preceding page

N69-22242

Cislunar (or Earth) Swlingly for interplanetary Missions

Abstract

 energetice of thin Karth nwispby arn compmend by moans of jaratontric eurven for tbe four altemative opitions of flight inerjotion from a highly ecoventic atlijtice orbit atout Earth, the cidunar librution point L_{1}, a lunar orhit, or tbe lunar murfece.

In a previous paper, dillewpic compured the energetion of rockets launched direetly into helicerntric space from the cintunar Libration point with thow of rockets bunched from low circular citite shout the Earth. In thin prement paper, it is shown that, for a giveh payload, the fuel mamenjenditure for parigee departuse from a bighly eecentric orbit about Earth in almost onm-half that smuired for launching directly prom the elslunar librution point. In both casea it is monumed that the rockes is refueled by reusable tanker rockets.

A comparison of the energetitu for cialunar awingby (from lunar orbit), diteot tranofer, and planmary nwingby (from low, circular, terrestrial orbits) nhows that cialunar awingby alone offren fued avinge of ahout 50 pet rent over the other two profles. In this comparison, only an outbound leg of keliocentric fight was conaidered. Additional snvings could be realised by the combined use of cislunar and extraterrestrial planetary swingby profles for a complete interplanetary fight.

It is indicated that the launch window for cialunar swingby will be significantly wider than that for direet or nlanetary swingby fight. For the last three options deseilbed, the launch opportunities occur in "sidebands" which are distributed over the launch window as a funct'on of the lunar period.

INTRODUCTION

The vehicle staging design of an interplanetary spacecraft is principally determined by the onboard fuel mass required for all maneuvers from inception of outbound interplanetary flight until termination of inbound flight at terrestrial orbit or surface landing. Significant fuel savings may be provided by means of planetary swingby (see ref. 1) during interplanetary flight. In addition, considerable fuel economies may be realized by effective refueling within the Earth-Moon system prior to inception of the outbound interplanetary flight. Gillespie (ref. 2) has compared the energetics of rockets launched directly into helincentric space from the cislunar libration
point, with rockets launched from low ciroular orbits about the Earth. In general, Gillespie has demonstrated that refueling modes within the Earth-Moon system are very advantageous and enable the desigh efficiency of the interplanetary vehicle staging to be impressively increased. Refueling may occur from the Moon, assuming the availability of lunar resources by lunar-surface operations, or from the Earth. The availability of the Apollo system for the retanking capability offers a realistic basis for the immediate and planned use of trajectory profiles using refueling prior to inception of the interplanetary flight.
Study of the dynamic principles behind planetary swingby and cislunar retanking
indicater that a significant increase in fuel mavinga is generally reallzed hy flight inception from cislunar apace, remote from the Earth's nurface, after refueling so that the interplanetary vehicle swings close past the Earth fore injection then into heliocentric orblt. Aaide from the inereased offleiency of the rocket energotics, the attendant flight characteriatica and subsequent syatomedesign objectives nppear quite favorable in several major aspepta. This didunar (or Earth) awingby for interplanetary missions is explored briofly in this puper by description and diseuasion of ita outstanding performance sharacteristics. The realizable fuel savings are extimated ins a function of the alternative and selectable classes of fight inception point, which may be Inented at various stable dynamic sites in cislunar spice.
Cislunar swingby past Earth for launch into heliocentric orbit may be provided, as shown schematically in figure 1 , from any one of four options of flight inception points:
(1) Periges of a highly eccentric Earth orbit
(2) Cislunar libration point
(3) Lunar orbit
(4) Lunar surface

Refueling at the cislunar libration point or in lunar orbit might be provided from Earth or the Moon. Flight from the lunar surface would best utilize refueling from lunar resources, whereas refueling on the hiphly eccentric Earth orbit could be provided from Earth, from a cislunar-libration-point station, or even from the Moon.

The subsequent heliocentric flight in interplanetary space after cislunar swingby may be either direct to the target phanet (or asteroid) or by extraterrentrial planetary aningby.

The amistance of my colleague, Jowef S. Pistiner, in the prepwration of this paper is gratefully acknowiedeed.

HOCEMT ENERGETICS

The study of the complete interplanetary stight may be monducted in two discrete and ourremise "legs": outbound to the target planet (or planets) and return, if required. In this paper, for brevity, only the outbound lee in discussed, so that the available para-
metric tradeoffs are demonstrated. The outbound leg call be considered in two diserete ateps:
(1) The roeket energaties within the EarthMoon system until transition into the desired heliocentric orbit.
(2) The haliocentrio tranafer energaties from the point of EarthoMoon ayntera injeetion into heliocentric orblt, until eapture (propulsive or atmosplierie), of fly by the target planet.

The rocket energetien for elinlumar awingby out of the Earth-Moon aystem (ntep (1) nbove) from ench of the four ulternative ineoption points uro presented in figures 2 and 3, in parametric form, for apecific impulse I, $_{\mathrm{n}} \boldsymbol{m} 444$ seconds. Comparuble sets of parametric curves may be generated for othor realizable values of upecific impulse. The parametric format for mass-ratio tradeofif used in figure 3 is Gillespie's concise method (ref. 2) of presonting energetics working curves for wystem mynthesin and evaluation.

With all four casen, the required velocity increment aud the remuining mass (expressed in percent of initial mase) are plutted against hypertalic excews apeed in EMGS (i.e., units of Earth-meanartbital-apeed), where 1 EMIOS $=29.5 \mathrm{~km} \mathrm{sec}$. Nute that these working curves are dimocinted from staging design variations, since the remaiting mass includes the onboird fual left after injoction into heliscentric orbit, the buxie rucket utaging, and the puylund. Traderif between fuel, staging, and payloud of the remaining mase can then be separately evalunted and optimized.
The total velocity increment for each alternative inreption of cislunar swingby was determined in eccordance with the equations given below:
(1) From Earth-orbit perigee:

$$
\begin{equation*}
\Delta V=\Delta V_{00^{\prime}}=\sqrt{V e_{4}+V_{\mathrm{abvv}}}-V_{\text {smby }} \tag{1}
\end{equation*}
$$

where
Ve parabolic escape velocity from Earth $=\left(2 r_{\oplus} / R_{\Phi}\right)^{1 / n}$
$V_{\text {nase }}$ hyperbolic excess velocity $=$ (heliocentric transfer injection velocity)(Earth's mean heliocentric velocity)
$V_{\text {omby }}$ Earth swingby velocity $m V_{P}$
\boldsymbol{K}_{\oplus} Earth's spherical radius

Fraunan 1.-Options of clolunar swingty inception (cechematic only).
(a) Departure from perigee of highly cecentric orbit about Earth.
(b) Departure from cislunar ubration point Σ_{1}.
(c) Departure from lunar orblt.
(d) Departure from lunier surface.
(2) From cislunar libration point \boldsymbol{L}_{1} :

$$
\Delta V_{2}=\Delta V_{L T T}+\Delta V_{\bullet f}
$$

where
$\Delta V_{\text {LIT }}$ velocity increment to leave L_{1} to awing by Earth, approximated by the apogee velocity V_{A} of the highly eccentric Earth orbit
(3) From lunar orbit:

$$
\begin{equation*}
\Delta V_{0}=\Delta V_{\mathbb{C}}+\Delta V_{\odot 0} \tag{3}
\end{equation*}
$$ where ΔV_{C} velocity increment needed to leave lunar orbit to swing by Earth, approximated by the difference between the lunar escape velocity and the lunar orbital velocity $=V_{C_{0}}-V_{\mathbb{C O}^{\prime}}$

(\&) From lunar surface:

Fioune 2.--Required velocity incrementa for alternative cislunar swingby options. Ispe 444 seconds.

$$
\begin{equation*}
\Delta V_{4}=\Delta V O_{\text {ate }}+\Delta V_{\text {©の }} \tag{4}
\end{equation*}
$$

where
$\Delta V_{\text {dare }}$
velocity increment to ascend from the lunar surface to swing by Earth, approximated by the lunar escape velocity $V_{\text {c }}$
These velocity increment equations approximate the actual fuel expenditure, by use of the conventional conic approximation of impulsive transition of a spacecraft from the gravisphere domain of one force center into that of a second force center. The Earth orbit for perigee inception (case (1)) was selected as a highly eccentric orbit which lies realistically within the terrestrial gravisphere. The definitive orbital dats are as follows:
r_{1} orbit apogee, $300 \times 10^{3} \mathrm{~km}$
$r_{p} \quad$ orbit perigee, $6.7 \times 10^{3} \mathrm{~km}$
a orbit semimajor axis, $153.35 \times 10^{3} \mathrm{~km}$
e orbit eccentricity, 0.056
In swingby inception from the cislunar ration point L_{1} (case 2), the velocity inc uent to leave the libration point was apprr .mated by

Freurn 3.--Remaining thass ratio for alternative cislunar swingby options. $I_{s p}=444$ seconds.
the apogee velocity ($V_{A}=0.24 \mathrm{~km} / \mathrm{sec}$) of the highly eccentric Earth orbit, in order to assure a reasonable transit time from inception until swingby. In cases (3) and (4), the velocity i.crements for injection into cislunar flight to Earth swingby were upproximated by use of the lunar escape velocity, since the hyperbolic velocity may vary for different lunar orbital altitudes and Earth swingby altitudes. In general, the actual additional velocity will vary from about 0.21 to $0.25 \mathrm{~km} / \mathrm{sec}$, depending upon the hyperbolic velocity to be attained on cislunar departure.

Nonideal losses such as with finito-time thrust or with nonoptimal deviations from ideal flight parameter values will entail added losses which characterize the attainable effi-
ciency of a given spacertaft systern design. However, these losses and the above approximations do not affect the busic parametric variation of the energeties for the various Earth swingby modes available.

Obviously, departure from the highly eccentric Earth orbit is most advantageous and necessitates the smallest velocity increment to enter heliocentric orbit (fig. 2) so that the remaining mass is maximum (fig. 3). At zero hyperbolic excess speed, the relative ratios of remaining mass fractions are

$$
m_{1}: m_{2}: m_{3}: m_{4}=1.75: 1.65: 1.45: 1
$$

These relative ratios are valid over the complete range of hyperbolic excess speed shown. Two salient features are evident:
(1) A very large penaity is imposed for lunarsurface launch, whereas all other inception point profiles lie within a much narrower envelope.
(2) The mass expenditure for Earth-orbit depasture is only 0.64 of that for libration point departure.

The heliocentric velocity required upon exit from the Earth-Moon system will be determined by the transfer orbit for rendezvous with the target planet. In general, the heliocentric transfer orbit which requires the least total fuel expenditure between given endpoints (i.e., Earth at the time of departure and the target planet at the time of spacecraft arrival) is determined as tho smallest positive real root of an eighth-order polynomial with constant coefficients (refs. 3 and 4). That is, all possible solutions of minimum-fuel heliocentric transfer orbits can be presented in parametric form.

It can he visualized that Earth swinghy will enable a lower total idel expenditure than that of the corresponding direct transfer provided by heliocentric transfer from a terrestrial close circular orbit. Moreover, Earth swingby enables even a smaller fuei requirement than that with planetary swingby. As a simple example indicative of this favorable tradeoff, let us consider the corresponding velocity increments required for outbound flight by direct, planetary swingby and cislunar swingby (from lunar orbit) modes for transit to and propulsive capture by Mars. Direct and cislunar swingby are based upon standard opposition conditions of heliocentric transfer, whereas planetary swingby utilizes Venus en route to obtain the representative results reported in reference 5. All ather definitive conditions are as follows:
Lunar circular orbit "itun' $=161 \mathrm{~km}$ (100 miles)
Terrestrial circular orb \quad itude $=300 \mathrm{~km}$ (186 miles)
Martian circular orbit altitude $=800 \mathrm{~km}$ (496 miles)
The outbound transit data are as shown in table 1. Note that two different sets of standard opposition and Venus swingby are presented; these illustrate the tradeoff between trip time and total velocity increment ($\Sigma \Delta V$). In general, cislunar swingby requires about 80 percent of the velocity increment for either direct or Venus swingby, with a trip time almost the same as for direct transfer. Note that this heliocentric transfer requires about 0.1 EMOS to enter heliocentric space, as indicated by the broken vertical lines in figures 2 and 3.

Table 1.-Velocity Increments for Alternatite Bisic Trajectory Profiles

Flight mode	Trip time, days	$\begin{gathered} \Delta V_{i v e} \\ \operatorname{fin}_{0} \end{gathered}$	$\Delta V_{f p e}$	$\begin{aligned} & \Delta V_{\text {antbound }} \\ & \text { ips } \end{aligned}$
Direct.	460.	12365	11858	23920
Outward Venus awingby	680.	14095	11163	25260
Direct.	420	13200	15240	28440
Outward Jenus swingby	500	14090	18780	27850
Ciolunar awingby.	8tandard +3	3444	11395	14839

Of course, the Earth and planetary swingbys could be combined to provide remarkable total fuel savings with almost the same trip time as for planetary swingby alone. It is noteworthy that computer study of planetary swingby solutions can be expedited by analytic approximation of this flight mode by 1 three-impulso orbital transfer optimization as shown in reference 6. In this reference, analytic formulution and partial reduction for solution of the three-impulse transfer optimization was accomplished. In planetary swingby, the gravity potential influence of the swingby planet (such as Venus) could be effectively approximated as the intermediate (or second) impulse. This analytic aid to mapping of the solution field can expedite future swingby studies, especially of hybrid swingby profiles (i.e., cislunar followed by planetary swingby). Significant reductions in solution running time can be expected.

INFLUENCE OF ORBITAL PLANE INCLINATION

Since the planets and other major bodies within the solar system lie in different orbital planes inclined to the ecliptic, the nonplanar (or three-dimensional) nature of the actual interplanetary transfer must be considered in evaluation of the energetics for heliocentric trajectories. The inclination to the ecliptic of the major bodies of immediate interest are as follows:

Body	Orbital plane inclination, deg
Mercury.	7.00
Venus.	3.38
Earth.	0
Mars.	1. 85
Jupiter.	1.31
Saturn.	2. 49
Earth's Moon.	8. 15

In view of the relatively large scalars of interplanetary transfer velocities, these inclinations can cause significant differences in fuel expenditure for accommodating maneuvers, even though
the inclination angles appear to be small. Hownever, the orbital inclination of the Moon may be employed to advantage in reducing or eliminating the nomplanar fuel penalty. Of course, the time of trajeetory inception must be properly selected in order to utilize this inherent capuability of cislunar transit within the EarthMoon system in the course of Earth swingby.

Note that Earth swingby by inception from a highly eccentric Earth orbit need not necessarily occur within the plane of Earth-Moon system rotation, since the Barth orbit could be inclined to it, if desirable or realizable from the available launch and range facilities.

LAUNCH WINDOW AND FLIGHT OPPORTUNITIES

In general, spacecraft mass limitations upon the permissible fuel expenditure impose a severe operational constraint upon the launch window. This critical constraint results in the restriction, for current system capabilities, of interplanetary missions to a few crucial "opportunity years." It is eminently desirable to be able to "open the launch window" for mission launch from the Earth (or Earth-Moon system).

The cislunar swingby would obviously enable this launch window problem to be alleviated by virtue of the fuel savings indicated by the parametric curvea and examples of the preceding sections. However, the cislunar swingby has another effect upon the launch window because of the recurrence of launch opportunity with lunar period. That is, direct and planetary swingby launch windows are principally detarmined by the Earth-orbit period and the relative phasing between planetary ephemerides, whereas the cislunar swingby window is determined principally by the lunar period and the relative phasing between planetary ephemerides. The structure of the launch window is shown schematically in figure 4, which presents the tolerance in delay time at any given launch opportunity as a function of the launch time. That is, a characteristic tolerance band for timing of launch into helincentric orbit is available at each launch opportunity. Note that the delay tolerance is of the order of minutes, whereas the total width of the apparent launch window is of the order of months.

Fiavas 4.-Struature of launch window (cohematio only).
(a) Apparent hunch window; direbt or planetary swingby.
(b) Actual launch window; direct or planetary awingby.
(c) Actual haunch window; cillunar awingby, cases 2 to 4.

Figures 4(a) and 4(b) describe the launch windows for direct and planetary swingby in schematic form. As shown in figure 4(a), the "apparent" launch window is defined by the envelope of actual launch opportunities. The actual opportunities will recur with Earthorbit period, as shown in figure 4(b); that is, the launch opportunities (presented discretely along the abscissa) are separated from one another by the period of the Earth orbit from which launch occurs, in the order of hours. The launch window for cislunar swingby is shown schematically in figure 4(c) to the same relative scale of launch time. The major "sidebands" of launch opportunities recur with the lunar period, whereas the discrete opportunities may occur at any time within them. It is estimated that the cislunar swingby spreads the envelope or timespan of launch opportunities in the relative ratio of $T_{a}: T_{0}$ as shown schematically in figure 4, and with the periodic recurrence pattern indicated in figure 4(c).
The delay tolerance for cislunar swingby appears to be about that for direct and planetary swingby, as indicated by the ordinate values of figure 4. However, brief consideration suggests that the cislunar swingby delay tolerance might be significantly larger. Of course, the dynamic model is more complex and analytical knowledge of the variational characteristics of the useful classes of cislunar orbits must be extended in order to determine this trajectory characteristic conclusively.

SYETEM DESIGN AND MISSION OPERATIONS

The fight performance characteristics of a trajectory profile must fulfill the requirements of the available space system designs and mission operations. In addition to favorable energetics, flight time, and launch windows, Earth swingby has several other attractive aspecta.
Earth approach and swingby for subsequent injection into heliocentric orbit will occur within Earth's planetary teet range, which consists of the extremely accurate command and operations complexes (tracking stations, operations control center, etc.) used for space misaions. The solid base of the space program
is the Apollo system complex and missions. In general, the Apollo system and operations will be available and proven for hyperbolic approach phases within the near future.

In particular, the most sensitive system design performance and operations problems encountered in cislunar swingby will necessarily have been solved in the Apollo mission. Moreover, the operational experience and procedures will be almost directly applicable to the interplanetary mission with the cislunar swingby profile. The Apollo guidance and control syetem will solve the critical guidance and control requirements of swingby around Earth. Although the high approach velocity requires great control accuracy, swingby will be extraatmospheric and can be carried out under optimum system conditions of ground tracking and joint onboard/ground control of injection into heliocentric orbit. Moreover, a number of alternative abort options would be available well at the start of the complete trajectory so that system and crew recovery will be possible with minimal risk or hardware loss.

The transport system, payload instruments, and tests can be exercised as the spacacraft approaches Earth for subsequent swingby and injection into heliocentric orbit. Consequently, prior calibration of all onboard subsystems with the actual working instruments is possible at the beginning of the long interplanetary flight. Any observed deficiencies can then be corrected by the operations team (on the Earth and/or onboard) prior to arrival at the target planet. In particular, the experiment scenario of the Earth swingby test exercise of payload operations can yield invaluable evaluation criteria for subsequent data processing and reduction of the target-planet observational data.

The selection of the inception point for the interplanetary flight leg will be determined by the costs, risks, and many deaign considerations for the given mission. The spectrum of design characteristics implied by each of the four alternative options is sufficiently broad to enable the solection and optimization of an effective system for various missions.

SUMMARY

The four alternative options of the cislunar
(or Earth) swingby trujectory profile for interplanetary flight have been compared briefly by means of parametric curves of the energeties for departure from the Earth-Momon nystem. While the fuel expenditure for flight inception from the lunar surfuce is significuntly greater than for the other three incoption options, the use of perigee departure from a highly eccentric elliptic orbit about the Earth is most favorable. Refueling may be aceomplished in the neighborhood of apogee, either from the Eurth, a cishlunar libration station, or the Moon.
Fuel savings of about 80 percent over direct transfer or planetary swingby alone ure indicated with cislunar swingby from lanar sithit (option 3) and subsequent direct helioceneric flight. Additional suvings by the combined use of cislunar and planetary swingby profiles could be realized.
The inclination of the orbital plane of the Earth-Moon system to the ecliptic may be advantageous in minimizing the spacecraft energetics, provided the required endpoint conditions for heliocentric transfer in three-dimensional space can be realized.
The launch-window envelope and opportunities have been described as functions not only of the relative phasing between the planetary ephemerides (of the Earth and target planet), but also of the period of the Moon about the Earth. In general, the timespan of the Earth swingby window will be significantly greater (than that of direct or planetary swingby flight) with more frequent discrete launch
opportunities, although they occur only within aidebands of lunar periodis frequency. How: ever, heliocentris injection from a highly ecrentrie terrestrial orbit will depend upon the apacecraft's orbitul period rather than on the lunar period aboiat the Earth.

REPERENCES

1. Hora, M. E.: Trajectory Dorian for Planntary Minalon Analysin. Rreent Advancem In Hpace Flight Mochamien, vol. 0. atan sei, and Trehuol. Mrer, Aan Pub. (Tarmaha, Calif), 1ned, pp. 3-43.
2. Gilumapis, It. W.: Impulue Propulition Cains Reaulting From "Free" Hotanking of Propellants on Various Orbiten and Stations at the Biarth, the Moon, Marn, and Vienus. Proe. 4th Annual Meeting, Working Ciroup on Extraterrentrial Resources (Air Force Acmd., Colorado Epringe, Colo.), 1095.
3. Altian, S. P.; and Pistiner, J. S.: Analyain of the Orbital Transfer Probleth in ThreesDimensional Space. Progress in Antronautios and Aeronautlos, vol. 14. Academic Press (New York), 1984, pp. 627-654.
4. Svn, F. T.: Some Analytical Chataoteriatios of the Optimum Two-Impulise Orbital Transfer Under Arbitrary Turminal Conditions. Paper no. 67-584, AIAA Guidance, Control and Flight Dynamica Conference (Hunteville, Ala.), Aus. 1867.
B. Devawmayzr, J. M.; And D'HAym, S. M.: Syatematic Comparison of Venus Siringby with Standard Mode of Mars Round Trips. Paper no. 62-27, AIAA 5th Aerospace Sciences Meeting (New York), Jan. 1987.
5. Anon.: Gencral Solution of the Three-Impulse Optimisation Problem. Rept. DING7SD4318, Spaceeraft Dept., Gen. Elec. Co., June 20, 1067.
