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NASA RESEARCH ON FLEXIBLE WINGS

By Francis M. Rogallo

NASA Langley Research Center

SUMMARY

Flexible wings are wings made of very loose or slack cloth whose configu-

ration in flight is maintained by the combination of the aerodynamic forces and

the reactions from the load suspension system. Such wings can be completely

flexible_ or they may be stiffened in several ways to meet the requirements of

particular applications. Wing planforms and the geometry of the load suspension

system are also subject to wide variations.

The overall spectrum of flexible wings investigated at the Langley Research

Center is presented and the state of the art with regard to maximum lift-drag

ratios obtained is defined for a wide range of wing configurations. Maximum

lift-drag ratios above 3.0 were obtained on completely flexible wings; and for

cylindrical-type flexible wings, values of lift-drag ratios up to 17.0 were

obtained when the wing had small, tapered rigid leading edges.

The flexible wings of most immediate interest are those with no structural

stiffening because they have weight, volume, packing, and deployment character-

istics potentially as good as those of conventional parachutes, but provide a

stable and controllable glide with performance adequate for aerial delivery of

cargo and personnel, for landing space capsules, boosters, or hypersonic air-

craft, and as emergency wings for aircraft or aircraft escape systems.

The high-performance flexible wings at the other end of the spectrum,

although not presently of general interest, show promise of becoming light-

weight, rugged, stowable wings for applications such as roadable aircraft, flying
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boats, flying submersibles, cargo tow gliders, a variety of sport gliders, and

perhaps advanced recovery systems for boosters and hypersonic aircraft.

INTRODUCTION

Observers of nature have long noted that the wings of living creatures are

rather flexible and generally are folded neatly out of the way when not in use.

Through the ages men have dreamed of flying with flexible wings like those in

nature and many tried, but with little success. Other types of flexible aerial

devices were developed - hot air balloons and parachutes, which are still being

used - but apparently no one had devised a successful fully flexible wing that

would give more aerodynamic lift than drag. Very recently, however, men, and

at least one woman, have succeeded in flying with truly flexible wings, pure

tension structures like parachutes, as shown in figure i and discussed in ref-

erences i and 2.

Although completely flexible wings are feasible and practical for some

applications, for others performance and other characteristics may need to be

improved by the judicious addition of local stiffening. Consequently a complete

spectrum of wing shapes and degrees of stiffening is being developed to fill

the gap between the conventional parachute and the rigid wing. To include this

complete spectrum in one definition, we can define flexible wings as wings made

with very loose or slack membraneswhose configurations in flight are determined

primarily by the aerodynamic forces on the membranesand the reactions from the

load suspension system.

After the usual dreaming about flexible wings since childhood, the author

in 1945 at the close of World War II decided to undertake a serious study of

the subject. Because pressure of work along more conventional lines did not
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permit such a study to be made on government time_ it was decided to undertake

it at hom% jointly with Mrs. Rogallo and later including other members of the

family and friends. This private endeavor covered the 13 years from 1945 until

late in 1958, when America's entry into the exploration of space brought about

government consideration of this and other unconventional ideas_ and the subse-

quent formation of what is now officially the Flexible-Wing Section of Langley

Research Center_ a truly dedicated group.

In the pre-NASA years the wing was called a kite because of the three

experimental methods used: testing in a homemadewind tunnel, free flying as

hand-launched gliders, and tethered outdoor flying as kites. The kites appeared

to be the nearest to a useful marketable application. Thus U.S. Patent

No. 2,546,078 (ref. 3) filed in November1948 and issued in March 1951 to

Gertrude and Francis Rogallo is entitled "Flexible Kite" even though it pro-

poses applicability of the concept to all heavier than air flying machines.

The first national publicity about our early work was an article written in

December 1949 entitled "First Flexible Kite," published in Ford Times in

March 1951 (ref. 4). A brief history of the concept was given in a luncheon

talk in September i963 before the American Astronautical Society at Edwards Air

Force Base. (See ref. 5.)

FLEXIBLE-WING SPECTRUM

Figure 2 presents the spectrum of flexible-wing configuration and the

maximum lift-drag ratios obtained by the Flexible-Wing Section in NASA wind-

tunnel tests of each type of wing shown. The abscissa of figure 2 has been

selected to illustrate a progression of configurations having increasing

structural rigidity. The left end of the spectrum, indicated as having no
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stiffening_ represents the original concept of a flexible lifting surface as

described in reference 3. The shaded area, labeled "all-flexible," indicates

that this type of lifting surface cam provide maximum lift-drag ratios up to at

least 3.0.

The use of some structural stiffness such as would be obtained with a

single-curvature lifting surface made of flexible thin sheet metal or plastic

provided maximum lift-drag ratios of around 7.0. Test results obtained on this

type of wing are presented in reference 6. The remainder of the spectrum pre-

sented in figure 2, which is divided into two canopy shapes, has received most

of the research attention since the publication of reference 6. Most of the

data and unpublished information on flexible wings are therefore on configura-

tions having rigid leading edges and keel, and the sweep angle fixed by a

spreader bar_ or by a very rigid apex.

It should be noted that the spectrum shown in figure 2 encompasses a wide

range of possible configurations and no particular wing should be considered as

the optimum. For example_ the unstiffened wing is expected to be the most use-

ful where factors such as deployment simplicity and minimizing wing loading,

packing volume, wing weigh% and complexity are considered more important than

obtaining high lift-drag ratios. On the other hand, a cylinderical wing with

small leading edges and a rigid frame may be desirable where performance and

cruise speed (towed or powered vehicles) are of more importance than structural

simplicity, and deployment capability is not needed. Selection of a wing for

a particular use should include a study of design trade-offs, including con-

sideration of performance_ stability_ control, loads, and structural

requirements.

-4-



In the remaining discussion of the spectrum a brief summary of the state

of the art with regard to maximum lift-drag ratios of conical and cylindrical

wings is given and reference is made to published data, where available, for

each type of wing.

Conical Wings

Early flight tests at the Langley Research Center on inflated-tube config-

urations indicated a possible design approach for the recovery of spacecraft

and for _erial delivery of cargo. The need for research information on conical

wings for support of the Gemini Project and the Army cargo-drop glider prompted

extensive wind-tumnel research on simplified rigid models which simulated

inflated-tube type of wing configurations (see refs. 7, 8, and 9). Other work

on wings having small leading edges and a rigid frame led to the construction

of manned flight vehicles such as the flexible-wing glider (ref. I0), flexible-

powered aircraft (refs. Ii and 12), and unmanned Army tow glider (ref. 13), and

led to studies of flexible-wing recovery of the Saturn booster (ref. 14). As

indicated in figure 2, the highest lift-drag ratio obtained with conical wings

was about 7°0. Analysis of the test results and theoretical studies on conical

wings (ref. 15) indicated that the relatively high drag of these wings was

associated with the large variation of aerodynamic twist across the wing span.

For some wings this washout at the tips was as high as 60 ° .

Cylindrical Wings

In order to determine the extent that lift-drag ratios could be improved

by eliminating the wing twist, a general research investigation was undertaken

on a series of zero-twist cylindrical wings having small rigid leading edges

(refs. 15 and 16). The shaded area in the upper-right-hand side of figure 2
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shows that maximum lift-drag ratios as high as 17.0 were obtained _th the

small tapered leading edge cylindrical type of wing.

Interest in deployable wings that would provide lift-drag ratios greater

than those obtained with the conical wings led to work on the advanced-concept

cylindrical wing which had tapered inflated-tube leading edges. The wind-

tunnel studies of simplified rigid models indicated that maximum lift-drag

ratios from about 6 to 8 could be obtained with this type of wing.

EFFECT OF ASPECT RATIO

The vertical spread in the shaded areas of figure 2 can be attributed to

variations in aspect ratio and canopy fullness. Effects of aspect ratio on

maximum lift-drag ratios for rigid frame 50 ° swept wings having conical and

cylindrical canopies are summarized in figure 3-

Conical Wings

Data for the conical wings on the left side of figure 3 show the critical

nature of the leading-edge configuration on the maximum lift-drag ratios. Use

of the very small tapered leading edge allowed an increase in (L/D)ma x with

increasing aspect ratio, whereas the use of a slightly larger untapered leading

edge caused (L/D)ma x to decrease with increasing aspect ratio. A decrease

in washout, which was obtained by reducing the canopy fullness, provided an

increase in (L/D)ma x for the high-aspect-ratio wing having tapered leading

edges. The test point shown for the rigid model which simulated an inflated-

tube untapered leading-edge configuration (ref. 8) again indicates the level

of L/D to be expected for this type of wing.

-6-



Cylindrical Wings

Considering now the cylindrical wings, shown on the right side of figure 3,

it is evident that increasing the aspect ratio was much more effective in

increasing (L/D)max than for the conical wings. A value of maximum lift-

drag ratio of about 12 was obtained at high aspect ratio for the zero-twist

wing with small tapered leading edges. By careful tailoring of the canopy to

provide a small amount of washout, the maximum lift-drag ratio of this wing was

increased to about 17.0 (ref. 16). A comparison of the data for the rigid

frame conical and cylindrical wings having large leading edges (simulating

inflated-tube designs) indicates that significant gains in (L/D)max can be

realized for this type of wing by the use of a cylindrical canopy and tapered

leading edges.

ALL-FLEXIBLE WINGS

Many configurations of all-flexible wings, which are now of primary inter-

est, have been investigated by the Flexible-Wing Section in the wind tunnels of

the Langley Research Center and in free flight after being dropped from air-

craft. Some typical wind-tunnel results are shown in figure 4 from tests of

single- and twin-keel wings. The maximum lift-drag ratio of the single-keel

wing shown is about 2.5 while that of the twin-keel wing is about 3. The

single-keel wing has a higher maximum resultant-force coefficient CR and

range of CR, a simpler geometry with fewer bridle lines, and a much more com-

plete background of experience than the twin-keel wing. By the spring of 1966

confidence in the single-keel wing was sufficient to permit scheduled live

demonstration by the U.S. Army parachute team of wings built by NASA, Pioneer

Parachute Company, and Irving Airchute Company within 2 weeks after the NASA
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design was given to the parachute companies (see ref. i). The NASA wings used

by the team had_ of cours% been under test with dummy loads for several months.

During the past year hundreds of live jumps have been made with this wing con-

figuration and it is now being marketed for sports flying (see ref. 2). In

wind-tunnel tests the twin-keel wing has shown a slightly higher maximum lift-

drag ratio than the single-keel wing and offers the possibility for reefing of

the center panel to reduce wing area for deployment and initial glide whenever

the higher speed accompanying the reduced area is advantageous. The disreef

could be made at any time during the flight or just before landing to reduce

landing speed in much the same way as conventional aircraft landing flaps are

used. Single- and twin-keel configurations are Still under development and

both will probably have many applications. The resultant-force coefficient of

a conventional parachute is shown for comparison and is seen to be significantly

lower than the maximum CR of the flexible wings.

To give a clearer picture of the performance potential of all-flexible

wings_ the horizontal and vertical velocities corresponding to the data of

figure 4 are given in figure 5 for wing loadings, W/S, of 1/2, i_ and 2 pounds

per square foot of wing surface. The lowest wing loading shown is approximately

that used in the more than 400 manned flights, whereas cargo delivery and

spacecraft landing systems will probably use W/S between i and 2.

The horizontal velocity component permits reaching a suitable landing

sit% even against some wind_ and the low sink rates available permit a long

flight and a soft landing. Even without the reefing previously mentioned_ some

modulation of horizontal and vertical velocity is apparent in the steady-state

characteristics of figure 5_ and even more may be possible during a flare

maneuver. For the same canopy loading, steady-state sink rates possible with
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all-flexible wings are less than one-third of those with conventional parachutes,

or conversely, for _he same gross weight and steady sink speed a conventional

parachute will require about ten times as much area. Remember that force varies

with the square of the velocity.

Because the wind-tunnel tests that provided the data of figure 4 were made

upright in horizontal flow, the resultant force and gravity were not in the

same direction as they would be in steady gliding flight (see fig. 6). Such

horizontal-flow test data are therefore considered to be slightly conservative,

whereas inverted or vertical-flow test data may sometimes give erroneously

optimistic results because the weight of the lines and forward parts of the

wings tends to prevent nose collapse. It is also difficult to obtain and

interpret lateral stability aud control infomation in wind-tunnel tests of

all-flexible wings.

CONCLUDING REMARKS

This paper has reviewed some of the history of flexible wings, has shown

that the flexible wing concept covers a very broad spectrum of wing shapes,

wing structures, and applications, and has presented perfor_nce characteristics

of some typical all-flexible wings. All-flexible wings are rapidly gaining

general and often enthusiastic acceptance for applications that can be satisfied

by a lift-drag ratio of 3 or less. Research and development of such wings is

expanding rapidly. The stiffened high-performance flexible wings at the other

end of the spectrum, however, are not getting the attention they deserve. Such

wings show promise of becoming economical_ light-weight, rugged, stowable wings

for applications including roadable aircraft, flying boats, flying submersibles_

cargo tow gliders and a variety of sports gliders, and for recovery of boosters
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and hypersonic aircraft. Enthusiasm for stiffened flexible wings may have been

dulled by previous attempts to use rigid or inflated frame wings of conical

shape (low performance) in some applications that need greater performance to

be practical. It is hoped that research can be accelerated on the entire

spectrum_ especially on high-performance flexible wings_ and that the results

will generate a variety of useful applications, private, commercial_ and

military.
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Figure i.- Flexible-wing (parawing) flight by member of U.S. Army parachute team.
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