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A HOVEFUNG INVESTIGATION O F  AN EXTREMELY 

FLEXBLE LIFTING ROTOR 

By Matthew M. Winston 
Langley Research Center 

SUMMARY 

A hovering investigation of an extremely flexible rotor w a s  conducted to determine 
the effects of rotor-tip configuration and operating conditions on performance and to 
obtain a comparison with a conventional rotor.  

The resul ts  show the manner in which luffing (fabric instability) restricted the enve- 
lope of tip speed and collective pitch angles within which the rotor could be operated. 
the range where the rotor could be operated, variations in tip speed altered the blade 
camber and resulted in substantial variations with tip speed in hovering performance, 
particularly at  the higher thrust  conditions. 
combinations of tip body mass,  tip center of gravity, and tip stabilizer incidence fo r  each 
value of tip speed since these variables determine the amount and distribution of blade 
camber and twist. 
conventional rotor. 
however, the rotor  attained very high mean lift coefficients. 

In 

The resul ts  suggest the existence of optimum 

The hovering efficiency of this rotor was poor in comparison with a 
Because of the large amount of aerodynamically induced camber, 

INTRODUCTION 

Current interest in extremely flexible lifting ro tors  a r i s e s  primarily from their  
apparent potential to provide lighter rotor weights, stowability, and the capability for  in- 
flight deployment. 
used for large load lifting helicopters, booster and reentry vehicle recovery, and convert- 
ible aircraft .  Of some of the previous flexible rotor studies (refs. 1 to 3) one investiga- 
tion (ref. 1)  included a comparison of the hovering characterist ics of a 30-foot-diameter 
(9.144-meter) flexible-rotor confuguration with those of a conventional rotor f rom ref- 
erence 4. In comparison, the flexible rotor exhibited much lower hovering efficiency 
while attaining higher mean lift coefficients than the conventional rotor.  Also, the fabric  
instability, commonly called "luffing," w a s  found to limit severely the envelope of tip 
speeds and blade pitch settings within which the flexible rotor could be operated. 

If the operation of such rotors  could be made feasible, they could be 

Therefore, the present investigation w a s  undertaken to determine the effects of 
variations in the rotor configuration and operating conditions on the hovering performance 
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of the previously tested flexible rotor. In addition, it was attempted to  define the non- 
luffing envelope of t ip speeds and collective pitch angles f o r  a rotor  of this type. 

SYMBOLS 

Units f o r  the physical quantities used herein are presented in both the U.S. Custom- 
a ry  System of Units and the International System of Units. Factors  relating these two 
systems of units may be found in reference 5. 
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number of blades, fo r  this  inv,estigation 2 

blade local chord, f t  (meters) 

, 0.777 ft (0.237 meter)  
J O  

Jo r 2 d r  
R 

blade equivalent chord, 

“T rotor mean lift coefficient, 6 7 

Torque rotor torque coefficient, 
~ R ~ ~ ( Q R ) ~ R  

rotor thrus5-coeff icient, Thrust 
r ~ 2 p ( ~ 2 ~ ) 2  

t ip stabilizer incidence with respect to t ip body chord line - positive when 
trailing edge i s  down, deg 

rotor figure of merit ,  0.707 (CT) ’2 

cQ 

radial distance to  any blade section, f t  (meters)  

rotor radius,  f t  (meters) 

pitch angle measured a t  blade root, angle between blade root-chord line and 
plane perpendicular to rotor shaft, deg 

mass  density of a i r ,  - f t3  ( m e t e r s l )  
slugs kilograms 
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rotor  solidity, b*, 0.0329 TfR 

Center Of gravity, 
percent of t ip chord Mass, Configuration 
f rom leading edge 

rotational speed, radians/sec 

Tip stabilizer 
incidence, deg 

APPARATUS AND TESTS 

Apparatus 

The rotor used in this  investigation has  the blade planform shaped so that chord- 
wise and spanwise components of centrifugal force provide most of the blade stiffness 
during operation. The centrifugal forces  are provided by concentrated masses  at the 
blade tips. 
rotor mounted on the Langley helicopter tower i s  given in figure 2. 

Pertinent rotor  dimensions a r e  given in figure 1 and a photograph of the 

The leading and trail ing edges of the blades a r e  high-strength s teel  rods,  and the 
fabric airfoil is made of low-porosity dacron sailcloth. 
of the steel and aluminum tip bodies can be varied by changing small  removable weights 
in the nose section. 
stabilizer i s  a solid aluminum NACA 0006 airfoil swept 300 aft with respect to the blade 
span axis. 
5 1 5 O  in 5O increments. 

The mass  and chordwise balance 

A horizontal stabilizer i s  attached at the tip-body aft section. This 

I t s  incidence with respect to the tip-body chord line can be varied through 

Sensors for  control positions and motions of each blade were mounted on the rotor 
Thrust ,  torque, and rotor-speed t ransducers  w e r e  located along the rotor shaft. hub. 

The outputs f rom the sensors  for  one blade were fed to microammeters for  monitoring. 
The outputs f rom all other sensors  were recorded on an oscillograph. 
motion pictures were used to ass i s t  in evaluating the rotor behavior. 

High-speed 

Tes ts  

The rotor w a s  investigated at the Langley helicopter tes t  tower where it was 
exposed to local wind conditions. 
zero wind conditions, a recording anemometer was used to  monitor wind conditions in the 
vicinity of the tes t  si te.  

Since it was desired to  operate as near as possible to  

Three basic configurations were investigated. The differences consisted of changes 
in tip body mass  and chordwise balance and a r e  listed in the following table: 

1 
2 
3 

0*295 .311 4.539 
30.5 
25.0 
19.0 

-5, -10, -15 
-5, -10, -15 

-10, -15 
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Each tip-body configuration was operated through a range of collective pitch angles and 
t ip speeds at each stabilizer setting. Only the negative stabilizer settings were used 
since preliminary t e s t s  indicated that positive settings caused negative t ip incidences and 
would not permit satisfactory operation. The maximum rotor-tip speed was limited to  
about 320 ft/sec (97.5 m/sec) f o r  structural  reasons.  Measurements of forces  and 
moments were made at selected pitch angles, and f r o m  these data the hovering charac- 
ter is t ics  were determined. 

PRESENTATION O F  RESULTS 

Individual tes t  points are not shown in the performance data because the coefficients 
and other dimensionless ra t ios  were computed f rom faired plots of the basic force and 
moment data. This  procedure was used to  minimize the effect of deviations in wind 
velocity f rom zero and small  fluctuations in the rotor  speed. Most of the measurements 
were made in winds f rom 0 to  2 miles  per  hour (0 to 0.9 m/sec); however, at the lowest 
t ip speed, an  increase in wind velocity to as little as 5 miles  per  hour (2.2 m/sec) repre-  
sented forward flight conditions at  a tip-speed ratio of about 0.055. 

The principal e r r o r s  in the data are attributed to the accuracy to which the mea- 

surements could be obtained. The magnitudes of the probable e r r o r s  in --, cQ - cT and 

CT a r e  given in figure 3 as a function of t ip speed. In addition, the figure of merit ,  
which combines these coefficients, is subject to  the probable e r r o r s  in both the thrust  
and torque measurements. However, the probable e r r o r  in figure of meri t  is not only a 
function of t ip speed but a lso a function of the magnitude of the force measurements. 
Therefore, the figure-of-merit variations are presented in all cases  as a broad band, the 
width of the band representing the probable e r ro r .  

( 7 ’  

The resul ts  of th i s  investigation are presented as follows: 

Figure 
Rotor luffing boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Basic hovering characterist ics:  

Configuration 1 : 
iS=-5O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
i s = - l o o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
iS=-15O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

is = -50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
i s = - l o o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
iS=-15O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

Configuration 2 : 

4 



Figure 
Configuration 3 : 

i s = - l O o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
is = -15O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Tip speed effects, is = -150: 
Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 3  
Configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 4  
Configuration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 5  

Effects of t ip mass  and center of gravity: 
is = -5O, i2R = 220 ft /sec (67 m/sec).  . . . . . . . . . . . . . . . . . . . . . . . .  16 

Effects of tip stabilizer incidence: 
Configuration 2, i2R = 220 ft /sec (67 m/sec) . . . . . . . . . . . . . . . . . . . .  17 

Comparison of flexible rotor with conventional rotor:  
i2R = 310 ft /sec (94.5 m/sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

RESULTS 

Luffing Restrictions 

It was not possible to  investigate all configurations of the flexible rotor fo r  the 
same envelope of blade-root pitch angles and t ip speeds because of the fabric  instability 
commonly called "luffing." Luffing generally occurs at the lower blade-section angles of 
attack and i s  usually considered to  result  f rom positive pressures  acting on the convex 
surface of the cambered fabric. Since the rotor blades are free to twist locally, they 
assume different twist and camber distributions for  each change in rotor-tip configuration 
o r  t ip speed. 
at  which some outboard rotor sections are below the luffing boundary. 

The twist and camber distributions, in turn, determine the root pitch angle 

The variation of minimum nonluffing angle with tip speed is given in i igure 4(a) for  
the three configurations investigated. 
below which rotor vibrations attributed to luffing became so severe that further operation 
was judged to be impractical and possibly damaging to  the rotor system. 
increasing minimum pitch angle with speed i s  as previously experienced. 
The data indicate that this  trend is probably the result  of increasing rotor inflow angles 
(and, consequently, diminishing local angles of attack) as tip speed is increased. 
example, f igure lO(a) shows that at  a blade root angle of 14O, the rotor thrust  coefficient, 
and hence the inflow angle, increases  with tip speed. 

The symbols indicate the measured root angle 

The trend of 
(See ref. 1.) 

For  

The available data did not indicate stall (that is, a decrease in the slope of the 
CT - Broot variation at the higher pitch angles) fo r  all configurations, although observa- 
tion of tuft motion pictures indicated local separation on inboard portions of the blades 
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over a considerable portion of the operating range in all cases. 
both the upper (stall) boundary and lower (luffing) boundary of the rotor operating 
envelope, data f rom configuration 2 which did indicate stall throughout the speed range 
are given in figure 4(b). The operating range for  this  configuration i s  as shown. The 
shape of this  luff-free operating envelope is believed to  be general  for  ro tors  of this 
type. Differences in configuration and operating conditions can be expected to shift either 
o r  both boundaries. 

In order  to illustrate 

In theory, flexible ro tors  of the type used for  this investigation can be designed so 
that in the normal range of operation, they are not susceptible to  luffing. 
Logically, fo r  ro tors  in this category, the luffing boundaries discussed here have no 
significance. 

(See ref. 1.) 

Effect of Tip Speed 

All the basic hovering data (figs. 5 to 12) indicate a significant effect of t ip speed on 
the rotor characterist ics.  At the lower tip speeds, the figures of meri t  and mean lift 
coefficients were generally higher than those attained at  the higher speeds. 
t ip speeds, however, were considerably below those speeds considered practical fo r  
normal rotor operation. A s  the t ip speed was  increased to the highest values of the tests,  
the rotor performance deteriorated to a point well below that expected for  a conventional 
rotor.  

The lower 

In figures 13, 14, and 15, the variations with tip speed of thrust  coefficient, torque 
coefficient-solidity ratio, and figure of meri t  are summarized f o r  the three tip-body con- 
figurations with is = -150. 
and the torque coefficient increased with tip speed. Generally, the rate  of change of these 
quantities with speed was grea te r  at  the higher thrust  conditions. 
figure-of-merit variations fo r  the three configurations (figs. 13(c), 14(c), and 15(c)) shows 
that the effect of rotor speed w a s  different for  each tip-body arrangement. 
tion 3 was  comparatively more sensitive to speed variations at all mean lift coefficients 
than configurations 1 and 2 were. These resul ts  indicate that the relationship of flexible- 
rotor performance to t ip speed is dependent upon both the tip-body configuration and the 
blade loading. 

In nearly all cases,  the rotor thrust  coefficient decreased, 

Comparison of the 

Configura- 

Deterioration of rotor hovering performance with increasing tip speed is usually 
attributed to increased profile drag coefficient resulting from Mach number effects. 
ref. 4, for  example.) 
and twist is believed to be the predominant cause of increased profile losses. At large 
lift coefficients, the section lift-drag ratio, at  constant lift coefficient, is increased with 
increases  in camber. At low tip speeds, the aerodynamically induced camber of a 
flexible blade section is large. However, with increased t ip speed, the centrifugal forces  
act to reduce the blade camber and hence reduce the blade section lift-drag ratio. 

(See 
For  this  rotor,  however, the effect of t ip speed on the blade camber 
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Tip-Body and Stabilizer Effects 

Since the camber i s  determined by the relationship between the chordwise centrif- 
ugal force components and the aerodynamic forces,  tip body mass  directly determines the 
amount of camber developed at a given rotor speed. The chordwise center of gravity, 
inasmuch as it determines the blade twist axis, influences the radial  distribution of both 
twist and camber. The resul ts  of the present investigation reflect the effects of both 
mass  and center -of -gravity position in combination, since the center-of -gravity changes 
w e r e  obtained by adding m a s s  ahead of the tip leading edge. 

One example of tip-body effects is given in figure 16 where the rotor hovering char- 
The acter is t ics  of the three t ip configurations at a fixed stabilizer setting are presented. 

variations in performance effected by varying the tip configuration are significant. The 
trends shown in figure 16, however, must be considered valid only for  that particular 
stabilizer setting since the stabilizer incidence also affects the blade twist. Other data 
show that the effects of tip-body changes at other stabilizer settings can be appreciably 
different f rom those shown in the present example. 

The effects of tip-stabilizer incidence on the hovering performance of configura- 
tion 2 (fig. 17) a r e  also considered to be valid only for  that specific mass  and center-of- 
gravity location. 
stabilizer angle indicate that each tip body arrangement has an optimum stabilizer 
setting. 

The differences in performance increments fo r  equal increments in 

The foregoing resu l t s  indicate that any variation in either tip mass,  t ip chordwise 
center of gravity, o r  stabilizer setting causes variations in hovering performance by 
affecting the amount and radial distribution of twist and camber. As shown in a previous 
section of this  paper, these effects a r e  fur ther  modified by the influence of t ip speed. 
The determination of optimum combinations of rotor configuration and operating condi- 
tions requires  further investigation. 
of gravity i s  believed to be one of the more important parameters  since it not only affects 
the aerodynamic performance but a lso the aeroelastic stability of the flexible rotor. (See 
refs. 1 to  3.) 

Aside from tip speed, the location of the tip center 

Comparison of Flexible Rotor With Conventional Rotor 

In figure 18 the hovering character is t ics  of the rotor used in this investigation are 
compared with those of a conventional rotor  having NACA 0012 airfoil c ros s  sections 
(ref. 4). The comparison is made fo r  a t ip speed of about 310 ft /sec (94.5 m/sec), and 
several  t ip configurations of the flexible rotor are included. The resul ts  are in agree- 
ment with those of reference 1 where the flexible rotor exhibited poor efficiency while 
attaining high mean lift coefficients in comparison with the conventional rotor. 
hovering efficiencies are attributed to  chordwise deformations, excessive blade twist, and 

The poor 
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inefficient planform area distribution; the attainment of the high mean lift coefficients are 
the result  of aerodynamically induced blade camber. 

Improvements in the hovering efficiency of this  type of flexible rotor can be 
obtained by providing means of minimizing undesirable blade twist and other deforma- 
tions and by providing more efficient blade planforms as pointed out in reference 1. 
Naturally, these improvements must not seriously compromise the requirements for  a 
high degree of flexibility. 

CONCLUSIONS 

A hovering investigation of an extremely flexible lifting rotor  has been conducted. 
The following conclusions are indicated: 

1. Luffing and blade stall res t r ic t  the envelope of pitch angles and t ip speeds within 
which this  rotor can be operated. 
luffing boundary, are dependent upon the rotor tip configuration. 

The boundaries of this  envelope, particularly the 

2. The performance of this  rotor is highly dependent upon the rotor tip speed. 
Deterioration in rotor hovering efficiency generally resu l t s  f rom increasing speed. 
These speed effects are usually greater  at the higher thrust  conditions. 

3. Changes in the rotor-tip configuration or  operating speed affect the rotor per-  
formance through their  influence on the blade twist and camber distributions. The 
chordwise position of the tip body center of gravity i s  believed to be a very important 
rotor  parameter since it determines the blade twist axis. 

4. In comparison with a conventional rotor at the same tip speed, this flexible rotor 
exhibits low hovering efficiencies while attaining high mean lift coefficients. The low 
efficiencies a r e  attributed to chordwise blade deformations, excessive twist, and ineffi- 
cient planform. 
blade camber. 

The high mean lift coefficients are attributed to  aerodynamically induced 

Langley Research Center, 
National Aeronautics and Space Administration , 

Langley Station, Hampton, Va., July 23, 1968, 
721-01-00-28-23. 

8 



REFERENCES 

. .- 

1. Winston, Matthew M.: An Investigation of Extremely Flexible Lifting Rotors. NASA 
TN D-4465, 1968. 

2. Pruyn, Richard R.; and Swales, Thomas G.: Development of Rotor Blades With 
Extreme Chordwise and Spanwise Flexibility. 
National Forum, Amer. Helicopter SOC., Inc., May 1964, pp. 102-108. 

Proceedings Twentieth Annual 

3. Goldman, Robert L.: Some Observations on the Dynamic Behavior of Extremely 
Flexible Rotor Blades. Paper  No. 60-44, Inst. Aero. Sci., Jan. 1960. 

4. Carpenter, Paul J.: Lift and Profile-Drag Characterist ics of an NACA 0012 Airfoil 
Section as Derived From Measured Helicopter -Rotor Hovering Performance. 
NACA TN 4357,  1958. 

5. Mechtly, E. A.:  The International System of Units - Physical Constants and Conver- 
sion Factors. NASA SP-7012, 1964. 

9 



Center 

R = 15 ft i 4.572 m ) 

Steel leading-edge rod 

Steel trailing-edge rod- 

\ 
Flapping hinge on rotor center line 

Fabric 

,375 in (. 1475 cm) A .  . --I. ,250 i n  I0985 cml  

T cr- to: 

Leading edge Trailing edge 

Section A-A 

Figure 1.- Principal dimensions of experimental flexible rotor blades. 



Figure 2.- Experimental rotor mounted on Langley helicopter test tower. L-68-811 
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