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ABSTRACT

Techniques have been established and a computer program has been written (in the
experimental language, FORMAC) to symbolically reduce arbitrary block diagrams for
desired transfer functions. Symbolic solutions are determined in several forms including
an expanded form in terms of the driving frequency and system constants. Programs are
writlen to numerically evaluate the symbolic solutions for real and imaginary parts and
magnitude ratio and phase angle. The programs have been applied to several research
problems which include both lumped and distributed parameter systems. The latter ’
forms are built info the program and are handled automatically.
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COMPUTER PROGRAM FOR SYMBOLIC REDUCTION OF BLOCK
DIAGRAMS USING FORMAC
by Carl F. Lorenzo and Paul Swigert

Lewis Research Center

SUMMARY

Techniques have been established and a computer program has been written (in the
experimental language, FORMAC) to symbolically reduce arbitrary block diagrams for
desired transfer functions. Symbolic solutions are determined in several forms including
an expanded form in terms of the driving frequency and system constants.

Programs are written to numerically evaluate the symbolic solutions for real and
imaginary parts and magnitude ratio and phase angle.

The programs have been applied to several research problems which include both
lumped and distributed parameter systems. The distributed-parameter forms are built
into the program and are handled automatically.

INTRODUCTION

The use of block diagrams has become widespread for the analysis of dynamic prob-
lems. The classes of dynamic problems handled with this technique include controls and
servomechanisms, various physical dynamic problems from acoustics to structural dy-
namics, and such engineering tasks as transient heat-transfer and circuit analyses.

In cases of block diagrams with few blocks or paths, symbolic solution is rather
routine. However, as the path and block complexity increases, manual symbolic solu-
tion becomes more difficult and, indeed, prohibitive. The manual reduction of a block
diagram is an algebraic task which is at best routine and can often be difficult and/or
tedious. Also, the process is susceptible to human error and is time consuming.

In the past, these more complex problems have been attacked by use of computer
programs to allow at least numerical solutions. These programs have used matrix
methods and require a complete matrix manipulation for each frequency (refs. 1 to 3).



The purpose of this study is to evolve a digital computer program that can reduce any
block diagram symbolically to obtain a transfer function of interest, that is, to generate
expressions for the transfer function either in terms of the G's (the transfer functions
for the blocks), or S (the Laplace operator), or w (the driving frequency).

A further goal is to supply programs by which the symbolic solutions can be effi-
ciently evaluated numerically for magnitude ratio, phase angle, and real and imaginary
parts as functions of frequency.

- Such programs would allow the engineer to focus his attention on detailed evaluation
of the model (contents of each block) and interpretation of the end results of the analysis.

The value of the symbolic expression is that (1) it may be used in research applica-
tions where such expressions are useful for some further analytical purpose, (2) the
mathematical expression is a most compact manner for communicating the desired infor-
mation (transfer function) for reports, etc., and (3) the analytical expression allows effi-
cient numerical evaluation for cases of particular interest.

The present work differs from the previous efforts (ref. 1) in that symbolic solutions
will be generated (in minimum form) using FORMAC. These symbolic solutions will be
evaluated directly for numerical results, therein bypassing the matrix manipulation.

This report is organized in the following manner. The first section will be general
background information with some theoretical preliminary material to show how block
diagrams are reduced. The next two sections will give detailed information as to how the
general ideas are implemented into digital programs and how those programs function.

An applications section demonstrates program results for both lumped parameter and dis-
tributed parameter systems. A users manual is presented which gives a step-by-step use
of the program with an example.

GENERAL SCHEME

The basic elements composing block diagrams are
(1) Summers - add or subtract n-signals
(2) Blocks - accept one signal and modify it by an S or frequency-sensitive operator
(3) Nodes - split a signal into two or more parts
Any linear block diagram can be composed of these elements in various combinations.
The information contained in the block diagram when the blocks have some gener-
alized form (G-form) is basically topological information (ref. 4). When the expressions
for the G's are put into the diagram, the information becomes system information.
Consider the problem of finding an arbitrary transfer function Xa/Xb for some
given block diagram. (Symbols are defined in appendix A.) For a sufficiently general
block diagram, there will be several solutions: (1) the forward transfer function, (2) the
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Figure 1. - Two-element block diagram.

external-loop transfer function, and (3) the transfer function with respect to a given in-
put. The forward and external-loop transfer functions are illustrated in the simple block
diagram of figure 1. It is characterized by the equations:

and
X2 =G

2%1

To form the transfer function X1/X2’ clearly, two results are possible:

Xl_

=G

Xq
and

%1_1

X9 Gy

using the first and second equations, respectively. This is also true of larger, more
complex diagrams. Generally, it is the forward transfer function (XI/XZ = Gl) that is of
interest in the solution of controls problems. When a block diagram is reduced manually,
the problem does not usually occur because the engineer is discriminatory in his selec-
tion of equations (blocks or summers) used to reduce the system; that is, he takes into
account the direction of signal flow. It is undesirable to account for signal flow direction
in the computer program. Therefore, it is best to avoid this problem by forming only
transfer functions involving an input, as opposed to those containing two internal signals
in the block diagram.

The effect of an input on the solution is related to the question of forward and
external-loop transfer functions. To illustrate, the block diagram of figure 2 has two
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Figure 2. - Two-input block diagram.

inputs. As a result of this, there will be two transfer function relations for X2/X4, for
example. Consider the system equations:

X, - GXy=0 (1)
Xg - GgXy =0 2
Xg -Xg-X,=0 (3)
Xy + X, -Xg=0 (9

It is easily shown that for Xg as input (X6 = 0)

o1
X5 1+ G1G2
also,
Xy G
X 1+ Gle
Hence,
1
ﬁ = _:_(?_lf_z.“ -1 for X5 as an input
Xy -Gg Gy
1+ GGy

It can be further shown that for X6 as input (X5 =0)

i
A
i
§
i
H
i
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i
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X6 1+ G1G2
and
a1
X6 1+ G1G2
Hence,
Gy
X 1+G,G
2 172 _ G for X, as an input
1 6
X4 1
1+ G1G2

It is concluded, therefore, that the transfer function between two arbitrary points
(neither an input) in a block diagram requires the specification of an input as reference;
that is, total specification of a transfer function should be Xa/Xb with Xc as an input
(which implies that all other inputs are zero). Or how does Xa respond to Xb when
X, (only) is stimulated? It is interesting to note that, when both inputs Xg = Xg =0,
equations (1) and (4) yield X2/X4 = G; and equations (2) and (3) yield X2/X4 = -1/G2.

These, by analogy to the previous example, would be considered the forward and
external-loop transfer functions. This also indicates that, if all the equations are not
required for a reduction, the solution is probably not unique. Were it not for this fact,
it would be difficult to determine whether the solutions for large complex diagrams were
unique.

The problem of nonunique solutions is easily remedied in the programs which follow
by only forming transfer functions with respect to an input. Experience indicates that this
results in a unique solution. Ratios of the proper results form the arbitrary transfer
functions; that is,

*a
X X
m __2 for input X
X X m
b b
Xm



It is further noted that, if minimum form solutions are attained for Xa/Xm and Xb/X

Algebraic manipulations

Algebraic input
(1) Block diagram equations
(2) Transfer function sought
(3) System information (G's)

|

Determination of order
(1) Order of use of equations
(2) Order of variable to be
eliminated

l

Reduction of system of
equations to transfer
function in G-~form

!

Substitution of S-
functions for G's
{symbolic)

Numerical manipulations

}

Numerical input
(1) Valueof constants
(2) Frequency

Substitution of iw
for S numerically

Substitution of
iw for S

}

Solution for complex
rational form

|

| |

Evaluation of real and imaginary
parts of transfer function

}

Calculation of magnitude
and phase angle

Numerical input
(1) Value of constants
(2) Frequency

l |

Evaluation of real and imaginary
parts of transfer function

|

Calculation of magnitude
and phase angle

Figure 3. - Simplified flow chart for block-diagram-reduction technique.

m’

the denominators (characteristic parts) will generally be identical. Hence, only the ratio
of the numerators are needed for the desired result. This can be validated by applica-

tions of Cramer’'s rule.

A simplified flow chart for the process of reduction of a block diagram (to a desired

transfer function) is presented in figure 3. The flow chart is composed of two basic
parts: (1) those processes involving algebraic manipulations and (2) those processes in-

volving numerical manipulations.

Algebraic Manipulations

The algebraic manipulations, of course, precede the numerical. The first block

(fig. 3) indicates the information required for the algebraic (or symbolic) reduction.

6
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=—equation per element), (2) the transfer function sought from the reduction, and (3) the

= contents of the blocks of the diagram, that is, the equations expressing the G's in

—-terms of the Laplace variable S and the various time constants and natural frequencies,
- ete. These data are sufficient to allow reduction to a symbolic form.

Before the actual algebriac reduction can take place, the order in which the variables
are to be eliminated and the equations to be used for such eliminations must be deter-
mined. For a manual reduction this is usually done by observation or intuition. The
technique of ordering will be discussed more fully in appendix D.

Having a desirable order of elimination, the reduction takes place in the following
manner. The first variable to be eliminated is solved for in the equation indicated by the
order determination. This equation is then substituted into all other equations of the set
containing that variable, thereby eliminating it. It is important that the variable be sub-
stituted in all equations; otherwise, the possibility of looping occurs. (Looping is re-
peated substitution of variables without achieving elimination.) This substitution process
is continued for all the remaining variables except the two variables involved in the de-
sired transfer function. This leaves a single equation in the two variables which is now
manipulated to form a ratio only involving the G's. For example:

Xa 1

R (5)
Xb 1+ Gle

This is the so-called G-form of the transfer functions solution. The G-functions can
always be expressed as a ratio, that is, Ga = Na/Da‘ This ratio is now substituted into
equation (5) which results in

l

x—a ) 1\: N ©
o 1+ 12
Dy Dy
Solving for a simple ratio for Xa/Xb gives
X D.D
2
B. 0 bR O

Xb D]_D2 + N1N2

for the example taken. In this form, the system information is easily introduced into the
result. Assume that



\
G —T1S+1
17 s+1
ToS +
and } (8)
G _T3S+1
9= ———
2
T4S +1
W,

The fourth block (flow chart, fig. 3) indicates that equation (8) is to be substituted in
equation (7), thus,

X _ (TZS + 1) (7'432 + 1) ©)

b <TZS + 1)(T4S2 + 1) + TIS + 1)(738 + 1)

This is the S-form solution for the transfer function (unexpanded). From this form,
either numerical evaluation is possible or further symbolic reduction can be done. For
the symbolic result, S is now replaced by iw (a step which is valid for wide set of con-
ditions). (See ref. 5.) Hence,

o

>

) (Tziw + 1) <T4i2w2 + 1)

b (Tziw + 1)<T4izw2 + 1) + <Tliw + 1)<T3iw + 1>

NlmN

Now, i2 = -1, thus

Xa _ (’rziw + 1) (—74(.02 + 1)

Xb (Tziw + 1) (—T4w2 + 1) + (TIiw + 1) (T3iw + 1)

and

(1 - 74“’2) + i(‘727'4“’3 + Tz‘”)

[2 - (7173 + 74)w2:| + i[(’Tl +Tg + 73>w - 7274w3J

GN |m>4

- =-;+ﬁ@,:f—:»;a.gjﬁ?m



This has been called the complex rational form in the sixth block of the flow chart
= (fig. 3), that is, the form

C +1iD

[
>

where A, B, C, and D are functions of the excitation frequency and system parameters,
TS, w)'s, K's, etc. This form is very important in many research studies. From this
- form, the magnitude ratio and phase angle follow directly because

X
re[ 2 )-AC + BD an
Xy c? . D?
X
Imag( 2= CB - AD (12)
Xp)  c? 1 p?
therefore,
Phase angle = tan” CB - AD (13)
AC + BD
also,
X X 2 2 2 9
Magnitude of 2 =|_2|-_YA"+B” _ (A" +B (14)
Xy | X 2 42
o b c? . p? C"+D

Numerical Manipulations

For the numerical manipulations, when the path starting with the S-form is con-
sidered, it is merely necessary to substitute the numerical values for the frequency and
the system parameters then to use complex arithmetic to obtain the numerical equivalent
of equation (10). From this, the quantities of equations (11) to (14) are readily evaluated.

The path from the complex rational form is similar except that the substitutions are
made into equation (10) directly.

A further note on the importance of the order used in the reductions: if the proper
order is not used in the reduction scheme presented, it is possible to introduce a common

9



factor into both the numerator and denominator (of eq. (9), e.g.). Now, although this re-
sult is still technically correct, this could potentially introduce hundreds or thousands of
extra terms in the symbolic solution. This is important in the computer program which
follows because it seriously affects storage capabilities and, hence, problem size capa-

pility.

Problem Types

The type of problems that can be handled using these techniques is limited to linear
systems. Hence, the contents of the blocks (the G's) can only be functions of S and
constants; that is, time varying constants (system characteristics) are not permissible.

For the so-called lumped parameter systems, the G's are sums and products of

KS terms and constant terms.
For distributed parameter systems, namely, systems where the blocks are solutions

to the wave, diffusion, or beam equation or where they are dead times, the G's will
generally occur in the following forms (one dimensional):

sinh (d Vas? + bs + c> (15)
cosh <d Yas? + bs + c> (16)
sin <dVas2 +bs + c) (17
cos <dVas2 +bs + c) (18)
exp <dvas2 +bs + c> (19)

<V as? + bs + c> (20)

Here again, this is true provided the partial differential equation involved is not of the

time varying coefficient type.

The preceding forms are built into the programs described in the next section. The
following identities are useful when these forms are involved in either a manual reduction
or in the programs. The program symbolic output is RSINH (real part of sinh), ISINH

(imaginary part of sinh), etc., when z =x + iy.

10




sinh z = sinh X cosy +i coshx siny (21)

coshz =coshxcosy+isinhxsiny (22)
sin z = sin x coshy +1i cos x sinh y (23)
cos z =cos X coshy -1isinx sinhy (24)

e?=e*cosy+iesiny (25)

These equations can be found in reference 6. In the event of a square-root argument,
the following equations are helpful:

\/;=Vx+iy=u+iv (26)

If x=0
w
u =‘/l|x| +l|x+iy|
2 2
’ (27)
V:l
2u y
If x=0
u=y/2v )
S (28)
v = (sgn y)\/l|x| +l|x + iy]
2 2 y

The forms (21) to (25) result when the various partial differential equations are solved in
rectangular coordinate systems. When this is not the case, other forms can be intro-
duced, for example, Bessel functions and Legendre functions, etc. When this is the
case, it becomes desirable to have some arbitrary unassigned functions which can repre-
sent such a solution. It is only necessary that expressions (similar to (21) to (25)) can be
written for the real and imaginary parts. It is interesting to note that the sinh, cosh,
sin, and cos will not have square-root arguments unless damped versions of the original
partial differential equations (wave or beam) are solved. Whereas, the square-root form

is usually required for the diffusion equation solutions, that is, sinh <X‘/§) and
exp <d\/§> (See ref. 7 for typical results.)

11
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IMPLEMENTATION

The complete solution of the block-diagram reduction is obtained through the use of
two separate computer programs: the algebriac solution and the numerical solution.

The algebriac computer program required the use of the FORmula MAnipulation Compiler
(FORMAC) (ref. 8). The FORMAC language is an experimental extension of FORTRAN
IV for the IBM 7094 computer. This extension provides the capability for doing algebriac
manipulation by using symbol manipulation. The numerical solution of the FORMAC ex-
pressions is performed by a program written in FORTRAN IV. Appendix B presents a
User's Manual for these programs and appendix C gives listings, flow charts, and de-
scriptions of the programs.

Two separate programs were necessary for two reasons: (1) FORMAC is an inter-
pretive language that requires relatively large computer execution times for repetitive
numerical evaluations of algebriac expressions and (2) computer storage must be saved
because the FORMAC program requires large amounts of storage to form the algebriac
expressions. These two considerations made the separate programs necessary even
though the user was given the inconvenience of making two computer runs for the com-
plete solution.

The solution obtained from the FORMAC program is communicated to the FORTRAN
program by equations punched on cards. These equations are punched by the FORMAC
program in a form that can be compiled by the FORTRAN IV compiler. The cards are
simply inserted in the proper place in a FORTRAN subroutine.

FORMAC Program (REDUCE)

Basically, the FORMAC program consists of four major steps: (1) reduction of the
system of equations (of the block diagram) to one equation containing the two variables of
the desired transfer function, (2) solution of this equation for the transfer function in
terms of the G-functions, (3) substitution of the system information for the G-functions,
and (4) expansion of this equation and collection of terms of the real and imaginary parts.

The reduction proceeds by choosing a variable to eliminate, solving for that variable
in one of the equations, and substituting the solution for that variable in the remaining
equations. Prior to the actual reduction, the inputs to the block diagram, supplied by the
user, are replaced by zero. If an input occurs in the desired transfer function, the input
is not made zero. With this method, the number of equations and variables is reduced by
one at each step. The variables that appear in the transfer function are, of course,
never eliminated. The final equation contains only the variables of the transfer function
and the G-functions.

12



TABLE 1. - STEP USED BY FORMAC PROGRAM TO SOLVE HEAD RESPONSE

BLOCK DIAGRAM FOR TRANSFER FUNCTION Xl/Xz

Equa- Step
tion )
0 1 2 3 4
1 —X1+X2 X6=-X1+X2
- X6 =0
2 G1X2 G1G3X2 - X1 G1G3X2 - X1 - G2G3X1
- X3 = + (}2G3‘X6 =0 + G2G3X2 =0
3 G2X6 Xy = G2X6
=X, =
X3 - G2G3X6
4 X3 + X4 X3 + G2X6 G3X3 + G2G3X6 X3 = T
3
—X5=0 —X5=0 -X1=
Xy
5 G, X X, = —=
375 5 Gy
- X1 =0

This reduction method is depicted, using the example of appendix B, in table I.
Here, the transfer function desired is Xl/XZ' The equations to be solved are listed at
step 0. As the reduction proceeds through each step, the number of variables and equa-
tions is reduced by one until only one equation remains. One can see that equation (2),
as it appears in step 4, is indeed the desired solution.

This method will always give a correct result. However, the answer may be of a
form that is overly complicated; that is, the numerator and denominator may contain like
factors. Because these like factors are difficult to detect in FORMAC, it was necessary
to choose the variables to eliminate and the equations used to solve for these variables
in some specific order. The order desired is the one that yielded transfer functions
which had no common factor in the numerator and denominator. In other words, the
minimum form of the solution is desired. The method for determining this order is de-
scribed in appendix D.

The FORMAC program has certain limitations because of programming considera-
tions and computer memory size. There is an upper limit to the number of equations,
the number of variables, and the number of G-functions that it can handle. These limits

13



are 30, 63, and 20, respectively. There are also limitations on the number and type of
functions and variables that may be used to describe the system information. All limi-
tations are described in the user's manual (appendix B). The limitations are due partly
to the method employed to order the equations for solution and partly to conserve memory
locations. It is felt that the limits are large enough so that the user is not unduly re-
stricted in the size of problem that may be solved. However, many of the limits may be
increased by changing dimension statements in the program. Care must be taken in
changing the dimensions so that too much storage space is not removed from the space
needed to store the FORMAC expressions.

Because FORMAC stores expressions in the computer memory locations not used by
the programs, it is desirable to keep the unused storage as large as possible. Subrou-
tines referenced by FORMAC programs but not executed in this program are not loaded
at execution time. This is accomplished by the use of a dummy subroutine with entry
point names the same as those subroutines that would be loaded but not executed.

In order to expand the transfer function into real and imaginary parts, it was neces-
sary to represent the allowed system functions symbolically as complex numbers. This
is accomplished in the program by prefixing the function names with R and I, where
the names prefixed with R stand for the real part of the complex number and I, the
imaginary part. The term S is considered as a pure imaginary number iw.

The expansion of the transfer function into real and imaginary parts may not always
be accomplished by the program. The limiting factor here is memory size. Because of
this fact, provision is made in the FORTRAN program to accept transfer functions in
either the S form or the complex rational form.

The FORMAC program uses the following function subprograms that are not supplied
with either FORMAC or FORTRAN. These subprograms are not given in this report and
must be supplied by the user.

Function Description
ALS(N, X) Accumulator left shift of X, N binary places
TARS(N, X) Accumulator right shift of X, N binary places
LGR(N, X) Logical left shift of X, N binary places
AND(X1,X2) Logical intersection of X1 and X2
OR(X1,X2) Logical union of X1 and X2

14




FORMAC Input/Output

The input to the FORMAC program consists of two parts. The first is the {ransfer
function desired and the system of equations from the block diagram. The second part is
the system information expressions. After the equations are read, they are reduced to
the G-form and output printed and punched. The G-form is then transformed into the
N/D-form and output. A logical variable is read to determine whether the user wants
system information substituted for the N/D's. If substitution is desired, this informa-
tion is read and the substitution and the output of the S-form takes place. Another logi-
cal variable is read and tested before expansion to the complex rational form is per-
formed. A more detailed description of the input and output is given in the users manual
(appendix B).

For the equations punched by the FORMAC program to be acceptable to the FORTRAN
IV compiler, the floating point powers and the trailing $ had to be removed. This is
done by the program just prior to the punching of equations.

The execution time for the FORMAC program is difficult to predict. However, exe-
cution times cited in the next section are typical. All execution times mentioned in this
report are for the IBM 7094I1-7044 direct-couple system.

FORTRAN Program (EVAL)

The FORTRAN program can accept punched output from the FORMAC program in
one of two forms: either the unexpanded (or S-form), or the expanded (or complex ra-
tional form). The FORTRAN program is designed to handle all the different types of sys-
tem information acceptable to the FORMAC program except the arbitrary function.

To be able to handle the arbitrary function, the user must supply a complex function
subprogram F(I) that evaluates the desired function. The subprogram that defines the
other functions (appendix C) may be used as an example of how this is to be done.

FORTRAN Input/Output

The equations punched by the FORMAC program are inserted into one of two- subrou-
tines, depending on the form of the equation. This subroutine must be compiled and exe-
cuted with the main program and the function evaluation subprogram. The numerical in-
put is read by the main program, and the subroutine containing the FORMAC expressions
is executed. The numerical input is determined by the type of functions used in the sys-

15



tem information expressions. A more detailed discussion of this may be found in appen-
dix B.
Output from the FORTRAN program consists of all numerical input and the follow-
ing data from the transfer function at each frequency specified by the user:
(1) Values of the real and imaginary parts of the numerator and denominator nor-
malized such that either the real or imaginary part of the numerator is one.
The normalization is necessary because some terms may involve large values
of frequency raised to powers.
(2) The real and imaginary parts
(3) The complex absolute value (magnitude)
(4) The complex argument (phase angle)
The execution time of the FORTRAN program depends on the complexity of the trans-
fer function and is therefore difficult to predict. The execution time, however, is some-
what larger for the S-form than the complex rational form.

APPLICATIONS

Several applications have been chosen to demonstrate various aspects and poten-
tialities of the block-diagram reducing programs. The first example is that of an
interacting-control system. It is a lumped parameter example in which the forms of the
solutions are of some interest. A second example, representing a lumped mass, spring-
damper system, is presented. Here, the symbolic solution is of particular interest.
Finally, a distributed parameter is presented in which the numerical results are of pri-

mary interest.

Application 1: Interacting-Control System

A block diagram of an interacting-control system is presented in figure 4(a). Al-
though the values for the G's are not specified here, the block diagram might be repre-
sentative of the interacting-control problem for jet engines (e.g., attempting to control
engine speed and turbine-outlet temperature simultaneously). The algebriac information
required, the program, and the solutions desired are indicated in figure 4(b). Because
the G's are not specified, the solutions cannot give system information, but it does give
the topological information associated with the form of the diagram.

Because there are eight components in the block diagram (summation points and
blocks) there are eight equations required to define the system. (Nodes are not consid-
ered components because the equation Xa = Xa is not needed by the program.)
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X X
- 5 1 +
G X
X1 by 1 A 3
Gy *10
G
3 Xo
+ G +
VRS ¢ Xg 4 Xg + *4
(a) Block diagram.
Xl‘X3'X5=0 X7‘GlX5=0
X2'X4‘X6=0 X9‘GzX5=0
X7+X10'X3=0 X10‘63X6=0
X8+X9‘X4=0 X8“G4X6=0

Block-diagram inputs: x; and X,
% %
X1 X 1%

(b} Algebraic information required.

Solutions desired:

Figure 4. - Interacting control system,

The solution for the transfer functions are as follows:

Xy G2

X1 G1+G1G4— G2G3+G4+1

X4 G1 +G1G4 - G2G3+G4+ 1

é= ) G1G4 - G2G3 + G4

X2 G1 + G1G4 - G2G3 + G4 +1
X3 _ G

X2 Gr1 + G1G4 - G2G3 + G4 +1
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These are the results as generated by the computer. Should the user be interested in the
transfer function X4/X3, it follows that, for X1 as the reference input,

4 %

and, for X2 as the reference input,

i(é ) G1G4 - G2G3 + G4

Xq G

clearly not the same result. For this reason, the user should form the transfer func-
tions as indicated herein so that the reference input will be known.

The total computer execution time required for these four solutions was 0. 30 minute.
It will be noted also that the solutions are in minimum form. Also, the equations are not
put into the program in any particular order, but the order in which they are used is de-
termined in the program.

Application 2: Mass-Spring-Damper Dynamics

This particular application was taken from a study in which the symbolic solution was
of primary interest for use in further analysis. (See ref. 9.) The object of that research
was to relate the individual dampers of n-mass systems (n = 3, fig. 5(a)) to a modal
equivalent damper. To accomplish this required the symbolic solution in the complex
rational form.

The block diagram for the system is presented in figure 5(b). The values for the
G's are given in the blocks and variable names used in the program are parenthetically
noted after each variable.

For this problem, the following symbols apply:

damper constant, (sec)(lb)/ft; (sec)(N)/m
force, 1b; N

spring constant, 1b/ft; N/m

mass, (secz)(lb)/ft; (secz)(N)/m

<~ 2 " H1 W

displacement, ft; m



(a) Physical system.

Block diagram input: X6

X
Solution required: a
X

(c) Algebraic information required.

Figure 5. - Three-mass spring-damper.

F(X6)
F3-glxyy) w A - Fo-a¥1g) 4 - F1-glxg)
F3(X9) Fz(X7)
Gg = K3 - B3S Gs-% Gy = Ky + ByS Gg'—lz— Gy =Ky + ByS 6= L
m3S myS M,s2
¥2-3txg) Y123
g - Yolxp) + - yiix)
(b) Block diagram,
G1X8 'X1=0 G4X5 ‘X10=0
Gyx3 ~xg =0 X4 "% "X5=0
X9 =X " X3=0 GsXg - x4=0
G3x7 ~%p= 0 X1+ %6 ~X10 "%~ 0
X10 " Xg ~¥7=0 Ge*g ~*11 =0

Specifically required in the study were the coefficients of the various powers of w
in the characteristic equation (denominator of the complex rational form).

The input equations required by the program are shown in figure 5(c). This is a
10-component (10 equations) system and the solution required is for Xl/ F= (Xl)/ (X6).
The solutions as generated by the program are as follows:

The G-form of the transfer functions.

XI/XG = G1G2G3G4G5 /(GIGZ + G1G2G3G4 - G1G2G3G4G5G6 + G1G2G4G5 - G1G2G5G6

+ G2G3 + G2G3G4G5 - G2G3G5G6 + G3G4 - G3G4G5G6 + G4G5 - G5G6 +1.0)




After program substitution of the G equations:
XI/XB = (K1 + SZl)(K2 + SZZ)/ [—(K1 + SZl)(K2 + SZZ)(—K3 - SZ3) + (K1 + SZl)

X (Ky + szz)sle + (K, +8Z)(K, + SZ,)S2T, + (K, + SZ,)(K, + SZ,)S°T,

2 2 4
- (K, +8Z,)(-Ky - SZ5)S T, - (K +SZ,)(-Kg - SZg)S“Ty + (K; + SZ)S

4 2 4
X T Tq+ (K1 + SZ1)S ToTg - (K2 + SZ2)(-K3 - SZ3)S T, + (K2 + SZZ)S
6
Ty ToTs]

After program substitution of S = iw and expansion to the complex rational form:

4 4
X T Ty + (Ky + SZ)S T Ty - (-Kg - SZgS T Ty + S

_ 2 ; 6
Xl/XG = KIKZ -w ZIZ2 + 1(KIZ2 + Kzzl)w/ {KIKZKB - T ToTqw™ + (K1T1T3 + K TyTq

+ K2T1T2 + K2T1T3 + K3T1T2 + TIZIZZ + TIZIZ3 + TIZZZ3 + T2Z1Z2

4
+ T221Z3 + T3Z122)w + (-KleT1 - K1K2T2 - K1K2T3 - K1K3T1 - K1K3T2

2 .
- K ZyZy - KgKoT| - KgZ1Zg - KgZyZo)w™ + i[(T{TyZg + T, TyZg + T;T5Z;

5
+ T1T3Z2 + T2T3Z1)w + (-K1T1Z2 - K1T1Z3 - K1T2Z2 - K1T2Z3 - K1T3Z2

-K,T.Z

9T12y - KgT1Zg - KgT9Z - KoT3Zy - KoTyZ - KgT 2y - K3TyZ

3
- 21Z9Z )" + (K KyZg + K KgZy + K2K3zl)w:|}

The actual program output form corresponding to this equation is shown in table II.

The coefficients generated here, with Tn = Mn and Bn = Zn, compare exactly with
those generated manually in reference 9. Thus, the tedious hours required to the various
cases presented in that study can now be avoided by use of this program.

The symbolic form of the solution is fairly complex; however, parametric studies
using the solution are now easily made. In this case, for example, numerical values for
the B's and the K's can be substituted in the complex rational form equation. This
substitution would leave an expression involving only the Z's (or damping terms). From
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TABLE II. - PROGRAM OUTPUT FORM

NUMERATGOR
(KELIAS*Z UL I*(K(Z21+45%28 2))

JAS*k32  AT(LIH(K(1P4SAZ( 1)) (K(2)4S%2(2))*S**2 T (2)¢(K(l)+S*
YER(KU2)4S*Z( 2))#S%¥2  *T(2)-(K(1)+S*EZ (1)) *¥(-K(3)—S*Z(3)) *S*=*
ATLLI-(KOL)4SAZ (1) I*(—K(3)-S*Z(3) )*S«*2 *T(2)+(K(1)+S*Z(1)})*S
*34 IT(LIFTU3IHK(1)4S€Z{ 1) )*S%*4 *T(2)*T(3)-(K(2)+S%*2(2)) *{-K(3
P=SHZ(3)1¥S*¥2 AT 1IHKEZ)+SHZ(2) )% 5x%4 XT(L)*T(2)}+(K(2)+5*%2(2))
¥SH%4 FTLLIATA3I-(-KE2)-S*Z(3) ) Sk*4 *T(LI*T(2)+S*%6 *T{(1)*T(2"

*T(3)

%&?{Tégggll))*(K(Zl*S*Z(2))*(°K(31—S*Z(3))+(K(1)+S*Z(ll)*(K(2l+S*
{2)
(1)

NUKERATOR (REAL)
K(1)#K(2)

—Wer2  A2(1)2(2)
NUMERATOR ( IMAGINARY )

(KOLISZ(2)4K(2)$2( 1) )*u

DEMOMINATOR (REAL)

K(L)*K(2)#K( 3)
“TOLIAT(2)%T (3 )¥W*%E

(KCLDIITOLIAT(3)4KO 1 )ATL 2R TE 2 ) 4KE2)RTULI*T{2)+K(2)*T(L ) *T(3)+K(3 ) *
TOLIATL2P3T(LIRZELI*ZE2)4TUL IRZ( LI Z{3)4+TILI*Z(2)%Z2(3)+T(2)%2(1)*Z
(2)4T L2032 L )*ZU 2 )T 2)%20 1 )*Z( 2) MF k%4

(“KUL)*KE2)*FTCL)-KU D) #K{ 21 TLZ KLV *K(2)1%T(3)-K(1) *K(3) #T (1) -K(1)
FKU3)AT(2)-KOLI*ZC2)%Z (3 1-KU2I*¥K(3)*T(1)-K(2)*Z2{(1)*Z2(3)-K(3)*2(1)*
ZL2) ) *u*%2

THE DENOMINATOR ( IMAGINARY)

(TOLISTL2)*Z (24T IFTUZIHRZ(2)4TILIFTU3I*ZLL )+ T(LI*TU3 ) *Z(2)+T(2) *
T(3)HZ( 1)) *H **5

(KELPATCLIFZLE2V—KELIRTLLIRZ (3 ) -KOL IR TL2¥%Z2(2) K1) *T{2} *Z(3)-K(1)
*T(B)*Z(Zl—KlZD*T(ll*Z(ll-K(2)*T(l)*ZlBI-K(leT(Z)*Z(f)-K(Z)*T(Bl#
Z(l;—K(3)‘T(1)*1(l)-K(B)*T(1)*l(2)—K(3)*T(2)*Z(1)—Z(l)*l(Zl*Z(B))*
H*E

(KELI*KO2DFZ (I IKO D1 IIK( 2 )20 24K 2K 3)*Z(1) I * N
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this expression, the effect of the individual dampers on the response of interest could be
assessed.

The computer time required to execute this study was 0.39 minute, the user prepa-
ration (for the program) was minimal because it merely required listing the equations
(the G-expressions) and transfer functions sought and placement of appropriate punched
cards in the program.

Also, with the numerical evaluation program, frequency response for cases of
special interest (M's, K's, and B's) are quickly generated.

Application 3: Hydraulic-Line-Dynamics Study

This study is an example of a distributed parametric study. For this study, only the
numerical results were of interest. For the program, of course, it is necessary to gen-
erate the symbolic answers at least to the S-form to obtain the numerical answers.

The following symbol list applies to this application:

line capacitance per unit length, in.; m

cn
Cm compliance, in. 2; m2
Ln

line inductance per unit length, secz/in. 3; secz/m3
l line length, in.; m
m index number for termination impedance
n index number for characteristic impedance
P pressure, lb/in.z; N/m2
R, line resistance per unit length, sec/in. 3; sec/m3
R, resistance, sec/in.z; sec/mz
w weight flow, 1b/sec; N/sec
Z,, Ccharacteristic impedance equal to 1/S ‘/Ln/cn [Sz + (Rn/Cn)S], sec/in. 2; sec/m2
e 2,2
Z, termination impedance equal to Rm/(RmCmS + 1), sec/in.“; sez/m
. 2 o
Yy propagation constant equal to ‘/L nCnS” + RyCpS, 1 /in.; 1/m

The physical system is shown schematically in figure 6(a). The system is composed
of a main feed line OJ feeding three subsidiary ducts, JB, JC, and JD. The dynamic
problem is to determine the response of the end pressures in the subsidiary ducts in re-
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(a) Physical system,

PJ(X4)

X
- : 5
G5 =Z4g sinh YBLB 1
Gyy = >— cosh 18lg
PB(XH) ZB
* +-Lsinnygly | Wis%1d
Gg = cosh yglg ZoB
%6
X
|_ 67 = Zyg sinhycle — A
Gyy = — cosh ypl, .
"} Pelxpg) 1277 e * Wolxgp)
C + 17
———
1 g Wie txgeh + 1
+ + 5 sinh YCLC ic Y15
Gg = cosh ycle " oC
8
X
Lo L
Gg = Z,pSinhypl
9 oD 0D Gyz= 1 cosh YDlD
PD(X13) Zp
+ +Losinhygly | Wp Mg
Gio=coshyplp oD

P
oy Gy = cosh yplp *2
+
Gz = ZOA sinh YALA X3
Wylxog)
(Xlg) 1 .
G, = == sinh YAlA
3 Zoa
+
|4
+
Gy = cosh yal Le

(b) Block diagram,

Figure 6. - Line dynamic response.
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¥p = Gyx =0 X7 =Gyxy5=0 X1 ~G13%13=0
x3-G2x20=0 Xg ~ Ggxq =0 Xg = X3 =X%p=0
X19 = G3¥4 =0 Xg - Goxy6 = 0 X19 *+ X1g ~Xg0 = 0
“X18 - Ggx17 = 0 X10 - G10%4 = 0 Xg = X5 = X1 = 0
X5 - Ggxyy = 0 Xj4 = 611%11 =0 Xg -~ X7 ~X12=0
Xg = GgXg = 0 X15 - G1pxgp = 0 X10 " %9 ~¥13°0

X14 + Xq5 + X6 ~ %17 =0

Block diagram input: x;

P. x
Solution required: ¢ = 12
Po X1
Auxiliary information:
- ]/L C.S2+R C.S
Tn nvn nvn
21 nfc2 Rn>
Zon = =4 )—(S¢+ =5
on
syc, [
R
Zn= _m
RmCmS +1
(c) Algebraic information required.
Line Leng-th Line inductance per| Line capacitance per | Line resistance Resistance, Resistance
unit length, unit length, per unit length, Rm times com-|
in. | cm Ly » Ch Rp ) pRllagce
secdlin. 3 |secim’ in. ‘ m seclin. 3| sec/m3 | seciin. 2| sec/m? ;necm’
A [197[5.0 | 2.73x107| 166 |12.38x107°|3LMx1077| O I B By
B | 72|1.83 |13.14 8.018 .94 2.388 8.48 |13x144x10°| 0.0697
C | 75]1.90 | 6.71 4.094 | 1.78 4,521 2.61 4,045 . 0212
D | 32| .813| 6.71 4,094 | 1.78 4.51 2.61 4,045 . 0212

(d) Numerical information required.

Figure 6. - Concluded.

sponse to pressure disturbance at the far end of the feeder duct, for example, to deter-
mine the frequency response of Pc/Po'

The system block diagram is shown in figure 6(b). The contents of the blocks, be-
cause each line is a distributed system, are hyperbolic functions of square-root argu-
ments. The form of these G's represents four-terminal network solutions for the wave
equation for each section of line. The hyperbolic functions are multiplied by impedances
representing the line terminations. These impedance forms together with the equations

for the block diagram are given in figure 6.
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Pressure magnitude ratio, |PCIP0|

Phase angle, P. to P, deg
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(b} Phase angle (principle valve),

Figure 7. - Numerical solution for fine dynamic response.
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Using the above information, a computer solution for the S-form transfer function
was generated in 1.10 minutes of computing time. (The solution requires two pages of
printed output for the symbolic answers which are not presented herein.) A deck of
punched cards is also output which contains the symbolic solution.

For the numerical values of the line characteristics presented in figure 6(d), the
frequency response was numerically evaluated for a range of frequencies of 0 to 50 hertz
in 1-hertz steps. The amplitude ratio and phase-angle results are plotted in figure 7.
The execution time required to generate these data was 0. 50 minute.

Other Applications

The applications stemming from having a transfer function readily available in sym-
bolic form are many. For example, if one is dealing strictly in lumped parameter sys-
tems, a program could be evolved which would evaluate system stability quickly for a
large number of numerical cases by application of Routh's criterion to the characteristic
equation (which are now available in symbolic form directly from the program).

System stability can also be determined using the slope of the amplitude ratio plot as
it goes through the zero dB line, or by applying Nyquist's criterion to the real and imag-
inary parts.

Nonlinearities can be introduced into the general analysis by use of describing func-
tion and small perturbation techniques, both of which give linear approximations for the
block transfer functions. (See ref. 10.)

CONCLUDING REMARKS

Techniques were established and a program was written to reduce arbitrary block
diagrams to obtain symbolic expressions for any transfer function with respect to an in-
put. Further evaluation programs are presented which allow these symbolic solutions to
be evaluated for a desired set of frequencies and numerical values of system constants.
These evaluations yield magnitude ratio, phase angle, and real and imaginary parts of
the transfer function.

The advantages of the present study over previous techniques are as follows: (1) the
results are given in symbolic form (3 forms: G, S, and complex rational) and (2) ar-
rangement of the input data in the form of arrays and the matrix manipulation for each
frequency point are not required. (The symbolic solution need be generated only once
and then reevaluated for each frequency.)
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The most serious limitation of the work is the computer storage required. The
FORMAC routine itself requires a large amount of storage, and, as the systems size in-
creases, the transfer function equations grow very large and, hence, the storage capa-
bilities are affected. Specifically, as written, the program can handle a system of
30 equations, containing as many as 63 variables.

The computing time required is modest even for large systems. Also, the user
preparation time is minimal.

The program is capable of handling block diagrams for any linear constant coefficient
system. The system can be either a lumped parameter or a distributed parameter sys-
tem so long as an expression for the real and imaginary parts is known. Furthermore,
the ability to handle distributed parameter block in rectangular coordinate form is built
into the program.

Finally, a criterion is presented which allows ordering of the equations and variables
to be eliminated so that a minimum form solution can be achieved. This technique has
given minimum form solutions for many trial cases.

The technique involved for the algebraic reduction is simple and handles the problem
of looping.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, February 26, 1968,
180-31-01-01-22.
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APPENDIX A
SYMBOL LIST
A )a v imaginary part of a complex
B.b constants for complex quantity
Cec rational form ?.nd for WN a system constant that can be
’ program functional form used in REDUCE
D,d
] X signal or variable in a block
D denominator of G diagram
G transfer function for a block in x real part of a complex quantity
a block diagram
y imaginary part of a complex
i Y-1 .
quantity
K a syste'm constant that can be Z a system constant that can be
used in REDUCE used in REDUCE
N numerator of G z a complex quantity
S Laplace variable w circular frequency, rad/sec
T a system constant that can be Subscripts:
used in REDUCE m index number 1, 2, . .
u real part of a complex quantity n index number 1, 2, . . .
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APPENDIX B

USER'S MANUAL

This appendix describes the use of both the FORMAC and FORTRAN programs pre-

sented in this report. The description of the FORMAC program use is given first and
the FORTRAN program second. The example used in this appendix is taken from the
block diagram and system information given in figure 8.

Xo T xl
X6
k.727.62 i
G- K1Z{Z5S sinh(1} Gy Ky + Zs5 Gy = 1 -
T1Z3Z4 VD cosh(l) ZgS
+oo
X3 1 X4
X5
(a) Block diagram.
X3'GIX2=0 X2'X1'X6=0
X4'G2X6=0 X3+X4‘X5=0
X]. - G3X5 =0
sinh(1) - sinh (d as? + bs)
cosh (1}~ cosh (dV as? + bs)
V() +Va52 + bs
Solution required: x/X9
(b} Algebraic information required.
Ky =763 359.38 Z5-10.0
Zl=0.75 Z6=l'0
Zy=62.4 Ty = 0.010416
Z5 = 6.480x107 a = 0.4100625x107
Zy=32.2 b = 0, 0001
d =3.33333

{c) Numerical data required.

Figure 8. - User's manual sample problem.

29



INPUT TO REDUCE

Several points must be considered while preparing input to the FORMAC program.
(1) All algebriac expressions must end witha $.

(2) Blanks are ignored in the expressions and therefore may be used freely.

(3) A1l 80 card columns of a card may be used for an expression.

(4) An expression may take up to and including five cards.

(5) The expressions of the block diagram may only be of the form

+X(a)+X(b)xX(c) . . . $
or
+X(a)£X(b)* G(c)$
or linear combinations, as
+X(a)+X(b)+ . . . tX(m)* G{H+XM)*GKk) + . . . $

where a, b, c, etc., are integer numbers. The number of terms in the first form must
be greater than one. The =0 that makes the preceding expressions equations is implied
and is not to be given. The total number of terms in all the block-diagram expressions
may not be greater than 100.

(6) The integer subscripts used in the X terms must start at one and increase se-
quentially and must not be greater than 63.

(7) The integer subscripts used in the G terms must start at one and increase se-
quentially. Also, the largest subscript must not be greater than 20.

(8) The numerator and denominator of the system information that is to replace the
N's and D's are input as separate expressions. These expressions are read sequen-
tially; that is, the numerator for G(1), N(1), is read first, the denominator, D(1), is
read second, the numerator for G(2) is read third, and so on.

(9) The expressions of the system information may contain any of the following items:

Item Description
I V— 1,1

w omega, w
S iw
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T(a), Z(a),

variables
K(a), WN(a)
EXPF(b) complex exponential
SINF(b) complex sine
COSF(b) complex cosine
SINHF (b) complex hyperbolic sine
COSHF(b) complex hyperbolic cosine
SQRT F(b) complex square root
F(b) arbitrary function
numbers any number in FORTRAN notation, such as 1.0, 6.23E+2

The subscripts a and b stand for integer numbers. These subscripts must begin at
one and increase sequentually for each function and variable used. The maximum sub-
script allowed is a = 10 (for variables) and b = 5 (for functions).

Keeping the above points in mind, the input must be in the following order:

(1) The first input card contains three integer numbers, (a) the number of variables
(number of x's), (b) the number of equations, and (c) the number of block-diagram in-
puts. These numbers are punched on the card such that the last digit of the first number
appears in card column 5, the second in card column 10, and the last in card column 15.

(2) The second card contains X(a)$,X(b)$,X(c)$, . . ., where a,b,c, . . . are in-
tegers that refer to the block-diagram inputs.

(3) The third card contains X(a)$ and X(b)$, where a is the integer referring to
the output variable of the transfer function desired and the integer b refers to the input
variable of the transfer function. The ratio X(a)/X(b) is formed.

(4) The block diagram expressions are punched on the next cards. One card may not
contain more than one expression.

(5) The word TRUE or FALSE is punched on the next card beginning in card column
two. The word TRUE indicates that system information expressions are to follow. The
word FALSE indicates that no system information follows, and items (6) and (7) are to be
omitted from the input.

(6) The system information expressions are punched on the next cards. One card
may contain only one expression.

(7) The word TRUE or FALSE is punched on the next card beginning in card
column two. The word TRUE indicates that the program is to expand the transfer func-
tion into real and imaginary parts. The word FALSE indicates that expansion is not
desired.
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Consecutive problems may be run by simply repeating the above steps.
The following example of input to the FORMAC program is taken from figure

8(a) and (b):

$SDATA
6 5 1

X{2)s

X(1})% X(2)%

X(2)=-X{1)-X(6)%

X(2)*G(1)-X(3)$

X{6)*G(2)=-X(4)$

X(3)+X(4)-X(5)%

X(5)*G(3)-X(1)$%

TRUE

~KOLY®RZ (1) %5247 (2)%S**2%SINHF (1)
TOL)RZ(3)%Z(4)%SQRTF{(1}*COSHF(1)$
K(L}+Z2(5)%S%

1%

1%

2(6)*S%%x2%

TRUE

REDUCE OUTPUT

Twelve errors are detected by the FORMAC program. Any of these errors will
cause an error message to be printed and the termination of execution. Two warning
messages may also be printed. The warning does not terminate execution. A list of the

messages and their causes follow:

Messages (errors) Cause
(1) MORE THAN 63 VARIABLES The number of variables exceeded the
maximum allowed.
(2) MORE THAN 30 EQUATIONS The number of equations exceeded the
maximum allowed.
(3) MORE THAN 5 BLOCK DIAGRAM The number of block diagram inputs
INPUTS exceeded the maximum allowed.
(4) MORE THAN 5 CARDS FOR A Block diagram expressions may not
BLOCK DIAGRAM EXPRESSION use more than 5 cards.
(5) MORE THAN 5 CARDS FOR A System information expressions may
SYSTEM INFORMATION EX- not use more than 5 cards.

PRESSION
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Messages (errors)

(6) THE TOTAL NUMBER OF TERMS
EXCEEDS 100

() THE OUTPUT VARIABLE COULD
NOT BE FOUND

(8) THE INPUT VARIABLE COULD
NOT BE FOUND

(9) SYSTEM TOO LARGE

(10) THE NUMBER OF TERMS IN-
VOLVING X( ) IN EQUATION
EXCEEDS 63

(11) THE NUMBER OF TERMS IN-
VOLVING X(_ ) IN ALL EQUA-
TIONS EXCEEDS 63

(12) SYSTEM CANNOT BE SOLVED

Messages (warnings)

(1) ONLY ONE TERM IN EQUA -
TION

(2) SOLUTION BELOW MAY NOT BE
UNIQUE

Cause

The number of terms in all block dia-
gram expressions exceeded the maxi-
mum allowed.

The output variable specified in the
transfer function was not in the block
diagram expressions. Check input
equations.

The input variable specified in the
transfer function was not in the block
diagram expressions. Check input
equations.

The internal array that contains the
order in which the reduction is to pro-
ceed was filled.

During ordering the referenced varia-
ble appeared in more than 63 reduc-
tions in the equation referenced.

During ordering the referenced varia-
ble appeared in more than 63 reduc-
tions.

All variables were eliminated from the
final equation. Check input equations.

Cause

The equation referenced contained only
one variable during reduction. This
may be a result of an error in the in-
put equations.

A1l block diagram equations were not
used for the reduction.

The printed output of the FORMAC program lists the following items:

(1) The number of variables

(2) The number of block-diagram equations
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(3) The transfer function requested
(4) The block-diagram equations after the variables that were specified as block-
diagram inputs have been made zero

(5) The variables that were specified as block-diagram inputs

(6) The solution in the G-form

(7) The solution in the N/D-form

(8) The system information, if any

(9) The solution in the S-form, if requested

(10) The solution in the complex rational form, if requested

Functional forms preceded by R or I indicate the real or imaginary parts asso-
ciated with that function. Refer to equations (20) to (28). The punched output contains the
solution in all the different forms. This output is punched in a form that is acceptable to
the FORTRAN IV compiler. The S and complex rational forms are compatible with the
FORTRAN programs given in this report.

The examples of printed and punched output which follow were generated by REDUCE
using the input listed in the Input to REDUCE section.
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Printed Output from FORMAC Program

THE NUHBER OF VARIABLES IS ]
THE NUMBER OF EXPRESSIONS IS 5

THE SOLUTIUN IS FUR Xx{1)s 10 X(2)s$

THE ELOCK CIAGRAM EXPRESSIONS

~XLR)4x(Z)-XL&)8
Gl 1ixX{z)-x{Z)s
Gle)xx{el-xta)s
X{3)+xta)-xt E1s
GL2)#X(E)~Xx( 1)

WD R -

THE ELOCK DIAGRAM INPLTS
xXtz2)s

THE Ds%%ﬂ'f;ffz%manmutmzmuzi
NE 10= —KOLI#Sh#2 CRSINFFLLI*ZL1) #42,C*242) ¢
C{ 1)= CUSFF(1I#SQRTF{1)*T(1)I*2{3)1%2(4})s
N{ 2= K{1)+s*2{%)s
£ 2)= 1.0s
N{ 3)= 1.Cs
CU 2)= S**Z2,(*2(¢€)
THE N

U MERAT OR
CCSHF{LIH(KE 1) 4S*Z (SN I*SQRTIF(1I*T(LI*Z(3)%2(4)—K(1) *S*#2 *SINHF(1
1#Z(1)#22  $2(2)

h ACMINATCR
The D(ESCSHJ(l FKCLIY#S*ZCE ) I#SQRTIFCLIFTUL)*Z(3)%Z{4}+COSHF (1) #S%*2 *
SCRTFELIATILIRZ( 2)#2(4)*21¢€)

THE NUNMERATCR (REAL)

—ICCSECLISISQRTCIIAKE I I*TCL IRZ (2 )% 2 (4)+K(1)*RCOSH (1 ) #RSQRT (1} *#T(1)
*2{3)42(4)

K(LIARSINH{ L)#W#%2 *2(1)%%2 %Z2(2)

{-ICCSHELI*#RSQRTU L1 I*TLL)*Z(IN*Z{4IFZ( S}~ SQRT (L) *RCOSH AL I *T(1)*Z(3
IAZ{4 )21 5) )4

THE NUMERZTOR ( IMAGINARY)

(CSH
{3)

ELI®KEL)#RSQRTC1I*TUI IR 2(2)*Z(4)+ISQRT{LI*K (L) *RCCSH (L) #T (1) *
*2(4)

4
ISINHOLI*K{ L) *u%sz  #2(14%%2 x7(2)

(~ICOSHOL)*ISQRTULI*TUL1)*Z(3)*2{4)*xZ(5)+RCOSH(LI*RSQRT (1) *T (1) *Z(3
142(4)*2(5)) %4

THE DENCMINATOR (REAL)

~ICCSHULI*ISQRT{ 1a*KU 1 )*TUL)*Z(3 )% 2 (4)+K{1)*RCOSH (L) *RSORT (1) *T (1)
Z2{3)22L4)

CICOSHUL)*ISQRT{ 1)*T(L)*Z{3)*Z(4)1*2(61-RCOSH (1) *RSQRTIL) *T{1) *Z(3}
AZARSEZAR-RRE, L L V]

{-ICCSHELI*RSQRTCLI*TULI*ZU3)*Z{4 )% Z15)-T SQRTE{L) *RCGSH (1) *T(1)*Z(3
V22 (4132 (5) )4

THE CEMCMINATOR ( IMAGINARY )

ICCSHULI*KE L F*RSQRTL 1% T( 1) Z{ 21%Z(4)+I1SQRTILISK (L} *RCOSH (L) #T (1) *
2(3)82(4)

(~1CCSHUL)I*RSQRTL 1 I*TL 1)%Z€3)*Z(4)*¢ Z{6)-T1 SQRTUL)*RCOSH (L) #T(1)*Z(3
VA2 (426} en*2

(-ICCSHULI*ISQRT(II*TLLI*Z(2)%Z{4)* Z(5)4RCOSH (1) *RSORT{1) *T (1} *Z(3
122(4)%2(5))%n
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Listing of FORMAC Punched Output

The G-form:

o THE NUMERATDR
NO=
*¥G(1)*G(3)+G(2)%G(3)

c THE DENOMINATOR
DO=

*G(2)*%G(3)+1.0

The N/D-form:

c THE NUMERATOR
N1l=
XD(L)RN(2)%EN(3)+D(2)*N(1)*N(3)
c THE DENOMINATOR
N1=

#D(1)*D(2)*D(3)+D{1)*:N(2)%N(3)

The S-form:
C THE NUMERATOR
N2=

H¥COSHF (1) (K{1)+S%Z(5) )%*SQRTF(1)*T{(1)*Z(3}*Z2(4)-K({1)*S*x%x2 *SINHF(1
*)RZ(1)*%2  *2(2)

C THE DENOMINATOR
D2=
#¥COSHF(1)*(K(1)+S*Z(5) ) *SQRTF(L)*T(1)*Z{3)*Z(4)+COSHF (1 }*S%x* *
RSQRTF(1)*T(L)*2(3)*Z(4)*2(6)

The complex rational form:

C THE NUMERATOR (REAL)

A( 1)=
#—TCOSH{L)*ISQRT{L)*K(L)I*T(L)*2(3)%*Z(4)}+K(1)*RCOSH(L)*RSQRT(1)*T(1)
#%Z{3)*214)

Al 2)=
#K(1)%RSINH(1)*Wk%k2 *Z(1)%%2 *7(2)

A{ 3)=
#{—TCOSH(1)*RSQRT{1IRT(L)*Z(3)%Z(4)}*Z(5)—ISORT(L)*RCOSHIL)*T(L)*Z(3
#}RZ(4)RZ(5)) %W

NA= 3

36



c THE NUMERATOR (IMAGINARY)

B( 1)=
¥ICOSH(L)*K(1)*RSQRT(L)*T(1)*Z(3)%Z(4)+ISORT(1)*K(1)*%RCOSH(L)*T(1)}*
*Z(3)%2(4)

B( 2)=
FISINH(L)HFK (L) RkWkx2 7 (1)%x2 %7 (2)

B( 3)=
*(—ICOSHOL)*ISQRT(LI*T({1)*Z(3)*Z(4)}*Z(5)+RCOSH(1)*RSORT(1}*T(1)*Z(3
FIRZAL)XL(5) ) %W

NB= 3
C THE DENOMINATOR (RFEAL)
cCt 1)=

%=TCOSH(L)*ISORT(L)*K (L)*T(1)%*2(3)%Z(4)+K(1)*RCOSH(L)*RSQRT(1)*T(1)
*%Z(3)%7(4)

c( 2)=
*¥(ICOSH(1)*ISORT(LI*T(1)%Z(3)%Z(4)%Z(6)-RCOSH(L)I*RSQRT(LI*T(1)*Z(3)
HEZ(4) %7 (6) ) kWE*2

C( 3)=
#(~TCOSH(1)%RSQRT(1)*T(L)*Z(3)%*Z(4)%Z(5)—ISORT(1)*RCOSH(L)*T(1)%Z(3
H)FZ(4)HZ(5) ) %W

NC= 3
C THE DENMOMINATOR (IMAGINARY)
De 1)=

#*ICOSH(L)*K (1) *RSQRT(LI®T(LI*Z(3)*Z{(4)+TSORT(L)*K(1)*RCOSH(L)*T(1)*
¥Z(3)xZ72(4)

D( 2)=
#(—ICOSH{L)*RSQRT(L)I*T(LLI*Z(3)%Z2(4)*Z(6)—-ISORT(1)I*RCOSH{L)I*T(1)*Z(3
WY)RZAL4)HZ(6) )W

nDe 3)=

#(~ICOSH(1)*ISQRT(1)*T(1)*Z(3)*Z(4)*Z(5)+RCOSH(1)*RSORT(1)*T(1)%Z2(3
¥)RZ(4)HZ(5) )W
ND= 3

INPUT TO EVAL

The user may evaluate the transfer function by using either the S-form or the com-
plex rational form. If the S-form is to be evaluated, the S-form on punched cards is
inserted between the two comment cards that contain asterisks in program COEFFS (see
appendix C). The complex rational form requires the insertion of the punched cards be-
tween the two comment cards that contain asterisks in program COEFFR. The numeri-
cal results from both forms are identical. When the expression punched by EVAL ex-
ceeds 19 continuation cards, the user must manually divide the expression into two or
more parts. Each of these parts must contain less than 19 continuation cards to comply
with the FORTRAN IV compiler.

If the user has made use of the arbitrary function in REDUCE, he must supply a
function subprogram for his particular function. The numerical input consists of speci-
fying values for the explicit variables used in the system information and values for the
variables implied in the arguments of the allowed functions. A number corresponding to
the maximum subscript employed in each variable and function used must be supplied.
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The frequency range and increment desired must also be supplied.

The first card of the EVAL input must contain $INPUT beginning in card column 2,

and the last card must contain a $ in card column 2. The following input forms may ap-
pear in any order but all must begin in card column 2:

(1) NEXP=number, EXPA=list, EXPB=list, EXPC=list, EXPD-=list,

(2) NSIN=number, SINA=list, SINB=list, SINC=list, SIND=list,

(3) NCOS=number, COSA=list, COSB=list, COSC=list, COSD=list,

(4) NSINH=number, SINHA=list, SINHB=list, SINHC=list, SINHD=list,

(5) NCOSH=number, COSHA=list, COSHB=list, COSHC=list, COSHD=list,
(6) NSQRT=number, SQRTA=list, SQRTB=list, SQRTC=list,

(7) NK=number, K=list,

(8) NT=number, T=list,

(9) NZ=number, Z=list,

(10) NWN=number, WN=list,

(11) FSTART=initial frequency, FEND=final frequency, DELTAF=increment,

Any of these forms may use more than one card as long as each card ends with a

comma. The suffixes A, B, C, and D in the function names represent the variables
implied in the function argument. (Note: no D in SQRT.) For example, EXPA, EXPB,
EXPC, and EXPD represent the variables a, b, ¢, and d in the function

exp (d Vas2 + bs +c>

(See eqs. (15) to (20) for additional forms.) The term ''number, ' as used in the pre-

ceding forms, means an integer number which has the value of the maximum subscript
used for that function or variable. For the functions, this number must not be greater
than 5; for variables, not greater than 10. The term "list" means a list of numbers that
the variables are to take on. The elements of this list must be separated by commas and
must be in the proper order. For example, NK=2, K=1, 6.25E-2 would set K(1)=1.0 and
K(2)=0.0625. For consecutive runs (runs where the transfer function does not change)
only the changed numbers need to be given on the input. For example,
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K{2)=1.25E-2,
$
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In the following example of input to EVAL, it is understood that either the S-form of
the complex rational form of the transfer function (given in the FORMAC Sample Output)

from REDUCE is to be inserted in the proper FORTRAN subroutine. These numerical
data are taken from figure 8(c).

$DATA
$INPUT
NSINH=14SINHA=4,100625E~64SINHB=1 ,0E—4,SINHC=0,SINHD=3,.33333,
NCOSH=1,C0SHA=4,100625E-64COSHB=1,0E-4,C0SHC=0,C0SHD=3.33333,
NSORT=1,SORTA=4.100625E-6,SQRTB=1.0E~4,SQRTC=0,
NK=1,K=.76335938E6,
NT=1yT=1.0416E~2,
NZ=642=0e750962e496.48E7932.2410,41,
FSTART=1,FEND=50,DELTAF=1,
$

EVAL OUTPUT

The output printed by the FORTRAN program lists the following items:
(1) All numerical input
(2) For each frequency requested
(a) The frequency
(b) The real and imaginary parts of the numerator and denominator of the trans-
fer function normalized so that either the real or imaginary part of the
numerator is one
(c) The real and imaginary parts of the transfer function
(d) The complex absolute value of the transfer function
(e) The complex amplitude (phase angle) of the transfer function
An example of the EVAL output follows. This output was obtained by using the input
given in the previous section.
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FORTRAN EVALLATION OF FORMAC OUTPUT

I SINFA SINHB SIMHC SINHD

1 0.41CC6E-0F €.100CCE-Q3 0 3.33333

1 COSEA CQSHB CCSHC COSHD

1 0.41CC6E-CS €.10000E-03 0 3.33333

1 SQRTA SQR 18 SQRTC

1 0.41CC6E-05 C€.10000E-03 [¢]

1 K v
1 0.7€32€6E 0¢ R
I T

1 0.10¢16E-01

t

I z

1 C.75CCC

2 €2.4C00

3 0.64€ECOE C8

4 22.2CC0

5 10.CCCO

] 1.6CC00

FSTART= 1.c0CCO FEND= . 5C, 0000 DELT AF= 1.00000
F A B c 0 REAL IMAG ABS ANGLE

1 1.000CC 1. 06000 1.29988 0499974 1.29954 1.00026 —C0.52105E-06 1.0002¢ —0.29846E-04
2 2.00CC 1.€C000 1.66699 0.99893 1.66523 1.0C 106 —-C.41571E-05 1.0n106 -0.23793E-03
3 3.00CcCC 1.00000 2.09351 0.99759 2.08853 1.0C22¢ -0.14119-04 1.00239 -0.80704E-03
4 4,000CC 1. 0000 2.57234 0.99567 2.56145 1.0C426 -0.33830E-04 1.00426 -0.19301E-02
5 5.00CCC 1.€0000 3.10066 0.99314 3.08010 1.0C€ES -0.,66941E-04 1.00669 -0.38099E-02
€ €6,000CC 1.c000¢C 3. 68043 0.98997 3.64520 1.CCS70 —C.11756E-03 1.00970 -N.,66712E-02
7 7.000C0 1.CC000 4.31822 0.98608 4.26174 1.0122% -C.19N34E-03 1.01329 ~0.10763E-01
8 8.00CCQ 1.00€00 5.C2519 0.98138 4.93900 1.01751 -C.29062E-03 1.01751 -N.16365€E-01
9 9.00CCC 1.C0000 5.81798 0.97575 5.69107 1.02237% —0.42466E-03 1.02237 —0.23799E-01
10 1C.0CcCC 1. CO00C 6.72039 0.96902 &6.53839 1.2762 -0.59990E-03 1.02792 -0.33438€E-01
11 11.0ccC 1.00000 7. 76657 0.96093 T.51047 1.0z2420 -0.82526E-03 1.03420 -0.45720E-01
12 12.00(C 1.60000 9, 00666 0.95114 8.65074 1.04127% -0.11116E-02 1.04127 -0.61164E-01
13 13.0C(C 1.CCCO0 10.5169 0.93907 10.0253 1.C4517 -C,14721E~02 1.04917 -0.80391E-01
14 l4,00CC 1.00000 12.4188 0.92384 11.7398 1.0£7SS -0.19232E-02 1. 05800 -N.10415
15 15.0CCC 1.00000 14.9189 0.90396 13.9734 1.0€782 ~C.24854E-02 1.06782 -0.13336
16 16.00CC 1.€0000 18.3976 0.87664 17.0570 1.C7876 —0.318476-02 1. 07876 -0.16915

17 17.00(CC 1.€0000 23,6435 0.83610 21.6759 1.050%3 -C.4N536E-02 1.09094 -0.21291

18 18.00(¢C 1.€0000 32.5991 0.76814 29.5185 1.1C445 -C.51356E~C2 1.10450 ~0.26641

19 1s.¢CCC 1.€0600 51.6918 0.62572 46,1724 1.116€2 —C.64851E-02 1.11964 -0.33186
20 2¢.00CC 1.€0000 122.467 0.10475 107.753 l1.1265¢ —C.81755€-02 1.13659 -0.41214

21 21.00CC 1.C0000 -333.826 3.44122 -288.852 1.1£8¢£8 -0.103C5E-01 1.15562 —-0.51092
2 22.6CCC 1.€0000 -7€.0887 1.50742 -59.5307 1.177€C2 - C.130C¢E-O1 1.17710 -0.63310
23 23.0CCC 1.C0C00 -38,7821 1.27455 —32.2645 1.2C126 —Q0.16464E-01 1.20147 —0.78514
24 24.C0CC 1.C0000 -26.5304 1.18090 =21.5644 1.22S14 -0.,209376-01 1.22932 -0.97585

25 25.00(C 1. 60000 -15.9393 1.12841 -15.7868 1.2€112 —0.26799E-01 1.26140 -1.21735
26 26.00C0 1.C0000 -15.7847 1.09352 -12.1290 l.zs8z¢ —C.34603E-01 1.29875 ~-1.52672
27 27.0CCC 1.00C00 -12.9000 1.06766 =9.57693 1.34195 -C.45187€-01 1.34271 -1.92856

8 28.C0CC 1.C0000 -1C.7606 1.04701 ~7.67463 1.36264 -0.59868E-01 1.39522 -2.45929

29 29.00¢0 1.C0000 —-9.09548 1.02959 =6.18662 1.45€74 -0.807%3€-11 1.45898 -3.17447
20 30.00CC 1.CC000 -7.75048 1.01426 -4.97902 -0.11162 1.53794 -4.16203

31 31.0CCC 1.C0c00 —6. €31 46 1.00034 =3.97007 ~C.15891 1. 63805 -5.56699

22 32.040CC 1.00000 ~5.67758 0,98738 -3.10700 1.722¢4 -0.23512 1.76834 -7.64072
23 33.0CCC 1.C0G00 —4. 84777 0.97509 —2.35419 1.5C785 ~0.36544 1.94253 -10.8434
34 34,0000 1.00090 -4.11324 0.96325 -1.68675 2.05418 -0.60306 2.17928 -16.0647

35 35.00CC 1.00000 -3.45320 0.95171 -1.08672 Z2.25445 -1.05416 2.48873 -25,0604
26 36.00CC 1.C0000 -2.85222 0.94036 -0.54081 2.1C554 -1.819¢67 2.78623 -40.7754

37 37.C0CC 1.00000 -2.29859 0.92911 -0.38975€~01 1.178C1 -2.42455 2. 69558 -64.0865 3
28 38.00(CC 1.00000 -1.78321 0.91790 0.42655 C.1%2352 -2.01405 2.01989 -85.6412

29 36.00(C 1. €0000 -1.29891 0.90667 0.86185 -0.12569 -1.30335 1.31043 -95.9567
40 40.00CC 1.00000 -0. 83991 0.89538 1.27181 ~0.71441E-01 -0.83658 0.83962 -94,8811
41 41.0CCC 1.0000¢C -0.40149 0.88399 1.660 36 C.£1437E-C1 -C.56957 0.57287 -83.8435
&2 42.00CC 1.CCC00 0. 20303E-01 0.87248 2.03075 0.1€704 ~C.41207 0.45253 -65.5869
43 43.00CC 1.c0o000 0.42878 0.86081 2.38568 C.z26z8¢ -C.31350 0442900 -46.9507 1
44 44.00C0 1.Co00¢C 0.82680 0.84897 2.72744 C.38041 —C.24823 0.45424 -33.1263
45 45.00CC 1.c000¢C 1,21687 0.83692 3.05799 Cat2227 -C.20251 0.49679 -24.1065
46 46.00CC 1.00000 l.60122 0.82466 3.37901 0.5154C -0.17016 0.54276 -18.2707
47 47,00CC 1.CGCO0 1.98184 0.81216 3.69202 C.5€¢885 -Q.14572 0.58721 -14.3684
48 48.00(C 1.00C00 2.36061 0.79941 3.99836 C.e1578 -C.1269% 0.62874 -11.6521
49 49.00CC 1.€0C00 2.73926 0.78639 4429923 C.E57€69 -C.11230 0.66721 -9.68961

50 50.0CCC l.LccoQ 3.11947 0.77307 4.59578 C.£5566 -C.10057 0.70292 -8.22560

REC= 000CO FIL=
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APPENDIX C

DESCRIPTIONS, LISTINGS, AND FLOW CHARTS FOR COMPUTER PROGRAMS
FORMAC Program

REDUCE (main program). - This FORMAC program is the body of the FORMAC
programs. It reads the input, reduces the equations, performs the substitutions, ex-
pands and separates the real and imaginary parts, and calls other subroutines for ini-
tialization and output.

Subroutine SOUT. - This FORMAC subroutine writes and punches the symbolic
transfer function. To do this, SOUT calls the subroutine that removes the $ and floating
point powers from the symbolic expressions.

Subroutine INIT, subroutine SORT. - The purpose of subroutine INIT is to determine
the order in which the block diagram equations are to be reduced. For a detailed de-
scription of the method used, see appendix D.

Subroutine SORT sorts an array of integer numbers into an array of numbers that in-
crease in magnitude. Subroutine SORT is used by subroutine INIT.

Subroutine COS, SIN, THNH, ATAN, ALOG, DUMP, PDUMP, FMCDIF, EXDDMP,
FMCDMP. - This is a dummy subroutine that is not executed. Its purpose is to provide
entry point names that are the same as the subprogram's that are referenced by FORMAC
but not executed by the programs in this report. This causes the programs that are not
needed not to be loaded.

Subroutine REMOVE, subroutine DELETE, function NBR, function FC. - This set of
subprograms removes the $ and floating point powers from the BCD representation of
FORMAC expressions. They are called just prior to the punching of any expression.

>

FORTRAN Program

EVAL (main program). - Program EVAL reads and writes all the numerical input
and output. It also calls the subprogram that evaluates the symbolic transfer function.

Function EXPFX, SINFX, COSFX, SINHFX, COSHFX, SQRTFX. - This function sub-
program evaluates the allowed system functions. Different entry point names are used
for each function.
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Subroutine COEFF. - Two subroutines with the name COEFF are supplied. The deck
names are used to differentiate between them. The subroutine with the deck name
COEFFS is used for transfer functions in the S-form. Deck COEFFR is used for the
complex rational form of the transfer function. In both cases, the symbolic transfer
function is to be inserted between the two comment cards that contain asterisks.

The rest of this appendix gives listings and flow charts (figs. 9 to 14) for the pro-
grams. Flow charts are only given for the programs in which the flow warrants a chart.

42



43



REDUCE

Read number of
variables and
number of

equations

Number of
variables
>63 7

Number of
equations
>30 7

Number of
block diagram
inputs >5 ?

Yes

401

100

Write Read
error transfer function
messages desired block

diagram inputs
and equations

22

( Stop )

inputs by zero if not
in transfer function
desired

Replace block diagram

I =

Find number of
functions appear-
ing in algebraic
equations

|

Solve for numerator
and denominator

12

Remove functions
raised to power
if possible

Eliminate variable
from remaining
equations

8

Solve this
equation

6

Get equation to be
used to eliminate
variable

4

Get variable
to eliminate

Get order
to reduce
equations

Write
output/input
and algebraic
equations

Figure 9. - Flow thart of REDUCE.

CALL S0UT\

14
Substitute N/D
for G and
remove D~

!

Solve for numerator
and denominator

CALL SOUT

output N/D
form

Read
REPLCE

Read system
information

Write system
information

35
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Computer Listings

REDUC

$IBFMC REDUCE

CMPX

33k 3 3 e e S o e e 3¢ 3k o 3 o e e 3 ik e e e e o e e sle e sfe e e e e s e s i ol e sge ofe e e e o e e e e e sy e e e e e e sfe s sl e e sk el ke kol

C

2k 3o e 3 e sfe e ol 3 e 3le e 3 36 342 3¢ 31 e e 3je e s S e sje e sk e s e e e e e ok e e e e e o e s o e e e ode sfe e e e e e e e ol ke el s sje sk sl ek ke e e

C 34 3 3 3¢ e 3 3 346 3 e e 30 3z 3o 36 340 24 3 3k 3 3 3 e 36 age S e e e 3 30 03k e e e e s e Ak e 2 e 3k A e e e o e e o e e e ok e e o o e e e e o o ek g ok

c

C e 3 e o4 e e e 3 3 e 3 3 o s e afe sk 36 e e 3 e e e s sk e sl e 340 e 36 e ol e e o e e e e 2 e e e 3l o o e o e e e e o sl o o ol e e e o e e sk R Kol

C
c

C

FNCT

98

96

99

97

SYMARG
ATOMIC X(63)9G(20)sN(20)4D(20)9I1+T(10)9Z(10)9K(10) WN(10)sWyS,
*EXPF(5) yREXP(5)4TEXP(5),SINF(5),RSIN(5),ISIN(5),COSF(5),RCOS(5),
#*ICOS(5) s SINHF(5)4RSINH(5) 4, ISINH(5) yCOSHF(5),RCOSH(5),ICOSH(5),
*SQRTF(5) yRSQRT(5) 4 ISQRT(5)4F(5) yRF(5),IF(5)
DIMENSION IN{(60),0UT(17),NEQ(150),EQ(30),INPUT(5},SN(20),SD(20)
EQUIVALENCE (IN(1),0UT(1),NEQ(1))
LOGICAL LOCATE,TEST,REPLCE,EXPND
REAL T4KyNyIS,IT,IEXPyISIN,ICOSyISINHyICOSH,NUM, INPUT,ISQRT,IF
PARAM (I%%LgI) g (I%*(L+1)9—1)y(Ix¥(L+2)9—T)y(I*%(L+3),1)
PARAM (EXPF(J)yREXPIII+IXIEXP(J)),
(SINF(J)yRSIN(II+IX*ISIN(JI) ),
(COSF(J)yRCOS(I)+IXICOS(I) )y
(SINHF{J)yRSINH(J)+I*ISINH(J)),
{COSHF(J) yRCOSH(J)I+TI*ICOSH{J) ),
(SQRTF{J) yRSORT(JI+IX*ISQRT(J) ),
(FUJ)4RF(JIHIXIF(I))
DATA DR/6H$00000/

O 3 3 % #

READ ALGEBRAIC EQUATIONS

READ (54101) M,M1,IK

IF(M.GT.63) GO TO 401
IF(M1.GT«30) GO TO 402
IF(IK.GT.5) GO TO 403

JJ = 0

READ (5,102) (IN(J)sJ=1,12)

DO 96 J=1,1IK

LET INPUT(J) = ALGCON IN(1),JJ
CONTINUE

JJ =0

READ (5,4102) (IN(J),J=1,12)

LET NUM = ALGCON IN(1),JJ

LET DEN = ALGCON IN(1),JJ

DO 100 L=1,M1

JJ =0

DO 99 J=1,5

Kl = 12%(J-1)+1

K2 = Kl+12-1

READ (54102) (IN(KK),KK=K1,K2)

DO 99 KK=1,72
IF(FCUIN(K1)yKK)}.EQ.DR) GO TO 97
WRITE (6,230)

STOP

LET EQ(L)
LET EQ(L)

ALGCON IN(1),JJ
EXPAND EQ(L)

100 CONTINUE

INITIALIZE AND SET UP EQUATIONS FOR SOLUTION

FIND THE NUMBER OF FUNCTIONS USED

DO 29 L=1,20
DO 27 J=1,M1
LET LOCATE = FIND EQUJ)sAPP,ALL,(G(L))

27 IF(LOCATE) GO TO 28

GO TO 30

28 MG = L

45



29 CONTINUE

REPLACE THE INPUTS BY ZERO IF NOT DEN OR NUM

[aEaNel

30 DO 22 L=14M]
DO 21 J4=1,1IK
LET TEST = MATCH ID,NUM, INPUT(J)
IF(TEST) GO TO 21
LET TEST = MATCH ID,DEN, INPUT(J)}
IF(TEST) 6O TO 21
LET EQ(L) = SUBST EQ(L),(INPUT(J),0)

21 CONTINUE

22 CONTINUE

(G 3 s e s e ol e e s el e e e s e oo ok s ofe s e e e s oo e o s o ol el e s e s o e s o ke o e ok e s e e e e ok ol e ok

c WRITE ALGEBRAIC EQUATIONS
(€ 3 3 e e s e el o e e e e s e e e ke o e e e e e e o e s ok ke e skl sk e e e s e o s s S e s e sk e e oo e st et o e ke sk ek ok
WRITE (64201) M,M1
Q@ = 0.0
LET Q@ = BCDCON NUM,0OUT,17
WRITE (6,202) 0OUT(2)
Q0 = 0.0
LET @ = BCDCON DEN,OUT,17
WRITE (6,203) 0UT(2)
WRITE (6,204)
DO 301 L=1,M1
Q = 0.0
51 LET Q = BCDCON EQ(L),0UT,10
WRITE (6,208) L, (0UT(J),J=2,10)
IF(Q.NE.0.0) GO TO 51
301 CONTINUE
24 WRITE (64213)
DO 25 L=1,1IK
9 = 0.0
LET @ = BCDCON INPUT(L),0UT,17
25 WRITE (6,206) 0UT(2)
(€ e 3 sk e e o e e e o e e o e o e e o e sl s e e s e s o o ofe ok e e o e s e s o o e e ok e s e s o e e s e s o e s e e e e e ok ek e o

C REDUCE THE EQUATIONS
(C e e e e e s s e s s e o e e o ool e s s e o o e e s e sfe e e e e sk e el e st e sk e e e ok e e e s e e ol ol sk el o ke ok e e

26 CALL INIT{NEQsXsM,EQsM1,NUM,DEN)

c
C GET A VARIABLE TO ELIMINATE
C
IT =0
4 11 = 1141
J = NEQ(II)
IF(J.EQ.0) GO TO 12
C
C GET AN EQUATION CONTAINING THE VARIABLE
C
6 11 = 11+1
L = NEQ(II)
c
c SOLVE THE EQUATION
C
8 LET RR = EQ(L)
ERASE EQ(L)
LET IT = COEFF RRyX(J)
LET RR = EXPAND RR-IT*X(J)
c

C ELIMINATE THE VARIABLE IN THE REMAINING EQUATIONS

ﬁ@éﬁ@iﬁ



9 Il = JI+1
L = NEQ(II)
IF(L.EQ.0) GO 70 10
LET IS = COEFF EQ(L)4X(J)

LET EQ(L) = EXPAND EQ(L)-IS*X(J)
LET EQ(L) = EXPAND IS*RR—-IT*EQ(L)
GO T0 9

10 ERASE IS,IT
GO TO 4

REMOVE FUNCTIONS RAISED TO A POWER IF POSSIBLE

OO0

12 11 = 1I+}
L = NEQ(II)
LET R = EQ(L)
ERASE EQ(L)
DO 13 L=1,MG
J =0
LET IS = COEFF RyG(L)*%J,V1,V2
LET TEST = MATCH 1D,15,0.0
ERASE IS
IF(.NOTL.TEST) GO TO 13
LET R = EXPAND R*G(L)**(-V1)
13 CONTINUE
€ 3% 2k e e fe e o e e e st o ok e e e o e e e e e ke e ek e o ot ek e e o o ofe e e e e e s e e o e e e e ke e e e o o ke o ke ke e ool ko
C SOLVE FOR NUMERATOR AND DENOMINATOR
(C e edee e e e e st te e o e e o e o o e ok e e e e s e e o e e e e e s s e ot sk e sl s i it o ok ool e o e ool e e ok ek ke ke e o

LET RD = COEFF R,yNUM
LET RN = COEFF R,DEN
LET RD = EXPAND -1%RD

C 30 e e e e e e e sl e e e o i e e e e e e e e e o ik e e e e e e e o e e 3k e e o o e 3§ o e o e e e e e o s e e ke e ol afe sl ok ale e e o e e e e okl
c WRITE NUMERATOR AND DENOMINATOR
C 3 s e e e 3 e e i e o e e e e ofe 3 340 e 3 e e e e e o st e e e e e o e o fe e e o o afe o ofe b e e e o o sk e o e e o e e o ool e e e e kel s kel
WRITE (64205)
PUNCH 221
CALL SOUT(RNyW2,2HNO)
WRITE (6,207)
PUNCH 222
CALL SOUT(RD,W,2,2HDO)
ERASE RN,RD
C i 3 2 e e s e e e e g e ok e e o o 3 e e 3 e e o s 3k e e e e o e o s e 3 e ok e o e ke e afe o s ok o ke e e e 3 e i 3 o e e e sk sk e ok e e e ko
c SUBSTITUTE *N(L)/D(L)* FOR *G(L)' AND REMOVE D(L)#%(-1)
€ e e s e e 3 e sie e e s e e e 3 Ao e 3 e e ok s e ok e s e e e e s e e e AT ok o i e s o e e e ool sl e ol ik e i s ok o ik o ol e e ok e e e e ke e ok
D0 14 L=1,MG
LET LOCATE = FIND R,APP,ALL,(G(L))
IF(.NOT.LOCATE) GO TO 14
J =0
LET IS = COEFF RyG(L)*%J,V1,V2
ERASE 1S
LET R = SUBST Ry (G(L),N(L)}/D(L))
LET R = EXPAND R#*D(L)#*%¥V2
14 CONTINUE
C 30 3 ol o e e e o e e 3 ok e e e ok ik e e o e e 3 e e afe she e s e e afe s e afe o o s e o afe ol ol ok o e e e o ik e e o e e ol e e ol o e e e e e ok kel o e
c SOLVE FOR NUMERATOR AND DENOMINATOR
e e e e 2k sfe e 3 e 3¢ 3¢ e ok e o afe ok 3§ 3 34 e e 3 e s e e e e e e e o e e e 2 e e e o ke e e e o o e e o i s o ofe ok o o i o e o ade ok s ofe sk o oe e e
LET RD = COEFF R,NUM
LET RN = COEFF R,DEN
LET RD = EXPAND ~1%*RD
ERASE R



48

C***********************************************************************

Cc WRITE NUMERATOR AND DENOMINATOR
C et skeo e s s fe e sk s ol o o e el ke et s e o sesfe et e e e sk okl ok et ol et sk e ok o e e ok
WRITE (64205)
PUNCH 221
CALL SOUT(RNysWe242HN1)
WRITE (64207)
PUNCH 222
CALL SOUT(RDyWe242HD1)
(€ e ke s s sk s e o o s e s ok 2ok ok ek ok e e st ek o e sk ol e ol R R o e oo e ook o ok o o s e ek o
C READ AND WRITE THE SYSTEM INFORMATION
(ke s e sl e e e e s e o e o e o e sl e e ot e o el e st ook e et o sk ks s R o o e o o
READ (54103) REPLCE
IF{<NOTLREPLCE) GO TO 98
11 = 0
MG2 = 2%*MG
DO 61 L=14MG2

LL = MOD(L,2)+1
JJ =0

DO 58 J=1,5

Kl = 12%{(J-1)+1

K2 = Ki+12-1
READ (5,4102) (IN(KK)yKK=K14K2)
DD 58 KK=1,72
58 IF(FCIIN(K1)4KK)EQ.DR) GO TO (604+59),LL
WRITE (6,4231)
STOP
59 11 = I1+1
LET SN(Il) = ALGCON IN(1),JJ
GO TO 61
60 LET SD(I1l) = ALGCON IN(1l),J4J
61 CONTINUE
Q = 0.0
DO 34 L=1,MG
WRITE (64214) L
32 LET Q@ = BCDCON SN(L),0UT,9
WRITE (6,215) (0UT(J)yJ=2,9)
IF(Q.NE.0.0) GO TO 32
WRITE (6,216) L
33 LET @ = BCDCON SD(L},0UT,9
WRITE (6,215) (0UT(J),J=2,9)
IF(Q.NE.O.0) GO TO 33

34 CONTINUE
C***********************************************************************

c SUBSTITUTE THE SYSTEM INFORMATION FOR *N{L)' AND 'D(L)!
C*********#*************************************************************
DO 35 L=1,MG
LET RN = SUBST RNy (N(L},SN(L)),(D(L),SD(L))
LET RD = SUBST RDy(N(L)sSN(L)),(D(L)4SD(L))
ERASE SN(L),4SD(L)

35 CONTINUE
C***********************************************************************

c WRITE NUMERATOR AND DENOMINATOR
(€ e e e oo e o e e e ke o s ke sk st st st sk sl e s e s oo e e e e s s st e s st s et e sk s e o e o e e o oo e stk ek sk
WRITE (6,205)
PUNCH 221
CALL SOUT(RN,Ws242HN2)
WRITE (6,207}
PUNCH 222
CALL SOUT(RD,W,2,2HD2)

i 4l



-

£

€ ek st e e e s o e e e s o e e st s o e e s o o e e e s e e e 0fe e e e e st s e e e s o e s ok e e e e o e e sfe e s e s o o e e o e s e e ek

C READ EXPND

€ 2 e e e e e e e e e e o ofe e s s e e e el s sl sfe s o s e o e e e e e e s e e e e o s e e e e e e s ol e e o s e e o e e e e Ak e el
READ (5,103) EXPND
IF(.NOT.EXPND) GO TO 98

C stk e e e e e e e e s st e e s e e e e e e e e e s e e e e ofe s o ook e o sl e e e g s e sl sfe e e o e el ol ko ook o

c SUBSTITUTE REAL FORMS FOR COMPLEX FORMS AND EXPAND

C st e e e sfe sfeafeofe e e sfele e e e 3 o sbeofe e s e e e ok ek e e sk sfe s oo e st e e e e s e ok e i o e s e sk ek e s ki e dofolok sk ok ok
DO 38 J=1,5

LET RN = SUBST RNLFNCT
LET RD = SUBST RD,FENCT

38 CONTINUE
LET RN = SUBST RNy (SsW*I)
LET RD = SUBST RDy(S,WXxI)
LET RN = EXPAND RN
J =0
LET IS = COEFF RN,yI*%J,V1,V2
ERASE IS
K1l = V2

IF(K1.LT.2) GO TO 40
DO 36 L=17K194
LET RN = SUBST RN,CMPX
36 CONTINUE
C 0 3% e 33 e 3 e e e e 36 e 36 i 4 346 3 e 3¢ 350 3 ke o ok e s e e e e sfe e 3 e e e e e e e sk s e e s ok 3 e e e s e o e e 3 e ok ke o ok o o o e o o ok K K
c SEPERATE INTO REAL AND IMAGINARY PARTS AND WRITE
C 3¢ 3o 35 s 3 ok ok sje e sfe i e e e e she e i sie e ol e o e i e de e sie aie sfe sk afe 3 o ok s e e e s e e sk e o dle e e e e e e ok e 36 e e ik R o s ke o e e ool ke ek
40 LET Bl = COEFF RN,I
LET Al = EXPAND RN-I#*B1
ERASE RN
WRITE (64217)
PUNCH 223
CALL SOUT(Al,W,1,1HA)
ERASE Al
WRITE (6,218)
PUNCH 224
CALL SOUT(BlyWs1,1HB)
ERASE B1
LET RD = EXPAND RD
J =0
LET IS = COEFF RDyI#*%J,V1,V2
ERASE IS
Kl = v2
IF(Kl.LTe2) GO TO 42
DO 41 L=1,K1l,4
LET RD = SUBST RD,CMPX
41 CONTINUE
42 LET DY = COEFF RD,I
LET C1 = EXPAND RD-I#*D1
ERASE RD
WRITE (6,219)
PUNCH 225
CALL SOUT(Cl,Wyl,1HC)
ERASE C1
WRITE (6,220)
PUNCH 226
CALL SOUT(Dl,W,1,41HD)
ERASE D1
GO TO 98
€ 3 3 e 3k e e e e S ok 36 e 3 36 e 30 e 3 e o s e 36 35 s e 340 o e e e o e ke o ok ol e ok e ol ol e e ofe e e s ok ol e e e ik e e ol e ok e ol o e e ok e kARl Ak
401 WRITE (6,4227)

49



50

402

403
500
101
102
103
201

202
203
204
205
206
207
208
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231

G0 TO 500

WRITE (6,228)

GO TO 500

WRITE (6,5229)
sSTOop

FORMAT (315)
FORMAT (13A6,A2)
FORMAT (L5)
FORMAT

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

*SION)

FORMAT

END

(1H19//427H THE NUMBER OF VARIABLES IS+1I54/429H THE NUMBER

#*0F EXPRESSTIONS IS5,15)

(21HKTHE SOLUTION IS FOR

(1H+,29X4A6)

+A6,43HTO )

(30HKTHE BLOCK DIAGRAM EXPRESSIONS,//)
(1HK 455X 4 13HTHE NUMERATOR)

{5X99A6)

{1HK 55Xy 15HTHE DENOMINATOR)

(3X912,2X49A6)

{25HKTHE BLOCK DIAGRAM INPUTS,//)

{3H N(,1242H)=)
(1H+,7Xy8A64//)
(3H D(y1242H)=)

(1HK 455X 420HTHE NUMERATOR (REAL))
NUMERATOR (IMAGINARY))
(1HK 355X 922HTHE DENOMINATOR (REAL))
DENOMINATOR (IMAGINARY))

(1HK 455X, 25HTHE

(1HK 355Xy 27HTHE
(1HC $5X ¢ 13HTHE
(1HC 45X 15HTHE
(1HC y5X 4 20HTHE
(1HC 45X+ 25HTHE
(1HC 45X 422HTHE
(1HC 45X 427THTHE
(33H =*xERROR**
(33H *%ERROR**
(43H **¥ERROR**
{59H **%ERROR**

(64H #*ERROR**

*XPRESSION)

NUMERATOR)

DENOMINATOR)

NUMERATOR (REAL))
NUMERATOR (IMAGINARY))
DENOMINATOR (REAL))
DENOMINATOR (IMAGINARY))

MORE
MORE
MORE
MORE

MORE

THAN
THAN
THAN
THAN

THAN

63 VARIABLES)

30 EQUATIONS)

5 BLOCK DIAGRAM INPUTS)

5 CARDS FOR A BLOCK DIAGRAM EXPRES

5 CARDS FOR A SYSTEM INFORMATION E

N§§ @§g



§
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SOUT

$IBFMC SPLIT
SUBROUTINE SOUT(XsWyIsNAME)
DIMENSION 0OUT(i2)
EQUIVALENCE (0OUT(1),M0OUT)
LOGICAL TEST

SYMARG Xo.W
ATOMIC W
GO TD (4,5),1
4 A =0
J =0
1 LET Y = COEFF XoWkkA,V1,V2
LET Y = Yxk§ikkA
A = V2

LET TEST = MATCH ID,Y,0.0
IF{TEST.AND.A.EQ.0.0) GO 7O 7
IF(TEST) GO TO 1

WRITE (6,203)

J = J+1

PUNCH 204,NAME,J

2 LET Q@ = BCDCON Y,0UT,12
CALL REMOVE(OUT)

3 WRITE (6,201) (OUT(L),L=2,12)
PUNCH 202, (0UT(L)yL=2,412)
IF(Q.NE.,0.0) GO TO 2
ERASE Y
IF(A.NE.,0.0) GO TO 1

7 PUNCH 2054NAME,J
RETURN

5 PUNCH 206 ,NAME

6 LET Q = BCDCON X,0UT,12
CALL REMOVE(OUT)

WRITE (6,201) (OUT(L),L=2,12)
PUNCH 202,(0UT(L)},L=2,12)
IF(Q.NE.D.0) GO TO 6
RETURN
201 FORMAT (61X,11A6)
202 FORMAT (5X,1H%*,11A6)
203 FORMAT (1HK)
204 FORMAT (6XyAlslH(,12,2H)=)
205 FORMAT (6Xy1HNyAl,41lH=,12)
206 FORMAT (6X,A2,1H=)
END



INIT
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Figure 11. - Flow chart for subroutine INIT.



INIT

$IBFMC INIT.
SUBROUTINE INIT(NEQyXsMyEQyM1,NUM,DEN)
DIMENSION NEQ(150),EQ(30)+NQ(100)
LOGICAL LOCATE,OUT1,0UT2
REAL NUM
INTEGER DNyS 9SS 9555952953954 9S54S64EX44EXS,EX6,EX
DATA S2,53,454,55,56,555/0000000000100,0000000010000,

*0000001000000,0000100000000,0010000000000,0377777777777/

DATA MASK1,MASK2/0000077777777,0000000000077/
IFIX0(1Y) = 1Y
MASK(IX) = IFIXO(AND(MASK1,IX))
EX(IXyeN) = TFIXO(AND(MASK2,TARS((N=-1)%6,1ABS(IX))))
SYMARG X,EQ,NUM,DEN
ATOMIC X(63)

C INITIALIZE NM,DN, AND THE NQ ARRAY
NM = 0
DN = 0
K =20
OUT1 = JFALSE.
0UT2 = JFALSE.
DO 5 I=1,M
L 0

DO 1 J=1,M1
LET LOCATE = FIND EQ(J),APP,ALLy(X(I)})
IF(.NOT.LOCATE) GO TO 1

K = K+1
IF({K.GT.100) GO TO 301
L = L+1
NO(K) = S4+S5%I+S6%J
1 CONTINUE
S = L+S2%L
Nl = K-b+1
N2 = K

DO 2 J=N1,N2
2 NQ{J) = NQ(J)I+S
IF(NM,NE.O) GO TO 4
LET LOCATE = FIND NUMAPP,ALL,y(X(1))
IF(.NOT.LOCATE) GO TO 4
NM = ]
4 IF(DN.NE.O) GO 7O 5
LET LOCATE = FIND DEN,APP,ALL,(X(1))}
IF(.NOT.LOCATE) GO TO 5
DN = 1
5 CONTINUE
IF(NM.,EQ.0) 6O TD 302
IF(DN.EQ.0) GO TO 303
MNQ = K
CALL SORT(NQ,MNQ)
NQ(MNO+1) = SSS

K =1
DO 9 I=1,M1
L =1

LOCATE = JFALSE.
6 TF(EX(NQ(K),6).GT.,I) GO TO 7
IF(EX(NQ(K)y5).EQ.DN) LOCATE = ,TRUE.

K = K+1
L = L+1
GO TO 6
7 N1 K-L+1

N2 K-1



S = S3%(L-1)
DO 8 J=N1,N2
NQ(J) = NQ(J}+S
8 IF(LOCATE) NQ(J) = =-NQ(J)
9 CONTINUE
MNEQ = O
MNQL = O
SEARCH FOR A VARIABLE TO ELIMINATE
100 MIN = SSS
IF(MNEQ.GT.146) GO TO 304
DO 10 I=1,MNQ
S = EX(NQ{I),y5)
TF(S.EQ.NM,0OR.S.EQ.DN.OR.S.EQ.63) GO TO 10
MSK = MASK(NQ(I))
IFINQ(I).LT.0) MSK = MSK+S5
IF(MIN.LE.MSK) GO TO 10
IMIN = 1
MIN = MSK
10 CONTINUE
ARE WE DONE
IF{MIN.EQ.SSS) GO TO 25
ELIMINATE VARIABLE FROM EQUATIONS
NO = EX{(NQ(IMIN),3)
EX6 = EX(NQ(IMIN),6)
IF(NO.LT.2) MWRITE (6,405) EX6
EX5 = EX{NQ(IMIN)},5)
MNEQ = MNEQ+1
NEQ(MNEQ) = EXS5
MNEQ = MNEO+1
NEQ(MNEQ) = EXé6
MNQ2 = MNQ
DO 11 I=1,MNQ
11 IF(EX(NQ(I)46).EQ.EX6) GO TO 12
12 N1 = I-1
NQ(IMIN) = SSS
SS = EX6*S6
DO 14 I=1,MNQ
IF(EX{NQ(I),5).NE.EX5) GO TO 14
TEQ = EX(NQ(1I),6)
MNEQ = MNEQ+1}
NEQ(MNEQ) = IEQ
LOCATE = NQ(I).LT.O
NQ(I) = SSS
MNQ1 = MNQ1l+1
S = S6*IEQ-SS
DO 13 J4=1,NO
L = NI+J
IF(NQ(L).GE.SSS) GO TO 13
MNQ2 = MNQ2+1
NQ(MNQ2) = TABS(NQ(L))+S
IF(LOCATE) NQ(MNQ2) = -NQ({MNQ2)
13 CONTINUE
14 CONTINUE
MNEQ = MNEQ+1
NEQ(MNEQ) = O
DO 15 J=1,4NO
L = Nl+J
MNQLl = MNQ1+1
15 NQ({L) = SSS
CALL SORT(NQ,MNQ2)



MNQ = MNQ2-MNQ1
MNQl = O
K = 1
c UPDATE S3,S4 AND COMBINE LIKE VARIABLES
DO 21 I=1,M1
L =1
16 IF(EX(NO(K)6).GTs1) GO TO 17
K = K+1
L= L+l
GO TO 16
N 17 IF(L.EQ.1) GO TO 21
N1 = K=L+1
N2 = K=-1
N =0
DO 19 J=N1,N2
IF{NQ(J).GE.SSS) GO TO 19
EX5 = EX{NQ(J),5)
EX4 = EX(NQ(J) 4)
DO 18 L=N1,N2
IF{L.EQ.J) GO TO 18
IF(EX(NQ(L)$5).NE.EX5) GO TOD 18
S = EX(NQ(L)q4)
IF(S+EX4.LE.63) GO TO 171
S = 63-EX4
IF(.NOT.OUT1) WRITE (6,4406) EXS,I
OUT1 = LTRUE.
171 S = S*%S4
IF(NQ(J)oLT.0) S = -S
NQ(J) = NQ(J)I+S
NO(L) = SSS
N = N+1
MNO1 = MNQ1+1
18 CONTINUE
19 CONTINUE
S = (N2-N1+1-N)*S3
DO 20 J=N14N2
SS = EX(NQ(J),3)
IF(S55.EQ.63) GO TO 20
SS = S-55%S3
IF(NQ(J)«LT<0}) SS = -SS
NQ{J) = NQ(J)I+SS
20 CONTINUE
21 CONTINUE

C UPDATE S1 AND S2
DO 24 I=1,M
J =0
K =0
DO 22 L=1,MNO
. IFLEX(NQ(L),5).NE.I) GO TO 22
J = J+l

K = K+EX{NQ(L)y4)}
22 CONTINUE

s IF(J.EQ.0) GO TO 24
IF(K.LE.63) GO TO 221
K = 63

IF(.NOT.0UT2) WRITE (64407) 1
0UT2 = .TRUE.

221 S = J*S52+K
DO 23 L=1,MNQ
IF(EX{NQ(L)s5).NE.I) GO TO 23



S$S = S~—S2¥EX(NQ(L),2)-EX(NQ(L),1)
IF{NQ{L).LT.0) SS = -SS
NQ(L) = NO(L)+SS

23 CONTINUE

24 CONTINUE

CALL SORT(NQ,MNQ)
MNQ = MNQ-MNQ1

MNQ1 = O
GO TO 100
RETURN

25 MNEQ = MNEOQ+1
NEQ(MNEQ) = O
DO 26 1I=1,MNO
26 IF(NQ(I).LT.SSS) GO TO 27
GO TO 308
27 EX6 = EX{(NQ(I)},6)
MNEQ = MNEQ+1
NEQ(MNEQ) = EX6
DO 28 I=1,MNQ
IF(NQ(T).GE.SSS) GO TO 28
IF(EX(NQ(T)+6).NE.,EX6) GO TO 29
28 CONTINUE
RETURN
29 WRITE (6,409)
RETURN
ERROR
301 WRITE (6,401)
GO TO 500
302 WRITE (6,402)
GD TO 500
303 WRITE (6,403)
GO TO 500
304 WRITE (6,404)
GO TO 500

308 WRITE (6,4408)

500 STOP

401 FORMAT (48H **ERRDR** THE TOTAL NUMBER OF TERMS EXCEEDS 100)

402 FORMAT (49H X*ERROR** THE OUTPUT VARIABLE COULD NOT BE FOUND)

403 FORMAT (48H *%ERROR** THE INPUT VARIABLE COULD NOT BE FOUND)

404 FORMAT (27H **ERROR*% SYSTEM TOO LARGE)

405 FORMAT (39H =*WARNING** ONLY ONE TERM IN EQUATION ,12)

406 FORMAT (45H **WARNING** THE NUMBER OF TERMS INVOLVING X(,12,14H) I
*N EQUATION ,12412H EXCEEDED 63,/,12X,36H SOLUTION MAY NOT BE IN MI
*NIMUM FORM)

407 FORMAT (45H **WARNING*¥ THE NUMBER OF TERMS INVOLVING X{,12,30H) I
*N AtLL EQUATIONS EXCEEDED 63,/412Xs36H SOLUTION MAY NOT BE IN MINIM
*UM FORM)

408 FORMAT (34H **ERROR*%* SYSTEM CANNOT BE SOLVED)

409 FORMAT (45H **WARNING** SOLUTION BELOW MAY NOT BE UNTQUE)

END
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SORT

M-N-1
DOI=1 M
DOJ=T1+1 N
|
1A < IX(I)

IX{1) ~IX()
IX(J) ~1IA

|

Figure 12, - Flow chart for subroutine SORT.



SORT

$IBFTC SORT.
SUBROUTINE SORT(IXsN)
DIMENSION IX(1)
M = N-1
DO 1 I=1,4M
K = I+l
DO 1 J=K,N
1A = IX(I)
IF(IABS(IA).LE.TABS(IX(J))) GO TO 1
. IX(I) = IX{J)
v IX{(J) = IA
1 CONTINUE
RETURN
END

COS

$IBFTC TAKOUT
SUBROUTINE COS(X)
ENTRY SIN(X)
ENTRY TANH(X)
ENTRY ATAN(X)
ENTRY ALOG(X)
ENTRY DUMP(X)
ENTRY PDUMP(X)
ENTRY FMCDIF(X)
ENTRY EXPDMP(X)
ENTRY FMCDMP(X)

b SToP

END

I,

S

NBR

$IBFTC AIDL
LOGICAL FUNCTION NBR({X,L)
REAL X(1)
N=LGR{30,FC(X,L))
NBR=.FALSE.
IF((N.GE.O) . AND.(N.LE.9)) NBR=,TRUE.
RETURN
END

[ S
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{ REMOVE )
P —

from BCD string

Get character ‘

Has sequence of characters
**niny. . . 0 twhere n;
is number 0-9) appeared

CALL DELETE

Has sequence
“('nlnz. .. 0

Remove zero
appeared
?

CALL DELETE

Remove
decimal point

CALL DELETE
Remove
dotlar sign

Figure 13, - Flow chart for subroutine REMOVE.

Return




REMOVE

$IBFTC AID2
SUBRDUTINE REMOVE(X)
INTEGER X (1)
LOGICAL NBR
DATA AAST,AMINUS,AE.ALP,ARP,ADP,AZERO/6H*00000,6H-00000,
1 6HE00000,6H(00000,6H)00000,6H.00000,6H000000/ 4MSW/1/
DATA ADLR,K/6H$00000,1/
LMAX = X{1)+6
L =17
109 GO 70 (110,111,112,113),K
110 IF(FC(XsL)eNE.AAST) GO TO 201
GO0 TO 202
111 IF(FC(X4sL)«NE.AAST) GO TO 201
GO 70 203
112 IF(FC(XsL).EQ.ALP) GO TO 204
120 IF(NBR(X,L))GO TO 140
GO TO 201
113 IF(FC(XyL).NE.AMINUS) GO TO 201
L=L+]
MSW=2
GO TO 120
140 L=L+1
IF(NBR(X,L))GO TO 140
114 IF(FC{XsL).NE.ADP) GO TO 201
L=L+1
115 IF(FC{X,L) .NE.,AZERD) GO TDO 201
L=L+1
116 GO TO (15041607),MSW
150 TF(L.EQ.LMAX+1) GO TO 170
IF(NBR(XyL)eORLFC(XsL)aEQ.AE) GO TO 201
GO TO 170
160 MSW=1
IF(L.EQ.LMAX+1) GO TO 170
IF(FC(XyL)NE.,ARP) GO TO 201
170 CALL DELETE(XsL-1)
CALL DELETE(X,L-2)}

TR R

201 K = 1
GO TO 209

‘ 202 K = 2

\ GO TO 209

! 203 K = 3

; G0 TO 209

204 K = 4
209 L = L+l
IF(L.LE.LMAX) GO TO 109
210 IF(FC(XyLMAX).NE.ADLR) RETURN
K =1
CALL DELETE(X,LMAX)
RETURN
END

»
’




Function FC

$IBFTC AID3
FUNCTION FC(X,L)
DIMENSION X(1)
DATA MASK/0770000000000/
LMi=L-1
IW=LM1/6+1
FC=AND(ALS(6%MOD(LM146)yX{IW))4MASK)
RETURN
END

DELETE

$IBFTC AID4
SUBROUTINE DELETE(X,L)
DIMENSION X(L)sZERO(6),BLANK(6)
DATA ZERO /0007777777777,0770077777777,0777700777777,

1 Q777777007777 ,0777777770077,0777777777700/
2 BLANK /0600000000000,0006000000000,0000060000000,
3 0000000600000,0000000006000,0000000000060/
LtMl=L-1

IW=LM1/6+1

IP=MOD(LM1,6)+1
X(IW)=0OR(AND{(X(IW)4ZERO(IP)})yBLANK(IP))

RETURN
END
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Figure 14, - Flow chart of EVAL {main program).
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EVAL

$IBFTC EVAL

REAL ITMP,K
DATA TWOPI/6.,2831853/
DATA NEXPyNSIN,NCOSyNSINH,NCOSHsNSQRTyNK,NT,NZ ,NWN/10%0/

COMMON /7CEVAL/T(10)49Z(10)3WN(10)4K(10)4NEXPyNSINyNCOSyNSINHyNCOSH,

% NSQRT
COMMON /OMEGA/WsA4B4C4D
COMMON /NONLIN/ EXPA(5),SINA(5),C0SA(5),
EXPB(5),SINB{(5),C0SB(5),
EXPC(5)4SINC(5),COSC(5),
EXPD(5)4SIND{(5),COSD(5),
SINHA(5) 4COSHA(5),SQRTA(S5),
SINHB(5),COSHB(5) y SQRTB(5),
SINHC(5),COSHC(5) 4SQRTC(5),
SINHD(5) 4COSHD(5)
NAMELIST /INPUT/ NEXP,NSIN,NCDS,
EXPA,SINA,COSA,
EXPB,SINB,COSB,
EXPC4SINC,COSC,
EXPDySIND,COSD,
NSINH,NCOSH,NSQRT,
SINHA,COSHA,SQRTA,
SINHB,COSHB,SQRTB,
SINHC,COSHC,SQRTC,
SINHD,COSHD,
NKyKyNT 3 TyNZ o Z yNWNyWN,FSTART,FEND,DELTAF

# 3k % 3 3 3 3¢

F O 3 3 90 3 3 3 3¢ 3¢

1 READ (5, INPUT)

WRITE (6,201)

IF(NEXPoNE.O) WRITE (64202) (I4EXPA{I),EXPB(I)}oEXPC(I)4EXPD(I),
#1=1,NEXP)

IF(NSINJNE.O) WRITE (64203) (I4SINA(I),SINB(I)ySINC(I)sSIND(I),
*I=1,NSIN)

IF(NCOS.NE.O) WRITE (64204) (I,COSA(I),COSB(I),COSC(I),COSD(I),
*1=1,NCOS) '

IF(NSINH.NE.O) WRITE (649205) (I4SINHA(I)4SINHB(I)4SINHC(I),
*SINHD(I),1=1,NSINH)

IF(NCOSH.NE.O) WRITE (64206} (I4COSHA(I),COSHB(I)4COSHC(I),
#*COSHD(T1),1=1,NCDOSH)

IF(NSORT.NELO) WRITE (64207) (I4SQRTA(I),SQRTB(I)}4SQRTC(I),
#1=1,NSQRT)

IF(NKeNE.O) WRITE (6,208) (I,K(I)yI=14NK)
IF{NTeNE.O) WRITE (64209) (1,T(1),I=1,NT)
IF(NZ.NE.O) WRITE (64210) (142(1),1=1,NZ)
IF(NWN.NELO) WRITE (64211} (I ¢WN(I),yI=14NWN)

WRITE (6,212) FSTART,FEND,DELTAF
IF(DELTAF.EQ.0.0) GO 7O 1

F FSTART

I 0

W TWOPI*F

CALL COEFF

DIV = A
IF(DIV.EQ.0.0) DIV =
IF(DIV.EQ.0.0) DIV = 1.0

i u o

A = A/DIV

8 = B/DIV

C = C/DIV

D = D/DIV

TEMP = C**%2+D%%*2

RTMP = (A*C+B*D)/TEMP
ITMP = (B*C—-A%D)/TEMP
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ATMP = SQRT((A%%2+B%*%2)/TEMP)

PTMP = ATANZ(I1TMP,RTMP)*57,2957795

I = I+l

WRITE (69213) I4FsAgByCyDyRTMP,ITMP,ATMP,PTMP
F = FSTART+FLOAT(I)*DELTAF

IF(F.GT.FEND) GO TO 1

GO 70 2

201 FORMAT (1Hl,//,36H FORTRAN EVALUATION OF FORMAC OUTPUT)

202 FORMAT (1HO,3Xy1H145X95HEXPA ,10X,5HEXPB 910X4SHEXPC 410X,
*5HEXPD 9/4(1594615.5))

203 FORMAT (1HO,3Xs1HIs5XsSHSINA ,10Xs5HSINB 210X, 5HSINC 410X,
*5HSIND o/ 4(1544615.5))

204 FORMAT (1HO43Xy1HI45X,5HCOSA ,10X,5HCOSB 910X,y 5HCOSC 410X,y
#5HCOSD 9/+(1594G615.5))

205 FORMAT {1HO$3X9y1HI 45Xy SHSINHA, 10Xy SHSINHB 10X+ 5HSINHC, 10X,
*5HSINHD /9 (15946G15.5))

206 FORMAT (1H013X,1HI,SX,SHCOSHAyIOXySHCOSHB,IOX,SHCOSHC,IOX,
*5HCOSHD /9 {1554615.5))

207 FORMAT (1HO,3X,1HI,SX,SHSQRTA,10X,SHSQRTB,10X,5HSQRTC,/'(15,3615‘5
*))

208 FORMAT (1HO33Xs1HI45X91HKy/4(154615.5))

209 FORMAT (1HO,3Xs1HI¢5Xs1HT4/4(15,615.5))

210 FORMAT (1HO93Xy1HI45X91HZ4/4(154615.5))

211 FORMAT (1HO¢3Xy1HI,5X92HHWN,/4(154615.5))

212 FORMAT (1Hl4//.8H FSTART=9yG15.595XySHFEND=¢yG154595Xs THDELTAF=,
*GIS.S,//,13Xy1HF,13X;1HA,13X,1HB,13X,1HC,13X,1HD,13X,#HREAL,10X,
*4HIMAG 10Xy 3HABS 3 11Xy SHANGLE S/ )

213 FORMAT (15,9G14.5)

END

¥



$IBFTC

3 4 % 3 # 3 3¢

EXPF

FCTNS

COMPLEX FUNCTION EXPFX(I)

COMPLEX X,Y

COMMON /DOMEGA/W,A4BsCyD

COMMON /NONLIN/ EXPA(S5),SINA(5),COSA(5),
EXPB(5)4SINB(5),C0OSB(5),
EXPC(5)4SINC(5),C0SC(5),
EXPD(5)4SIND(5),COSD(5),
SINHA(5) yCOSHA(5) ySQRTA(5),
SINHB(5)4COSHB(5) ySQRTB(5),
SINHC(5) yCOSHC(5),SQRTC(5),
SINHD(5),COSHD(5)

X = CMPLX(EXPC(I)—EXPA(T)*Wk%*2,EXPB(I)%*W)

Y = EXPD(I)*CSQRT(X)

EXPFX = CEXP(Y)

GO TO 1

ENTRY SINFX(I)

X = CMPLX(SINC(I)-SINA(I)*W*%2-SINB(I)*W)

Y = SIND(I)*CSQRT(X)

EXPFX = CSIN(Y)

GO 7O 1

ENTRY COSFX(I)

X = CMPLX(COSC(I)-COSA(I)*W*%2,COSB(1)%*W)

Y = COSD(I)*CSQRT(X)

EXPFX = CCOS(Y)

GO 7O 1

ENTRY SINHFX(I1}

X = CMPLX(SINHC(I)=SINHA(I)*W*%24SINHB(I)%*W)

Y = SINHD(I)*CSQRT(X)

X1 REAL(Y)

Yl AIMAGI(Y)

EXPFX = CMPLX(SINH(X1)*COS(Y1)4COSH(X1)*SIN(Y1))

GO TO 1

ENTRY COSHFX(I)

X = CMPLX(COSHC(T)-COSHA(I)*Wk%*2,COSHB(I)%*W)
Y = COSHD(I)*CSQRT(X)

X1 = REAL(Y)

Y1 = AIMAG(Y)

EXPFX = CMPLX{COSH(X1)*COS(Y1)sSINH(X1)}*SIN(Y1))

GO 7O 1

ENTRY SQRTFX(I)

X = CMPLX(SQRTC{I)—~SQRTA(I)*Wk%2,SORTB(I)*W)
EXPFX = CSQRT(X)

RETURN

END
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COEFF
$IBFTC COEFFR
SUBROUTINE COEFF
c THIS SUBROUTINE ACCEPTS THE FORMAC OUTPUT IN THE COMPLEX RATIONAL

c FORM
REAL IEXP,ISIN,ICOS,ISINH,ICOSHyISQRT,K
COMPLEX X9EXPFXySINFX,COSFX¢SINHFX9COSHFXsSQRTFX
DIMENSION REXP(5)yIEXP(5)sRSQRT(5),ISQRT(5),
RSIN(5),ISIN(5)yRCOS(5),1COS(5),
RSINH{S) 4y ISINH(5)yRCOSH(5),ICOSH(5),
A(20),B(20),C(20),D(20)
COMMON /CEVAL/T(10)4Z(10)sWN(10)sK(10)4NEXPyNSIN,NCOSyNSINH,NCOSH,
* NSQRT
COMMON /OMEGA/W,AA,BB,CC,DD
IF(NEXP.EQ.O) GO TO 2
DO 1 I=1,NEXP
X = EXPFX(I)
REXP(1) = REAL(X)
1 IEXP(I) = AIMAG(X)
2 IF(NSINL.EQ.0) GO TO 4
DO 3 I=1,4NSIN
X = SINFX(T)
RSIN(I) = REAL(X)
3 ISIN(I) = AIMAG(X)
4 IF(NCOS.EQ.0) GO TO 6
DO 5 I=1,NCOS
X = COSFX{I)
RCOS(I) REAL (X)
5 ICOS(I) AIMAG(X)
6 IF(NSINH.EQ.0) GO TO 8
DO 7 I=1,NSINH
X = SINHFX(I)}
RSINH(I) = REAL({X)
7 ISINH(I) = AIMAG(X)
8 IF(NCOSH.EQ.0) GO TO 10
DO 9 I=1,NCOSH
X = COSHFX(I)
RCOSH(I) = REAL(X)
9 ICOSH(I) = AIMAG(X)
10 IF(NSQRT.EQ.0) GO TO 12
DO 11 I=1,NSQRT
X = SQRTFX(I)
RSQRT(I) REAL (X)
11 ISORT(I) AIMAG(X)
12 CONTINUE
C***********************************************************************

3t 3 3

c THE COMPLEX RATIONAL FORM OF THE FORMAC OUTPUT IS TO BE INSERTED
C AT THIS POINT
C***********************************************************************
AA = 0.0
DO 13 J=1,NA
13 AA = AA+A(J)
BB = 0.0
DD 14 J=1,NB
14 BB = BB+B(J)
CC = 0.0
DO 15 J=14NC
15 CC = CC+C(J)
DD = 0.0

DO 16 J=14ND
16 DD = DD+D(J)

RETURN

END
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COEFF

$IBFTC COEFFS
SUBROUTINE COEFF
c THIS SUBROUTINE ACCEPTS THE FORMAC OUTPUT IN THE S FORM
REAL K
COMPLEX N24D2,EXPFX9SINFXyCOSFXySINHFXyCOSHFXySQRTFX,S
COMPLEX EXPF(5)ySINF(5),COSF(5),SINHF{5)4COSHF(5)4SQRTF(5)
COMMON /CEVAL/T(10)9Z(10)sWN(10)sK(10)4NEXPyNSINyNCOSyNSINH,NCOSH,
* NSQRT
COMMON /OMEGA/W.A4B8,C4D
S = CMPLX(0.04W)
IF(NEXP.EQ.0) GO TO 2
DO 1 I=1,NEXP
EXPF(I) = EXPFX(I)
IF(NSIN.EQ.0) GO TO 4
DO 3 I=1,NSIN
3 SINF(I) = SINFX(I)
4 IF{NCOS.EQ.O0) GO TO 6
DO 5 I=1,NCOS
5 COSF(I) = COSFX(I)
6 IF(NSINH.EQ.0) GO TO 8
DO 7 I=14NSINH
7 SINHF(I) = SINHFX(I)
8 IF(NCOSH.EQ.0) GO TO 10
DO 9 I=1,NCOSH
9 COSHF(I) = COSHFX(I)
10 IF(NSQRT.EQ.O0) GO TO 12
DO 11 I=1,NSQRT
11 SQRTF(I) = SORTFX{(I)
12 CONTINUE
€ e e 3 e e 3 e e 34 e 3 3 e e 36 o 3¢ 36 S 3k o e e e e e e e ke e e e s e e e ok o s o sk 3 e e ik e a4 o e o e e o o e o e 3 ofe ok ol ok e s e ok ok e K
c THE S FORM OF THE FORMAC OUTPUT IS TO BE INSERTED AT THIS POINT
C % 3 3 4 e s 3 e e 3¢ e 34 o o 3 36 e 36 30 e 3¢ 3 e 2 4e e e e e e e e e e e 3k 33 e o e e e e e e e 3k e e o e o e ok o o e o e o e e e o e ok e o 3k e K
A REAL (N2)
8 ATMAG(N2)
C REAL (D2)
D AIMAG(D2)
RETURN
END

N =

LU R [}
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APPENDIX D

METHOD OF DETERMINING ORDER

The method of determining the order of equation reduction simulates the FORMAC
reduction. Initially, certain data are obtained for each equation and variable. These
data are updated at each step of the simulated reduction and are used to determine the
variable to be eliminated. This method was chosen because the FORMAC expressions
need be examined only once to initialize the simulated reduction. Also, the data retained
at each step may be easily updated for the next step.

Four pieces of information are retained at each step of the simulated reduction for
each variable in each equation. Listed in order of importance, they are

(A) The number of times the variable has been combined in the equation

(B) The number of variables in the equation

(C) The number of equations in which the variable appears

(D) The number of times the variable has been combined in all equations

These data are initially extracted from the FORMAC block-diagram expressions.
The data are updated through each step of the simulated reduction by eliminating varia-
bles and equations and by combining like variables in equations.

The variable to eliminate and the equation used to eliminate the variable is chosen by
finding the smallest from the list of numbers made by forming the number (83A +8°B
+ 8C + D) (where A, B, C, and D are octal numbers). This, in effect, finds the set of
smallest A, then reduces this set by finding the intersection between this set and the set
of smallest B, and so on for C and D. The variable and equation number associated
with the ABCD found are then the ones desired. The variables of the transfer function
are, of course, never eliminated. Equations that contain input variables are only used
to eliminate a variable if there is no other choice.

A list is formed consisting of the variable eliminated, the equation used to eliminate
the variable, and all other equations that contain the variable. This occurs at each step
of the simulated reduction. The list is then used for the actual FORMAC reduction.

The data, A, B, C, and D are packed into one computer word along with the equa-
tion and variable number. This word is tagged with a negative sign if the equation asso-
ciated with it contains an input variable. This packing saved considerable storage space;
however, limitations to the magnitude of A, B, C, and D, the number of equations, and
the number of variables were introduced. These magnitudes, 1 to 30 for the number of
equations and 1 to 63 for the other data, were considered large enough for most problems.

To illustrate this method, the set of block-diagram equations given in table I is car-
ried through the simulated reduction in table III.
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TABLE IIl. - STEPS USED IN SIMULATED REDUCTION TO OBTAIN ORDER OF REDUCTION

[Solution is for transfer function Xl/Xz]

i e, T e,

Step 0 Step 1 Step 2 Step 3 Step 4
Equa- Vari- A B C D Equa- Vari- A B C D Equa- Vari- A B C D Equa- Vari- A B C D Equa- Vari- A B C D
tion able tion able tion able tion  able tion able
1 1 1322 1 1 1322 1 1 1322 1 1 1322 2 1 2212
1 2 1322 1 2 1322 1 2 1322 1 | 2 1322 2 2 2 21 2
1 6 1322 1 6 1322 1 6 1322 1 1 6 1 3 2 2
2 2 1222 2 2 1222 2 2 1222 2 | 1 13 2 2
2 3 1222 2 3 1222 2 3 1222 2 2 13 2 2
3 4 1222 4 3 1322 4 1 1 ?3 12 2. 2 ’ 6 1 3 2 2
3 6 1222 4 5 1322 4 3 132 2 |
|
4 3 1 322 4 6 1322 4 6 132 2
4 4 1 3|2 2 5 1 122 2 1‘
; ‘ -
4 5 [1/3/2 2] 5 5 1122 2 | ;
5 1 1(2(2 2 ‘
5 5 1(2(2:2 !
Variable to eliminate 4 3 6
Equation to eliminate
variable 3 4 1
Other equations con-
taining variable 4 2 2

- »\?‘@ =
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