Unorthodoxies and Controversies in Planetary and Space Science

I feel vary honored to have been invited to apeak at the fifth annual meeting of the Working Group on Extraterrestrial Remourcen. It ba not only great privilege but also a very difficult tank to elect a suitable topic for this audience of experts in the field of geology, melenolory, and planetology. I have decided to tall e about theories which are not in accord with the present generally accepted once, but which should not be ignored because they might, alter all, be correct. I shall discuss some fred selected examples of unorthodoxies and controversies with special reference to the apace-life sciences.

I would like to begin with a theory proposed in 1937 by Prof. P. A. M. Dirac of London, a Nobel Prime winner in physics (raf. 1). He suggested that Newton's censtant of gravitation is actually not a constant but has decreased slightly during the lifetime of the solar system and continues to decrease in correlation with the expanding universe. This idea was not accepted in physical science, and 2 years ago, when I had the opportunity to tall e with Prof. Dirac about his theory, he emphasized that most physicists are hostile to it. But 5 years ago Prof. R. H. Dicks, physician at Cornell University, came to the same conclusion (rel. 2), and, at about the acme time, Paccual Jordan, physician at the University of Hamburg, published several papers in favor of Dirac's theory (rel. 3).

An acceptance of Dirac's theory leads to interesting conclusions. Generally, it is ascured that the Earth in contracting like a "shrinking apple." This probably was the case during the time when the peotocerth cooled of from a much higher temperature. But after it had reached a temperature equilibrim, about 1 billion years ago, the decrease
of the gravitational colorant might have bocome the dominant factor in shaping the volume and surface of tiu e Earth by causing the apoate of shrinking; namely, expansion. It has bean calculated that the radius of our globe during the pout hall billion years has increased by 37 medlars, and les circumference, by 600 kilometers. This ceidenoy to expand has led, and still leads, to caution cracks in its crust. This explains why the primordial supercontinente, Gondwanaland and Laurasia, were split into a number of secondary continents, which then drifted apart (continental drift). Formerly, the African Continent was connetted with the South American Continent, and the North American Continent, Greenland, and Iceland were part of the Eurmeian Continent. The islands off the east and west coasts of the United Stative and Canape have been split off from the continent by tension cracks, and there are numerous faults on the continents; for example, the San Andrews Fault in California.

Recently, explorers working in oceanography have discovered fissures of several thouand kilometre in length at the bottoms of the Atlantic and Pacific Oceans. Thees, too, have bean interpreted as expansion tension creche. Thus the Barth can no longer be compared with a chriniting apple; rather, it meme to bo an expanding planetary body. Its tendency to expend may be a factor in mating earthquakes produced by volcanic ectivition more destructive.

The phenomenon af gravitational doermee in not mansicted to our planet; it include the whole universe. However, I would the to confine myself to our local universe, the solar satem, and specifically to Mars. (See rel. 4.)

In contruat with the aurface of Enith, the nurface of Mars in a atony molid with no open watars. The generally accepted theory is that Mare formeriy had ureans, but, because of ila lower gravity, most of the water moleculen have cocaped into space. However, around 1010, Baumamn of Zurich (ref. 8) suggented that parts of the Martian ancient orecuns are now frosen and covered with dust which has beo come wallidified in the course of millione af yoars. In Uroy's book (ref. 6), H. E. Suess, at that time at the Univenity of Chicago, is quoted as stating that "mubstantial quantities of water may bo buried under dust and never become volatile at the low temperature of parts of the planet." As you know, the average temperature on Mars is about $15^{\circ} \mathrm{C}$ lower than that on Earth. This somowhat forgotten, unorthodox, frozen-ocean theory has been recently revived and developed in more detail in references 7 and 8 by V. D. Davydov, an astronomer at the Sternberg Astronomical Institute in Moscow. He theorises that there may be a subsurface ice layar 800 meters thick in the equatorial regiona now covered by a 100 -meter-thick layer of solidified duat. He oven expressed the opinion that bencath this frosen conglomerate, or "cryosphers," as ho celled it, water might be tound in the liquid state because of an increase of tesmperature in the interior of Mars.

If we combine this unorthodox hypothecis of the axiatence of a hydrocryouphere below the surface of Mare with Dirao's unorthodox theory of the gravitational constant, we get an intereating pieture. The eruvitational decrease would cause on Minse, too, a volume expanaion and cension cractra. Their appearance might be urbsered by the impact of meteorites and materoids which should produce fiseures of tremendous length in a cruat of nonuniform componition. This thresfold environmental combination--planetary volume expanaion, subourface ice layer, and metcoroid impacteEaight woll be the mechanism producing the dark spote called oame and the dark linear martings, or canali, which generally originate in the derk apote and radiate over tresmendoun dietances.
The existence of s subeurifece ice and water tablo on Mare would increace the humidity in
and around the meteoritic impart eratern and along the fisaures, and make them more nuituble eculagically for the growth of vegetation. Aotually, it might be the coills humidity and vegetation that make theme nurface fentures vieible to Earth-based aptical attonomy.

The theory of the exiatence of a subaurface hydrocryoaphere on Mars is unorthodox, but thete are nome antronomical argumenta and indications that apeak for it. For instance, nccording to Barabuahov (ref. E), without auch a mubsurfice ice table all the water moleculee might have disappeared into space in the course of millions of yeare. Furthermore, when arecke alused by Mars quakes occur in this kind of cruet, watar may reach the aurface and produce localised giant clouds and white atreake of fog; such cloudd, visible for days, have bean deacribed by Lowell (ref. 10) and Slipher (ref. 11). White mpote glittaring like ice lave bean obearved in the equatorial regions by Sahetri of Tokyo (rof. 12).

How dowe thit combination of theorie look in the fight of the Mariner IV picturest Their initial interprotation was that the visible Martian aurface is extremely old and that nather a dence atmouphere nor oowna have been precent oin the planet since the cratered eurface was formed. But later evaluintions of Mariner IV photographe led to the comiderstion that the surfice of Mars wes oaly 300 to 800 million yoars old and to the etatement that: "The crater deasity on Mars no longer preoludea the pomiblity that liquid water and a denerer atmocephere ware precont on Mars during the first 8.8 billion years of its exitctanse." (Bee ref. 18.) Thum, the ancient ocean theory might be correct aftar all. It might be that come 800 million years ago, after Mars had lout moat of ite water into apsoce, it entrared a permansat ice ago; the remaining frosen watce in the course of millions of years becume covered with a deep hayer of duat that became solidified and was bombarded by numerous enteroidel metcosoide, atarting some 300 millHion jeers ago with the diseruption of Plenet X, the matiris planet of the antwoida. This might indeed be the history of the features on the red plapot as wo ene it today.

Now, I would lite to so into a little mose
dotall about some controvernien concerning life on Marn. The dark areat, according to moat obeorvers, whow easoonal color changea from dark to bluinhogreen, to yollow-gold, to brown, and back to dark, which is interpreted as an indication of green vegetation on Mars. But to some observers these reyions always appear to be dark gray. Theme obsarvations can be accepted only from percoris with normal color vidion, as confirmed by an ophthalmologith (ref. 14). As you know, 7 percent of human malee are color defective.

The blubh-green color is alio interproted as a vicual contrast phonomenon againat the ocher-reddiah surroundinge. Vibual contrast effects cartainly occur, eapecially if the areas are amall, but the bluish-green colaration of large areas, such an Syrtis Major, which is about the sise and shape of Toxas, is in all probability real. This is also anpported by the observation of Tombaugh (ref. 18), aecording to whom certain arene occationally look dark when others look green, deapite the fact that both are sarrounded by redifich areas. The final answer in this color diapute might como from color photographe made by future flyby proben. But, of course, the green color in not deciave of the axiatence of life on Mare.

Fifty years ago, Archenius (ref. 16) advanced the theory that the dark artus are selt bedo of dried-out ocouns and concluded that "Nars in indubitably a dead world." Bur on Earth the Doad Son, in Paleatine, which is an exeremely elity madium, wes for thoucands of yeare condilered to bo without life, whence its name. Recently, itownver, numarolus apecies of mieroorganima, iactoria, and algue have bean detected theroin. The Dend Sea, therefore, is not co deed ses wea bolioved, and the red planet, Mara, might not, be so dend cither.

Recent apoctroseoplic atudiee indicato that carbon dioxide promure in the Martian air might mmount to 3 millibara; that $i n, 10$ time as bich as that on Fharth. The opinion heo been expremed that thle would melude Hilo; but, cectully, it would oveh be an edrantege for the erowth of erem vagetation, bicause carbon dioxido in thie preanse range inceresee photogyathech; although beyond 29 mm Hf it hee an tuhlibiting affect on this procem.

It has beon argued that the low density of a 10-millibar-presaure atmosphere, as revealed by Mariner IV, might not provide effective protection from harmful molar ultraviolet and X-raya. But, first of all, tho intensity of solar irradiation at Mars' distance from the Sun is lees than ono-half of that at the Earth's soler diatance. Furthormore, a certain amount of these rays in certainly abeorbed within the atmosphere. It is, of coume, well known that ultraviolet rays, particularly in the range from 2500 to 2800 A, are indeed very destructive to most terreetrial miero-organiams. For this remson they are used for sterilization of food and of lunar and planetary probee to prevent interplanetary contamination. But there are various degrees of reaistance to ultraviolet raye and X-raya. Moreover, cortain mieroorganims are oven stimulated in growth when exposed to low-intensity ultraviolet rays and X-raya, as was found in bacteriological experimente atound 1030.

The temperature on the Martian surface during the night is always and everywhere below the freesing point of water. This is considered to be particularly prohibitive for life; but experiments in Mars environmental simulators have shown that many organisms survive the freeso-chaw cycle for some time. If there in a Mars biology, dusing the night it is alwaye a eryobiology; that in, a low-tomperature biolosy.

All in all, the quection of lifo on the Martian surface is atill more a matter of probability than pocmiblity. If there is life on the Martisn surface, a precondition for it would have been the existence of open waters for its oripin and dovelopment. Furthermore, if there is a water table below the ice layer, mementioned carlier, this water table could be a second habilat for Iff based on chemoaynthecin Thin, of courne, sounde ultraunorthodoz; but on Earth the waler of the geywars contain miero-organisma, and theso are mienoben ovat in oilwelle and joffucl containers. This hes led to the entablishment of a now branch of bectarinions callod petroloum bactestiolory.
Pinally, I would tike to touch upon some controveratal pointe concerning human physiolosy in apace filght. In all apece medical diecumiona the duration of the ilight playe an ixaportant
role. What might be the time limit in this reapect A fiight to the Minon in no problem because thle takem only about 3 daym, but a fight to Mass, bwied on a minimum onarsy trajectory, leats more than 8 month. This in, of courte, the cimpleat and moti economile method for unmanned automated planetary proben, auch an Miariner IV.

Nyt is auch a long duration also acceptablo f. a manned planotary mimiont To got a realistio judgment in this respect, we must consider the whole complexity of life of the mimion orew, a team of perhaps adx or more, living in a cramped, elosed ecologioal world with ite own economy and autonomy. The activitien of thls "capaule society;" as Solls calls it (ref. 17), include power control, navigation, exploration, celecommunication, conteol of the Bie-eupport ayctem, hygiene, housckeoping, and to forth. Waghtleseness complicates some of these wotivitien and fucilitate others.

The antronaute, after some 20 hours of figght, should be in a state of "relatively atable adaptetion to weightlemences," as hes boen concluded from the modical obeerrations taken in orbital fitght. Anthropomatric comifort, appropriate exervien, and a well-rigulated alosp-duty regime might enable them to endure epsoe fight leating for months. Artificial gravity might not be required. Be that es it may, it ecems to me adrieable, if not even a requirement, to beee a tiight plan to Mars on a himb-enerty trajoctory no that the duration of the minimum-anery trajectory of about 8 monthe en shortened to 20 to 30 percent of this time. This can cos achiared by novel mathode of propulion.

In addition to the man-mechintintrmeabin environiment complex, the external spere environment aleo muat be taken into cocount. A shorter time reduces the poesibitity of motcoritio incideate and the rediation harade efter soler farve.

In briaf, a minimum in time and an optimum in comfort is the proceription for achitivise a maximum of mecese of any manned planolary leading micion (ref. 18). Of courve, aetros nauce with moektonce experimen in osbital fitht and the space medical prectitionare whe have controlied theave firtate will have a decinive roice in this rempeet.

In the case of long-range manned apace operstions, as, for inmiance, afilght to Marm, peofilight prophylactio surgical measures in addition to proventive dentiatry muat be consldered. Appendicetomy and even oholocyatestomy would certainly be edviable; the latter may be neecemary only if there is come doubt that the attronaut is completely free of poative and nogative gall-bladder mtonee. This much, are rording to my opinion, makem sence. But the auggention to irminform matronauts into ayborge, that in, permonu with artificial organs, whioh his the headlines of the preme nome 10 years apo and might be revived alnce the aurcempeal trans. plantation of organs, will probably resaain a matter of wild lmagination; for it in not the tack of apare bloencinewing to edapt the humaen body artlicially to the extraterremtrial environment. Rather, it to our aim to make the extratorreetrial onvironment artisicielly ma phyiologically suitable as pomalble. This is the challanging ceck of the Wothing Croup on Extraterrmatid Recourcea.
The promit mein objeot of your worting croup ti the Mcon. I would lite to cortolutide this disoumion with a briel remart about the controvercill quastion: Eitow chould eolenonaute, the Mcon explorves, walit on the Moon? At the 1088 meetias of the Louser International Laboratory Committeo in Madrid, Starguria of Milano sutcented that the melononsinte should cale advantage of the Moon's low pravity by jutaping como 8 motore, tike prombopperis (ref. 19). This might be soceptablo it the marfece is umooth, but if the "moonhoppers" chould loed their balases and hile the ground on a sough suricce, thoy midht rist a boat in thetr promure suita. In contrent, at the same mecting, I surosected that the celononaute should increese their weight by carryings, in dedditivn to the Ho-suppert equipment, eome to hilopounds of matarial, maybe moonpebbien, in pockete wound thitir waint or shouldere (nel. 20). This would incrmese athualation of tho pripheral merhenoraceptore in tho sitn and musoles of the hres axd would holp them to moep choir balance. It woutd make the atimulation of theon mechanoreceplore more Barth-yrevily equivelant, but it will not, of course, alicet the ololith apparitus.
In conclucion, there are many more contro-
varion in apace medicine, lunar and Martian medicine, and Martien biology that will be a atimulus for further thearimation and experimentation. The technological and meientific achievements in man's advance of the space frontier have mo tar been apectacular and will be even more fantantio in the years to come. Neverthelem, deaple the ponibility of mome of the unorthodox theoriee I have procented, in the ange of apace medirine we muat be realintir and zenulble, particularly in our oxtrapolations for lonforange, manned miadons auch as a fight to Mars.

REPRBENCES

1. Dusac, P. A. M.: The Coamolodeal Conateata. Niature, vel. 189, wo. 329, 1097.
2. Dicme, R. H.; and Peamisa, P. Y.: Gravitation and Epace Ealence. Epece Sel. Rev.; vol. 4, 189s, pp 419-409.
3. Jonpan, P.: Dio Emparion der Erde. Das Bid Wite. vol 2, 50. 18. 1 104.
4. Micmadx, C. M.: Bendbeok of the Payeten Fropertice of the Pract Mare. NABA SP-3000, 1097.
5. Batuanik, A.: Ehelaruas der Obereache dee Phneten Mlers. Zurich 1910.
6. Uuar, H. C.: The thoolt, There Oryin and Developpmeat. Yele Unitr. Preem (Sert Haved, Cona.), 1059.
7. Davriov, V. D.: Behavior of the Bydrouphere Under Martian Conditione and the Fherommena Oberved. Foppoiky EIcemmogeall, Aknd. Nauk. 8ssk, vol. 7, 1501.
A. Davtpot, V. D.: Iat der Mant malt Eim bedeckt? Weltraumiahrt, vol. 12, dan. ITeA, p. 14.
8. Eamabatmor, N. \mathbf{I}^{\prime} : Phymical Conditions on Mars. J. Aead. Bet. USAR, no. 10, 1002.
9. Lownily P.: Mara and Ita Canio. Meamillan Co., IOMS.
10. Bupwen, E. C.: The Photontaphle Etory of Ifarn. dity Publ. Ca. (Combrldre, Mose.), 1082.
 ceinie Activity. Ahy and Teloneope, vol. 14, Feb. 1035, pp. 144-149.
11. Ampana, E.; Amd Ammold, J. R.: Age of Craters on Slarm. Eeienes, vol. 149, 1803, pp. 1404-1490.
12. Ectmint, I.: Oreva Areen of Marm and Color Viblon. Froe. forh Ink. Aptron. Congro, 19s9, pp. 171-180. Alos, Bpotoget-Verion (Vieman), Ime.
13. Tomaibutis, C. W.: Micmea World for Exploration. Aetromut.; voi. f_{2} 1060, pp. $30-81$ and 80-93.
 millias Co., lave.
14. Baucis, 8. B.: Caprale Bodiety. Now Probleme for Man in Epece on Lame-Duration Mbetone. Coaf. an Blamercount., Vis. Polytech. Imet. (Blichoberes Va), MCAT.
15. Efavomoss, H.: Bydepoln of Startian Life Theopice. In Advance in Epace Belener mad Terhnolorty. val. of ppe. 105-182. Acendruio Free (blew Yark), icht.
 Reduced Gravity. Proes. 8 d Lumar Iat. Lebosatory (LIIL) Bymp. (XViIfh lat. Antrocaul. Congen Matrid, Epelas), Oet. 1800.
16. Bravomole, H.: Luanar Nedidme. Proee 24 Lemarr Int. Imboratery gLill 8 gyap. (XVIIth Iat.

