. Historically (Ref. I-4), trans-

formation of variables was first introduced by H. Reissner (Ref. 1-27)

for spherical shells and then generalized to all shells o£ constant

thickness and constant meridional curvature by E. Meissner (Ref. 1-28).

Meissner (Ref. 1-29) shows that the equations for a general shell of

revolution are transformable to Reissner-Meissner type equations

provided the thickness t and the radius R l both vary in a way to

satisfy a certain relationship for all values of_, (the t'Meismner

condition, t_)
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The transformation to the Reissner-Meissner equations is

accomplished by introducing, as new variables, the angular rotation

0 = RZQ _

and the quantity

(1.13-45)

This substitution of variables leads to two second order differential

equations in _ and C/ replacing the corresponding two equations in u

andw. The details of this transformation are illustrated in Ref. 1-26.

For shells of constant thickness and constant mer£dional curvature

or, in fact, for any shell of revolution satisfying the Meissner con-

dition, the transformed pair of equations can be combined into a single

fourth order equation, the solution of which is determined from the

solution of a second order complex equation. For shells of the above

description, the shell equations can be represented in the simplified

form

co)- m =.2
R I D

(1.13-46)
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where the operator

L(
RzdZ() I [_IR_I RZ _,] d( )

= -- + -- + -- cot

I d,z RI RI q%-

R 1 cotZ_

R2R1

(1. 13 -47)

From the above system of two simultaneous differential equations

of second order an equation of fourth order is obtained for each unknown.

Following operations described in Ref.

form

1-26 yields an equation of the

LL (U) + r 4 U --0 (I. 13-48)

F 4 = Et F2

D R[ (I. 13-49)

The solution of the fourth order equation can be considered the

where

(l. ,3-50)

solution of two second order complex equations of the form

L{D)*irZfi = 0

Reissner-Meissner type equations are the most convenient and

widely employed forms of the first approximation theory for axleym-

metrically loaded shells of revolution. They follow exactly from the

relations of Love's first approximation when the meridional curvature

and thickness are constant, as they are for cylindrical, conical,
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spherical, and toroidal shells of uniform thickness. Furthermore,

they follow directly from Love's equations in the more general case,

provided special restraints on the variation of thickness and geometry

are satisfied.

Using the modified Reissner-Meissner equations (Ref. 1-30),

toroidal shells of constant thickness were investigated by Clark

(Ref. 1-31) and ellipsoidal shells of constant thickness by Naghdiand

DeSilva (Ref. 1-3Z). In the latter case, the Meissner-type condition,

which would require the radius I%1 to be constant, is obviously not

satisfied. However, it was shown that assuming the Meissner condition

to be satisfied was indeed a justifiable approximation for ellipsoidal shells.

A version of the Reissner-Meissner equations including the effects of

transverse shear distortion has been presented byNaghdi (Ref. 1-33).

B. Spherical Shelll

The general case of an arbitrarily loaded spherical shell is con-

sidered by Love in the classical manner, employing expansions of the

displacement components into Fourier series (Ref. 1-3). Novozhilov

(Ref. 1-5) introduces complex force resultants into the equilibrium

equations of the shell to solve the problem.
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For axisymmetrically loaded spherical shells of constant thick-

the variable _ becomes equal to RQ_b and the Keissner-Meissnerness,

ecluat£ons reduce to form (Ref. 1-Z6)

d__ + cotch _ - (cotZ¢- I_) Q¢ - Etq - 0

de Z d@ (1.13-51)

d2V dV RZQ_

d_b2 de D

The homogeneous form of the equations, omitting all surface

forces, is given above. It is assumed that the nonhomogeneous solution

corresponds to the pure membrane case for the first approximation.

Eq. I. 13-51 can be reduced to a single fourth order equation in

Q_b and it leads to the solution of a second order hypergeometric equation

(Ref. 1-26). Eq. I. 13-51 can also be solved by methods of asymptotic

integration (Ref. 1-34).

Two simplified versions of the Reissner-Meissner equations are

of engineering interest, namely Geckeler's approximation (Ref. 1-35)

for nonshallow spherical shells and the Esslinger approximation for

shallow shells (Ref. 1-36).

As described in Ref. 1-37, the fourth order equation obtained by

the elimination of _ between Eq. I.13-51 is
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+ A 3 _ + A 2
d_ 3

2
d_

+ A 1

dQ¢
+ AOQ_ + 4k4Q_ = 0

de

where

A o

A I

: I - 3 csc4¢_ - _2

= cot_ (Z + 3 cscZ4_)

A 2 = 1 - 3 cscZ_

A 3 = 2 cot_

and k4 = 3 (1 F2) R 2
" "-T

t

In the Geckeler approximation, all terms except the first and

last in Eq. 1.13-52 are neglected, leaving

(x.13-5z)

(1.13-53)

Geckeler's Eq. 1. 13-53 is seen to be the same form of equation as

for the beam on an elastic foundation.

This approximation is valid for large values of k and high

angles ¢ ; that is, for thin. nonshallow spherical shells. This can be

seen from the fact that Q¢ is a rapidly damped function of the form

• k¢ , so that its fourth derivative is of the order k4Q_, while the

lesser derivatives are of correspondingly lower' order. Since the
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coefficients A 0. . •, A 3 are small for high angles _, all the term8

involving these coefficients are lower than order )3Q_ and therefore,

4
for large k, are hegligible compared to the _. terms. The approxi-

mation is particularly good in the vicinity of _ = 90 °, for at that value

A 3 = 0 and only terms of order )_2Q_b are neglected relative to _4Q@.

The Oeckeler approximation is, however, considered to be sufficiently

accurate down to angles as low as @ = 20 ° (Ref. 1-38).

A slightly more accurate approximation for nonshallow shell8

presented by Blumenthal (Ref. 1-39) is based on the introduction of the

transformation

"Q¢ = Q@ _/sin _ {1.13-54)

into Eq. I. 13-52. Following similar order of magnitude approxima-

tions, an equation of form similar to Eq. 1. 13-53 results by replacing

Q¢ by Q_ (Eq. 1. 13-54). Complete solutions of the approximate

equations were given by Hetenyi {Ref. 1-40).

For small angles _, Reissner-Meissner Eqs. 1.13-51 or 52 can

be approximated by making the usual small angle assumption that

sin@ = @ and cos @ = I,

Esslinger {Ref. 1-36).

of (1/@) is retained in each coefficient of Eq.

a simplification considered in detail by

The angle being small, only the highest power

1.13-5Z, i.e.,
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and Eq.

3

A2" " @-"2"

I. 13-52 becomes

d4Q¢_ g d3Q_b 3 d_ 3 dQ4_ 3

+- -- "_z + "_3 -- "_'Q_+4_'4Q¢:°
d¢_4 ¢ dcb 3 d¢_z dCb

which may be rewritten as

This equation can be solved by solving the following second-order

equation:

d20¢_ 1 dQ4_ 1

+ " _z Q_ _ 2ixzQ¢= od4,z 4, d4,

The general solution of Eq. 1.13-57 can be found inRef. 1-28.

Particular applications of both the Oeckeler and Esslinger

approximations are considered in Chapter 2.00. Since each approxi-

mation is a limiting version of the Reissner-Meissner equations, a

(1.13-5s)

(1.13-56)

(1.13-57)
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measure of their relative accuracy at a particular angle _ can be

obtained by inserting solutions of approximate Eqs. 1.13-53 and -57

into true Eq. 1.13-51.

The approximate versions of the Reissner-Meissner equations

considered above for spherical shells can be generalized for arbitrary

shell shapes by returning to the variables U - R 2 Q4_ and writing kin

its general form
4

R 1

k 4 = 3(1 -_2) R22 t2 (1.13-58)

Solutions of the approximate equations can be obtained by considering k

to be constant over short segments of the shell (Refs. 1-26 and 1-41),

C. Shallow Spherical Caps

An approximate form of the Reissner-Meissner equations were

presented in the previous section for the analysis of shallow spherical

FIG.

T
i

I

1. 13-2

segments. Reissner (Ref. 1-42)

derived and obtained solutions for a

more exact set of equation8 for

spherical caps. The criteria for

shallowness of a spherical shell

segment used by Reissner is that

if the ratio of height to base dia-

meter is less than say ],/8. The
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analysis is applicable to shells that are not shallow when the stresses

are effectively restricted to a shallow zone.

The differential equations can be obtained from EQ. 1.13-40

by substitution of the quantities

_1 = r

_2= e

al = 1 (I. 13-59)

o2=r

R 1 = R z = R = Const.

The strains of the middle surface are obtained from Eqs.

1.13-21, --22, and -26 by the appropriate substitution of the above

identities. If the effects of transverse shear distortion are neglected

and, from the geometry of shallow shells it is assumed that--_,
v
R

then the bending strains are given by

_}2w

Kr 2
ar

1 a 2w 1 aw

2 2 r Br
r aO

(i. 13-60)

10w

The bending distortion expressions are the same as in the theory

of plates.

The observation can be made that for shallow shells the effect of

transverse shear terms QI, Q2 in the two equations of force
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equilibrium (Eq. 1.13-40) in the meridional and circumferential

directions are negligible. Proceeding on this assumption, these two

equations reduce to the equilibrium equations of plane stress.

As in the theory of plane stress from elasticity, these equations

n_ay be satisfied by means of a stress function F which is obtained by

setting

1 8F 1 8ZF
N = + (l.13-61)

r r 8r Z _BZ
r

For convenience, the load potential has been neglected.

expressions are given in Ref. 1-4Z.

As in the theory of plane stress,

The complete

be obtained by utilizing the appropriate compatibility condition,

results in an expression of the form

where

a differential equation for F can

which

2 2 tE 2
V V F ---_'V w -0

V2= a2 + ____I8 + 1

ar 2 r 8r r2

(1.13-6z)
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The second differential equation involving F and w is obtained by

substitution of the moment equilibrium equations (Eq. 1. 12-9b) into the

transverse force equilibrium equation. This gives a second

fundam ental equation

1 _,2F = 0 (I. 13-63}

For the case of rotationally symmetric bending of shells, exact

solutions for the above equations can be obtained in terms of Thomson-

Kelvin functions (Ref. 1-42). Naghdi (Ref. 1-33) presented a similar

set of shallow spherical shell equations for the case when the effects of

transverse shear deformations are included.

D. Circular Cylindrical Shells

For the case of circular cylindrical shells arbitrarily loaded,

two first approximate theories are of prime importance; Love's first

approximation theory and its simplified version due to Donnell.

For cylindrical shells, o 1 = 1, ¢_2 = R, R 1 =_ , R 2 = R are set

with coordinate axes (s, 8) measured along the generator of the cylinder

and the circumferential direction, respectively.

Substitution of these results into the strain displacement equations

yielda
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l av w

'z ='_ "_ +'_

av 1 au
--- .[

12 ax R Be

2
Bw

ax 2 {I. 13-64)

a2w 1 a....__v
'-=  o-r +o

2 a2w 1 av
"xz = "_,ax_'O +_ a--_

The equilibrium equations become

aNx + 1 8Nx0
a---Z_ a---#+Px "0

1 aN_ aNx 8
__+Qe +Pe 0R ae + ax R =

°-!_°+La--_-½+q-o
ax R ae R

(I. 13-65)

1 aMe aMxe
a'--_ + ax Qe =o

8Mx I aMxe - Q = 0
a'-"_ + R ae x
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The final system of three partial differential equations in the three

displacement components are obtained by eliminating Qx and Q0 from

equilibrium Eq. 1.13-(>5 and inserting the force-displacement relations

obtained using Eq. 1. 13-(>4. The resulting three equations contain cer-

tain terms which higher approximation theories have shown to be

negligible. It is therefore permissible to sirnplify the equations by

omitting such terms, as shown by Tirnoshenko (Ref. 1-26). Solutions

to these Love-Tirnoshenko equations are also presented in Ref. 1-26 for

particular problems of unsyrnrnetrically loaded circular cylinders.

For the case of axisyrnrnetricalIy loaded circular cylinders,

Love's Eqs.

and

1. 13-64 and -65 readily reduce to

du w d2w

'I =-_'' '2 =_' _I = "-_ (I. 13-66)

NI2 = K2 --"_12 = 0

dN

---_x +qx = 0dx

dQx---_- +q=O

(1o 13-67)

dMx Qx 0
dx
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If only pressure is considered, Px = 0 and q = p,

equations lead to a single fourth order equation in w.

thickness shell the equation is (Ref. 1-26)

where

--d4w+ 4 _ 4w =--P

dx 4 D

4 3 (I -_2) Et3

- R2t2 , D = 12 (I -2)

Eq.

Particular solutions are given in Refs. I-26 and I-43, and are

summarized in Chapter 2.00.

Donnell simplified the strain displacement relations (Eq.

and the above

For a constant

(I. 13-68)

i. 13-64)

i. 13-68 is identical to that for a beam on an elastic foundation.

by ignoring the influence of the original shell curvature on the deforma-

(I. 13-69}

tions due to bending and twisting moments. The change in hoop

curvature and the change in twist thus become

1 a2w 2 _2w

_2 R 2 a02 ' K12 R a0_x

while the remainder of expressions (Eq. 1.13-64) are unchanged. By

this approximation the relations between moments and change in curva-

ture and twist become the same as for flat plates. A similar simplifi-

cation was made in the previous section for shallow spherical shells.
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Q_
Following Donnell's approximation, the terms--l_ are also

neglected in the second equilibrium equations so that the first two

equations reduce in form to the corresponding equations of plane stress.

A stress function F to defined for cylindrical coordinates as

aZF aZF

' Ns =--'-_ ; Nxs - " ax_s
ax

(1.13-70)

where

a 1 a
as R

and the compatibility expression is obtained as

V4 F _ Et d2w

R dx 2
(l. 13-7t)

Following a similar procedure to that described in the last section

for shallow spherical caps, the equilibrium equations become

DV4w + I a2F . q = 0 (I.13-72)

R ax 2

Elimination of the function F between the two equations above

yields an eighth order partial differential equation in w of the form

V8 w + Et a4w I
DR 2 ax 4 = _ 4q

(l. 13-73)

which is known as Donnell's linear theory (Ref. 1-44). A slightly more

complex form of the above equation was obtained by Naghdi (Ref. 1-33)
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when transverse shear distortion was considered. Donned also pro-

posed a simplified version of cylinder stability equations in the expanded

form of the above equations. The details of this will be discussed in the

section on shell stability.

E. Sccond-Order Approximation Theories for Shells of Revolution

The second order approximation theory of FILigge (Ref. 1-18) and

Byrne (Ref. 1-19) retain the_terms in comparison to unity in the stress

resultant equations and in the strain-displacement relations. Fl_igge-

Byrne type equations for a general shell are discussed by Kempner

(Ref. 1-22) who obtains them as a special case of a unified thin-shell

theory. Applications of this second approximation theory have

generally been restricted to circular cylindrical shapes, for which

case solutions are obtained in Refs. 1-19 and 1-45. In the latter

reference, the Fl_gge-Byrne type equations are considered as a

standard against which sinaplJfied first approximation theories are

compared.

Se cond-orde r approximation equations are derived by Vlasov (Ref. I-16)

directly from the general three-dimensional linear elasticity equations

for a thick shell. The assumption c2 = ¥_z =Y_b8 = 0 is made, and the

remaining strains are represented by the first three terms of their

series expansion. The assumption of zero normal strain as well as
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zero transverse shear strains permits a rapid transition from the

three-dimensional theory to the two-dimensional equations of shell

theory, but it should not be interpreted in its strict sense as implying

a state of plane strain. Rather, it is a convenient assumption equivalent

to the basic Kirchhoff-Love hypothesis that normal lines remain normal

and their extensions are negligible. An excellent discussion of this

assumption is given by Novozhilov (Ref. 1-5).

1.13.5 Membrane Theory of Shells

The shell theories studied in the previous sections are generally

referred to as _tbending" theories of shells because this development

includes the consideration of the flexural behavior of shells. If, in the

study of equilibrium of a shell, all moment expressions are neglected,

the resulting theory is the so-called "membrane" theory of shells.

A shell can be considered to act as a membrane if flexural strains

are zero or negligible compared to direct axial strains. Jt is appareut

that two types of shells comply with this definition of a membrane:

(1) shells that lose stiffness sufficiently so that it is physically incapable

of resisting bending, or (2) shells that are flexurally stiff but loaded

and supported in a manner that avoids the introduction of bending strains.

The state of stress in a membrane is referred to as a "momentleas"

state of stress. For an absolutely flexible shell, since it offers no
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resistance to bending, only a momentless state of stress is possible.

For shells with finite stiffness, such a state of stress is only one of the

possible stress conditions and for amomentlessstate, several supplementary

conditions relating to the shape of the shell, character of load applied,

and support of its edges must be fulfilled.

Due to small thicknesses, shells badly adapt themselves to

bending so that relatively small bending moments generate considerable

stresses and deflections. Therefore, the pure bending, stress con-

dition is to be avoided and is technically disadvantageous to shells.

The momentless state of stress condition is a desirable feature in the

design of shell structures because it offers the advantage of uniform

utilization of the strength capabilities of the shell material, in most

cases using less material and, thus, resulting in less weight. The

study of membrane theory is considerably simpler than the bending

theory and, for this reason, historically preceded the latter theory.

The first contributions to membrane theory were furnished by Lam_

and Clapeyron early in the l?th century. These works considered

symmetrical loading on shells of revolution. On the assumption that no

moments could exist in the shell, the loading could only produce normal

forces. On this basis, the calculation of the shell could be "statically
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determined" (i.e., the analysis could be performed solely with the help

of the force equilibrium equations without the need of the deformation

relations}.

The equilibrium equations for membrane theory are summarized

in the following paragraph. These equations are based on the assumption

of small deflection.s, and follow directly from the zero-ordered approxi-

mation to the linear theory of shells.

A. Equilibrium Equations

The equations of membrane theory can be obtained directly from

the equations of general shell theory (Eq. 1. 12-9). Since membrane

theory, according to our classification of shells, represents a zero-

ordered approximation, the strains are assumed to be uniform across

the shell thickness and from Eq. 1-13-20 we find that

0
El =_ I

0
_2 =E 2 (1.13-74)

V12 =¥ 012

where it is noticed that curvature and rotation terms are neglected.

Accordingly, it is assumed that, although the shell may be

resistant to bending, in view of the smallness of curvature and rotation,

the moment terms inthe equations of equilibrium for the shell element

are unimportant. Therefore, from the consideration of Eq. 1.13-29,
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M 1 - M 2 --MI2 = 0 (I. 13-75)

which implies the neglection of transverse shear forces from Eq. Io12-9b

QI=Q2=0

and that in-plane shear forces are

NI2 = N21

Introducing the preceding values into Eq.

equilibrium equations for a shell membrane

{1. 13-76)

(1. 13-77)

1. 12-9a yields the

_a2Nl + . + NI2_- N 2_ + _la2Pl - 0
1

aO:lN 2 aa,2N12 _a Z 8_1

+ + NZI-_I -N 1 -_2 + Ola2P2 -- 0

Ola2 o1_ 2

" N I R 1 " N2 R---2- + _1_2 q

(1.13-78)

=0

The preceding equations, together withEqs. 1-13-74 through 77

describe the momentless or membrane state of stress in shells.

In the system shown, the number of unknowns is equal to the

number of equations, so that the problem in the membrane theory of

shells is statically determinate. As pointed out by Novozhilov (Ref.

it should be noted that the problem is statically determinate in relation

to the equilibrium of an infinitely small element of the shell, but not

always in relation to the equilibrium of the shell as a whole. An

I -S),
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analogous situation occurs in the problem of the bending of a beam where

likewise the number of unknowns in the equilibrium equations corre-

sponds to the number of equations and where the determination of the

reactions at the supports requires first the determination of the

di s plac em ent •.

With the forces and moments known, the displacements of the

•hell characterized by a membrane state of stress are given by

1 au 1 aal w
El - + v+--

al _1 al°Z _z Rl

2

1 av 1 _°2 w
u+_--

°2 a_2 + o1°2 all 2

(1. i3o79)

o2 a v + °2 _2'YI2 - o 1 a_ I

As shown by Novozhilov (Ref. I-5), the solutions of the equations

of membrane theory present pure bending displacements on an equal

basis with displacement of the shell as a rigid body. Physically, this

means that a freely flexible shell admits the appearance of bending

displacements without offering any resistence.

Thus, in stating problems of membrane theory, the pure bending

displacements must either be eliminated or, at least, bounded properly.
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The indeterrninacy of displacement magnitude and necessary bounds

on displacements that characterize membrane state of stress effects

boundary conditions as discussed in the following paragraph.

B. Boundary Conditions

Equilibrium Eq. 1. 13-78, together with displacement

Eq. 1. 13-79, constitutes a fourth-order system of equations. Thus, in

membrane theory, the differential equation for displacements have one-

half the order of those in general bending theory of shell (Paragraph

1.13. 1). Therefore, the number of edge conditions to be satisfied in

membrane theory is one-half the order satisfied in general bending

theory. In membrane theory, only two conditions may be specified on

each edge of the shell.

The reduction of the order of the system of equations is a result

of the assumption that moments and transverse shears are negligible in

a membrane theory. Thus,

Q1 -QZ - M1 = MI2 " MZI - M2 - 0 (I. 13-80)

which hold at all points in the middle surface and, hence, on the

boundary of the shell (the boundary conditions by general theory are

given byEq. 1.13-31).

Therefore, the edges of a shell in the membrane state of stress

must be free from external edge loadings in the form of normal shearing

88



stresses and bending moments. As a result, membranes can only

support tangential edge loadings and, consequently, only forces N 1 and

N12 may act on an edge under consideration. Hence, boundary con-

ditions must be formulated in terms of these quantities.

A special situation occurs if the boundary conditions are given in

terms of displacements. For membrane theory, it is impossible to

specify the edge displacement, w, and angle of rotation, _, since this

would affect the corresponding general forces, Q1 and M 1 (e.g., the

conditions for membranes that Q = 0, M = 0 makes it impossible to

specify w = _ = 0 at the boundary). It follows that on the edge of a

membrane only the tangential displacement components of the middle

surface can be specified (i.e., u and v).

C. Conditions for the Existence of the Membrane State of Stress

It has been shown that one of the sources of contradiction in the

membrane theory results from the fact that the solutions of this theory

may not be subjected to general boundary conditions. Violation of these

conditions is equivalent to disturbing the membrane state of stress.

However, while these requirements are necessary, they are not

sufficient, and additional requirements are necessary to ensure a

membrane state of stress.
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Another contradiction in membrane theory is the fact that its

equations determine the forces in the shell without dependence on the

compatibility relations of the middle surface. In addition, a membrane

cannot be loaded by concentrated forces. The state of stress of a shell

loaded by such forces will involve moments.

In summary, it should be emphasized that the existence of the

membrane state of stress is related to the necessity of satisfying

several conditions concerning the shape of the shell, the character df

load applied, and the attachment of its edges.

D. Axisymmetric Load on Membrane Shaped as Shells of Revolution

In many practical problems, the external forces have the same

symmetry as the shell itself. Forces are then independent of _2 or 0, andaU

derivatives, with respect toO, disappear from Eq. 1. 13-78. There results

into Eq.

obtained.

d N o cos+d_ (rN+) - R I

N o

_i'i +_Z = Pr

= . p_ rR I

When Eq.

1.13-81a, a first-ordered differential equation for No, is

Multiplication by sin _ yields

d (rN_b)

d_ '" sin_ + rN_ cos _ = RIR2P r cos_ sin_ - RIRzP _ sinZ_

(I. 13-81a)

(1. 13-81b)

I. 13-81b is solved for N O and the result is substituted

(I. 13-82)
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In combining we obtain, for one term on the left-hand side of equation
(I. 13-82).

d (rNd _ sin_)= dd-_ _ (RzN_b sin2_ )

hence

N_- - R R 2 (Pr cos _ - po sin00) sin_b d_+ C (1. 13-83)
R I sinZ_b " I

The last equations may be considered as a condition of equilibrium

for the part of the shell above a parallel circle, 4) = const. If F is a

result of the total load, the equation of equilibrium is

2_roN_b sin d_ + F = 0 (I. 13-84)

N_

FIG. 1,13-3

Application of the membrane equation to a cylindrical shell under

internal pressure (p) leads to the well known resulta

N_b= _--, N 8 = pR
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For a conical shell under uniform internal pressure,

pR pR

N4'- 2 s.in_ ' N8 - sin_

1.13.6 Summary

An introduction to linear theory of thin elastic shells was

presented in this section. Basic relations necessary for deformation

and stress analysis were provided and appropriate assumptions were

indicated. Shelltheories were categorized according to the assumptions,

limitations, and restrictions for their usage described. Due to the

quantity of material available on shells a complete treatment of the

linear theory of shells was not possible. Amore complete presentation

is included in the literature (Novozhilov, Ref. I-5; Goldenveiser,

Ref. 1-46; Fltigge, Ref. 1-47; Timoshenko, Ref. 1-26; Koiter,

Ref. 1-48 and others).
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1.20 NONLINEAR SHELL THEORY

1.21 INTRODUCTION

The small deflection field equations presented earlier were formu-

lated from the classical linear theory of elasticity. It is known that

these equations, which are based on Hooke's law and the omission of

nonlinear terms both in the equations for strain components and the

equilibrium equations, have a unique solution in every case. In other

words, linear shell theory determines a unique position of equilibrium

for every shell with prescribed load and constraints.

In reality, however, the solution of a physical shell problem is

not always unique. A shell under identical conditions of loading and

constraints may have several possible positions of equilibrium. The

incorrect inference to which linear shell theory leads can be explained

by the approximations introduced in the development of the shell

equations. In this development rotations were neglected in the expres-

sions for strains and equilibrium in order that the equations could be

linearized. It is essential in the investigation of the multiple equilibrium

states of a shell to include these rotation terms.

A theory of shells that is free of this hypothesis can be thought of

as being "geometrically nonlinear" and requires formulation on the

basis of the nonlinear elasticity theory. Additionally, the shell may be
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"physically nonlinear" with respect to the stress-strain relations. This

latter type of nonlinearity forms the basis of inelastic shell theory and

will not be discussed here.

Theories based on nonlinear elasticity are required in analyzing

the so-called "large" deformations of shells. "Large" or finite

deflection shell theories form the basis for the investigation of the

stability of shells. In the case of stability, the effects of deformation

on equilibrium cannot be ignored. The stability of shells will be

considered in the next section.

The subsequent development of nonlinear shell theory will be

based on a general mathematical approach described by Novozhilov

(Ref. 1-10) for problems of nonlinear elasticity, Starting with the

general strain-displacement relations, approximate nonlinear strain-

displacement relations and equilibrium equations are derived by the

introduction of appropriate simplifying assumptions. The equilibrium

equations will be obtained upon application of the principle of stationary

potential energy. These concepts will be discussed in the following

paragraphs.
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1.22 GENERAL STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relationships presented in Paragraph 1.12.2

are based on the classical (linear) theory of elasticity. In this formu-

lation, several assumptions regarding the magnitude of strains and

rotations were made. It was assumed that strains were small {i.e.,

_<< 1) and that rotations were of the same order of magnitude as the strains

(i.e., _ = O (_) <<1). These assumptions permitted order of magnitude

simplifications of the general strain-displacement relationships derived

from nonlinear elasticity concepts.

In formulating a nonlinear shell theory, it is no longer permissi-

ble to restrict the rotations, and it becomes necessary to deal with the

more complicated strain equations. The general strain-displacement

relationships from nonlinear elasticity are given in terms of the

curvilinear coordinate system _1' _2' and z by

'!e22 = e2 +'2- E

e12 = Y1Z + _lY2 + c2¥1 + [31 [32

(1.22-1a)

= _W+ el _U aV /elz Ylz 4- [31 _ _ + _1

au I (1.zz-lb)aw + c2._ _2"_-eZz = _2z + _2 _'--_
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where the terms c1, _2' ¥12' _/lz' and¥2z are the linear strain expressions

(Eq. 1Z.2-6) which in terms of displacements and their derivations, are

given by:

_2- 1 t 1 aV + U 8_Z u + W" )z _ Z =1 _Z RZ
i +-Rz agz a_l

_12 -
1+_

R 1 R z

8u___ 1 z ( 1 8W U )Ylz - +

R
1

V aa 2

/

z R Z

Z

and the additional terms _I' _2, Yl' and Y2 are given by:

+ RZ + R 2

(1. zz-z)

(1. zz-3)
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It is noted that Eqs. 1.22-1a and b are a set of nonlinear differen-

tial equations considerably more complex than the strain-displacement

expressions (Eqs. 12.2-6) of the linear theory.

Following a procedure similar to the one described in the linear

shell theory section, the introduction of the Kirchhoff-Love assumptions

permits considerable simplification of the above expressions. The

( ""thinness" criterion permits the approximation that terms 1 + R--'I''

1 + _2 can be replaced by unity; i. e.,

z Z
1 +_ 1 +m - 1°

R 1 R 2

The assumption that normals remain normal causes the transverse

shear strains to vanish, i.e.,

-0
¥1z

Y?.z 0

(The normal strain ez vanishes from inextensibility of normals and,

as a consequence, was not included in Eq. 1.22-1a.)

I_the strains are assumed small (e<<l), order of magnitude

considerations permit the neglecting of nonlinear terms in strain.

details of these simplifications are discussed by Novozhilov (Ref.

and Kempner (Ref.

The

l -10)

1-22) and result in nonzero strain expressions of the

form
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2

e I - El +--_--

(1. zz-4)

elz =  'lZ + #1 #Z

_1' and i_2 are the expressions obtained fromwhere c 1, c 2, Y12 j

z
Eqs. 1.22-2 and -3 with the-_-term omitted.

From the assumption of planes remaining plane, the displace-

ments may be expressed by

U = u0 + z {_I

V = v o + z_2 (1.22-5)

W=wo --w

where u, v, and w are middle surface displacements and z is the

coordinate transverse to the shells middle surface. By introducing

these expressions into the strain-displacement relations (Eqs. 1.22-2

and Eqs. 1.22-4 and 5), there results the general form of the strains as

e° ÷z _
el = I 1

o +zK2ez : e 2 (1.22-6)

o

el2 = e 12 + z _12

o o o

where el, e 2, and el2 are the nonlinear middle surface extensional and

in-plane shear strains given by Eq. 1.22-4 (superscriptedwith o) and

where
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I a_l I 8a I

1 8_ 2 1 a° z

. ]
XlZ = _I 8_I a 2 Bt_Z

(1.22-7)

are the measures of bending distortion.

It should be noted that there are terms in z Z contained in per-

forming the outlined substitution; however, as discussed by Novozhilov

the correction introduced by these terms

and KIZ parameters characterize the

(Ref. I-I0)for small strains,

is insignificant. Th_ _1' K2'

change in curvature of the. strained middle surface of the shell.

In the classical small deflection theory of shells it was shown tha_

the strains (e) were of the order of the magnitude of the rotations (_) or

= O(_)<< I. By rela.xing the constraint on the middle surface

rotations, the nonlinear strains of the middle surface are of the order

of the rotations squared or e = O(_ Z) _-_ I.
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1.23 STRESS-STRAIN RELATIONS AND STRESS RESULTANTS

The isotropic stress-strain relations from Paragraph 1. 12.5 are

written as follows:

¢I = E/(I - _2) [e I + _e2]

¢2 = E/(I __2) [e 2 + _el] (1.23-8)

r12 = GI ¥12

The stress-resultants may be obtained by appropriate integration

of the above Hooke's law over the shell's thickness, i.e.,

N 2 = dz, M 2 = zdz

NI2 [ 12 MI2 2

(l.z3-9)

where the integrals are taken over the shells thickness (t). If

Eq. 1.23-8 and, subsequently, Eqs. 1.22-4 and -6 are inserted into

Eq. 1.23-9, we may write the stress-resultant strain expressions as

follows:

N1 - B eel + ,e_)+ C CKl + _'z_

N2 = B (e_ + _e_) + C (K2 +}_ _I)

-- o +_- =N 2N12 = B e12 12 1

o o

M 1 = C (e I + _e2) + D ( K1 + _K2)

o

M 2 = C (e,_. + _el) + D (K 2 + _KI)

M12 = C el2 + D K12 = M21

(l.z3-1o)
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where

Edz f Ezdz _ EzgdzB = -- , C = )-----_, D= .....

1 _ _2 t 1 -I _2 1"-_2 )(1.23-11)

These expressions are presented for reference and will be utilized later

in the development of the nonlinear equilibrium equation for shells. The

stiffness parameters can be simplified by suitable choice of the reference

1.23-10) can be simplified considerably

A

C above

surface within the shell wall.

The constitutive relations (Eq.

by proper selection of a reference surface within the shell wall.

convenient selection is one in which the stiffness parameters C,

vanish. Recall from Paragraph 1.13.1 for an isotropic monocoque shell

this simplification was possible since the reference surface was selected

at the middle surface.
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1. 24 PRINCIPLE OF POTENTIAL ENERGY

In the previous section, the linear shell force equilibrium equa-

tions were obtained from laws of statics by considering equilibrium of

a differential shell element. In the formulation it was assumed that,

since strains and rotations were negligibly small, the deformed and

undeformed states of the shell element were identical. If the geometri-

cal constraint on rotations is relaxed, the assumption made in the linear

theory is no longer valid, and the effects of distortion of the deformed

state must be considered in equilibrating forces. The equilibrium

equations including the distortion effects can be obtained by considering

equilibrium of the shell differential element in a similar manner as

discussed in Paragraph 1. 12.4. The equations that result are non-

linear. However, in this section, the use of energy principles for

obtaining the nonlinear shell equilibrium equations will be illustrated.

The method is based on the fact that the governing equilibrium

equations of a structural system can be obtained as a direct consequence

of the minimization of a certain energy expression. In this context, the

energy method that will be utilized is the principle of potential energy.

In developing this method use shall be made of a branch of mathematics

called calculus of variations; for this reason, these methods are some-

times referred to as variational methods.
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The potential energy, V, of a shell is given by the expression

where 0 is the potential energy of deformation or work done by the

internal forces, and {-W) is the potential energy of forces acting on the

shell if the potential energy of these forces for the unstressed state is

taken as zero. The potential energy of deformation, U, is generally

referred to as the strain energy. For a Hookean material, the strain

energy expression for a shell is given by the expression

= I Grze2 Ol _id_zd zo v fff(' el* *'12e121 d

where _ 1' 62, and z are shell curvilinear coordinates. This expres-

sion can be simplified by substituting Eq. I. 23-8 into the above, which

yields the equation

2 Z'_E 2 l

Z ) + 2 ele + Ge J _l°2d d1 - }_ Z lZ _1 _2dz

It can be seen that, by substituting the strain-displacement

relations (Eqs. 1.22-4, -6, -7) into the above, the strain energy

expression described in terms of the middle surface displacement

functions ue, v0, w 0 results. As a result, the potential energy can be

described in terms of the displacement functions.

The principle of (stationary) potential energy (Wang, Ref. I-9)

states... "of all the displacements satisfying the given boundary

(1.24-12)

(1.24-13)

(1.24-14)
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conditions, those which satisfy equilibrium conditions make the potential

energy V assume a stationary value.'t In addition, for stable equilib-

riu,,_, the potential energy is a minimum. The operation of finding a

stationary value or extremum point of the potential energy functional

(i. e., function of displacement functions u, v,

operations performed in differential calculus.

w) is analogous to

It may be recalled from

the calculus (Ref. 1-49), that the derivative of a function vanishes at

stationary values or extremum points. In addition, the point is a mini-

mum point if the second derivative is positive. Using variational

techniques, the operation analogous to the first derivative is calledthe

first variation and the one analogous to the second derivative corre-

sponds the second variation, resolving the problem to that of finding the

displacement functions, u, v, and w, which make the potential energy

stationary. The corresponding analog from calculus was to find points

which made the function stationary. This, of course, should be under-

stood to be an oversimplification of the problem and is only presented

to give the engineer not familiar with variational methods some idea as

to their nature; Those interested in more rigorous presentation should

refer to many books on calculus of variations.

As stated above, the problem resolves itself to a matter of finding

the displacement functions that make the potential energy" function
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In this connection, it will be assumed that the displacementstationary.

functions can be represented in the form

u (_1, _2 ) = u° (_1' _Z ) + ×_( _1' _2 )

v (E l, _2 ) : v ° (E l, _2 ) +kv(g I, _2 ) (1.24-15)

w ) = w° +

where u °, v °, and w ° represent the displacements corresponding to the

equilibrium configuration, and u, v, and-_ are admissible variations

of u, v, and w (called admissible displacements) that satisfy certain

conditions of continuity and finiteness. The quantitykrepresents an

arbitrary small parameter that is independent of_ 1, _2. H the functions

u, v, w are replaced in the potential energy expression (Eq. 1.24-14)

by Eq. (1.24-15) the potential energyV becomes a function of the

parameter k.

According to the principle of stationary potential energy, the

potential energy becomes stationary at k = O. Thus, the requirement

that thefirst variation, 71 , of the potential energy functional vanish at

dV(k) i

VI - I = 0 (1. ?..4-16)
d k k=O

k = 0 yields

where d( ) represents the usual differential operator. The use of the

above operation to derive the equilibrium equation will be discussed in

105



the following section. A similar operation using the second variation of

the potential energy will be used in obtaining the stability equations in

Section 1.30.

The technique presented is quite similar to the principle of virtual

work, in which the terms k_, k_, and XW can be thought of as virtual

displacements, where k refers to a virtual change. In this case, the

virtual work done is represented by 6(--). The principle of virtual work

states that the displacements that actually occur in an elastic system

under action of given forces are those that lead to zero variation of the

total energy of the system for any virtual displacement from the position

of equilibrium. The vanishing of the virtual work expressions requires

that

6V = _J(U- W) = 0 (I.Z4-17)

A more complete presentation of the principle of virtual work as

applied to elastic systems is given by Wang (Ref. 1-9).
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1.25 NONLINEAR EQUILIBRIUM EQUATIONS

The principle of stationary potential energy as a variational

method was introduced in the previous section and will now be utilized to

derive the differential equations of equilibrium of a shell. The nonlinear

strain-displacement relations given by Eq. 1.22-4 will be utilized as a

basis.

Following the format outlined in the previous section, substitution

of the assumed displacement functions given by Eqs. 1.24-15 into

Eqs. 1.22-4 yields expressions for the strains of the form

o +x_ +x 2e
el = eI I I

o +k_2 +X2ee2 = e2 2 (I. 25-18)

= o + k_ +k 2e
el2 el2 12 12

where e_° o o
, e 2, el21 are given by Eq. 1.22-4 with appropriate superscript

o and

_'I _o 1 o _I- l+_l

=_o 1 o_2_z z +_z (1.25-19)

- o o__lZ-- el°Z+ _z _l + 01 z

[ {
elZJ ii J

(1.25-20)
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where _ and _ are as defined previously provided these quantities are

related to corresponding displacements described in Eq. I. 24-15.

Eq. 1.25-18 has an associated state of stress with components of

the form

o 2=e +k_- +k _-
el I I I

o XZ_z0- 2 =o 2 + X._2 + (1. zs-zl)

"r12 = T;2 +k¥12 +k2_12

where neglecting thermal terms the _r 0 0 =I' _2' "--' T 12 expressions are

given by Eq. 1.23-8 with the appropriate superscript attached.

Inserting the right-hand side of Eqs. 1.25-18 and 1.25-21 into the

strain energy expression (Eq. 1.24-13), dropping terms of higher order

than k 2, and noting the well-known reciprocity relations, we arrive at

the strain energy of the shell given by the form

u = u 0 + ×u1 + × 25z (l. ZS-zz)

where

= ¢°e° + _2e2 +
V

Ol _2 d _idg2 dz
(l.Z5-Z3)

o_ o - ] df_zdZ+ crze2 + "rlZelZ o I aZd_l

U2 2 I cr2e2 12
V

o" O: -- ]

(1.25o24)

(I.25-25)
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An expression similar to Eq. 1.25-22 can be formed for the potential

energy expression (-W) due to applied external forces. For large deflec-

tions, it is appropriate to express (W) as

A A

-W= - " " fl _ + f2 v + fz .ld_2

0 0
i _z

(i.25-261

where the superscript, o, and roof, (^), on the integration limits repre-

sent initial and final boundary coordinates, and the P s are a function of

the applied forces Pl' P2 ° and q.

The total potential energy expression, V, obtained fromEqs. 1.25-22

and 1.25-26 can be described in terms of displacement function u °, v°,

w ° and arbitrary variations u, v, w by appropriate substitution of

Eqs. 1.24-15 and 1. 25-23 -25. The potential energy expressed similar

to Eq. 1.25-22 is given by

v=v o + ×v I +×Zvz

Since _0' Vl'

according to the principle of potential energy the potential energy

becomes stationary at k = 0 when

Vl o--i-w--1o-= .= ..

dk

k=0

{1.25-27)

V 2 are independent of the arbitrary parameter k

(I.25-28}
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Thus, the first variation expression described by Eqs. 1.24=16

and its cquivalent, Eq. 1.25-28, are used to establish the equilibrium

equations. The insertion of Eqs. 1.23-8 and 1.25-19 into Eq. 1.25-24

and these into I. 25-28 and integrating by parts noting arbitrariness of

admissible displacements u, v, w leads to the large deflection equili-

brium equations of the form

0a N ° NO 0al Oa2 al °2 o
2 1 + a°l 1________2+ _ o . _ o +

0_i 0_ 2 0_2 NI2 O_l N2 RI QI

a 1 a 2

R
1

o

(I.25-29a)

O

o 001N2 Oa2 o O_l 0 °1 °2
0_2N12 + O_ + _ - _NI +

0gl 2 061 N12 062 R2

O

Q2

ala2R2 (i31N12o + 132N_) + _1 ° P2 =02 (1.25-29b)

a61

Nl = a o O

+ o 2 _2N12)

_ ( o _132N2) + ql a2 q =0a °1131N12 + o
0_ z (1.25-29c)

O

a°2M1 +

og 1

o O_rl
a°IMl2 + _ o

a6 Z a6 Z M12
= 0 (1.25=29d)
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o a°lM; aaz o 8a'l o o
OazM12 + --- + -- - --- _1 = 0

a_ 1 a_ z a_ 1 Mlz a_ z MI - azQz (1.25-29e)

where it is noted Nl°2 = N21'°. M10z = M; 1

The details of the above operations can be found in Ref. l-Z2. The

above equations can be simplified when the effects of transverse shear

distortion are neglected. Following a similar procedure as described in

the Linear Shell Theory section a reduction in the number of equations

may be realized. Solving for the last two equations for shear forces

Q1, QZ, in terms of the moments, and substituting the resulting expres-

sions into the first three equations results in the following "large"

deflection equilibrium equations:

1 a o _ o aoz_+_l[a__l(Mlo a8 (Nl°a2) +_ a¢ __ (N21_I Z) N2 a_ I RI
z)

1 8 (M o 2 o aaZ o oo ) - M z -- - NI _1 °la+a 1 a_2 21 1 8 _ 1

1

2o _2 o al a j + o o 2 = 0- N 1 2 Pl °l
J

1 9 (a2 2 2 o) aala (NZ°a 1) +-- -- N 1 - Nl°--
a_z a z a_l a_ z

1.25(30a)

+i---[a_zRz (Mz°°I)

+ 1 _3 (MlzOa Z) _ MlO _)aI
a z a_l z a _ z

o =0
+ Pz ala2

0 0

--- N z _ZalaZ

1. zsi30b)
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"al a2\ R1 N2° 1 a

I a I a 2
a 1 8_1 (Ml°Cr2) + 2 8_ (M_I a

o 1 2 1

MZ° _2 o13o

_I a-_ - N1 1

o z)(M 12 a 2

o ] 8 1 8

'_z + NI2 _2°°2] +--_-C_. _ z _z (M_' o 1 }

Ml° 8°1 o °o l- N° ] oa,2 _ - N2 _2 21 _I °l ,+q
OlO 2 = o

(1.25-30c)

In addition, the following natural boundary conditions result:

A
o

I. At _ = f_l and E 1 where the superscript o and (^) stand for

initial and final boundary curves for _lcoordinate respectively.

Either of the following are prescribed:

Mf
u°or az(N f +_i )

O

MI2
0

v or o 2 (NI_ + R2 )

1
• c9 ( a2Ml ) + _} M2° 802
a 1 bf°l _ (M12°) °1°2 af_l

( _1

8 M o) _ NI o
)2 a _---2( °1" 21 _I °Z - N

]
2 ° o a2

w ° or

(1. zs-31)

0 0

I a o_ or M 1 o 1
o I c_ 1
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,

0
U or

o
v or

o
w

A

And at _2 = _ and _2' initial and final boundary curves for

the _2 coordinate, the following are prescribed:

o
M21

o __ )
crI (N21 + RI

M2 °

o I (N2 ° +---_- )
2

or _-_-Z (_1 MZ°) +
aMzl° MI° a  MlzO

(l. Z5-3Z)

Z

a z )

o o ]- al N; 6Z - C_l NZl {31°

o 0
l C_o

or -M 2
°2 og z

It should be noted that if the linear strain-displacement equations

Eqs. I. ZZ-Z were utilized instead of Eqs. 1.2Z-4 in the previous

development the expressions resulting from the variational approach

would be the simplified small deflection equilibrium equations identical

to Eqs. i. 25-29. This fact could also be seen if

order of magnitude (linear elasticity assumption), the terms containing

[3o would vanish from the above and the classical equilibrium equations

o and {5° are of same

would result.
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1. 26 NONLINEAR EQUATIONS FOR CYLINDRICAL SHELLS

The nonlinear Eqs. 1.25-29 and 1. 25-30 represent equilibrium

conditions for shells of arbitrary shape. It will be useful for study of

the principal characteristics of a nonlinear equation to consider a

particular shell shape. A particularly simple set of equations for

cylindrical shells was suggested by Donnell in 1934 (Ref. 1-50). Donnell

simplified the strain-displacement relationships by ignoring the

influence of the original shell curvature in the deformations due to

bending and twisting moments. (Recall Eq. 1, 13-69.) By this approxi-

mation, the relations between moments and changes in curvature and

twist become the same as for flat plates. Although the simplifications

imply certain limitations on their range of applicability, the equations

have formed the basis of the nonlinear analyses that appear in the

literature. Their relative simplicity also makes them ideally suited

to illustrate the elements of a nonlinear theory.

The Donnell form of the nonlinear equilibrium equations for a

cylindrical shell subjected to edge loading and to surface pressure

p = p (s, 8 ) are given by

aN x aNex
--_'--=0

ax as

+--=0
ax as

114



t Z Z

a M x B Mex
+2 - +

_Z ax as

2 _

a-Me_ Ne a(Nx_e) a(Nxe _x)
mm I

am Z/ R ax ax

(1.26-33)

a(Nex 13e) _a(Ne _x)

_s as
=-p

where s is circumferential coordinate given by

s=Re

_s =Rae

The elastic relations for the Donnell form of the equations are

Et
Nx=_ (* + 0 )

1.1_ Z x _

Et
NO =-- ( ce+l_ (x)

I_F 2

Nx 0 = Nex =
Et

Z(I + e ) Yxe

M x = D(K x +F Ke )

M e = D(K e +I_K x)

D(l- _ ) K
x6

Mxo=MOx- Z

where the flexural rigidity of the shell is given by

The kinematical relations are

, = +±(aw/Z
x ax Z _-_x'

(1.26-34)

av w I /aw\ z
E e = _- +_-+T _ !
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au av
_/xB =-- + -- +

% s %x

aw

as

x =- aZw

x ax z

(t.Z6-35)

aZw
K

0 = -
as z

ZaZw
K _- ---

xO axa s

With these relations, the equilibrium equations may be expressed

in the final form:

_N x 8Nxo
--÷ -- =0

8x as

aNxo aN 0
+ ----=0

ax as

(I.z6-36)

(-D/R z) 4 N OV w+--
R + N x --

_x z

+ ZNx8

Z
w

axao

aZw

--+ N O a--6T = P

where

4
v ()=

a4( ) z a4( ) _( )

ax 4 + +a x z %02 a O 4
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Eqs. 1.26-36 may, of course, be explicitly expressed in terms of

displacements u, v, and w, which in this case would represent three

nonlinear differential equations in nondimensional displacement variables.

Within the limitation of their accuracy they determine all linear and non-

linear equilibrium paths for the cylinder. The corresponding linear

differential equations of equilibrium identical to those presented in

Section I. 13.4-D are obtained from the above expressions by

omission of all rotation terms in Eqs. 1. 26-35 and 1. 26-36.

The Donnell equations form the basis for a simplified version of

cylinder stability equations which will be discussed in the next section.

In addition, the Donnell equations in their homogeneous form have been

widely used for problems of circular cylinders subjected to line, con-

c.entrated and arbitrary edge loads. A review of such solutions is

presented in Ref. 1-51.

The system of equations that has been described is suitable for

determining displacements and stresses corresponding to equilibrium

configurations. To determine whether solutions of these equations

represent stable or unstable states of equilibrium, it is necessary to

study the second variations of the potential energy expression V

CEq. 1.24-12). The discussion of stability and buckling of shells is pre-

sented in the next section.
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1.27 SUMMARY

Ill this section, the equilibrium equations for shells based on the

concepts of nonlinear elasticity were derived. The principle of potential

energy was introduced and the use of variational techniques for obtaining

the so-called "large deflection 'f equilibrium equations for sheUs was

indicated. In addition) a simplified set of nonlinear equations frequently

used ill analyzing cylindrical shells was presented.

The concepts and equations presented in this section will be used

in presenting the stability theory of shells described in the next section.

118



1.30 STABILITY THEORY OF SHELLS

1.31 INTRODUCTION

In The previous section, the governing nonlinear equations which

determine the various equilibrium portions of a shell were derived.

Possible equilibrium configurations which a shell can assume are

stable, neutral, and unstable equilibrium. Therefore, in considering

the problem of elastic equilibrium, it is necessary to consider the

stability of the equilibrium configurations as well. It is essential to

observe that, when there are several possible positions of equilibrium,

that position which is given by the classical theory of elasticity is

ordinarily unstable. The problem of shell buckling involves the deter-

mination of the particular values of the loading parameter at which

various equilibrium positions are possible.

In a linear shell theory, displacements are proportional to loads.

The essence of shell buckling, however, is a disproportionate increase

in displacement resulting from a small increase in load. It becomes

obvious that a nonlinear shell theory is required. Thus, shell buckling

is fundamentally a subtopic of nonlinear shell theory.

The stability of shells can be determined from the equilibrium equa-

tions of nonlinear shell theory. Derivation of the nonlinear equationB for
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shells of arbitrary shape were presented in the previous section. Other

forms may be found in many references, e.g., Mushtari and Galimov

(Ref. 1-52), and Sanders (Ref. 1-53).

An excellent survey of work in shell buckling was presented by Fung

and Sechler (Ref. 1-54). A comprehensive description of research in

progress may be found in the 1962 NASA collection of papers on shell

stability (Ref. 1-55). Most attempts to obtain solutions to the equations

for the buckling of shells have for the most part been restricted to only two

shell shapes, the cylinder and the shallow spherical cap. The problem of the

cylindrical shell will be utilized freely in subsequent discussion to illustrate

the various methods used.

In principle, buckling loads for shells can be determined by suitably

plotting all equilibrium paths given by the solutions to the nonlinear equi-

librium equations, and observing the lowest load at which large lateral

displacements result from small increases in applied load. Because of the

obvious difficulty of such a procedure, it is usually preferred to determine

only those particular points of the paths at which the equilibrium changes

from a stable to a neutral state. To be more precise, the first appearance

of a possible bifurcation in the solution corresponds to the critical load.

That is, assume that some load on the shell is the critical load; then,

according to this criteria, two possible infinitely close positions of
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equilibrium exist. Two equivalent methods of the theory of elastic stability

have been developed for determining the critical loads: the adjacent equi-

librium theory and the minimum potential energy theorem (Ref. 1-9). The

use of these methods for obtaining the shell stability equations will be

illustrated in this section.

121



1.32 CONCEPT OF STABILITY

Before developing the shell stability equations, it may be worthwhile

to briefly discuss the nature of the buckling process. It will be convenient

to examine the load displacement characteristics of a representative shell

model to introduce the concept of stability as related to shells. For purposes

of illustration, consider the shallow spherical shell, shown in Fig. 1.32-1a,

clamped at the outer edge and subjected to uniform external pressure. The

displacement A at the apex of the shell will now be studied as a function of

the appliedload P. It will be assumed that representative but hypothetical

load displacement curves for this model are given in Fig. 1.32-Ib. The

curves are introduced for discussion purposes and do not necessarily

represent the actual physical solutions. Each position plotted in Fig. 1.32-b

represents an equilibrium configuration. Points not on the line, of course,

represent nonequilibrium configurations. The line itself is called an equi-

librium path.

In linear shell theory, the load is proportional to the displacement,

and the load displacement curve is a straight line, as shown by dashed line

OL in Fig. I. 32-Ib. Since yielding and large rotations are excluded, the l_ne

extends indefinitely in the direction indicated. Branching or bifurcation can

occur from a linear elasticity path if rotation free equilibrium configurations
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FIG. 1.32-1
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exist for nonzero values of the load. A bifurcation point is illustrated by

D' in Fig. 1,32-1b. The second path can slope upward, downward, or

horizontal, depending on the shell configuration.

In general, the rotations of the elements of the shell effect the con-

ditions of equilibrium. When this effect is taken into account,

of equilibrium are given by a system of nonlinear equations.

nonlinear load-displacement curve is illustrated by the solid line OABC

in Fig. 1.32-Ib.

It should be noted that the displacement A corresponding to a given

load P is not unique unless P > PA or P < PB" The behavior of the shell

depends on whether P or A is the controlled variable. Under a controlled

the conditions

The resulting
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displacement A (if this were possible), the equilibrium path is followed over

its entire length, with the load P undergoing an appropriate decrease from A

to B. However, if P is the controlled variable, a small increase in P above

the value PA causes the shell to jump from point A to point C without follow-

ing the path. This large increase in displacement from a small increase in

applied load is termed buckling. The load PA is called the critical load.

For some shell configurations it is possible that there are two (or

more) equilibrium paths between O and C. The configurations represented

by points along OABC are axisymmetric. Those along equilibrium path

ODEC are antisymmetric. Points at which an equilibrium I_ath splits into

two branches are called branch points or bifurcation points. They are

denoted by small dots, as indicated. Buckling occurs at P = PD-

During buckling the shell can move along a nonequilibrium path from D to

a point lying between B and C, viz., E.

A point in the equilibrium paths in Fig. I. 3Zolb represents a condition

of stable, neutral, or unstable equilibrium, depending upon whether the slope

of the curve at the point is positive, zero, or negative. For example, points

between O and A and between B and C on the line OABC represent stable

configurations whereas those between A and B represent unstable

configurations.

124



1.33 ADJACENT EQUILIBRIUM METHOD

The adjacent equilibrium theory is based on the observation that at

a critical load a second infinitesimally adjacent configuration exists for the

same load. Therefore, the appearance of a possible bifurcation in the

solution corresponds to the critical load. This criteria for determining

critical loads will be used to obtain the differential equations representing

stability of shells.

Denote u °, v', w °, the prebuckled displacements corresponding to

the initial equilibrium position which becomes unstable when the critical or

buckling load is reached. The displacements corresponding to the new

adjacent position occurring at buckling would then be represented by

u=u" +kfi

v = v" + k_

w=w°+kW

(1.33-1)

where fi, _, _ represent arbitrary admissible displacement functions

which satisfy appropriate laws of continuity, finiteness, and comply with

the constraints. The parameter k is an infinitesimally small quantity inde-

pendent of shell coordinates. Thus, kfi, k_, k_ are the incremental displace-

ments to which positions on a shell shift from the initial configuration to the

new adjacent position.
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Now apply the nonlinear equations of equilibrium derived in the

previous section (Eq. 1.2S-29) to the second position of equilibrium of the

shell. With the observation that u °, v', w ° are solutions to the nonlinear

equilibrium equations, introduction of Eq. 1.33-I into the equilibrium

Eq. 1.25-29 with the omission of terms containing the factor k to a degree

higher than the second results in the following stability equations for the

shell:

IN _-- 2 Ba z8a 2

[ _°'I, 0,M,oz,'+_ _, +_ _,j ( l .33-2a)

al a2

+R--7- ¢_i _ "_;__ lZ " _1N; - _z NIZ) + 'h°zPl = 0

a - 1 a(Nlz_z2)_la_l
0_--_(Nzal) + a2 8_I a_2

( 1.3 3-2b)

aIa2

R 2
(-Nzp__ - NZl@_ - N;__ - N_I_I ) + a lazp z = 0
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(o,)

M2 aa2 o -- o o -- ]"I agl+ "z (-_l_l-NlZ_Z-N1 St N_Z_Z)
(1. 33-2c)

+ a[1 a - !z
"gl °z agz

" _l ('_2B2 " N21B] + N_2 " N_l'_l) ] + alazq = 0

where (--) represents the contribution to the quantities (N and M) resulting

from the incremental displacements u, v, w. The N and M terms are

obtained from Eq. 1.23-I0.

For a cylindrical she(1, utilizing the approximations of the Donnell

theory discussed earlier (Section 1.26), the above stability equations for

cylindrical shells, in terms of axial and circumferential coordinates x, and s

are of the form

a_x a_xe
+ --=0

ax as

a_e a_'e
8x am

=0

(1.33-3)
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Ne (N. aZ_+ aZw" )D v 4 _+-E+\ ×a.z a-_T-g ( 1.33-3 cont)

where

N'. - l-_Z[ a. _\.x/ +_"
(1.33-4a)

Nxe = Et [au°_ +-- +2av° aw° aw°]
2 (1 + _) ax as ax as

and the increment in nondimensional forces resulting from the incremental

displacements are

[ ( +)]N'x = E'--i't a_.._+aw" a_' av _" aw"
,.z ax T_ _x + _ 7, + _ + T, T,

Et a__V+_ aw" a_ +_ +_o = ---T[ as -E + as as a.
t-l,.

(I. 3 3 -4b)

Et a+++.+°,+.]++ = z<i++) "+&",+ K + a,_ as + a,
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When Eq. 1.33-4 is substituted into Eq. 1.33-3, the latter represents

three linear differential equations inS, Yand _ with variable coefficients

corresponding to displacements u °,

the initial positions of equilibrium.

v °, w ° which represent solutions for

Since no restriction has been placed

on u °, v 0, and w ° the stability equations permit the determination of critical

loads whether the initial equilibrium paths are linear or nonlinear.

This procedure results in the replacement of nonlinear differential

equations of equilibrium by linear differential equations of stability. How-

ever, in general, u °, v °, w ° are solutions of the original nonlinear set;

hence, Eq. 1.33-3 is of little use without additional simplifying restrictions.

The most common simplification is to apply the equations of classical shell

theory to the initial position of equilibrium such that u °, v °, w ° are

restricted to points along the linear elasticity path. This approximation

assumes that angles of rotation which correspond to the initial position of

equilibrium are of the same order as strains. Thus, the coefficients u',

v °, w ° are givenby the solution of the linear equilibrium equations instead

of the nonlinear ones. This restriction of u°, v °, w ° to points along the

linear elasticity path is the distinguishing characteristic of linear stability

theory. A further simplification is usually introduced in linear stability

analysis. Since it is assumed that classical theory is applicable to the pre-

buckled state, then for consistency, all terms explicitly containing prebucklecX

rotations can be omitted from Eq. 1.33-2.
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If these terms are neglected, the stability equations (1.33-3) reduce

to the form

8N x 8Nx0

ax as

ON x 8N O
-- + - 0 (l.33-5)
ax as

N8 +N" 8z@ ZN" aZ_ + 8Zw = 0

.v4_ +-T x_ + xe axasN_a--T

where

1-8

(1.33-6)

-- Et [8_ 8_x__Nxe = Z(_I.,.) _ +

fo rm.

U_ Vp

Eq. l. 33-5 are referred to as the Donnell stability equations in coupled

They may be written in terms of admissible displacement components

wby substitution of Eq. 1.33-1 into Eq. 1.33-5.
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A more familiar uncoupled form is obtained by suitable differentiation

and recombination (Ref. 1-44) to yield:

03_ 03_

30 x OxOs 2

RV4v : -(2 + _)

3_

O w O3w

Ox2Os Os 3

(l. 33-7)

Et 04w

DV 8 _ + + _74

R z 0x 4
-- + 2Nx0 + N ° = 0

O 2
0x 2 OxOs Os

Thus, for linear stability theory, the prebuckled displacements u', v°,

w ° are obtained by solution of the linear shell equilibrium equations from

the linear theory (Paragraph 1.13-4-D) with prescribed boundary cond£tions.

These quantities are known functions of shell coordinates x and 8 and of the

magnitude of the applied load. By substituting these functions into Eq. 1.33-7,

a set of linear homogeneous differential equations is arrived at for _, _,

and W.

The resulting system has a nontrivial solution only for certain definite

values of the load parameter. These values represent the characteristic

values of the system. To each such characteristic value, there corresponds

a point of bifurcation of the solution of the equations.
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The boundary conditions prescribed must be satisfied at both the

initial and adjacent positions of equilibrium. As shown by Novozhilov

{Ref. 1-10), for geometric boundaries, a setof homogeneous boundary con-

ditions result for u, v, w.

This adjacent equilibrium method is a basic technique for investigating

elastic stability and red_ces the problem of finding critical loads to that of

determining the characteristics of a system of linear homogeneous differ-

ential equations with prescribed boundary conditions.
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1.34 ENERGY METHOD

The adjacent equilibrium method has the advantage of yielding exact

solutions. However, the mathematical complexity is such that it is more

convenient in many instances to use a different criterion. For this purpose,

the so-called potential energy method will be adopted for determination of

buckling loads. The minimum potential energy theory of stability is based

on the observation that the total potential energy of a loaded shell is a

relative minimum for stable configurations along the equilibrium paths but

is only stationary for unstable configurations. Recall from Section 1.24

that displacement functions which made the potential energy stationary

corresponded to equilibrium positions. This characteristic was utilized

in obtaining the nonlinear equilibrium equations; however, it was not possible

to determine whether the potential energy was a minimum, thereby char-

acterizing a stable configuration. The critical load on the shell can thus

be defined as the lowest load at which the total potential energy ceases to

be a relative minimum for configurations along the equilibrium path. The

magnitude of the critical load may be determined by consideration of the

second variation of the total potential energy expression. The equilibrium

is stable only if the second variation of the total potential energy is positive

de finite.
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The second variation expression using results of Section I. 24 is

given by

A A

= V z = U z - W z

- -I-- e
+ _Z e2 + rI2 IZ

(l. 34-8)

[ " ;_ " - " " ]I _'""+ 2 _I + _Z e2 + r12 e12 alazd_Id (1.34-9)

The strain and stress equations (I. 25-18 and -21, respectively) can

be substituted into the above to yield an expression in terms of the displace-

ment functions u °, v °, and w ° and admissible increments _I, W, and _. The

resulting expression consitutes a second variation expression suitable for

examination of the stability of any configuration along the equilibrium path.

These equations are the energy counterpart of the differential equations

of stability (Eq. I. 33-Z) presented earlier. In fact, for a shell in a position

of neutral equilibrium, the second variation expression vanishes; and the
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appropriate integration by parts of Eq.

the increments_, _, and _,

described by Eq. 1.33-2.

1.34-9, noting arbitrariness of

would result in the identical stability equations

The energy counterpart of the Donnell stability equation for cylindrical

shells can be obtained by substituting strain terms (Eq. 1.25-19) into the

second variational energy expression. Neglecting prebuckling rotations

@

[31 and [32 °, in the expression{Eq. 1.34-9) results in the second variation

of the potential energy of the form (integrating over the thickness):

2Tr L
a

V'2 = EtR2 L z +t0 + 2_exe8 x0

0 0

2 ,,.34_,0,8x 8{)

where

+ N ° o + o __
x %,8x/ 2Nxo

dx dO

R = the middle surface radius,

k = 1/12 (t/R) 2,
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N ° - Et Cx °x _ ( + _ c8°), etc;
l-t*

are recalled from Eq. 1.26-34.

According to the Treffty condition (Refs. l-Z4 and 1-55), the limit of

positive-definiteness of the second variation expression is determined by

the Euler equations for the integral, where the variations are taken with

respect to _, _, and _. Determination of the Euler equations for the integral

in Eq. 1.34-10 again yields the Donnell stability equations (Eq. 1.33-3).

In summary, all linear and nonlinear equilibrium paths for shells can

be determined from the nonlinear differential equations of equilibrium

(Eq. 1.25-29) from the previous section.

equilibrium paths of course determines

points. Due to mathematical complexity,

Complete determination of the

maximum and bifurcation

it is difficult to obtain complete

solutions to the nonlinear equations. The differential equations of stability,

(Eqs, 1.33-Za-c) or their energy counterpart (Eq. I. 34-10) permit deter-

mination of only those particular points along the path at which the equi-

librium changes from stable to neutral. The linear stability equations

determine such points along the linear elasticity path. To illustrate the

significance of these various equations, two kinds of analyses for the axially

compressed cylinder are examined in the following section. In one kind,

136



nonlinear equilibrium paths are determined by approximate solutions of the

equilibrium equations. In the other kind, critical points on the nonlinear

equilibrium path are determined by approximate solutions of the stability

equations. These developments will proceed within the framework of the

discussion on the discrepancy between theoretical results and experimental

valueB.
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I. 35 "CLASSICAL" BUCKLING ANALYSIS

Previously, the shell stability equations were obtained from the non-

linear equilibrium equations by use of the adjacent equilibrium method.

In general, the resulting equations are a set of linear homogeneous differ-

ential equations with variable coefficients. These coefficients represented

solutions for the initial or prebuckled state with loading magnitudes implicit

in the solution. The critical or buckling loads can be obtained from these

equations by solution of the associated eigen or characteristic value prob-

lem. To illustrate the procedure involved, consider the so-called classical

buckling problem. In particular, the (classical) buckling loads of axially

loaded {perfect) cylindrical shells will be determined from the solution of

the Donnell-type stability equations.

The stability equations from a nonlinear prebuckling form were given

by Eq. 1.33-3. Let us consider now the problem of an axially compressed

cylinder that is perfect before it is loaded. In this case, the prebuckled

deformation is axisymmetric, therefore, from Eq. 1.33-I

O O
m _

u = u

O

v = 0 (1.35-11)

w ° = w ° (x)

and Eq. I. 33-3 simplifies to
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al_x alqx0
_ + _ =0

8x as

0Nx0 aNo

ax as

=0 (1.35-1z)

DV 49¢ +_ + (N°x --0z_z +

0x

aZwO Z _
___ )+ o a__Xw

ax2 x NO 8s Z

= 0

with similar simplification of Eq. 1.33-5.

The prebuckled displacements are obtained by specializing the non-

linear equations of equilibrium for axial symmetry', as follows

aN °
X

-- = 0

ax

o Z o
4 o N O o aw

D 8w + + N -- =0
Y x z

9x _x

(1.35-13)

Because of the special circumstance that a uniform compressive load is

applied only at the end of the cylinder, the nonlinear equations become

linear constant coefficient equations since

and

O
N

X.
= constant = + P (applied compressive end load)

o
o w

NQ = Et--_- - p.P

(1.35-14a)

(1.35-14b)
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In the classical buckling problem, it is assumed that the cylinder

ends are unrestrained untilbuckling occurs, then it becomes simply

supported, Thus, for these special boundary conditions, the prebuckled

configurations obtained from the solution of Eq. 1.35-13 becomes

and

_P
w ° = +--_-R (I.35-15)

0

N o = 0

The solutions indicate a rotation-free equilibrium condition. For this

special case, the solution to the nonlinear and linear equilibrium paths

coincide. For this problem, stability is determined from the simplified

equation obtainedby substitution of Eqs. 1.35-14 and 15 into Eq. 1.35-12.

The resulting equations can be combined to yield a simple eight order

equation (Ref. 1-19) of the form

- 0 (1.3s-16)D_8@ + p 4_a2@ + Et a4_

ax 2 R 2 ax 4

Determination of the smallest P for the nontrivial solution of

Eq. 1.35-16, in accordance with the adjacent equilibrium theory, yields

the associated bifurcation points along the nonlinear and linear equilibrium

path.
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A solution of Eq.

simple support at the end of the cylinder is

nTrx s

w = A sin -L--cos rn_

Substitution of Eq. 1.35-17 into the stability equation (Eq.

the following stability criteria for the nontrivial solution,

minimization with respect to integers m and n

Et 2
P = (Nx °) =

cl 43

1.35-16 that satisfies the boundary conditions of

(I.35-I7)

1.35-16), yields

after appropriate

(1.35-18)

This criteria is called the "classical buckling load" in the literature.

In the analyses discussed, the conditions of no edge restraint resulted

in considerable simplification of the buckling problem for the assumption

that the effect of boundary conditions had little effect on buckling,

especially for long cylinders. If the cylinder shell has edge restraint

throughout its loaded configuration, solutlon of Eq. 1.35-13 will not result

in a constant deformation, w, but will be a function of x. Substitution of

the prebuckleddeformation into Eq. 1.35-12 results in a more complicated

form, since the selection of the eigenvalue problem requires consideration

of variable coefficients in the differential equations. The influences of

these edge restraints on prebuckling deformations and, consequently,

buckling loads will be discussed in the next section. A similar approach

can be used in obtaining classical linear buckling loads for spherical and

and conical shells (Ref. 1-26).
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1.36 DISCREPANCY BETWEEN THEORETICAL AND EXPERIMENTAL

RESULTS

The solution of the linear stability equation

cylinder under axial compre'ssion yields

Eq. (l. 35-16) for a

%1 0.606 Et= [ (I. 36- 19)

This value is called the "classical buckling stress. "

lowest bifurcation point on the linear elasticity path,

Fig. 1.36-I.

test data (Ref.

It represents the

as illustrated by

This theoretical value is compared with the experimental

1-56) for axially compressed cylinders in Fig. 1.36-2. As

can be seen, there is a serious disagreement between the results of

classical and experiment stress for the buckling of isotropic cylindrical

shells. Similar discrepancies can be observed for other shell shapes and

loading conditions. Many investigators have attempted to explain this

discrepancy.

One of the most significant of the early investigations was performed

by Von Kg[rm{n and Tsien (Ref. 1-57) who first used nonlinear shell

theory to investigate the large deflection behavior of an axially compressive

cylinder. These investigators attempted to determine the nonlinear

equilibrium path that branches off at the linear theory bifurcation point.

In their analysis, they chose to determine the nonlinear branch by use of
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the potential energy expression and a Raleigh-Ritz approach rather than by

solution of Eqs. 1.35-12 and -13. For a displacement function, w, these

investigators assumed an expression

w _ a00 + a I 1 cos (m_x) cos /n_0) + az0

where m and n are wavelength parameters and the aij's are constants.

Substitution of Eq. 1.36-20 into the appropriate form of the potential

energy expression (Ref. 1-57) yields a quartic polymonialin the aij's.

For equilibrium (see nonlinear theory section), the requirement that

_V
-- -" 0

aaij

must be satisfied. The results showed that existence of finite deflection

equilibrium configurations at loads considerably less than the classical

buckling load occurred. The results obtained by VonK_rm_n and Tsienare

given by the curve in Fig. 1.36-3.

Karman-Tslen analysisSeveral investigators have extended the Von " "

in order to determine the effect of inclusion of more degrees of freedom

in the assumed deflection function for the Raleigh-Ritz analysis. Curve A

in Fig. 1.36-4 is the result of critical load obtained by Kempner (Ref.

curve B is the results obtained by Almroth (Ref. 1-59). It

was hoped that a minimum postbuckling load could be established from such

an approach. However, in recent studies performed by Hoffat

cos (2mTrx) + ao2 cos (2n_TG))
(1.36-zo)

(1.36-21)

1 -s8);
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FIG. 1.36-3.

aCt

Load-Displacement Curve for Perfect Cylinder

FIG. 1.36-4.

_L

Load Displacement Curves for Perfect Cylinder
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Stanford University (Ref. 1-60), postbuckling equilibrium configurations

approaching a zero loading condition were obtained using a refinement of

this approach.

Although these analyses determined the nonlinear equilibrium path,

it did not change the bifurcation point load. Tests show that the cylinder

ju_ps from the unbuckled configuration to one of the nonlinear branches

without passing through the linear theory bifurcation point. There has

been much speculation concerning the cause of this cylinder jump and the

resulting discrepancy between observed and calculated loads. Weak

stability has been one of the first explanations suggested as to a possible

cause of the jump. (Ref. 1-57. ) Von K_rmgn and Tsien showed that the

stability of an axially compressed cylinder is weak, and suggested that

accidental vibrations of the test machine or disturbances in the laboratory

caused the cylinder to jtm_p over a potential barrier to a lower load.

This suggestion was a reasonable one, however, various test programs

conducted since the work of Von K_rm_n and Tsien have strongly

indicated that accidental disturbances are not the major reason for the

reduction in critical loads in laboratory tests (Ref. 1-59). This is not

meant to imply that the loss of stability due to external disturbances is

not an important design consideration, but simply that it is not believed

to be an important factor in ordinary laboratory buckling tests.
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Von K;(rm;fn and Tsien also suggested that imperfections whichwere

inevitable in manufacture, such as initial shape irregularities in the test

cylinder, might cause a roundoff of the sharp peak between the linear

and nonlinear branches of the load-displacement curve, and, thus, result

in a lower maximum point.

To perform an initial imperfection analysis for cylindrical shells,

it is necessary to modify the nonlinear equations of equilibrium for slightly

noncyiindrical shells. The nonlinear equations of the imperfect cylinder

(Eq. 1.33-3) become (Ref. 1-61)

_N 8NxQx
+ -- - 0

ax O0

aNx@ aN O
+ -- = 0 (I 36-zz)

ax 40

NO 0Z(w* + w) _Z(w* + w) _2(w* + w)
DV4w +--_ + N Z + ZNx0 + NO

x _x _xaO aO z

=0

where w _ is the initial imperfection from the cylinderical form; w* would

also cause a modification in the form of the strain displacement relations.

The initial imperfectly.., w*, in these equations is an arbitrary

function of x and O. Solution of the equations for a particular w* deter-

mines the corresponding nonlinear equilibrium path and critical load,

A systematic study of various initial shapes will firmly establish the role
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o_ initial ill,perfections in buckling analysis. A general evaluation of varioul

values of w;_ has not been performed to date due to the mathematical diffi-

culties i_vo]ved. However. two specialized initial imperfection analyses

o'¢ particular significance have been reported in literature.

Ill 1950, Donnell and Wan (Ref. 1-62) presented analysis with con-

sider_ion of an initiator imperfection of the form

K-1
w* = _ w (1.36-23)

Z

where K is an imperfection constant. This form does not represent a

particular initial shape but probably does represent one of the most

influential imperfections for each equilibrium configuration. Instead of

attempting to solve Eqs. 1.36-Z2, Donnell and Wan used the correspond-

_ng potential energy expression and the Raleigh-Ritz procedure for their

,_,_alysis. Donnell and Wan selected a displacement function of the general

t r

form of Eq. 1. 36-Z0 and, following a similar procedure as VonKarrnan

and Tsien, were able to determine a nonlinear equilibrium path for a

given imperfection parameter, K. The results of their analysis is shown

in Fig. 1.36-5. The critical load for cylindrical shells is characterized

by a maximum point on a nonlinear path. Although the Donnell and Wan

results substantially contribute to an understanding of the role of

i,_I)_rfections, the analysis has two limitations: (i) relatively few

clegrees of freedom were considered in the Raleigh-Ritz analysis and,
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FIG. 1.36-5.

as previously noted,

initial shape.

'CL 1.0

Load-Displacement Curves for Imperfect Cylinders

(2.) the imperfection does not represent a particular

An imperfection analysis which does represent a particular initial

shape was reported by Koiter in Ref. 1-63. The solution of the nonUnear

equations can be significantly simplified by considering initial imperfec-

tions to be axisymmetric. As shown in Section 1.35, such a specialization

of the set of nonlinear partial differential equations yields a set of non-

linear ordinary differential equations. For the particular case of an

axially loaded cylinder the fact that Nx ° = P, (a constant)j for any

prebuckled displacement w o = Wo(X) yields a set of linear ordinary
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differe1_tial equations with constant coefficients. Eq. I. 36-22, with

appropriate modification to include initial imperfection, can be solved

exi_licJtlyfor arbitrary axisymmetric imperfections. Koiter investigated

lhz _orr_

w = -_t cos Zpx (I. 36-24)

where H is amplitude of imperfection as a fraction of shell thickness,

and P is a wave length parameter. A Galerkin (Ref. 1-63 ) procedure was

used_o solve the variable coefficient equations. The results of the

_o£ter analysis are shown in Fig. 1.36-6 for the case where p was

selected to coincide with the axisymmetric buckled mode of a perfect

cylindrical shell. It can be seen that an initialimperfection amplitude

equal to the shell thickness is sufficient to reduce the buckling load to

only Z0 percent of the corresponding value for the perfect cylinder.

In careful tests pet"formed at Lockheed (Ref. 1-61 and at the California

Institute of Tcchnology (Ref. 1-73), unusually high buckling loads (85 to 90

pe icent of class ical)have been obtained when initialimperfections were care -

fully minimized. Brush and Almroth (Ref. I-59) were able to repeat buckling

loads i. their tests for a given cylinder, but the results were quite different for

diZferent cylinders. The results of these tests and the analytical results

described have given a strong indication that initial imperfections have

Serio,_s effect of buckling loads.
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FIG. 1.36-6.

IMPERFECTION PARAMETER,

Critical Loads for Imperfect Cylinders

A possible cause of the discrepancies observed between theory and

the influence of edge effects was suggested by Stein (Ref. 1-64) and

Fischer (Ref. 1-65) who investigated the influence of prebuckled

deformations. In the classical analysis described in Section 1.35

the influence of edge restraint on prebuckling deformation was neglected.

However, in reality, the diameter of the restrained cylinder tends to

increase under axial compression loading due to Poisson's ratio effects.

This increase is prevented at the ends of the cylinder by its boundary

restraints. Hence, the generators of the cylinders are distorted prior to

buckling and axial forces in the cylinder at the ends are eccentric relative

to portions of the shell wall near midlength. When this eccentricity is
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considered, the theoretical prebuckling equilibrium becomes nonlinear.

Stein and Fischer sought a bifurcation point along this nonlinear path.

The analysis proceeds similarly to that described in this section

except that the prebuckled deformations obtained from the solution of

Eq. I.36-2Z is now a function of the x coordinate for restrained boundaries.

In the classical theory, w o was constant. In this case, the resulting

stability equations have variable coefficients and it becomes more com-

plicated to determine the bifurcation points. Both Stein and Fischer

considered simply supported shells and solved the equations numerically.

The approaches were quite similar except for differences in the in-plane

boundary condition. Stein assumed zero tangent restraint (NxQ = 0) at

the boundary, while Fischer assumed the perhaps more likely restraint

that the tangential dlsplaccment vanishes (v = 0). The results obtained

were substantially differcnt as shown by the results given in Fig. I. 36-7.

These results appear to indicate that different in-plane boundary conditions

can lead to a wide variation in results. Almroth (Ref. 1-66) recently

presented solutions for other boundary restraint conditions.

In an earlier investigation based on linear stability theory, Ohira

(Ref. 1-67) used boundary conditions similar to Stein and found a bifurca-

tion point at a relatively low load along the linear elasticity path. His

results are also shown in Fig. I. 36-7. Hoff also reported lower buckling
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loads based on linear stability theory in Ref. 1-68. All these results

show that the edge effect can be a significant factor in reducing the

theoretical buckling loads.

The results discussed to this point have related to the buckling of

cylindrical shells under axial compression. Similar discrepancies have

been observed for other loading conditions and shell shapes. For

example, Fig. 1.36-8 shows a comparison of experimental and theoretical

values (e. g., Ref.

normal pressure.

li te r atur e.

1-7Z), for the case of a spherical cap under uniform

This problem has been treated extensively in the

Here again there is a significant discrepancy between theoretical

FIG. 1.36-7.

P
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LINEAR STABILITY THEORY

VON KARMAN-TSIEN (57)

OHIRA(61)
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Axially Compressed Cylinder Bifurcation Points
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values and test data. The theoretical results shown for axisFrnrnetric "

buckling were obtained by Budiansky (Ref. 1-69); and results shown for

an unsymmetric buckling load were obtained by Huang (Ref. 1-70).

Additional information pertinent to the design and stability analysis

of shells may be found in the excellent texts of Gerard (1-71), Timoshenko

(i-74), Bleich (i-75) and Cox (1-76).
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1.37 SUMMARY AND CONCLUSIONS

The static nonlinear stability theory of thin shells has been discussed

in relation to its use in shell buckling analysis. The stability equation of

shells were derived based on the nonlinear equilibrium equation. Certain

well-known approximate solutions of the nonlinear equations for axially

compressed cylinders were discussed. The severe discrepancy between

theoretical and experimental results was noted.

From the foregoing discussions, it is not difficult to see why there

has been little agreement between theoretical and experimental results for

critical loads of shell structures since apparently infinitesimal deviations in

boundary conditions and in the shape of the shell yield drastic reduction in

critical loads. For the researcher, these results indicate that he must

always be aware of the prbblem to which his investigations actually apply

and of the implication of the assumptions he makes. Nonlinear theory

can be used to consider the influence of both initial imperfections and

edge effects in shell buckling analysis. It is believed that accurate formula-

tlon of a problem in terms of this theory and exact solution of the equationl

would result in a close agreement between theoretical and experimental

results. At present, for actual practice, however, this procedure is

prohibitively difficult. Nonlinear theory serves to broaden our knowledge

of shell buckling analysis and to clarify the meaning and limitatlon8 of
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linear stability theory, but at present it is not a design tool for direct

determination of the buckling load.

The designer must be exceedingly careful in applying results of

analysis and experimentation in order that the shell structures for which

the results were obtained apply to the structures for which he is designing.
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2.00 PROCEDURES FOR STATIC ANALYSIS
OF SHELL STRUCTURES

Z. 10 INTRODUCTION

GENERAL

In this chapter some of the results of Chapter 1.00 will be applied to

solve shell problems. Chapter 1.00 defined the structural shell and several

shell theories, with their limitations and ramifications. It was pointed out

that the thickness-to-radius-of-curvature ratio, material behavior, type of

construction (e.g., honeycomb sandwich or ring-stiffened shells), types of

loadings, and other factors allplay a role in establishing which theory is

applicable. Furthermore, shallow versus nonshallow shells required

different approaches even though they fell into the same thin shell theory.

In this chapter, nonshallow shells will be analyzed. The resulting

differential equations for nonshallow shells have solutions which will be

tabulated for the solution of simple and complex rotationally symmetric

geometries subjected to arbitrary rotationally symmetric loads. There

are certain restraining conditions, called edge restraints, that the solution

must satisfy. The edge restraints are reduced to unit loads and, by making

the solution of the differential equations satisfy these unit edge restraints,

the influence coefficients for the geometry are obtained. These influence
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coefficients, etc., are then used to solve problems that involve determining

stresses, strains, and displacements in simple and complex geometries.

In the following sections, surface loads, inertia loads, and thermally

induced loads are included in the equilibrium equations and will be part of the

so-called "membrane solution." The membrane solutions are called

"primary solutions" and solutions for the unit edge restraints are called

"secondary solutions. "

GEOMETRICAL CONSIDERATIONS OF SHELL SEGMENTS

In this portion of the manual, a shell or the combination of shells

shown in Fig. Z.10-1, having the characteristics of (a) nonshallow thin shell

of revolution, (b) rotationally symmetrically loaded, and (c) rotationally

symmetrical distribution of materials, are treated. In addition, the

described procedure is limited to the so-called "thin" shell category

described in Chapter I. 00.

A thin shell is defined as a shell that conforms to the Navier hypothesis

and the Bernouilli-Euler theory of bending. A basic assumptinn in this

theory is that a normal plane section before bending remains a normal plane

section after bending, and without extension. Also, in this theory,

anticlastic bending is neglected. A characteristic of a nonshallow shell is

that the bending moment exists only in the neighborhood of the edge of the

shell or in the area where a concentrated load is applied.
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SEGMENT I

SEGMENT 2

SF.._ MENT $

FIG. 2. 10-1. Combined Shell

Novozhilov (Ref. 2-1)

recommends the criterion that

a thin shell be defined as a shell

where the relation t/R (where t

is the thickness, and R is the

radius of average curvature)

can be neglected in comparison

to unity. H this relationship

Thedoes not exist, the so-called "thick" shell theory may have to be used.

division into thin and thick shells is still artificial and arbitrary unless

those values which are negligible in comparison to unity are defined. For

example, if it is assumed that the usual error of 5 percent is permissible,

then the range of thin monocoque shells will generally be dictated by the

relation t/R < 1/20. The great majority of rnonocoque shells commonly

used in practice are in the I/i000 < t/R < 1/50 range which means that they

belong to the thin shell family. However, as was noted above, the division

into thin and thick shells is arbitrary and depends on degree of accuracy that

is required for the solution of the problem. If an error of 20 to 30 percent is

permissible, the theory of thin shells can be used with caution even where

t/R _ 1/3.

Furthermore_ only thin shells with small deflections in the elastic

range will be discussed in this section (i.e., the deflection of the shell must
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be small in comparison to the wall thickness). Loads and material

restrictions are such that the laws of the linear theory of elasticity are

applicable.

After the analysis is conducted, the result should be qualified to

ensure that the deflection is small in comparison with the wall thickness.

MEMBRANE SOLUTION

The membrane theory for shells assumes that the basic resistance of

the shell to load is by inplane tensions compression, and shear. Bending

and twisting are neglected.

A membrane is a two-dimensional equivalent of the cable that resists

loading through tensile stresses. This is illustrated in Fig. 2.10-2.

The shape of the cable or membrane as defined below is a function of

the loading; with a change or redistribution of the Ioading_ its shape immedi-

ately will change to allow response to the loading with tension stresses only.

BENDING FORCES AND THEIR INTERACTION WITH MEMBRANE FORCES

Consider a membrane made from catenaries as shown in Fig. 2. I0-2

which found its equilibriurn position under the illustrated loading condition.

If this deflected membrane could be made rigid by some technique and the

loading reversed, as shown in Fig. 2.10-3, then the loading willbe resisted

by internal compressive stresses,
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The thin shell must be capable of resisting both tension and compres-

sion. In reality, the similarity between the thin shell and membrane is

not complete, because of so-called boundary disturbances. For nonshallow

shells, the effects of edge moments and shears are usually localized in the

region immediately adjacent to the boundary. (In shallow shells the edge

effects and concentrated loads are felt throughout the entire shell.)

Consequently, the shell, unlike the membrane, will also be able to resist

some moments, but this resistance is not the prime function of the ideal

shell.

For better understanding of the shell bending action, the following

analogies can be given: A plate supported along the edges and loaded

perpendicularly to the plate surfaces, is actually a two-dimensional equiva-

lent of a beam supported at the ends and loaded perpendicularly to the beam

axis. In this case the plate, like the beam, resists loads by two-dimensional

bending and shear. Beams resist loads by one-dimensional moment and

shear. The plate is atwo-dimensional surface. A shell is also a surface,

but is three-dimensional. Bending is resisted bythe shell in a similar

manner to the plate, except that for the plate, bending is the main

characteristic resistance and for a shell it is only secondary.
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UNIT EDGE LOADING METHOD OF SOLUTION

The unit-loading method, generally regarded in practice as an

economical and effective way of solving this type of problem, is treated

briefly in this section. Unit-loads, which will be defined in detail in sub-

sequent sections, are unit moment, unit shear, and unit in-plane edge loads

from which the so-called influence coefficients are determined. These

influence coefficients are used to build up solutions of shell segments (see

Fig. Z. 10-1), to get the solution of a complicated shell. This method has

the advantage of being applicable to most practical problems because it

enables the stress analyst to solve complex geometries in terms of com-

binations of known solutions for simple geometries. This is done by sub-

stituting the complex geometry by cones, spheres, cylinders, tori, etc.,

for which solutions are generally known, and then piecing the solutions

together. These solutions, when pieced together, must satisfy continuity

conditions as well as the equilibrium condition at the junction of the shell

segments. The unit loads are used in the equilibrium condition.
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2. Z0 GENERAL APPROACH OF UNIT-LOADING METHOD

In this section,

for application in the unit loading method; then,

between the shell geometries will be presented.

membrane and bending theories will be discussed

the interaction process

This permits any

complicated shell structure to be broken down into simpler shell

elements; the unit-loading method will then be applied to obtain the

solution for the complicated shell.
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2.21 INTRODUCTION

Z. Zl. l Nature of Statically Indeterminate Structures

Generally, a shell is a statically indeterminate structure. The

internal forces of the shell are determined from six equations of equilibrium,

which are derived from the three force and three moment equilibrium

conditions.

There are ten unknowns that make the problem internally statically

indeterminate because determination of the unknowns does not

depend on the supports, The situation is similar to a truss

which, as used in practice, is a highly statically indeterminate system.

If reactions to the applied loading can be found with the help of known

equations of statical equilibrium, the system is externally determinate;

however, a truss is a statically indeterminate system internally because

instead of the assumed simplification (which introduces hinges at the

joints), all joints are welded or riveted together. This introduces the

moment into the members. However, this additional influence is known

to be negligible. To find the statically indeterminate values, deforma-

tions must be considered.

The main objective of the following sections is to bypass the elaborate

calculations by replacing the classical methods of elasticity theory with the

simplified but accurate procedure called the unit loading method. This is

accomplished by enforcing the conditions of equilibrium, compatibility in
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displacement, and rotations at the junctions. The following paragraphs

will review the membrane and bending theories.
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Z. Z2 MEMBRANE AND BENDING THEORIES

After discussion of the membrane and bending theories, it will be

shown how both theories can be combined to achieve a simpler and more

accurate method to determine stresses and deformations.

2. 22. 1 Membrane Theory

The elaborate calculation of statically indeterminate values may be

bypassed with the help of an approximation method that can lead to useful

results for most cases in practice. This method is called the membrane

theory. Its justification and success are closely connected with the interplay

of forces in curved surface structures, as explained in the introduction.

Of ten unknown stresses acting on the differential element of a shell

(two bending moments, two torsional moments, two normal shears, two

in-plane shears, and two in-plane loads), only four are of any significance.

Consequently, a simplified theory was formed which assumes that normal

shears, bending moments, and twisting moments are negligibly small

compared to other terms; hence, they are set equal to zero.

The membrane theory is based on the assumption that only two in-

plane shears and two in-plane loads are significant. This theory neglects

all rest of the above-mentioned loads. The membrane theory is applicable

only if boundary conditions are compatible with conditions of equilibrium, as

shown in Fig. 2.22-1. It is noted in Fig. Z. 22-Z that the concentrated loads
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FIG. 2.22-1. Boundary Conditions

Compatible With the Membrane

Theory

FIG. 2.22-2. Disequilibrium Due to

Concentrated Load

normal to the middle surface are not compatible with the membrane theory

because of local out-of-plane forces.

2.22.2 Bending Theory

The bending theory, in which all stresses, including vertical shear,

bending, and twisting are considered, is more general and exact than the

membrane theory. Unfortunately, as shown in previous discussion in the

introductory chapters, this method is much more elaborate. Howeverj in

certain instances, this theory can be simplified when applied to rotationally

symmetric geometries subjected to rotationally symmetric loads.
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2. ZZ. 3 Comparison of Membrane and Bendin_ Theories for Nonshallow

Shells

The bending theory is more general than the membrane theory

because it permits use of all possible boundary conditions. To

compare the two theories, assume a nonshallow spherical shell with some

axisymmetrical loading and built in along the edges. When the results are

compared, the following conclusions can be made:

1. The stresses and deformations are almost identical for all

locations of the shells with the exception of a narrow strip on

the shell surface which is adjacent to the boundary. This

narrow strip is generally no wider than _/-Rt', where R is the

radius and t is the thickness of the spherical shell.

2. Except for the strip along the boundary, all bending moments,

twisting moments, and vertical shears are negligible; this

causes the entire solution to be practically identical to the

membrane solution.

3. Disturbances along the supporting edge are very significant;

however, the local bending and shear decrease rapidly along

the meridian, and may become negligible outside of the

narrow strip, as described in item 1.
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2. 22.4 Combined Bending and Membrane Theory

Since the bending and membrane theories give practically the same

results except for a strip adjacent to the boundary, the simple membrane

theory can be used; then, at the edges, the influences (moments and shears)

can be applied to bring the displaced _ ige of the shell into the position pre-

scribed by boundary conditions. The bending theory is used for this operation

leading to final formulas. Consequently, once the solutions are obtained, they

can be used later without any special derivation. The results obtained from

application of both theories can be superimposed, which will lead to the final

results being almost identical to those obtained by using the exact bending

theory.

2.22.5 Unit-Loading Method Applied to the Combined Theory

The solution of a shell of revolution under axisymmetrical loading can

be conducted in a simplified way, known as the unit-loading method;

1. Assume that the shell under consideration is a free membrane.

Obtain a solution for this membrane. Find the overall stresses

and distortions of the edge. This is the primary solution. The

primary solutions for frequently used loadings and geometries

can be collected and tabulated. The category of primary solutions

includes a list of such solutions obtained by other methods when

the membrane theory failed to provide the answer.
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.

Apply the following edge loadings:

a. Moment in pound inches per inch along the edge

b. Horizontal shear in pounds per inch along the edge

c. Vertical shear in pounds per inch along the edge.

These loadings should be of such magnitude as to be able to

return the distorted edge of membrane into a position pre-

scribed by the nature of supports (edge condition). The third

edge loading in the majority of cases is not necessary. The

amount of applied corrective loadings depend on the magnitude

of edge deformations due to the primary solution. The exact

magnitude will be determined by the interaction procedure to

be explained later. However, to start the interaction process)

formulas will be necessary for deformations due to the

following:

a. Unit=edge moment: M = 1 pound inches per inch

b. Unit-edge horizontal shear: Q = 1 pound per inch

c, Unit-edge vertical shear: V = 1 pound per inch

These solutions will be referred to as unit edge influences,

or as secondary solutions.

Having the primary and unit edge solutions, these can be

entered into the interaction process. This will
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determine the correct amount of corrective loadings M, Q, and

V; all stresses and distortions due to these loadings can then be

determined.

4. Superposition of stresses and distortions obtained by primary

solution and corrective loadings lead to the final solution,

The solution obtained is almost equivalent to that solution obtained

by the application of the exact bending theory.
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2.23 INTERACTION BETWEEN SHELLS OF VARIOUS GEOMETRIES

Usually, structures are represented by a system of simple members

that mechanically interact with each other. A shell can be regarded as one

of these possible members. For example, missiles, boosters, and space

vehicles contain bulkhead and cylinder combinations; both shells are built

into each other; and consequently, a stress-strain discontinuity relation-

ship exists for each of these shell elements. Analytical methods are

required to determine stresses and deflections including the effects of

inte raction.

Z. Z3. I Breakdown for Complicated Shell Geometry

Complicated shell configurations usually can be broken down into

simple elements. Very often the combination of shells and rings must be

dealt with. Usual shapes include spherical, elliptical, conical, conoidal,

toroidal, or compound (irregular) shapes of bulkhead. Fig. 2.23-I, for

example, illustrates a compound bulkhead which consists of the spherical

transition and conical shell. By analysis of such a shell, the analyst must

choose between two methods: he can consider such a system as an

irregular one and use some approximation, or he can calculate it as a

compound shell, using the method of interaction, depending on the accuracy

required,
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BULKHEAD

%

SHELL THEORY DOES

gOT APPLY HERE.

CONICAL

SPHERICAL OR

-.TOROIDAL

CY LINDRICAL

FIG. Z. ZB-1. Compound Bulkhead

In this section, the interaction method, which is applicable not only

to the monocoque shells but also to sandwich and orthotropic shells, is

presented. The interacting elements are often from different materials.

The loading can vary considerably too. The most frequently used loadings

are internal or external pressure, axial tension or compression load,

thermally induced loads, and the thrust loads.

2.23.2 Interaction Between Two Shell Elements

After this brief introduction, the method of interaction can now be

described. For simplicity, the interaction between two structural elements

will be described first. Second to be described is the more general case
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of interaction of several elements, as is usually the case if the combined

bulkhead is under consideration. For the purpose of presentation, a system

consisting of a bulkhead and cylinder, pressurized internally, is selected.

The bulkhead can be considered as a unit-element of some defined shape and

will not be subdivided into separate portions in the great majority of cases.

For example, assume the pressurized container to be theoretically

separated into two main parts: the cylindrical shell and dome, as shown

in Fig. 2.23-2. Stresses and deformations introduced by internal pressure

FIG. 2.23-2. Cylindrical Shell
and Dome

6
c

(or another external loading) can be

determined for each part separately.

Assume that the membrane

analysis (primary solution) supplied the

radial displacements _r = 6 c and

rotation Pc for the cylinder along the

discontinuity line and Ar = 6 d and _d

for the dome. Since the structure is

separated into two elementsj

6 d
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Consequently, there exists the discontinuity:

(a) in displacement 6 c - 6d

(b) in slope _c " _d

To close this gap, unknown forces Q and M will be introduced around

the junction to hold the two pieces together.

Displacements and rotation of the cylinder due to unit values of Q and

M are defined as follows:

6 , : and 8 , M_cQ c C M c

The corresponding values for the dome for the same unit loadings will be:

old ' o[_d and M6d ' M[3d

These unit-deformations and unit -loading s at the junctions are presented

in Fig. 2.23-3.

To close the gap, the following equations can be written:

(:c o+ ++ _d)M = _c" _d(Q_3C ÷ Q_.Id)Q-I- (M_C M

Assume that all coefficients 6 and _ are known.

(z.23-1)

For any shell geometry and

any loading of practical values, these coefficients will be given in the

further presentation of this chapter as an algebraic formula. Thus, the

following can be indicated:
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O6d

Q=I
Q=I

(ALL A ROUND)

M_6d
MP d

(ALL
A ROUND)

M6c

M _c

FIG. Z. 7-3-3.

6 +
q c

M6c +

Unit Deformations and Unit Loadings

6d = 6 ; _c + _d = _Q Q Q Q Q

M6d = 6M ; M(3c + M0d = 6 M (Z.Z3-Z)

6c- 6d =6 ; _c" (_d : f_

As illustrated, 12 coefficients are known in general. In the special

case of interaction of a cylindrical shell and a dome (not toroidal) with the

same tangent on intersectionp the number of coefficients are reduced to ten

because

c = 0 and _d = 0
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Finally, Eq. 2.23-1 is reduced to a system of two equations with the two

unknowns,Q and M:

6OQ+ 5MM=6

OQQ + sM M =

Define the determinants of the above system as follows:

D .. , D 1 =

ps

, Dr='

8Q 8

13Q _M

The statically indeterminate values of Q and M are determined:

D 1 D z

D ' D

It is noted that one cut through the shell lead to two algebraic equations

with two unknowns.

The following sign convention is adopted:

1. Horizontal deflection 6 is positive outward.

2. Shears are positive if they cause deflection outward.

3. Moments are positive if they cause tension on the inside fibers

of the shell.

4. Rotations are positive if they correspond to a positive moment.

In general, this sign convention is arbitrary. Any rule of signs may be

adopted if it does not conflict with the logic and is used consistent17.
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It is noted that in addition to M and Q, there is an axial force distri-

buted around the junction between the cylinder and dome (reaction of

bulkhead), but the effect of this force on the displacement, due to M and Q,

is negligible.

2.23.3 Interaction Between Three or More Shell Elements

In practice, most cases are similar to the above described two-member

interaction. However, at times it may be convenient to consider interaction

of more than two members. This can be performed in two ways:

1. Interact first the two members; then, when this combination is

solved, interact it with the third member, etc.

2. Simultaneously interact all members at the same time.

The first method is self-explanatory. The second method requires

further explanation; If the shape of the bulkhead is such that its meridian

cannot be approximated with one definite analytical curve, such a bulkhead

is called a compound bulkhead and can be approximated with many curves.

Such a bulkhead was illustrated in Fig. 2.23-1.

In such a case, two or more imaginary cuts through the shell

will be required to separate the compound bulkhead into component shells

of a basic shape. This is shown in Fig. 2.23-4, which has two imaginary

cuts and the compound shell consists of three elementary shells: circular,

toroidal, and cylindrical. Fig. 2.23-4 illustrates also the loading and
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SPHERICAL

FIG. 2.23-4. Discontinuity Loads

discontinuity influences that belong to each cut. The discontinuity influences

will restore the continuity of the compound shell.

The symbols used for the two successive cuts m and n are also shown

in Fig. Z. Z3-4.

M _nn ' Q _nn

6 , 6
M nn O nn

M_nm ' O_nm

M 6nm O6nm

= rotation at point n due to a unit moment M or unit

horizontal shear Q acting at point n

= horizontal displacement due to the same

loading in application points as above.

= rotation at point n due to a unit moment or unit

horizontal shear acting at point m,

respectively

= horizontal displacement due to the same loading

in application points as above.
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Indicating n = 1 and m = 2, the above nomenclature can be considered

as a proper indication to cover the toroidal portion (_ , (_ as shown in

Fig. 2.23-4.

Additional nomenclature needed to cover the spherical shell is shown

= rotations at point (_) on the spherical shell due to a

unit moment or unit shear at the same point.

5 , 6 -- horizontal displacements due to the same conditions
M s O s

as above.

Similarly, displacements and rotations of point

shell will be defined.

s (sphere).

Due to the primary loading (internal pressure),

displacements will be indicated with _ and A r = _.

subscripts c and s refer to the cylinder and sphere.

2t will be used to denote the toroidal shell at the edge _D and _)

Now the equations for the total rotation and displacement can be

formed.

Spherical Shell:

5s = M6s M2 + Qgs Q2 + As P

_s = MSs M2 + _s Q2 + _s pQ

0 on the cylindrical

Subscript c (cylinder) will be used instead of

the rotations and

As before, the

The subscripts It and
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Toroidal Shell:

62t = M622 M2 + Q822 Q2 + M621 M1 + Q821 Q1 + A2t P

_2t = M_22 M2 + Q_22 Q2 ÷ M_21 M1 + Q_21 Q1 + _2t p

61t = M612 M2 + Q612 Q2 + M 611 M1 + Q611 Q1 + Alt p

_It = MB12 ME + Q_12 Q2 + MOll M1 + QOlI (21 + 61t p

Cylindrical Shell:

8 = 6c MI + QI 4- A pc M Q6c c

Bc = M_c M1 ÷ QOc QI + 8c p

The following compatibility equations must be satisfied:

6s = 62t _s = 02t

6 = 61 Occ t = _lt

Following consideration of the above relations and some mathematical

rearrangements, a system of four linear equations with four unknowns will

finally be obtained.

M521M1 + {M622-M6s )M 2 + Q621 QI + {O522-Q6s)Q2 + (A2t-As) p = 0

{MSlI" M6c)M1 + M612 M2 +fQ611" O6c) Q1 + Q612 Q2 ÷ {Alt-Ac)P = 0

(2. z3-3)

M_21 M1 + (MO22-M_s) M2 + Q_21 Q1 + {Q_22 - (_Ss) Q2 ÷ {_2t-6s )p= 0

{M_II'M_c) M1 + M_I2 M2 + (Q_ll°O_c) QI ÷ Q_I2 Q2 ÷ (_It "Sc) P=O

191



It is noted that two imaginary cuts lead to four equations with four

unknown s:

MI' M2' QI and QZ

Previously, when considering only one imaginary cut, only two

equations with two unknowns were obtained. Consequently, if n imaginary

cuts are introduced simultaneously, 2n linear equations with 2n unknowns

can be obtained.

Depending on adopted sign-convention, some of the introduced coeffi-

cients may be negative and, as such, would have been introduced in the

preceding equations.

2.23.4 Summary

This section has presented breakdowns of a shell structure into a

set of simple elements and one way to perform the interaction process.

This includes the use of two or more elements at a junction. )

It can be concluded that the problem of interaction is reduced to the

problem of finding rotation _ and displacements ,Xr = 5 of interacting

structural elements due to the primary loadings and the secondary loadings

M = Q = 1 (around the junction). The rotations and displacements then will

be introduced into a set of linear equations, as shown in Eq. 2.23-3.

Statically indeterminate values M and Q will be found.
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2.24 CONCLUSION

This section presented the background for understanding and applying

the unit Ioadings method. The following section will be limited to mono-

coque shells of revolution loaded with the axisymmetrical Ioadings.

Numerous solutions will be presented to make the design procedure of the

complicated shell as simple as possible. The following two sections are

associated with determination of deformations and stresses due to primary

Ioadings {membrane solutions)and secondary Ioadings (unit-loadings). Only

homogeneous materials and monocoque shells will be considered in these

sections. Later, the necessary modifications of derived formulas for

nonhomogeneous material and nonmonocoque shells wiU be presented.
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2.30 MONOCOQUE SHELLS

2.31 INTRODUCTION

The shells considered in this section are homogeneous isotropic

monocoque shells of revolution. Thin shells are considered and all loadinge

are axisymmetrical. The membrane and bending theories have been

previously discussed in Section 2.22. An extensive literature searchwal

made to collect and present as many existing solutions as possible within the

scope of this manual. These solutions will be designated as primary solu-

tions or unit edge loading solutions. The geometry of every shell being

considered will be described, and limitations will be indicated.
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2.32 PRIMARY SOLUTIONS

This section contains general information regarding the membrane

s olution s.

The internal forces and displacements must be calculated,

shell problems.

to solve

2.32.1 Determination of Membrane Internal Forces

The forces acting on the sides of shell element are denoted with

symbols as indicated in Fig. 2.32-I.

I R 2 sin _bd_

N_ - ,
_f _ _r,- I REVOLUTION / _R2 sin _|

/ 3 ,

FIG. 2.32-1. Shell Element Forces

@ = angle in horizontal plane, which controls the location of

any point of the shell

= angle in vertical plane (measured from axis of rotation)

R l = radius of curvature of meridian at any point

R 2 = radial distance between point on the shell and the axis

of rotation
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Z=Pr 1
and

x

= the radial and meridional components of existing loading.

which act on the differential element (because of assumed

axisymmetrical loading, the component in circumferential

direction is zero)

NIan = loads on meridional and circumferential side of differential

N

element

In general, the shells of revolution will be loaded with some kind of

external/internal pressure in combination with some vertical loading at the

vertex or around the hole at the vertex. A solution of the following shape

can be given for such shells as mentioned above (axial symmetry), loaded

with any external (internal) pressure:

N_ N O

R I + _ = Pr ...... (2.32-I)

where

N_= I [fRIRz (Pr cos_-p, sin _)sin, d, + C]
R_ sin z

where the constant C represents the effect of loads which may be applied

above the circle _ = _0 in accordance wlth Fig. 2.32-2. The angle _0

defines the opening in the shell of the revolution. The resultant of these
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forces will be 2rrC. If the shell were closed, such loading would degenerate

to the concentrated load P in the vertex of the shell.

2_C = - P

P = Vertical load in pounds

N$, N 0 = unit resultants in pounds per inch

FIG. 2.32-2. Partial Loading Above Circle _ =
O

If no other loads are present except P,

ferential forces will be given as

the meridional and circum-

P P

N_ = and N 0 = +
2TrR2 sin 2 _ 2TrR1 sin2_

These loads may always be treated as additive loads due to the loaded

opening at the vertex of the shell. If the shell is closed, other influences

will be present besides membrane influences in the range of application of

the load. The feasibility of this will be discussed later.
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2.32.2 Determination of Membrane Displacements

It was shown that determination of stress components in axisymmetri-

cally loaded shell of revolution is a statically determinate case, and the

membrane forces Ne and 1W_ are easily obtained. However, the displace-

ments must be determined for the interaction process of two or more

shells.

In the symmetrical deformation of a shell, a small displacement of a

point can be resolved into two components:

u - in the direction of the tangent to the meridian

w - in the direction of the normal to the middle surface

The strain components e_ and c@

forces N_ and N@:

where

E

t

can be expressed in terms of the

' },_ = _ (N_ - F_N@)

l

eg = : (N@ F_N6)

-- Young's modulus

= thickness of the shell

= Poisson's ratio

The next step is to make use of the following differential equation:

- u cot_ = E'-:" " =
[ J

(z.3z-z)
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where

is the angle which locates any point on shell-middle surface along

the meridian in respect to the axis of revolution.

Then the general solution for u is

u = sin _ [/f(_'sin_ d# + C]

where C is the constant of integration to be determined from the condition

at the support. The displacement w will be found from the equation

w - u cot _ - Rz_g

substituting the value _g from the Eq. 2.32-2.

Having u and w. the corresponding displacement can be found in the

horizontal and vertical direction using simple trigonometric relations in

connection with Fig. 2.32-3.

FIG.

_r = w sin _+ u cos

y = -w cos _ +u sin4_

2.3Z-3. Geometric Relations Between Displacementm
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2. 32. 3 Any Shape of Meridian

Table 2.32-1 presents a summary of equations of the linear

membrane theory in more convenient form for a general case of shell

of revolution loaded axisymmetricall 7 with uniform pressure. Special

cases will be presented after the above general introduction.
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2. 32.4 Spherical Shells

This subsection presents the solutions for nonshallow spherical

shells exposed to axisymmetrical loading. Both closed and open spherical

shells will be considered.

Listed below are the loading cases under consideration, which are

divided into the circumferential, meridional, and normal components X,

Y, Z. Additional designations are indicated on the figures that correspond

to each loading case. The spherical shells, which satisfy the relation

cot _ - cos _ 1
sin " " -C-

are not in the scope of this section and fall into the category of shallow shells.

In order that a membrane state of stress exist, the boundaries of the shell

must be free to rotate and deflect normal to the shell middle surface.

Abrupt discontinuities in shell thickness must not be present.

The following loading cases are considered:

1. Dead Weight (Fig 2.32-4)

X = q sin #,

Z = q cos

Y-O,

rq

FIG. 2.32-4. Loading of Spherical Shell With Dead Weight
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Z. Uniformly Distributed Loading over the Base (Fig. Z.32-5)

X = p cos _ sin

Y=0

Z = p cos z

FIG. Z. 3Z-5. Loading of Spherical Shell With Equally Distributed

Loading Over Base Area

3. Hydrostatic Pressure Loading (Fig. Z.3Z-6).

p = specific weight

X=Y=0

Z = p if+ K(1 - cost' l

x7

I--: If

FIG. Z.3Z-6. Hydrostatic Pressure Loading of Spherical Shell

For reversed spherical shell, f is the distance from the surface of

liquid to the apex of the reversed shell, and, Z = [f - R (1 - cos ¢)|P
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4. Uniform Loading in z-direction (pressurization; Fig. 2. 32-7)

X=Y=0

Z=p

l
t .-..p = Z

FIG. 2.32-7. Loading of Spherical Shell With Normal Pressure

5. Lantern - Loading p - Load per unit of length of the upper shell

edge (Fig. 2.32-8).

X=Y=Z=0

%

n

l
| , ,o,

l
FIG. Z. 3Z-8. Lantern Loading

The corresponding formulas and deformations are llsted in tabular

form for each 1oadlng case indicated for the closed and open spherical

shell (Tables 2.32-2 and 2.32-3).
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2.32.5 Conical Shells

This section presents the solutions for nonshallow conical shells

exposed to axisymmetrical loading. The closed and open conical shell is

considered.

The loading cases under consideration are categorized in the cir-

cumferential, meridional and normal components X, Y, Z.

.'_dditional designations are indicated on the figures that correspond

t_ _ _-, loading case. In order to be in the category of nonshallow shell,

angle a o must be larger than 45 degrees.

In order for a membrane state of stress to exist at the boundaries

of the shell it must be free to rotate and deflect normal to the middle shell

surface. Abrupt discontinuities in shell thickness must not be present. All

presented formulas are based on small deflection membrane theory.

The following loading cases are considered:

(a) Dead Weight (Fig. 2.32-9)

FIG.

X = q sin a
o

q cos a o

x

-_/__

2.32-9. Loading Dead Weight
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(b) Uniformly Distributed Loading over the Base (Fig. Z.3Z-10)

P-_

X

Y

t'-z
Z

p cos _o

= p cos a sin a
0 0

-- 0

2
= p cos-

0

p is in Ibs/in 2

FIG. Z. 3Z-10. Loading Uniformly Distributed Over the Base

(c) Hydrostatic Pressure Loading (Fig. Z. 3Z-II)

I m

(A) (B)

= specific weight of

liquid

X=O

Y =0

Z = (f + X slnao) Case A

Z = p (f - X sin a) Case B

FIG. 2.3Z-II, Hydrostatic Pressure Loading
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(d) Uniform Normal Pressure p(psi) (Fig. 2.32-12)

Z

X=O

Y=O

Z=p

FIG. 2.32-12. Loading With Normal Pressure

(e) Equally Distributed Loading Along the Opening Edge (Lantern Load)

(See Fig. 2.32-13)

FIG. 2.32-13. Equally Distributed Loading

Along the Opening Edge
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(f) Hydrostatic Pressure Over Portion of Shell (Fig. 2.32-14)

g = specific weight liquid

V

X=O

Y=O

Z = 9 (x sina o - h) for (A)

Z = Pz = P (h - x sin _o)

for (B)

FIG. 2.3Z-14. Hydrostatic Pressure Over Portion of Shell

The corresponding formulas and deformations are assembled in

tabular form (Table 2.32-4) for each loading case as indicated for

"closed" and "open" conical shell.
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TABLE Z.3Z-4. mEMBRANE SOLUTIONS FOR CONICAL SHELL (REF. Z-Z)

(SHEET 1 OF 4)

Closed Conical She1[ (Supported) C|oeed Conical SheU (Han41ed)

(it) DEADWEIGHT

N I

Nz

{m

q Ic coe2m O

• _- O°

i/ q." _

K' qcot.o(co.'.. " _.)-,j_-

_[(z+,)co. z. - _- .l
zt,". • | • j

{b) UNIFORMLY DLSTR.[BIJTED LOADING OV£R THE BASZ

co@]e

_'_eeoI

| ( .... • *_')_tt cot % a _'

zt,m-_eqx=o0 % [(,+ _)¢o0i % . i + _]

NO

Nx

Ar "P _¢I .... o cot.. (co.' ao-_)_

_,°o.,.0[,,+.,°o.,.._-½]

i
coo •

' .(.o.,...;)p _ Ca8 elCOt

_tt CO?riO [(|+ _) C08|ml " _ " J]

N I

NIt

Air

[c) HYDK_TATIC PRESSURE I.,OADIiqQ

.....o(+)

....,(__)

..__,o,[_(_).(_)]

.."0"-.-(:= )

....,(+)

....,(_)

,.,...,,[.(;,) , ,, ,,1i't" ,-_,,t*" JJ

El I ill llo
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TABLE 2.32-4 (SHEET 2 OF 4)

Cloled Conical Shell (Supported) Ctoled ConicLl SheLl (Ha_|ed|

(d| UNIFORM NORMAL PRESSURZ

NI

Nz

_r

-p • cot

*p _ cote °

Z

-p x cot • °

• p _ cot • °

..... ....

{_| HYDROSTATIC PRESSURE OVER PORTION OF THE SHELL

N I

Nx

0 for point, above V

For point4 below V

* px (zcoe | -hem II

0 for points above V

For points be|ow V

p corn il h3 + zZ(Z • cos I

" b-s etn] I

-$h cat i)

Polntl above the V : 0

For polntl below 17:

px (hcotll - z co* ll)

Pointl IbO_ 17: Ph'-_

6z i_l|

For pointm below VI

_ (3h cot J lx cos|)I
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TABLE 2. 32-4 (SHEET 3 OF 4)

/
Open Conica| Shell (Support_cl) Open Co_Ica] $heU (harqled)

(I) DEADWEIGHT

N o

N x

_r

Z
coo •

q •in e 0

['1__, (_)

_ [Z(Z. _)¢0...0 " " |

1

toe _o

L_:J]

L,+.,_..o,.(:_,)'.,.]

".i

Nz

_r

cb}

$

px cos • °

x Z

o:*::'+[.-':-+
+,+,[++o.,.-+,(_I'-,]

UNIFORMLY DISTRIBUTED L,OADD",IG OVER TH r BASE

picoI

." %

_-[,-(_I']-..
,_:-" I(_)'1}!Z coe/eo- I' l-

IY_ cotzo [ZlZ+ _}eo,Z% - Z_

(C) HYDROS"TATIC PRESSURE L,OADUqQ

........ (.._)

-,......{_I,-(_)']-_(,-(:-')'lI

' { I()]I.']Ic°SZeO r $÷ I,, .,..._ - -_.(_)

1

ILR a'0
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TABLE 2.32-4 (SHEET 4 OF 4)

/
Open Conical Shell (Supl_rted)

/
Open Conical Shall (1_n_)

(d) UNIFORM NORMAL PKESSUB.E

N O

Na

Ar

-p x cot _

p Z ¢ot_i!J _ .

[ (,)']colleo .q +ZEt

-px cot %

(e} EQUALLY DLSTR[BUTED LOADING ALONG THE OPENING EDGY. (LANTERN LOAD)

NO

NI

&r

Pkf at

,Us% •

x| c_te O

" E¢ • .La%

0

- _ -_-t _ =or,

XI CO(( J41

-Tf ;- ,--_%
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2. 32.6 Cylindrical Shells

The primary solution for cylindrical shells with different axisym-

metrical loading conditions will be presented in this section. All solutions

are based on the membrane theory. In order that a membrane state of

stress may exist, the boundaries of the shell must be free to rotate and

to deflect normal to the shell middle surface. Abrupt discontinuity in

shell thickness must not be present. The following designations, in con-

nection with Fig. 2. 32-15, will be adopted.

0 : CONSTRUCTION

r.__zR_.._

a. Main Designations b. Differential Element

FIG. Z. 3Z-15. Cylindrical Shell
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_=x
L

where o -_ _ --I

Et
B -

k -__3(i - z)

The following loadings will be considered:

I. Linear loading, as a result of the superposition of equally distri-

buted and triangular loading (Fig. Z. 32-16)

4P--'-----"

XpPv

FIG. Z. 32-16. Linear Loadings

Y = X = O; Z = Pv (I + kp-g)

Z. Trigonometrical loading as a result of superposltlon

(Fig. 2.32-17)

= = = "Po Co. 15e.)Y X 0 Z p (_) = (sin ag+ kp
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cos_

o + = PoPo

sin_ P

Pokp

FIG. 2.3Z.17. Trigonometrical Loadings

3. Exponential loading (Fig. Z. 3Z-18)

z = p(_) = "PoeXP('St)

also special case:

Z = p(g) = - Ei Pi exp(-ag)

= p _ Xpi exp(-a ig)

X=Y =O

FIG. Z. 3Z-18.

Exponential

Loading Case

k i obtainable as in previous cases.

4. Linear loading as per Fig. Z. 37-19. (Dead Weight Loading)

WALL THICKNESS X = Px ( g )

_. X DIS T RIB U TION

(l-g)

FIG. 2.32-19. Dead Weight Loading.
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5. The constant function Y in circumferential direction (Fig. 2.32-20).

Y=Py

X=Z=O

FIG. 2.32-20. Circumferential Loading

g Periodical loading (Fig. 2. 32-21). As before, the one

dimensionless factor kpi can be entered. The following

periodical loading will be considered here:

Z = " PO_

X=Y=O

kpi cos ai@

FIG. 2.32-21. Periodic Loading

Membrane solutions for the above listed loading are presented in

Table 2.32-5.
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2. 32. 7 Elliptical Shell

This subsection presents the solutions for elliptical shells exposed

to ;Lxisymmetrical 1oadings. Only closed elliptical shells are considered.

The loadings under consideration are presented in Table 2.3Z-6. The

boundaries of the e11iptical shell must be free to rotate and deflect

normal to the shell middle surface. Abrupt discontinuities in shell

_:hjckness must not be present.

The formulas for stresses and deformations are presented in

Table 2. 32-6 and are obtained with membrane theory (small deflections)

(Tal_le 2. 32-6 and graphs on Figs. 2. 32-22, 23, and 24).
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FIG. 2.32-23 DISPLACEMENT AND ROTATION PARAMETERS FOR

ELLIPSOIDAL SHELLS UNDER UNIFORM PRESSURE

Et

a2p

t = constant

_= 0.3

o o

0 0._ 0.4 0.6 0.8 1.0

r/a

a/b= 1.

°1°0

-1.2
0.8 1.0
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FIG. 2.32-24.

5.0

DISPLACEMENT PARAMETER FOR ELLIPSOLDAL

SHELLS UNDER UNIFORM PRESSURE
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2. 32.8 Cassini Shells

These shells are useful as boiler bulkheads. The discrepancy of the

hoop _orces of the boiler and the boiler drum may be avoided by choosing

one family of Cassinian curves as a meridian shape. Its equation is

Z Z 2 Z Z)'_r 2 + n z 2) + 2a 2 (r - n z = 3a 4

where n is a number > I,

a = max z as per Fig.

r and z are variables along r and z lines,

2. 32-25.

r

and

_.Z

FIG. 2. 32-25. Cassini's Curve

The formulas presented are based on the membrane small deflection

theory. Consequently, the boundaries of the shell must be free to rotate

and deflect normal to the middle shell surface. Abrupt discontinuities in

shell thickness must not be present. The only loading that will be con-

sidered is pressurization.
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The second loading case is plotted (Fig.

form according to the following equations:

2. 32-26} in nondimensional

N_ _ 2 [5(16K 4 +Z4K 3 - 7K 2 +8K +3)ii
ap 5(4K+3)

/Z

4 [64K 5 + 144K 4 + 44K 3 - 85K z - 36K + Z31

(4_+ 3)z [5¢16K4 + z4K3 - vKz + s_ + 3)]l/z

where K is given in Table 2.32-7.

Additional graphs for Ar, y, and [3 are given in Fig. Z. 32-27 and

Z. 32-28.
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TABLE Z. 32-7. CASSINI SHELLS--MEMBRANE SOLUTIONS

Loadin_

and

Shape

N¢
F

o

r

c

e

s

.%

Ar

D

i

• Y

P
l

a

c

e

rn

o

n _
t

Rernark|

N_

n"l

Case Q CILse Q

I z

r ]l/Z;'{a Z + nZz ;'1 + n4z2la 2 . r z)

pa Z 'Z Z 2
& + r "_ n g

3n2a 4
Z -

(a 2 + r 2 + nZz 2)

ol

(a 2 . r 2 + nZz 2)

For determination of _r. y, and 15.

see Section Z. 32. Z

Special Case:

n=Z

b = 0. 743a

5[
z

pR_ sin # Z -/_ -

ZEt

Ar cot_ -/R I (N4_-_N e)-R 2(N 8-_N&)

J -- -_ d_+C
Et sin 4_

PRz i +

ZEt tan] i

Z sin4 0 Z
- R z

ZI60
Z ffi

aZK(3+4K) 4

,.[,.o.,,
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FIG. 2.32-26

1.0

MEMBRANE FORCE PARAMETERS FOR CASSINI SHELLS

UNDER UNIFORM PRESSURE (CASE (_)

0
0 O.Z 0.4
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FIG. 2.32-27 DISPLACEMENT AND ROTATION PARAMETERS

FOR CASSINI DOMES UNDER UNIFORM PRESSURE (CASE I )

3.0

1.5 !

r/a
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FIG. Z. 3Z-Z8 DISPLACEMENT PARAMETER FOR CASSINIAN DOMES TJNDER
UNIFORM PRESSURE (CASE I)

0.35

0.30

0.25

0.20

0.15

0.10

Et
Ar_

2
a p

0.05

0

-0.05

-0. 10

-0.15
0 0.2 0.4

r/a

0.6 0.8 1.0

232



2. 32.9 Toroidal Shells

This section presents some known solutions for closed and open

toroidal shells. The loading and systems under consideration are

indicated in the Tables 2. 32-8 and 2. 32-9. The solutions are based on

membrane-small deflection theory; consequently, the boundaries must be

free to rotate and deflect normalto the shell middle surface. Abrupt

discontinuities in shellthickness must not be present. The walls of the

shells are assumed to be of uniform thickness.
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T

TABLE 2.32-9. TOROIDAL SHELL (Ref. Z-4)

I
Pointed [_ome

<9

©

I_¢,.

®

5hell Loadin I Nt i NeCondition

Px : P s;n 0 ¢oe •

Ps : p c°eZ e

Px = p lin e

Pz = p col •
/

i

- Z stnZ_,_ O)

Px " P *|n e toe e

Ps = P ¢°jz _

Zp = p • R Z einZ #0

cos 4'0 - col 6 - (4' - 4'0 ) sLn eO
-pR

(sin • - Iin 4'01 lin

- v _- ",-T_-_,/

I - ¢01 & + _ fin 4'0
.pp.

,min e (*in e _- ein 40)

R etn i _ Z lin I 0

"Pz *tn_ * lingo

.[- p _ {4' - _0 ) i_n e 0 -

- Ico_ 4, 0 - co_ e) *

!

,(-p-_- col Ze+Zsineain& 0 -

• *n z • /

I -co* e- pR co* e - _ _"

. .,°.0i o,.

R
p -_- (cos 2 # - Z sin 41,_tn #0)

{b) Ri_ F _xil _e| not b_sect the ctoll-lection

She|l [J_din I Ne Nil
Condition

-p
b R (_ - eOl * R z I¢o* _'0 - co* _)

(b _ R Iln e) Itn e

-_P J(u*x,l.,)¢o.,-

- b I_ - e 01 " R (co* e 0 - co* e)J

For eO " "el (eymmetrtca| croel-lecticm)

Ib * 1_. *kn e) *in (_

P Job, x ,,.,)e_e -
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2. 3Z. 10 Other Geometries of Shells

Some solutions for shells of other geometries--modified elliptical,

pointed, parabolical, and cycloidal shells--are presented herein. The

shells considered will be loaded with internal and external pressure,

or with evenly distributed loading over the shell-surface on shell base.

For parabolical shells, the hydrostatic pressure is also considered.

All loadings are axisymmetrical.

The formulas for the internal forces are obtained with linear mem-

brane theory; consequently, the boundaries must be free to rotate and

deflect normal to the shell middle surface. The thickness of the shell is

a._ _umed to be constant. Abrupt discontinuities in shell thickness must

not be present. Table 2. 3Z-10 presents the stresses in different shells.

For dctermining displacements, the procedure described in paragraph

2. 3Z. 2 shall be used.
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Z. 3Z. 11 Irregular Shell

Regardless of the shape of the meridian and kind of loading, deter-

ruination of membrane forces appears to be relatively simple because it

is a statically determinate problem. Table Z. 32-1 may be used for this

pu rpo s e.

Determination of the displacements is a complicated and possibly

time-consuming problem. A simplified method for obtaining the approxi-

rnatr solution is presented by M.G. Salvadori (Ref. 3-6).

Consider a shell of revolution generated by the rotation of a meridian

curve y (x) around the y-axis, as is shown on Fig. Z. 3Z-Z9. The following

conditions shall be satisfied:

1. The shell is vertical at the edge (7 = 0).

Z. The meridian curve is symmetrical about the equator.

3. The shell thickness is practically constant near the edge.

• y Po f (x)

I | l i

I _ I I
I ' '

r 0 ROTATION

FIG. 2. 3Z-Z9. Shell of Revolution Under Vert/cal Load

X

EQUATOR
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The shell is loaded by a distributed load, p, per unit of horizontal pro-

jection, whose intensity varies with the law:

p(x) -- Po f(x)

Salvadori (Ref. Z-6) proved that, under conditions I, 2, and 3 and

assuming the membrane conditions, the following is correct:

(a) The edge of the shell does not rotate.

(b) The radial displacement of the edge of the shell is independent of

the meridian shape.

(c) The displacement (positive outward) is given by

2

Por (©SAr E t p
S

where

r = equator radius = a

r = radius of curvature of meridian at equator
0

t = shell thickness at equator
S

E = modulus of elasticity

Sp f(x)x • dx is the static moment of the load about the
r _-

axis of rotation in nondimensional form.
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Poisson ratio, }_, is assumed to be zero. For the load distribution not

representable by a simple formula, Sp may be evaluated numerically by

means of the approximate summation formula:

Z n

Sp =_ _ P(Xi)xi_x
2

Por i'= I

as shown in Fig. 2. 32-30.

F---- p(xl

II111 I I 1_1I II1 _°
:- X

FIG. Z.32-30. Numerical Evaluation of Sp

The value of the radius of curvature r ° in connection with

Fig. 2. 32-31 is

r o = R for spherical shells

r = R* for conoidal shells
0

b 2
r o = _ for elliptical shell of rise b
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Spherical Shell Conoidal Shell

v -v

f-

Elliptical Shell

FIG. Z. 3Z-31. Radius of Gurvature r o for Various Types of Shells

Finally, for common loading distributions, p(x), Table 2.3Z-If gives

correspondent S factors. This approximate method is very handy if time
P

is a pressing element.

A similar "short cut" for determining deformations due to unit-edge

loadings is given by Salvadori (Ref. 2-6) and will be presented later.
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TABLE 2.32- 11.

Diatribution of

Loading

Iy

'I
p Po

Y

T

_y
T

_y

Sp FACTORS

Equation of
Loading Intensity

P'" Po

S Factor
P

2

3

p.po(I--:)

_._o(I-_)'

3"

_. po i-(-:) ,

i
3

I

2

I
6

!

2
5

I

I0

3

5
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Z. 3Z. IZ Conclusion

The collection of membrane solutions presented above for special

cases of geometry and loading represent the majority of the problems

that any analyst may face in actual practice. The exact and approximate

approaches are given. This concludes the presentation of primary solutions.

To perform the interaction of different shell elements, there must

also be secondary solutions known. This task will be performed in the

following section.
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Z. 33 SECONDARY SOLUTIONS

Z. 33. I Introduction and General Discussion

Unit loadings (defined in Section 2.2Z. 5) are the loadings acting on

upper or lower edge of shell:

M =

Q=

1 lb-in/in

I lb/in

Unit influences are deformations and forces in a shell of revolution due to

unit loadings. Influences of this nature are of local character and do not

progress very far into the shell from the disturbed edge.

Various differently shaped shells are covered in this section. Of

specialinterest is a shell that represents abulkhead, which is character-

ized with _bma x = 90 °; such bulkheads are very common in air space

vehicles and pressure vessels. The bulkhead shells are tangent to the

cylindrical body of the vehicle.

When the values of deformations due to the unit loadings are avail-

able, the deformations can be entered together with the primary defor-

mations into set of equations 2. Z3-I or 3, and discontinuity stresses can

be determined.

The bending theory is used to obtain the influence coefficients due to

unit loadings. The fundamentals of this procedure were explained in the
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introductory sections. Some conclusions will be discussed and the final

formulas for different geometries of shells will be presented.

It has been mentioned that deflections and internal loads due to unit

loadings are of 1ocalimportance. It can be concluded that a11disturbances

due to edge-unit loadings will disappear completely for _ -;"20 ° and will

become negligible for _ >- 10 ° , as shown on Table Z.33-I for a spheri-

cal shell.

Table 2.33-I illustrates a very important conclusion: due to the

unit-edge loadings, practically all parts of the shell, satisfying the con-

dition o> 20 ° , willremain unstressed and undisturbed. These parts will

TABLE 2. 33-I. UNIT EDGE LOADING SOLUTIONS

I

VQ= !/_

2

N
0 M 8 M_ Q

I

N

I

Ar O



not be needed for satisfying equilibrium. They do not effect the stresses

and deformations in disturbed zone 0 < o< 20 ° in any way. We can delete

all material above o = 20 ° because this material does not contribute to the

stresses or strains, which are computed for the zone defined with o<a<Z0 °

Nothing will be changed in the regime of stresses or deformations in zone

0<a<20 ° if we replace the removed material with any shape of shell, as

shown in Fig. 2. 33-1, which illustrates imaginary operations. Conse-

quently, casesA, B, and C in Fig. Z. 33-1 are statically equivalent. This

discussion leads to the following conclusions:

l

I

|A) (F) (c}

I,

FIG. 2. 33-1. Statically Analogical Shells

The spherical shell of revolution, loaded with the unit loadlngs

(M = Q = 1), acts as a lower segment would act under the

Zo

same loading (segment defined with a = ZO°). Consequently,

it is indifferent what shape the rest of the shell has (Fig. Z. 33-2).

If any shell at the lower portion (which is adjusted to the loaded

edge) can be approximated with the spherical shell to a satis-

factory degree, the solution obtained for the spherical shell
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.

which is loaded with V = O = 1 all around the edges (Fig.

can be used for the actual shell.

When extreme accuracy is required, a = 10 ° may be used in

place of o = 20 °.

2.33-3)

FIG. 2. 33-2. Different Variants FIG. 2. 33-3. Approximation

for Unstressed Portion With the Sphere

Another approximation, known as a Geckeler's assumption, maybe useful, i.e.:

If the thickness of the shell t is small in comparison with equa-

torial radius r I = a and limited by relation a/t>50, the bending

stresses at the edge may be determined by cylindrical shell

theory. Meissner even recommends a/t>30. This means that

the buLkhead-shell can be approximated with a cylinder for

finding unit-influence s.

The bending theory was described and explained in the introductory

sections of this manual. The small element of shell of revolution {loaded
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with unit loadings} in equilibrium is shown in Fig. Z. 33-4. The nomen-

clature is the same as before, except that

M_ : moment for meridional direction

M 0 : moment for circumferential direction

Q = shear for meridional direction

Shear in circumferential direction for the shell of revolution loaded

with the axisymmetrical loading is 0.

Fig. 2. 33-5 shows the meridional deformations of the element from

Fig. 2.33-4. Due to deformation, point A was displaced to the position A _.

Ar = horizontal displacement Z_r r I

= angle of rotation of element

M_ N_

I
FIG. Z. 33-4. Designations in FIG. Z. 33-5. Meridional Deforma-

Connection With Differential tions of Differential Element

Element of Stressed Shell

250



The circumferential deformations are not independent. They are related

to the meridional deformations and, consequently, will not be considered.

After this discussion, many existing solutions can be presented due

to the unit loading action. This will be done in the following presentation.
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2. 33.2 Spherical Shells (Open, Closed)

This section presents the solutions for non-shallow spherical shell,

which does not satisfy the relation

I
cot_b---_ (Ref. 2-2)

which is characteristic for the category of shallow spherical shells.

Physically, it means that for shallow shells, the disturbances due to unit

edge loadings will not die before reaching the apex. Consequently, from

diametrically opposite edge loadings, disturbances will be superimposed

in some area around the apex.

The boundaries of shells must be free to rotate and deflect vertically

and horizontally due to the action of unit loadings. Abrupt discontinuities

in the shell thickness must not be present. Thickness of the shell must

be uniform in the range in which the stresses are present.

The formulas are listed for closed and open spherical shells. Open

spherical shells are shells that have an axisymmetrical circular opening

at the apex. The spherical segment must have such meridional length

that the disturbances due to the unit-edge loading will die or become

unsignificant before the opposite edge ((_min = 20°) will be reached.

Unit-edge loadings may act at the lower or upper edge of the open shell.

For derivation of the formulas presented, linear bending theory was used.
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The following designations will be used:

k = 3(I-v 2) ; a = ¢I " #_

Table 2. 33-2 presents the formulas for closed spherical shells.

The table can be used for open shells, however, if the segment is such

that the influ.ences due to the unit 1oadings will die before reaching the

edge of the opening.

Usually, the central opening is in an unstressed area of the shell.

Therefore, for the analysis a11 formulas as presented below may be

used, for open shells too provided that a o >-Z0 ° . Otherwise, the

analyst shall be dealing with a ring instead of a shell.
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TABLE 2.33-2. SPHERICAL SHELL(REF.Z-9) 1

" o.- M = I

2k

Q6 -_'-oin #1 * • co.(k.+ _-1 + _- e'ke.i_ku
N

N e - q_ cot, - Q# cot,

kZ
N0 Zk sin #l " e'ka cos ke + Z _/-Z-_- • -ke coo (ko + w)

R

M e _- .in #l e'ke .in k_ _/Ze "k= .in (k= + "1
4

X 1
M 9 ----= _ sin 4.] (cot 4,) • • -ke sin (k_ + i,) -- cot It • • -k_ coo ko + l_ M_

k'¢Z 4 k V

DEFORMATIONS

4k 3

Ell5 - Zj'Z k z ein _1 " • -ko _ln [ka * --:) . _ • -k= co= ka
4 R

Et{_r)

FOR e • 0 AND /* • #l

L'_ -lk z sin #1 4k3

R

Et (Ar) R sLn 4'1 (2k sin 4mI - j_ coo _1) + Zk Z 8in 4,1

For 01 • 90 e

Et_ -zk 2 . 4k._3
R

Et (_r) ,?.Rk _ 2k Z

]For k factcxs, see paragraph 2. 33. 2
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A. Open Spherical Shell, Unit Loading at Upper Edge

F'ig. 2. B3-6 represents the case in which M = P = 1 loading acts

on tile upper edge of an open shell. These cases can be reduced easily

to the previous case, as shown in Fig. 2. 33-7, and the same formulas

can be used, except thatch 1 >90°" The actual shell (Fig. 2. 33-6) will

be imagined turned at 180 degrees (Fig. 2. 33-7), and the shell can be

calculated in the usual way.

An additional set of formulas for spherical closed and open shells

is presented in Tables 2. 33-3, -4 and -5. These formulas are expres-

sed with functions F i and F i (_). These functions are tabulated in the

Section 2.42.6. In the case of the spherical shell, instead of parameter

in the above-mentioned tables, a shall be used.

OPENING OPENING

FIG. 2. 33-6. Unit Loadings at Upper Edge
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i

X

?

Y

OPENING

M

OPENING

FIG. 2.33-7. Spherical Shell, _i<90 °
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TABLE 2.33-4. OPEN SPHERICAL SHELL--UNIT EDGE LOADINGS

AT UPPER BOUNDARY 1

_fQk i !

7 \  -oX \®

Boundary Conditions

o:oc,- %) M.:o

%_o

°=°o(4'= 4,z) M,=0

F_ki = - %i'in*z - NklC°' *Z

Internal Forces and Deformations

%

Q_

M6

M 8

_r

IF F 8 ]Hki cot _ sin 4'2 "_t F10 (o) - Z--Ft F 8 (a)

2k sin [ F9 F8 (a)]Hk, _z L- -f_-LF7 (°) +--Ft F*°

Hki sin OZ --_-1 FI0 (o) - _F 8 (a)

R sin [ F9 (_) - F8 (a)]Hk, _ *z L-'_l F' _.-t%

" IF,[ _o,, F,co)+_zF,(o)IHkiz-_"_'*z, _, k
.i

-Hkt sin *Z E'_ :' sinO --_'_1-1F7 (_r) - 1 FI0 (or)

ZkZ [ F9 2F 8 ]

zrs_l 'c°t*r_(°)+_*;9(°)J}k

1FoC F factors, see paragraph 2.42.6

1For k factors, see para_aph 2.42.6
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TABLE 2. 33-4 {CONT) I

Boundary Conditions

o=0{_=_ 1) : M_,*0

O_=O

o--o 0 (4, -- ,,*,z1: MI=M_i

a_o

N 6

N 6

q_

M_

M o

_r

Internal Forces and Deformationm

F FI0 ]

-- F 7 1o1 + FI0 1o)

- 3"_'tFl° (_) + -g'_'lF8 1"_

F8 _ FI0 (a}l[2WF.") F9

I Fs _ot, rlo !_ +F 7 (a}

Zk 2 + FI0 _
i"_'- .[-2 F8 (.)]

4k_ [ F8 ÷ r;° F; (o)]

P. F 7

1For F factors, see paragraph 2.42.6

For k factors, see paragraph 2.33.2
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B. Unit of Distortions

In connection with some problems, it may be of interest to know

the stresses and displacements in the circular shell (closed or open),

unit displacements at the edges are acting instead of M and Q:

_rik = unit displacement in r direction

At lower edge i _Vik unit displacement in vertical direction
!

L _ik unit rotation

Arki = unit displacement in r direction

At upper edge k AVki unit displacement in vertical direction

_ki unit rotation

Tables Z. 33-6 and 7 contain the answer to this problem.

if
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TABLE Z. 33-6. CLOSED SPHERICAL SHELL SOLUTIONS DUE TO UNIT EDGE

LOADING/DEFORMATIONS i (REF. 2-2)

t

rtk

o=0 (0 = qbl) tLr = Arik _=0

Boundary Conditions

u=0 (0-01 ) ar =0 P= Ptk

Et cot 4,

/4 0 Arik FIT (o)
Rk sin 0t

Et
N e &rik --FI9 (o)

R ltn0

QO "%r ik Et FIT (o)

Rk Jin 4,1

Et

MO Arik Zk Z sin 01 F20 (a)

Me Arik

2kz ,in4,1 L k

sin4,
dr _rik --FI9 (")

sin 4,1

2k

.Arik FI 8 (e)

R sin 4,1

Internal Forces and Deformations

Ft8(o) - _ FZ0 (a}]

Et

_ik _ cotO FIg (c,)

Et

Otk _ Vls {°)

Et

Pik 2x2 FI9 (o)

HEr

"_3ik _ FI? 1o)

REt [co,0 V
"P*k_[ k zo (o,

R ein4,

Pik ----k---F_s (o)

Pik F20 (m|

÷ 2 _FI7 (o ,].

IF_ F:factors, see paragraph 2.42.6

For k factors, see paragraph 2.33. 2
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1

TABLE Z.33-6 (CONT)

Boundary Conditions

o-0 (4'= 4'1) M = oMik Q -0
_- 0 (_=_1)

Hik " Qik sin #1

M¢ -0

+ Nik co,,61

Internal Forces and Deformations

2k cot 4'

Nt_ Mik 11 Ftd (o)

• 2k 2

N e . Mik _---Fzo (*)

Zk

Q_' Mik T FIB (a)

M4, - Mik FI9 (_)

M e . Mik -- FI? (o) + _FI9 (_)

Ar
Z kZ sin i

" Mik Et .FZO (a)

Mtk 4k$__ FI? (e)
ErR

Hik sin 4_1 cot 4' FZ0 (o')

Hik 2k sin# I FI7 (_)

Hik *in61 F20 (a,)

Rsin# 1
Hik . FI8 {a)

k

Rsin*! rcot_ ]Hik 2k [--"_ FI9 (') 4" 2 IJ' FIB

ZRk

Hik _sbt#l sinOFl7 (_)
Et

Zk z

-Hu,_s_- *i rig (')

1For F factors, see paragraph 2.42.6

For k factors, see paragraph 2. 33. 2
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TABLE 2. 33-7. OPEN SPHERICAL SHELL--UNIT EDGE

DEFORMATIONS AT UPPER BOUNDARY

;

Bo_dary Condition

a - 0 (4 = #l):o•0 (4 =&l): _r = 0

pffi0

a = o ° (I = 4Z): Ar = _rki

pffi0

affiO(_-41|: Ar-O

O*O

a=o 0 1_ = iZ): P- 0

Av = _Vkt

o _o 0 (+ : 41):

_r =0

p-O

Ar=C

l_tern._ Forcel lind Deformations

+r mtcot4 [rio r o --rs F 9(o}]

"' ]No +'kt zt [- rx° r+lo) +z r slo>

+* ]Q+ " _rki Rk si"_ 44 [ Pl

[ *. ]M 4 Arkt -- _ ÷
Zk z sin 4 z

Zk z sin #Z I FI

---_-i [-. V- r,o(.) -_z rT(-

•,o.[- ;: ]A_kt_ -_ r_(o_+z--r st*)

Zk FS

•3Vki Et [- FI0 F? (0) - r 8 r 9 (0)1
cot _J --

R (i +_) lln4Z F] . k cOS4z FI

+v+_-, 1-r,0 rg<°)+zr s rs<+)j
R (1 + P) stn+Z F 3 - kcos42 F I

,,vk_ 1- rso rv_ r+ rg(o_]
R (I +p) sin#z F3 - k cos42 F 1

_v_iEt [rl0 r,0<o_- zF8 rT<_)I
"_k R (l + p) Itn_ z F 3 - k cos42 F I

Avki_ [rio r_o<°)- zr s r_(+)]
Z+k {1 + F) sin4z F3 + k cos42 F !

FlO F9(o) " ZF8 FO(a)I

- Ilt_+k_ _'_kt (1 ÷ F) Ilin/# Z r Z " k col_Z F i

zk z _'kt ['rsors(")+rsrxo(°}l

II 11 * p) itn_Z F$ . k co_#z F I

[+_o +'-+, ]

re r, to_ + r_---_rst._ ]

_, -_ t--pT_rv <.).-p-; +-+(o,

R mt FD F9

+ +T[-w-rt0+o)

F 8

.p_ [. r. r_ 1+-_r,(.) +-G, r,0lo)j

IFm" F factors, _ee paragraph 2.42.6

F_ k factors. _'e jpara_raph 2.33. 3(b)
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2.33.3 Conical Shells

This section presents the solutions for non-shallow open or closed

conical shells, in which a is not small. There is no exact information
o

about limiting angle a . It is recommended that consideration be limited
o

to the range of a >-45 ° . If a = 90 ° , the cone degenerates into a cylinder.
o o

Another limitation must be applied to the he{ght of the cone. As in

the case of the sphere, the disturbances due to unit-edge loadings will die

at a short distance from the disturbed edge (for pratical purposes,

approximately atv/-R_. Consequently, a "high" cone is characterized by

an undisturbed edge (or apex) due to unit loading influences on the respective

opposite edge.

The boundaries must be free to rotate and deflect vertically and

horizontally due to the action of the unit-edge loadings. The abrupt

discontinuities in the shell thickness must not be present. The thickness

of shell must be uniform in the range in which the stresses are present.

The formulas are assembled for closed and open conical shells.

Open conical shells are characterized by removal of the upper part above

some circumference in the plane parallel to the base.

Linear bending theory was used to derive the following formulas.

If the height of the segment is less than _/Rt-, the analyst is practically

dealing with a circular ring instead of the shell. The following constants

are important:
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k

L

J_" Sine

Et 3
D=

lZ (1 - z)

Additional designations are indicated on Fig. g.33=8.

l

FIG. Z. 33=8. Cone Nomenclature

R is variable and perpendicular to the meridian. Angle _ is con-

stant. Table Z.33-8 presents the formulas for a closed conical shell.
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TABLE Z. 33-8. CONICAL SHELL--UNIT EDGE LOADINGSOLUTIONS 1

I

N, I

N9

M,

M e

i

I

Q

HORIZONTAL UNIT LOAD UNIT MOMENT LOADI.NG

_'-¢O8 4_ .e -ka iv
CO, (ka ÷ _ )

ZR z k *in2# e-kO
! cos ka

Zk cose -ka,
I • 8in ko

Z_2- R k z sin 2b. e "k_ co, (k_ + _ )
lZ

_/k 9 "k°sin ko

! z cot4, e'kOsin(ko + 4) +l_M_,

- v_-.i.* , -ko co, (k,,÷ 4)

. _" -ko,ln (k_, + w/4)

!cot@ • "k°coJ ka

R k sin a

Zk 8Lnl • -ke sin ker
!

DEFORMATIONS

l !

p

13e -kc, |

_°'*._o. (ko+ "_1]• itn_

t z © "k%Lnlko+ ./41

_/'ZD k2 sinO

-t 2e'k_' [ t--

co,# ,inko]

k sin2,k

I • "ke cos ko

D k eta(,

FOR a' ,. 0

_Z
Ar

p

_. in+[ I ,,t cot4k]

fZ

ZDk 2 eb_ 4,

ZD k a ,in 4' "

__L_
Dk ..in#

1[:or k factors, see paragraph 2. 33. 3
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(a) Open Conical Shell_Unit Loading at Lower Edge

Since unit influences are not progressing very far from the edge

into the cone, the formulas presented in Table 2. 33-8 can be used for

the cone with opening at vertex (Fig. 2. 33-9).

OPENING

FIG. 2.33-9. Open Conical Shell Loading at Lower Edge

(b) Open Conical Shell--Unit Loading at Upper Edge

If it is imagined that the shell, loaded as per Fig. 2. 33-10A, is

replaced with shell as per Yig Z. 33-10B, the result is a conical shell

!

Q Q

' M M

IB}

Open Conical Shell Loading at Upper Edge

(A}

FIG. 2.33-10.
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loaded with unit loading at the lower edge. The same formulas are used,

for determining edge influence but it is noted that _ >90"

An additional set of formulas for open conical shells (that can be

also used for closed cone) is presented in Table 2.33-9. These formulas

are expressed with the functions F i and F i(_), which are tabulated in

Paragraph 2.42.6. The following constant is used for k:

k __.

2
4v/'3{I - }

tx cotm o

269



TABLE 2. 33-9. OPEN CONICAL SHELL - UNIT EDGE

LOADING SOLUTIONS 1 (REF. Z-Z)

N
K

IFMki Zk cot o 0 _'1 FI 5 (_)

(0 - 5 r,(oJ
+ F! FI6 F! I

N e

FMki Zk Z Xrn cot o 0 _I F14

F_ I
+ F, (_) - Fj (c)l

F I 3 F I 0 J

M
X

F 5 F 3 ]F_l_'14 (0 ÷T? F9 (0

o
x

F

F 5 F 3 ]÷_l Fl6 (¢) - _l Fs (c)

Ar

sin o 0 [ F 6

Mki ZDk z _ FI4 (_)[

F 5 F 3 ]+ F-? Fl3 (c) - _l Fl° (0

F 5 F 3 ]F l F15 (0 - _-F 7 (0

IFor F factors, see paragraph 2.42.6

For k factors, see paragraph 2.33. 8(b)
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M.
JK

IF BMik 2k cot o 0 _ FI0 (_.)

FIO ]Fl F s (0

[
Mik Zk z cot a 0 |

Xm • F1

FI o (01F I FI0

F 7 (_)

_ Mm 8 F8 (0

Fl0 101-'_-1 F9

[ F 8

F_0
F s (0 1

F l I

sin [ ZIM_ 0...__.__0 '8..F7 (0
ZDk z T|

F*° (0 ]F 1 FIO

, [F,

+ Fl0 (0]



TABLE 2. 33-9. (CONT) l

Qxi = " Hki sin a07

N x

No

M_

Qx

/k r

o// !

i
[

Hkicos_0 [1=7(0

F 4 F z ]

[
Hki xmkcos % IF9

2F4 F2 I+_ r 7 (0 --_-1 rio (_)

sin a 0 [Hki _ FI0 (_)

2 F 4 F 2 [

- FI- F8 (_) + F--_F9 (_) I

- Hki .in o 0 F 7 (_)

F4 F2 IFl'Flo (_} ÷--_ F 8 (e,)

. 2

sm @0 [ r 9 10I_i 4Dk3

2F 4 F 2 ]+ _ F 7 CO'- _ r_o (0

sin u 0

Hki 2Dk z J - F 8 (_)

F 4 F Z ]÷_r9 (0 +-_i FT(0

-®

Nx,?. Hik co-, o 0

F 9

HkiCOS o 0 - F--_ FI0 (_)

2F8 ]+ F---l- r8 (0

2Hik Xm cos a 0

]+ F--_F10 10

sin % I F9

H_ _ Ll_i F8 (0

F 8 I
- r-_ F9 (U]

F9Hik sin % - "_I FI0 (_)

2F8 ]+ "_i F8 (_')

2
sin °0 I F9

H_ -- - [- r 7 {02Dk 3 "_1

sin o 0

- Hik 2Dk 2

+ F9

r 9 (0

I
F7 (_.) [+ F1

1For F factors, see paragraph 2.42.8

For k factors, see paragraph 2.33.3(b)
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In connection with some problems, it may be of interest to know

the stresses and displacements in the conical shell (closed or open), if

unit displacements at the edges are acting instead of M and Q:

'Arik : unit displacement in horizontal direction

At lower boundary i

= unit rotation
ik

At upper boundary k
Arki = unit displacement in horizontal direction

_ki = unit rotation

Table 2.33-10 supplies the answer to this problem.
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TABLE Z. 33-10. OPEN CONICALSHELL---UNIT EDGE

LOADING SOLUTIONSI (REF. Z-Z)

4Dk 3 cot 80 Ar_i J F$

eL. • o [ F|

N r7 (r0 __._5 F] s (U

No

M

0

AT

x m con • o r I

TS • F-!6 rl_ C_)]" F"_ FI4 (_| F I

"_ Ft3 (_) "--_l F*4 (0

4Dk $ Arki [. F$ F? (_]

sin • o [ F I

" F-'-_ F]s (_) 4 r6 F,6 (L)
F I

I F__ F SAr • Ark/ F 9 (_) -_ FI4 (_)
F!

- -- :,,. r| i{)
sin • o

,. ]-_-_- r]6 i_} ---_-i rss (;.)

4Dk $ cot a o Arik [ Ir]0

sin "o [ r! F1 if*|

' r-_- F9 (F.)]

Et Arik | FI0

amcoe.o [" _ F9 (f')

2Dk z _r Lk [ rio

: [ "-'_-I r*° (()SLn e o

2T8 F ]
÷ _ {{}

ivI T

4Dk $ ATik [ F|0

SiT. e o [ F 1 ITeb({}

1
T..___O

r! J

Fl °ATLk "-'_1 Tt it)

z_---_8 T. (,)]

2k a.rlk [ FIO

.tn,,o [ rl r 8 (t)

- ,--;-n6_) ---',, (u

1For F factors, see paragraph 2.42.6

For k factors, see paragraph 2.33. 30))
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TABLE 2. 33-10. (CONT) 1

Nz

No

k4i

QX

Ar

f

, F4 F_ (f,,) - r s (t)l
r! • J

[ rz
2Dk $

z m cot e o _k| [ " FI F9

zr4 1+_Ta ([) -rzo (_.)
FI

FZDk_t -_ rio (0

ZF4 F ]
÷_ (() + r 9 (t)

FI 7

FZzpkz_ _ r_ (L|

"' ]* _FI F 9 IF.) - F I 1_.1

÷ zr4 T. (t) - ]rio (t) 1
F! • J

Irzr, (0
[ rl

"' ]" F---I-_'10 (g) + F? 1_,)

(¢)

ZDk z cot o o Plk I zlr8

L rl
r? (_,)

f
4D_ 3 _mc°t%PLk } " F9

L F I

, T_ ra (F.)]
rl ]

ZDk¢lk [- r-_ rl° (_)

* rzY_ r7 (_,)]

ZF I

/"1

k

r IFI F

"F"_-" lrlo (f.)]

1For F factors, see paragraph 2.42.8

For k factors, see paragraph 2.33.3(i))
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2. 33.4 Cylindrical Shell

This section presents the solutions for long and short cylinders,

loaded along the boundary with the unit-edge loadings (moment, shear,

forced horizontal displacement, forced rotation at the boundary). All

disturbances in the cylindrical wall caused by edge loading will become,

for practical purposes, negligible at distance x =_/Rt. If the height of

the cylinder is less than x, then the analyst is dealing with a circular ring

the following pre-instead of a shell. Further. to be on the safe side,

cautions should be observed:

a. If _L -< 5, the more exact theory is used, and such cylinders

are designated as short cylinders.

b. If _L _- 5, the simplified formulas is used, and this is a

special case of the more general case a.

The factor _ is defined as follows:

4 = 3{1 - z) / p Z t Z

and shall be distinguished from the similar designation _i {with subscript)

which is an angle of rotation due to the unit edge loadings.

The primary solutions {membrane theory) will not be affected by

the length of the cylinder. (See paragraph 2.32.6.) The boundaries must

be free to rotate and deflect because of the action of the unit edge loadings.

The shell thickness must be uniform in the range where the stresses are

present.
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(a). Long Cylinders

The following constants will be noted:

L _3 - )xzk=_ (1 )

Et 3
D-

Z-
IZ {I - _ )

The formulas for the disturbances caused by the unit-edge loadings are

presented in Table Z. 33-I I.
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(b) Short Cylinders with Uniform Wall Thickness Without Abrupt

Discontinuity

The following constants are used for tables 2. 33-12 and Z. 33-13:

134 = 3 11 - _Z)IRZ tz

@ = sinh z _L - sin 2 _L

K = (sinh _L cosh _L - sin _L cos _L)Ip
I

K z = (sin _L cosh _L - cos _L sinh _L)/p

K 3 = (sinh z _L + sin z _L)/p

K 4 = Z sinh _h sin _LI@

K 5 = Z(sin _L cos _L + sinh _L cosh _L)/p

K 6 = Z(sin @L cosh _L + cos _L sinh _L)/p

The formulas for unit-edge loading disturbances are presented in

Tables 3.33-12 and 2.33-13. To use these formulas the relation _L-< 5

must be satisfied. Distingaish the coefficient /3 {no subscript) from the

adopted notation for rotation angle _ (with subscript).
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TABLE Z. 33-1Z. SHORT CYLINDRICAL SHELLS--UNIT EDGE

LOADING SOLUTIONS I

w z

_m

Wik

Ptk

Wkt

Pkt

N I

N0

o,

®

Oik a

-_ JIe(nh 2pL - *i, ZpLJ co, hp • cospn - _: *tnbZpL

• *lnhl5 • cosplt - 2 etaZpL ¢ouhpz etnpzJ

Q_k LoLr.h_m 8{n_x - K] ¢oohLSx coe [5x - Kj (¢oeh_z *

• ,tnpx * _tmhpJ(cNpm)J

" qik KI/|IISD

+ OLI, K$/|P_D

- Otk K,/21D]D

• OU, x4/zP*o

EtwlR

Otk

_-_ (*_|pL 8tnhpz co* pz - *tahlpL coehpz *

• .imps + pXi *tmhDz .Impz)

Otk I (c04h_x CO4_5Z * _[] 8lnh_zeln_z o K I re|abel[ •

. ¢_pt ÷coehpz m_PzlJ

lq

i_

i

D4 splacement8

(9

K s
Utk ]K 3 cooh_x toe p,c * oLnbpz etnpz - -7- (co4hpx *Lapin

• 8tnhpz coe_gz)J

t'_k (KS

• elnZ_L coehiSz i_JSz_

k

/

MbE K)I2 D|D

- _ x4lzpzo

- Mtk X6/ZlbD

+ lr t wilt

K s

Mut I¢oehp= coep, - )¢, (._hp= I_h_X) + "7 (COIh_l *

• ,l_px - _lnh_z ©c_pz) I

i

MUt

._.- (XS peinh_x _Ln_Sz - 2 etnh2_L toe hl3z IfnfSz

- _ JtnZpL ,tnhpz coe0,0

Remark8

• dle ,_a_lvonc:_ Coofftctom

wlb

,%,

Put

IlJkt

- KIIiF|D

• XxlSP)D

KslZpXD

-X40Z_ZD

K)IIp_D

• Xj/tpD

. x,_ipo

D_* to U,_

Loidlnlo

M'Q'I

1For k i%ctcrs, see paragraph 2. _, 4_b)
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TABLE Z.33-13. K-COEFFICIENTS (SHEET 1 OF 4)

_L K 2 K 3 K 4 K 5 K 6

O. I00

O. I02

O. 104

O. 106

O. 108

0. II0

O. I12

0.114

O. I16

O. If8

O. 120

O. 122

O. 124

0. 126

0. 128

O. 130

O. 135

O. 140

O. 145

O. 150

O. 155

O. 160

O. 165

O. 170

.0. 175

O. 180

O. 185

O. 190

O. 195

0.20

0.21

0.22

0.23

O. 24

0.25

K 1

20. 0000 I0.

19. 6078 9.

19. 2307 9.

18. 8680

18. 5185

18. 1818

17. 8572

17. 5438

17. 2414

16. 9492

16. 6667

16. 3934

16. 1291

15. 8730

15. 6250

15. 3847

14. 8148

14. 2858

13. 7932
13. 3334

12.9033

12. 5001

12. 1213

I I. 7648

11.4287

ll.lll2

I0. 8109

10. 5265

10. 2566

10. 0002

9. 5240

9.0911

8. 6959

8.3336

8. 0003

0000

8038

6153

9.4340

9.2592

9.0909

8.9286

8.7718

8.6206

8.4745

8.3333

8.1967

8.0645

7.9364

7.8124

7.6923

7.4074

7.1428

6.8965

6.6666

6.4515

6.2499

6.0605

5.8823

300.0010

288.3502

277.3661

267.0011

257.2024

247.9354

239.1601

230.8407

222.9497

215.4565

208.3347

201.5600

195.1109

188.9657

183.1071

177.5168

164.6109

153.0632

142.6899
133.3360

124.8725

117.1905

110.1957

103.8095

299.9993

288.3484

277.3643

266.9992

257.2004

247.9334

239.1580

230.8385

222.9474

215.4542

208.3323

201.5576

195,1083

188.9631

183.1044

177.5140

164.6079

153.0600

142.6864

133.3323

124.8685

117.1862

110.1912

103.8047

6000.0726

5653.9797

5334.0202

5037.8137

4763.0654

4507.9753

4270.7759

4049.8977

3844.0227

3651.8686

3472.3100

3304.3290

3147.0173

2999.5240

2861.I180

2731.0977

2438.7537

2186.6934

1968.2148

1777.8949

1611.3412

1464.9675

1335.7945

1221.3795

5.7142

5.5555

5.4053

5.2631

5.1281

4.9999

4.7618

4.5453

4.3477

4.1665

3.9998

97.9624

92.5962

87.6591

83.1066

78.8997

75.0043

68.0319

61.9887

56.7164

52.0895

48.0066

97.9573

92.5908

87.6534

83.1505

78.8933

74.9976

68.0246

61.9806

56.7076

52.0799

47.9962

1119.6639

1028.9436

947.7650

874.9079

809.3321

750.1503

648.0355

563.6514

493.3O93

434.2073

384.1866

5999.9726

5653.8777

5333.9163

5037.7076

4762.9574

4507.8654

4270.6639

4049.7837

3843.9067
3651.7506

3472.1900

3304.2070

3146.8933

2999.3979

286O.99OO

2730.9677

2438.6187

2186.5533

1968.0698

1777.7449

1611.1862

1464.8076

1335.6295

1221.2095

1119.4889

1028.7636

947.5800

874.7179

809.1371

749.9503

647.8255

563.4314

493.0794

433.9673

383.9366
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TABLE 2.33-13. (CONT) (SHEET 2 OF 4}

_L K 1 K 2 K 3 K 4

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

O. 42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

O. 50

0.51

O. 52

0.53

O. 54

0.55

0.56

0.57

O. 58

O. 59
O. 6O

7.6927

7.4078

7.1433

6.8970

6.6672

6.4522

6.2507

6.0613

5.8831

5.7151

5.5565

5.4064

5.2642

5.1294

5.0013

4.8794

4.7634

4.6527

4.5471

4.4462

4.3497

4.2573

4.1688

4.0839

4.0024

3.9241

3.8488

3.7764

3.7067

3.6395

3.5748

3.5123

3.4520

3.3938

3.3375

3.8459

3.7034

3.5711

3.4479

3.3330

3.2254

3.1245

3.0298

2.9406

2.8566

2.7771

2.7020

2.6308

2.5633

2.4991

2.4381

2.3799

2.3245

2.2715

2.2209

2.1725

2.1262

2.0818

2.0392

1.9982

1.9589

1.9211

1.8847

1.8496

1.8158

1.7832

1.7518

1.7214

1.6920

1.6636

44.3859

41.1601

38.2737

35.6809

33.3430

31.2278

29. 3079

27. 5599

25. 9640

24.5030

23.1621

21.9285

20.7911

19.7401

18.7671

17.8644

17.0256

16.2447

15.5164

14.8363

14.2001

13.6042

13.0452

12.5202

12.0264

11.5613

11.1230

10.7094

10.3187

9. 9491

9.5993

9.2678

8.9533

8. 6548

8.3712

44.3747

41.1479

38.2607

35.6668

33.3280

31.2118

29.2908

27.5418

25.9447

24.4826

23.1405

21.9057

20.7670

19.7148

18.7404

17.8364

16.9962

16.2138

15.4842

14.8026

14.1649
13.5674

13.0069

12.4802

11.9848

11.5180

11.0780

10.6627

10.2701

9.8987

9.5470

9.2137

8.8973

8.5968

8.3112

K 5 K 6

_41.5695

305.0342

273.5341

246.2304

222.4478

201.6362

183.3460

167.2068

152.9116

140.2046

128.8710

118.7305

lo9.630Z
101.4402

341. 3095

304. 7642

273. 2541

245. 9405

222.1478

Z01.3262

183.0260

166.8768

152.5716

139.8547

128.5111

118.3605

109.2503

101.0503

94.0496

87.3630

81.2989

75.7865

70.7646

66.1798

61.9856

58.1415

54.6117

51.3647

48.3729

45.6104

43. 0583

40.6957

38.5055

36.4721

34.5819

32.8226

31.1830

29.6531

28.2241

93.6496

86.9531

80.8790

75.3566

70.3247

65.7299

61.5258

57.6716

54. 1318

5O. 8749

47. 873 1

45.1006

42.5385

40.1659

37.9657

35.9224

34.0222

32.2529

30.6033

29.0635

27.6245
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TABLE 2.33-13. (CONT) (SHEET 3 OF 4)

_L K 2 K 3 K 4 K S K 6

0.61

O. 62

0.63

0.64

0.65

0.66

O. 67

O. 68

O. 69

0.70

0.72
O. 74

O. 76
O. 78

0.80
0.82

0.84

O. 86
O. 88

0.90
0.92
O. 94

0.96

0.98
I. O0

1.05
1.10

1.15
1.20

1,25
1.30
1.35

1.40
1.45

K 1

3. 2830 1.

3. 2304 1.

3. 1794 1.
3_ 13oo 1.
3,0822 1.

3,0358 I.

2.9908 I.

2.9472 |.

2.9048 1.
2.8637 1.

2.7849 I.
2.7105 I.

2.6400 I.

2.5732 1.

2.5098 1.

2.4495 1.
2.3923 I.
2.3377 1,

2.2857 1.
2.2361 1.
2.1887 I.

2.1435 I.
2. I001 1.

2.0587 1.

2.0190 O.

1.9267 O.

1.8434 0.
1.7678 0.

1.6991 0.
1.6365 O.

1.5795 O.
1.5273 O.

1.4795 O.
1.4357 O.

6361

6095
5838

5588
5346

5111

4883

4661

4446

4237

3836
3456

3096
2753

2427
2117

8.1015

7.8448

7.6003

7.3673

7.1450

6.9328

6.7302

6.5365

6.3512

6.1739
5.8415

5.5359
5.2545

8.0395
7.7808
7.5342

7.2991

7.0747

6.8603
6.6555

6.4595

6.2720

6.0924

5.7552

5.4449

5.1585

4.8936
4.6482

4.4204

4.9948

4.7546

4.5321

26.8876

25.6365

24.4641

23.3642

22,3314

21.3606

20.4475

19.5876
18.7773

18.0131
16.6102
15.3565

14.2328

13.2229

12.3128

11.4908
1821

1538
1267

1008

0759
0521

0292

0071

9859
9361

8904

8482

8091

7727

7386

7066
6764
6477

4.3256

4.1337

3.9550
3.7884

3.6329
3.4875
3.3515

3.2239

3.1043
2.8360
2.6052

2.4058

2.2322
2,0813

1.9492
1.8333
1.7314
1.6416

4.

4.

3.
3.
3.

3.

3.
3.
2.

2.

2.
2.

1.
1.
1.

1.
1.
1.

2084 10.7466

0109 10.0718
8265 9.4573

6541 8.8979
4926 8.3874

3411 7.9206

1988 7.4930

0649 7.1008

9388 6.7405

6538 5.9598
4056 5.3209

1881 4.7941
9957 4.3561

8253 3.9916
6732 3.6859
5366 3.4286

4135 3.2113

3019 3.0271

26_2781
25.0170
23.8346

22.7248
21.6820

20.7013

19.7782
18.9084
18.0882

17.3140

15.8913
14.6178
13.4742

12.4445
11.5147

10.6729

9.9O89

9.2139

8.5802
8.0012

7.4710

6.9846
6.5375
6.1258

5.7460

4.9169

4.2298
3.6551

3.1697
2.7582

2.4061

2. I029
1.8402
1.6115
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TABLE 2.33-13. (CONT) (SHEET 4 OF 4)

_L

1.50

1.55
1.60

1.65

1.70
1.75

1.80
1.85

1.9O
1.95

2.00

2.05
2.10

2.15

2.20

2.25
2.30

2.35
2.40

2.45
2.50
2.55

2.60
2.65

2. 70
2.75

2.80
2.85

2.90

K 1 K 2 K 3 K 4 K 5 K 6

1.3955
1. 3586

1. 3247

1. 2936
1.2651

1. 2389

1.2149
1. 1929
1.1727

I. 1543
I. 1376

1. 1223

1. 1084

1.0959

1. 0845
1. 0742

1. 0650
I.0567

I. 0493
I. 0427
I. 0368

1.0316

1.0270

1. 0230

1.0195
1. 0165

1.0138

1.01'15

I.0096

0.6205

0. 5945
0. 5697
0. 5458

0.5229

0.5007
0.4793
0.4586

0.4385

0.4189
0.3999
0.3814
0.3634

0.3459
0.3288
0.3121

0.2958
0.2800

0.2646
0.2496

0.2350
0.2208
0.2071

0.1938

0.1809
0.1685
0.1565

0.1449
0.1338

1.5623

1.4923
1.4303

1.3755

1.3269

1. 2840
1.2461
1.2126
1.1831

1.1570
1.1341

1.1141

1.0966
1.0813
1.0680

1.0566
1.0467

1.0382
1.0310

1.0249

1.0198
1.0155

1.0119
1.0090
1.0067
1.0048

1.0033

1.0022
1.0014

1.2004

1.1076

1.0226

0.9444

0.8722
0.8054

0.7435

0.6859
0.6321

0.5819
0.5350

0.4911
0.4500

0.4114
0.3751

0.3411
0.3091

0.2791

0.2510

0.2246

0.1998
0.1766

0.1549

0.1347

0.1158

0.0982
0.0819

0.0668

0.0528

2.8707
2.7376

2.6243

2.52?6

2. 4452
2. 3748

2.3149
2.2638
2.2204

2.1835
2.1524
2.1261

2.1039
2.0854

2.0699
2.0571

2.0465

2.0379

2.0309
2.0252
2.0207
2.0172

2.0144
2.0123

2.0108

2.0096
2.0088

2.0082

2.0079

1.4113

1.2352

1.0797

0.9418

0.8192

0.7097
0.6118

0.5240
0.4451

0.3740
0.3101

0.2525
0.2005
0.1536

0.1114

0.0734

0.0392
O.OO86

-0.0188

-0.0433
-0.0649
-0.0841

-0.1009

-0.1155
-0.1281

-0.1389

-0.1479

-0.1553
-0.1613
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(c) Special Formulas

Hampe (Ref. 2-2) gives exact solutions for cylinders, based on linear

bending theory. Tables Z.33-14 and 2.33-15 presents the influences

caused by the unit-edge loadings: Mik = 1, Qik = 1, forced rotation of

the edge _ik = 1 and forced displacement of the edge Arik- 1. All for-

mulas are valid for long and short cylinders.

If the length of cylinder is such that L >- 3.1 _ the

formulas can be simplified. The simplification is also considered in

Tables 2.33-16 and 2.33-17. The functions, F. and F. (g), are from
1 1

Paragraph 2.42.6.
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2.35. 5 Salvadori's Approximate Method for Irregular Shell

Consider a shell of revolution of any meridional shape loaded with

axisymmetrical loading with restricting assumptions as stated in Para-

graph Z.32.11.

A. Displacements

The following simplified formulas for displacements are given by

Salvadori in Ref. Z-6 (see Table Z.33-18).

TABLE Z.33-18. IRREGULAR SHELLS--UNIT EDGE

LOADING SOLU TIONS

At
QO

Z if3 D,

Qo

a_, z D a

I

K4 o

Z pZ Da

Mo

_, Do

'Where: (5s " , DI • Zlo/ll

Po|llorL'l r&t|o •Illumed to bill lifO,
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Ratio ts/a is assumed to be small enough for displacements,

rotations, and stresses in the shell to be approximated by the same

quantities in a cylinder of constant thickness, ts, tangent to the shell

at the equator. This approximation is satisfactory for shells whose

ratio, ts/a , is less than 1/50 and whose thickness near the edge does

not change abruptly.

B. Interaction

Considering displacements of the primary and secondary solutions,

the interaction leads to the following formulas for discontinuity forces:

M0 = m0 P0 ats (-_0) Sp

QO = qo PO Sp

2
1 (1-X)

4j_ {l+X z)z+zx3/z(l+×)

whe re

1 (1 + xslz)

q0 = 2 2 ×3/ZZ_'¢I+X } +Z (I+X)

X"t /t
s c

t
c

S
P

is thickness of cylinder

= factor, dependent on loading, see Table Z. 32-11.
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C. The Maximum Values

The maximum value of M may be larger than M0; consequently, it

has to be determined. It was shown by Salvadori that a maximum value of

M appears at a distance x , in the bulkhead, defined as follows:
s

x =
tan _s s

qo

qo" 2 _'" m 0

This distance is measured along the meridian, starting from the discon-

tinuity section. In a cylinder, the correspondent distance iSXc,

defined as follows:

X =
tan _c c

q0

qo + Z _/ m 0

Then, for both bulkhead and cylinder, special values M {bulkhead) and
S

Mc {cylinder) have to be determined. The larger value, M 0 or M, as

defined above represents the actual n]aximum moment.

This work will be performed using Fig. 2.33-11 and the formulas

that are given on this graph for M and Q. To obtain M s or Mc, use the

formula in Fig. Z. 33-11, entering m s or mc or m, as shown in the

formula.
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0.5 1.5 Z

FIG. 2.3.3-11. Graphical Form of Data

The simplicity of the results obtained allow the checking of shell

design for boundary moments (the most dangerous condition in most

practical cases) without any difficulty and in a routine manner.
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2.33.6 Conclusion

The influences due to the unit edge loadings were covered in

_his section. The disturbing influences at the boundary were as

follows:

Unit-edge loadings: moments and shears.

Unit-edge deformations: horizontal displacement and rotation.

The correspondent disturbances along the meridian were membrane

stresses, internal moments, shear, and rotation and deflections. A

combination of these influences with the influences due to primary Ioad-

ings lead to the resulting stresses and deformations, if the interaction

process is used as was described in Paragraph 2.23.2.

293



k ,q

Z. 34 SUMMARY

The unit-load method was presented in detail. The interaction

process between shells was discussed at the beginning, and then the pri-

mary and secondary solutions were systematically presented for use in

an interaction process. It was shown that a large family of axisymmetri-

cally loaded shells of revolution can be solved using this method.

Sometimes, there are bulkheads that cannot be easily approximated

at boundary zone with the spherical or cylindrical shell to obtain unit

influences. Fig. Z. 34-1 is an example of such shells. It is clear that

within the range of Z0 degrees, the shell at junction with the cylinder can-

not be approximated with the sphere. In such case, however, two

I

. / \./--
B U LM H_ AD

_2"---- C Y L_ D]KI.

spherical shells or toroidal and

spherical shell will be needed for the

approximation, as shown in

Fig. 2. 34-Z. The determination

of discontinuity stresses will be

performed with the more compli-

cated process as was shown with

the system of Eq. Z. Z3-3.

FIG. Z. 34-1. Bulkhead, Which

Cannot be Approximated

With a Sphere Alone
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" OR|GINAL SHELL

$pHF.R1CAL OR

TOROIDAL

t z 20 ¢

FIG. 2.34-2. Combined Bulkhead

Up to this point, solutions were discussed and presented for the

isotropic material and homogeneous section of constant thickness t.

This presentation covers the most common shell configurations; however,

the presentation would not be complete, unless a brief treatment of circular

plates and rings is included, because the more complicated configurations

known as the "mulfishells" always have these elements as interacting parts.

Also, sometimes it is simpler to use already collected formulas than to go

into the interaction process for the most used simple shells with different

restrictions on the boundaries. That is the subject of Section 2.40.
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2.40 SPECIAL SOLUTIONS

2.41 INTRODUCTION

The "unit-loads" method for obtaining the solutions for combined

shells has been discussed. Problems can be solved in the same manner,

for various idealized boundary conditions (such as simply supported or

fixed)which can approximate some practical conditions. Consequently,

the following definitions can be made:

The "fixed" (or "built-in") boundary does not permit any displace-

ments or rotation along the boundary.

The "pinned" boundary permits rotation of support but not displace-

ment. A special case of "pinned" boundary, (the so-called "simply

supported" edge condition) permits the movement in one prescribed

direction.

All of the aforementioned supporting conditions may be considered

during the interaction process to obtain the solution. In order to

save time, Hampe's method (Ref. Z-Z) is presented, This method,

with simple formulas, covers all possible cases of circular cylinders

and spheres with various supporting conditions along the boundaries.

Similarly, the abrupt discontinuity in the wall thickness may be covered

by this method.
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In addition, the formulas will be presented for circular plates (with

and without a circular hole at the center) under different loading con-

ditions. The same treatment will be given to circular rings. Circular

plates and rings usually are the common interacting elements in the

multishells;,consequently, they can not be omitted in a shell manual.
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2.42 HAMPE METHOD

Hampe (Ref. 2-2) derived a set of general formulas for the stresses

and deformations of cylindrical shells with various boundary conditions and

loadings. The results of his derivations (based on classical linear bend-

ing theory) are presented in tabular form in this section. The following

constants are used:

F and F (_):

S:

These functions of geometry are presented in

Paragraph Z. 42.6

These factors are dependent on the type of boundary and

loading. (Tables Z. 4Z-1 through Z. 42-8.)

w factors for particular solution of differential equations are as

w
P

W t

P

W t!

P

wtlt

P

= the ordinates of the deflection line

= inclination of deflection line

= the second derivative of the deflection line

= the third derivative of the deflection line

follows:

These factors, for different loadings, are tabulated in Table 2.42-8.

The scope of this manual does not permit a breakdown of the deri-

vations or a more rigorous explanation of the method. For further infor-

mation refer to Hampe (Ref. 2-21 . The general formulas are given in the

following text for the factors that presented in the tables.
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The stresses and deformations of the cylinder with any fixity at the

boundary can be de scribed by the formulas given below.

2.42. 1 Stresses

A. General

The circumferential load is

Et (_) + SIF7 (_) + (_) + (_} + $4F8 (_)]N O = --_ [Wp SZFI5 $3F16

!

The location (_N) of the max N_p is obtained from the relation: (N0) = 0

S
IF9(¢N } - SzFI4(_ N) $3F13(_ N) + S4FI0(_ N)

w' (_N}
P
k

- 0

The moment is

M = D
X I t!w p(_)+ Zkz {-Sirs(t)+ SzFI6(_)- S3FIS(_}+ S4Fv(_)]}

The location(EM_._ .°fthe max, Mx, iS obtainable from the relation, M_ = 0:

SIFI0(_ M) $2F13(_ M) + $3F14(_ M) + $4F9(_ M) Zk 3

p _n - 0
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The shear is

Special Case: kL _- 4 (Long Cylinders)

With the same notation as before, the circumferential force is

B,

EtIwp(_) + S1F 7(6) + SzFI8(_) IN8 =-_ 1

The location(_N)of max N is determinable with relation to

1F19(_N ) " SzFz0{_N) k
-0

The moment is

,p,(_
M =Dw

X ) + ZkZISIFI8((_) =SzFIT(_)]}

The location(_M )of max M is determined by the relation'

SIFz0(_M) + SzFI9(_ M) +

Ill

w (_)
p M

Zk3
-0

The shear is

Q
X

= =D
+ Zk3 [SIFz0(_M ) + SzFIg(_M)]]
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2.42.2 Distortions

A. General

The deflection line is

w = w (_) + SIFT(_) + SzFI5(_ ) + S3F161_ ) + S4F81_1P

Inclination of the tangent of the deflection line is

w'= kI-slFg(_) + SzF 14(g) + S3F 13(_) + S4FI0(_)]

B. Special Case kL > 4 (Long Cylinders)

The deflection line is

w = wp(£) + siF,7(g) + SzFI8(g)

Inclination of the deflection line is

w'= Wp(_) + k[SIFIg(_) + SzF20(_) [

2.42.3 Coefficients and Tables

The Wp to w p coefficients for the different loadings and geometries

are presented in Table 2.42-1. S i coefficients are presented

similarly in Tables 2.42-Z to 9.

These tables are prepared for different kinds of distributed ioadings.

For hinged edges of the shell (rotation but not displacement permitted,

moment = 0), the S i coefficients are presented in Tables 2.42-4 and 5.

301



Table 2.42-6 presents the coefficients Si for cylinders with both

bound;fries fixed. The coefficients Si are presented in Table 2.42-7 for

one boundary fixed and another hinged.

When the cylindrical shells are loaded with nonuniform loadings,

bending will be involved, and the membrane theory will not be adequate

to solve the shell problem even if the edges are free to rotate and

deflect; therefore, these cases are tabulated in Tables 2.42-8 and 9.

These cases are assembled for the free boundary conditions, however

S i factors are determined with linear bending theory in most of the cases.

Dash over S i factors (Table 2.42-9) indicates that the length of the

cylinder is such that the supporting condition of one boundary does not

effect the stresses and deformations on another boundary.
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TABLE Z. 42-2. {CONT)

Load C,,_sdl ll_,l

P (|) • Pe co• e I

a

p(|) a po .xP (.%)

B< kL

le< k1,,

Po le| • fkL| 4

IX ,.4 ,.. 4, (kL#

polt|

D

poX' * O,L#

p_m
I1=

II Z

po RZ 4 (kL)4 [F1r_2rt .4 , 4 (kL) 4

-- coo •

z (,Lr t

Pe Iz [ /'l eI

a

1`,

r

po IL;l" 4 (kL.) 4 | F)

•, .,.,,kL# [

• T 6 + ! Ill: Fq]tL FL+I l,,|

I';I *xp l- *t

P°R| r(lr l,_._. _

*)
•' ,]• Jqp (- •

po ]1.1, 4(kL) 4 [_-_ I)°111' 4 (kL.)4 1`ri_, g

" (;1`' -' ('*'Z (kL.); I * 1, 1, CkL._ I"I * _

eta + _ FlO
Ii1., trl ,* 1, kL _ e_

lr,p co, • + Z (kt._ _ *

kL 1`1 '" _

Pe Itl 4 fltL) 4

• ,Po It1, 4 (ltbl4 T[rn_ 1 _ °4 ' * Otl,_

r, .'+, Ck:.)' [ "r----_Z : _--L 1`41`1 '_

• 1`1 ° I 1`IlrlF_9

" k_r_.1, " z . (_.___1`_. _,_
1`|.I kl. 1`t * _

" k_ F1

• _*l" *

1 Po I1 [ 1`z !'4

( *"t" ,..,'_'• #,. ,_ .-,"

p°ltZ [ 1"1, . TS-_"_ FI*Z " k/- 1`1 ",

+ F_ . _ /'1_'_

1For F factm's, see paragraph 2.42.8
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TABLE 2.42-3. S 1 ANDS 2 COEFFICIENTS. kLz4.0 (Ref. 2-2) I

Load Condition

p-p(_)

P(_) • Po • con,t

P(_) = Pv (I-_)

po Rz

Sl

P(_)" Po ¢o, op,

p(C)"Po ,xp-(ol)

Mi Ml

o<kL

o<kL

o<kL

. Po R2 • (kL) 4

Et • 4 + • (kL) 4

. PoR_ z 4 (kL) 4

Et a 4 + 4 (kL) 4

po Rz

Et

1For k factors, see paragraph 2.42.6

S2

. Po R2

Et

Po R2 o . 4(kL) 4

Et kL o4 + 4 (kL) 4

Po A2 •

Et kL

. Z__Rz 4(_)4

PO Rz 4{kL} 4 / O

Et " o 4 + 4 (kL)4_ I "_'- /

P°R2 II
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TABLE Z. 4Z-4. S i - VALUES, kL<4.0 (REF. Z-Z)

;..,adCon,htio_

p P(t)

Po

P(t) " P. " con.,..

]c_

•' Po • • kl.

,Mr) • Po 't. _*t

/ Po

P(_') " Pc, c°''t

p.II.Z

poRz 4 _L} 4

]Dr e 4 ._ 4, (kL} 4

ICS

$1

p I z FS
, -o -

F 4

pvg 2 ir 5

EX g 4

pokZ • _L)4 .Z

Z, .,., (kL.)4 z'--_ku)z

I FI4 o_e e_1

FI5 cos

F 4 kL. F 4

po i| eZ
4

]Ct z (kL) l

Po R2 4 (k L| 4 FI._4" rt m4 . 4 (kL) 4

eZ F& * I el

z {kS.)* r4 z (kL)*

FI4 • gI5 e/l

Po Rz [ FS e 2 F6 * |

• _[-_4 " Z(kL) z r4

8 _ / Ft4
+

• (kmz _ co.
it,

• FIS 611÷ k_-_4 em

1For F factors, see paragraph 2.42.6

For k factors, see paragraph 2.42.8

Po p'z 4 (kL) 4 e z
+

gt 0 4 + 4 (kL] 4 Z (kL) 1.

FIb cos •

poll I eZ

z, z (kL_

Po l_z 4 (lit.L) 4 [ F6+ Et 4,4 ÷ 4 (kL) 4

eZ FS - l eZ

+ _ |kL) z F4 2 (kL) z

/_4 ) coee÷ • F)6 lineKL F 4

Polt z IF 6 81 F S- I

eZ FI)

÷ _ coeez (kL) 2

•,)]

$4

Po Kz 4, z 4 (XLI 4

' g_ I"_L] z 8 _ * 4 (kL) 4

pox z .J

x:_ Z (kL) |
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TABLE Z.4Z-5. S! AND S 2 COEFFICIENTS, KL>4.0 (REF. 2-2) I

Load Condition

i ,,=

*m- -4b

r

z_

=p.s/..&

co,.t

n , w

po R2

Et

p_z
Et

o<kL

5_ ¢''"_ p.

]For k factors, see paragraph 2.42.6

S I

PO R_' 4 IkL) 4

Et o 4 + 4 (kL} 4

po RZ

Et

poR z

ICt

SZ

Po RZ 4 IkL} 4 a.._ Z

Et 0 4 + 4 (kL} 4 Z (kL) Z

po kz oZ

Zt Z (kL) f

+ PoR.____Z 4 _kL} 4 ,I

Zt o 4÷4(kL) 4 l(kL) 1

PoRz o|

let Z (kl.,)z
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TABLE Z. 42-6. Si-COEFFICIENTS (REF. Z-Z) I

h,,ad C.,ndtt L,,.

eP° I

4B,-

P(_)= Po " Co..L

) p

1_i) • p_ (l-(!

t_{) • Po ,tn*¢

1For F and k ftctors.

eckJ,

SI

Po A2

E!

Pv RI

Et

SZ

PJ__F3 . l

\" h/J

• ._.e z 4 (kl.)*

_'% • 4 _, 4 (kL) 4

•line kL

F, /l

Et L FI

/,. ,o./]

$3

Po R2 (1r3 F]__I) /

Pv R2 F[ l

.,)1

Po R2 4 (kL} _j

ICt a 4_

f,_o .ein #

y L kL,

*'i /J

I_R z [FI0

"/" "/l._. _ c..

s 4

PoRZ /F2 2F8%

_t 2 IT:, 1

po Rz 4 (kL) 4

- _---_ .4_

Ft

I Ti /J

P°R_ [ _1r8 otts e

"'-_V- t T,

•_,,,,...._,
- _'C_ ' r, /]

see paragraph _. 42.6
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TABLE 2.42-6. (CONT)

! ,'.LdC,._J,t_.'"

I

I

p(_.) • po co, t t

1 o

p ILl " Po ezp [-e_)

e<kL

e<k I.,

SI

-Po RZ 4(kL) 4

Et o 4 ÷ 4 (kL} 4

. PoR.___ z

rt

po R2 4(_L) 4

rt e4 + 4 (l'L}4

poll z

"-E;-t

Sz

po R2 4(kL) 4

EI a_

IF]_ FrO coee,

IF] FI

--_ ain

po R2 _F_. FI0_t F 1 FI cos •

m )'8 )kL FI rain •

Po-Rz 4 (kL) 4

Et e 4 + 4, (kL) 4

.lr-_- ) - rl---_ 0 exp (- w)F I FI

kL\T_l " r--T /J

po R2 F[ FI F 10

po Rt)

S]

4(kL] 4

Et e4 + 4 (kL) 4

F/_l$ FIOFI costa

a F 8 a)kL r I ein

poR z /F3 F]0

kL FI

Po Rz 4 (kL) 4
÷

Et • 4 ÷ 4 (kL) 4

$4

+ PO Rz 4(kL) 4

Et a_

F/__I Z ZF&- _ cos •

• F9 \
kL F I e/

P°RL FI__iZ -- 2FII cos •
*T _ F I

F9e

kL TI 8in ira)

El e 4 • 4 (kL} 4

Ir_ /F8
. -- exp (- e)

FII F_-_I) - rl0 exp [- o)Yl

" kL _ FI ÷ _ ,xp (- o

+_ [r3._,_P(..lEt r I rl

(*' "'"" -')]

po RI [Ir' 1 _r I

. _ t_- --;i-_-, _-.,

._-,,,

1ForP and k factors, seeparagraph2.42.8
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TABLE 2.42-8. Si--COEFFICIENTS, kL<4.0 (Ref. 2-Z}

p-p/_/

const Pv( | *_

e<kLi

polll el • (kL} 4

?Ikl_ el 4 4 pdL _4

" -_1 *In •

FI co*e

m, l ¢,,L+"--'-_

Z F I T+

pox z .. pl 4 (_L_ 4

• "_-- I (kL_ 2 o 4 + 4 IkLI 4

r_F_._ I r i
- .-_T cu •

+++.,,.)

I r I

1For F and k factors, seeparagraph '2.42.6

lilt

El 2 lkLl I I +4 * 4 (kL_ 4

TS Tt0 I

+-JL FI _*

kL T l ¢ "]

p+i II .i I._ F$

r__,+ _,o..)- rl in* +.._ T0

Pel III • l 4 (kL) 4

;I fl

,c.+(+
trio

111

per I .1 • lit L]4

El _ _L} I , 4 + • {XL) l

D

rll

• ll,ll I ,l _.__ T+

_t

TI0 its° + • IT°

/

. PeIt/ el • _kL} 4

I _kL) | * • + t (kLl 4

r('_l_ "--IrlOyl ¢_1o

;-.,..)

Tie
--- cue - ° rills*

r I kL F I

14

PeA l ,I ° p,, LIt

El _ .4 + 4 lkLl 4
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TABLE 2.42-9. S 1 ANDS z COEFFICIENTS kL>4.0 (Ref. 2-2) 1

Load Condition

- [ I

Symmetrical

About Cente rline

i

i

P(_) = Po Jin a_

o<kL

po Rz

Et

SI

4 (kLl4 o3_.._..._

o 4 + 4 (kL) 4 2 (kL} 3

po R2
+

Et

$2

a3

2 (kL) 3

1For k factors, see paragraph 2.42.8
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TABLE 2.42-9 {CONT) l

Load Condition

p[.4)"po¢os¢:.4
o<kL

'_<kL

lFo¢ k factom, see pata[Faph2.4Z#

MiR2

Et

Sit

Sl

Po RZ 4 (kL) 4 a Z

Et _4 + 4 (kL) 4 2 (kL) 2

po Rz a2
+

Et ;t(kL)Z

Po RZ 4 (kL) 4 a 2

Et a 4 + 4 (kL) 4 2 (kL) Z

po R2 u2 / 1- -_/
Et Z (kL) z

2 k 2

2k

$2

Po B'2 4 (kL) 4 u 2

Et a 4+ 4 (kL) 4 2 (kL) 2

po RZ a2

Et Z (kL) Z

Po R2 4 (kL) 4 0 2

Et _4 + 4 (kL) 4 2 (kL) z

po R2 a2
+

_t 2 (kL) z

MiR2
+_ 2k z

Et
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TABLE 2.42-9 (CONT) 1

LOAD CONDITION

U=-:!

P((I = Po :¢°n't P(_ =Pv (1._1

P(0 • Po_,a(

J

,-.,4lB,

• m •

e<kL

a<k_

e<kL

+ pO RZ e z 4 (kL| 4

Et 2(k-_h) o 4 * 4 (kL) 4

po Rz m 2 4 (_L) 4

Et 2 (kL) z o 4 * 4 (RL) 4

poK 2 e l

Et Z (kL_ z

/°°'"
po Rz o 2 4 (kL,) 4

ICt Z (RL) z • 4 + 4 (RL) 4

* exp (- o)

¢t 2 ('it L) _

_Z

9o Rz 0 2

Et 2 (kL) z

4 (kL} 4
sin dr

0 4 + 4 (kL) 4

po R2 ¢r2

]_t 2 (kL) 2

PoR z o 2

Et 2

4 (kL) 4
-- ¢o8 dr

• 4 + 4 (kL| 4

po R2 o z
- -- -- ¢c>| B

Et Z (kL) z

lilt •

• (kL) 4

04 ÷ • (ki"} 4 exp (- t)

, PoR.____z e ?"
• exp (-,J)

¢t Z CAL) z

1For k factors, see para_aph 2.42.0
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Z.4Z.4 Analysis of Cylinders with Rotationally Symmetric Discontinuities

in Geometry or Loading.

Rotationally symmetric discontinuities are of special importance,

especially if they are located not far from the edges of the cylinder.

As before, the tables are prepared for many possible disconti-

nuity types (Ref. 2-2).

Assume thatOrepresents the place where discontinuities will

occur. Fig. 2.4Z-1 shows the designations and the system of coordi-

nates which will be used.

t

a. SYSTEM b. THE POSITIVE

DEFINITION OF TRANSFER

LOADS Mi AND Qi

FIG. Z.42-1. Cylinders with Discontinuities

The imaginary cut a_(Dis introduced, and an attempt is made to

determine discontinuity loads Mi and Qi. This is a usuM problem

of interaction and it will be solved as such; the following formulas will

be obtained:
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whe re

ZDk z

Q"-x ¢ (k¢Q Aw + ¢M"%w;)2_P Z

Z
= '_M -

Z CMI ¢OZ

The values CM, O, are given in the Table Z.4Z-10. Some special

cases of discontinuity loads M I and Ol are presented in the Table

Z.4Z-II.
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2.42.5 Spherical Shell, Any Fixity at the Lower Boundary

General formulas for open or closed spherical shells are presented

herein in the same manner as for the cylindrical shell. The boundar 7

conditions along the lower edge can be assumed to be "fixed" or

"pinned." The formulas are dependent upon certain factors, S i, that

are the functions of integration constants, C, that appeared by derivation

of formulas (bending theory). For the "fixed" lower boundar 7

Et C Arm 2F3 I_. F2i/

,/

Et At.s_n'm F6+I R FF_Z. /

Et R

where k and F are factors as shown in Paragraph 2.42.6.

For the special case of "closed" spherical shells, the only constants needed

are:

/_m Arm _/
2k 2
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Et

S2 - Om
2k 2

In the preceding formulas _r is the radial movement of the mem-
m

brane and _rn is the angle or rotation of the membrane.

For the "pinned" lower boundary

S 1

Ar mEtF1

2 sin ¢_IRkF4

S 2

Ar Et
m

2 sin _lRk

S 3

Ar Et
m

Z sin _iRk

ArmEt F 2

S4 =
2 sin _iRk "_4

For the special case of the "closed"

needed are

S I

_r
m Et

D

2sin _1 Rk

_r

m Et

$2 = 2 sin ¢_1"_"

spherical shell, the only constants
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With these indications the general formulas can be given.

A. General Case of Open Spherical Shell, Any Boundary at Lower Edge

Longitudinal Load:

N_b = N_bmemb r + cot dp [S1F7(a)+ SzF15(a) + $3F16 (a) + S4F8(a) !

Circumferential Load:

N 8 = Nemembr -k [-SIF9(a) + SgF14(a) + $3F13(a) + S4F10(a)!

Shear:

Q_ = SiF7(a) + SzF15 (a) + $3F16 (a) + S4F8(a)

Moment M_p:

M, - _ [-SIFI0Ca)+ SzFI3(a)- S3F14Ca)- S4FgC°*]

Moment Me:

= R
M e _ ['SIFI0 (a) + SZFI3(a) - S3F14(a), S4Fg(a) ]
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Deformations:

Horizontal Movements:

Rk [_S1F9(_) $2F14(_) + $3F13(_) + S4F10(Q) ]Ar =-_-_- sin _ +

Rotation of Meridian:

2k 2

- Et ['SIF8(a)+SEFI6(a)'S3FI5(a)+S4F7 {a)]

B. General Case of Closed Spherical Shell, Any Boundaries at Lower

Edge

Longitudinal Load:

N_ = N_membr ÷ cot_ ISlFI7C=)+SzFlsC=)I

Circumferential Load:

N o =Nemembr ÷ k [SIFIg{=) - $2F20(=)!

Shear:

Q_ = SIFIT(a) + $2F18(=)
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Moment M,:

=R
M, = _=[SIFz0(a) ÷ SzFI9(a}]

Moment MS"

_ -M8 Zk

Deformations:

Horizontal Displacement:

Rk
Ar =--_ sin, [s1rl9(a) - SzFz0(a) ]

Rotation of the Tangent of the Meridian:

ZkZ 7(Q)]= -_- [SlFIo(_)- SZFl

Z.4Z.6 Definition of F-Factorm

The general solution of the homogeneous differential equation.

&
w + 4k'w -- 0
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can be represented with the following combination of trigonometrical

and hyperbolical functions:

cosh kL_ cos kLg

cosh kLg sin kLg

sinh kLg cos kL_

sinh kL_ sin kLg

where kL is a dimensionless parameter and _ is a dimensionless

ordinate. Figs. Z.42--g through Z.42-4 present the F-factors that

simplify the analysis. As a special parameter for determining the

F-factors, q is considered as follows

F = F(q) i.e. F I sinhZq + sin z, = rI

For a cylindrical shell

q = kL or q = kLg and

For a conical shell

q = kL or q = kLg and

For a spherical shell

k =._/3( 1 -_2)

k = 44/3(1- Z)

tXrn cot a o

rI = kfor Fi; Vl = kafor F. (a); and k =x
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Definition of the F-factors is given in Table 2.42-12. If the

required accuracy is high, it is suggested that the F values be cal-

culated as presented in Table 2.42-12. If the required values are

estimated and extreme accuracy is not required, the graphs in

Figs. 2.42-2 through 2.42-4 should be used. These graphs also

present the values F..
l
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TABLE 2.42-12.
Fi(_) AND F i FACTORS,

(Ref. 2-2)

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

sinh 2 kL_. tin2 kL_

sinh2 kL_ + ,in£ kL_

sinh kL_ cosh kL_ + sin kL_ cot kL_

sinh kL_ cosh kL_ - sin kL_ cot kL_

tin 2 kL_

cosh kL_ cot kl_

,inh k_ ,in kL_

cosh kL_ tin kL_ - $inh kL_ cos kL_

cosh kL_ sin kL_ + sinh kL_ cot kL_

sin kL_ cot kL_

sinh kL_ cod_ kL_

cosh kL_ col kL _'- tinh kL_.$in kL_

cosh kL_ cc6 kL_ + slr_ kLt sin kLt

cosh kL_ tin kL_

tinh kL_ col kl_

exp(-kLt co, kL_)

exp (-kL_ ,m

exp [-kL_ (cOl kL_ + tin kL_]

exp [-kL( (cos kLl[ - sin kL_)]

F.
l

sinh 2 kL- tin 2 kL

sinh 2 kL + sin 2 kL

sinh kL cosh kL + tin kL col kL

tinh kL cosh kL - sin kL cot kL

tin 2 kL

sinh 2 kL

co_ Id,cm kL

sinh kL sin kL

cosh kL sin kL - sinh kL col kL

cosh kL tin kL + sinh kL cot kL

sin kL cos kL

sinh kL cosh Id,

cosh kL cot kL - sinh kL sin kL

cot& kL cos kL + sinh kL sin kL

cosh kL sin kL

sinh kL cot kL

e.xp(-kL cm kL)

exp (-kL sin kL)

_p [-kL (co, kL+,m kL)]

exp[-kL (col kL- |ia kL)]
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FIG. 2.42-Z. Fi FACTORS (_ = I, Z, 3, 4, 6, IZ)

(SHEET 1 OF 3)
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FIG. 2.42-3. (SHEET 7. OF 3)
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Z. 43 APPROXIMATE METHOD FOR DETERMINATION OF LOCATION

AND MAXIMUM STRESSES IN CYLINDERS (REF. g-g}

The approximate method is useful for preliminary design.

_N and _M are nondimensional values that represent the location of

maximum circumferential stress and maximum moment due to any linear

loading, characterized with Pv and k • (See Paragraph 2.32.6.) N isp max

the maximum circumferential force, and Mma x is the maximum moment

along the meridian. QF and M F are the reactionary forces at the boundary

(discontinuity forces). The graphs are plotted for different geometries

l_ Z) There
of cylinders represented with parameter kL where k -

are two similar sets of graphs:

other for pinned. Consequently,

Graphs on Fig. Z. 43-1 and Fig.

Nmax.

Graphs on Fig. 2.43-3 or Fig.

Graphs on Fig. 2.43-5 or Fig.

Graphs on Fig. 2.43-7 or Fig.

one for the fixed lower boundary and the

2.43-2 lead to determination of _N and

2.43-4 lead to determination of _M-

2.43-6 lead to determination of Mma x.

2.43-8 lead to determination of QF'

Graphs on Fig. 2.43-9 lead to determination of IV[F.

These graphs _e_e plotted by Hampe and are based on his metahed which

was describ_et _efoz'e (Section 2.41).
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FIG. Z. 43-I. DETERMINATION OF LOCATION AND VALUE OF

MAXIMUM CIRCUMFERENTIAL LOAD IN CYLINDERS LOADED

LINEARLY, WITH FIXED BOUNDARY
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FIG. 2.43-2° DETERMINATION OF LOCATION AND VALUE OF
MAXIMUM CIRCUMFERENTIAL lOAD IN CYLINDERS LOADED

LINEARLY_ SIMPLY SUPPORTED AT lOWER BOUNDARY
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FIG. 2.43-3. DETERMINATION OF LOCATION FOR MAXIMUM MOMENT

FOR CYLINDER LOADED LINEARLY WITH FIXED LOWER BOUNDARY
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FIG. Z. 43-4. DETERMINATION OF LOCATION FOR MAXIMUM MOMENT

FOR CYLINDERS LOADED LINEARLY WITH SIMPLY SUPPORTED

LOWER BOUNDARY

kL
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FIG. Z. 43.5. DETERMINATION OF MAXIMUM MOMENT FOR LINEARLY
LOADED CYLINDERS, FIXED AT LOWER BOUNDARY
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FIG. 2.43-6. DETERMINATION OF MAXIMUM MOMENT FOR

LINEARLY LOADED CYLINDERS, SIMPLY SUPPORTED

AT LOWER BOUNDARY
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FIG. 2.43-7. DETERMINATION OF SHEAR AT LOWER FIXED BOUNDARY
OF CYLINDERS LOADED WITH LINEARLY DISTRIBUTED PRESSURE
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FIG. 2. 43-8. DETERMINATION OF SHEAR AT LOWER SIMPLY

SUPPORTED BOUNDARY OF CYLINDERS LOADED WITH

LINEARLY DISTRIBUTED PRESSURE
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FIG. 2. 43-9. DETERMINATION OF THE FIXTY MOMENT AT THE
BOTTOM OF THE FIXED CYLINDERS FOR LINEAR LOADING
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Z. 44 CIRCULAR PLATES

A collection of solutions for circular plates with different axisym-

metrical loading conditions is presented in this section. The circular

plates with and without a central circular hole are considered. These

solutions can be used individually or in the process of interaction with

more complicated structures. The following nomenclature will be used:

w = deflection

= rotation

E = Young's modulus

= Poisson's ratio

t = thickness of plate

Et 3
D =

IZ (I - Z)

M
r

: radial moment

M t : tangential moment

Q = radial shear
r

Other designations are indicated in tables presented in this section.

The formulas presented were derived by using the linear bending

theory. The 1'primary" solution is presented first; then "secondary"

solutions are presented in the same way as for the shells. Finally, spe-

cial cases Ifixed boundary conditions) will be given.
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2.44. 1 Primary Solutions

Primary solutions are assembled in Tables 2.44-1 and 2.
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Z. 44.2 Secondary Solutions

The only unit edge loading of importance is a unit moment loading

along the edges (Fig. 2.44-I). Table 2.44-3 presents solutions for this

loading for different cases of circular plate with and without the circular

opening at the center.

W -"

Ma 2

ZD(I+F)

Ua

1_= D_(;'+ _)

M r =Mt=M

Qr=O

M

.P

1111111II111_11111i!111111111M

( t - pz)

i T 7

FIG. 2.44-I. Formulas of Influences for a Simply Supported Circular

Plate Loaded With Equally Distributed End-Moment
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2.44.3 Special Cases

Special cases and solutions for circular plates that occur com-

monly in practice are presented in this section. The geometry,

boundary conditions, and loadings for special circular plates (with and

without a central hole) are shown in Tables 2.44-4 and 2.44-5. The

information for these tables was obtained from Ref. 2-Z. and 2-8.
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TABLE Z.44-4. (CONT)

EOUALLY DISTRIBUTED EDGE MOMENT
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2.45 CIRCULAR RINGS

Circular rings are important structural elements which often inter-

act with shells. The theory of shells would not be complete without infor-

mation about circular rings. In this section, such information are

summarized and presented for symmetrical loading in respect to the

center of the ring.

Nomenclature employed is as follows:

A : area of the cross section

Ii, I Z = moment of inertia for the centroidal axis in the plane or
normal to the plane of the ring

J = torsional rigidity factor of the section.

Table _. 45-1 presents the solutions for different loads on rings.

This information was obtained from Ref. Z-5.
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Z.46 CONCLUSION

In this section, supplemental information on the unit-edge loading

method was presented and special attention was given to the cylinders and

spheres. To make the collection of formulas more complete and general,

the necessary information for circular plates and rings was provided.

With all the information on numerous shell plates and ring elements, two

or more shells can be combined and analyzed. The following section ia

devoted to this subject.
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2.50 MU LTISHELL STRUCTURES

(Ref. 2-2)

2.51 INTRODUCTION

Up to this point, only single-shell systems were considered. In

the introductory sections of this chapter, instruction was given for the

treatment of "combined shells," i.e., shells that are a combination of

two or three shell segments.

This section presents a simple approach for dealing with the

multishell systems, similar to that shown in Fig. 2.5Z-l(a).

systems usually are a combination of spherical, cylindrical,

shells, and circular plates and circular rings located axisymmetrically.

The multishell system is analogous to the statically indeterminate

frame system and can be handled similarly. The shell elements,

however, shall be high enough in order that one boundary is not to be

influenced by disturbances at another boundary.

Several known methods are useful for this purpose. In this

chapter, two methods, (1) the force-method and (2) the displacement-

method, are presented.

Basically, the philosophy is similar for each of the methods. It

is clear that, if the deformation is known, the forces at each section

can be determined and, vice versa, if the forces are known, the

Such

and conical
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displacement can be determined. Consequently, there is no basic

difference between the ways in which the loads (moments) or deforma-

tions as statically indeterminate values are chosen, but in some cases

one or the other way may be preferred.
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Z.5,' FORCE METHOD

2.52. I Introduction

This method is an analog to the method employed in statics for

solving rigid frames, which is called the "force method" and which

introduces the cuts in the system under consideration and then, in order

to restore the integrity of the structure, applies the statically

indeterminate force.

2. 52. 2 Analysis

The system will be separated into the elementary shell,

ring elements as shown in Fig. z. 5Z-l(b).

I

(a.) Structural System (b.) Division of Structural

System into elements

FIG. Z.5Z-I. Multishell

plate, or
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Each element (Fig. 2.52-1(b)) is statically determinate, and i8

loaded with the primary loading (pressurization) and with the secondary

loadings (unit-loadings) in order to restore the integrity of the system,

as it was explained in the introductory section of this chapter.

Fig. 2. 52-2 shows the necessary statically indeterminate loadings

that are applied at each point of separation in order to restore the

integrity of the system.

' I X4 " X6I qj: 
•

_ X9 - Xlo

gll

FIG. 2.52-2. Statically Indeterminate

Forces Acting on the Free-Body

Diagram-System With

Statically Determinate

Elements

The following sign convention

is adapted here:

Call the values on the right-

side positive, as noted:

A. Shell -Element

(1) Upper Edge of a Shell Element:

(2)

Moment in the clockwise direc-

tion.

Horizontal load directed outside.

Vertical load directed up.

Lower Edge of a Shell-Element:

Moments in counterclockwise

direction of rotation.
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Horizontal load directed in inside direction.

Vertical load downward.

B. For Circular Plates.

(I) Inside Edge of Circular Plate With Hole:

As upper edge under A(1)

(2) Outside Edge of a Circular Plate With or Without Holes:

As lower edge under A(2)

As shown in the introductory portions of this chapter (Paragraphs

2.23.2 and 2.23.3), a system of linear equations can be written for

determining the statically unknown values X i.

Two cases which usually are considered when the system is built

up from the statically determinate elements (Fig. 2.52-2) will oe

distinguished. The next paragraph discusses these cases.

2. 52. 3 System Combined From Statically Determinate Elements

A. Case I

The length of each element is such that unit influences due to unit

loading will overlap. In other words, stresses due to unit loading will

depend in every joint on both edge unit influence. For such a case, the

matrix for determination of X i has the shape shown in Fig. 2.52-3.
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5

6

7

8

9

lO

11

12

X
1 X2 X3 X4 1 X5 x 6 x 7 x 8 x 9

X
10 XI1 X

lZ

m

10
im

&
10

b20

6
30

64.0

b50

66O

b70

680

b9¢}

610 t 0
5

11_0
6

12,0

FIG. 2.52-3. The Matrix of Unknowns if the Boundary Disturbances

at Opposite Boundaries are Influencing Each Other. (Force Method,

With the Statically Determinate Elements)

B. Case 2

The length of the element is such that the disturbances caused

by the unit loadings willdie at short distance from the edge and willnot

overlap with the disturbances due to the unit loading on opposite edge of

statically determinate shell element.

In this case the matrix willhave the shape shown in Fig. 2.52-4.

375



i X 1 X2 X3 X4 X 5 X 6 X7 X8 X 9 Xlo Xll X12 5io

1 _ 510

2 _ &20

3 _ 63 0

4 .... 640

5 _ _ 65 0

6 _ 66 0

7 --- ..... 67 0

8 -- 58 0

9 _ 69 0

10 6101 0
11

--- _ 511,0

12 ____
512, 0

FIG. 2.52-4. The Matrix of Unknowns if the Boundary Disturbances at

Opposite Boundaries are not Influencing Each Other. (Loads Method

With Statically Determinate Elements)

It can be seen that case 2 can be split into four independent

systems of linear equations. The solution will be much faster and

simpler than under case 1.

2.52.4 Structural System Combined From Statically Indeterminate

Elements

In reality, the separation of the multishell into simpler com-

ponents cioes not necessarily need to be made as shown in Fig. Z. 5Z-l(b).

The separation can be performed as shown in Fig. 2.52-5,
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X2

_._ X3.,_---_ x 4

FIG. 2.52-5. Free-Body Diagram.

The System is Divided Into the

Statically Indeterminate

Elements

but then the elements are of a

tlstatically indeterminate _" type.

It does not change the philosophy,

but the analysis will be much faster

if formulas are available for the

statically indeterminate elements

subjected to the primary and

secondary loadings, because fewer

elements willbe present. These

influences can also be obtained by

calculation if the collection of

formulas does not cover the

particular case. As before, two

cases are considered.

A. Case I

The length of the element is such that the unit influences due to

the unit loads on opposite edges willbe overlapped. In other words,

stresses due to the unit-loadings will depend, in every point of the

shell, on both opposite edge unit-loadings. For this case the corres-

pondent matrix is shown in Fig. 2.52-6.
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i

1

2

3

4

X 1 X 2 X 3 X 4

n i m

6
io

610

612

51_

614

FIG. Z. 52-6. The Matrix of Unknowns if the Boundary Disturbances at

Opposite Boundaries are Influencing Each Other (Loads Method

With the Statically Indeterminate Elements)

B. Case Z

The lengths of the elements are such that the unit influences due to

the unit loading does not depend on unit loading of the opposite edge.

For such a case, the corresponding matrix is shown in Fig. Z.52-7.

i X 1 X 2

1

3

4

X 3 X 4
6

io

6
2O

630

640

FIG. Z. 5Z-7. The Matrix of Unknowns if the Boundary Disturbances at

Opposite Boundaries are not Influencing Each Other (Loads Method

With Statically Indeterminate Elements)
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In case Z, the system of four linear equations willbe split into

two independent systems of only two linear equations to make the solution

simpler. Also, us'e of the externally statically indeterminate elements

greatly reduces the number of the statically unknowns, thus making the

solution much simpler.

The method of handling these systems was extensively explained,

in detail in Section Z. 23 of this chapter.

2.52.5 Conclusion

In this section, analysis of a "multishell system" by the set of

linear algebraic equations was shown. This method was explained in

general, since a detailed description was presented in the Introduction

of this chapter.

To simplify the application of the method described, tables are

presented in Subsection Z. 54, containing the formulas for the edge-

deformations due to different 1oadings of primary and secondary nature.

The formulas in this section are shorter and simpler than the general

formulas given in Section 2.30 because they cover the special cases of

loads and displacements at the edge only. Use of these formulas simplifies

the procedure.
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Z.53 DEFLECTION METHOD

2. 53. 1 Introduction

The deflection method is applicable to the solutions of statically

indeterminate structures. To make simple comparisons between the

previous method and this method, the same multishell system will be

used. In general, if the deformations in any section of the shell are

known, the loads at this section are also known.

Z. 53. Z Analysis

Designate the edge rotations with _i and the end horizontal move-

ments with Ar =6Hi. Unknown deformations at any junction of statically

determinate shell elements are shown in Fig. 2.53_1. Note that 6vi

(vertical movements) are negligible at junctions (3) and (4). Also note

that there is 100-percent fixity at support in junction (1); consequently,

all deformations are zero's.

The following deformations are unknown:

Rotations: _2' _3' _4

Horizontal displacements: 52H , 63H , 64H

Vertical displacements: 6
2v

Determination of the unknowns delineated is analogous to the

known "slope deflection" method applicable to the rigid frames.
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THE VALUES _I = 5HI = 6vl = 0.

0

6H4 (6v4 - NEGLIGIBLE)

5H3 (5v3 - NEGLIGIBLE)

5H2, 5v2

FIG. 2.53-1. Multishell With Statically Indeterminate Deformations

First, a 100-percent fixity against rotation and movement of each

element is assumed. This can be determined by the "fixed-end-moments"

and "fixed-end-loads," which are designated by M ° and N °. In reality,
x X

these loads do not exist, and correspondingly, deformations f_i and 6 i

will not be zero, but will be of such an amount to make M ° and N ° zero.
x x

resulting inFor example, junction (Z) will be rotated by some angle f_2'

the following moments at this junction:

6
2H'

(moment MZZ (6ZH) was neglected here,

2-2 to be small).

M21 (_Z),MZZ (_Z),MZ3 (_Z)

Similarly, junction 2 will be moved horizontally by the amour

resulting in the moments

MZ1 (52H)' M23 (SZH)

assuming the curvature of shell
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Also, junction (2) will be moved vertically to the amount 62v,

resulting in the moment M21(62v ).

The adjusted junction (3) will be rotated in a similar manner, and

will influence thejoint (2) by delivering M23 (B3) to it. The joint (3) also

moved horizontally by amount 53H, and again influenced joint (2} by

delivering M23 (53H) to it. However, because of equilibrium which

must be EMzi = 0, this can be expressed algebraically as

M_ = M_ 3 + M_2 + M_ 1

then

M_ + MZl (_2) + MZZ (OZ) + M23 (132)

+ MR3 (133) + MZl (SZH) + MZ3 (6ZH)

+ MZ3 (63H) + MZl (6ZV) = 0

Similar equations can be derived for any junction (i), leading to

as in the previouslythe system of linear albegraic equations. Again,

described methods, two possibilities exist:

1.

Zl

End-deformations of each shell element mutually influence

each other (as was assumed in the example previously

p r e s ented).

End-deformations of each shell element are independent of

each other, and the stresses in the element always will be

the function of only one end-deformation.
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A corresponding matrix is given in Fig. 2. 53-2 for case 1, and

in Fig. 2.53-3 for case 2. Again, it can be noted that in case 2, the

system will be reduced to three simple independent systems, thus

making the solution faster.

1

2

3

4

5

6

7

_4 64H _3 63H _32 52H 62V 6.IO

610

620

6
30

640

&
50

660

670

FIG. 2.53-2. The Matrix of Unknowns if the Boundaries of

Elements Influence Each Other. (Deflections Method)

1

2

3

5

6

7

_4 64H 133 53H _2 62H 52V IO

510

620

530

6
40

6
50

560

670

FIG. 2.53-3. The Matrix of Unknowns if the Boundaries of

Elements are far Enough and Consequently do not Influence

Each Other (Deflections Method)
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Similarly, as before, the use of statically indeterminate elements

will reduce the number of equations and, consequently, simplify the

solution. The tables are given in Section Z. 54.

Z.53.3 Conclusion

In this section, the outline of the special procedure for deter-

mining stresses and deformations in axisymmetrical multishell

structures was presented. It was shown that the suggested procedure

is analogous to the "slope-deflection" procedure usually applicable to

the rigid frames. As soon as the statically indeterminate values are

found, the stresses and deformations in any point of the structure can

be determined in the usual manner.

A set of formulas was assembled by Hampe (Ref. 2-2) for faster

determination of influences at the edges. These formulas are presented

in the table s included in Section Z. 54.
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2.54 TABLES FOR MULTISHELLANALYSIS

Tables 2.54-1 through -12 contain the formulas for the edge-

deformations due to different loadings of primary and secondary nature.

The formulas are shorter and simpler than those given in Section 2.30

because they cover the special cases of loads only at the boundary.

Use of these formulas shortens the calculation. These tables present

formulas for cylinders, cones, and spheres with different boundary

conditions.
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TABLE Z.54-1. CYLINDRICAL SHELL WITH FREE EDGES. EDGE

DISTORTIONS DUE TO PRIMARY LOADINGS (Ref. 2-2)1
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TABLE 2.54-3. CONICAL SHELL WITH FREE EDGES.

DISTORTIONS DUE TO PRIMARY LOADINGS
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TABLE 2. 54-6. SPHERICAL SHELL WITH FREE EDGES.

DISTORTIONS DUE TO PRIMAP_Y LOADING (Re£. Z-Z)

EDGE
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"FABLE Z. 54-9. CYLINDRICAL SHELL WITH ONE EDGE FREE,

OTHER EDGE FIXED. EDGE DISTORTIONS

DUE TO PRIMARY LOADING (Ref. Z-g) l
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TABLE 2..54-10. CYLINDRICAL SHELL WITH ONE BOUNDARY SIMPLY

SUPPORTED OTHER FREE. EDGE INFLUENCE DUE

TO PRIMARY LOADING {Ref. Z-2)I
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1For F and k factors, see paragraph 2.42.8
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TABLE g.54-11. DISTORTIONS DUE TO SECONDARY LOADINGS _Ref. 2-2:_

l)i.1or! .m_
:_h,H (L ,_m, fry and

M M

Shell Loading Condition
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1ForF and k factors, see paragraph 2.42.8
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2.55 SUMMARY

In this section, the two basic methods used to solve multi-

shells were described, and tables were presented for simple and fast

operation. If the matrixes are large, computer programs can be used

to solve the systems of linear algebraic equations. In most cases,

however, the systems can be solved manually by using a slide rule if

certain methods, such as "iteration, " are applied.

Preceding sections have presented methods of analyzing multi-

shells characterized with the axisymmetrical geometry and loading.

By using the extended interaction process (as shown in this section)

many cases can be analyzed with discontinuity in loading (Fig. 2.55-1);

or with discontinuity in wall thickness (Fig. 2.55-2); different com-

binations of shells with other shells, with rings (foundations). or with

plates (Fig. 2.55-3).

FIG, 2.55-I. Discontinuities Due ta the Lo_dl= s
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FIG. 2.55-2. Discontinuities in the Wall Thickness

FIG. 2.55-3. Common Interactions of Shell

(Slab, Ring) Elements

However, to this point, the limitation exists regarding the condi-

tion that the material must be isotropic. In the logical process of gen-

eralization of the method, the next step is to consider the possible

anisotrophy. The shells may be reinforced with the circumferenti21

or longitudinal stiffeners or may be represented by some kind of

sandwich. Such cases will be discussed in the following section.
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Z. 60 COMPOSITE SHELLS

2.61 INTRODUCTION

Up to this point, only homogeneous, isotropic monocoque shells

have been considered.

It is known that certain rearrangements of the material in the

section increase the rigidity and, consequently, less material is needed,

and this effects the efficiency of design. Consequently, in order to

obtain a more efficient and economical structure, the material in the

section should be arranged to make the section most resistant to

certain stresses that are predominant in this section.

Chapter 4.00 deals with the minimum weight design. This

approach will ordy be mentioned here. The minimum weight design should

not be confused with the known economical design of structural

members, which is commonly used for heavy constructions. The latter

method leads to the proper selection of different materials from which

the corresponding section will be made to obtain minimum cost. In

sorn_ cases, the minimum cost design actually corresponds to the mini-

muz_ weight design, but not necessarily, in aerospace structures,

n'1111 lxnun%weight ij usually a governing factor, even if the " " " weight"

structure cost:s more.
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If the section is stressed axially, excluding the stability consid-

erations (Chapter 3.00), the distribution of material does not affect the

stresses if the material is arranged symmetrically with respect to the

center of gravity of the cross-section of the member.

If the structural member is under a bending load, con-

sideration should be given to the material in the two flanges, which will

be stressed approximately axially (one flange stressed in tension, the

other in compression) and will absorb most of the moment. This

arrangement is shown in Fig. 2.61-1. A small amount of material is

/-
Ii

/---

FLANGE

C, G,

WEB

I FLAN  

FIG. 2.61-1.

Concept of I-Beams

used for the ?%veb" which contrib-

utes very littleto the resistance to

the moments; however, it absorbs

most of the shear. The simplifying

scheme of structural action of these

elements is as follows: The

moments are absorbed entirely by

the flanges; the shear is absorbed

entirely by the web. The weight

savings in comparison with the mon-

ocoque section is very signi£ica,xt.
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Based on the principle explained, the stiffened structures were

developed. The philosophy previously described is applied mostly in

stiffened and sandwich constructions.

406



Z.62 STIFFENED SHELLS

2.62. I General

Stiffened shells are commonly used in the aerospace and civil

engineering fields. The shell functions more efficiently if the merid-

ional, circumferential, or a combination of both systems of stiffeners

is used. The meridional stiffeners usually have all the characteristics

of beams and are designed to take the compressional and bending

influences more effectively than the monocoque section. The circum-

ferential stiffeners provide most of the lateral support for the meridional

stiffeners. However, circumferential stiffeners are capable of with-

standing the moments, shears, and axial stresses.

Basically, two approaches are possible. If the stiffeners cover

considerable cross-sectional area and are arranged at a wide spacing,

the whole construction can actually be interpreted as a three-dimensional

frame. The plates between the stiffeners distribute and transfer loadin E

to the frame, which will be analyzed accordingly as a space frame.

This problem is beyond the scope of this manual.

if the stiffeners are located closer together, it appears more

logical to replace the stiffened section with an equivalent monocoque

section with the corresponding ideal modulus of elasticity. Then the

shell can be analyzed as a rnonocoque shell. More details on this
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approach will be given later. The geometry included is for cylindrical,

spherical, and conical shells.

Z. 62.2 Cylindrical Shell

This shell may have longitudinal stiffening, circumferential stif-

fening, or both. Stiffening may be placed on the internal side or the

external side of the surface, or it may be located on both sides. If cut-

outs are needed, they will usually be located between the stiffeners.

2.62.3 Spherical Shell

This shell, if stiffened, will usually be stiffened in both merid-

ional and circumferential directions. The problem may be slightly

more complicated in the meridional direction because, obviously, the

section that corresponds to this direction will decrease in size toward

the apex. This leads to the nonuniform ideal thickness.

2.6Z. 4 Conical Shell

This configuration is structurally between cases 1 and 2.

2.62.5 Approach for AnalTsis

The approach of the analysis is similar for all shells. If only

circumferential stiffening exists, the structure can be cut into simple

elements consisting of cylindrical, conical, or spherical elements and

rings as shown in Fig. 2.62-1 and, considering the primary loading,
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the interaction will be performed as shown in Section 2.50. If only

longitudinal stiffeners are present, interaction of cylindrical panels

with longitudinal beams (stiffeners) will be performed, as shown in

Fig. 2.62-2.

l

.k...=

EJ

SHELL

STIFFENER

(CIRCUM-
FERENTIAL)

i b h,

FIG. 2.62-1. Circumferentially StHfened Shell

FIG. 2.62-2. Longitudinally Stiffened Shell
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If both circumferential and longitudinal stiffeners are present, the

panel will be supported on all four sides, The ratio of circumferential

to longitudinal distances between the stiffeners is very important. These

panels loaded with pressure (external or internal) will transmit the

reactions to the circumferential and the longitudinal stiffeners, It is

significant to note the analogy of the rectangular plate loadings equally

distributed over the plate surface and perpendicular to the middle sur-

face. Plates with the ratio of side equal to one are most effective; they

transmit one half of the load in one direction and the other half in

another direction. If, however, the ratio of sides is equal or greater

than two, for all practical purposes, the whole loading can be considered

to be carried by one shorter direction. The reader is referred to the

Markus (Ref. Z-IO) method for analysis of such plates. Curved panels

react similarly but, due to increased curvature, these panels deviate

more from the plates. The curved span under pressurization usually

deflects less than the noncurved span; consequently, more loading will

be carried by the curved direction. The system of beams (stiffeners}

will be analyzed as a three-dimensional frame. Such analysis belongs

to the theory of frames; consequently, no further discussion on this

subject will be provided here.
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There are no fixed formulas in existence for the case previously

discussed or for stiffened shells in general. As was previously men-

tioned, if the stiffeners are positioned close together, the structure can

be analyzed as a shell (not as a spaceframe). Then the stiffened section,

for the purpose of analysis, should bereplacedwiththe equivalent mono-

coque section, which is characterized with the equivalent modulus of

elasticity. This replacement has to be done for both, meridional and

circumferentialdirection. Both sections will possess idealmonocoque

properties, the same thickness,but dHferent ideal moduli of elasticity.

This leads to the idea of orthotropic material. The concept of

orthotrophy will be studied in detail in a later section, and a proper

analysis procedure will be suggested.

2.62.6 Method of Transformed Section

This approximate method covers all variations of stiffened (and

sandwich) construction, regardless of the kind of elements that make up

the section. This method shows how the combined section can be sub-

stituted with an equivalent monocoque section of the same stiffness.

This idealized section should be determined for the circumferential and

meridional directions of the shell. Then the analyst deals with an

orthotropic, monocoque shell. The analysis of orthotropic shells i8

similar to the analysis of monocoque shells discussed previously, if
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certain corrections are entered into the previous formulas. The

analysis for the shells where the shear distortions cannot be neglected

is more complicated, as will be explained in detail in the following

sections.

Assume a composite section (stiffened, sandwich, or composite)

which consists of different layers of material, as shown in the

Fig. 2.62-3. Each layer, (i),is characterized by a modulus of

FIG. 2.62-3. Original Composite Section

elasticity, Ei, and a cross-sectional area, A.., First select one con-

venient modulus of elasticity, E*, as a basis for the equivalent mon-

ocoque section which will be established. Accordingly, all layers wiU

be modified and reduced to one equivalent material which is character-

izedwithE*. In this manner, the ideal transformed section (Fig. 2.62-4)

is determined. It should be noted that, for the convenience of design,
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the thickness, t i, of individual layers was not changed, but areas A i

become A i. The same modulus of elasticity, E*, now corresponds to

every A* thus making the entire section homogeneous.i'

The necessary computations are presented in Table 2.62-1.

Designations are given on the sketch included in the table.

A *
_,,'l _Az*

tl

.t2

t3

t4

t5

FIG. 2.62-4. Transformed Section

The computations lead to the determination of the moment of

inertia of equlvalent section. The ideal monocoque rectangular section

can be determined as having the same bending resistance as the

original section.

the neutral axis,

For example, H the section is symmetrical about

the thickness, t, can be found for the new monocoque

rectangular section of the same resistance as follows:

I bt--_-31z:I,; t : z. z9 _-

where b is the selected width of the new section.
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TABLE 2.6Z-I. TRANSFORMED SECTION METHOD

i

|

E

®

®

A i E i

E i

= niA i

!

Yi ^_Yi

i

_A i
I--.2

I* = _A_g 2 + _-_Att t
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Z. 63 SANDWICH SHELLS

Z. 63. 1 Introduction

The basic philosophy which the analyst applies to a sandwich

structure is precisely the same as would apply to any structural element.

This procedure consists of determining a set of design allowables against

which the set of applied loads is compared.

In the analysis, external loads are applied to a configuration and

a set of internal loads is computed. These loads apply to the internal

substructural elements such as columns, plates, shells, tension

elements, etc. The precise computation of internal loads will not be

considered herein except to mention that additional complication might

be introduced by the use of sandwich because of the additional lag in the

distribution of load between facings caused by the relatively low shear

modulus of the core.

2.63. Z Modes of Failure of Sandwich Element8

Generally, two types of allowable data exists. The first type is

determined by simple material tests and is associated with material

more than with geometry; the second type is dependent on the geometry

of the element. H, in a sandwich construction, the materials of con-

struction are considered to be the core, the _acings, and the bonding

media, the basic material properties would be associated with tho
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properties of these three independent elements. Table Z.63-1 presents

a list of some of the important structural material properties of these

three materials.

TABLE Z.63-1. BASIC PROPERTIES OF SANDWICH MATERIALS

FA CINGS
i

Compressive yield strength

Tensile yield strength

Tensile ultimate strength

Shear yield strength

Shear ultimate strength

Modulus of elasticity

Pois son's ratio

CORE

Shear strength

Shear modulus

Flatwise compressive strength

Flat-wise compressive modulus

Flatwise tensile strength

Flatwise tensile modulus

]Bending rigidity (if present)

BOND MEDIA

Shear strength

Shear rnodulul

Tensile strength

Peel strength
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In general, there are properties which are unaffected by the con-

figuration of the sandwich element as a whole, but are present regard-

less of the configuration. If the yield strength of the skins is exceeded,

yielding will take place regardless of whether the sandwich is in the

configuration of a flat plate, a colurnn, or a cylinder. Similarly, the

core shear strength is independent of geometry, etc.

The second class of allowable data is those which are

dependent on configuration as well as the basic properties of the facings,

core, and bond media. This class of failure modes may be further

subdivided into modes of failure that include the entire configuration,

and those that are localized to a portion of the structure but stilllimit

the overall load-carrying capacity.

The most important local modes of failure are dimpling, wrinkling,

and crimping. These modes of failure are dependent on the local

geometry and on the basic properties of the materials of the sandwich.

The general modes of failure generall 7 are associated with the buckling
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strength of sandwich structural elements. Excessive deflections or

flexibility of the element might govern for specific designs, but these

factors are generally specific for a particular application. This factor

will be discussed in Chapter 3.00.

Another local mode of failure which may occur is associated

with failure at local details such as edge members and close-outs

or at points of introduction of concentrated loads. Unfortunately,

exact analysis of all these many types of _foreign _' elements that must

be introduced into the sandwich by the design requirements is seldom

possible. As a consequence, the analyst must either determine the

allowables experimentally or must make simplifying conservative

analytical approximations.

The comparison between the allowable and the applied loads is a

basic function of the analyst. The importance of this comparison

cannot be overemphasized. In order to be able to apply sandwich con-

struction on a logical basis, it is imperative that the modes of failure

be identified and analyzed. Then the applied stresses (or loads) can be

compared with the allowable stresses (or loads) and a margin (or factor)

of safety can be computed.

2.63.3 Structural Function of Sandwich

Basically, many of the structural reasons for the use of sandwich

construction are related to attempts at achieving a high bending rigidity-
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to-weight ratio. From a structural standpoint, the minimum weight

arrangement of material in a bending or compression element would be

two membranes separated by nothing, this nothing being capable of

transferring shear between the membranes and allowing the membranes

to bend about a common neutral axis. Although this Utopia has not been

reached, attempts have been made to come as close as possible. In a

beam, the I-beam is a good example in which the engineer attempts to

place as much material as far away as possible from the neutral axis.

The weight of the web member is reduced further in a tension field beam

in which the web may buckle (Ref. 2-14).

In a surface application, the structure analogous to the I-beam

is the sandwich. In the case of the sandwich, we replace the Utopian

nothing with a core and bond media. It should be pointed out that the

minimum weight tension element is composed of the highest strength-to-

weight material available and is independent of the cross-section shape.

As a consequence, sandwich is inefficient as a tension element because

the core and bond may not add materially to the tensile strength. In a

sandwich, then, the facing sheets perform much as membranem

(although the bending rigidity of the facings about their own neutral axis

may become an important factor for some sandwich designs}, and the

core acts principally to transmit shear through the facings, thereby,

allowing the facings to act about a common neutral axis.
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In practice, the achievement of a high bending rigidity is used

structurally in problems in which stability may govern (Chapter 3.00)

or in which stress or deflection limitation may govern. A high bending

rigidity can, of course, be achieved without recourse to sandwich

construction. However, some very simple calculations of the bending

rigidity of a sandwich as contrasted to, for instance, a flat sheet

readily indicate the important weight advantage of the sandwich-type

construction. Conventionally stiffened structures are more competitive

than unstiffened sheet with respect to a weight/strength comparison

with sandwich.

In addition to the structural reasons for the use of sandwich,

there may be a number of other reasons for which sandwich construction

might be used, in spite of the fact that it may weigh more or cost more

than some other configuration. It may be advantageous from a tempera-

ture control standpoint to utilize sandwich. It is obviously advantageous,

in some cases, to use sandwich construction to achieve some particular

architectural effect. It may be also advantageous in some designs to

be able to design into the structure large areas or volumes which are

uninterrupted by support members. Additionally, there is the advan-

tage of being able to design with fewer parts.
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Z. 63.4 Types of Sandwich Cores

As far as the analyst is concerned, the core is a basic material of

the sandwich and is treated as a material. It has a shear strength, a

shear modulus, a flatwise tensile and compressive strength and modulus,

and it may have some bending strength.

Cores may be classified either by their properties or by their

geometrical configuration. Analytically, cores are generally categor-

ized by their properties in the xz and yz planes. Cores in which the

properties on these two planes are equal are termed isotropic cores,

whereas those with different properties in the two planes are termed

orthotropic cores. Cores may be orthotropic with respect to bending

and/or shear rigidity and strength parameters. The foam-type cores

generally are isotropic,

erties in the third plane,

at least in the xz and yz planes. (The prop-

xy plane, may be different. ) The honeycomb-

type cellular cores are generally nearly isotropic with respect to shear

(about 3-to-I ratio maximum) although there are some configurations in

which efforts are made to increase properties in one of the two planes.

The corrugated cores are highly orthotropic, having orthotropic prop-

erties both with respect to strength, bending rigidity, and shear rigidity.

Practically speaking, there are three types of cores which are

commercially available. There are the solid cores, the cellular cores,
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and the corrugated cores. Solid cores are typified by the balsa wood or

plywood cores in which the core can be used by itself as a structural

member. Such cores generally have bending and shear rigidities and

strengths in three planes. Consequently, the properties of the resulting

sandwich may be greater with the same facing sheets than one in which

one of the cellular cores is used.

Actually, there are two types of cellular cores. The first type

consists of materials like cellular cellulose acetate in which a mass of

bubbles has been solidified, these cores, of course, were widely used

in the inception of the very low density core materials. The more

recently developed cellular core is the honeycomb-type core. In this

material, the core has a regular geometrical pattern which, in the

case of at least one common product, has the appearance of the cross-

section of a beehive. Actually, any geometrical pattern of closed cells

with the axis of the cell perpendicular to the surface could be considered

of this type. There are a multitude of such cores, each with somewhat

different properties. It is pointed out that when the core has bending

rigidity in either plane, it accepts bending loads and stresses and must

be checked to determine allowable bending stresses. This is especially

true when different facing and core materials are used.
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The corrugated cores are orthotropic, both with respect to bending

and to shear properties. Both the bending and the shear properties of

the corrugated core are many times greater in the plane parallel to the

axis of the corrugations than in the plane perpendicular to the corruga-

tions. As a consequence, different analyses are generally required for

the corrugated core sandwiches than for the cellular core sandwich.

The most important thing to remember about cores in design of

sandwich is that, analytically, they have basic properties similar to

those of the facing sheets. Some of these properties are included in the

basic analytical parameters of the entire sandwich and govern the behavior

of the resulting sandwich in stability, stress, and deflection applications.

Z. 63.5 Design Requirements for Inspection and Structural Test

One of the easily overlooked, but important aspects of a sandwich

design is a requirement for inspection of the completed production parts

and for structural testtoverify design and analysis assumptions.

Unfortunately, all is not known about the local modes of failure and

detail analysis of local inserts, edge members, closeouts, etc. As

has been indicated, the best the analyst can do is work with experi-

mental data which give some of the basic allowables. In the case of

wrinldlng, for instancej neither theory nor test has yet yielded a

reliable method of analysis. As a consequence, for structures in which
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the design margins are low, the analyst should request a structural

test. Although the structural test may not be of any significance for the

overall stability or deflection analysis, it may uncover difficulties in

local detail.

The acceptance of a structural part is somewhat difficult in a

sandwich structure. Only recently have electronic and x-ray techniques

become reasonably reliable. The analyst should play a contributing role

in a decision as to the type of acceptance test because he is versed in the

areas which are critical from the analysis standpoint.

2.63.6 Analysis of Sandwich Shells

The similarity between the sandwich and stiff .xed shells was

mentioned previously. The analysis of most instability (general and

local) is presented in Chapter 3.00 of this manual. Here the general

design of sandwich shells under pure static conditions will be presented.

Two fundamental cases will be recognized:

I. Shear deformations can be neglected. In may cases, shear

deformations may be neglected if deformations appear to be

extensive, and the core cannot take the shear. In such a case

the core must be substituted with another core which is

heavier, stronger, and correspondingly wiU be sufficient to

resist extensive shear stresses. In this case, however, the
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deformation of such a core will be usually small and not

entered into the analysis.

Shear deformations are extensive; however, shear can be

taken by the core. The shear deformations must be con-

sidered in the analysis. The primary analytical difference

between the behavior of a sandwich element and a homogeneous

isotropic element is the necessity of accounting for the shear

deformation. No new basic theories are required for the

analysis of sandwich structural elements, only the application

of established theory. Once the shear deformation is

properly included in the analysis, the analysis is complete.

Z. 63.7 Conclusion

Section 2.63 basically was taken without change from Ref. Z-If.

In this section, the physical concepts of sandwich were reviewed and

difficulties that are connected with the exact analysis of sandwich shells

were listed. Although, any analysis still is only an approximation.

Assuming the readerls familiarity with the basic sandwich concepts,

the following sections will continue to put forth the theory for the

approximate sandwich analysis. The first most logical approximation

would be to replace actual sandwich with orthotropic material. The

concepts of orthotropy actually may cover not only large family of
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sandwiches but also other materials, such as stiffened shells (if

stiffeners are very closely spaced), corrugated shellsp etc.

To give a systematical description of orthotropic analysis°

attention will again be directed to the mathematical structure of the

analytical formulas for the monocoque shells presented previously in

this manual. This will make clear what kind of modifications can be

made° in order to apply the same formulas (that were derived for

monocoque material) to the orthotropic shells.
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Z. 64 ORTHOTROPIC SHELI_

2.64. I Introduction

A material is orthotropic if the characteristics of the materials

are not the same in two mutually orthogonal directions (two dimensional

space). Such material has different values for E, G, and _ for each

direction. The Poisson ratio _ also may be different in the case of

bending and axial stresses. In the majority of cases this difference is

negligible but in order to distinguish one from another _' will be desig-

nated for the Poisson ratlo which corresponds to the bending, and _ for

axial stresses. The behavior of the shell under loading is a function of

certain constants that depend on the previously mentioned material

constants and geometry. The special case of orthotrophy is isotrophy

(the material characteristics in both directions of two dimensional space

are the same). In order to see the dependence of stresses and deforma-

tions in shells from previously mentioned constants, a short review of

isotropic concepts of shells is provided. These constants are desig-

nated with strain and bending rlgldities.

Z. 64. Z Extensional and Bendin_ Rigidities in Shells Theory (Ref. _- 15)

In the past only isotropic rnonocoque shells were considered, and

numerous formulas were presented. For isotropic shells the following

definitions hold.
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Strain rigidity

Et
B -

Z

Bending rigidity

Et 3
n __

iz (l - z)

B and D have appeared in many previous formulas.

The following characteristic stress-formulas apply for rotationally

symmetric thin shells.

N¢ --B (E¢ + p.ie)

N¢ = B (E8 + I_,¢)

The bending loads are

= _ +p cot

M e = D cos¢ +_1%¢

The final stresses can be obtained as follows:

;¢: _ +-5-
I-F

(z.64-I)
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For monocoque section of rectangular shape

N 0 M 0

t

12

m

12

(Z. 64-2)

The physical meaning of D and B is obvious if Eqs. (2.64-I) and

(Z. 64-Z) are compared.

The componental stresses due to membrane forces are

EN¢ E I- 2 N¢ N 0

lV#- (i- _ B I - _2) 2 N¢ Et 1 • t A

2 N 0 N 0ENo E I- _ _

I¢0 - - 2 ' NQ Et - 1 • t
(l- z)B l-

where

A=Ixt

It is convenient to chose the width of the section strip that is equal to unity.

The componental stresses due to bending:

Mcz Z Moz E 1Z(1- Z) 12 M_z MCz
2 t 3 I2_0 D I- _ 11- }Z) Zt 3 1 x

M0z E E 12(I- 2)_ 12M0z M#Z

2 _0 = D I- }A2 = M0z t3 t3 I(I - 2) E I x

where
I xt 3

I=
12
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Evidently, if stiffened or sandwich shell is being dealt with, a modified

B and D shall be used in the equations, then all previously derived

equations for monocoque shells may be used for stiffened and sandwich

shells. If the values from the '*transformed section" are used, then

A'E*
B- ; D-

2
l-t,

I* E*

2
I-_

In the preceding formulas _t = _ is assumed.

2.64.30rthotropic Characteristics

Now the orthotropy is defined if, for two mutual orthogonal main

directions, I and 2, the following constants are known or determined:

Dl' Bl' _ l' _ 1 and shear rigidity DQI

D2' B2' _ 2' _ 2 and shear rigidity DQ2

In order to use the previously given formulas (for the isotropic

case) for the analysis of the orthotropic structures, the formulas must

be modified. For this purpose, a systematical modification of the

primary and secondary solutions will be provided in the following sec-

tion in order to make possible the use of the unit edge loading method

for the orthotropic case. In the analysis of monocoque shells, the

shear distortions usually are neglected. With sandwich, in most cases,

such neglect_is justified. The previously collected formulas for the

isotropic case do not include the shear distortion. Consequently,

430



orthotropic analyses which neglect the shear distortions will be

examined first. Later, additional study will be presented, which con-

siders the distortions due to the shear.

2.64.4 Orthotropic Analysis, If Shear Distortions are Neglected

A. Primary Solutions

It was previously stated that in most cases, the primary solutions

are membrane-solutions. For the purpose of interaction, the following

set of values is needed (considering axisymmetrically loaded shells of

revolution).

N O - membrane load in circumferential direction

N# - membrane load in meridianal direction

u - displacement in the direction of tangent to the meridian

w - displacenlent in the direction of the normal-to-the-middle

surface.

Actually, having u and w, any componential displacements can be

obtained from the pure geometric relations if only the axisymmetrical

cases are considered. Consequently, for this purpose, it will be

adequate to investigate u and w.

To determine N o and N# all formulas that were presented for the

isotropic case can be used, because the membrane is a staticaUy

determinate system and does not depend on the material properties.
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When N@ and N¢ are obtained, u and w can be obtained in the

following manner. (See Ref. Z-15.)

First determine the strains components _¢ and (g For the

isotropic case, the correspondent formulas are

1

- Et "_N(_- FN01"

I

Et (No " FN(_)

For the orthotropic case the same formulas may be written

1

'# = B_(l - M#M0 ) (N# - MoN0)

1

'0 = B 0(I - M@M_) (No - F_N_)

t 2

Note: D = B_-

Displacement can now be obtained from the following differential

equation:

dl/

- ucot# = R Id--¢ _¢ - R2, 0
f(¢)

The solution of the above equation is

/ f f(,) \
Y
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where C is the constant of integration to be determined fromthe condi-

Then, the displacement w is obtained from thetion at the support.

following equation:

U W
c - cot ¢ -

e R Z R Z

Consequently, for every symmetrically loaded shell of revolution the

stresses and deformations are determined for the orthotropic case.

B. Secondary Solutions (Ref. Z-15)

To obtain the secondary solutions, the formulas that were derived

for the isotropic case can be used and then, using the substitution of

proper constants, they can be transformed into formulas for the

orthotropic case. Genera/ly, due to any edge disturbance (unit loading}

the formulas give direct solutions for

N{6, N@, M%, M@, Q, _, Ar

in the form of

Solution = (Edge disturbance)x (Function of Significant Constant)

x (Function of Geometry)

The most important geometries of the orthotropic shells are spherical,

conical and cylindrical. Any other geometry in the majority of the cases

can be appruximated with these three types, as was shown in Section2.34.

The significant constants which appear in Section 2.33 are

k, _, A, B and D
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These constants, in order to transform the "isotropic" formulas into

"orthotropic, " should be modified, as will be shown in the following

discussion, except for those modifications that are self evident.

Spherical Shell (See Fi G. Z. 64-1). The discussion here makes

reference to the analysis for the isotropic case. To make the trans-

formation into the orthotropic case factor

k4
3(1 - _ I_)

Z) Z

will be replaced with the similar factor where the orthotropy

k4 = 3(1 - _l_Z)I--Rtt)2

is considered. Then, to make the discussion shorter, for both unit

edge loadings, M and H, the corn-

blued formulas obtained are

_ -k_ .sin (k(_+t N¢ =-cot(el alCle C z)

M=I N e k_-2Cle -kasin (ke+ C 2 - __
H-l 4

0¢ - N¢/cot*

FIG. 2.64-I. Spherical Shell

Loaded With Unit Edge

Loadings
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where C 1 and C 2 are the constants. These constants are different for

unit moment and unit shear loadings:

M0 - R C1 e'ka sin(ka + CZ + 4)
kq-Z

M 0 = _ oMO

Displacements are given by the following formulas:

R sin(Ol- a)k _-Z Cle-kasin (ka +C 2 4)Ar - Et

IZR sin($1 - a)k Q-ZCI e'ka

D0 (1- }_ }_) t 7

sin (ko+ CZ- ¼)

2 k z -ka
_- Ce

Et l COS (ka + CZ)

24 k2

tZDo(1-_'I_' z)

-ka

C 1 e cos(ka + CZ)

(a) Special Case, M = 1 all around. Then,

C I = ZkM/R ; C z = 0
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The correspondent deformations at the edge are

4 k 3 M 48 k 3 M

! !

ERt tZRD_(1_ }_1}_ 2 )

Ar -

2k2sin _i 24k 2 sin_ 1
M= M

I !

Et t 2D_(1 - _l_Z)

To obtain N_, N 0, Q{_, M_, M 0 enter C I and C 2 into general formulas

that were presented before.

(b) Special Case H = 1 all around the edge. Then,

2 Hsin_
1 lr

C I - ; C z =. _-
.,/-2

The correspondent deformations at the edge are

2 k 2 sin_l 24k 2 sin_l
_= H=

Et t 2 , !
D¢(I - _ 1F2)

H

2 Rksin 2 ¢1 -24Rk sin 2 ¢1
Ar-- H-

I !

Et t2 D¢(I. _ 11_2)

H

To obtain N¢, N e, Q¢, M_, M_ enter C 1 and C 2 in the preceding

general formulas. Table 2.64- i presents a modification of Table 2.33-2

in above-described manner. Similar modifications may be obtained

for the formulas presented in Tables 2.33-3 through 2.33-7.

436



Z
0
lll-I

0

0
Z

lzl

0
,-I

lzl

Illl

!

0

0

0

I

<I

Ill

.Q.

_l'-_ .-_
÷

..tI 0
U

, _,

_1 _ o
o ,_ .Q-

e.

I

.e

t
o

ZlL

÷

a

0

II

_l jiI

Io N
U _

I_ 0 0 o

I

0

0

÷

v

_:'T'_ ._÷

"I .is

, , ,,_ _I-_ _ , iZ i_

I M
i

-"e"

I

e_

U

437



Conical Shell. In the same manner the formulas previously given

for the isotropic case of conical geometry may be modified to be useful

for the orthotropic case. The following constants shall replace those

previously given. (See Paragraph Z. 3Z.5.)

Et 3
D= ==}D

IZ(l- 2) x

E t 3
X

( "1lZ 1 - _x_. 0

k= _/3(l- z)

tx cot @ /tx cot ¢_rn o %/ In o

Then the previously given formulas can be used.

It shall be noted, that since the formulas presented before,

came from different sources, in Table Z. 33-8, instead of k as shown

above, includes k as follows:

k = R 4f3 (1 - z}

_-t sin

! !

The modification in this case is the same (_2 is replaced with _x_0 ).

In this way, all formulas given in Tables 2.33-8 through 2.33- I0 can

be modified to be useful for the orthotropic case. Tables 2.64-2 and

2.64-3 are such modifications of Table 2.33-9.
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Cylindrical Shell. All formulas given in Tables 2.33-11 and

2.33- 12 and Tables 2.33- 14 through 2.33- 17 can be modified if the

following replacement is made:

k _ L 4V/3( I _ 2) @ L -I_,I•

E t3 E t3
D--

2) (1 ' ')12(1 - _ 12 - }_1_2

! !Et )

t 2

D= B l-_

Table 2.64-4 is a correspondent modification of that previously given

for the orthotropic case Table 2.33-11.
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2.64.50rthotropic Analysis, If Shear Distortions are Included

For this more complicated case, the solution may be found

in Ref. 2-12, which was considered as the basis for the

Cylinders and spheres only areParagraphs 2.64. 5 and 2.64.6.

considered herein.

A. Cylindrical Shell

In the case of a cylinder constructed from a sandwich with a

r'elatively low traverse shear rigidity, the shear distortion may not

be negligible; therefore, an analysis is presented which includes shear

distortion for a symmetrically loaded orthotropic sandwich cylinder.

The following nomenclature is used:

DQ x

D ,

X

Bx, By

Q
X

D = Beam flexural stiffnesses per inch of width of ortho-
Y

tropic shell in axial and circumferential directions,

respectively, in-lb.

= Shear stiffness in xz plane per inch of width, Ib/in.

= Extensional stiffnesses of orthotropic shell in axial

and circumferential directions, respectively, Ib/in.

G = Core shear modulus in x z plane, psi.
C

M = Moment acting in the x direction, in-lb/in.
X

= Transverse shear force acting in xz plane, Ib/in.
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_'X j _y =

! !

X' _y =

Poisson's ratio associated with bending in x and y

directions, respectively.

Poisson's ratio associated with extension in x and y

directions, respectively.

The derived solutions are tabulated in Tables 2.64-5 and 2.64-6.

B. Half-Spheres

Based on Beckler's assumption for the half-sphere, allformulas

derived for cylinders can be adapted for the spherical shell, too.
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2.64.6 Influence of Axial Forces on Bending in Cylinder

Usually it is assumed that the contribution of the axial force N O to

the bending deflection is negligible; however, for a cylinder with a

relatively large radius, the axial force may significantly contribute

to the bending deflection. Therefore, the preceding analysis was

e.xtended by the same author (Ref. 2-12) to include the effect of the

axial force on the deflections. This leads to the modification of the

formulas (Tables 2.64-5 and 2.64-6) in the manner as shown in

Table 2.64-7. The constants are slightly modified:

2
=

By + I - _x}*y ]DQx--R2 D_ No

[ No]41+ --

DQ x

_4 =

B (l-
Y

r

4 D R 2 [1
X t

+__2_ o

DO x

¥

B
2_ y V = 4¥ 4- 4¥ 2a2 + _4

S =($2+ a21112
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TABLE 2.64-7. MODIFICATION OF TABLES 2.64.5 AND-6 TO INCLUDE

THE EFFECTS OF AXIAL FORCES ON BENDING (REF. 6-12)

Formula

8

9

10

11

12

15

18

19

20

21

2Z

Qua ntitie s:

(Formulas in tables 6.64-5 and -6)

(4a 2 - A_)

(.2 . 4o2)

Whole formula

2O2Mo x

Whole formula

V

V

Whole formula

Whole formula

(_2 . X_)

(^z2 - 4az)

Whole formul&

Whole formula

V

V

Whole formula

Whole formula

Substitute

(4N 2 - A_)

(A,z . 4vz)

m2Mo

_-,_v--_ _,,_) co._.,_ (,_÷,_).,o

$

S

-,,.o-(-_o/2vo)(_o_÷_'-,',')
l

i-_l,,,o"('o_/,_)(°'÷_')"

(4vz . X])

(A 2 . 4_y 2)

I
o(..,,-.,,,l+L ,

sin Px - Scos l::J"xl

l

PQo."" I_w = 2VD

S

S

1

(-oj,,o)(o',_')

('_)x_-o-"+-..+°°(,,,,,,,,)
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2. 65 CONCLUSION

In this section the necessary methods and formulas were pre-

sented for the analysis of stiffened and sandwich shells. Such shells

are analyzed in the same manner as the monocoque shells with minor

modifications of previously given formulas, except if shear distortions

must be considered. For this case, the additional formulas are given.

Actually, more often, the stiffened, and sandwich shells must be

analyzed in respect to stability. Chapter 3:00 describes the methods

for the stability analysis of shells. Also in Chapter 3:00 Di, B i, and

_i and _'. values are given for the most common types of sandwichl

section, and this iruformation is useful for stress design also. (See

Section 3.32. )
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Z. 70 UNSYM/VlETRICALLY LOADED SHELLS

2.71

Until now,

to the geometry,

INTRODUCTION

the axisymmetrical cases have been treated in respect

material, and loading. The "unit load method" was

exclusively used for the solution. In Chapter h00, the most commonly

used procedures for solving different shell systems have been dis-

cussed. It was shown that the most complex solutions are applied to

the shells without symmetry, loaded unsyrnmetrically. The first level

of simplification of the complex procedures would be the usage of

axisymmetric shell loaded unsyrnmetrically.

The scope of this manual does not permit presentation of the

actual derivations, but solutions for the most commonly appearing

cases in engineering will be presented in the following tables.

The shells are assumed to be thin enough in order to use the

membrane theory. The following tables of solutions also provide the

necessary information about the loading and geometry.
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2.72 SHELLS OF REVOLUTION

The first level of simplification of the complex procedures would

be axisymmetric shells loaded unsymmetrically. Similarly, syrn-

metrical shells may have unsymmetrical boundaries, which will make

the symmetrical loading not be symmetrical any more.

Table 2.72-I presents some solutions for certain loadings fox"

spherical, conical, and cylindrical shells loaded unsymmetrically.

Table 2.72-2 presents the solutions for spherical shell with non-

symmetrical boundaries.
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2.73

of different beam systems; i. e., cantilever beam, simple beam,

continuous beam. The loadings considered are the dead-weight,

equally distributed loading over the base, end-moments, concentrated

loads, etc. The shells are cylindrical, conical, and curved panels

(circular, elliptical, cycloidal, parabolical, catenary).

SHELLS OF BEAM SYSTEMS

Presented herein are some solutions collected for the thin shells

and

the

2.73. 1 Cantilever Cylir/drical Shell

Tabulated solutions for cantilever cylindrical shells under dif-

ferent loading conditions are presented herein. The only exception is

the shell loaded torsionally {Table 2.73-1. ) which can be regarded as a

cantilever, or simple beam system. The solutions are presented in the

Tables 2.73-1 and 2.73-2.
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TABLE 2.73-2. CYLINDER LOADED BY WIND LOADING (REF. 2-9)

Structural System and Distribution of Stresses (cantilever)

Direction

_____ x x8 Nx u v

Loading: wind pressure p

X = Y = 0; Z =_p cos nS, where n = 0, 1, 2, 3, i D $

Stresses

n _

N 8 = -p R cos nO; N x P L-x) z: Z---R-( cos nO

Nx6= Nex = p n(L-x) sinn8

Deformations

=p x
ELm --_- [n2 (3L z 3Lx +x2) + 6_R2] cos me

Etv = P24R2nx [48 (I + _ RZL- 12 IZ + _ R 2x + nZx (6L2- 4Lx + x2)]

"P [ n2

Et_ p n J= -24R4 + 48(I + ,)RZLx- 12 IZ + _) R2x 2-
24R 2

+n2 (l- nZ)xZ (6L 2- - 4Lx + X2).J sin nO

sin n8
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Z.73.2 Cantilevered Conical Shell

The configuration, geometrical data, and loading are presented ir

Fig. 2.73-1. A set of such thin conical shells was analyzed, and the

corresponded curves, representing the solutions, were obtained.

Solutions are presented in following charts (Figs. 2.73-2 to 10).

The charts should be useful for the following ranges of several

parameters.

LOADING:

FIG. 2.73-I.

30 ° __._<90 •

I.
m

41n. -< t -<Z in.

Structural System and Loading

10 in. < L _< 500 in.

50 in. _< R _< 200in.
rain
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Extrapolation beyond indicated ranges is not recommended. The

results given in the charts are the maximum values at 0 = 0 degrees.

If values at some other circumferential angle are desired, simply

multiply the corresponding chart value by cos 0, where 0 is the angle

of interest.

The following is an example problem:

Suppose one wished to find an approximate value for the maximum

normal deflection of a cantilevered conical shell frustum with

c_= 45 degrees, L = 300 inches, t = I inch, and Rmin = 150 inches.

Suppose the loading is of the type shown in Fig. 2.73-I with p --2 psi

and E = 30 x 106 psi; then°

P - 6.67 x 10 -8 in.
Et

-l

Since the case described does not correspond exactly to any given in

the charts, interpolation will be necessary. The required computations

are summarized in Table 2.73-3, where the approximate maximum

deflection for the example problem is found as 0. 073 inches. Obviously°

a problem requiring fewer interpolations should yield more correct

results.
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TABLE Z.73-3. METHOD OF INTERPOLATION TO SOLVE

EXAMPLE PROBLEM

Case a (deg)

1 30

2 30

3 30

4 30

5 30

6 30

7 30

9

I0

8 60

11

12

13

14

I5

60

6O

60

60

60

6O

45

Rmin (in.)

100

200

150

100

200

150

150

100

200

150

100

200

150

150

150

.... J

L (in.) Wma x Comment

100 1.6 x 10 -2

I00

100

500

500

500

300

100

100

I00

500

500

500

300

300

Read from
Fig. Z. 73-4

3.0 x I0 "2
Read from

Fig. 2.73-4

2.3 x 10 -2 Interpolated from

cases 1 and 2

- 1 Read from
2.2x 10

Fig. 2.73-4

-1 Read from
2.7 x 10 Fig. 2.73-4

-I
2.45 x IC Interpolated from

cases 4 and 5

O. 134 Interpolated from

cases 3 and 6

2.3 x 10 -3

5.7 x 10 -3

4.0 x 10"3

Read from
Fig. 2.73-7

Read from

Fig. 2.73-7

Interpolated from
cases 8 and 9

-2 Read from
1.57 x 10

Fig. Z. 73-7

-2
2.33 x 10

-2
1.95x 10

0.0117

O, 073

Read from

Fig. 2.73-7

interpolated from

cases 11 and 12

Interpolated from

cases 10 and 13

Interpolated from
cases 7 and 14

459



FIG. Z.73-Z. MAXIMUM MERIDIONAL STRESS FOR u = 30"
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FIG. 2.73-3. MAXIMUM CIRCUMFERENTIAL STRESS FOR _ = 30"
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FIG. 2. 73-7. MAXIMUM NORMAL DEFLECTION FOIl _' = 60 e
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FIG. Z.73-8. MAXIMUM MERIDIONAL STRESS FOR u = 90"
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FIG. 2.73-9. MAXIMUM CIRCUMFERENTIAL STRESS FOR a = 90"
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FIG.

10-4
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2.73. 3 Simple and Fixed Beam Cylindrical Shell

Table 2.73-4 presents the solutions for cylindrical shells of a

simple beam and fixed beam system under different loading conditions

(Ref. Z-9).
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2.73.4 Continuous Cylindrical Shell Under Dead Weight (Ref. 2-9}

Fig. 2.73-11 shows the loaded cylindrical shell.

The system is symmetrical and externally statically indeterminate.

For the statically indeterminate value, select the moment X 1 above the

middle support. For solution, combine the case of simple beam

loaded with dead weight (call case 1) and simple beam loaded with the

end moment (call case 2). For reference, see Table 2.73-4.

L

X

ll[l[l]J][l[lllll

L

= L-

FIG. 2.73-11. Continuous Cylindrical Shell Loaded with Dead Weight
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qL L2
For X l = 0 (case I), Etu0 - IZR ( - 6 _ R 2) cos_

i [For X 1 = +I (case 2), Etu I - L 2
3R 2 _L

where u is deflection,

Because of symmetry at x = 0,

u = u 0 + X l u I = 0

it follows

+ 6(I + _)R 2] cos

Con se quently,

X 1 -
u0 _ qRvL 2 L 2 - 6_R 2

u I 4 L 2 + 6 (I + _) R 2

If p = q 2_R = weight for I foot of cylinder is introduced and }_ = 0,

finally,

pL z 1

Xl = 8 1 + 6 (R/L)2

for

L z

R/L -- 0 ... x I = - p--_-

and for

R/L -- m... X =0
l
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The null-point of shear corresponds to

L 5L 2 + 6 (4 + 3 f_)R 2

x°=8 L z +6(1 +_)R z

For the longitudinal stress, N x will be the null-point located at

L L 2 - 6 _. R 2

xl =4- L z +6(I +_)R z

Other continuous systems under different loading conditions can be

solved in a similar manner.
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2.73.5 Curved Panels (Barrel Vaultsl

This paragraph presents the collection of different solutions for

curved panels of simple beam system. The geometry of curved panels

is circular, elliptical, cycloidal, parabolical, catenary, and special

shape. The solutions for different loadings are tabulated in Tables

2.73-5 to -7. The shells under consideration are thin, and linear

theory was the basis for the derived formulas.
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2.74 SUMMARY

This section primarily presented the individual solutions for

different type of unsymmetrically loaded shells or shells with nonsym-

metrical geometry. This section has a secondary significance because

Chapter 2.00 mainly deals with the axisymrnetrical shells of revolution

located axisymmetrically. Since there were few solutions for unsym-

metrical cases, it was reasonable to include them in this chapter.
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2.80 MARGIN OF SAFETY

2.81 GENERAL

Methods have been shown to determine the state of stresses and

deformations in different kind of shells; however, this is not the final

step in shell design. It must be proven that the determined stresses

and deformations can be withstood by the material from which shell is

made. The following definitions are common in engineering:

Failing stress

Limit stress

Limit load {or applied load)

= stress under which failure occurs

(rupture, buckle)

= stress due to the limit load (also called

actual stress)

= load which has to be taken by

structure

Ultimate stress = limit stress x factor of safety

failing stress

ultimate stress
-1

_ failin$ stress

limit stress x factor of safety

a11owable stress
= -I

calculated stress

Margin of safety =

-1
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The material will fail if a certain combination of stresses reaches

a certain level, which is called failing stress. The uniaxial failing stress

is usually known for materials, h/iultiaxial failing stress cannot be

determined in general at the present time because of technical difficulties.

This program will be discussed later in this section. Analysis of shells

is usually restricted to the elastic range or in a range where the stresses

can be assumed to be elastic.
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Z.82 DEFINITIONS

In the uniaxial case, "_he allowable stress is the limiting stress.

such that the maximum actual stress _ max _< _ allow. Instead of using

allowable stress, in n_any instances, the analyst is operating with the

margin of safety, which is related to the allowable stress as was shown

above. When the allowable stress is established, the margin of safety

has to be larger or equal to zero. If the margin of safety is negative,

the con.figuration must be revised in order not to exceed prescribed limit,

unless there is additional justification.

defined as

where

The allowable stress is

_# for ductile materials

a::_:: for brittle materials

the stress which corresponds to the elastic limit of

materials of plastic characteristics. However, depending

on requirements and specifications which are usually

different for various designs, the definition of • • may be

modified and designated as the stress at which the plastic

deformations (that do not disappear after deloading) reach
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O--'_* =

n

Similarly,

where Tma.x

some amount, which is satisfactory to the design require-

ments in first time of loading, (i. e., O. 001 to O. OOBpercent).

the stress which corresponds to the fictitious elastic limit

of materials of brittle characteristics. Such materials

usually have no elastic limit; consequently, when the ficticious

elastic limit is introduced, the remaining deformation will

not exceed 2 percent, or thereabouts.

: safety factor, which can be also designated with F.S.

allowable shear stress 1- allow _- T max is introduced,

is the largest shear stress. As before,

T a =-_llow n

where T is an artificial value accepted in the correspondence with the

used material and design (Ref. 2-18).

Determination of allowable stresses or margins of safety does not

present any difficulty for the uniaxial case, as was evident from the

above discussion. It is wrong, however, to compare the stresses for

multiaxial case against uniaxial allowables. If such a comparison is

made, then not the stresses, but certain combinations of such may be

compared with the uniaxial tensional allowables, as will be shown in

the following paragraph.
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2.83 THREE-DIMENSIONAL FIELD OF STRESSES

Considerable difficulty exists if the stress is not uniaxial,

because then it is not clear what shall be used for allowable stresses.

Consequently, the equivalency of multiaxial with the uniaxial state of

stresses must be established so that the allowable uniaxial tensile

stress can be used. Several existing theories attempted to relate the

multiaxial and uniaxial stresses, but only theories that are justified

by test can be considered.

2.83. 1 Maximum Stress Theory

According to this theory, the two state of stresses are considered

equivalent if their principal stresses are equal. Consequently, if

uniaxial principal stress of system (a) is _' and principal stress of

multiaxial stress system (b) is _1' for equivalency mustbe_' = _1" Then

_1 - _allow, where _allow is the allowable stress for uniaxial system (a).

Z.83.2 Maximum Strain Theory (Mariotte)

According to this theory, two states of stress are equivalent if

their maximum linear strains are equal:

!
{ = {

max max .

For an uniaxial system, assume

!

I
E

max E

487



For a multistress system,

,{ - IT

max E I

Cons equently,

I " _ ( _2 + _3 ) -< _allow
for uniaxial case.

2. 83.3 Maximum Shear Theory (Kulon)

According to this theory, two states of stress (a) and (b) are

equivalent if their maximum shear stresses are equal:

I IIT --- r

max max

Since

O" - (T
1 3

T

max 2 '

for uniaxial

then

Consequently,

!

, o"I
T =

max Z

!

_r = _r - or

1 1 3

- -< v (for uniaxial case)1 _ 3 allow
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2.83.4 Maximum Strain Energy Theory (Beltrami)

According to this theory, two states of stress are equivalent if

the strain energies are equal: U' = U.

U'
I

= (_ I)ZlZE

for the uniaxial case.

U - ZE 1 + _Z + u3 " 3_(_l_Z + _Z_3 + u3 _I )

for the multistress field. Consequently,

2 2 2_I + °2 + _3 2_(_l_Z + _Z_3 - _3 _I) -< _allow (for uniaxial

stress field)

where Ul, ¢Z, and _3 are principal stresses.

Unfortunately, the experimental data do not agree with this theory.

Consequently, Huber suggested this correction: two states of stresses

are equivalent if the distortion energies are equal. After similar

reasoning, this leads to the following criterion:

_ 2 2 2 - •_I + _Z + _3 - _ _ -_212 3 3 1 -<Callow

or

_Z (_I - _Z )2 + (_Z " u3 )2 + (_3 - _I )2

where Ul, uZ, andu 3 are principal stresses.

_<o"allow.

This theory holds for the ductile materials only, as will be shown later.
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2.83.5 Mohr's Theory

Where all previously mentioned theories may be useful for the

ductile materials. Mohr provided a suitable theory for brittle materials.

According to Mohr_s assumption, different states of stress are equivalent

if all correspondent Mohrls circles have the same envelope, as shown

in Fig. 2. 80-I. Only two main stresses are considered. Disregard

of the third main stress introduces only a negligible difference.

If the allowable stress for uniaxia.1 compression and tension is known,

two Mohr circles can be drawn as shown in Fig. Z. 80-2. The first two

circles in Fig. 2.80-2 represent reduced Mohr clrcles corresponding

to the safety factor of limiting compressional and tensional stresses.

Consequently, the third circle also represents the same for the

bi axial stress. This leads to the following criteria:

all °'t

all _c

For the ductile materials,

all _rt

all _c

- m; _l " m _ < _r t3 a11

usually

- I; arI - _3 <_- allow. (for uniaxial case)
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_-- ENVELOPE

_i _ DEGENERATIVE CIRCLE

FIG, Z. 80-I. Different States of Stress at the Same Point,

With the Same Envelope

all _c

T

0"

i

all _t

%

, o"1

FIG, Z, 80-2. Three Mohr Circles With the Mutual Tangent
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2.84 CONDITIONS OF PLASTICITY (HENCKY--VON M/SES, AND TRESCA)

Recently, the third and fourth theory found extensions in connec-

tion with the theory of plasticity. According to the assumption of Hencky

and yon Mises, the material stressed with three-dimensional field

stresses behaves elastically ifthe intensity of stresses does not

exceed the elastic limit for uniaxial stress.

the theory of change of geometry),

_Z_I " _Z)2+ (_Z " _

OX"

According to Huber (see

3)z+ (_3 _"_l )z = _S

Q-Z _v 2 2 ZIZ + TZ3 + v31 = _rs

This equation represents ellipsoid if both sides of equation are squared.

If the actual state of principal stresses (_I, _2, _3) is within this

ellipsoid, the material is still in the elastic range.

For two-dimensional state of stresses (assume _3 = 0),

(_I - _2)z + 2 + 2 = 2 22 I _S

This represents an ellipse inclined to 45 degrees to the axis _rI and

_2 as shown in Fig. 2.80-3 and is called the ellipse of Hencky-von Mises,

or yon Mises yield surface.
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/
FIG. 2.80-3. Ellipse of

Hencky-von Mises

)
It is important to note that the inter-

section points of the ellipse with _i and

_z-axis are located from the origin of

coordinates with _S" Every two-

dimensional state of stresses ( _I' _Z )

can be interpreted as a point. If this

is within the area of e11ipse, the state of

stresses is elastic.

According to the assumption of Kulon (See Paragraph Z.83. 3)

and later San-Venant, the plastic stage begins when maximum shear is

equal to some constant value T S. For three-dimensional state of stress,

maximum stress is the largest of the following:

_I - °"2
T = I _ T

IZ 2 23

6Z" _3 _3" 61

Z ' 31 Z

For two-dimensional state of stress (assume 63 = 0) V maximum Will

be the largest of the following values:

%-5 % %
2 ' 2' 2

61 cr2

If 61 and 62 have the same sign, the max'r = --_ or --_-. This

incorresponds to uniaxial tension or compression. Consequently,
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the first or third quadrant of the ellipse,

be represented with two lines:

_1 = ±_S; _2 =

the condition r = T will
rn ax s

i O"

S

In the second and fourth quadrant r
max

- _1 - or2
and the condition

v = v will be represented with the straight lines, that are parallelmax S

to the bisectrix between _I and _r2. These lines can be found in

Fig. Z. 80-3. The hexagon inscribed into yon Mises' ellipse is known as

Tresca yield surface. For the two-dimensional surface,

+ or)r o -_ x x Z

l,Z Z e Z + Tx 7

These approaches help to determine whether or not the certain state

of stresses ( _1, _2) is still in elastic range.

Fig.

_r2 I ALLOWABLE BOUNDARY
(v_ MISES OR TRESCA}

i

o

2.80-4 shows a point (square) representing a (_1' _Z ) stress

FIG 2.80-4. Margin of Safety

r I

condition that is considerably less

than the allowable value. If cr1 and

_2 are known to be proportional, the

true margin of safety is found by

projecting from the original through

the point (_1' _2 ) to intersect the

allowable boundary. Then, in

accordance with Fig. 2.80-4,

6allow
M S. - "K"-- " I_0

(Ref. Z-ZO).

494



2.85

Consequently, assuming 0"Z = 0,

can be simplified as follows:

Maximum Stress Theory

TWO-DIMENSIONAL FIELD OF STRESSES

Shells usually are stressed by two-dimensional fields of stress.

the results of previously listed theories

_1 -< _llow

Maximum Strain Theory _I - _ _3 -<orallow

Maximum Shear Theory

Maximum Strain Energy . / g

Theory Vor 1

orl - =3 -< _llow

Z
+

3 " orl _3-_ Vallow

Mohr' s Theory _1 " m _3 <_ orallow {tens. )

where the principal stresses are:

_z + ory _ )Z Z
= - +4T

_1, 3 Z • orz ory zy

)z z
r = or -or +4T
I, 3 z y zy

With consideration of these two formulas, the previous theories lead

to the following formulas:

Maximum Stress Theory: _z+ °y Z_/( ° )2 2g" + orz or + 4ry zy

Maximum Strain Theory: I-_ +or)+
E (or-. y

)2 2Z " ory zy all.
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M imum Shear ,/
Theory: V( z " ory

_or 2
Maximum Strain 2 + _r
Energy Theory: z y

)2+4v 2 <_Gr
zy all

-4o-
2

or + 3T
Z y zy

dC 0"

all tens

Mohr's Theory:

1 - m

2 (orz + _y )+

l+m _ )2 22 (o- - or +4"r
z y zy

where (ory, o- z, Vzy, "r YZ ) is a two-dimensional field of stress,

to the (z, y) system of coordinates.

_<or
allow

tension.

related
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2.86 COMPARISON OF RESULTS

The results can be easily compared if a one-dimensional element

(bar) will be considered under uniaxial loading or bending. All theories

for the middle of the cross-section (T = 0) leads to the same result:

allow.

However, if the bar is loaded with pure shear (torsional loading), then

= 0. Shear T, however, will differ according to the theory used:

Maximum Stress Theory:

Maximum Strain Theory:

Maximum Shear Theory:

Maximum Strain Energy

Theory:

Mohr' s Theory:

T -- O"allow

1, 3"r < o-
allow

ZT _< _allow

allow

( 1 + m) -r_< O-all_,,

The first two theories do not lead to results that tests can

justify. The third theory leads to the satisfactory result (T = 0. 5Callow).

The fourth theory leads to T = 0. 6Callow, which is excellent according

to the tests. The fifth theory gives the following satisfactory result:

T "-

(allow. vt ) • (allow _rc)

allow cr + allow cr
t c

Consequently, the distortion energy theory is recommended for ductile

materials; and Mohr's theory is recommended for brittle ma_erialso
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2.87 FAILURE

If design is limited by the established allowable stresses (and

corresponding margin of safety), the structure is safe and will not fail.

However, in reality, the structure can be loaded even further beyond

the elastic limit. If this is permitted, it is important to find the

ultimate condition for the multiaxial state of stresses.

The theory of shells as presented in this chapter is based on the

theory of elasticity. Consequently, the stress-strain relation must

be linear, which is what would actually exist if 0-allowabl e is based on

elastic limit.

In some cases, design can be still carried without difficulty in the

plastic range. This is the case of all pressurized membranes. Since the

membrane is a statically determinate system, there are no material

constants involved; consequently, derived theories may still be used.

Otherwise, the stress-strain diagram will be needed for the multiaxial

case to determine what relation between stresses and strains exists.

Numerous tests proved that the stress-strain curves _r'_ E' and

_i_ Ei for uniaxial and multiaxial case are identical in elastic range and
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only slightly different in the plastic range.

is as follows:

a' = uniaxial tensile stress

c' = uniaxial strain in direction of

The meaning of these symbols

_- __1 (o- - o- )Z+(o. o- )z+ (o- _,_ )z+6(.,. z 2+T 2)
°-i ',f'2 V x y y z v,. X yz +T ZX xy

= (c - , +(e - e +(e - c +6(_ + e + c
y x yz zxi x y z z

where ($x' _y' Cz' ryz' Vzx' TXy) iS state of stresses.

(ex, ey, ez, e yz' _zx' e xy) is state of deformations.

Consequently, if the uniaxial stress-strain diagram isknownj

the multiaxial stress-strain diagram is also known. This is correct if t_he

corresponding strain is needed for certain combinations of stresses.

However, this relation is not valid for determination of the ultimate

stress for multiaxial state of stresses.

Certainly on diagram e'-_', the point which corresponds to the

failure can be found. Assume that the failure is occurring at certain

stress _ This does not mean that the same stress willbe stress of
U"

failure for multiaxial case on diagram c.-¢.. For example, assume
I 1

the element which is stressed with the uniform tension in a11three

directions:

o"1 = o"2 = o"3= o"
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v

then

o-. = 0
1

At some level • = _fwill occur failure; however, _ i will remain

zero, and the point of failure on (i_i diagram will correspond to the

origin of system of coordinates.

The problem of determining ultimate stresses in multiaxial case

has not yet been solved(Ref. Z-19).

At present, critical combinations (several) that correspond to

the points of failure (several) can be discussed. The test shows that

the failure predominantly occurs due to normal or tangential stresses.

Further study of plastic range is not covered in this chapter.
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2 88 CONCLUSION

The distortion energy theory (or yon Mises-Tresca method) is

recommended for ductile materials and Mohr's theory for brittle materials.

For ductile materials:

_z 2 2= + _ - v Vy+ 3v < (uniaxial)p y z zy - Vallow

For brittle materials:

l-m Izm_( )2 2°'b - Z (or + ¢r ) + -- (r - cr + 4r
z y z y zy _ _allow (tensile)

Margin of Safety:

where:

allowable stress
M.S. = - Iz0

calculated stress

for ductile materials: _ = Crp,

for brittle materials: _ = _b.

If the ellipse of yon Mises or hexagon of Tresca are to be used, then

the point (_I' ug) must be within the areas limited by ellipse or hexagon.

The corresponding margin of safety will be determined as

described in the Section Z. 84.
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The use of presented theory of thin shells would be incorrect in

plastic range, except for pressurized membranes. If the state of

stress in plastic range is known, the correspondent deformation can be

determined from similarity of cri_i and _''_e' diagrams. At present,

ultimate stresses in multiaxial case cannot be determined.

For more detailed study of this subject Refs. Z-17 to Z-Zl are

recommended.
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2.90 SUMMARY AND CONCLUSION

In this chapter a method was outlined for the analysis of shells and

multishells of revolution exposed to axisyrnmetrical loading, of isotropic

and nonisotropic characteristics. To make the analysis simple for

usage, numerous formulas for stresses and deflections for different

elementary shells subjected to different loadings were collected and

systematically presented in the form of formulas, charts, and tables.

At the end of the chapter the collection of known formulas for other

kinds of shells (nonsymmetrical loading, nonsynmletrical geometry)

was presented. The suggested procedure is generalized and presented

in the form of a flow diagram (Table Z. 90-1) to make the application of

the described procedures as simple as possible. This concludes the

discussion on the statics of shells.
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TABLE Z. 90-1. FLOW DIAGRAM FOR STATIC ANALYSIS OF SHELLS

IfM.S. la r_t lothfoclo_,

I
I) I '+0+,+,,-_-+ m--, I

!

I ,'_qulm,,_._ m per j _-_I SKtI_ 2.00

D-

T

_ ,,_Z)-, m,,I i _

1

504



REFERENCES

2-I.

2-2.

2-5.

2-6.

2-7.

2-8.

2-9.

Novozhilov, V.V. Theory of Thin Shells. (In Russian):

State Federal Publishing of Navy Industry (1962)

Hampe, E. Statik Rotationss_rmmetrischer Flachentragwerke,

(In German) Band 1, 2, 3,

F6ppl, L, and G. Sonntag,

(In German) Munich (1951).

Pflfiger, A., Elementare Schalenstatik,

and 4. Berlin: Bauwesen (1964).

Tafeln und Tabellen Zur Festigkeitlehre,

3 Auflage. (In German)

Be rlin/G6ttingen/Heidelbe rg:

Fltigge, W., Stresses in Shells.

Springer (1960).

Salvadori, M.G.,

of Rotation Built into Cylinders",

Concrete Institute (October 1955).

Worth,

Berlin:

Worch,

Berlin:

Worch,

Berlin:

Springer-Verlag (1960).

Berlin/G6ttingen/Heidelberg:

"Live Load and Temperature Moments in Shell

published by Journal of American

G., "Elastische Schalen", Beton-Kalendar. (In German)

Wilhelm Ernst & Sohn (1941).

G., "Elastische Platten", (In German) Beton-Kalender

Wilhelm Ernst & Sohn (1943).

G.. "Elastische Schalen", {In German) Beton-Kalendar

Wilhelm Ernst h Sohn {1958).

505



Z-10. Marcus, H., Die Theorie Elastischer Gewebe. (In German)

Berlin (1932}.

2-11. Harris, Dr. L.A., and R V. Spencer, "Design and Analysis

of Sandwich Structures" (to be published}.

2-12. Baker, E.H., "Analysis of Symmetrically Loaded Sandwich

Cylinder", published by American Institute of Aeronautics and

Astronautics.

2-13. F6ppl, A.; and L.

German} Munich:

Fbppl, Drang and Zwang, I and II.

R. Oldenburg (1941).

(In

F6ppl, L., Drang und Zwang, III. (In German} Munich:

Leibniz Verlag (1947}.

2-14. Kovalevsk7, L., T Furuike, L.A. Nelson, and F.L. Rish.

"Analysis of Webs of Partial Tension Field Beams Subject to

Lateral Pressure Loadings". Published by NAA, S&LD, 1966

Z-15. Timoshenko, S., Theory of Plates and Shells. New York:

McGraw-Hill (1940}.

2-16. Hill, R., The Mathematical Theory of Plasticity. Oxford:

Clarendon Press (1950}.

2-17. Hodge, P.G., Jr., "The Rigid-l:rlastic Analysis of Symmetrically

Loaded Cylindrical Shells", Journal of Applied Mechaaics,

Vol. 21, (1954), pp. 336-342.

506



2-18. Levshin, V.A., StrenGth of Materials. (In Russian)

ROSTEHIZDAT (1961).

2-19. Iljushin, A.A., and V.S. Lenskij, Strength of Materials.

(In Russian) FIZMATGIZ (1959).

2-20. Shanley, F.R., Strength of Materials. New York: McGraw-

Hill (1957).

2-21. Verette, R., "Elasto-Plastic Analysis of Shells of Revolution",

NAA S&ID STR 150.

507



3.00 PROCEDURES FOR STABILITY ANALYSIS

3. 10 GENERAL

If a shell structure is subjected to a given compressive load and

an infinitesimal increase in the load results in a large change in the

equilibrium configuration of the shell, the applied load is defined as

the buckling load. The change in equilibrium configuration is usually a

large increase in the deflections of the shell, which may or may not be

accompanied by a change in the basic shape of the shell from the pre-

buckled shape. Occasionally, the given definition of buckling is difficult

to apply to an actual structure. The change in the configuration of the

shell may be gradual, and the actual buckling point is rather arbitrary.

However, for most types of shells and loading conditions, the buckling

load is quite pronounced and easy to identify.

The load carrying capability of the shell may or may not decrease

after buckling. This depends on the type of loading, the geometry of the

shell, the stress levels of the buckled shell, etc. Only the buckling

load will be discussed in this chapter because the information available

on collapse loads is quite limited. In general, the buckling load and

collapse load are nearly the same and, if they are different, the defor-

mations prior to collapse are often very large.
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For columns and flat plates, the classical small deflection

theory predicts the buckling load quite well and, in general, the

theoretical buckling load is used as the design allowable buckling load.

Therefore, the structure will usually buckle at approximately the

design buckling load. In general, this method of design analysis can-

not be used for shell structures. The buckling load for some types of

shells and loadings may be much less than the load predicted by classi-

cal small deflection theory and, in addition, the scatter of the test data

may be qufte large. For example, if a set of ten nominally identical

thin-walled cylinders of the same geometry were fabricated from a

particular metal, none of the cylinders would fail at the same axial

compressive load. In fact, the scatter of results may range to 500 per -

cent at a given time, and the average buckling load may be one eighth

of the theoretical buckling load. An explanation for this discrepancy

is presented in Chapter 1.00. When sufficient data exist, a statistical

reduction of the test data may be useful in determining a design allow-

able buckling load. This method has been used to determine most of

the design curves for unstiffened curved panels and cylinders presented

in this chapter. A discussion of the statistical methods used is given

in Refso 3-I and 3-2.
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A best fit curve is determined for a given set of data, and the

standard deviation of the test data is established. Using this informa-

tion and small sample theory, a design curve is obtained at a certain

probability level. The probability level used for the statistical design

allowable curves presented in this chapter is 90 percent; that is, if a

shell is subjected to the design allowable buckling load, the chances are

nine out of ten that the shell will not buckle. The load at which the shell

may be expected to buckle is the load which corresponds to the best fit

curve. Best fit curves have not been presented in this chapter because,

in design analysis, the load at which the shell will not buckle is the

primary interest, and approximately half of the shells would buckle at

loads less than the load corresponding to the best fit curve.

One of the primary shortcomings of this method of obtaining

design curves is that the test specimens and boundary conditions used

to obtain the design curves may not be typical of the particular

structure which the design curves are being used to analysis. However,

until additional information on shell stability is obtained, a

statistical analysis has been used whenever possible to obtain design

curves,

Whenever sufficient data do not exist to obtain a statistical design

allowable buckling load. design recommendations have been made on
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available information. In general, this involved recommending cor-

rection factors to reduce the theoretical buckling loads. Due to the

lack of data for some types of shells and loading as well as the question

of over what range the theory is applicable, the recommendation may be

too conservative for some cases. Further theoretical and experimental

investigations are necessary to justify raising the design curves.

Most analysis procedures presented in this chapter are for shells

with simply supported edges. For most applications, simply supported

edges should be assumed unless test results are obtained which indi-

cate the effects of the actual boundary condition of the design. An

attempt was made to indicate over what range of the parameters

clamped edges give approximately the same buckling load as simply

supported edges. In this chapter, the edge of a shell is assumed to

be simply supported if at the edge the radial and circumlerential

displacements are zero and there is no restraint against translation or

rotation in the axial direction. For damped edges, the rotation of the

edge is zero.

An attempt has been made to simplify the analysis procedure

so that the design a11owable buckling loads may be obtained from hand

computations and graphs. The analyses which have been presented are

sometimes quite long (orthotropic cylinders, for instance) but, in
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general, results can be obtained quickly with a few simple computations.

In many cases more sophisticated approaches are available, but com-

puter programs are necessary to obtain results. It is not in the scope

of this chapter to present an analysts method which requires a computer

solution. The references that discuss the more complicated analysis

procedure should be obtained if a more detailed investigation is

warranted.

As more information on shell buckling becomes available, this

chapter will be revised. However, the analyst should attempt to keep

abreast with changes in the state of the art because significant changes

may result from recent theoretical and experimental investigations.
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3. Z0 UNSTIFFENED SHELLS

3.21 GENERAL

Design allowable buckling stresses for shells have been estab-

lished only for the more common loading and edge support conditions.

The design curves that have been presented in this section for unstif-

fened homogeneous isotropic curved plates and cylinders (Ref. 3-4)

have, in most cases, been obtained statistically from test data. The

method of statistically reducing test data to design information is

discussed briefly in Section 3. I0.

Ref. 3-3 presents a bibliography of the theoretical and experi-

mental investigations available on the general instability of cones. In

general, the design information on unstiffened cones which is presented

in this section uses the equivalent cylinder approach. The buckling

load of the cone is obtained from the buckling stress or ioadof an equi v -

alent cylinder. The definition of the length and radius of the equivalent

cylinders depends on the types of loading. The available test data for

cones verify this method of obtaining design curves.

Design information is also presented in this section for spherical

caps subjected to external pressure. The analysis procedure is

primarily based on test results of shallow spherical caps. Although

a method is presented for analyzing deep spherical caps, more

information is needed in this area.
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3.22 CURVED PANELS

3. 22. 1 Axial Compression, Curved Panels

A. Unpressurized

The design allowable buckling stress for unpressurized curved

panels subjected to axial compression is given by

_cr _ 2 E 2

c lZ(l - Z)

in which b is the width of the panel in the circumferential direction.

Design values of the buckling-stress coefficient K c are given in

Fig. 3.22-1. For simply supported curved panels having a curvature

parameter Z >30 and for fixed-edge curved panels having a Z > 50,

Fig. 3.22-2 may be used instead in Fig. 3.22-1 to compute the critical

stress. The design allowable buckling stress is then given by

¢cr Et

in which design values of C c are given in Fig. 3. 22-2. For elastic

buckling, r I = 1. O. For inelastic buckling, the critical stress, ecr, may

be found by using curves E l in Section 3. 62 on plasticity correction.

Note that the design curves in Fig. 3.22-I or 3.22-2 are valid only

for a/b>0. 5.
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B. Pressurized

The design allowable buckling stress of curved panels under

internal pressure and axial compression may be determined by using

Fig. 3.22-3 in conjunction with Figs. 3.22-I or 3.22-2. A curve is

presented in Fig. 3.22-3 that allows the calculation of the increase in

buckling stress as a function of pressure and geometry only. To cal-

culate the axial-compressive buckling stress of a pressurized curved

panel, the unpressurized critical stress must first be computed from

the design'curves in Fig. 3.72-I or 3. Z2-2. Then, the incremental

buckling stress caused by internal pressure is computed by using

Fig. 3.22-3, and this stress is added to the unpressurizedvalue.

The pressurized curved panel is capable of resisting a total

axial-compressive 1oadwhich is the sum of the unpressurized buckling

load, the incremental buckling load caused by internai pressure, and

an external load sufficient to balance the longitudinal internal-pressure

tensile load in the skin. Note that the design curves in Fig. 3, 22--3

are valid only for a/b > 0. 5. In addition, the curved panels must fall

in the domain defined by the straight-line portion of the design curves

shown in Fig. 3. Z2-I, For inelastic buckling, the critical stress may

be found by using curves E l of Section 3.67. The total stress field

should be considered when the plasticity correction is determined.
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FIG. 3.22-3. INCREASE IN AXIAL-COMPRESSIVE BUCKLING-STRESS

COEFFICIENT OF CURVED PANELS DUE TO

INTERNAL PRESSURE
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3.22. Z Shear, Curved Panels

A. Unpres surized

The design allowable buckling stress for unpressurized,

tangular curved plates subjected to shear is

Vcr . 2E
rl - K

s 12(1 - 2)

in which the buckling-stress coefficient K s

and 3.22-5. For elastic buckling, rl = I.

rec-

is given in Figs. 3.22-4

For inelastic buckling, the

relation between _'cr/rl and Vcr may be determined from the crcr/rl

versus _rcr curves in Section 3.62 on plasticity corrections by using

one of the theories for failure of materials. There is evidence that

the shearing stress at which inelastic action occurs in pure shear in

ductile materials is related to the analogous tensile stress in pure

tension by the equation

1

V xy = 73 Cry

The calculated Tcr/_ may then be converted to the corresponding

arcr/rl by multiplying by ,,/-3; crcr may be read from the Crcr/q versus

Crcr curvet and Crcr may be converted back to Vcr by dividing _J'3. For

curved plates in shear, curve A in Section 3.62 is suggested.
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B. Pressurized

The design allowable buckling shear stress for pressurized curved

panels may be determined by using Fig. 3.22-6 with Fig. 3.22-4 or

3.22-5. The curves in Fig. 3.3-2-6 allow the calculation of the increase

in shear buckling stress as a function of pressure and geometry only.

To calculate the Shear buckling stress of a pressurized curved panel,

two quantities must be computed. The unpressurized buckling stress

must first be computed from the design curves in Fig. 3.22-4 or 3.22_5.

Then, the incremental buckling stress caused by internal pressure is

computed and added to the unpressurized value.

The design curves should be used for the loading condition in

which the axial tensile load caused by internal pressure is not balanced.

For inelastic buckling, the critical stress may be found by the procedure

recommended for unpressurized curved panels subjected to shear. The

total stress field should be considered when the plasticity correction

is determined.
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FIG. 3.ZZ-4. BUCKLING STRESS COEFFICIENT, K s, FOR UNPRESSUR/ZED
CURVED PANELS SUBJECTED TO SHEAR
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FIG. 3.22-5. BUCKLING STRESS COEFFICIENT, K s, FOR UNPR.ESSUR/ZED

CURVED PANELS SUBJECTED TO SHEAR
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3.2Z. 3 Bending;, Curved Panels

Test data are not available on the allowable buckling stress of

curved plates in bending. However, at low values of the curvature

parameter, Z, the buckling coefficient for a long,

approach that for a long, flat plate in bending and,

it should approach that for a long cylinder in bending (Section 3.23).

These extremes are plotted in Fig. 3.22-7 with smooth curves faired

between. The coefficients are to be used with the equation

curved plate should

at high values of Z,

2 E 2

q = Kb 2)12( I -

For elastic buckling, q = 1. For inelastic stresses, use the correction

suggested for curved panels subjected to axial compression.
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FIG. 3. ZZ-7. CRITICAL BUCKLING STRESS COEFFICIENTS FOR
LONG CURVED PANELS SUBJECTED TO BENDING
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3. 22.4 ExternaiPressure, Curved Panels.

There is little information available on the buckling of rectangular

plates with single curvature subjected to external pressure. In thin-

walled cylinders, external lateral pressure causes buckling by pro-

ducing a circumferential compressive stress. It is probable that a

curved panel which is not shallow may be designed by assuming that it

will buckle at a circumferential compressive stress equal to the

critical circumferential stress of a thin-walled cylinder of the same

proportions. The design-allowable buckling pressure for cylinders

subjected to only lateral pressure is given in Section 3. 23. While edge

stiffeners will have generally a stabilizing effect, the panel may be

less stable than a geometrically similar cylinder if the stiffeners are

torsionally weak and the circumferential load in the skin is not applied

to the stiffeners near their shear center.

3. Z2. 5 Combined Loading, Curved Panels

An interaction curve for buckling of rectangular curved plates

underScombined compression and shear is shown in Fig. 3. ZZ-8. _rcr

is found from Paragraph 3.22. l and Vcr from Paragraph 3. ZZ. 2. To

use the curve given in Fig. 3.22-8, a straight line is drawn through the

origin with slope Rs/Rc, and R s or R c is read at the intersection of

this line with the given curve.
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FIG. 3. ZZ-8. BUCKLING STRESS INTERACTION CURVE FOR
RECTANGULAR CURVED PLATES UNDER COMBINED

SHEAR AND COMPRESSION
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3.23 CYLINDERS

3.23. 1 Axial COmpression, Unstiffened Cylinders

A. Unpres surized

The design-allowable buckling stress for a circular cylinder sub-

jected to axial compression is given by

¢rcr Et
rl - C --c R

For simply supported cylinders with the curvature parameter Z>35 and

for clamped-edge cylinders with Z>80 (i.e., in the long-cylinder

domain), the design curve of Fig. 3.23-1 presents the buckling-stress

coefficient, C c, for an unpressurized cylinder in axial compression as a

function of the radius-to-thickness ratio, R/t. For elastic buckling,

rl = 1 is used. In the inelastic range, the critical stress, Grcr, may be

found by using curves E 1 in Section 3.6Z. Verylong cylinders must be

checked for Euler-column buckling.

B. Pressurized

The buckling stress of long cylinders under internal pressure and

axial compression may be determined by using Fig. 3.23-2 in conjunc-

tion with Fig. 3.23-1. Fig. 3.23-Z presents a curve that allows the

calculation of the increase in buckling stress as a function of pressure

and geometry only.
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The design allowable buckling stress is

¢rc___r :
(C + AC c) Etc

where C is obtained from Fig. 3.23-I, and ACc is obtained from
C

Fig. 3.33-2. For inelastic buckling, the critical stress may be found

by using curves E l of Section 3.62. The total stress field should be

considered when determining the plasticity correction. The pressur-

ized cylinder is capable of resisting a total compressive load, P ,
cr

which may be obtained from the equation

P = 2_R_r t + vRZp
cr st

It should be noted that the pressurized design curve in Fig. 3.23-2 is

valid only for long cylinders. Very long cylinders must be checked for

buckling as Euler columns.
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v

3.23.2 Shear of Torsion, Unstiffened Cylinders

A. Unpressurized

The design-allowable shear buckling stress of thin-walled

circular cylinders subjected to torsion is given by

rcr E t
--if-= C s

RZI/4

in which the shear buckling-stress coefficient, C s, is given in

Fig. 3. 23-3 for simply supported and fLxed-edge cylinders with a

curvature parameter Z > 100.

rection term Q -- 1.0 is used.

For elastic buckling, the plasticity cor-

For inelastic buckling, the critical shear

stress, rcr, may be found by the procedure outlined in Paragraph 3.22.2.

B. Pressurized

The shear buckling stress of long thin-walled cylinders subjected

to internal pressure and torsion may be determined by using Fig. 3.23-4

in conjunction with Fig. 3, 23-3. Fig. 3. E3-4 presents curves that allow

the calculation of the increase in buckling stress as a fanction of pres-

sure and geometry only.

The design-allowable shear buckling stress is given by

rcr E t
: (C s + aC s}

RZ{/4

where C s is obtained from Fig.

Fig. 3.23-4.

3.23-3 and AC s is obtained from
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Two curves are presented in Fig. 3.23-4 for calculating the

increment in critical stress caused by pressurization. One curve,

labeled "No External Axial Load," should be used for calculating the

critical stress of a cylinder subjected to torsion and internal pressure

only. The second curve, labeled "External Axial Load Balances

Longitudinal Pressure Load," should be used to calculate the critical

stress of a cylinder subjected to torsion and internal pressure plus an

external axial compression load equal to the internal pressure load

RZp, acting on the heads of the cylinder. It should be noted that the

pressurized design curves of Fig. 3.23-4 are valid only for long

cylinders. For inelastic buckling, the critical shear stress maybe

obtained by following the procedure outlined in Paragraph 3.22.2. The

total stress field should be taken into consideration when the plasticity

correction is determined.
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3.23.3 Bending, Unstiffened Cylinders

A. Unpressuri_ed

The design-allowable buckling stress for a thin-walled circular

cylinder subjected to bending is given by

cr Et
-Cb" _"

where the buckling-stress coefficient, Cb, is given in Fig. 3. 23-5 for

simply supported cylinders having a curvature parameter Z > 20 and

for clamped edge cylinders with Z > 80. cr is the maximum stress
cr

due to the bending moment (e.g., the outer fiber stress).

buckling, the plasticity correction termrl -- I. 0 is used.

buckling, the critical stress, er cr, may be found by using curves E 1 in

Section 3.62. If the stresses are elastic, the allowable moment is

For elastic

For inelastic

M =_R 2 cr t
cr cr

B. Pressurized

The buckling stress of long cylinders subjected to internal pres-

sure and bending may be determined by using Fig. 3.23-6 in conjunction

with Fig. 3.23-5. Fig. 3. 23-6 presents curves that allow the calcu-

lation of the increase in Critical stress as a function of pressure and

geometry only. The design-allowable buckling stress is

Et

-_-= (C b + _C b)

where C b is obtained from Fig. 3.23-5 and AC b is obtained from

Fig. 3.23-6.
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Two curves for calculating the increment in critical stress caused

by pressurization are presented in Fig. 3.23-6. The curve labeled "No

External Axial Load" should be used to calculate the critical stress of a

cylinder subjected to bending and internal pressure only. The curve

labeled "External Axial Load Balances Longitudinal Pressure Load"

should be used to calculate the critical stress of a cylinder subjected to

bending and internal pressure plus an external axial compression load

equal to the internal pressure load, _ R2p, acting on the heads of the

cylinder.

If the curve for no axial load is used and the stresses are elastic,

the design-allowable moment is

R2(IVIcr =w _cr t + 2

It should be noted that the pressurized design curves in Fig. 3.23-6 are

valid only for long cylinders. For inelastic buckling, the critical stress,

Scr, may befound by using curves E l in Section 3.62. The total stress

field should be taken into consideration when determining the plasticity

correction.
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3. Z3.4 External Pressure, Unstiffened Cylinders

If a cylindrical shell with simply supported edges is subjected to

uniform-external pressure, p, the design-allowable buckling stress in

the circumferential direction is

--_- = K
P IZ(I.pZ) xL!

The buckling coefficient, Kp, and a definition of the geometrical param-

eters is given in Fig. 3. 23-7. For elastic buckling, rI = 1 is used. For

moderate length cylinders (100< Z <11 RZ/t Z) in the inelastic range,

Ref. 3-6 recommends

E I E "I/Zl

n = --E-

where

S s

E
t

= secant modulus

= tangent modulus

For inelastic stresses, _cr may be obtained for the E l curves of

Section 3.62 because, for too.st materials, the value of rI for the E l

curves does not vary appreciably from the value obtained from the

preceding formula. For short cylinders (Z<10), the C curves of

Section 3.62. should be used. For 10<Z<100, a linear interpolation

between the E l and C curves with the Z parameter is probably
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sufficiently accurate. For long cylinders, (e, g. ,

design-allowable buckling stress is

> 11 R/t) the

_cr _ E (R/2
,i 4 z)

The factor, y , was introduced to reduce the theory to a design

value. Ref. 3-6 recommends ¥ = 0.9. For inelastic buckling,

Ref. 3-7 recommends

+ 4 Es/

Sufficiently accurate values of _cr may be Obtained by using the

E curves of Section 3.62.

The design-allowable pressure may be obtained from the formula

_cr t

Pcr- R

The pressure, Pcr' is the design-allowable pressure for complete

buckling of the shell (e.g., when buckles have formed all the way around

the cylinder). For some values of the parameters (large R/t and/or

large initial imperfections), single buckles will occur at pressures less

than Pcr' but complete buckling will occur at higher pressures. There_

fore, for some applications these results should be used with caution.
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The plasticity correction factors recommended in this section

were obtained primarily for the case of lateral pressure, but they are

probably sufficiently accurate for the case of lateral and axial pressure.
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3.23. 5 Combined Loading, Unstiffened Cylinders

The criterion for structural failure of a member under combined

loading is frequently expressed in terms of a stress-ratio equation,

of loading (compression, shear, etc.), and the exponents (usually

em15irica1 ) express the general relationship of the quantities for failure

of the member. The stress-ratio, R, is most easily understood if it

is defined first for a particular loading condition. In combined compres-

sion and torsion loading (R: + RZs --" I), the stress-ratio, Rc, is defined

as the ratio of compressive stress at which buckling occurs under the

combined loading to the compressive stress at which buckling occurs

under compression alone. In general, the stress-ratio is the ratio of

the allowable value of the stress caused by a particular kind of load in

a combined loading condition to the allowable stress for the same kind

of load when it is acting alone. A curve drawn from sucha stress-

ratio equation is termed a stress-ratio interaction curve. In simple

loadings, the term "stress-ratio" is used to denote the ratio of applied

to allowable stress.

A. Combined Torsion and Axial Loading

A semi-empirical interaction curve for circular cylinders under

combined torsion and axial loading is given in Fig. 3. Z3-8. ¢rcr is found
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from Paragraph 3. 23. 1 and Tcr from Paragraph 3. 23. 2. In Fig. 3. 23-8,

the curves for RJt ratios of 600, 800, and 1000 were determined by test

3-8. Curves for R/t of 1500 and 2000 were drawn by extra-data in Ref.

polation.

B. Bending and Torsion

Test results shown in Ref. 3-7 indicate that a conservative

estimate of the interaction for cylinders under combined bending and

torsion may be obtained from Fig. 3. 23-9; _cr is found from

Paragraph 3. 23. 3 and rcr from Paragraph 3. 23. 2.

C. Axial Compression and Bending

The test data presented in Ref. 3_7 and 3-9 indicate that the

linear interaction for the case of cylinders under combined axial com-

pression and bending, shown in Fig. 3. 23-10, may be used. The

buckling stress due to bending alone maybe found from Paragraph 3.23.3,

and the buckling stress under axial compression alone may be found in

Paragraph 3. Z3. 1.

D. Axial Compression and External Pressure

The limited test data from Ref. 3-9 for cylinders subjected to

axial compression and external lateral and axial pressure indicate that

the linear interaction curve presented in Fig. 3. Z3-11 may be used for

design. ¢cr is found from Paragraph 3. 23. 1 and Pcr from Paragraph 3"23"4-
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3. 24 CONES

3. 24. 1 Axial Compression, Unstiffened Cones

A. Unpressurized

The equivalent cylinder approach recommended in Ref. 3-9 will

be used for determining the buckling stress for a circular right cone sub-

jected to axial compression, The statistical reduction of experimental

cone data presented in Ref. 3-I0 indicates that the equivalent cylinder

approach may be conservative for large radius-to-thickness ratios, but

the results of Ref. 3-10 would be unconservative for small cone angles

(e. g, , cones that are almost cylinders). The design-allowable buckling

stress may be obtained from the formula

_r Et

cr Cc

is the stress at the small end of the cone. The buckling stress
cr

coefficient, C , and a definition of the geometrical parameters is given
c

in Fig. 3.24-I as are the limitations of the buckling equation. The

curve of C versus R /t given in Fig. 3.24-I for cones is the same
C •

curve given in Fig. 3.33-I for cylinders. For elastic buckling, ri = I

is used. In the inelastic range,

using curves E 1 in Section 3.62.

_,he critical stress • may be found by
cr

The design-allowable total compres°

sire load, Pcr,may be obtained from the equation

P - ZTrR w t cosZ@
cr • cr
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B. Pressurized

The design-allowable buckling stress for cones under internal

pressure and axialcompression may be determined by using Fig. 3.24-I

in conjunction with Fig. 3.24-2. Fig. 3.24-2 presents a curve that

allows the calculation of the increase in buckling stress as a function

of pressure and geometry only. The design-allowable buckling stress

may be obtained from the formula

Gr
cr

q - (C c
Et

+ ac c)
e

where C is obtained from Fig. 3.24-I, and _C is obtained from
C C

Fig. 3.24-2. For elastic buckling, q = 1 is used. In the inelastic

range, the critical stress, Orcr, maybe foundbyusing curves E l in

Section 3.62. The total stress field should be taken into consideration

when determining the plasticity correction. The pressurized cone is

capable of resisting a total compressive load, P , which may be
cr

obtained from the equation

nR2 2
Pcr = Z_Re Crcrt cos2a + • p col a

The P found for pressurize cones subjected to axial compres-
cr

sion may be conservative for certain values of the parameters because

it has been shown both theoretically and experimentally that internal

pressure increases the buckling load of cones more that it increasel
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the buckling load of cylinders. However, test data for pressurized

cones is too limited to determine an empirical design curve based on

parameters from the theoretical buckling analysis of pressurized cones.
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3. 24. 2 Shear or Torsion, Unsti.ffened Cones

A. Unpressurized

The equivalent cylinder approach recommended in Ref. 3-11 will

be used to determine the buckling stress for a circular right cone

subjected to torsion. The design-allowable buckling stress is

R z
Wcr e Et
--fi-- =--C

2 s R Z 1/4
RI e

T is the shear stress at the small end of the cone. The buckling stress
cr

coefficient, C , and a definition of the geometrical parameters are given
S

in Fig. 3.24-3, as are the limitations of the buckling equation. The

curves of C versus R /t given in Fig. 3.24-3 for cones is the same curve
$ e

given in Fig. 3.23-3 for_cylinders. For elastic buckling, the plasticity

correction term rI = 1.0 is used. For inelastic buckling, the critical

shear stress, Vcr, may be found by using the procedure recommended in

The design allowable torque, Tcr, may be obtainedParagraph 3. 32. Z.

from the equation

= 2_R_t vTcr cr

B. Pressurized

The theoretical results and the test results of Ref. 3-12 show

that internal pressure will increase the torsional buckling load of cones,

but simple design formulas for computing this increase are not available,
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3. 24. 3 Bending, Unstiffened Cones

,a. Unpressurized

The equivalent cylinder approach recommended in Ref. 3-9 win

be used to determine the buckling stress of a circular right cone sub-

jected to bending. The design-allowable buckling stress is

_rcr Et

rI - Cb R
e

where _ is the maximum stress at the small end of the cone. The
cr

buckling coefficient, C b, and a definition of the geometrical parameters

are given in Fig. 3.24-4. The curve of C b versus R/t given in

Fig. 3.24-4 for cones is the same curve as that given in Fig. 3, 23-5 for

cylinders. For elastic buckling, r1 = 1 is used. In the inelastic range,

the critical stress, _cr' may be found by using curves E 1 in Section 3. 62,

If the stresses are elastic, the allowable moment may be obtained from

the formula

2

M : Tr R 1 _r t cosacr cr

B. Pressurized

An estimate of the design-allowable buckling stress for • cone

under internal pressure and axial compression may be determined by

using Fig. 3.24,-4 in conjunction with Fig. 3.24-5. Fig. 3.24-5

presents a curve that allows the calculation of the increase in buckling
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stress as a function of pressure and geometry only. The design-

allowable buckling stress may be obtained from the formula

_rcr Et
--q- : (C b + ZXCb) g--

e

where C b is obtained from Fig. 3. 24-4 and AC b is obtained from

Fig. 3.24-5. For elastic buckling, q = 1 is used. In the inelastic

range, the critical stress, _rcr, may be found by using curves E 1 in

Section 3.62. The total stress field should be taken into consideration

when the plasticity correction is determined. If the stresses are

elastic and no external axial load is applied, the allowable moment may

be obtained from the formula

3

2
M = = R 1 t_r cos_+=p RIcr "_-
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3. Z4.4 Lateral and Axial External Pressure, Unstiffened Cones

The equivalent cylinder recommended in Ref. 3-9 will be used to

determine the design-allowable buckling stress for a circular right cone

subjected to lateral and axial external pressure. The design-allowable

buckling stress may be obtained from the formula

Ircr -
K

"il Z) R cosaP1Z -_ e

a is the circumferential membrane stress at the large end of the cone
cr

due to an external pressure, Pcr" The buckling stress coefficient, Kp,

and a definition of the geometrical parameters are given in Fig. 3.24-6.

Fig. 3. Z4-6 is for simply supported edges and will be conservative for

fixed edges. For elastic buckling, '3 : 1 is used. In the inelastic ranges

the critical stress, _ cr' may be found by using the method discussed

in Paragraph 3. Z3.4. The design-allowable external pressure may be

obtained from the formula

Pcr

tcos@
cr

R Z

The pressure, Pcr' is the design-allowable pressure for complete buckling

of the shell (e.g., when buckles have formed all the way around the cone).

R
For some values of the parameters (such as large -_ or large initial
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Lmperfections)0 single buckles will occur at pressures less than Pcr'

but complete buckling will occur at higher pressures. Thereforej for

some applications, these results should be used with caution.

It has been shown in the literature that the critical pressure is a

function of the quantity (I-R 1/R2), but the effect is generally small and

the available information has not been reduced for design purposes.
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FIG. 3.24-6. BUCKLING PRESSURE COEFFICIENTS FOR

CONES SUBJECTED TO EXTERNAL RADIAL

AND AXIAL PRESSURE
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3.24.5 Combined Loading, Unstiffened Cones

The concept of stress-ratio interaction curves as described for

cylinders in Paragraph 3.23.5 will also be used for cones.

A. Axial Compression and Torsion

Ref. 3-13 has shown that for unstiffened right conical shells, the

curve given in Fig. 3.23-8 may be used for predicting the interaction

between axial compression and torsion, o" is found from
cr

Paragraph 3.24. l and v from Paragraph 3.24. 2.
cr

B. Axial Compression and Bending

The very limited test data in Ref. 3-9 indicate that the linear

interaction equation shown in Fig. 3. Z3-I0 may be used for right cir-

cular cones subjected to combined axial compression and bending. The

buckling stress due to bending alone may be found from Paragraph 3.24.3,

and the buckling stress under axial compression alone may be found

in Paragraph 3. Z4. I.

C. Axial Compression and External Pressure

The limited test data from Ref 3-gindicatedthatthe curve given in

Fig. 3.23-11 may be used for right circular cones subjected to axial

compression and external lateral and axial pressure. _r may be
cr

obtained from Paragraph 3. 24. I and Pcr from Paragraph 3. Zd. 4.
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3. 25 SPHERICAL CAPS

3.25. I External Pressure, Shallow Spherical Caps

The following figure shows the type of shell and load that will be

considered in this section:

H

! P

q D

/

The shell is spherical, and the ratio of Hp/2r o should be small,

say, Hp/2r o <I/8. The design-aUowable buclding stress may be

obtained from the following formulat

C = 0.175
P

for 4< k < _-4
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where
1 1

i12,1-, z, ro/IRtl
For elastic buckling, _ = 1 is used. For inelastic buckling, the

critical stress, Crcr, may be found, using curves E l in Section 3.62.

The design-allowable buckling pressure is

2t

Pcr= _ crR-

The coefficient, Cc, should be a function of k. However, it was

shown in Ref. 3-14 that for 6< k < 24, the increase in the theoretical

value of C is very small as k increases, provided the shell is free of
P

initial imperfections. In addition, test data for 4< k < 6 indicate a

value of C that is approximately the same as the value of C for
P P

6 < k< 8. Therefore, it was assumed that C was independent of k
P

for 4< k < 24. The quantity C = 0. 175 was obtained by a statistical
P

reduction of the test data from Refs. 3-15, 3-16, 3-17, and 3-18. The

test specimens in Refs. 3-15, 3-16, 3-17 and 3-18 failed considerably

below the theoretical curve given in Ref. 3-14. One of the primary

reasons for these low buckling loads is probably initial imperfections

in the test specimens.

The lower bound of the values of Cp obtained in tests of spherical

caps with very small imperfections, as reported in Refs. 3-19 and 3-20,
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was approximately Cp = 0.39, which indicates that the buckling stress

is much greater ifthe initial imperfections are small. However, it is

not felt that the shells tested in Refs. 3-19 and 3-20 are typical of a

production part.

3. 25. 2 External Pressure, Spherical Caps

Spherical caps for which H /2r >1/8 (see Section 3.25. 1) have
p o

not been discussed in the literature as often as spherical caps for which

H /2r < 1]8 due to the added complexity of the problem. Theoretical
p o

investigations of shells free of initial imperfections indicate that the

buckling pressure for deep spherical caps would be greater than for

shallow spherical caps of the same radius and thickness, but this has not

been verified experimentally. The testdata for deep sphericalcaps sub-

jected to external pressure show that the buckle is usually confined to a

small area of the shell. Therefore, the area of the shell that participates

in the buckle could be thought of as a shallow spherical cap. Until

additional information is available, it is recommended that the informa-

tion contained in Paragraph 3. 25. l be used to obtain the design-

allowable buckling stress for spherical caps withk > 24 and Hp/2r o >1/8

which are subjected to external pressure. The limited results of test

data for hemispherical shells subjected to external pressure, such as

Refs. 3-21 and 3-22, indicate that this is an adequate procedure.
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The test data from Ref. 3-21 indicate that the inelastic properties

of the material influences the buckling load even though the nominal

membrane stress may be below the inelastic limits; but a method of

accounting for this effect was not presented.

An empirical analysis procedure is presented in Ref. 3-23 which

may be useful if the initial imperfections of a shell are known. However,

it is difficult to use for a shell which is to be built because an estimate of

the initial imperfection is necessary.

At the present time, the effects of various boundary conditions

for partial spheres are unknown. Until additional information is

obtained, the analysis which has been presented may be used for hemi-

spherical caps with fixed or simply supported boundaries. Ref. 3-24

presents test results for spherical caps with various boundary con-

ditions and may be of some use in estimating the effects of boundary

conditions other than clamped.
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3.30 ORTHOTROPIC SHELLS

3.31 GENERAL;

This section deals with shells with stiffness properties different

in the circumferential and meridional directions. The stiffness proper-

ties of the shell wall in the two directions may be completely independent

(i.e., the bending stiffnesses, extensional stiffnesses, in-plane shear

stiffness, and twisting stiffness of the walls of the shell are not neces-

sarily interrelated as they are in a homogeneous isotropic shell or a

homogeneous orthotropic she11). An example of this type of shell is a

multilayered filament wound cylinder. Other types of construction,

such as integrally stiffened waffle with closely spaced stiffeners, can

be idealized as orthotropic by assuming that discrete stiffening element8

are evenly distributed per unit width of wail. It is difficult to determine

how close the stiffeners must be to treat the shell as an orthotropic

shell. For the case of buckling, a buckle must include several stiffeners

before orthotropic shell theory would be a useful tool in predicting the

buckling load.

Definitions of the stiffness properties (elastic constants) for an

orthotropic shell wall are given in Section 3.3Z, and approximate for-

mulas are given for computing the stiffness properties for several

types of construction.
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The buckling formulas presented in this section are based on the

classical small deflection theory of orthotropic shells. Experimental

and theoretical studies indicate that the discrepancy between test and

theory as well as the scatter of the test data may be much smaller for

certain types of orthotropic cylinders than it was for homogeneous

isotropic cylinders. However, the number of tests conducted to date on

orthotropic shells typical of large production parts is limited and covers

only a small range of possible parameters. Therefore, the results of

homogeneous isotropic cylinder tests are used to modify the orthotropic

theory until more information is available.

The analysis presented assumes that the centroid planes of the orthotropic

wall in the axial direction coincide with the centroid planes of the wall

in the circumferential direction. This assumption eliminates coupling

between many of the internal stress resultants and simplifies

the analysis. Although the effects of coupling can be large for some

types of construction, they are usually small for the types of construc-

tion presented in this section (multilayered, integrally stiffened,

homogeneous orthotropic).

The effects of Poisson's ratio have been included in the analysis

procedures that are presented.

by neglecting Poisson's ratio.

However, the analysis may be simplified

For many types of orthotropic construction.

the effect of Poisson's ratio is very small.
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3.32 ELASTIC CONSTANTS

3.32. 1 Definitions

The elastic constants are defined in this section, and approximate

formulas are given for computing the elastic constants for several types

of construction that may be idealized as orthotropic construction. These

constants can be used in Chapter 2.00 for stress analysis or in this

chapter (Chapter 3.00) for stability analysis. The formulas for the

constants have been derived for flat orthotropic plates but are suffio

ciently accurate for thin orthotropic shells.

The x direction is the axial direction for cylinders and cones

and the meridional direction for spheres. The 0 direction is the

circumferential direction. The elastic constants are defined as follows:

Bx, B 0 = The extension stiffnesses of the shell wall in the x

D x, D O

and 0 directions, respectively, (Ib/in.)

= The bending stiffnesses of the shell wall in the x and 0

directions, respectively, (in.-Ib)

= The twisting stiffness of the shell wall (in.-Ib)

= The transverse shear stiffnesses of the shell wall

in the x and 0 directions, respectively (Ib/In.)
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= Poisson's ratios associated with bending in the x

and 0 directions, respectively

P' , F' = Poisson's ratios associated with extension in the x
x O

and 0 directions, respectively

Gxe : Shear stiffness of the shell wall in the x 8 plane

(Ib/Ln.)

From the reciprocity theorem, ithas been shown that the follow-

ing useful relationships exist:

DxF 8 = De_x

!

Bx_ e = BeF'x

The elastic constants required for Chapter 2.00 are B e, D x, Fx,

!

F8' F x' F'O and DOx. Ali of the elastic constants with the exception of

DOx and DQ8 are required in Section 3.33. The constants, DQxand

DQO, are not needed in Section 3.33 because transverse shear deflec-

tions have been neglected in the basic analysis. Sandwich-type con_

struction is the only orthotropic construction in which shear deflecttonm

are likely to be important. In general, the data of Section 3.50 should be

used for the stability analysis of sandwich shells_ However, if Section 3.50

does not include a particular type of sandwich (for instance, facings

made from a different material), and if the core is very stiff in trans-

verse shear (Section 3.50 can be used to estimate if the transverse
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shear stiffness is large), the design buckling load can be estimated using

the formulas from Section 3.33 and the elastic constants given in this

section,

3. 32.2 Orthotropic Layered Shells

The elastic constants for orthotropic layered shells were

obtained from Ref. 3-25. A typical multilayered cross section is shown

in Fig. 3.3Z-I, It can be seen that there are m layers,

layer is fil thick, the next layer is (5 Z - 6 I) thick, etc.,

thickness of the shell is 6 m.

geneous and orthotropic,

The material properties of a layer are:

Ex i' E8 i

_IX, '
t _81

GxO i =

Subscript i

corresponds (i = I, 2 .... m).

definition of the x and 8 direction.

The inner

and the total

It is assumed that each layer is homo-

Moduli of elasticity in the x and O directions,

r e ape ctively

Poisson's ratios associated with stretching in the

x and e directions, respectively

In-plane shear modulus

represents the layer to which the material property

Refer to Paragraph 3.3Z. I for &
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m
I

BO i= 1x

_0' - B
X

DOx and DOe are effectively infinite for most layered shells (if

the shell is sandwich construction, see Paragraph B. 32.3).

For simplicity, /_ x could be assumed to equal _¢, which would

save the computation of _ and _x o

For a single layer t thick (5 I = t), the formulas reduce to

B x t= CXl

B 8 = C 8 t
I

Cxlt3
D -

x 12

C 8 t 3
1

D0 = 12

3
G t

xe I

DxO - IZ

Gx8 = G t
xe I
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_x = _ t = _
x I x I

=It i =

0 01 _81

If the layer is isotropic with a Young's modulus of E, Poisson's

ratio of _, and shear modulus of G, the constants are

Et
B = B 8 -x Z

Et 3
D = D -

x O 1 _ Z

Gt 3
D -
x8 12

G = Gt
xe

= _X =_8 = ' = PO'X

m

FIG. 3.32-1. Layered Construction
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3.32.3 Sandwich SheLls

The elastic constants presented in this section are for a sandwich

construction with a core that resists very little bending or stretching

(such as honeycomb core) and thin facing sheets relative to the overall

thickness of the sandwich. A typical sandwich element and a definition

of the geometrical parameters are given in Fig. 3.32-2.

Facing sheet #Z

centroid t2

of facin

sheet

core

centroid

of facing

sheet

Facing sheet _I

c

h

t I

FIG. 3. 32-Z. Sandwich Construction

Ex i' E8 i

The material properties of a facing sheet are:

= Moduli of elasticity in the x and 0 directions,

respectively

Fxi. Fei = Poisson's ratios associated with stretching

in the x and 0 directions respectively

= In-plane shear modulus
Gsi
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Sub-subscript i represents the facing sheet to which the material

corresponds (i = l, 2). Refer to l_ragraph 3.32. I for a definition of

the x and O directions.

The only property required for the type of core considered is

G and G which are the transverse shear moduli of the core in the
XZ 6Z'

x and e directions, respectively. The formulas for the elastic constants

are approximate but sufficiently accurate for engineering purposes.

A. Sandwich with Orthotropic Facings

C
X.

I

E
Xo

I

1 - _x i _8i

C o
i

Ee.
I

1 - _x i _8i

C

t

B
x

1- _x i _ei

C t I + Cx2t 2x I

B e = C eltl + Ce2t 2

+ GxeGxe = Gxe ltl 2t2
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D
x0

D

x

D O =

!

x

!

Gx e iGxe ztltz hZ

+ GxeGx e itl ztz

h ZC
Cx2 t l t Zx I

Cxl t l + Cx2 tz

C6 1 c eztltz hz

colt I + Cozt Z

__l IC itI + C Z/Be _ _ Zt

!

xB8

B
X

x

C C tltzhZ

C tl+C t
_I _ZZ

l_o - D
X

G h Z
xz

DQ = c
X

G Oz hZ

DQ8 = c
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B. Sandwich with Isotropic Facings

B = B 8
x

D = De
x

E

(I -
(t + t2)

Z) I

E tltzh2

z)(t +(I - _t I tz)

Gxe = G(t I + t z}

tItzh2
D = G
xe t! + t 2

_x = _8 = _

! !

x : _te =

G h z
XZ

DQ - c
X

Gezh z

DQ e - c

3. 32.4 Integrally Stiffened Waffle Shells

The approximate elastic constants for shells with closely spaced

integral ribs running ina waffle-like patternwere obtained from

Ref. 3-Z6. Fig. 3.3g-3 shows the type of construction being considered

and also defines the geometrical parameters.
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The definitions of the material properties are:

E = Young's modulus

G = Shear modulus

= Poissonts ratio

Refer to Section 3.3Z. 1 for a definition of tne x and0 directions.

The elastic constants for integrally" stiffened waffle construction are

B
X

D
X

AZ A

: E H 3 I s x )Z
x X i _x - ks

S

D o
EH 3 Ie - _._

Dx8 E H 3

DQ =
X

DQo = ®
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Gxo = EH (Axe)

$

_x leXZs - AZsAe_e - -_,)Z

--Z

where

A
! S

X

_2 = AxA6 . A 2
S S

7Z = IsA _ + AsAxAo _x - :,)(k0 " :s )
S

A /b
t %v S

1 s + sA - -- cos4T
x Z H H

I -I•

A /b

1 t s + Ws s sin4 T
A8 = Z H H

I-I*

A lb
t W S

A - _* s + s sinZT cos ZT
s Z H H

1 -_
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Axo

A /b
t s

1 s Ws
_ +

2(1 + }z) H H
sin2T cosgT

A /b
w' B

-- 1 s -- 4 Tk = k cos
x A H w

X 8

m

k
0

A Ib

I w s
s k s in 4 T

A 0 H w s

ks

A /b"

I w s
s _ sin2T cos2T

A H w
B 8

kx8

A /b

_ 1 Ws s _k sin 2Tcos 2T

Ax0 H w s

I
X

12(1 - }_ 2)\HI

Z /b
w B

B
+

H 3

t
4 T 1 s -- 2

cos +" Z H (kx)

Awl,,:x)co,T+ H

18 3 I /b
1 w sB

12(I - _ 21 + H 3 sin4T +

t

2 H

A Ib 2

s - sin T
+ H w

B
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w s 2.
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The special case of T= 90 degrees corresponds to a shellwith

circumferential stiffeners 2tWs wide and bs apart. The case of T : 0

corresponds to a shell with longitudinal or meridional stiffeners only,

depending on the type of shells cofisidered, 2 t w wide and b apart.
s s

For more exact formulas of the elastic constants for this type of

construction, or if a more complex type of construction is used which

contains stiffeners in the x and 0 directions as well as skewed

stiffeners, Ref. 3-26 may be used.

586



FIG. 3.3Z-3. WAFFLE CONSTRUCTION

(a) Coordinate System

t
r"_,,- rw.jljjllIl_.lli,_.,,,_H

__. b. _. I -r-

(b) Waffle Section

(c) Typical Pattern
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3.33 CYLINDERS

3.33. 1 Axial Compression, Orthotropic Cylinders

The following stability analysis for orthotropic cylinders sub-

jected to axial compression is based primarily on the theory from

Refs. 3-27 and 3-28. This analysis may be used for layered construc-

tion (such as filament wound) and for stiffened construction (such as

integrally stiffened waffle construction) if the stiffeners are very close

togehter. The definition of the elastic constants used in this section and

the formulas for computing the elastic constants for typical types of

construction are given in Section 3.32. The design allowable buckling

load per unit width, N x, for moderate length orthotropic cylinders is

N x = y _ B e D x (1 - _'x _"e ) U

and the allowable compressive load for the cylinder is

P = N ZvR
cr x

R and L are the cylinder radius and length, respectively.

The following parameters are defined in termsof the elastic

constants

B e [I - I_'= _.'e)
G =

ZGxe

B 8

_I =
Bx _Z
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B D
x0

W --

2 B0D x

D

G

For_2 _- 1, w 3 --1, U = 1.

For w 2_. _3' _3 < 1, U = U 1.

For_z<_3, wZ < 1, U : 1 ifU 2 Zl: U = U 2 if U 2 < 1.

The parameter U 1 can be obtained from the formula

Ul = +Z_ _Z +(Be/Bx )

_or

_2 = Sl ±_S12 + $2

S!

Only values of _b2 > 0 may be used to compute U 1. If both values

of 42 are greater than zero, then U 1 must be computed for each%bZ and

the smallest U 1 must be used to compute N x.

589



The parameter U2 can be obtained from the formula

Uz - _ :,,3z l + z #_,z +-b_x¢ 4 + (1 + z _,z + (Be/_) _,4

where

L Z
m n, Z

, ,)B 0 (1 - Fx _0 4
= I.,

The value of n must be varied until the minimum value of U Z is

found. The quantity nis the number of half waves of the buckles in the cir-

cumferential direction. Therefore, n is restricted to even positive

integers greater than 4.

The quantity y can be computed from the formula

Y = (YZ + 0. o44/y.Z) _ 1/0..49

where _Z is obtained from Fig. 3.33ol through 3.33-5; Y I is obtained

from Fig. 3.33-6, where P is the radius of gyration of the cylinder wall.

For radii of gyration which differ in the axial and circumferential

direction, Ref. 3-29 recommends using the geometric mean of the two

radii of gyrations; therefore,

B 0

The parameter ¥ was introduced to allow for the discrepancy

between test data and the buckling theory.
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The term ¥ /0.49 was introduced to make Y a function of ratio
l

R/p as suggested in Ref. 3-29. The curve given in Fig. 3.33-6 for¥ l

was obtained by replotting the curve given in Fig. 3.23-I as a function

of R/p and normalizing C c with respect to the theoretical small deflec-

tion theory coefficienty, C c = 0.606. Therefore, Fig. 3.33-6 is con-

sistent with this chapter and is not the same as inRef. 3-29. The term

(¥2 + 0"044/?Z) was introduced as an attempt to account for the fact that

the ratio of the postbuckling load to the classical buckling load for

orthotropic cylinders is different than for isotropic cylinders (Ref. 3-30).

If the results of this section are reduced to the special case of a homo-

geneous isotropic cylinder, ? = ¥I and the design buckling load would be

the same as obtained from Paragraph 3.23. I.

The method of obtaining ¥ for orthotropic cylinders has been

verified by only a limited amount of test data and caution should be used

in applying it to a design. Some test results, such as the tests

described in Ref. 3-28 and 3-31, indicate that this method may be con-

servative but the specimens tested were not typical of large production
,o

parts.

The preceding analysis is good only for moderate length cylinders;

therefore, for simply supported edges, Z>25U3; for clamped edges,

Z>80U 3. Where, if U = 1 or U = U 2, then U 3 = I, and, if U<I, then

llZ llZ

[ .D°][ o.°°]u3 I + z I+ ,z ,4
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The parameter Z is as previously defined

z z _ Be (1 - L4
12D x R 2

For axial-stiffened cylinders (D x > 300 DO) in the short cylinder

range, the following formula is recommended in Ref. 3-32:

2
2Y 1

c_ D x +_ _/BxD0
Nx = L 2 R

Coefficient c is equivalent to the column fixity coefficient in

EulerVs column formula, It is recommended that this formula be

restricted to geometry where ¥1 BV_--DxDo/R < c_2 Dx/L2" Verification

of this formula has been limited and the range of validity is not well

defined; therefore, it should be used with catuion. The factor ¥1 is

consistent with this section and is not the same as in Ref. 3-32.

If a cylinder is stiffened with stringers and frames, it is recom-

mended that Section 3.42 be used unless the stringers and frames are

very close together. The test results of Ref. 3-33 for cylinders with

light frames and heavy stringers indicate that the analysis presented in

this section may be unconservative for cylinders with large frame

spacing.

Plasticity may be considered by modifying Young's modulus in

the stiffness constants (Ref. 3-27)or may be accounted for with a

plasticity factor as in Paragraph 3.23. I.
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FIG, 3. 33-1. CORRECTION COEFFICIENTS FOR ORTHOTROPIC

CYLINDERS SUBJECTED TO COMPRESSION
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FIG. 3.33-2. CORRECTION COEFFICIENTS FOR ORTHOTROPIC

CYLINDERS SUBJECTED TO COMPRESSION
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FIG. 3. 33-3. CORRECTION COEFFICIENTS FOR ORTHOTROPIC

CYLINDERS SUBJECTED TO COMPRESSION
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FIG. 3. 33-4.

'Y2

CORRECTION COEFFICIENTS FOR ORTHOTROPIC

CYLINDERS SUBJECTED TO COMPRESSION
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FIG. 3.33-5. CORRECTION COEFFICIENTS FOR ORTHOTROPIC

CYLINDERS SUBJECTED TO COMPRESSION
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3. 33. Z Torsion, Orthotropic Cylinders

The curves in Ref. 3-34 will be used to determine the buckling load

for orthotropic cylinders subjected to torsion. The design allowable

shear load per unit length of circumference i8

Ir2D
s x

L 2

and the design allowable torque for the cylinder is

T = ZlrR 2
cr Nx0

The buckling coefficient, K s, may be obtained from Fig. 3.33-7

for the elastic constants as given in Table 3.33-I, andY may be obtained

from Fig. 3.33-8. The definition of the elastic constants used in this

section and formulas for computing the elastic constants for typical

types of construction are given in Section 3.32.

The coefficientY reduces the theory presented in Ref. 3-34 by the

same percentage as the theory for homogeneous isotropic cylinders was

reduced to obtain the curve presented in Fig. 3.23-3.

The method of analysis presented may be used for cylinders with

simply supported edges, although a small rotational restraint at the

edge of the shell is included in the results presented in Fig.

It can be seen from Fig. 3.33-7 that for large values of Zs,

merge into one line.

3. 33-7.

all curves

The equation of this line as given in Ref. 3-34, i8

3/4K = 0.89 Z s
S
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where

z = (DO/D )s16 (Bx/BO}l/Z z
8 X

B 0 (I-_ ' _y')L 4
Z Z = x

12 D R 2
x

If the value of Z s is large enough, this formula can be used to

estimate the critical torque for geometries other than the ones given

in Table 3.33-1.

This section should not be used for any type of cylinder with skin

that buckles between stiffeners prior to general instability failure.

The test data presented in Ref. 3-33 indicate that the results may be

unconservative for this case.

TABLE 3.33-I CYLINDER PARAMETERS USED FOR K-Z PLOTS

Curve

Number

D

D xy" + _O
X

%
D

x

B
x

BO

' _'o)B e (I'_ x

2G
xy

1 0 I/8 4 I

Z 0 I/Z 1 1

3 0 Z 1/4 l

4 1 1/8 4 4

5 I 1/2 1 4

6 l Z 114 4

7 1 4 I/8 4

8 1 8 1/16 4
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FIG. 3.33-7. BUCKLING COEFFICIENT FOR ORTHOTROPIC CYLINDERS

SUBJECTED TO TORSION
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3.33.3 Bending, Orthotropic Cylinders

The formulas presented in Paragraph 3.33. I may be used to

determine the design allowable buckling stress for orthotropic cylinders

subjected to bending if the following formula is used to computeY:

0.
_= _2 + 0__62_ YI

Yz /0.64

where Y2 is obtained fromFigs. 3.33-1 through 3.33-5 and YI is

obtained from Fig. 3.33-9. Fig. 3.33-9 was obtained from Fig. 3.22-5

as described in Paragraph 3.33.1.

For bending, N is the maximum compressive load per unit length
x

due to the bending moment (e.g., outer fiber load). If the stresses are

elastic, the design allowable bending moment may be obtained from

M =N _R 2
cr x
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FIG. 3.33-9. DESIGN CORRECTION COEFFICIENT FOR CYLINDERS

SUBJECT TO BENDING
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3.33.4 Lateral External Pressure, Orthotropic Cylinders

The curves presented in Ref. 3-34 will be used to determine the

buckling pressure of orthotropic cylinders with simply supported edges

subjected to lateral external pressure. The design allowable pressure

is

2
YK ,t D

= p x

Pcr RL 2

The buckling coefficient, Kp, may be obtained from Fig. 3.33-I0

or 3.33-11 for several ratios of the elastic constants. The definition

of the elastic constants and formulas for computing the elastic constants

for typical types of construction are given in Section 3.3Z.

The coefficient _ was introduced to reduce the theory presented in

Ref. 3-34 by the same percentage as the theory for homogeneous

isotropic cylinders was reduced to obtain the curve presented in

Fig. 3.23-7.

Therefore,

Z > 10 z, Y = 0.9;
P

Z < 10 z, y= 1.0 - Z x 10 -3
P P

It can be seen from Fig. 3.33-11 that for large values of Z all
P

curves merge into one line. The equation of this line is K = I. 039Z I/Z
P P
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and the design allowable pressure is

5.5 D0 3/4¥ [Bx(l__ ,x_8,)]I/4

Pcr= LR3/2

If the value of Z is large enough, this formula can be used to
P

estimate the critical pressure of geometries other than the ones given

in Table 3.33-1.

If the stiffness parameters are not in the range given in

Table 3.33-1 and Zp is not large, Kp may be determined from

K _ l [ _2 D ] 12z2p ,z I+25 +___e,4 + _--r- ]
I+zS_Z+(B e/B)_4

m

where G and D are defined in Paragraph 3.33.1.

nL
=_

2_R

2 Be (l-_x' Py') L4
Z =

IZ D I%2
x

The value of n must be varied until the minimum value of K is
P

found. The quantity n is restricted to even positive integers greater

than or equal to 4.

For very long cylinders, the buckling pressure becomes inde-

pendent of length and may be computed from

3_ De

Pcr = R3
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The point at which the buckling pressure becomes independent of

length is difficult to determine. One indication is the point at which the

minimum valve of K is found for n = 4.
P

The design allowable pressure is for complete buckling of the

shell (e. g., when buckles have formed all the way around the cylinder).

If single buckles are not allowable for a particular design, the pressure

computed by the preceding formulas may be unconservative.

Shells that are relatively stiff in the circumferential direction and

relatively free of initial imperfection will be less likely to have single

isolated buckles at pressures less than the design allowable pressures

which have been gi,_en.

If the stresses are in the plastic range, a reduced modulus must

be included in the stiffness constants (Ref. 3-32) or a plasticity cor-

rection factor such as that given in Paragraph 3.23.4 should be used.
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FIG. 3.33-I0. BUCKLING COEFFICIENT FOR SHORT ORTHOTROPIC

CYLINDERS SUBJECTED TO LATERAL EXTERNAL PRESSURE
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3.34 CONES

3.34. I Axial Compression, Orthotropic Cones

The limited amount of information available on orthotropic cones

is not in a form suitable for design analysis until additional information

is available. The equivalent cylinder approach recommended in

Paragraph 3.24. I should be used. The cone shown in Fig. 3.34-Ia

can be analyzed as a cylinder with a radius Re= R I/cos a and length L.

The design allowable load per inch, N x, for the equivalent cylinder can

be obtained from Paragraph 3.33. I. The design allowable total

compressive load for the cone can be obtained from

2
P = 2 _ R N cos

cr _ X

This method of _nalysis should be used with caution and should be

limited to cones witha < 30 degrees.
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FIG. 3.34-I. CONES SUBJECTED TO VARIOUS LOADINGS
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3.34.2 Torsion, Orthotropic Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24.2 should be used for ortho-

tropic cones subjected to torsion. The cone shown in Fig. 3.34-Ib can

be analyzed as a cylinder with a radius

R
e

= I+ [ ] [ ]-I + RZ/R I I/Z I + R_/R I

2 2

i/z

and length L = L/cosa.
e

The design allowable shear per unit length, Nx0, for the equivalent

cylinder can be obtained from Paragraph 3.33.2, The design allowable

torque for the cone can be obtained from

T =2_R 2
cr e Nxo

The design allowable shear stress for the cone should be based on T
or.

This method should be used with caution and should be limited

to cones witha< 30 degrees.

3.34.3 Bending, Orthotropic Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24. 3 should be used for ortho-

tropic cones subjected to bending. The cone shown in Fig. 3.34-1c can

be analyzed as a cylinder with a radius R = Rl/COSa and length L.e

The design allowable load per inch, N , for the equivalent cylinder can
X
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be obtained from Paragraph 3.33.3. If the stresses are elastic, the

design allowable moment for the cone can be obtained from

2

M = TrR 1 N cos acr x

This method of analysis should be used with caution and should be

limited to cones with a < 30 degrees.

3.34.4 Lateral External Pressure, Orthotropic Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24.4 should be used for an

orthotropic cone subjected to lateral pressure as shown in Fig. 3.34-Id.

The cone can be analyzed as a cylinder with a radiun

R 1 +R 2
R =

e 2 cos a

and length L. The design allowable pressure can be obtained from

Paragraph 3.33.4. This method of analysis should be used with caution

and should be limited to cones with a < 30 degrees,
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3.40 STIFFENED SHELLS

3.41 GENERAL

The stiffened shells which are discussed in the following sections

are cylinders which consist of a thin metal sheet stiffened by frames

(circumferential stiffening elements) and stringers (longitudinal

stiffening elements). In general, this type of shell should be analyzed

for three modes of failure: (I) material failure, (Z) buckling between

frames, and (3) general instability failure.

If the frames and stiffeners are close together, the procedures

presented in Section 3.30 may be useful for the general instability

analysis, but the range of applicability of the method is not well defined.

In this section, a different method of analysis is presented for frame

and stringer stiffened cylinders subjected to compressive loads in the

axial direction as well as for frame stiffened cylinders subjected to lateral

and axial external pressure. In general, it is easier to obtain the buckling

loads using the methods presented in this section.
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3.42 FRAME AND STRINGER STIFFENED CYLINDERS

3.42. I Axial Compression, Frame and Stringer Stiffened Cylinders

Very little test data are available on the general instability of

cylindrical shells that have both frames (circurnferential stiffeners)

and stringers (longitudinal stiffeners) subjected to axial compression.

Until additional data are available, Paragraph 3.42.2 may be utilized

for stiffened cylinders subjected to axial compression if C = 3. Z is used

for computing the generalinstability stress. The reduction in C for

axial compression was introduced because of the lower buckling

strength of other types of cylinders subjected to axial compression.

3.42.2 Bending, Frameand'Stringer Stiffened Cylinders

If a cylindrical shell having both frames (circumferential

stiffeners) and stringers (longitudinal stiffeners) is subjected to bending,

it may fail in one of three distinct ways. The types of failure are

classified as (I) material failure, (2) buckling between frames, and

(3) general instabilityo

A. Material Failure

For purposes of analysis, the bending-stress distribution is

assumed to be in accord with the elementary beam theory. When

buckling of the sheet occurs or the stresses exceed the proportional

limit, appropriate modifications must be made in calculating section
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properties. The stress caused by the applied moment should be

compared against the materials allowable stress.

B. Buckling Between Frames

Buckling between frames will occur in a cylinder that has relatively

heavy frames and light stringers; the cylinder tends to act as a number of

isolated axially stiffened cylinders each of which is one frame spacing

long. Failure will occur by some form of instability of the stringers,

modified by the effect of the attached sheet. The frames will remain

circular in cross-section. The only function of the frames in this case

will be to determine the end fixity coefficient of the stringers. The four

forms of instability which must be investigated for this type of failure

are as follows:

1. Buckling of the sheet between stringers and frames

Z. Crippling of the stringers

3. Torsional instability of the stringers

4. Lateral buckling of the shect stringer panel between frames

Although there are four distinct instability modes, the ultimate buckling

failure between frames of a stiffened cylinder subjected to bending is

usually a combination of these modes.

Buckling of the sheet between the stringers and frames does not

necessarily constitute an ultimate failure of the structure; howevers the
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buckling stresses, cr , of the sheet must be known to determine the
CS

stress distribution in the cylinder. The buckling stresses for this

mode may be calculated by the methods presented in Paragraph 3.2Z.1

on curved panels.

Crippling is a local instability failure of the elements of the

stringers and is defined as any type of failure in which the cross-

sections of the stringers are distorted in their own plane but not

translated or rotated. The length of the buckle involved in a crippling

failure is of the same order of magnitude as its cross-sectional

dimensions. A typical crippling failure is shown in the following

figure.
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Crippling generally occurs in stringers having wide thin flanges.

The crippling stress is defined as cr and may be determined by the
CC

usual methods of analysis of columns.

One of the procedures for computing the allowable crippling stress

of stringers with simple cross-sections willbe presented. This method

is primarily from Ref. 3-35. The stringer is broken up into parts as

shown in the following figure:

I
b2

t2

t3i
! •

ttl

t2

t31

_._b 3 '\_mDi

b 2
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The allowable crippling stress for the total stringer is

_cc = ecci A A i
=I

_cci = Cei _/-ffcyi Ei qi (ti/bi)

m : Number of parts the stringer is cut in

i : Subscript referring to part number

3/4

C e = Cel

C e = Ce2

a'cy

E

A i

C e = Material and shape parameter constant derived from

test specimens (see Table 3.40-1)

= If one edge is free such as parts 1 and 3 of preceding figure

= If both edges are attached to adjacent parts such as

part 2 in preceding figure

= Compressive yield stress of material

= Compressive modulus of elasticity of material

= Area of part

11 : Plasticity correction given by curve A if C e is
I

used and curve C if Ce2 is used (see Section 3.60)

_cci is below the proportional limit then qi = I. At higher
If

stresses, qi must be compatible with ¢cc i. _cc i must be less than ox'

equal to _cyi" The amount of sheet to include with the part of the

stringer attached to the skin depends on the method of attachment.
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TABLE 3.40-I

Return Flange Limitation:

C

b I must be >-1/3 b 2

b 2
L !

v !

b I

to consider the b 2 leg as continuous at both ends.

MateriAl

24S-T4 Bare, Extruded

C

e I

O. 312

C

e 2

O. 590

24S-T4

75S-T6Bare

75S-T6Clad

75S-T6Extruded

0.312 0.590

0.312 0.590

0.312 0.590

0.312 0.590

Tt 6AL-4V Annealed

(Formed)

Ti 6AL-4V Annealed

(Extruded)

TI 6AL-4V Heat Treated

(Formed and Extruded)

4130 Formed.

4340Extruded

1/2 Heat(301 Formed)

(303Extruded)

17-TPH Formed

17-TPHBxtruded

AM350 Formed. AM355

Ex_uded

0.304

O, 304

0.304

0.312

0.365

O. 333

O. 333

O. 333

O. 771

0.771

O. 771

0.735

0.800

0.631

0.631

0.631

Maximum Element

Stress (_cy)

40,000

36.000

71,000

66,000

70,000

126,000

120,000

150,000

175,000

85,000

158,000

176,000

165,000

Modulus

(E x 10 -61

10.5

10.5

10.5

10.5

10.5

15.8

15.8

17.0

29. 0

26. 0

30.0

30.0

28.6
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TABLE 3.40-I {CONT)

Material

Inconel X F_med

H-11 Formed and

Extruded

PH15-7Mo (cre@

Formed and Extruded

Rene'41 Formed

Ti 4AL-3Mo-lV

Formed

Ti 5AL-2.5 (Formed

and Extruded)

C

e I

O. 3O0

O. 296

0.300

0.300

0.304

O. 304

C

e 2

0.700

0.700

0.771

0.771

Maximum Element

Stress (%y)

105,000

280,000

220,000

130,000

160,000

115,000

Modulus

(E • 10"_

31.0

30.9

30.0

31.0

16.0

15.5

Torsional instability occurs when the cross-section of the stringer

rotates but does not distort or translate in its own plane. Typical

torsional modes of instability are shown in the following figure:

(a) A_tisymmetric
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(b) Symmetrical

The methods of analysis of torsional instability of stiffeners

attached to sheets, as suggested in Ref. 3-36, willbe described. For

the of cylinders with typical ring spacing, [d> (EriGF/k)I/4 lcase w I

the allowable torsional instability stress, _ct' for the mode shown in

the preceding figure is

whe re

G = Elastic shear modulus for stringer material

qA = Plasticity correction given by curve A in Section 3.62

E : Young's modulus for stringer material

rlG = Plasticity correction given by curve G in Section 3.62

I
P

= Polar moment of inertia of section about center of

rotation (in. 4)

-_J and --_--= May be obtained from Fig. 3.42-1 and 3.42-2 for
I I
P P

two commonly used types of stringers
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J = Torsion constant of the stringer

torque )GJ = twist per unit length

F= Torsional-bending constant (in. 6)

k = Rotational spring constant

b, d, = Stringer and frame spacing, respectively

I I I
- ÷

k kwe b kshee t

k
web

Et 3
w

4bw +6bf

ksheet = kl b

3
Et

S

k 1 = 1 for the symmetric mode

1 1/311 + 0.6
-%s)] ] for the antisymmetric mode

(%t

%. J

: Compressive buckling stress of the sheet
CS

(see Section 3. ZZ)

If _t < 4.33 _cs' the antisyrnmetric mode is critical. If

0-ct > 4. 33 *cs, the symmetric mode of failure is critical. Since kl,

qA" and qG depend on _ct' the solution for _ct is in general a

trial and error procedure. Start with the assumption that k I = 1,

qA = qG = I, calculate _ct' and correct for plasticity if required.
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Correct k I if required, and repeat procedure until desired convergence

is obtained. Then check to see if d > _ °

1/4

If d < _ the allowable torsional instability stress

is

_ct = G qA + I + I
P P

where

and J/I and
P

_---l-l-_I may be obtained from Figs. 3.42-1 or 3.42-2.
P

The formulas which have been presented maybe used for stringers

with sections other than those shown in Figs. 3.42-1 and 3.42-2 if the

values of I , J and Fare known.
P

Lateral buckling of the sheet stringer panel between frames is

essentially a column instability in which the cross-section of the

stringer translates. It is customary to idealize the sheet-stringer

as a column with length equal to the frame spacing, d. The lateral

buckling stress of the sheet-stringerpanelisdefinedas ecp" If no

restraint exists normal to the sheet stringer panel, it is free to buckle
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FIG. 3.42-I. TORSIONAL SECTION PROPERTIES FOR LIPPED

Z STRINGER - SHEET PANELS
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625



FIG. 3.4Z-Z. TORSIONAL SECTION PROPERTIES FOR.

J STRINGER-SHEET PANELS

o. F

.06

.04 !

.02 ! 3 _

0
! 3

m

s 7 o-
bw

5 bw
m

r

i

qb.

i
i

i

.0!

J..- bf -._

]11

]1_

;I]
III
II]
!11
I1[
]1]

]i]
Ilt
]1;
Ill
ill

_,_i

ii[
IIJ
Ill
[11

---t

! i J. ! !

i-_l-Tt
• . !

i i i. : :
J i i i i

- j: : : i :

! ! ! i.,
i

i ! j i _
a

Ii,iii 
j iiii ii,,
II]I",.

I | | I Im

9 I! 13

626



in alternate in-and-out waves in which the frames are nodes.

case,

fixity,

In such

the panel will act as a pinned end column and the effective end

c, is equalto 1.0. Because of the curvature of the sheU, a

certain restraint to the outward buckle mode will exist because that

deflection mode will involve some stretching of the sheet in the hoop

direction. This restraint as well as the torsional restraint of the frame

willtend, in general, to provide an effective end fixity coefficient in the

sheet-stringer column that is somewhat greater than 1.0.

A satisfactory means of determining c is not available at the

present time and the use of fL<ity coefficients greater than 1.0 must

be substantiated by tests.

The buckling stress of the sheet-stringer panel depends on the

effective width of skin, w e , which is acting with the stringer• Two

common examples of effective width of sheet are shown in the

following illustrations:

(a) Single Line Attachment (b) Double Line Attachment
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For calculating the effective width of sheet acting with a stiffener,

the following equation has been found to give results consistent with tests:

w e = . 85 t s r]

where

_rcr = _rcp

ecp = Lateralbuckling stress of sheet stringer panel

When Grcr is known, _cr/rl may be found using curves C in Section 3.62.

Other methods of obtaining w e are available (Ref. 3-3Z) but, in

general, the difference will be small if the skin does not carry a large

percentage of the load. _cp depends on the radius of gyration, P, of the

sheet stringer colurnn which, in turn, depends on We; therefore, an iteration

procedure is needed to determine ecp" In addition, there may be an

interaction between the lateral buckling of the panel and the torsional

buckling or crippling of the stringer. The following procedure is

recommended for determination of the allowable stress for the sheet

stringer panel,

628



1. Determine the radius of gyration of the stiffener cross-

section about the centroidal axis

2. Determine the effective slenderness ratio L'/P of the

stiffener alone

e

L' d

p -_p

Determine the crippling stress, _cc,and the torsional

instability stress, _ct* The lower of these two stresses,

, determines the intercept (L'/p = o) of a modified
o

Johnson parabola and defines a complete column curve,

as can be seen in the following illustration.

---\ _ .ZE

\_ Tangent _ -__r %p = (I..'/p)Z
Xodulum ".

o-o \\ : .zE_

!

L'/p

629



4. Using the column curve and the slenderness ratio determined

in steps I, 2, and 3, record the value of _cp"

S. Compute the effective width of sheet acting with the stiffener.

6. Use the curves in Fig. 3.42-3 to compute p of the stiffener

plus effective sheet. Ast and Pst are the area and radius

of gyration of the stringer, respectively.

7. Compute L t/p for the new value of p.

8. Enter the column curve a second time with the new Lt/p

and record the corrected value of _rcp.

9. Repeat steps 5, 6, and 7 u_til satisfactory convergence to

a final stressj _cp'iS obtained. Convergence generally occurs

after two or three iterations.

10. The allowable load, Pcr' for the skin stringer combination with

single line attachment is

p = cr _(Ast + 2 Wcr cp e t )+ • (b- 2 We) tS C8 S

The preceding analysis assumes that the skin stringer panel

between the frames buckles as a column and neglects the stiffening

effect of the curvature. If the stiffeners are close together, the

formula given in Paragraph 3.33. I for axially stHfened cylinders may
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be used to account for the effects of curvature. If c _2/(d/p)2 is

3ts [ I 1/2 the effects of curvature is less
equal to--_- t tsb/(Ast ÷ 2 w e )

2t_._s tsb/(Ast ÷ 2 We)
than approximately 5 percent. As R

becomes greater than c = 2/(d/p )2 the effect of curvature becomes more

important.

C. General Instability

The general instability type of failure wiU occur in a structure

which has frames and stringers that fail simultaneously under

the critical load; that is, collapse takes place in a manner so as to

destroy the load-carrying properties of ail three structural elements_

sheet, frames, and stringers.

Of the two possible types of general instability failures for

cylinders subjected to bending, one is characterized by a general

flattening of the cylinder. Both theory and experiments indicate that

for general flattening to occur, the length-diameter ratio of the cylinder

must be so large that it is completely out of the range of most aero-

space structures. (See Ref. 3-37.)

The second class of general instability failure is one in which the

wave form of the buckle is multilobed and has, in general, an axial

wavelength less than the length of the cylinder but greater than the
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frame spacing. The buckle form corresponds to the usual "diamond-

shaped" wave pattern which is observed in the failure of unstiffened

cylinders under compressive loads.

Two different methods of general instability analysis are

frequently considered for stiffened shells subjected to compressive

loads. One method of analysis distributes the stiffnesses of the frames

and stringers over the entire cylinder and then uses orthotropic shell

theory to analyze the cylinder. This method, which is useful if the

stringers and frames are relatively close together, is presented in

Section 3.30; however, the test results of Ref. 3-33 show that this

method may be unconservative for large stiffener and frame spacings.

The second method is the semi-empirical approach presented in

Ref. 3-33 which was done when there was little in the way of theory to

serve as a guide. By means of a dimensional analysis in conjunction

with the behavior of unstiffened circular cylinders, a nondimensional

parameter, Qb' was derived to correlate test data. It is believed that

this method should be used for the analysis of frame stringer stiffened

shells subjected to bending until the range of application of the first

method is established,

The design-allowable general instability stress, _cr' for a frame

stringer stiffened cylindrical shell subjected to bending may be obtained

from the following formula which was given in Ref. 3-33.
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0"cr

- CEQ b
*]

1 _4[ Ps 3 pf 3

Qb : -R _/ bd

where

C = 4.2

Radius of gyration of the frame sheet combination

Radius of gyration of the stringer sheet combination

Youn_s elastic modulus of the materialm ._

b,d = Stringer and frame spacing, respectively

= Maximum stress due to bending moment (e. g., out
cr

fiber stress)

The value of C = 4.2 is based on the test data for 67 cylinders as

reported in Ref. 3-33. This value of C agrees well with three of

six tests reported more recently in Ref. 3-38 and was conservative for

the other three tests.

The effective sheet to use with the stringers to determine

Ps may be obtained from

we _
--o.447V -J

while for the frames, the total width, d,

will aid in the computation of Ps and pf.

should be used. Fig. 3.42-3

An iterative procedure is
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necessary if the full width of skin cannot be used to compute

elastic buckling, q = 1 is used. In the inelastic range,

Ilr
cr

Ps" For

the critical stress

can be found using curves A of Section 3.62.

The frames must be attached to the skin between stiffeners and

the frames and stringers must be continuous if C = 4.2 is used. It can

be seen that the preceding analysis does not depend on whether the

stiffeners are inside or outside. Experimental and theoretical investi-

gations (Refs. 3-39 and 3-40) have shown that there can be an

appreciable difference between the buckling load of a cylinder with the

stiffeners on the inside and the buckling load for the same cylinder with

the same stiffeners on the outside. The theoretical equations are

complicated, anda computer program is required to determine the

buckling loads. There is no simple procedure available at the present

for predicting the difference in buckling load due to locating the

stiffeners on different sides of the sheet.

It can also be noted that the formula for v is independent of
cr

length and boundary conditions. It is difficult to determine how long

the cylinder must be to be independent of length and edge effects. An

estimate of whether the buckling load is independent of length for a

given edge fixity can be obtained from Paragraph 3.33.1.

If the primary loading of a stiffened cylinder is bending, the

frame stiffness necessary to ensure a general instability failure
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rather than panel

formula

instability can be estimated from the following

M (zR)z
EIf = Cf d

where

Cf
= 6.84 x 10 -5

EIf = flexural stiffness frame requirement

M = applied bending moment

Several values of Cf have been suggested in the literature but

Cf = 6, 84 x 10 .5 , as suggested in Ref. 3-41, is recommended because

it is slightly more conservative and does have some theoretical

justification. For frames with flexural stiffnesses greater than Elf,

the increase in the strength of the cylinder when subjected to bending

is a relatively small increase in the effective edge fixity of the panel.

The value of frame stiffness found in this manner is only approximate,

and each mode of failure should be investigated separately to determine

a final frame stiffness,
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3.43 FRAME-STIFFENED CYLINDERS

3.43. 1 Lateral and Axial External Pressure, Frame-Stiffened Cylinders

If a cylindrical shell with frames (circumferential stiffeners)

is subjected to lateral and axial external pressure, it may fail in three

distinct ways. The types of failure will be classified as material failure,

buckling between frames, and general instability. A brief discussion of

these failure modes is presented in this manual. A more detailed

discussion of frame-stiffened cylinders subjected to external pressure

is presevted in Ref. 3-4Z.

A. Material Failure

For purposes of analysis, the stress deflection distribution of a

cylinder prior to buckling can be assumed to he axisymmetric. There-

fore, the analysis methods of Chapter Z.00 can be used to determine the

stresses in the cylinder. A more detailed procedure is discussed in

Ref. 3-43. The actual stresses must be compared against the material

allowable stresses. In addition, the compressive stress in the frame

must be compared against the local buckling stresses of the frame.

B. Buckling Between Frames

This failure will occur in a cylinder having relatively heavy

frames. The sheet will buckle between frames and the frames will
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remain circular in cross-section. The allowable buckling stress for

this mode of failure can be obtained from Paragraph 3.22.4, using a

cylinder length equal to the frame spacing. A more detailed method of

analyzing this mode of failure is presented in Ref. 3-44.

C. General instability

General instability of failure will occur when the frame buckles

with the sheet at the critical load. The design allowable general insta-

bility pressure, Pcr' for a frame-stiffened cylinder subjected to lateral

and axial external pressure can be obtained from

_ YE [p ÷pfj
Pcr 30 x 106 s

P
s

where

E = Young's modulus of the material (the frame and sheet must

Pf

be made from the same material)

I

Can be obtained from Fig. 3.43-1 if e-- x 106 <I0 and from

I dR 3

Fig. 3.43-2 if e 106x zlO

dR 3

Can be obtained from Fig. 3.43-3 or 3.43-4

The quantity, Pcr' must be computed for n = 2, 3, 4, and 5;

its lowest value is the critical allowable buckling pressure. This

graphical method for determining P s and pf was obtained from

Refs. 3-45 and 3-46, which are based on Ref. 3-47. Reference 3-47
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analyzes simply supported cylinders. The test results of Ref. 3-48

indicate an appreciable increase in buckling pressure due to edge fixity,

but a method of including these effects for design purposes has not been

developed.

The parameter, y , is introduced to reduce the theoretical results

of Ref. 3-47 to avalue which may be used for design purposes. It is a

function of many variables such as initial out-of-roundness of the

cylinder. For the test data given in Refs. 3-48 and 3-49, ¥ = 1 is

adequate. However, the cylinders in Refs. 3-48 and 3-49 were machined

to very cloce tolerances. Presently, it is not known what value of Y

(121e_ 3/2 L 2 >4 x 103 , ¥: 0.9 is probably
to use, but for \dts / ts4R

reasonable.

The value of I required in Figs. 3.43-3 or 3.43-4 can be calcu-
e

lated from

Ale 2 d t3
e s

I - +If÷--
e Af 12

i-
e s

where

Af, If = area of the frame and moment of inertia of the frame about

its own neutral axis, respectively

= distance from the middle surface of the sheet to the

centroid of the frame
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d - (d - t ) FI + te w

t = frame web thickness
w

The value of F 1 can be obtained from Fig. 3.43-5. Parameter

k Z in Fig. 3.43-5 is a function of Per' which is unknown. A good

approximation can be obtained by using k2 = 0. For cases in which

k3< 2, this approximation gives results within 5-percent accuracy.

For the loading case of external pressure, Ref. 3-50 states

that a cylinder with frames on the inside will be stronger than a

cylinder with frames on the outside if Z >500, where

Z = (1 }2) l/Z L 2 /Rt . If the frames are on the inside and Z > 500, the
s

results will be slightly conservative because the curves presented are for

external frames. Therefore, the curves presented will probably be con-

servative if the frames are located on the outside because most stiffened

cylinders fall in the range Z > 500.

If the parameters for a particular design do not fail in the range of

parameters presented in Figs. 3.43-3 and 3.43-4, the following formula

(given in Ref. 3-37) can be used to estimate the design allowable external

pressure

Pcr =

3/4

5.5 ¥ I_ I) ts 1/4
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if

12 Ie._ 3/2 l L 2

The theoretical results of Ref. 3-47 were reduced I0 percent for

design purposes, andithas been found that the theory of Ref. 3-47

predicts buckling pressures that are, in some cases, 80 percent of the

theoretical results given in Ref. 3-37; therefore, Y = 0.8 x 0.9 - 0.72

can be used in the preceding formula to obtain the design allowable

buckling pressure.

A simple method of including plasticity in the preceding formulas

is not available, but an estimate can be obtained by using the plasticity

correction factor suggested in Paragraph 3.23.4. A more detailed

procedure is presented in Ref. 3-51.
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FIG. 3.43-2. SHELL PRESSURE FACTOR (Ps) AS A FUNCTION OF
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FIG. 3.43-3. FRAME PRESSURE FACTOR (pf) AS A FUNCTION OF

FRAME STIFFNESS (Ie/dR _)
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FIG.
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FIG. 3.43-5. STRESS FUNCTION FOR DETERMINING EFFECTIVE LENGTH
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3. 50 SANDWICH SHELL.S

3.51 GENERAL

Sandwich-type construction is a composite construction consisting

of three layers bonded together. The middle layer of the sandwich is the

core; the outer two layers are the facing sheets. Generally, the facing

sheets are very thin relative to the overall thickness of the sandwich

and the elastic modulus of the facing sheet material is much larger than

the corresponding effective modulus of the core. The primary difference

between sandwich shells and orthotropic or isotropic shells is the

relatively low transverse shear stiffness of the sandwich constructionj

therefore, the transverse shear stiffness must be included in the

analysis.

Generally, sandwich construction should be analyzed for three

modes of failure: (1) material failure, in which the applied stresses

exceed the material allowable stresses; (2) general instability failure,

in which the whole shell fails with the core and facings acting together;

and (3) local instability failure, in which the facing sheet fails because

it is not sufficiently stabilized by the core. (The forms of local

instability for sandwich construction with honeycomb core are intraceU

buckling and wrinkling. Design formulas for these two modes of local

instability are given in Section 3.52. }
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Although a considerable amount of theoretical information is

available concerning the general instability of sandwich shells,

not enough test data available to obtain design curves directly.

fore, the design curves for homogeneous isotropic shells are used to

reduce the theoretical buckling loads for sandwich shells to design

allowable buckling loads°

there is

There-
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3. 52 LOCAL INSTABILITY

3. 52. 1 Intracell Buckling

If the core of a sandwich is constructed of cellular (honeycomb)

material, it is possible for the facings to buckle or dimple into the

spaces between core walls. Dimpling of the facings may not lead to

failure unless the amplitude of the dimples becomes large and causes

the dimples to grow across the core cell walls, resulting in wrinkling

of the facings. Dimpling that does not cause total structural failure

may be sufficiently severe that permanent dimples remain after

removal of the load.

The design allowable uniaxial intracell buckling failure stress,

can be obtained from the formulas given in Ref. 3-4:0" ,
cr

_cr KLE

ri - 1 =_Z

where

E = Young's compression modulus of elasticity of the facing sheet

= Possion's ratio of the facing sheet

The coefficient, KL, can be obtained from Fig. 3.52-1.

For elastic buckling, the plasticity correction term _I = I is used.

In the inelastic range, Ref. 3-52 recommends

2E
t

E+E
t

649



V

For most materials, curves E l of Section 3.62 are a sufficiently

accurate representation of this plasticity correction.

It should be noted that the formula for obtaining 0- is based pri-cr

marilyontest data from brazed flat honeycomb sandwich panels with

PH 15-7 Mo core and facings. Limited test results indicate that the

formula may be used for other types of materials and bonding methods.

It can be seen that the formula for computing _ is independentcr

of the foil thickness of the core and does not include any interaction

between a wrinkling failure and an intercell buckling failure. Until an

adequate method of analysis is developed which includes all the impor-

tant variables, it is recommended that a limited number of compression

tests be conducted to verify a design that may be critical in intercell

buckling.

If an element of a sandwich shell is subjected to in-plane shear or

combined loadings, the maximum principal compressive stress in the

facing sheet should be compared against • to determine if intracell
cr

buckling may occur. If the stress normal to the maximum principal

compressive stress is a tensile stress, the proceding formulas for

is probably adequate. If this stress is a compressive stress, Ref. 3-52
cr

indicates that the following reduction of • is necessary:
£r

_cr KL E

 'l+s 3 (1- z)
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where

S __
minimum principal compressive stress in facing

maximum principal compressive stress in facing

Dimples may occur at stress levels less than 0"cr, but the sand-

wich will carry more load. An estimate of the stress, aro, at which

initial dimpling may occur is given in Ref. 3-53 as

Z

_o _ E _s)

t = thickness of facing sheet

s = cell size of core

For elastic buckling, the plasticity correction term, q = 1, is

used. In the inelastic range, the stress,

G in Section 3.62.

It should be mentioned, however,

with very thin facing sheets, dimples in the facings can sometimes be

observed before the sandwich is loaded. These dimples are the result

of the manufacturing procedure.

Although the intracell buckling formulas are based on data for

flat panels, they are adquate for curved panels because the cell size

is usually much less than the radius of curvature°

_o ' can be found by using curves

that for sandwich construction
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FIG. 3. 52-1• INTRACELL BUCKLING COEFFICIENT
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3. 52. Z Face Sheet Wrinkling

When a facing sheet of a sandwich element is subjected to axial

compression, face sheet wrinkling may occur.

to buckling of a plate on an elastic foundation.

for wrinkling are shown below.

This failure is similar

Typical buckling modes

ASYMMETRIC

The resulting failure mode will depend on the flatwise compressive

strength of the core relative to the flatwise tensile strength of the bond

between the facing core. Typical wrinkling failures are shown below.

"-3

paration from core

_/----core cruihing
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If the bond between the facing and the core is strong, the facing

can still wrinkle outward by causing tension failure of the core.

It can be seen that the wrinkling load depends on the stiffness

and strength of the foundation system. Since the facing is never

flat, the wrinkling load will also depend on the initial facing eccentricity

or original waviness. A method of analysis which includes these varia-

bles is given in Ref. 3-54. One method of determining the initialwavi-

ness parameter needed in Ref. 3-54 is presented in Ref. 3-55. How-

ever, until the analysis in Ref. 3-54 is developed, for design purposes.

the following wrinkling analysis from Ref. 3-52 is recommended. A

limited number of tests should be conducted to verify the analysis pro-

cedure for a particular sandwich configuration.

The iv_formation on wrinkling of sandwich facings pertains primar-

ily to flat panels. However, it is adequate for shells because the wave-

length of the buckle is small relative to the radius of curvature.

The design allowable uniaxial compressive wrinkling stress, _r

can be obtained from

_-_= K L _ E E c G c

cr

where

K L = 0. 43
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E - Young's compressive modulus of elasticity of the facing sheet

E - flatwise compression modulus of the core (in a direction
c

normal to the surface of the shell)

G = transverse shear modulus of the core in the direction of the
C

maximum compressive stress

For elastic buckling, the plasticity correction term, _ = 1, is

used. In the inelastic range, Ref. 3-52 recommends

.3E t + E s
rl= 4E

For most materials, curves C of Section 3.62 are sufficiently

accurate representations of this plasticity correction coefficient.

If an element of a sandwich shell is subjected to in-plane shear or

combined loadings, the maximum principal compressive stress in the

facing sheet should be compared against ecr to determine whether wrinkling

will occur. Theoretically, it has been shown that the wrinkling stress

is unaffected by the stresses normal to the maximum compressive

principal stress. However, Ref. 3-52 has indicated that if the princi-

pal stresses are both compression, the following reduction inKis

necessary:

.43

KL = _/1 +S 3
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where

minimum principal compressive stress in facing

maximum principal compressive stress in facing

For a sandwich with orthotropic core, wrinkling should also be checked

in the direction in which the shear modulus of the core is lowest.
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3. 53 CYLINDERS

3. 53. 1 Axial Compression, Sandwich Cylinders

The curve presented in Ref. 3-56 will be used to determine the

buckling stress for sandwich cylinders subjected to axial compression.

The results are applicable to a sandwich with homogeneous isotropic

unequal facing sheets with orthotropic core that does not carry in-plane

loads. The design allowable buckling stress is

_crq _ YiCc ERh ', 2_2--2

Jl- z(t l*tz )

where

E = Young's modulus of the facing sheet material

= Possion's ratio of the facing sheet material

Gxz, Gsz= transverse shear moduli of the core in the longitudinal

and circumferential directions, respectively

The buckling coefficient, C c, and a definition of the geometrical

parameters are given in Fig. 3. 53-1. The correction factor,_, was

introduced to reduce the theoretical results of Ref. 3-56 to values

that can be used for design purposes. The factor Y1 can be obtained from

Fig. 3.33-6 where

P: _/tlt2h2/(tl+ tz)
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Existing test data show that the value of VI May be conservative for

some values of the parameters, but a sufficient number of tests have

not been conducted to justify increasing the value of ¥1"

The method for obtaining ¥ 1 is discussed in Paragraph 3. 33. 1 for

orthotropic cylinders. This method would be consistent if the shear

stiffness of the core<is large (i.e., whenV c is small). Due to man-

ufacturing limitation and local instability problems, V c is usually

small. However. ifV c is large(i.e., whenV c > 0. 5),VI would

approach 1. There is not enough information available to obtain ¥1

as a function of Vc; therefore. Fig. 3.33-6 should be used to obtain¥ 1,

for all values ofV c < 0.5.

The curve presented in Fig. 3. 53-1 is for a sandwich with very

thin facing sheets (c/h = 1). For small values of c/h, the results of

Fig. 3. 53-1 may yield excessive error for certain values of the

parameters. For values of c/h > 0. 9, Fig. 3. 53-1 should be adequate

for V c > 0. 5. Sandwich cylinders subjected to axial compression must

be analyzed for local instability as discussed in Section 3. 52.

For elastic buckling, the plasticity correction term, r_ = 1, is

used. In the inelastic range, an estimate of the stress, Crcr. can be

found by using curves E l in Section 3.62. The parameter V c is a

function of the stress level for stresses above the proportional limit.
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By assuming V s is independent of the stress level, the results will be

conservative. For most practical designs, the difference will be very

small.

References 3-62 and 3-63 may be used to obtain buckling loads

for sandwich cylinders with corrugated core subjected to axial

compression.
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FIG. 3.53-1. CLASSICAL BUCKLING COEFFICIENT FOR SANDWICH

CYLINDERS SUBJECTED TO AXIAL COMPRESSION

C C

1.2

1.0

0.8

0.6

0.4

0.2

if!_+
ii

, ,

_÷+ ++

!I_ It
r,, |1

:T

• 11 ii

It

-ii ++

!t !t
++

Gxz

G0z

H
++

.,,-4-
.+

+i
+,..

;E
tt

it

!I
÷+

0

lilt

ii!jiii+j+ !
!+ti+iitii,_

!!:'+'_"i'it!+t_ti. !

l!ti!!lli_

i!tjilti

lt!tiI!!._
_!1!ttti_ii

!++[!
+++

I;1 iI

.!i

tI"l

+,,

f_t

+;i
p_

I!T

::++

ZI

ltl

:H
.ii

0° 2

V C

660



3.53.2 Torsion of Shear, Sandwich Cylinders

The curves presented in Ref. 3-57 will be used to determine the

buckling stress for sandwich cylinders subjected to torsion. The

results are applicable to a sandwich with homogeneous isotropic unequal

facing sheets and an orthotropic core which does not carry in-plane

loads. The design allowable shear buckling stress is

where

Tcr h I

-V-= E

E = Youngs' modulus of the facing sheet material

G o = transverse shear modulus of the core in theGxz' z

longitudinal and circumferential directions, respectively

A definition of the geometrical parameters and C s can be obtained from

Figs. 3.53-2 through 3. 52-7. The correction factor, Y, was introduced

to reduce the theoretical results of Ref. 3-57 to values that can be used

for design. Y can be obtained from Fig. 3.33-8.

where

P =_/tl tzhZ/(tl + t Z)

The method for obtaining Fig. 3.33-8 is discussed in Paragraph 3.33.2

for orthotropic cylinders. The correction factor used in Para-

graph 3.33. Z and this section would be consistent if V s is small (i. e.,
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a core with relatively large shear stiffness). Due to manufacturing

limitations and local instability considerations, V s is usually small.

However, if V s is largep _ will approach 1 for all values of R/p. There

is no information available to obtain Y as a function of V s.

Figure 3.53-3 predicts results that are, at most, about 6-percent

higher than the resultsofRef.

simple supports. Therefore,

3-58 for isotropic sandwich cylinders with

the results presented in Figs. 3.53-2 through

3.53-7 are probably sufficiently accurate for cylinders with simply

supported edges.

Sandwich cylinders subjected to torsion must be analyzed for local

instability, as discussed in Section 3.52. For elastic buckling, the

plasticity correction term, 'l = 1, is used. If the stresses are above

the proportional limit, the procedure discussed in Paragraph 3.22.2 can

be used. The parameter,V s, is also a function of the stress level for

stresses above the proportional limit. By assuming that V s in independent

of the stress level, the results will be conservative. For most practical

designs, the differences will be small.

References 3-62 and 3-63 can be used to obtain the buckling load

for sandwich cylinders with corrugated core subjected to torsion.
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3. 53.3 Bending, Sandwich Cylinders

The formula presented in Paragraph 3.53. 1 can be used to deter-

mine the design allowable buckling stress for unpressurized sandwich

cylinders subjected to bending if YI is obtained from Fig. 3.33-9.

P-- _tl t2 h2/(t/ 1 + t2)

For bending, _ is the maximum compressive stress due to the bending
cr

moment (outer fiber stress). Figure 3.33-9 is based on the correction

factors used to modify the small deflection theoretical results for

homogeneous isotropic cylinders subjected to bending.

Existing test data show that the value of YI may be conservative

for some values of the parameters, but there has not been a sufficient

number of tests conducted to justify increasing the value of YI"

3. 53.4 Lateral External Pressure, Sandwich Cylinders

The curves presented in Ref. 3-59 will be used to determine the

buckling stress for sandwich cylinders with simply supported edges sub-

jected to lateral externalpressure. The results are applicable for a

sandwich with isotropic facings of equal or unequal thickness and of the

same or different materials. The core material may be orthotropic or

isotropic but may not carry in-plane loads. The design allowable
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buckling pressure is

whe re

_/Cp (E It I + E 2t 2)

Pcr = (I - 2) R

E l , E 2 = Young's moduli of the outer and inner facing sheets,

re spe ctive ly

Gxz, GSz = transverse shear moduli of the core in the longitudinal

and circumferential directions, respectively

= (_iEltl + _2Ezt2 )/(Elt I + Ezt 2)

_I' _2 = Poisson's ratios of the outer and inner facing sheets,

respectively

The buckling coefficient, Cp , and a definition of the geometrical

parameters may be obtained from Figs. 3.53-8 through 3.53-23, The

coefficient _/ was introduced to reduce the theory presented in Ref. 3-5 <)

by the same percentage as the theory for homogeneous isotropic cylinders

was reduced to obtain the curve presented in Fig. 3.23-7. Therefore, if

Z
P

IEI tl +E2t2) RL_II._21 I/2

_12 E l t I E 2 t2

¥= 0.9 for Z > I0 2
P

¥= I -Z x 10 -3 for Z <10 2
P P
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For large values of L/R,
L

it can be seen that C becomes independent of_.P

The design allowable buckling pressure can then be obtained from

where

3_D 0

Pcr :
R3 I1+4%/ ( 2G0.h)]

E l t I E 2 t 2 h 2

D O :

(l - 2) (E Itl + E2t2 )

The pressure, Per' is the design allowable pressure for corn-

plete buckling of the cylinder (e. g., when buckles have formed all the

way around the cylinder). For some values of the parameters, single

buckles will occur at pressure less than Pcr; therefore, if single

buckles are not allowable for a particular designj the results of this

section may be unconservative. In addition, if single buckles occur at

pressures less than Pcr' the resulting stresses may fail the core,

causing a complete collapse of the cylinders. However, sandwich

shells are generally relatively stiff with only small initial imperfection;

therefore, for most cases, sandwich shells will be considerably less

likely to have single isolated buckles at pressures less than the design

allowable pressures which have been given.
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The curves presented in Figs. 3.53=8 through 3.53-23 are for a

c =1). For small
sandwich construction with very thin facing sheets (_

c
values of _, the results of Figs. 3.53-8 through 3.53-23 may yield

excessive errors for certain values of the parameters. For values

c
of K > 0.9, the curves should be adequate.

Sandwich cylinders subjected to lateral pressure must be analyzed

for local instability as described in Section 3.52. If the stresses are

above the proportional limit and both facing sheets are made of the

same material, the procedure discussed in Paragraph 3.23.4 can be

used. The parameter, Vp, is also a function of the stress level for

stresses above the proportional limit. By assuming that V is indepen-s

dent of the stress level, the results will be conservative. For most

practical designs, the difference will be small.

References 3-62 and 3-63 may be used to obtain buckling loads

for sandwich cylinders with corrugated core subjected to external

pressure.
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FIG. 3.53=10. VALUES OF C FOR V
P P

= 0, AND FOR

R

E l t 1

E 2 t2

P

Cp

O. 000)

i i .

-3

00002,

......0.000006_

0.000001

10

LIR

675



FIG. VALUES OF C FOR V = 0,
P P

R

AND FOR-
E L t I

E z t z

P

=4

Cp

O. 00000(

I0

L/R

40

676
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FIG. 3.53-18. VALUES OF C FOR V = L, AND FOR--
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FIG. 3.53-23. VALUES OF C FOR V = 1.5, AND FOR--
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3. 54 CONES

3. 54. 1 Axial Compression, Sandwich Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24. 1 may be used. The cone

shown in Fig. 3,34-1a can be analyzed as a cylinder with a radius

R e = Rl/COsaand length L. The design allowablestress,Crcr , for t.heequiva-

lent cylinder can be obtained from Paragraph 3. 53. I. The design allow-

able total compressive load for the cone may be obtained from

P = 2_R _ (tI + t2) cos2o
cr • cr

This method of analysis should be used with caution and should be

limited to cones with a < 30 degrees.

3. 54.2 Torsion, Sandwich Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24. Z can be used for sandwich

cones subjected to torsion. The cone shown in Fig. 3.34-Ib can be

analyzed as a cylinder with a radius

R
e

= I+

l/Z

and length L e = L/coso .

The design allowable shear stress,

cylinder can be obtained from Paragraph 3.53.2.

-1/Z

Tcr, for the equivalent

The design allowable

689



torque for the cone can be obtained from the equation

T = 2_R 2 T (t 1 +cr e cr t2)

The design allowable shear stress for the cone should be based on tcr.

This method of analysis should be used with caution and should be

limitedto cones with_< 30 degrees. For inelastic stresses, the

reduction of v due to plasticity should be based on the stresses at the
cr

smaller end of the cone and not on the stress of the equivalent cylinder.

3.54.3 Bending, Sandwich Cones

Until additional iv_formation is available, the equivalent cylinder

approach recommended in Paragraph 3.24.3 can be used for sandwich

cones subjected to bending. The cone shown in Fig. 3-34-Ic can be

analyzed as a cylinder with a radius R e = R1/cosaand length L. The

design allowable stress, ¢cr' can be obtained from Paragraph 3.53.3.

If the stresses are elastic, the design allowable moment for the cone

can be obtained from

M =-R12 _cr (tl + t2) c°s2a

This method of analysis should be used with caution and should be

limited to cones with_ < 30 degrees.
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3.54.4 Lateral External Pressure. Sandwich Cones

Until additional information is available, the equivalent cylinder

approach recommended in Paragraph 3.24.4 can be used for sandwich

cones subjected to lateral pressure as shown in Fig. 3.34-1d. The cone

can be analyzed as a cylinder with radius Re = (RI ÷ R2)/(2 cos a) and

length L. The design allowable buckling pressure, Pcr' can be obtained

from Paragraph 3.53.4.

For inelastic stresses, the reduction of Per due to plasticity

should be based on the stresses at the larger end of the cone and not on

the stress of the equivalent cylinder. This method of analysis should be

used with caution and should be limited to cone with _< 30 degrees.
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3.60 INELASTIC BUCKLING

3.61 GENERAL

The formulas presented to determine the allowable buckling load

are based primarily on theoretical results which have assumed that the

compressive modulus of the material is a constant. If the buckling

stress is below the proportional limit, this is a reasonable assumption;

if the stresses are in the inelastic range, however, the modulus of the

material becomes a function of the stresses. The modulus of th,

material decreases at inelastic stresses; therefore, there is a

decrease in the stiffness of the shell and a corresponding decrease in

the buckling load.

The Euler formula, which was derived for an elastic column, is

used for the case of inelastic buckling of a column. However, the

elastic modulus in the formula is replaced by the tangent modulus of

the material. The agreement between the predicted buckling stress and

test data has been quite good. It is considerably more difficult to include

the effects of plasticity for shells. Methods have been developed but, in

general, they are quite complicated, and computer programs are needed

to obtain results. Plasticity corrections factors derived for some types

of loadings and shells are briefly discussed in the next section. Until

additional information is available this method is recommended as a

simple way to account for the effects of plasticity on the buckling load.
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3. 62 PLASTICITY CORRECTION FACTOR

The effect of plasticity on the buckling of shells can be accounted

for by the use of the plasticity coefficient, q . This coefficient is

defined by the ratio

_rcr
Tl -

0" e

whe re

= the actual buckling stress
cr

tr = the elastic buckling stress(the stress at which buckling
e

would occur if the material remained elastic at any stress

level)

The elastic buckling stress, therefore, is given by the equation

_rcr
Gr -

e rl

The definition of vl depends on _rcr/ _re , which is a function of the

loading, the type of shell, the boundary conditions, and the typ. e of

construction. For example, the B recommended in Ref. 3-7 for

homogeneous isotropic cylindrical shells with simply supported edges

subjected to axial compression is

llZ
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where E t, E , and _ are the tangent modulus, secant modulus andS

Poissonts ratio, respectively, at the actual buckling stress, and _ e is

the elastic Poisson_s ratio.

For a given material, temperature, and q, a chart may be pre-

pared for _ /rl versus v . By first calculating the elastic buckling
cr cr

stress, _rcr/T l, the actual buckling stress Crcr can be read from the chart

of arcr/rl versus a- . This method eliminates an iterative procedurecr

which would otherwise be necessary.

The formulas for rl are, in general, determined theoretically

and the testing performed to evaluate the theoretical rl provides only

qualitative agreement. In addition, the number of charts of _ /rl versus
cr

¢r necessary to cover all combinations of materials, temperatures,
cr

loadings, shells, boundary conditions, and types of construction would

be excessively large and, in many cases, the curves would be very

close to each other.

To reduce the number of o- /_ versus o- curves, only the _ Is
cr cr

defined in Refs. 3-7 and 3-60 will be presented because these curves have

already been computed and, in general, cover the range of possible rl

within the accuracy of which the actual rl is known. The curve that

gives the best agreement with experimental and theoretical results of

shell structures will be recommended wheriever possible.

694



Figs. 3.62-I through 3.62-27 present curves of _r /vl versus
cr

_r for materials and temperatures commonly encountered in the
cr

aerospace industry. In many cases, the curves are so close together

that they' are drawn as one curve.

The rlWs used to determine each curve are defined as follows:

Curve

A

B

C

D

E

F

G

E l

q

E
$

E

0. 330 + 0. 670 2+ {I-i_

2 +

0.352 + 0.648 + (1 - _ )

_2 Es Z) Et

E s E t

0.046 _ + 0.954 _ _ = 0.33

E 1

E t

E

xlZ
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The formulas for rl for curves A through G were obtained from

Ref. 3-60, which is based on Ref. 3-61. However, Ref. 3-61 assumes

= 1/2. The constants outside of the radical for curve B differ from

Ref. 3-61 due to a correction that was made. Although the value of

is a function of the stresses for stresses in excess of the proportional

limit, the plasticity curves were obtained assuming the conservative

value of _ : 1/3. The difference between using the value of bt - 1/3

and _t = 1/2 is small except for curves E and F.

It is worth noting that for curve A, ri - E /E; for curve G,s

q : Et/E and, on the remaining curves, rl is a function of both E t and

E • It can be seen that curve A and curve G bound the range of q.
s

Curve G is the most conservative while curve A results in the smallest

possible reduction in the buckling load due to plasticity.
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FIG. 3.6Z-I. 2014-T6, -T651 ALUMINUM ALLOY SHEET AND PLATE

SPECIFICATION MB0170-00Z

PLASTICITY CORRECTION CURVES (-423 F, -300 F)

260 [c = 12.4 x 106 psi
• L'V " 74 lai
tO.: =74kd

I00

-a I_)
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FIG. 3.62-2. 2014-T6, -T651 ALUMINUM ALLOY SHEET AND PLa_II3E

SPEG LFIGA TION MB0170- 002

PLASTICITY CORRECTION CURVES (-200 F,-IOOF)

26t

140

100

o-a 0,a)

6O

o'er(k,I)
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FIG. 3.62-3. 2014-T6, -T651 ALUMINUM ALLOY SHEET AND PLATE

SPECI.FICATION MB0170- 002
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FIG.

I0

3.6Z-4.
SPECIFICATION MB0170-002

PLASTICITY CORRECTION CURVES (300 F, I/2 HOUR; 400 F, I/2 HOUR)

Z014-T6, -T651 ALUMINUM ALLOY SHEET AND PLATE
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0
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3.62-5. 2014-T6, -T651 ALUMINUM ALLOY SHEET AND PLATE

SPEGIFIGA TION MB0170-00Z

PLASTICITY CORRECTION CURVES (SO0 F, 1/2 HOUR; 600 F, 1/2 HOUR)

_0 30 2 • I0 14
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FIG. 3.6Z-I;!. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE

RH I050, RH I075 - SPECIFICATIONS LB0160-100, LB0160-1Z9,

LB0160-130, HB0160-010, LA01II-0ZZ, MA0107-0Z3

PLASTICITY CORRECTION CURVES (-i 00 F)
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FIG. 3.62-13. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH 1050, RH I075 - SPECIFICATIONS LB0)60-100, LB0160-1zg,

LB0160-130, HB0160-010, LA0]II-0Z2, A4A0107-0Z3

PLASTICITY CORRECTION CURVES (R.T.)
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FIG. 3.62-14. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH 1050, RH I075 - SPECIFICATIONS LB0160-100, LB0160-I29,

LB0160-130, HB0160-010, LA011I-0ZZ, MA0107-0Z3

PLASTICITY CORRECTION CURVES (200 F)
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400

300
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II, C, O

O'cr (koi)
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FIG. 3.62-15. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH I050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-1zg,

LB0160-130, HB0160-010, LA0111-0ZZ. MA0107-023

PLASTICITY CORRECTION CURVES (300 F)
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Ec = 28.8 X 106 psi
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FIG.
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3.6Z-16. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH I050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-129,

LB0160-130, HB0160-010, LA0111j0ZZ, MA0107-0Z3

PLASTICITY CORRECTION CURVES (400 F)

_, (_)
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FIG. 3.6Z-17. PH 15-7 1%4o STAINLESS STEEL SHEET AND PLATE -

RH I050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-129,

LB0160-130, HB0160-010, LA0111-0ZZ° ]V[A0|07-023

PLASTICITY CORRECTION CURVES (500 F)
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FIG. 3.6Z-18. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH 1050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-1Z9,

LB0160-1300 HB0160- 010, LA0lll-0ZZ, MA0107-023
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FIG. 3.6Z-19. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE -

RH 1050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-129,

LB0160-130, HB0160-010, LA0111-0ZZ, MA0]07-023

PLASTICITY CORRECTION CURVES (700 F)
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FIG.

RH 1050, RH 1075 - SPECIFICATIONS LB0160-100, LB0160-1Z9,
LB0160-130. HB0160-010, LA0111-0Z2. MA0107-023

PLASTICITY CORRECTION CURVES (800 F, 900 F)

3.6Z-Z0. PH 15-7 Mo STAINLESS STEEL SHEET AND PLATE-

l tl I1 Ii !1 !
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FIG. 3.6Z-21. PLASTICITY CORRECTION TITANIUM ALLOY SHEET<.Z5

6AL-4V ANNEALED LB0170-113
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FIG. 3.62-Z2. PLASTICITY CORRECTION TITANIUM ALLOY SHEET <.Z5

6AL-4V ANNEALED LB0170-113
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FIG. 3.6Z-Z4. PLASTICITY CORRECTION TITANIUM ALLOY SHEET<.Z5

6AL-4V ANNEALED LB0170-113
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FIG. PLASTICITY CORRECTION TITANIUM ALLOY SHEET<.Z53.62-25.

6AL-4V CONDITION S.T.A.

MINIMUM GUARANTEED

--Itrl

_-n _---4-

!-!t-!-

I
I

4-
!

I

J
_i

I
"4"-

"4--

I
2
i

2

!

b-i ,-, •

i tD , , _

| i i •

.r!lT
i-n 4 4

I i _ I-

!!TT

!!!!
: .- : :

I
I

-n

il
lib

--! I-I I

- ,e-- I*-- i

-.4-* i

0

.... iii

t11_

lr',_

I-

-L
.-+-

t

.+-

--I--

.4--

-.1--

4-

I

r!!T
i!}(

FHT

!!!T

!!!!

iiii
iiii

I

:-'i

"'i

I •

iii
Fit
III

:!!_

[_!"

i|
ii,

8
p_

r _

L_

i-
,t
-1

I.--4

I- -,4

i--,.....4

L

i,
: I
: I

1
i _ o

0,--

m_- _/_m

721



FIG. 3.62-26. PLASTICITY CORRECTION TITANIUM ALLOY SHEET<.Z5

6AL-4V CONDITION S. T. A.
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FIG. 3.62-27. PLASTICITY CORRECTION TITANIUM ALLOY SHEET<.Z5

6AL-4V CONDITION S.T.A. LB0170-I13
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3.03 COMBINED LOADINGS

The information on the inelastic stability analyses of shell struc-

tures subjected to combined Ioadings is limited. Very little theoreticLl

work has been done in this field due to the complexity of the problem

and, in general, plasticity correction factors are not available.

Methods of determining whether the stresses are in the inelastic

range are discussed in Section 2.80. The method that can be used for

ductile materials will be described.

The stress intensity _r. and strain intensity e. are obtained from
1 I

the formulas

T

( (

_' e

er. = t- _r8 t" 3T Zz - _r_ _re

ei - _ ÷ ÷ (_ (0 ÷

: the stresses in the _ and 0 directions, respectively

(for a cylinder or cone, the _ direction is the x direction}

= in-plane shear stress

: the strains in the ¢b and e directions, respectively

_f_e = shear strain

For a ductile material, the or. versus e. curve for a biaxial stress
I •

field is very clo_e to the _ versus E curve in a uniaxial stress field.

724



Therefore, if or. is greater than the uniaxial proportional limits of the
I

material, the stress field is in the inelastic range.

It can be seen from the formula for or. that each of the individual
I

stresses may be less than the proportional limits of the material, but

• may be in the inelastic range.
GrI

If the stress is in the inelastic range for a sheU subjected to

combined loads, an estimate of the inelastic buckling load can be

obtained by using the plasticity correction factor associated with at.
I

to modify the elastic buckling load. This method is useful if the plas-

ticity correction factor of each of the pure loading cases is approximately

the same.

A cylinder subjected to external lateral and axial pressure will

be investigated as an example. The stress in the circumferential

direction cr8 is twice as large as the stress in the axialdirection, _rx;

therefore,

_i_l 2 2 _r8_ri = + or0 - --2 _r8

---- m0"02
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The elastic critical circumferential buckling stress Crcr/_ may be

obtained from Paragraph 3.23.4. The elastic stress intensity _ri/r I is

therefore

0l _-3 rrcr

q 2

If _i/rl is less than the proportional limit, _ = 1. If the stresses

are inelastic, _i may be obtained from Section 3. (>2 using _ri/v I and

curves E. Then _cr - 2cri/_f-3 and the design allowable pressure is

Pcr = _cr t/R"
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4.00 MINIMUM WEIGHT SHELL DESIGN

4. 10 INTRODUCTION

To obtain the best possible performance in spacecraft design, one

of the main objectives is to achieve a minimum-weight structure that

meets the requirements of structural integrity. This chapter presents a

review of the literature and methods of analysis for use in preliminary

design to determine the lightest shell wall for various constructions

subjected to specific loading conditions. It is intended that Chapter 4.00

supplements the solutions presented in Chapters Z. 00 and 3.00,

Chapter 2.00 presents deflection and internal load distribution

solutions for a number of shell geometries and loading conditions,

Chapter 3.00 presents general and local instability solutions for shells.

Whereas use of these chapters will achieve designs which will preclude

Chapter 4.00 presents methods to achieve minimum weight,failur e,

also,

In most of the published work concerning minimum-weight

analysis and the design of elements subjected to buckling, it is

generally accepted as axiomatic that minimum weight is attained when

the possible buckling modes occur simultaneously. Limited proofs of

this statement have been presented (Refs, 4-I and 4-2). An additiolml

assumption is that the margins of safety are zero for all buckling modes,
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Some of the existing minimum-weight analyses are based on

approximate methods which, however, are adequate for pre-

liminary analysis. It is important to realize that the minimum weight

construction theoretically derived may not be practical for actual con-

struction because of material gage limitations, etc. Since it is

theoretically possible to arrive at impractical designs, various minimum

weight analyses should be used with caution unless the proportions are

examined to ensure that they are realistic. The weight of the final

design can be established by summing the weight of the individual

components.

737



4. Z0 STIFFENED SHELLS

4.21 GENERAL

Stiffened cylinders under bending are representative of aircraft

fuselages whereas launch vehicles and some spacecraft can be treated

as stiffened cylinders under compression. Hence, there is con-

siderable literature on the optimum design of stiffened cylindrical

shells. The following is a summary of the literature from Ref. 4-3.

For unstiffened cylinders under bending, Clayton (Ref. 4-4)

established that the appropriate design index is (M/R 3) or (N/R). Becker

(Ref. 4-5) treated the unstiffened cylinder diameter as an open

dimension and found the ideal value of the optimum stress as well as

the diameter of the lightest weight cylindrical cross section under

bending. Shanley (Refs. 4-6 and4-7) also considered this problem by

a numerical procedure and concluded that for typical values of the

design index for aircraft fuselages, the diameter was far beyond the

optimum for an unstiffened shell.

Joyce and Mitchell (Refs. 4-8 and 4-9) determined stiffener and

frame spacings for minimum weight stiffened cylinders. By ne_lectlng

the frame weight, Shanley (Refs. 4-6 and 4-7) also investigated

numerically the minimum-weight design of stiffened panel-frame

cylinder construction for various frame spacings. Mick8 (Ref. 4-I0)
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extended this analysis by a numerical procedure which included the

frame weighL and he was able to determine optimum frame spacings

for longitudinally stiffened cylinders. Gerard (Refs. 4-1 and 4-11)

analyzed the frame stiffness requirements for general instability in

terms of a transverse stiffener criterion and determined optimum frame

spacings for longitudinally stiffened cylinders in bending.

Because of its importance in the design of submarine pressure

hulls and underwater launched missiles, the efficient design of stiffened

cylinders under external pressure has received some recent attention:

Wenk (Refs. 4-12 and 4-13) has established the pressure (p) as the design

index and has presented a series of minimum weight design charts for

aluminum and steel ring-stiffened cylinders. Gerard (Ref. 4-14)

treated the minimum-weight design of ring-stiffened cylinders based on

orthotropic shell theory and obtained results for the optimum configu-

ration of I-ring stiffeners.

Stiffened cylinders under compression are of interest in missile,

launch vehicle, and spacecraft applications and, therefore, recent

minimum-weight studies have been concerned with such structures.

Crawford and Burns (Refs. 4-15 and4-16) treated integral ring-stiffened

cylinders under hydrostatic pressure. Gerard and laapirno (Ret _. 4o17)

have considered the minimum-weight design of ring-stiffened and

"/39



longitudinal ring-stiffened cylinders under compression based on ortho-

tropic cylinder theory. The optimum design of cylinders utilizing

unflanged and flanged stiffener shapes was investigated to determine

their effect upon the cylinder efficiency.

The advent of thin aircraft wing and tail structures in the late

1940's has resulted in investigations to define the regions of efficient

application of composite structures. Stiffened panel and multicell box

construction were compared by Gerard (Ref. 4-18) for typical rangel

of parameters and also by Kolom (Ref. 4-19). Hubka et al., (Ref. 4-20)

in a similar study compared stiffened panel and sandwich box construc-

tion. In a further attempt to define the ranges of efficient application

of various types of wing and fuselage construction. Gerard (Refs. 4-I

and 4-11) conducted a comprehensive comparative efficiency analysis of

stiffened panel-rib, multicell and post-stiffened, sandwich plate and

full-depth sandwich box beams of high-strength aluminum alloy.

In order to improve the structural efficiency of multicell construc-

tion, various types of compression cover and web elements were

investigated. Anderson (Ref. 4-21) studied the comparative efficiencies

of multicell boxes with steel sandwich covers and channel and corrutlated

webs as well as full-depth sandwich boxes. Semonian and Crawford

(Ref° 4-22) made comparisons with the efficiencies of multicells of
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flat, integrally stiffened and sandwich cover plates employing plate and

corrugated webs. They also treated multiweb boxes of wide-column

and Z-stiffened panels employing corrugated ribs, in addition to full-

depth sandwich boxes.

The comparative efficiency of longitudinal, transverse, and waffle

grid stiffening systems for plates used as compression covers for multi-

cells were investigated by Gerard {Ref. 4-23) by use of orthotropic

plate theory. Lampert and Younger {Ref. 4-24) treated, in rather

great detail, the comparative structural efficiency of various truss-core

configurations for sandwich plates. Crawford and Burns (Refs, 4-15 and

4-16) conducted comparative efficiency studies of integrally stiffened,

Z-stiffened, and corrugated core sandwich plates under compression.

They also treated multicell boxes with flat and corrugated core sand_

wich plates as covers and employing flat, integrally stiffened,

Z-stiffened and corrugated core sandwich webs to establish the com-

parative efficiencies of the various combinations, Gerard (Re.f. 4-25)

investigated the comparative efficiencies of various types of box beams.

Aircraft fuselages and later missile, launch vehicle, and space-

craft structures have encouraged comparative efficiency studies or"

stiffened cylinders. Shanley (Refs. 4-6 and 4-7) compared unstiffened
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and longitudinally stiffened cylinders of the same length under bending.

Gerard (Refs. 4-1 and 4-11) conducted a comparative efficiency analysis

of unstiffened, longitudinally-stiffened frame and sandwich cylinders all

of optimum design under bending. Peterson {Ref. 4-Z6) presented

weight-strength charts on ring, longitudinally and waffle stiffened,

and sandwich cylinders in bending. The effect of shear loads on bending

strength was also considered.

For cylinders under compression, Gerard (Refs. 4-27 and 4-_8)

prssented comparative efficiency results for unstiffeaed, ring-stiffened,

longitudinally stiffened-ring, and sandwich shells of optimum design.

An analysis of pressure stabilized cylinders was also included.

Crawford and Burns (Refs. 4-15 and 4-16) compared unstiffened and

corrugated core sandwich cylinders of optimum design for compression,

torsion, and hydrostatic pressure. Based on orthotropic cylinder

theory, Gerard and Papirno (Ref. 4-17) compared ring and longitudinal°

ring stiffened cylinders under compression and also established the

influence of unflanged and flanged stiffeners upon the cylinder efficiency.
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4. ZZ STIFFENED CYLINDRICAL SHELLS IN PURE BENDING

Based on the design axiom that minimum weight is attained when

the possible buckling loads occur simultaneously, it is possible to

present a necessary condition for minimum weight of stiffened cylin-

drical shells. A stiffened cylindrical shell has two primary modes of

failure: (I) buckling of the panel between frames, and (2) g_eneral

instability. If the rings are sufficiently stiff to resist buckling, the

stiffened shellwill buckle between the frames. Buckling of the skin-

stringer column between frames may occur as a result of material

failure, stringer crippling, or primary bending or torsional instability.

The ultimate strength of the plate-stringer combination is found

by assuming an effective width of curved sheet to act at the critical

buckling stress of the column in the manner presented in Section 3.00.

If, however, the calculated buckling stress of the sheet is higher than

that of the stringer plus its effective width sheet, the entire width is

assumed to act at the column buckling stress (Ref. 4-Z9). If the frames

are not sufficiently stiff to resist buckling, the stiffened cylindrical shell

may fail in a general instability mode.

A necessary condition for minimum weight dictates that both panel

and general instability modes of failure should occur simultaneousl)'.

The frame stiffness for which panel instability and general insrabi|ity
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are equally critical may be estimated from the following formula

from Ref. 4-1,

whe re

(El)f =

M =

M(ZR) z
(El)f = Cf d (4.22-1)

flexural stiffness requirement for frame

applied bending moment

d = frame spacing

H the frame stiffness is greater than (El)f, the cylinder will fail in

panel instability, and il the frarr_e s_iifness is iess than (El)f the

cylinder will fail in general instability. Several values of Cf have been

suggested in the literature; Cf = 6.84 x 10 -5 as suggested in Ref. 4-I

is recommended because it has some theoretical and experimental

justification. For frames with fl_xural stiffness greater than (El)f the

increase in the strength of the cylinder when subjected to bending is

relatively sn_all. The minimum weight design in practice can be

obtained by an iterative procedure.
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4.30 SANDWICH SHELLS

4.31 GENERAL

The main purpose of the sandwich construction is to achieve a high

bending rigidity-to-weight ratio. Sandwich construction consists

essentially of two high strength-to-weight ratio facing sheets. These

sheets are joined and separated by a relatively thick Iow-densitycore

that transmits shear between the facing sheets. The facings are designed

to take all compressive or bending loads, while the core is supposed to

transfer shear between the facings and a11ow the facings to bend about a

common neutral axis. For most cases of interest for space vehicles,

the facing sheets are so thin that their flexural rigidites about their

respective neutral axes can be neglected. The facings, therefore,

behave essentially as membranes and withstandbending stresses directly

except in the vicinity of concentrated loads or rapid changes in cross

section.

The sandwich core may consist of any of a number of types. The

most common cores are the open cell, honeycomb configurations, the

corrugated core, and the closed-cell foam cores. The honeycomb cores

are, currently, the most widely used in space vehicle construction,

particularly in boosters. To use the core of the lightest type is

?45



desirable, yet in reality its weight is a substantial part of the total

weight of the sandwich.

The third element, as far as weight is concerned, is the bonding

medium, which can be either adhesive or braze n_aterial° All three

elements of the sandwich structure must be considered in a n_inin_unl

weight analysis: the facings, the core, and the bonding mediunl.

Some of the earliest studies were conducted on sandwich cylinders.

Leggett and Hopkins (Ref. 4-30) concluded that sandwich construction

becomes increasingly more efficient than stiffened panel construction

as the curvature is increased. Wittrick (Ref. 4-31) investigated the

optimum design of sandwich cylinders under con_pression, considered

various face materials and core densities, and concluded that there is a

definite optimum core rigidity for each face n_aterial and design index

(N/R).

Crawford and Burns (Eels. 4-15 and 4-16) presented a detailed

optimum design analysis of corrugated core sandwich cylinders under

compression, torsion, and hydrostatic pressure. For the latter, integral

ring-stiffened cylinders were also treated.

Switzky and Cary (Ref. 4-32) presented nondimensional,

minimum=weight design charts for unstiffened and corrugated core

sandwich cylinders under compression, torsion, and external pressure.
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The nondimensionalfeature accounts for material properties at various

temperatures.

Kuenzi (Ref. 4-33) presented an analysis to determine the minimum

weight of sandwich considering stiffness, edge load capacity, bending

moment capacity, and buckling of cylindrical shell|.

A number of designs, involving various thicknesses of facing and

core, may meet a given stiffness or strength requirement. This concept

suggests possibilities of determining constructions so proportioned

that minimum weight for a given stiffness or strength is achieved.

The minimum weight construction, theoretically derived, may not be

practical because of unusually thin facings, which are not available, or

unusually lightweight core. Since it is theoretically possible to arrive

at impractical designs, various minimum weight analyses should be

used with caution for comparing sandwich with other constructions,

unless the sandwich proportions are examined to ensure that they are

realistic.
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4.3Z BUCKLING OF SANDWICH CYLINDERS UNDER AXIAL

COMPRESSION

The design allowable bucklin S stress for general instability of

a sandwich cylinder under axial con_pression is given by the forn_ula

from Section 3.52.

_cr

l-_Tz (tl +t z)

(4.32-I)

for equal facings

wh • re

_cr
CcV- E:.b- (4.3Z-Z)

C c = (I - k 2 V c) for V< 0. 5 (approximately)

k z = I for isotropic core

k z (for orthotropic core) is the negative slope of the C c versus V c

curve in Fig. 3.52-I

V c

Et

Z R Gxz
(approximately)

G is the transverse, shear modulus of the core in tlts axial directiQn
XZ

and the factor Y is obtained from Fig. 3.33-6.
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Minimizing the sandwich weight with respect to the facing thick-

ness (Ref. 4-33) and excluding local failures (wrinkling, dimpling, etc.}

leads to the equation for the weight of _he core re the sandwich weight

minus bond weight ratio as follows:

W
C

(w - w b)

l -kzV

Z-3kzV
[4.32-3}

where

W = weight of core
C

W b = weight of bond

W -- tolal weight of sandwich

Thus, the weight of the core, W , is about one.-half tht sandwich
C

weight for a n_ininmm weight sandwich ¢ylinder subjected ¢o axial

compression.
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5.00 OPTIMUM USE OF COMPUTER PROGRAMS

5 I0 INTRODUCTION

Previous chapters of this manual have dealt with various aspects of

the analysis of shells. An introduction to shell theory was presented in

Chapter 1.00, procedures for the static analysis of shells were given in

Chapter Z. 00, and procedures for the stability analysis of shells were

given in Chapter 3.00. Although a myriad of solutions have been presented,

either in explicit or graphical form, it is entirely conceivable that an ana-

lyst may encounter a problem not considered in any of the previous dis-

cussions. In such cases, a solution satisfactory for engineering purposes

can often be obtained by using a digital computer.

As a typical example, consider a composite shell of revolution

loaded unsymrnetrically and possessing a branch configuration as shown

in Fig. 5. 10-]. Although procedures were developed in Chapter :_.00 for

treating this configuration under axisymmetric load, the analysis under

unsyrnmetric load is best accomplished using a digital computer (e. g. , see

Ref. 5-1). Many other examples could be cited to illustrate problems

that can be effectively solved with the computer.

The widespread use of the computer is based on the extremely

rapid and accurate manner in which it performs simple operations. In

particular, it can perform addition, subtraction, multiplication
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AXIS OF REVOLUTION
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I

and division functions in minute

fractions of a second. As a result,

evaluation of series, parametric

studies, and solution of simultaneous

algebraic equations can be efficiently

performed on the digital computer.

Fig. 5. I0-I. Shell of Revolutlon
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5.20 FUNDAMENTALS OF COMPUTER UTILIZATION

To utilize the capabilities of a digital computer, an engineer must

become acquainted with some of the basic mechanics of computer operation.

Even though the services of a professional programmer may be available,

it is advanta.geous that the engineer become as acquainted as possible with

computers.

Basically, a computer is a sophisticated form of desk calculator.

Some small computers are not much larger than an engineer's desk,

whereas the latest large computers possess over a dozen units and occupy

an entire room. All computers used today are superior to desk calcula-

tors in three respects: they operate faster, possess memories, and make

decisions. Just as an engineer cannot expect to obtain useful results from

a slide rule or desk calculator unless he observes the governing rules of

operation, successful utilization of a digital computer depends on under-

standing and using the basic rules governing the computer being used.

The engineer is aware that he can perform operations and obtain accuracy

with some slide rules that cannot be obtained using other (usually smaller)

slide rules. In the case of computers, not only do some possess greater

capabilities than others (e. g. , inversion or large matrixes, retention of

many significant figures) but some are also capable of working several

orders of magnitude faster than others.
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To harness the capabilities of the computer and effectively utilize it

to solve a particular problem, a set of instructions (a computer program),

must be written. For example, if an engineer desires to find the roots of•

quadratic equation on the computer, he must frame the quadratic formula

in a manner acceptable and meaningful to the computer (i.e., he must

"speak the computer's language.") Generally, two types of languages are

in use: source {or userts) language and object (or machine) language. In

the case of object language, the program is written in a manner so that the

machine can act on it; a source program is very similar to typical analyti-

cal manipulations familiar to the engineer. In the source program, the

machine uses part of its memory to translate from the source language to

object language. The translator is called a compiler. Common examples

of source languages are IT and FORTRAN. Since the source languages

are more familiar to engineers, they are recommended over object lan-

guages. In either case, the engineer should be aware that all computers

are very exacting in accepting or rejecting a set of instructions corres o

ponding to a given physical problem. A computer program cannot possess

unclear, imprecise statements.

A source program has several different types of statements that &re

necessary in nearly every case. Briefly, these statements are (1) control

statements, which set up formats, size matrixes, etc. ; (2) executable
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statements, which tell the machine to add A to B, for example; and (3) input -

output statements, which tell the machine to read in data, plot curves,

write tapes, etc.

Often, when dealing with the larger computer systems, the engineer

rarely, if ever, sees the computer itself. Instead, he deals with the input °

output receiving station that may be located several miles from the com-

puter he intends to use. Also, for reasons of efficiency, the input provided

by the engineer may be given to a subordinate machine (e.g., thelBM 1401)

for reduction to a form which the main computer can more readily accept.

Types of input to computers presently include paper tape (some UNIVAC

machines) and cards (IBM and CDC). If it is not desired to produce the

tape or cards themselves, coding sheets can be prepared from which the

input {either cards or tape) can be produced.

In using the computer to analyze shell problems, it has been advan-

tageous that the computer is capable of subscripting variables, and thus

collecting similar quantities into arrays and dealing with entire arrays

rather than with the individual ulements of the arrays. This capability

leads to a consideration of matrix algebra which is presented in the

following section.
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5.30 INTRODUCTION TO MATRIX ALGEBRA

The basic ideas of matrix algebra necessary for computer pro-

gramming of shell problems are presented below.

Consider a set of n linear algebraic equations in the unknowns

X i X S • eo B X |1 2 n

allx 1 + a12x2 +

a21x I + a22x 2 +

...... + aln x n = y 1

...... + azn Xn = Y2

anlX 1 + an2X 2 + ...... + ann Xn = Yn (5. Jo-l)

In summation form, these equations are.

n

_. alixi = YI

i=l

n

a2ixi = Y2
i=l

n

aniXi = Yn

i=l

{5.3o-z)
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Consider the following representation of these equations

" all a12 ...... al;

a21 a22 ...... a2r

anl an2 ...... an_

Xl YI

x2 Y2

x ; Yn. (5.3o-3)

The k th equation of Eq. 5.30-1 is obtained by multiplying the k th row of the

rectangular array of coefficients aij by the corresponding terms of the

x column and setting it equal to Yk" For example, the second equation is

obtained by multiplying the second row of the aij rectangular array by the

x column, term by term,

equal to Y2:

and adding, then setting the resulting equation

a21' x I + a22 • x 2 + .... + a2n x n = y 2

Eq. 5.30-3 is a matrix equation that represents the set of linear algebraic

Eq. 5.30-I• The [n x n] aij rectangular array and the |n x I] x i and Yi

rectangular arrays are called In x n] matrixes and In x I] matrixes,

respectively. An [n x 1] matrix is also called a column vector• The
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members of a matrix are called the matrix coefficients.

written in an even more concise form as

[A] {x} - {y}

Some matrixes are given special names. For example,

Eq. 5.30-3 can be

(s. 3o-@

the n x I matrix

(i. e., the matrix consisting of n rows and I column) is called a column

vector. The I x n matrix which consists of I row and n columns {e.g.,

Zl, Z2, . . . Zn) is called a row vector. A matrix containing n rows and

n columns is called a square matrix. The matrix coefficient in the i th row

and jth column of a matrix A is denoted by aij. A square matrix in which all

its diagonal terms, aii, are equal to I, while all other coefficients are

[0:]equal to zero is called an identity matrix. For example, and

are identity matrixes.

I

0

A matrix with coefficients related by aij = aji is

called a symmetric matrix. [i2 For example, 7 is a symmetric matrix.
4-

since a12 = 2 = a21, a13 = a31 = 3, a23 = a32 = 4. A square matrix with

all its coefficients equal to zero is called a null matrix. Identity and null

matrixes are special examples of symmetric matrixes.

If n x m matrix B has each i th row equal to each i th column of an

m x n matrix A, matrix Pt is called the transpose matrix of A and is
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,]denoted by [A] T. For example, consider the 2 x 3 matrix A = 7 4

The transpose of this matrix is the 3 x 2 matrix [A] T - , since the

1st column of [A] T is the same as the first row of matrix A, and its 2nd

column is equal to the second row of matrix A.

Matrixes may be operated upon, as with numbers; however, the

operations 'may or may not be possible to perform. This is best illustrated

by demonstration. Two matrixes, A and B, are equal if coefficient aij of

matrix A is equal to coefficient bij of matrix B. It should be noted that two

matrixes can only be equal if they are of the same order (i.e., if they both

have m rows and n c61umns).

The operation of multiplying every coefficient aij in the matrix A by a

number, c, is denoted by c [A] and is called scalar multiplication. It can

be seen that if B = c [A] , then bij = c aij.

Multiplication of two matrixes is called matrix multiplication and is

defined as follows: If C = A B, the coefficients of C are given by

cij - _. air bRj
R=I

To make this operation possible, the number of columns of matrix A must be

equal to number of rows of matrix B. If matrix A is m x n matrix and

matrix B is n x p matrix, then matrix C is m xp matrix. In genera|
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[A] [B] is not equal to [B] [A] . In fact, if matrixA ie am xn matrix

and B is a n x p matrix, then since matrix B has p columns and matrix A

has rn rows, the multiplication is not even defined (ifp _ m}. For example,

A _

consider the matrixes

[A] [B]

then

where the coefficients of C are given by cij = L air b_j (i.e.,
R=l

Cll = allbll + al2b21 = (1) {I) + (3) (0) = I, c12 = allbl2 ÷ •12b22 =

(1) {I) + {3) {l) = 4 etc. ). In the preceding example, the premultiplication

of matrix B by matrix A is defined, however, the premultiplication of

matrix A by matrix B, denoted [ B] [A] , is not defined since the number of

columns of matrix B is not equal to the number of rows of matrix A.

Multiplication of any matrix A by the identity matrix I is commutative,

and results in the matrix A (i.e., [A] [_] = [I] [A] = A). Suppose •

square matrix A is either premultiplied or postmultipUed by another square

matrix B, and the result in either case is the identity matrix L Then
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matrix Bis called the inverse matrix of A, and is denoted by [A] ol.

example, consider the following case:

[AI - . [B] L-1/s z/sj

[ B] [A) = =
l/s z/sJ

For

[A] [B]

then B (= [A] -l) is the inverse of A, and A (= [B] -l) is the inverse of B.

By virtue of the matrix operations indicated, it should be clear that

Eq. 5.30-4 can be solved for x by premultiplying both sides by [AJ -l

The result is

As a simple example,

Ix] = [A] -I [y] (s.3o-s}

suppose Eq. (5.30-1)im

2x I + x 2 = 10

x I + 3x 2 = 5

In matrix form, Eq. 5.30-6 can be written as

[::1H[:]

(s. 3o-6}
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Applying Ecl. 5.30-5

Since it has been shown that

we have

{x} _2 -I

[2illr315,15ll -l-I/s z/sj

{x} L-l/s z/sj 0

SO

x I = 5 and x 2 - 0

The validity of the results of Eq.

ventionalIy solving Eq. 5,30-6,

(s.30-_

5.30-7 can easily be verified by con-

Matrix inversion becomes increasingly more time consuming as the

order of the matrix n increases. For large matrixes, a significant improve-

ment over a straightforward inversion of the type indicated in Eq. 5.30-5

is to use° where possible, a Gaussian elimination procedure. For banded

matrixes (i.e., matrixes having nonzero elements onlywithin a band

running along the princip_l diagonal as shown in Fig. 5.30-I, the

inversion indicated in Eq. 5.30-5 can be replaced by inversions of mub-

matrixes and application of a recursion relationship. The increase in
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efficiency over the inversion of the entire A matrix makes problems

tractable that were previously expensive to solve.

- X X

X X

X

X

X

X

X

X

X

0

X

X

X

x

X

X

X

X

0

X

X X

X X

X

X

X

X

X

X X

X X

FIG. 5.30-I. Banded Matrix Upon Which Gaussian Elimination can be

Performed
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5.40 TECHNIQUES FOR SOLVING SHELL PROBLEMS AND THE

USE OF THE COMPUTER IN THESE TECHNIQUES

In Chapter 2.00 of this manual, many closed form solutions were

presented for the static analysis of shells. The computer could be used as

a labor saving device to evaluate these solutions. For example, it might

be feasible to use a computer if a parametric study is to be performed, or if

a series solution is to be evaluated. However, the reason for the central

importance of the computer in the present day analysis of shells is not

because of its ability to evaluate existing solutions but as an essential

ingredient in obtaining the desired solution. Several methods of solving shell

problems are in use today that utilize the computer in this central capacity.

These analyses all share the property that the continuous shell is replaced

by a shell with a finite number of points on it, and the computer is then

used to assist in the solution of this approximate problem compoaed of

discrete points. A detailed description of the several methods follows:
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5.41 THE FINITE DIFFERENCE METHOD

In Chapter 1.00, it was shown that partial differential equations are

the governing differential equations for shell behavior.

In the finite difference method of analysis, the shell partial differ-

ential equations are replaced by a set of linear algebraic equations that have

a readily obtainable solution. The basis for this method is the replacement

of exact differentials df by approximate differences_f. For example, con-

sider the continuous function, w(x), as shown in Fig. 5.40-I.

The independent continuous

w ±

!

x0 j x2 x_ xk. 2 xk xk+2
xl Xk!l _J+l !n

variable, x, is partitioned into

n segments. The value of the

dependent variable, w(x), at x k is

denoted w k. Using calculus,

Aw =dwJ _= Aw
lim_-_'x lx=x k ax IX k _ Jxk
_--o

FIG. 5.40-1. Finite Difference

Intervals

The expression for Aw/_x at

x = xk can be obtained in various

ways. Consider the forward difference given by

Wk + 1 "Wk

Aw J = (s. 4o-I}
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and the backward difference

Aw Wk " Wk - 1I-

Usually, however, the central difference expression

Z1w] = Wk + 1Z_'hWk -I
x k

(5.40-z)

(5.40-_

is used since it involves values of w on both sides of x k, and it results that

the error introduced in approximating the derivative by Eq. 5.40-3 is of

the order of h 2, whereas, the errors in Eqs. 5.40-1 and 5.40-2 are of the

order h. Higher-order derivatives are easily obtained by continuing in this

For instance, the central finite difference expression for dlw/dx 2manner.

at x = x k is given by

dZw i - _ zw [ Wk+ l "Zwk+ Wk-I
dx----_[ Xk AX-----_ Xk = h2 (5.40-4)

Finite difference expressions for all orders of derivatives are easily derived

or may be found in any textbook on finite differences. In the case of partial

derivatives, finite difference expressions are similarly defined. Consider

now a partial differential equation. At each point, k, along the independent

variable, xi, the partial differential equation can be replaced by an algebraic

equation with the derivatives of the partial differential equations replaced by

the corresponding finite difference expressions. Together with the boundary
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conditions, the set of finite difference equations form a set of n linear

algebraic equations in n unknowns. The problem is especially adaptable to

matrix form and the solution easily follows. It is seen that the exact con-

tinuous solution, e. g. , w (x, y), for a plane problem, is replaced by the

approximate discrete solution, Wk(X k, yk ). In theory, the approximate

discrete solution may be made to approach the exact continuous solution,

w(x, y), as closely as desired by allowing the distance, h, between x k and

Xk+l to approach zero. In an actual case the process of allowing h to

approach zero introduces a machine capacity problem which leads to w k

diverging from w. That is, in an actual problem, the number of points at

which the solution is desired may be restricted by the number of simultaneous

equations the computer can accurately solve. This is an important point of

the method and will be discussed further. An example of the finite differ-

ence technique will illustrate the method.

Consider the partial differential equation

82f 82f
--+ -- =-2

8x 2 8y 2

with boundary conditions, f = 0, on the boundary of the object shown in

Fig. 5.40-2.

(5.40-5)
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FIG. 5.40-2. Finite Difference Grid for Plate

The square plate is partitioned into 16 segments as shown. That is, the

continuous variables, x and 7, are partitioned into four intervals each.

The partial derivatives in terms of central finite differences are

given as followi:

__ A2x f 1

ay2 Xo' YO h 2 h 2 f4 )

(5.40-6)

a2 fThen at Point 0 the partial differential equation + _ = -2 is
ax ay
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replaced by the following algebraic equation

1

"-_h (fl + f2 + f3 + f4 " 4 f0 ) = -2

At each interior point of the body, a similar algebraic equation may be

written. The boundary condition equation, f = 0, is replaced by the

equations, fi = 0, where i is any point on the boundary. Since there are

9 interior points and 16 boundary points, there are 9 equations of type

(5.40-7) and 16 equations for fi = 0.

may be put in matrix form

[A] {f} - [C}

where [A]

The set of linear algebraic equations

(5.40-7)

is the 25 x 25 coefficient matrix, and If] is the solution column

vector. H the matrix [A] has an inverse, the {f] may be obtained by

_f} - [A] -I C. The inversion of a 25 x 25 matrix is beyond human

capacity and a machine definitely would be needed.

It can be seen from Fig. 5.40-2 that the method of finite differences

replaces the continuous plate with a gridwork of discrete points. When this

method is applied to shells, grid systems of the type shown in Fig. 5.40-3

occur.
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FIG. 5.40-3. Finite Difference for Shells

In general, the equilibrium, stress=strain, and strain-displacement

relations can be reduced to three partial differential equations in the

displacements u, v, and w. Applying finite difference approximations in

both surface directions, the matrix equations are obtained as follows:

[A] [u}+ [B]Iv}+ [C]tw} : [a]

[D] [u} + [E] {v} + [F] [w} : [b}

[G] [u] + [H] Iv} + I J] (w} = [d] (s. 4o-s)

By suitably inverting matrixes and performing other manipulations,

Eq. 5.40=8 could be solved for the displacement matrixes u, v, and w.

These three vectors will have as many elements as there are grid points

on the shell.
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For the general case of unsymmetrical shells loaded unsymmetrically,

the two-dimensional finite difference approach will yield valid results.

However, inversion of large matrixes, with accompanying long execution

times on the computer and loss in accuracy, will result. For the case of

shells of revolution loaded arbitrarily, a method has been devised that

results in economical runs. This method will be discussed in Section 5.43.
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5.42 THE NUMERICAL INTEGRATION METHOD

An alternative to the procedure described in Section 5.41, using

finite differences in both directions, is the numerical integration method,

described in this article. Using this procedure, the governing partial

differential equations are first reduced to a set or ordinary differential

equations by expanding in finite differences in one direction. The numer-

ical integration is then performed on this set of ordinary differential

equations.

To illustrate the method, consider again the partial differential

equation

a2f 82f

ax 2 8y 2

(5.4z-l)

valid in the interior of the square shown in Fig. 5.42-1. On the boundary,

f=O.

To reduce the given partial differential equation to a set of ordinary

linear differential equations, the operator azf/ay Z is approximated uaing

finite differences. Along any y = constant line, say y = Yk' the following

holds true:

82f

8y2
y=k

1 1

-.zfk (x) + fk-I (x)[
(s. 4z-_
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Y

a

Yk+l

Yk

Yk-1

1
h

Substituting Eq. 5.42-2 into

Eq. 5.42-I, the following i0

obtained:

d2f k 1
--4-_x

dx 2 h 2

fk+l (x)'Zfk (x)

= -Z

(s. 4z-3)

+ fk-1 (x)]

FIG. 5.42-I. Numerical Integration

Locations for Plate where fk (x) is the value of f

on the y = Yk line for variablex.

If the interval o<y<_a is partitioned

into n

d2

equal segments of length h so that nh =

fl

f2

fk-1 ,+ 1

fk

fk+ 1

fn- I,

m,

-2 1 0 . .

1 -2 1 0 .

0 1 -2 1 0

0 0 0 0 .

1 -2

0 1

a, the above equations are

0" "fl "2_

0 f2 -2

0 . -2

fk I

fk

• fk+ l

1 • °

- 2 _fn- l # -2
i#

(5.42-4)
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with boundary conditions fk =

y = yk)and fo = f = o all along x.
n

d___2 IF1+ I

o at x = o, a (where fk is equal to falong

In matrix form, Eq. 5.42-4, is

Recognize that Eq. 5.42-5 represents a set of (n-l) second-order ordinary

differential equations. A common technique in numerical analysis is to

reduce the order of all pertinent equations to the first order. This can be

done by introducing the variable, g, defined by

gk" "d"_" (5.4Z-6)

Then the equation can be written:

-_" + _ fk, l (x) (x) +_k-1(x) - -z (5.4z-7)
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In matrix form, Eq. 5.42-6 and 5.42-7 can be written

d
dx

gl

g2

gk

gn-l

fl

f2

fk

41

fn-l

+

!

I
I
!

I
I

I
!

' l
, [A]

I
I
1
!

!

I

!
I

-[z] 'l
I
i

I

I
i
I

0

gl

g2

gn-I

fl

f2

t,

'-2

-2

-2

0

0

(5.42-8)

Eq. 5.42-8 can be written more compactly if the following symbols are

used:

gl

gn-I

lIFlj
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[J]-

[o] hZ[A]

L.[i] [o]

{K]

With Eq. 5.42-9, Eq. 5.42-8 becomes

d [HI + [_] {HI - {K] (5.4z-10)

Note that Eq. 5.42-I0 represents a set of(2n -2) first-order ordinary

differential equations. Eq. 5.42-10 is in the form most amenable to

numerical analysis. A typical numerical integration procedure, originally

proposed by Euler, is to assume H 1 (see Fig. 5.42-2) is given by

H 1 = H 0 + h fo (x, H)
whero

H
!

Ho

CURVE_

APPR_

_-"h--="

Xo X 1

and

h=xl-x 0

H0 = H matrix at

X = X0

H 1 = H matrix at

x = x I

_o(x, H) = K-JH
o

= slope atx = x o

FIG. 5.42-2. Numerical

Integration Procedure
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It can be seen that this procedure merely assumes that the first

derivative is constant throughout the interval, h. As h approaches zero,

the error introduced approaches zero. Having H l, H 2 is obtained from

H Z = H l + h fl (x, H)

This procedure is continued until the boundary is reached.

More sophisticated procedures for numerical integration are avail-

able. One of the most popular is the Runge-Kutta method. Because of its

widespread use, computer groups usually have prepared routines or pro-

grams available. As in the Euler method, the interval size may be changed

as desired without any complication.

All numerical integration procedures are best suited for solving

initial value problems. Thus, the Euler procedure yields the results,

H l, H Z, ... Hn, if Ho is known. Thus, referring to Fig. 5.4_-1, a

successful numerical integration requires an a priori knowledge of the

function, f, and its first derivative at x = o for all Yk" However, the

problem originally stated did not specify the derivatives df/dx at x = o;

rather it specified that f = o at x = o and x = a. The given problem

was a boundary value problem (as are all shell problems). To use

numerical integration procedures to solve boundary value problems,

sufficient _nitial information must be assumed (in this case, slopes) to
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start the process. When the boundary, x = a, is reached, the values,

f(a, y), are compared to the given boundary conditions. The assumed

slopes are then adjusted and the numerical integration performed again.

After a series of trials, the boundary values from the numerical integra-

tion should compare favorably with the given boundary conditions, and

hence the initial assumed slopes are acceptable and the interior results

are valid.

The solution of shell problems by numerical integration _s complio

cated not only by the necessity of having to convert a boundary value prob-

lem to an initial value problem, but more importantly, by the fact that

the governing differential equations possess three dependent variables

(in general). The coupling between the three equations is considerable,

and hence, the numerical integrations are interconnected. For these

reasons, numerical integration has not been as popular a method for

solving shell problems as the other methods in this section.
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5.43 THE BUDIANSKY - RADKOWSKI METHOD

In this article, an efficient method for the solution of problems

involving shells of revolution is discussed. This method treats arbitrary

shells of revolution subjected to arbitrary loading conditions and possess-

ing a variety of possible end conditions. The procedure involves expand-

ing the forces, moments, shears, rotations, temperatures, loads, strains,

and displacements into Fourier series. For example, the meridional

stress resultant, H i. is expressed in series form as

N_ = _0 h0 _ t_(n) cos n @
(5.43 - 1)

whe r •

0

(n)
tl

_0 = a reference stress level

h 0 = a reference thickness

= the circumferential coordinate

= the Fourier coefficient in the series expansion for N_, is a

function of _, the rneridional coordinate, o,xly

With the Fourier series expansions just described, the governing

differential equations can be reduced to ordinary differential equations,

where _ is the independent variable and the Fourier coefficients for the

stresses, moments, loads, and shears are the dependent variables.
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Using Hooke's law and the conventional strain-displacement relations, the

governing equations can be written as

E z I + Fz t + Gz = e (5.43-2)

d

where E, F, and G are (4 x 4) matrixes which reflect the geometric and

elastic properties of the shell in question, e is a (4 x I) matrix composed

of mechanical and thermal loads, and z is a (4 x I) solution matrix com-

posed of the Fourier coefficients for the three displacements and the

meridional bending moment. Boundary and discontinuity conditionl can

also be written in matrix form.

Finite differences are now used for approximations to the derivatives

in the meridional direction. A set of algebraic equations for z. is obtained:
x

Ao Z l + Bo Zo = go

A.z Zi+l + Bi z.z + C.z zi-I = gi (i = I, 2, . .., N-l)

BnZn ÷ Cngn-I = gn

The A, B, C, and g matrixes reflect the geometric, discontinuity, elamtic,

and boundary conditions of the problem. The z ma.trixes are obtained by
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the Gaussian elimination procedure. In this case, it is necessary to invert

(4 x 4) matrixes, so the process is well suited for rapid machine calcu-

lation. In practice, the procedure amounts to solving for z i in terms of

zi+ 1, zi+ 1 in terms of zi+ 2, etc., until the boundary is reached. Then

z N can be explicitly obtained because the boundary conditions supply the

necessary additional information. Having aN, all other z's are system-

atically obtained by using the recursion relationship established on the way

down the principal diagonal. Once the z matrix is known, all other quan-

tities of interest can be obtained by differentiation.

The Budiansky - Radkowski procedure is an efficient procedure for

the solution of shell problems. Experience has shown that complicated

problems can be solved in a matter of seconds using this technique. In

addition, the method has been extended slightly to treat shells in which

shear distortion effects are significant, three-layered shells, branched,

and eccentrically discontinuous shells, etc. Also, investigations are cur-

rently underway to apply the method to elastic-plastic shells, shell

dynamics, and unsymmetrical shells.

Because of the efficient running times resulting from the use of the

Gaussian elimination procedure, this method is recommended for cases in

which it is applicable.
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5.44 THE FINITE ELEMENT METHOD

In the finite element approach to analysis of shells, the shell under

consideration is replaced by a set of finite elements that approximate the

given shell. For example, to find the stresses and deflections existin E in

the hemispherical shell with an axisymmetric cutout shown in Fig. 5.44-I,

the shell under consider-

(a) Spherical Shell with Axlsymmetr|c Hole

ation could be idealized by a set

of conical shell frusta as shown

in Fig. 5.44-Ib. Then the coni-

cal shell model could be analyzed

and, as the lengths _ of the coni-

(b) Finite Element Approximation to Spherical Shell

cal elements approach zero, the

solution obtained should approach

the solution for the given shell.

Thus in the finite element method,

the behavior of a typical element

is studied and the elements are

FIG. 5.44-1 Spherical Shell and

Finite Element Approximation

then tied together to produce the

required shell.

Two methods are commonly used when dealing with finite elements.

These methods are compatibility (or force) and equilibrium (or displacement).
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In the compatibility method, the requirement of geometric compat-

ibility is used to tie the finite elements together. That is, the redundant

forces and moments which exist at the interfaces of the several elements

are obtained by imposing compatibility• For a structure with n redundant

forces, there are n compatibility equations that must be satisfied. Sup-

pose F 1, F z, - - -, F k are the applied forces (known) on the k degree of

freedom coordinates of the shell• These F's may be either forces or

moments and any of them may be zero, if desired. Suppose, in addition,

that Fk+ 1, Fk+ z, - - - Fk+ n are n redundant forces at the n coordinates

k+l, k+2, - - -, k+n. To solve for the n redundant forces, it is noted

that the displacement u k at any location k can be related to the forces

existing (both applied external forces and redundant forces) by the following

equations:

Ul -- all F1 + a12 F2 + " " " ÷ alk Fk + " " " + al, k+n F k÷n

u 2 = a21 F 1 + a22 F 2 + . . . + a2k Fk + . . . + a Z F, k+n k+n
• • • •

u k = akl F 1 + akZ F z + . . . + akk F k + . . . + ak, k÷ n Fk+n
• • •

• • •

Uk+n = ak+n, I FI + ak+n, Z FZ + ....... + ak+n, k+n Fk+n

(s. 44-1)
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In matrix form these equations are

[u} - [A] IF }

where

u = the displacement vector,

F = the force vector, and

A = the flexibility matrix of the structure.

The matrixes may be partitioned as follows: those Quantities associated

with coordinates l, 2, .... k are denoted by the quantity symbol with an

asterisk superscript, and the quantities at the redundant coordinates k÷l,

.... k+n are denoted by the quantity symbol with a zero superscript.

Then this matrix equation become|

:o aS,IaSS]

At the redundant coordinates the relative displacements are zero, i.e.,

{u °} = o. Hence, the above matrix equation yields the matrix equatione

and

[o] --[aO*][F*}+ [aOO]{Zo}

[U*_ = [a**][F*} + [a*OIF O}
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Solving the first of these equations for the redundant forces [F °} yields

_F °) = -[a°°] "l [a°_]_lr*} (5.44-Z)

and substitution into the second equation yields

[u_) = l[a_]-[a_°][a°°]'l [a°_]} [F_ (5.44-3)

Thus, the redundant forces [F°_ and the displacements at the k coordinates

[u-_ are obtained using Eqs. 5.44-2 and 5.44-3. The only matrix inver-

sion required is [aOO] "l

Once the redundant forces are known the forces on each element are

obtained from the equilibrium equations

[_,] = [c] [_._ = [c* ,Ic °] [ -_'_'r*]

In this discussion, nothing has been said about the determination of

the shell flexibility matrix A. It can easily be shown that this matrix may

5e %brained from the individual element flexibility matrixes [a]. by the
I

equ_-tion

[A] = [lS] T [o.] [IS]
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where

[a] = [Q]Z

and [a]i is the flexibility matrix of the i th element which is known. _ is

the matrix which relates element displacements to the shell displacements

by the relationship

(6} -- [p]{o)

The [_ matrix is a rectangular one in which every row consists of

zeroes except for a single term of unity, the position of which Identi_ies

that element of _5_ which corresponds to the particular element of u. In

other words, the function of the matrix [3 is to select the appropriate dis-

placement from u and then place it in the required order, element by

element, in the element displacement matrix 6.

The element flexibUity matrixes are a function of the type of finite

element chosen. For example, for the conical shell frusta elements

mentioned above, the £1exibility matrix is easLly obtained. From what ham

been mentioned in Section 5.30, it is apparent that the computer can be

used to good advantage in the finite element method. The matrix
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manipulations and inversions required can be handled quite efficiently on

the computer.

Consider the equilibrium (or displacement) method. In this method,

unknown displacements and rotations are dealt with. The unknown dis-

placements and rotations ensure equilibrium at the m degree of freedom

coordinates of the structure. In this method, the idea of redundancy does

not enter. In matrix form the equilibrium equations are

[F} - [K] {-}

where [ _ ] is the stiffness matrix of the shell and is given by

[K] = [_]T [_] [[_] (5.44-4)

The matrix [K] is the matrix of the r element stiffness matrixes,

[K] =

and since the force-displacement behavior of the elements is known, the

individual matrixes [K]i are easily obtained. The matrix equilibrium

equation IF} = [K] [u) can be solved for [u} as followm:
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{u] - [Z]"l {r}

Once the shell displacements are known, the internal forces in the ele-

ments are derived from the expression

[p} = [_][_][Z]"I [F}

The _ matrix in Eq. 5.44-4 is the same as was used in the compati-

bility method. The element stiffness matrixes can be obtained from the

strain energy in an element, as shown in Ref. 5-2. Refs. 5-3 and 5-4

use the conical shell element discussed in conjunction with the equilibrium

method. In Ref. 5-3, the equilibrium method is used to solve a problem

similar to the one shown in Fig. 5.44-I. The results agree well with a

closed form solution.

In finite element procedures, the matrixes to be inverted are gener-

ally not strictly banded; hence, it is generally not possible to use Gaussian

elimination procedures. Thus, large matrixes may have to be inverted,

resulting in long computer runs.
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5. 50 ASSOCIATED PROBLEMS AND FEATURES

RELATED TO COh/fPUTER USAGE

Although the existence of high-speed computers has made many

heretofore untractable problems solvable on a routine basis, limitations

and shortcomings of the computer should not be overlooked. In this section,

some of the characteristics of digital computers will be discussed.
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5 51 ACCURACY

The computer performs its operations using a different number

system than ordinarily used in analytical work. Because of this, it il

possible to encounter overflow or underflow problems. This means that,

in the course of manipulating numbers, the permissible range of the com-

puter can be exceeded by using a number too large or too sma/l for the

machine. Besides being bounded at the extremes, it should be recognized

that the number system used is discrete; that is, finite gaps exist between

the smallest consecutive numbers available on the machine.

A recent improvement is the ability of the machine to perform

"double precision arithmetic." This allows twice the number of lignifi-

cant figures (about 16) to be retained than is done conventionally.
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5. 52 TIME

Since the computer demands that a problem be given to it in a very

specific fashion, considerable time is often required to transfer an analyt-

ical formulation of a problem to a form acceptable for the computer. This

aspect of the work, which involves filling out coding sheets, punching cards,

etc., is called programming time. After the given problem has been

programmed, it is ordinarily necessary to check out the problem against

known results. Depending on the complexity of the program, the time

required for this phase may vary from several days to a month or more.

After the program has been completely checked out, the compiled deck

is entered into production status.

A compiled deck is ready, when supplied with sufficient data, to

execute problems of interest. Execution time varies with the complexity

of the program, the sophistication of the computer facility, and the num-

ber of cases to be run. When possible, it is advisable to stack as many

cases as are of interest on one run, as opposed to having several runs

with a smaller number of cases each. In the former case, a smaller

amount of time per case will be required. This increase in efficiency

presupposes an errorless program and data deck.
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5. 53 COMPATIBILITY PROBLEMS

At present, it is generally impossible to take a program written for

a specific machine (e. g. , Universal 1234 at Company ABC) and rum it

successfully on another machine (e. g. , National 4567 at Company XYZ}

without making some changes in the program. Nevertheless, successea

are being recorded in improving the compatibility between the various

machines and systems. Compatibility has increased to the extent that,

with relatively minor changes in the program, SHARE, an IBM collection

of existing programs, can be beneficially used. A SHARE catalogue is

consulted to determine what is available, and decks of interest are then

ordered. Program descriptions of some types are available for most

SHARE decks. The extent of program documentation ranges from two-page

short writings to complete and formal program descriptions. A typical

listing in a SHARE catalogue is as follows:

Cylinde r Analysis

Calculates the stresses in cylindrical geometries caused by

imposed loads. It solves the system of restraints by using

the short cylinder coefficients developed in the theory of

beams on elastic foundation. Deflections, rotations, and

three principal stresses are calculated at a number of points

throughout the geometry. Restriction: no other routines
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are required but the standard library routines from tape A.

FORTRAN program. Machine requirements: 7090 16K

3 tapes input, output, and library. No drum corr. 1380.
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5. 54 THE DYNAMIC NATURE OF THE COMPUTER

Since the development of computers is proceeding so rapidly, it i8

entirely possible that some of the statements made in this chapter will

become invalid at an early future date. An example of this early obso-

lescence is the present implementation of FORTRAN IV, a source languAse

destined to replace FORTRAN II. The time will come when it will no

longer be possible to recompile programs written in FORTRAN II and thus

conversion to FORTRAN IV will be mandatory.

Future computers will almost certainly be able to execute prograurns

faster than those presently available, perhaps an order of magnitude

faster. An area of potential improvement is in the inputting of progr&rns.

Investigations are proceeding on making the computer accept handwritten

or oral instructions instead of using cards and tapes. Obviously_ the

engineer will benefit from the continuing improvements in cornputerj.
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5.60 A TYPICAL COMPUTER PROGRAM

This chapter concludes with an illustration of a typical program deck

and its associated input and output. A schematic illustration of a deck that

could conceivably be used to solve a shell problem is shown in Fig. 5.60-1.

The main program contains the heart of the analysis. The subroutines may

be matrix manipulations, graph plotting procedures, etc.

The data can be entered either as a deck of cards, or as data sheets

for subsequent keypunching. A typical data sheet is shown in Fig. 5.60-Z.

Upon successful execution of the program, the output is ordinarily

received in printed form as shown in Fig.

_1

5.60-3. However, techniques

DATA_If

'-- SUBROUTINES

Jr i

I I II II I I III

_r

z_l_ M A{N BODY OF PROGRAM

I I I II II I I I I I
I

CONTROL CARDS

II I I
I III

I

I I I

I I

III I

FIG. 5.60-I. Typical Program Deck
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are available for obtaining the results graphically. A typical plot from

the corr_puter is shown in Fig. 5.60-4.

FORTRAN FIXED IO DIGIT DECIMAL DATA

! NUMBER |DENTtFICAT/ON DECJCRIPTION O0 NOT K[Y PUNCH

FIG. 5.60-2. Typical FORTRAN Data Sheet
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FIG. 5.60-4. TYPICAL COMPUTER PLOT
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5.70 CONCLUSION

From the brief description of the computer and its use in shell

analysis given in this chapter,

positive input to the efficient,

it is obvious that the computer has a strong

successful analysis of shells. Since the

future promises an increase in this role, any serious engineer must

become as acquainted with the computer as possible.
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