# N6926703

## COWELL TYPE NUMERICAL INTEGRATION AS APPLIED TO SATELLITE ORBIT COMPUTATION

APR 1969

#### X-553-69-46 PREPRINT

### COWELL TYPE NUMERICAL INTEGRATION AS APPLIED TO SATELLITE ORBIT COMPUTATION

**.** .

By Jesse L. Maury, Jr., and Gail P. Segal

April 1969

Goddard Space Flight Center Greenbelt.\_Md.\_\_\_\_

·

#### ABSTRACT

Numerical integration plays an important role in satellite orbit determination. This paper presents the general philosophy of numerical integration, a description of the often used multistep numerical integration algorithms pertinent to orbit determination, and the derivation of the formulas and their various forms used in these multistep algorithms. The coefficients for different forms of these formulas are presented in rational form up to order fifteen in the appendix. •

.

-

### GENERAL DISCLAIMER

# This document may have problems that one or more of the following disclaimer statements refer to:

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- The document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

.

#### COWELL TYPE NUMERICAL INTEGRATION

#### AS APPLIED TO SATELLITE ORBIT COMPUTATION

by

Jesse L. Maury, Jr., and Gail P. Segal Goddard Space Flight Center

#### INTRODUCTION: GENERAL PHILOSOPHY

Many problems involving ordinary differential equations cannot be solved explicitly or analytically. It is for this reason that numerical techniques for approximating solutions of such equations were developed. The advent of high speed computers which can handle the tedious arithmetic involved has made these techniques even more attractive and useful. Using a computer, it is possible to extend these numerical techniques to a degree of precision far higher than any hand calculation could ever achieve.

Of particular interest are the discrete variable methods which yield approximate solutions of the problem y' = f(x, y) at a set of discrete points x, x + h, x + 2h, ... where h is the step size. In general, the discrete variable methods applied to initial value problems can be classified as either one-step methods or multistep methods. The one-step methods require knowledge of the value of the function at only the previous point while the multistep methods require this knowledge at a certain number of preceding values. That is, to approximate the value of the function at x + h, a one-step method would need only knowledge of the value of the function at x while a multistep method would require this knowledge at the points x, x = h, x = 2h, x = 3h, ..., x = nh.

At first, one might think that the one-step methods would be more advantageous in obtaining the approximations since they require only one previous value, one *backpoint*. However, the error committed in using the formulas of any one-step process over a given interval is generally larger than the error incurred in a multistep method. Also, to go one step forward with a one-step method requires more evaluations of the function, and, in the multistep method, increasing the *order* (the number of backpoints used) does not necessarily require a concomitant increase in evaluations. Furthermore, since large orders of a multistep method are easily attained, multistep methods are highly accurate with relatively large increments of the independent variable.

In the realm of orbital dynamics, the use of numerical techniques is virtually dictated. It is almost impossible to solve analytically (i.e., explicitly) those equations which represent the motion of a satellite. Analytical solutions such as Brouwer or Two Body Motion are sometimes

employed, but at best they use only limited approximations of the real forces which affect a satellite's motion. With the numerical approach, the expressions of these forces do not have to be truncated after the first few terms: they can be expressed in their entirety.

Some of the computer programs which use numerical methods to compute the motion of artificial satellites are:

X.

| D.O.D.S. – Definitive Orbit Determination System                         |
|--------------------------------------------------------------------------|
| May 15, 1968                                                             |
| Space Systems Analysis and Computer Programming Services                 |
| Contract NAS 5-10022                                                     |
| Prepared by                                                              |
| Scientific Satellite Systems Department                                  |
| Federal Systems Division                                                 |
| International Business Machines Corporation                              |
| Gaithersburg, Maryland                                                   |
| Noname – An Orbit and Geodetic Parameter Estimation System               |
| Aug. 1968                                                                |
| Contract Number NAS-5-9756-71D                                           |
| Prepared by                                                              |
| Wolf Research & Development Corporation                                  |
| Applied Sciences Department                                              |
| College Park, Maryland                                                   |
| Prepared for                                                             |
| Mission and Trajectory Analysis Division                                 |
| National Aeronautics and Space Administration                            |
| G.S.F.C., Greenbelt, Maryland                                            |
| Lungfish — Lunar Gravitational Field in Spherical Harmonics              |
| Feb. 1966                                                                |
| Contract No. NAS1-4998                                                   |
| Prepared for the Space Mechanics Division of the Langley Research Center |
| Prepared by Computer Usage Company, Inc.                                 |
| Trace – Trace-C Powered Flight Trajectory Determination Program          |
| May 1965                                                                 |

Report No. TOR-469(5352)-1

Prepared by Aerospace Corp. -

C. S. Christensen, A. R. Jacobsen and R. J. Mercer

This paper describes how multistep numerical integration is started with a one-step process, exemplified by the Runge-Kutta method; how the multistep process is used in orbit determination, exemplified by Cowell type formulas; and derivation of predictor and corrector formulas for

Т

equations of the first and second orders. Also included, in the appendix, are the coefficients for the multistep methods discussed in the text.

In the discussion, y and f are 3-space vectors. The independent variable is x, while  $|y| = (y_1^2 + y_2^2 + y_3^2)^{\frac{14}{3}}$ .

#### DESCRIPTION OF INTEGRATION METHOD

#### I Starting the Multistep

The multistep numerical integration method of solving differential equations requires a knowledge of preceding values (backpoints). Consider the initial value problem

$$\mathbf{y}' = \mathbf{f} \left( \mathbf{x}, \mathbf{y} (\mathbf{x}) \right)$$
  
 $\mathbf{y} \left( \mathbf{x}_0 \right) = \mathbf{y}_0.$ 

We need to know the values  $y(x_1) = y_1$ ,  $y(x_2) = y_2$ , ...,  $y(x_{m-1}) = y_{m-1}$ ,  $y(x_m) = y_m$  where  $x_1 = x + h$ ,  $x_2 = x + 2h$ , ...,  $x_{m-1} = x + (m-1)h$ ,  $x_m = x + mh$ , h being the step size. These values are needed to determine from evaluation of y' = f(x, y(x)) — more simply written f(x, y) — the backpoints  $y'_m$ ,  $y'_{m-1}$ , ...,  $y'_2$ ,  $y'_1$ ,  $y'_0$  required by the multistep algorithms. (In physical terms, this may be considered as having for each  $x_i$  a position  $y_i$  and a velocity  $y'_i$ .)

To produce the initial backpoints used to start the multistep process, a one-step numerical integration method such as Euler's method, Taylor's expansion, Runge-Kutta, etc., is used. Each of these methods requires a knowledge of only one preceding value of y(x). Thus the initial value  $y(x_0) = y_0$  is sufficient to initiate the one-step "starter" for a multistep process.

A commonly used one-step method is the Runge-Kutta which computes  $y_1, y_2, \ldots$  as follows: Given the initial value problem

> y' = f(x,y) $y(x_0) = y_0$ .

The formula used is

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 3k_3 + 4k_4)$$
  
 $n = 0, 1, 2, ...$ 

 $k_1 = hf(x_n, y_n)$ 

where



As can be seen from the above equations, a fourth order Runge-Kutta process requires four evaluations of the derivative y' = f(x,y) for each step forward.

By way of remark, the following should be considered. Applying this Runge-Kutta process to each of the three (usually complex) equations of motion of a satellite to produce position and velocity coordinates is inefficient. Furthermore, to achieve the required accuracy necessary in orbit determination analysis, the step size h must be very small. The error incurred by this fourth order Runge-Kutta is of the order  $h^5$  while the corresponding local error for a multistep process is of the order  $h^{P+1}$  where P is the order of the multistep method which is usually higher than 4. Thus, the step size of the Runge-Kutta starter*must* be a fraction of the step size of the multistep process. This is an important consideration in programming the multistep algorithms.

There do exist multistep methods used as starters. These methods employ a time-consuming, iterative procedure to produce each backpoint and it is questionable whether they are more efficient than the one-step methods. In any event, the time required to set up the starting table of initial backpoints for the multistep process is usually a fraction of the total computation time. Any gains in efficiency accrued by these iterative schemes are, at most, marginal while the simplicity of the one-step methods make them desirable.

#### II. The Multistep Algorithm

Assuming now that for the initial value problem

$$y' = f(x, y)$$
$$y(x_0) = y_0$$

we have generated the backpoints  $y_m^i$ ,  $y_{m-1}^i$ , ...,  $y_2^i$ ,  $y_1^i$ ,  $y_0^i$  by some single step process. (We may write  $y_0^i = f_0^i$ ,  $y_1^i = f_1^i$ , ...,  $y_m^i = f_m^i$  to mean  $y_1^i = f(x_0^i + ih, y(x_0^i + ih))$ .) With this set of backpoints,  $y_0^i$ ,  $y_1^i$ ,  $y_2^i$ , ...,  $y_{m-1}^i$ ,  $y_m^i$ , the multistep process can be started. These values are used in an *extrapolator* or *predictor* to compute  $y_{m+1}^i$ . The predictor considered here is the Adams-Bashforth (Henrici) which has the form

 $\mathbf{y}_{m+1} = \mathbf{y}_{m} + h \left\{ \mathbf{a}_{0} \nabla^{0} \mathbf{y}_{m}^{\dagger} + \mathbf{a}_{1} \nabla^{1} \mathbf{y}_{m}^{\dagger} + \mathbf{a}_{2} \nabla^{2} \mathbf{y}_{m}^{\dagger} + \dots + \mathbf{a}_{n} \nabla^{n} \mathbf{y}_{m}^{\dagger} \right\}$ 

where  $\nabla^i$  represents a difference operator (discussed later) operating on  $y'_m$  and employing the backpoints  $y'_m$ ,  $y'_{m-1}$ , ...,  $y'_{m-n+2}$ ,  $y'_{m-n+1}$ .

The predicted value of  $y_{m+1}$  is used with  $x_{m+1}$  to evaluate

$$\mathbf{y}' = \mathbf{f}(\mathbf{x}, \mathbf{y})$$

for  $y'_{m+1}$ . This value of  $y'_{m+1}$  is then employed in a *corrector* formula which yields a new value for  $y_{m+1}$ . The corrector discussed here is the Adams-Moulton (Henrici) which has the form

$$\mathbf{y}_{m+1} = \mathbf{y}_m \neq \mathbf{h} \left\{ \alpha_0^* \nabla^0 \mathbf{y}_{m+1}^* + \alpha_1^* \nabla^1 \mathbf{y}_{m+1}^* \right\}$$

$$+ a_2^* \nabla^2 y_{m+1} + \ldots + a_n^* \nabla^n y_{m+1}^* \}$$

We now have two values for  $y_{m+1}$ : a predicted value, say  ${}^{p}y_{m+1}$ , and a corrected value, say  ${}^{c}y_{m+1}$ . These two values are compared. If the absolute value of their difference,  $| {}^{c}y_{m+1} - {}^{p}y_{m+1} |$ , is not less than a given tolerance, the  ${}^{c_{1}}y_{m+1}$  is used (i.e., substituted for  ${}^{p}y_{m+1}$ ) with  $x_{m+1}$  to again evaluate f(x, y) for a new value of  $y'_{m+1}$ . The corrector is then used again with this new value of  $y'_{m+1}$  to calculate a new  $y_{m+1}$ . This iteration process on the corrector is repeated until  $| {}^{c_{1}+i}y_{m+1} - {}^{c_{1}}y_{m+1} |$ , where  ${}^{c_{1}}y_{m+1} = {}^{p}y_{m+1}$ , meets the tolerance. A





simple flow chart may describe this more clearly. See Figure 1.

When the iteration process has converged (i.e., the criterion on  $|_{y_{m+1}}^{c_{1}+1}y_{m+1} - |_{m+1}^{c_{1}}|_{m+1}$  has been satisfied), the final computed value for  $y_{m+1}^{i}$  is entered in the backpoint table. Then, where the points  $y_{0}^{i}$ ,  $y_{1}^{i}$ , ...,  $y_{m-1}^{i}$ ,  $y_{m}^{i}$  were used to determine  $y_{m+1}^{i}$ , the points  $y_{1}^{i}$ ,  $y_{2}^{i}$ , ...,  $y_{m}^{i}$ ,  $y_{m+1}^{i}$  are now used to determine  $y_{m+2}^{i}$ . Etc.

Note that in the Adams-Bashforth predictor, no knowledge of the value  $y_{m+1}$  being derived is needed while such knowledge (namely a value for  $y'_{m+1}$ ) is needed in the Adams-Moulton corrector.

Equations like Adams-Moulton corrector (closed form equations) have smaller truncation errors as well as desirable stabilizing characteristics. The predictor is used to obtain an estimated value for  $y_{m+1}$  good enough to keep the number of corrector iterations low. This predictorcorrector algorithm is well known and it has been shown by various authors that for a sufficiently small step size, h, the successive corrected values obtained converge to the unique solution of the closed form equation provided the function being numerically integrated is sufficiently smooth.

The above discussion considered numerical calculations for deriving values of y (and concomitantly y') at discrete points from the initial value problem

$$\mathbf{y}' = \mathbf{f}(\mathbf{x}, \mathbf{y})$$
  
 $\mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0$ .

The same technique could be used on any initial value problem of the form

$$y^{(n)} = f(x, y^{(n-1)})$$
  
 $y^{(n-1)}(x_0) = y_0^{(n-1)}$ 

to solve for  $y^{(n-1)}(x_i)$ . In particular, we are interested in calculating  $y_{m+1}^{+}$  from the backpoints  $y_{m}^{+}$ ,  $y_{m-1}^{+}$ , ... since, in general, satellite orbit determination involves the initial value problem

$$y'' = f(x, y, y')$$
  
 $y'(x_0) = y_0'$   
 $y(x_0) = y_0$ .

This could be approached by generating an initial set of backpoints for y' and y'; then using  $y'_{m}$ ,  $y'_{m-1}$ , ... to calculate  $y'_{m+1}$  and using  $y'_{m}$ ,  $y'_{m-1}$ , ... to calculate  $y_{m+1}$  employing the same technique described above in both steps. However, certain advantages accrue if we use a mathematically equivalent technique which derives  $y_{m+1}$  directly from the backpoints  $y'_{m}$ ,  $y''_{m-1}$ , ... For one, it is necessary to keep only one set of backpoints — the retention of  $y'_{m}$ ,  $y''_{m-1}$ , ... is obviated. Secondly, we often must work with the problem

$$\mathbf{y}'' = \mathbf{f}(\mathbf{x}, \mathbf{y})$$

$$y(x_0) = y_0$$

when only conservative forces are involved (i.e., no drag or other energy dissipating forces). In this situation, when  $y_{m+1}^{\prime\prime}$  has been satisfactorially determined,  $y_{m+1}^{\prime}$  can be calculated by evaluating the corrector

$$y_{m+1}^{\prime} = y_{m}^{\prime} + h \left\{ a_{0}^{*} \nabla^{0} y_{m+1}^{\prime \prime} + a_{1}^{*} \nabla^{1} y_{m+1}^{\prime \prime} + \dots + a_{n}^{*} \nabla^{n} y_{m+1}^{\prime \prime} \right\}$$

only once.

Consider now, working with the initial value problem

$$y'' = f(x, y)$$
  
 $y'(x_0) = y'_0$   
 $y(x_0) = y_0.$ 

Here, the predictor-corrector approach is the same. The difference exists in the polynomials: in particular, the coefficients are different. The formulas considered here are generally referred to as Cowell type formulas. They are:

#### Störmer Predictor

$$\mathbf{y}_{m+1} = 2\mathbf{y}_m - \mathbf{y}_{m-1} + \mathbf{h}^2 \left\{ \beta_0 \nabla^0 \mathbf{y}_m^{(*)} + \beta_1 \nabla^1 \mathbf{y}_m^{(*)} + \beta_2 \nabla^2 \mathbf{y}_m^{(*)} + \dots + \beta_n \nabla^n \mathbf{y}_m^{(*)} \right\}$$

#### **Cowell Corrector**

$$\mathbf{y}_{m+1} = 2\mathbf{y}_{m} - \mathbf{y}_{m-1} + h^{2} \left\{ \beta_{0}^{*} \nabla^{0} \mathbf{y}_{m+1}^{**} + \beta_{1}^{*} \nabla^{1} \mathbf{y}_{m+1}^{**} + \beta_{2}^{*} \nabla^{2} \mathbf{y}_{m+1}^{**} + \dots + \beta_{n}^{*} \nabla^{n} \mathbf{y}_{m+1}^{**} \right\}.$$

In the most general form of the initial value problem

$$y'' = f(x, y, y')$$
  
 $y'(x_0) \approx y_0'$   
 $y(x_0) = y_0,$ 

 $y_{m^+1}^+$  is derived from the backpoints  $y_m^{\,\prime\prime},\;y_{m^-1}^{\,\prime\prime},\;\ldots$  using the Adams formulas while  $y_{m^+1}^-$  is

obtained from the same backpoint set using the Cowell formulas. In testing for convergence of the corrector formulas, the sum  $|c_{i+1}y'_{m+1} - c_{i}y'_{m+1}| + |c_{i+1}y_{m+1} - c_{i}y_{m+1}|$  is compared to the tolerance. A flow chart of the process is given in Figure 2.

#### III. Derivation of Multistep Formulas

These foregoing techniques are referred to as numerical integration. This appellation originates from the derivation of the methods. Consider again

$$y' = f(x, y)$$
  
 $y(x_0) = y_0$ ,

Integrating both sides between  $\mathbf{x}_{m}$  and  $\mathbf{x}_{m+1}$  , we have

$$y_{m+1} - y_m = \int_{x_m}^{x_{m+1}} y'(s) ds$$

or

$$\mathbf{y}_{m+1} = \mathbf{y}_m + \int_{\mathbf{x}_m}^{\mathbf{x}_m+1} \mathbf{f}(s) ds$$

where f(s) denotes f(s, y(s)).

By replacing f(s) by a Newtonian type interpolating polynomial and integrating, it is possible

to derive the Adams type polynomials which are used to approximate the expression

$$\int_{x_{m}}^{x_{m+1}} f(s) ds .$$

The error generated by replacing the function being integrated with a polynomial which is, effectively, integrated is usually obtained by integrating the local error associated with the interpolating polynomial. For example, it can be shown (Henrici) that the local error expression for formulas of the above type is of the form

$$\mathbf{R}_{p} = \mathbf{C} \mathbf{h}^{p+1} \mathbf{y}^{(p+1)} (\xi)$$



Figure 2—Predictor-corrector algorithm applied to the initial value problem  $y'' = f(x, y, y'), y'(x_0) = y'_0, y(x_0) = y_0.$ 

where p is the order of the method, h the step size,  $\xi$  is a value between the largest and smallest values of x on the interval  $(x_{p}, x_{p+1})$ , and C is a constant specific to the formula.

The Cowell type formulas can be derived by a double integration of  $y^{(i)} = f(x, y)$  and again employing a Newtonian type interpolating polynomial (Henrici). These derivations are complex. A simpler approach using difference operators avoids much of the difficulty involved in integrating the interpolating polynomials. This is the derivation given here. Using this approach, the operator definitions lead naturally to the Adams-Moulton corrector. It is derived first. The other formulas follow easily from this derivation: first, the Adams-Bashforth predictor, then the Cowell corrector, and finally the Störmer predictor.

In the ensuing derivations, some confusion may arise between the subscripts m and m +1. The predictors are derived for  $y_{m+1}$ , the correctors for  $y_m$ . This is of no real importance since the same backpoints can be labelled either as  $y_m$ ,  $y_{m-1}$ ,  $y_{m-2}$ , ... or  $y_{m+1}$ ,  $y_m$ ,  $y_{m-1}$ , ....

#### A. Preliminary Definitions and Relationships

In order to derive the formulas for multistep numerical integration, it is useful to develop several tools. Consider the following *difference tables* (Figures 3 and 4). The first column is formed by defining the values f(x + ih), i = 0, 1, 2, ... for forward differences and f(x - ih) for backward differences. The second columns are formed from differences of successive values of the first column. The third columns, from differences of the second. And so forth. (In both tables, the subtrahend is the value *above* the minuend in each column.)

$$f(x + h) = f(x)$$

$$f(x + h) = f(x)$$

$$f(x - h)$$

$$f(x + 2h) = f(x + h)$$

$$f(x + 2h) = f(x + h)$$

$$f(x + 3h) = 2f(x + 2h) + f(x + h)$$

$$f(x + 3h) = f(x + 2h)$$

$$f(x + 3h) = f(x + 2h)$$

$$f(x + 3h)$$
Figure 3-Forward difference table.
$$f(x - 3h)$$

$$f(x - 2h) = f(x - 3h)$$

$$f(x - h) = 2f(x - 2h) + f(x - 3h)$$

$$f(x - h) = f(x - 2h)$$

Figure 4-Backward difference table.

From these tables, we derive the following operator definitions:

Forward Difference Operator (delta)

$$\Delta f(\mathbf{x}) = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})$$
(1a)

$$\Delta^2 \mathbf{f}(\mathbf{x}) = \Delta \left( \Delta \mathbf{f}(\mathbf{x}) \right) = \mathbf{f}(\mathbf{x} + 2\mathbf{h}) = 2\mathbf{f}(\mathbf{x} - \mathbf{h}) + \mathbf{f}(\mathbf{x})$$

$$\Delta^{n} f(\mathbf{x}) = \Delta \left( \Delta^{n-1} f(\mathbf{x}) \right) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} \pm \left( \mathbf{x} - (n-i)h \right)$$
(1b)

Backward Difference Operator (nabla)

$$\nabla f(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{x} - \mathbf{h})$$
(2a)

$$\nabla^2 \mathbf{f}(\mathbf{x}) = \nabla \left( \nabla \mathbf{f}(\mathbf{x}) \right) = \mathbf{f}(\mathbf{x}) - 2\mathbf{f}(\mathbf{x} - \mathbf{h}) + \mathbf{f}(\mathbf{x} - 2\mathbf{h})$$

$$\nabla^{n} f(\mathbf{x}) = \nabla \left( \nabla^{n+1} f(\mathbf{x}) \right) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(\mathbf{x} - i\mathbf{h})$$
(2b)

These definitions simplify our difference tables. See Figures 5 and 6.



Figure 5—Forward difference table written in forward difference operator notation.

Figure 6-Backward difference table written in backward difference operator notation.

In addition to the difference operators, we define:

#### **Identity Operator**

$$If(x) = f(x)$$
(3)

#### Shift Operator

$$\mathbf{E} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x} + \mathbf{h}) \tag{4}$$

$$\mathbf{E}^{\eta} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x} + \eta \mathbf{h})$$

 $(\eta \text{ may be any real number})$ 

**Differential Operator** 

$$Df(x) = f'(x)$$
 (5)  
 $D^{n} f(x) = f^{(n)}(x).$ 

On these operators, we define an algebra where, for any two operators  $L_1$  and  $L_2$ ,  $L_1 \pm L_2$ means the results of  $L_2$  operating on f(x) are to be added to or subtracted from the results of  $L_1$ operating on f(x); while multiplication,  $L_1$  times  $L_2$ , means  $L_1$  operating on the results of  $L_2$ operating on f(x). For example,

$$I f(x) - E^{-1} f(x) = f(x) - f(x - h) = \nabla f(x),$$
  

$$\Delta \nabla f(x) = \Delta [f(x) - f(x - h)]$$
  

$$= \Delta f(x) - \Delta f(x - h)$$
  

$$= f(x + h) - f(x) - [f(x + h - h) - f(x - h)]$$
  

$$= f(x + h) - 2f(x) + f(x - h).$$

It can be shown (Hildebrand) that these operators follow the laws of commutivity, associability, and distribution.

With these definitions, we derive the relationships

$$\nabla = \mathbf{I} - \mathbf{E}^{-1} \tag{6}$$

$$\mathbf{E} = (\mathbf{I} - \nabla)^{-1} = \frac{\mathbf{I}}{\mathbf{I} - \nabla}$$
(7)

$$\Delta = \mathbf{E} - \mathbf{I}. \tag{8}$$

Then from Equations (7) and (8),

$$\Delta = \mathbf{E} - \mathbf{I} = \frac{\mathbf{I}}{\mathbf{I} - \nabla} - \mathbf{I} = \frac{\mathbf{I} - \mathbf{I}^2 + \mathbf{I}\nabla}{\mathbf{I} - \nabla}.$$

But,  $I^2 = I$  and  $I \nabla = \nabla$ . Hence

$$\Delta = \frac{\nabla}{\mathbf{I} - \nabla}$$
 (9)

In addition to the above operator definitions and relationships, we need the series representations for  $e^x$ ,  $\frac{x}{1-x}$ ,  $\frac{1}{1-x}$ , and  $-\log(1-x)$ , and formulas for series multiplication and series division:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$
 (10)

$$\frac{x}{1-x} = x + x^{2} + x^{3} + \dots = \sum_{i=0}^{\infty} x^{i-1}$$
 (11)

$$\frac{1}{1-x} = 1 + x^2 + \dots = \sum_{i=0}^{x} x^i$$
 (12)

$$-\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} \dots = x \sum_{i=0}^{\infty} \frac{x^i}{i+1}$$
 (13)

For series division and multiplication, let the series  $s_1$  and  $s_2$  be the arguments of the operation and  $s_3$  the result. We define

$$s_1 = 1 + a_1 x + a_2 x^2 + \dots = \sum_{i=0}^{\infty} a_i x$$

where

$$s_2 = 1 + b_1 x + b_2 x^2 + \cdots = \sum_{i=0}^{n} b_i x^i$$

where

$$b_0 = 1$$
,

and for the resultant series  $s_3 = s_1 s_2$  or  $s_3 = s_1/s_2$  we desire

$$s_3 = 1 + c_1 x + c_2 x^2 + \dots = \sum_{i=0}^{\alpha} c_i x^i$$

c<sub>0</sub> = 1.

Then,

Series multiplication is defined as

$$s_{1}s_{2} = s_{3} = 1 + (b_{1} + a_{1})x + (b_{2} + a_{1}b_{1} + a_{2})x^{2} + (b_{3} + a_{1}b_{2} + a_{2}b_{1} + a_{3})x^{3} + \dots$$
  
$$= \sum_{i=0}^{\infty} x^{i} \left(\sum_{j=0}^{i} b_{i-j}a_{j}\right) \qquad (14)$$

where

 $a_0 = b_0 = 1$ 

and,

Series division is defined as

$$s_{1}/s_{2} = s_{3} = 1 + (a_{1} - b_{1})x + [a_{2} - (b_{1}c_{1} + b_{2})]x^{2} + [a_{3} - (b_{1}c_{2} + b_{2}c_{1} + b_{3})]x^{3} + \dots$$

$$= 1 + \sum_{i=1}^{\infty} x^{i} \left(a_{i} - \sum_{j=1}^{i} b_{j}c_{i-j}\right).$$
(15)

where

\_c<sub>0</sub> = 1.

Note that series division is a recursive definition requiring  $c_0$ ,  $c_1$ ,  $c_2$ , ...,  $c_{n-1}$  to compute the n<sup>th</sup> coefficient,  $c_n$ , of the n<sup>th</sup> term of the  $s_3$  series. Note also, where  $s_1 = 1$ , series division reduces to

$$1/s_2 = 1 + \sum_{i=1}^{\infty} x^i - \left(\sum_{j=1}^{i} b_j c_{i-j}\right)$$
, (16)

where

c<sub>0</sub> = 1

since  $a_i = 0$  for  $i \ge 0$ .

#### B. Derivation of Formulas

Consider now the Taylor's expansion of an interpolating polynomial

$$p(x + h) = p(x) + \frac{h}{1!} p^{(1)}(x) + \frac{h^2}{2!} p^{(2)}(x) + \dots + \frac{h^n}{n!} p^{(n)}(x)$$

Using the shift operator  $E_{p}(x) = p(x + h)$ , the differential operator  $D^{n}p(x) = p^{(n)}(x)$ , and the identity operator Ip(x) = p(x), we have

$$E_{p}(x) = \left( I + \frac{h}{1!} D + \frac{h^{2}}{2!} D^{2} + \dots + \frac{h^{n}}{h!} D^{n} \right) p(x),$$

(Note that this is a finite expansion for any given n since p(x) is a polynomial, hence has only n derivatives.)

Then, by Equation (10) the expansion of  $e^x$ ,

$$E = e^{h D}$$

or, by relationship (7) is

 $(\mathbf{I} - \nabla)^{-1} = \mathbf{e}^{\mathbf{h} \mathbf{D}} \cdot$ 

Taking the log of both sides,

$$-\log(I - \nabla) = hD$$

or

$$I = \frac{hD}{-\log(I - \nabla)}$$

Multiplying both sides by  $\nabla$ ,

 $\nabla = h \left[ \frac{\nabla}{-\log(\mathbf{I} - \nabla)} \right] \mathbf{D}$  (17)

and employing Equation (13), the expansion of  $-\log(1-x)$ , we have

14

Т

$$\nabla = h \left[ \frac{\nabla}{\sum_{i=0}^{\infty} \frac{\nabla i}{i+1}} \right] D = h \left[ \frac{I}{\sum_{i=0}^{\infty} \frac{\nabla i}{i+1}} \right] D$$

which by series division (16) is

$$\nabla = h \left[ \sum_{i=0}^{n} \alpha_{i} \nabla^{i} \right] D$$
 (18)

Table 1

where n is the order of the interpolating polynomial and

$$a_0^* = 1, \qquad a_i^* = -\sum_{j=1}^i \frac{a_{i-j}^*}{j+1}$$
 (19)

This is the Adams-Moulton Corrector. Some of the coefficients,  $a_i^*$ , are given in Table 1. For i = 0 to i = 15, see Table 2 in the appendix.

Applying this to our initial value problem

| $v^{ii} = f(x y y^i)$                     |     | Coeffi | cients c       | of Adams        | s-Moult         | on Corre          | ctor.            |
|-------------------------------------------|-----|--------|----------------|-----------------|-----------------|-------------------|------------------|
|                                           | i   | 0      | 1              | 2               | 3               | 4                 | 5                |
| $y'(x_0) = y'_0$                          | a,• | 1      | $-\frac{1}{2}$ | $-\frac{1}{12}$ | $-\frac{1}{24}$ | $-\frac{19}{720}$ | $-\frac{3}{160}$ |
| $\mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0$ | L   |        | l              | L               | 1               | <b>I</b>          |                  |

٢

to obtain a corrected value,  ${}^{c}y_{m}^{'}$ , when  $y_{m}^{'}$  and  $y_{m}$  have been predicted, an approximation of  $y_{m}^{''}$  calculated, and the other n-1 backpoints  $y_{m-1}^{''}$ ,  $y_{m-2}^{''}$ , ...,  $y_{m-n+1}^{''}$  determined, we have

$$\nabla \mathbf{y}_{m}^{\prime} = \mathbf{y}_{m}^{\prime} - \mathbf{y}_{m-1}^{\prime}$$
$$= h \left\{ \mathbf{I} - \frac{1}{2} \nabla - \frac{1}{12} \nabla^{2} - \frac{1}{24} \nabla^{3} \dots \right\} \mathbf{y}_{m}^{\prime}$$

or

$$y'_{m} = y'_{m+1} + h \left\{ y''_{m} - \frac{1}{2} \left[ y''_{m} - y''_{m-1} \right] \right\}$$

$$= \frac{1}{12} \left[ y''_{m} - 2y''_{m-1} + y''_{m-2} \right]$$

$$= \frac{1}{24} \left[ y''_{m} - 3y''_{m-1} + 3y''_{m-2} + y''_{m-3} \right]$$

$$= \frac{1}{24} \left[ y''_{m} - \frac{n}{1} y''_{m-1} + \frac{n}{2} y''_{m-2} - \binom{n}{3} y''_{m-3} + \dots - (-1)^{n} y''_{m-n} \right] \right\}.$$
(20)

We now wish to develop the Adams-Bashforth predictor. Consider again Equation (17) and multiply both sides by relationship (7) noting that  $\nabla E = \Delta$ . Then

$$\nabla \mathbf{E} - \Delta = \mathbf{h} \left[ \frac{(\mathbf{I} - \nabla)^{-1} \nabla}{-\log(\mathbf{I} - \nabla)} \right] \mathbf{D} - \mathbf{h} \left[ \frac{\nabla}{1 - \nabla} - \log(\mathbf{I} - \nabla) \right] \mathbf{D}.$$

Now, employing Equations (11) and (13), the series representations respectively for  $\frac{x}{1-x}$  and  $-\log(1-x)$ , we have

$$\Delta = h \left[ \frac{\nabla \sum_{i=0}^{\infty} \nabla^{i}}{\nabla \sum_{i=0}^{\infty} \frac{\nabla^{i}}{i+1}} \right] D = h \left[ \frac{\sum_{i=0}^{\infty} \nabla^{i}}{\sum_{i=0}^{\infty} \frac{\nabla^{i}}{i+1}} \right] D,$$

which by Equation (15) series division is

ı,

1.1.1

$$\Delta = h \left[ \sum_{i=0}^{n} a_{i} \nabla^{i} \right] D$$
 (21)

. . .

where  $\mathbf{n}^{j}$  is the number of backpoints (i.e., the order of the method) and

$$a_0 = 1, \qquad a_i = 1 - \sum_{i=1}^{i} \frac{a_{i-i}}{j+1}.$$
 (22)

Some of the  $\alpha_i$  are given in Table 2. These coefficients are given rational form for i = 0 to i = 15 in Table 2 of the appendix.

Table 2

Note that the derivation involved infinite series. However, since these operator relationships are valid for polynomials, the corresponding series are finite. Hence, there exists n such that  $a_1 = 0$  for all  $i \ge n$ .

| Coefficients of Adams-Bashforth Predictor. |   |               |                |               |                   |                  |
|--------------------------------------------|---|---------------|----------------|---------------|-------------------|------------------|
| 1                                          | 0 | 1             | 2              | 3             | 4                 | 5                |
| a                                          | 1 | $\frac{1}{2}$ | $\frac{5}{12}$ | <u>3</u><br>8 | $\frac{251}{720}$ | $\frac{95}{288}$ |

Thus,

$$\Delta \mathbf{y}_{\mathbf{m}}^{\dagger} = \mathbf{y}_{\mathbf{m}+1}^{\dagger} - \mathbf{y}_{\mathbf{m}}^{\dagger}$$
$$= h \left\{ \mathbf{I} + \frac{1}{2} \nabla + \frac{5}{12} \nabla^{2} + \frac{3}{8} \nabla^{3} + \dots \alpha_{\mathbf{n}} \nabla^{\mathbf{n}} \right\} \mathbf{y}_{\mathbf{m}}^{\dagger}$$

or

$$y'_{m+1} = y'_{m} + h \left\{ y''_{m} + \frac{1}{2} \left[ y''_{m} - y''_{m+1} \right] \right\}$$

+  $\frac{5}{12} \left[ y_{m}^{(1)} - 2y_{m-1}^{(1)} + y_{m-2}^{(1)} \right]$ 

$$+ \frac{3}{8} \left[ y_{m}^{(1)} - 3y_{m-1}^{(1)} + 3y_{m-2}^{(1)} - y_{m-3}^{(1)} \right] ,$$

$$+ a_{n} \left[ y_{m}^{(1)} - {n \choose 1} y_{m-1}^{(1)} + {n \choose 2} y_{m-2}^{(1)} + {n \choose 3} y_{m-3}^{(1)} + \dots + (-1)^{n} y_{m-n}^{(1)} \right] \right\} .$$
(23)

As previously noted, we have the problem of calculating  $y_m$  from the backpoints  $y_{m-1}^{(i)}$ ,  $y_{m-2}^{(i)}$ , .... To achieve this, consider once again Equation (17). By squaring both sides we immediately have a formula involving  $D^2y = y^{(i)}$ .

$$\nabla^2 = h^2 \left[ \frac{\nabla}{-\log (1 - \nabla)} \right]^2 D^2.$$
 (24)

It is possible to obtain an expression for  $\left[\frac{\nabla}{-\log(1-\nabla)}\right]^2$  merely by squaring the series representation for  $\left[\frac{\nabla}{-\log(1-\nabla)}\right]$ . However, a more suitable formulation can be derived as follows:

Consider

$$\left[-\log\left(\mathbf{I}-\nabla\right)\right]^{2} = \mathbf{D}^{-1} \mathbf{D}\left[-\log\left(\mathbf{I}-\nabla\right)\right]^{2}$$

where  $D^{-1}$  is the *informal* integration operator (Hildebrand), the inverse of the differential operator. Then

$$D^{-1} D \left[ -\log \left( I - \nabla \right) \right]^{2} = D^{-1} 2 \frac{\left[ -\log \left( I - \nabla \right) \right]}{I - \nabla}$$
$$= D^{-1} 2 \left[ \left( \frac{\nabla}{I - \nabla} \right) \left( \sum_{j=0}^{\infty} \frac{\nabla j}{j + 1} \right) \right] \text{ from (13)}$$
$$= D^{-1} 2 \left[ \left( \nabla \sum_{j=0}^{\infty} \nabla j \right) \left( \sum_{j=0}^{\infty} \frac{\nabla j}{j + 1} \right) \right] \text{ from (11)}$$

| 1 | 8 |
|---|---|
|---|---|

$$= D^{-1} 2 \left[ 1 + \left( 1 + \frac{1}{2} \right) \nabla + \left( 1 + \frac{1}{2} + \frac{1}{3} \right) \nabla^{2} + \dots + \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i+1} \right) \nabla^{j} + \dots \right]$$
$$= D^{-1} \left[ \sum_{j=0}^{\alpha} \frac{2H_{j+1} \nabla^{j+1}}{j+1} \right]$$

$$H_{m} = \sum_{k=0}^{m} \frac{1}{k+1} = m = 0, 1, 2, \dots$$

Then, by integrating (i.e. using the operator  $D^{-1}$ ),

$$\begin{bmatrix} -\log(I - \nabla) \end{bmatrix}^{2} = \sum_{j=0}^{\infty} \frac{2H_{j+1} \nabla^{j+2}}{j+2}$$
$$= 2\nabla^{2} \sum_{j=0}^{\infty} \frac{H_{j+1} \nabla^{j}}{j+2}.$$
 (25)

Using this expression in Equation (24),

$$\nabla^2 = h^2 \left[ \frac{\nabla^2}{2\nabla^2 \sum_{j=0}^{\infty} \frac{H_{j+1} \nabla^j}{j+2}} \right] D^2$$

which by series division (15) is

$$\nabla^2 = h^2 \left[ \sum_{i=0}^n \beta_i^{\bullet} \nabla^i \right] D^2$$
 (26)

where

 $\beta_0^* = 1$ 

$$\beta_{i}^{\bullet} = -\sum_{j=1}^{i} \frac{2H_{j+1}}{j+2} \beta_{i-j}^{\bullet} , \qquad (27)$$

$$H_{m} = \sum_{k=1}^{m} \frac{1}{k}$$

|            |   |           | Table          | 3      |                  |                  |
|------------|---|-----------|----------------|--------|------------------|------------------|
|            | С | oefficier | nts of Co      | well ( | Corrector        |                  |
| i          | 0 | 1         | 2              | 3      | 4                | 5                |
| <u>.</u> Ĵ | 1 | - 1       | $\frac{1}{12}$ | 0      | $-\frac{1}{240}$ | $-\frac{1}{240}$ |

and n is the order of the method. This is the Cowell corrector. Some of the coefficients,  $\beta_i^*$ , are given in Table 3. For  $\beta_i^*$ , i = 0 to i = 15, in rational form see Table 4 of the appendix.

(28)

Thus,

$$\nabla^2 \mathbf{y}_{m} = \mathbf{y}_{m} - 2\mathbf{y}_{m-1} + \mathbf{y}_{m-2}$$

 $= h \left\{ \mathbf{I} - \frac{1}{2} \nabla + \frac{1}{12} \nabla^2 + 0 \nabla^3 - \frac{1}{240} \nabla^4 + \ldots \right\} \mathbf{y}_{\mathbf{m}}^{\mathbf{m}}$ 

 $\mathbf{or}$ 

$$y_{m} = 2y_{m-1} + y_{m-2} + h \left\{ y_{m}^{(i)} - \frac{1}{2} \left[ y_{m}^{(i)} - y_{m-1}^{(i)} \right] \right\}$$

$$+ \frac{1}{12} \left[ y_{m}^{(i)} - 2y_{m-1}^{(i)} + y_{m-2}^{(i)} \right] + 0$$

$$- \frac{1}{240} \left[ y_{m}^{(i)} - 4y_{m-1}^{(i)} + 6y_{m-2}^{(i)} - 4y_{m-3}^{(i)} + y_{m-4}^{(i)} \right]$$

$$+ \beta_{n}^{*} \left[ y_{m}^{(i)} - \binom{n}{1} y_{m-1}^{(i)} + \binom{n}{2} y_{m-2}^{(i)} - \binom{n}{3} y_{m-3}^{(i)} + \dots + (-1)^{n} y_{m-n}^{(i)} \right] \right\}$$

20

Т

As in the case of Equation (19) we need an extrapolator or predictor. This can be derived in the same manner as Equation (21), only this time, multiplying Equation (24) by relationship (7),

$$\nabla^2 \mathbf{E} = \mathbf{h}^2 \left[ \frac{\nabla}{-\log \left(\mathbf{I} - \nabla\right)} \right] \left( \frac{\mathbf{I}}{\mathbf{I} - \nabla} \right) \mathbf{D}^2.$$

Using Equations (25) and (12)

$$\nabla^2 \mathbf{E} = \mathbf{h}^2 \left( \sum_{j=0}^{\infty} \frac{2\mathbf{H}_{j+1} \nabla^j}{j+2} \right) \left( \sum_{j=0}^{\infty} \nabla^j \right) \mathbf{D}^2$$

*β*₀ = 1

which by series multiplication (14) is

$$\nabla^2 \mathbf{E} = \mathbf{h}^2 \sum_{i=0}^{n} \beta_i \nabla^i$$
(29)

where

and

$$\beta_{i} = 1 - \sum_{j=1}^{L} \frac{2H_{j+1}}{j+2} \beta_{i-j}$$
 (30)

This is the Störmer predictor. Several of the coefficients,  $\beta_i$ , are given in Table 4. For  $\beta_i$  in rational form for i = 0 to i = 15, see Table 3 of the appendix.

Thus,

$$\nabla^2 \mathbf{E} \mathbf{y}_m = \mathbf{y}_{m+1} - 2\mathbf{y}_m + \mathbf{y}_{m-1}$$

$$= h^2 \left\{ \mathbf{I} + \mathbf{0} \, \overline{\nabla} + \frac{1}{12} \, \overline{\nabla}^2 + \frac{1}{12} \, \overline{\nabla}^3 + \dots \right\} \cdot \mathbf{y}_m^{11}$$

Table 4

| Coefficients of Störmer Predictor |   |   |                |                |                  |                |
|-----------------------------------|---|---|----------------|----------------|------------------|----------------|
| i                                 | 0 | 1 | 2              | 3              | 4                | 5              |
| 3.                                | 1 | 0 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{19}{240}$ | $\frac{3}{40}$ |

$$y_{m+1} = 2y_{m} - y_{m-1} + h^{2} \left\{ y_{m}^{''} + 0 + \frac{1}{12} \left[ y_{m}^{''} - 2y_{m-1}^{''} + y_{m-2}^{''} \right] + \frac{1}{12} \left[ y_{m}^{''} - 3y_{m-1}^{''} + 3y_{m-2}^{''} - y_{m-3}^{''} \right] + \frac{1}{12} \left[ y_{m}^{''} - 3y_{m-1}^{''} + 3y_{m-2}^{''} - y_{m-3}^{''} \right] + \frac{3}{2} \left\{ y_{m}^{''} - \binom{n}{1} y_{m-1}^{''} + \binom{n}{2} y_{m-2}^{''} - \binom{n}{3} y_{m-3}^{''} + \dots + (-1)^{n} y_{m-n}^{''} \right\} \right\}.$$
(31)

1

In recapitulation, we have derived the following formulas for numerically solving at discrete points the initial value problem

$$y'' = f(x, y, y')$$
  
 $y'(x_0) = y'_0$   
 $y(x_0) = y_0$ .

The Adams-Bashforth predictor

$$\nabla \mathbf{y}_{m+1}^{*} = \Delta \mathbf{y}_{m}^{*} = \mathbf{y}_{m+1}^{*} - \mathbf{y}^{*} = \mathbf{h} \sum_{i=0}^{n} \alpha_{i} \nabla^{i} \mathbf{y}_{m}^{*}$$

where

.

or

and

$$a_i = 1 - \sum_{j=1}^{i} \frac{a_{i-j}}{j+1}$$

22

Т

which is used to produce a first approximation of  $y'_{m+1}$  for iteration in the Adams-Moulton corrector

 $\nabla \mathbf{y}_{m}^{i} = \mathbf{y}_{m}^{i} - \mathbf{y}_{m-1}^{i} = \mathbf{h} \sum_{i=1}^{n} a_{i}^{*} \nabla \mathbf{i} \mathbf{y}_{m}^{i}$ 

where

and

and the Störmer predictor

 $\nabla^2 \mathbf{y}_{m+1} = \nabla^2 \mathbf{E} \mathbf{y}_m = \mathbf{y}_{m+1} - 2\mathbf{y}_m + \mathbf{y}_{m-1} = \mathbf{h}^2 \sum_{i=0}^n \beta_i \nabla^i \mathbf{y}_m^{i+1}$ 

where

and

which produces a first approximation of  $y_{m+1}$  for iteration in the Cowell corrector

 $\nabla^2 \mathbf{y}_{\mathbf{m}} = \mathbf{y}_{\mathbf{m}} - 2\mathbf{y}_{\mathbf{m-1}} + \mathbf{y}_{\mathbf{m-2}} = \mathbf{h}^2 \sum_{i=0}^{n} \beta_i^* \nabla^i \mathbf{y}_{\mathbf{m}}^{i*}$ 

where

 $\beta_0^* = 1$ 

23

$$\beta_{i} = 1 - \sum_{j=1}^{i} \frac{2H_{j+1}}{j+2} \beta_{i-j}$$
$$H_{m} = \sum_{k=1}^{m} \frac{1}{k}$$

 $a_{i}^{*} = - \sum_{i=0}^{i} \frac{a_{i-j}^{*}}{j+1};$ 

$$y_{m+1} = 2y_m + 1$$

$$\beta_0 = 1$$

and

$$\beta_{i}^{*} = -\sum_{j=1}^{i} \frac{2H_{j+1}}{j+2} \beta_{i-j}^{*}$$
$$H_{m} = \sum_{k=1}^{m} \frac{1}{k}.$$

#### C. The Summed Form

It has been established (Henrici) that algebraic equivalents known as the *summed* forms of the foregoing equations considerably reduce the propagation of round-off error. These summed forms can be derived by defining the operators  $\nabla^{-1}$  and  $\nabla^{-2}$  as the inverses of  $\nabla^{1}$  and  $\nabla^{2}$ 

.

$$\nabla^{-1}\nabla = \mathbf{f}, \quad \nabla^{-2}\nabla^2 = \mathbf{I}$$

and defining

$$\nabla^{-1} \mathbf{y}_{m}^{\mu} = \mathbf{I} \mathbf{S}_{m}$$
(32)

$$\nabla^{-2} y_{m}^{''} = \nabla^{-1} (^{I} S_{m}) = ^{II} S_{m}.$$
(33)

Then, applying  $\nabla$  to  ${}^{1}S_{m+1} = \nabla^{-1}y_{m+1}^{\oplus}$  we have

$$\nabla \nabla^{-1} \mathbf{y}_{m+1}^{"} = \nabla ({}^{\mathbf{I}} \mathbf{S}_{m+1})$$
$$\mathbf{y}_{m+1}^{"} = {}^{\mathbf{I}} \mathbf{S}_{m+1} - {}^{\mathbf{I}} \mathbf{S}_{m+1}$$

 $\mathbf{or}$ 

$${}^{I}S_{m+1} = {}^{I}S_{m} + y_{m+1}^{*}$$
 (34)

Also, applying  $\nabla$  to  ${}^{II}S_{m+1} = \nabla^{-1}({}^{I}S_{m+1})$ , we have

$$\nabla \nabla^{-1} (^{I}S_{m+1}) = \nabla (^{II}S_{m+1})$$

$$^{I}S_{m+1} = ^{II}S_{m+1} - ^{II}S_{m}$$

which, by using Equation (34), becomes

$${}^{II}S_{m+1} = {}^{II}S_{m} + {}^{I}S_{m} + {}^{y}_{m+1}$$
 (35)

The 1, multiplying both sides of the Adams-Bashforth predictor and the Adams-Moulton corrector by  $\nabla^{-1}$ , and similarly multiplying both sides of the Störmer predictor and Cowell corrector by  $\nabla^{-2}$  and using identities (34) and (35) we derive the following summed forms:

Adams-Bashforth Predictor Summed Form

$$\nabla^{-1} \nabla y_{m+1}^{\dagger} = y_{m+1}^{\dagger} = h \left\{ \alpha_0^{-1} S_m^{-1} + \alpha_1 y_m^{\dagger} + \sum_{i=2}^{n} \alpha_i^{\dagger} \nabla^{i-1} y_m^{\dagger} \right\}$$
(36)

where

and



 $a_0 = 1$ 

#### Adams-Moulton Corrector Summed Form

$$\nabla^{-1}\nabla \mathbf{y}_{\mathbf{m}}^{*} = \mathbf{y}_{\mathbf{m}}^{*} = \mathbf{h} \left\{ \alpha_{0}^{*}\mathbf{S}_{\mathbf{m}}^{*} + (\alpha_{0}^{*} + \alpha_{1}^{*})\mathbf{y}_{\mathbf{m}}^{*} + \sum_{i=2}^{n} \alpha_{i}^{*}\nabla^{i-1}\mathbf{y}_{\mathbf{m}}^{*} \right\}$$
(37)

where

and

$$a_{i}^{*} = - \sum_{j=0}^{i} \frac{a_{i-j}^{*}}{j+1}$$

 $a_0^* = 1$ 

$$\nabla^{-2} \nabla^{2} \mathbf{y}_{m+1} = \mathbf{y}_{m+1} = \mathbf{h}^{2} \left\{ \beta_{0}^{-11} \mathbf{S}_{m} + \beta_{1}^{-1} \mathbf{S}_{m} + \beta_{2}^{-1} \mathbf{y}_{m}^{+} + \sum_{i=3}^{n} \beta_{i}^{-1} \nabla^{i-2} \mathbf{y}_{m}^{+} \right\}$$
(38)

. .

and

 $\beta_0 = 1$ 

$$\beta_{i} = 1 - \sum_{j=0}^{i} \frac{2H_{j+1}}{j+2} \beta_{i-j}$$

#### Cowell Corrector Summed Form

$$\nabla^{-2}\nabla^{2}\mathbf{y}_{m} = \mathbf{y}_{m} = h^{2} \left\{ \beta_{0}^{*} \mathbf{II} \mathbf{S}_{m}^{*} + (\beta_{0}^{*} + \beta_{1}^{*})^{-1} \mathbf{S}_{m}^{*} + (\beta_{0}^{*} + \beta_{1}^{*} + \beta_{2}^{*}) \mathbf{y}_{m}^{*} + \sum_{i=3}^{n} \beta_{i}^{*} \nabla^{i-2} \mathbf{y}_{m}^{*} \right\}$$
(39)

where

2

and

$$\beta_{i}^{\star} = -\sum_{j=0}^{i} \frac{2H_{j+1}}{j+2} \beta_{i-j}^{\star}.$$

 $\beta_0^* = 1$ 

The meaning of  ${}^{I}S_{m}$  and  ${}^{II}S_{m+1}$  can best be seen from their positions in an extended difference table (Figure 7). Examination of this table shows that the sums can be maintained by relationships (34) and (35)

$${}^{I}S_{m+1} = {}^{I}S_{m} - y_{m+1}$$
$${}^{II}S_{m+1} = {}^{II}S_{m} + {}^{I}S_{m} + y_{m+1}^{''}$$



Figure 7-Extended difference table showing <sup>I</sup>S<sub>m</sub> and <sup>II</sup>S<sub>m</sub>.

but that initial values for some  ${}^{I}S_{m}$  and  ${}^{II}S_{m}$  must be supplied. These initial values can be determined by inverting the corrector formulas ( ${}^{I}S_{m}$  is eliminated from the Cowell corrector since its coefficient,  $\beta_{0}^{*} + \beta_{1}^{*}$ , is zero) and solving respectively for  ${}^{I}S_{m-1}$  and  ${}^{II}S_{m-1}$ 

$${}^{I}S_{m-1} = \frac{y_{m-1}^{\prime}}{h} - \left[\frac{1}{2} y_{m-1}^{\prime \prime} + \alpha_{2}^{*}\nabla y_{m-1}^{\prime \prime} + \alpha_{3}^{*}\nabla^{2} y_{m-1}^{\prime \prime} + \ldots\right]$$
(40)

<sup>II</sup>S<sub>m-1</sub> = 
$$\frac{\mathbf{y}_{m-1}^{''}}{h} - \left[\frac{1}{12} \mathbf{y}_{m-1}^{''} + \beta_3^* \nabla \mathbf{y}_{m-1}^{''} + \beta_4^* \nabla^2 \mathbf{y}_{m-1}^{''} + \ldots\right].$$
 (41)

#### D. Ordinate Forms

All of the foregoing formulas involved difference operators. They are thus known as the *difference* forms and *summed difference* forms. Another useful form of these formulas which can be used under certain circumstances is the *ordinate* forms.

When using the difference forms, the order of the method can be dynamically changed as the problem dictates. That is, on the basis of the number of corrector iterations, the order of the

method (the number of backpoints) could be increased (or perhaps decreased) to improve accuracy (or lower computation time). However, in satellite orbit determination, the functions are usually smooth enough so that the order of the method can be fixed. This permits us to take advantage of the ordinate forms of the Cowell and Adams type formulas.

In using the difference forms, it is necessary to maintain a table of backpoints and tables of differences. The ordinate forms enable us to rely solely on the table of backpoints thus obviating the computation and maintenance of the difference tables. This simplifies the integration process and enhances calculation speed.

Consider the Adams-Bashforth predictor (21) substituting definition (2b) for  $\nabla^i$ :

$$\mathbf{y}_{m+1}^{(i)} \stackrel{\text{\tiny{def}}}{=} \mathbf{y}_{m}^{(i)} + h \left\{ \sum_{\substack{i \neq 0 \\ j \neq 0}}^{n} \alpha_{i}^{(i)} \left( \sum_{\substack{j \neq 0 \\ j \neq 0}}^{i} (-1)^{(j)} \left( \frac{i}{j} \right)^{(j)} \mathbf{y}_{m-j}^{(i)} \right) \right\} \, .$$

Expanding the expression in brackets and denoting  $y_{m-1}^{(i)}$  by  $Z_1$ , we have

Y

$$a_{0}(-1)^{0} \begin{pmatrix} 0 \\ 0 \end{pmatrix} Z_{0} + a_{1}(-1)^{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} Z_{1}$$

$$a_{2}(-1)^{0} \begin{pmatrix} 2 \\ 0 \end{pmatrix} Z_{0} + a_{2}(-1)^{1} \begin{pmatrix} 2 \\ 1 \end{pmatrix} Z_{1} - a_{2}(-1)^{2} \begin{pmatrix} 2 \\ 2 \end{pmatrix} Z_{2} + a_{3}(-1)^{0} \begin{pmatrix} 3 \\ 0 \end{pmatrix} Z_{0} + a_{3}(-1)^{1} \begin{pmatrix} 3 \\ 1 \end{pmatrix} Z_{1} + a_{3}(-1)^{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix} Z_{3} + a_{3}(-1)^{3} \begin{pmatrix} 3 \\ 3 \end{pmatrix} Z_{3} - a_{3}(-1)^{0} \begin{pmatrix} 0 \\ 0 \end{pmatrix} Z_{0} + a_{n}(-1)^{1} \begin{pmatrix} n \\ 1 \end{pmatrix} Z_{1} + a_{n}(-1)^{2} \begin{pmatrix} n \\ 2 \end{pmatrix} Z_{2} + a_{n}(-1)^{3} \begin{pmatrix} n \\ 3 \end{pmatrix} Z_{3} + \dots + a_{n}(-1)^{n} \begin{pmatrix} n \\ n \end{pmatrix} Z_{n} .$$

Then collecting the coefficients of like ordinates, the expression becomes  $Z_{0}(-1)^{0} \left[ u_{0} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + a_{1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + a_{3} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + a_{4} \begin{pmatrix} 4 \\ 0 \end{pmatrix} + \dots + a_{n} \begin{pmatrix} n \\ 0 \end{pmatrix} \right] + Z_{1}(-1)^{1} \left[ a_{1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + a_{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + a_{3} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + a_{4} \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \dots + a_{n} \begin{pmatrix} n \\ 1 \end{pmatrix} \right] + Z_{2}(-1)^{2} \left[ a_{2} \begin{pmatrix} 2 \\ 2 \end{pmatrix} + a_{3} \begin{pmatrix} 3 \\ 2 \end{pmatrix} - a_{4} \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \dots - u_{n} \begin{pmatrix} n \\ 2 \end{pmatrix} \right] - Z_{3}(-1)^{3} \left[ a_{3} \begin{pmatrix} 3 \\ 3 \end{pmatrix} + u_{4} \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \dots + a_{n} \begin{pmatrix} n \\ 3 \end{pmatrix} \right] + Z_{n-1}(-1)^{n-1} \left[ u_{n-1} \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} + u_{n} \begin{pmatrix} n \\ n-1 \end{pmatrix} \right] + Z_{n}(-1)^{n} \left[ a_{n} \begin{pmatrix} n \\ n \end{pmatrix} \right]$ 

or

$$\mathbf{y}_{m+1}^{\prime} = \mathbf{y}_{m}^{\prime} + \mathbf{y}_{m}^{\prime\prime} \sum_{i=0}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{0} \end{pmatrix} - \mathbf{y}_{m-1}^{\prime\prime} \sum_{i=1}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{1} \end{pmatrix} + \mathbf{y}_{m-2}^{\prime\prime} \sum_{i=2}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{2} \end{pmatrix}$$

$$+ \mathbf{y}_{m-3}^{\prime\prime} \sum_{i=3}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{3} \end{pmatrix} - \dots + \mathbf{y}_{m-n+1}^{\prime\prime} \sum_{i=n-1}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{n-1} \end{pmatrix} + \mathbf{y}_{m-n}^{\prime\prime} \sum_{i=n}^{n} \alpha_{i} \begin{pmatrix} \mathbf{i} \\ \mathbf{n} \end{pmatrix}$$

which can be represented as

$$\mathbf{y}_{m+1}^{\prime\prime} = \mathbf{y}_{m}^{\prime} \div \sum_{j=0}^{n} \sigma_{j} \mathbf{y}_{m-j}^{\prime\prime}$$

$$\sigma_{j} = (-1)^{j} \sum_{i=j}^{n} \alpha_{i} \begin{pmatrix} i \\ j \end{pmatrix}$$

Sample calculations of the coefficients  $\sigma_i$  for a fifth order Adams-Bashforth predictor are given in Table 5. In like manner, the ordinate forms for any order of the summed and non-summed Cowell and Adams type formulas can be developed.

#### Table 5

Coefficients for Fixed, Fifth-Order, Ordinate Form Adams-Bashforth Predictor.

| $\sigma_0 = (-1)^0 \left[ \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 12 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} + \begin{pmatrix} 251 \\ 720 \end{pmatrix} = \frac{1901}{720}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sigma_1 = (-1)^1 \left[ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \frac{1}{2} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \frac{5}{12} - \begin{pmatrix} 3 \\ 1 \end{pmatrix} \frac{3}{8} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} \frac{251}{720} \right] = \frac{-1387}{360}$                                                             |
| $\sigma_2 = (-1)^2 \left[ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \frac{5}{12} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \frac{3}{8} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} \frac{251}{720} \right] = \frac{109}{30}$                                                                                                                   |
| $\sigma_3 = (-1)^3 \left[ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \frac{3}{8} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} \frac{251}{720} \right] = \frac{-637}{360}$                                                                                                                                                                     |
| $\sigma_4 = (-1)^4 \left[ \begin{pmatrix} 4 \\ 4 \end{pmatrix} \frac{251}{720} \right] = \frac{251}{720}$                                                                                                                                                                                                                         |

### Thus, the ordinate forms for the non-summed integration formulas are

Adams-Bashforth Predictor Ordinate Form

$$\mathbf{y}_{m+1}^{\dagger} = \mathbf{y}_{m}^{\dagger} + \mathbf{h} \sum_{j=0}^{n} \sigma_{j} \mathbf{y}^{\dagger} (\mathbf{x}_{m-j} \mathbf{h})$$

where

$$\sigma_{j} = (-1)^{j} \sum_{i=j}^{n} a_{i} \begin{pmatrix} i \\ j \end{pmatrix}$$
(40)

Adams-Moulton Corrector Ordinate Form

$$\mathbf{y}_{m}^{+} = \mathbf{y}_{m-1}^{+} + \mathbf{h} \sum_{j=0}^{n} \sigma_{j}^{*} \mathbf{y}_{m-j}^{+}$$

$$\sigma_j^* = (-1)^j \sum_{i=j}^n \alpha_i^* \begin{pmatrix} i \\ j \end{pmatrix}$$
(41)

#### Störmer Predictor Ordinate Form

$$\mathbf{y}_{m+1} = 2\mathbf{y}_m - \mathbf{y}_{m-1} + \mathbf{h} \sum_{j=0}^n \lambda_j \mathbf{y}_{m-j}^{(j)}$$

where

$$\lambda_{j} = (-1)^{j} \sum_{i=j}^{n} \beta_{i} \begin{pmatrix} i \\ j \end{pmatrix}$$
(42)

#### **Cowell Corrector Ordinate Form**

$$y_{m} = 2y_{m-1} - y_{m-2} + h \sum_{j=0}^{n} \lambda_{j} y_{m-j}^{\prime\prime}$$

where

 $\lambda_j^* = (-1)^j \sum_{i=j}^n \beta_i^* \binom{i}{j}$ (43)

The coefficients  $\sigma_i$ ,  $\sigma_j^*$ ,  $\lambda_j$ ,  $\lambda_j^*$  are given in rational form in the appendix in Tables 5 through 8. Within each table, subtables are presented on the basis of n = 0 to n = 15.

The summed ordinate forms are

Adams-Bashforth Predictor Summed Ordinate Form

$$y_{m+1} = h \left\{ \alpha_0^{-1} S_m + \sum_{j=0}^n \sigma_j^{+} y_{m-j}^{++} \right\}.$$

$$\sigma_j^{\dagger} = (-1)^j \sum_{i=j}^n a_i^{\dagger} \begin{pmatrix} i \\ j \end{pmatrix}$$

$$\alpha_i^* = \alpha_{i+1} \tag{44}$$

$$\mathbf{y}_{m}^{*} = \frac{1}{h} \left\{ \alpha_{0}^{T} \mathbf{S}_{m} + \sum_{j=0}^{n} \sigma_{j}^{*} \mathbf{y}_{m-j}^{*} \right\}$$

$$\sigma_j^{*'} \stackrel{z}{=} (-1)^j = \sum_{i=j}^m \sigma_i^{*'} \begin{pmatrix} i \\ j \end{pmatrix}$$

where

and

$$\alpha_{i}^{*} = \alpha_{i+1}^{*} \quad \text{for} \quad i \ge 0$$
 (45)

#### Störmer Predictor Summed Ordinate Form

 $\mathbf{y}_{m+1} = \mathbf{h} \left\{ \beta_0^{-11} \mathbf{S}_m + \beta_1^{-1} \mathbf{S}_m + \sum_{j=0}^n \lambda_j^+ \mathbf{y}_{m+j}^{+j} \right\},\$ 

 $a_0^{*'} = (a_0^* + a_1^*)$ 

$$\lambda_j^* = (-1)^j \sum_{i=1}^n \hat{\varepsilon}_i^* \begin{pmatrix} i \\ j \end{pmatrix}$$

where

$$\beta_i' = \beta_{i+2} \tag{46}$$

#### Cowell Corrector Summed Ordinate Form

$$\mathbf{y}_{m} = \mathbf{h} \left\{ \beta_{0}^{-\mathbf{H}} \mathbf{S}_{m} + (\beta_{0} + \beta_{1})^{-1} \mathbf{S}_{m} + \sum_{j=0}^{n} A_{j}^{+i} \mathbf{y}_{\pi-j}^{+i} \right\}$$

L

$$\lambda_j^{\star'} = (-1)^j \sum_{i=j}^n \beta_i^{\star'} \begin{pmatrix} i \\ j \end{pmatrix}$$

and

$$\beta_0^{\bullet^+} = (\beta_0^{\bullet} + \beta_1^{\bullet} + \beta_2^{\bullet})$$

$$\beta_1^{\bullet^+} = \beta_{1^+2}^{\bullet} \qquad (47)$$

The coefficients  $\sigma_j^*$ ,  $\sigma_j^{*'}$ ,  $\lambda_j^*$ , and  $\lambda_j^{*'}$  are given in rational form in the appendix in Tables 9 through 12. Within each table, subtables are presented on the basis of n = 0 to n = 15.

#### REMARKS

In determining the orbits of artificial satellites, in which the equations that describe the satellite's motion are extremely complex, numerical integration methods are very fruitful. Predictor-corrector methods for numerically integrating ordinary differential equations are used because they are efficient and lead to accurate results. In general, predictor-corrector methods have the following advantages:

- 1. Generally only one or perhaps two evaluations of the function need be computed at each step of the integration whereas one-step methods require at least four or more evaluations of the function.
- 2. The difference between predicted and corrected values provides a measure of the error being made at each step of the integration. Thus this error, which is better known as the local error, can be used to control the stepsize employed in the integration.

Some disadvantages in using predictor-corrector methods are:

- 1. The process is not self-starting.
- 2. The process is highly complex to program.

The main sources of trouble that arise when using any type of numerical method for integrating ordinary differential equations are (Henrici):

- 1. Truncation error due to finite approximations for the derivatives.
- 2. Propagation errors (instability).
- 3. Round-off errors due to a finite number of decimal figures used to express the coefficients in the formulas.

#### ACKNOWLEDGMENT

The authors gratefully acknowledge the advice and assistance of Mr. C. E. Velez. His comments and ideas were invaluable in the preparation of the text, especially in the area of analysis.

#### REFERENCES

Henrici, Peter, "Discrete Variable Methods in Ordinary Differential Equations," John Wiley & Sons, Inc., New York, 1962.

Hildebrand, F. B., "Introduction to Numerical Analysis," McGraw-Hill Book Company, Inc., 1956.

#### APPENDIX

The formulas for the coefficients presented in the following tables were programmed in fortran using a rational arithmetic package to eliminate the deterioration which would have been incurred using floating point arithmetic. This rational package consisted of the following subroutines:

 GCD - A function which uses Euclid's algorithm to compute the Greatest Common Divisor of two numbers.

$$[\mathbf{A}_1, \mathbf{A}_2] = \mathbf{GCD} > 0$$

where GCD = 1 if  $A_1 = 0$  or  $A_2 = 0$  or if  $A_1$  or  $A_2$  is not integral.

(2) ADD - A subroutine which performs rational addition defined by

$$\frac{N_1}{D_1} + \frac{N_2}{D_2} = \frac{N_1 \left(\frac{D_2}{[D_1, D_2]}\right) + N_2 \left(\frac{D_1}{[D_1, D_2]}\right)}{D_2 \left(\frac{D_1}{[D_1, D_2]}\right)} = \frac{\frac{N_3}{[D_3, N_3]}}{\frac{D_3}{[D_3, N_3]}} = \frac{N_4}{D_4}.$$

(3) SUB - A subroutine which performs rational subtraction defined by

$$\frac{N_1}{D_1} - \frac{N_2}{D_2} = \frac{N_1}{D_1} + \frac{(-N_2)}{D_2} = \frac{N_3}{D_3}$$

(4) MPY - A subroutine which performs rational multiplication defined by

$$\frac{N_1}{D_1} \cdot \frac{N_2}{D_2} = \frac{\frac{N_1}{[N_1, D_2]} \cdot \frac{N_2}{[N_2, D_1]}}{\frac{D_1}{[N_2, D_1]} \cdot \frac{D_2}{[N_1, D_2]}} = \frac{N_3}{D_3}.$$

(5) GRBC - A subroutine which calculates the Generalized Rational Binomial Coefficient defined by

$$\binom{-S}{m} = \prod_{i=1}^{m} \frac{S - (i - 1)}{i}$$

and

$$\begin{pmatrix} 0 \\ m \end{pmatrix} = 0 \quad \text{for} \quad m \ge 0, \quad \begin{pmatrix} -S \\ 0 \end{pmatrix} = 1.$$

(6) HS - A subroutine which rationally computes the coefficients of the Harmonic Series defined by

$$H_{k} = \sum_{i=1}^{K} \frac{1}{i}$$

These subroutines were so constructed that the numerator and denominator of any result were relatively prime (i.e. (N, D) = 1). Also, the sign of any term was carried by the numerator while the denominator was kept positive. A zero denominator was used to indicate loss of integral significance in the computation of a term.

These subroutines were used by a main routine to calculate the coefficients of the difference forms of the Cowell type formulas. A subroutine was used to calculate the coefficients for the ordinate forms. A final machine language subroutine was used to format and print the coefficients in rational form.

Tables 1-4 give the coefficients of the difference formulas. The coefficients for the summed difference formulas are not presented since they can easily be taken from the non-summed coefficient tables. Tables 5-8 present the coefficients for the non-summed ordinate forms of the formulas. Tables 9-12 give the coefficients for the summed ordinate forms. Although the lower order ordinate forms are essentially meaningless, they are included in the tables to provide completeness.

#### Table 1

#### Adams-Bashforth Predictor, Non-Summed Difference Form

| a <sub>0</sub> | 1                           |
|----------------|-----------------------------|
| a              | 1/2                         |
| a 2            | 5/12                        |
| a 3            | 3/8                         |
| a.4            | 251/723                     |
| a <sub>s</sub> | 957288                      |
| a 6            | 19047/60440                 |
| a,             | 5257/172A0                  |
| a 8            | 107001773626856             |
| a <sub>9</sub> | 2-713/89600                 |
| a 10           | 26842253/95800320           |
| an             | 4777223/17418240            |
| a 12           | 703604254357/2615348736000  |
| a 13           | 1063647638177402361344000   |
| a 14           | 11/6309819657/4483454976000 |
| a 15           | 25221445798402304           |
|                |                             |

#### Table 2

#### Adams-Moulton Corrector, Non-Summed Difference Form

| a.*             | •                            |
|-----------------|------------------------------|
| ~0              | 1                            |
| $a_i$           | -1/2                         |
| $a_2^{\bullet}$ | -1/12                        |
| a3              | -1/24                        |
| α4              | -19/720                      |
| a,              | -3/16)                       |
| a,              | -863/604A0                   |
| a.,*            | -275/24192                   |
| a.*             | = 13963/3428800              |
| a.°             | =8181/1034800                |
| a.*             | - 1250433742300140-          |
| 10              | -32301337477001800           |
| <sup>a</sup> 11 | -4671/783480                 |
| α <sub>12</sub> | -13595779093/2615348736000   |
| -<br>13         | -2224234463/475517952000     |
| a 14            | -132282840127/31384184432000 |
| ٦ <sub>15</sub> | +26396510537689762304000     |
|                 |                              |

Table 3

#### Störmer Predictor, Non-Summed Difference Form

| R                    |                            |
|----------------------|----------------------------|
| 20                   | 1                          |
| $\beta_1$            | <u> </u>                   |
| μ <b>2</b>           | 1/12                       |
| $\beta_3$            | 1/12                       |
| $\beta_{\mathbf{A}}$ | 19/241                     |
| R"                   | 177270                     |
| ~ <b>5</b>           | 3/40                       |
| 6                    | 863/12096                  |
| β,                   | 275/4032                   |
| $\beta_8$            | 33953/518400               |
| β                    | 8163/129600                |
| $\beta_{10}$         | 3250433753222400           |
| R <sup></sup>        |                            |
| ~11                  | 4671/78848                 |
| $\beta_{12}$         | 13695779093/237758974000   |
| β.,                  | 22242144417394249464666    |
| ~ <sup>13</sup>      | 2221231783/37828788000     |
| <sup>0</sup> 14      | 13228284012772414168064000 |
| <sup>15</sup>        | 2639651053/49268736000     |

#### Table 4

#### Cowell Corrector, Non-Summed Difference Form

| B.*              |                           |
|------------------|---------------------------|
| ~0               | 1                         |
| $\rho_1$         | -1/1                      |
| β,               | 1717                      |
| B.∎              |                           |
|                  | ų                         |
| P4               | -1/24ú                    |
| $\beta_5$        | -1/240                    |
| β                | - 321 // 5400             |
| B.               | -221/60780 .              |
| · · · · ·        | -19/6048                  |
| μ <sub>B</sub>   | -9829/3628800             |
| μ <b>,</b>       | -407717280n               |
| B                | -330157/159467200         |
| 6.               | -3301377137887200         |
| 71               | -24377/13305400           |
| P 12             | -4281164477/2615348736000 |
| $\beta_{11}$     | -70074463/47551795200     |
| B                |                           |
| 14 A             | -117/02208//04064075200   |
| <sup>12</sup> 15 | -97997951/80472268800     |

#### Table 5

#### Adams-Bashforth Predictor, Non-Summed Ordinate Form

| Order = 1 | $\sigma_0$                                                                                                                      | 1                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Order = 2 | $\sigma_0 \sigma_1$                                                                                                             | 3/2<br>-1/2                                                                                                                     |
| Order = 3 | $\sigma_0 \sigma_1 \sigma_2$                                                                                                    | 2 3 / 1 2<br>= 4 / 3<br>5 / 1 2                                                                                                 |
| Order = 4 | $\sigma_{1}$<br>$\sigma_{2}$<br>$\sigma_{3}$                                                                                    | 55/24<br>-59/24<br>37/24<br>-3/8                                                                                                |
| Order = 5 | $ \begin{array}{c} \sigma_{0} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \end{array} $                             | 1901/720<br>-1307/360<br>109/30<br>-637/360<br>251/720                                                                          |
| Order = 6 | $ \begin{array}{c} \sigma_{0} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \end{array} $               | 4277/1440<br>-2641/480<br>4791//20<br>-3649//20<br>959/480<br>-95/288                                                           |
| Order = 7 | $ \begin{array}{c} \sigma_{0} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{array} $ | 198721/60480<br>-18637/2520<br>235183/20160<br>-10754/945<br>135713/20160<br>-5003/2520<br>19387/60480                          |
| Order = 8 | $ \begin{array}{c}                                     $                                                                        | 16383/4480<br>-1152169/120960<br>242653/13440<br>-296053/13440<br>2172243/120960<br>-115747/13440<br>32363/13440<br>-5257/17280 |

38

| Order = 9  | $ \begin{array}{c} \sigma_{0} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \\ \sigma_{7} \\ \sigma_{8} \end{array} $ | 1409/247/3628800<br>-21502003/1814400<br>47738393/1814400<br>69927631/1814400<br>862303/22660<br>-45586321/1814400<br>19416743/1814400<br>-4832353/1814400<br>1070017/3628800                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | $\begin{array}{c} \sigma_0\\ \sigma_1\\ \sigma_2\\ \sigma_3\\ \sigma_4\\ \sigma_5\\ \sigma_6\\ \sigma_7\\ \sigma_8\\ \sigma_9 \end{array}$                  | 4325321/1036800<br>-104995189/7257600<br>-6644317/181440<br>-26416361/453600<br>-69181919/3628800<br>-722346041/3628800<br>15786639/453600<br>-2357683/181440<br>205846311/7257600<br>-25713/89600                                                                                                                                                                                                                                              |
| Order = 11 | $\sigma_0 \\ \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \\ \sigma_7 \\ \sigma_8 \\ \sigma_9 \\ \sigma_{10}$                       | 2+32509567/479001600<br>-2067948781/119750400<br>ic72737587/31933440<br>-1021376209/19958400<br>3c39794431/26611200<br>-42260679/623700<br>2472664913726611200<br>-186083291/3991680<br>2472634317/159667200<br>-52841941/17107200<br>28842253/95800320                                                                                                                                                                                         |
| Order = 12 | $\sigma_0$ $\sigma_1$ $\sigma_2$ $\sigma_3$ $\sigma_4$ $\sigma_5$ $\sigma_6$ $\sigma_7$ $\sigma_8$ $\sigma_9$ $\sigma_{10}$ $\sigma_{11}$                   | 4c27766399/958003200<br>-6477936721/319334400<br>12326645437/191600640<br>-15664372973/106444860<br>35689872561/159667200<br>-41290273229/159667200<br>35143928983/159667200<br>-425551749/4561920<br>-23636629/15206400<br>-17410249271/958003200<br>30082309/9123840<br>+4777223/17419240                                                                                                                                                     |
| Order = 13 | $\sigma_0$ $\sigma_1$ $\sigma_2$ $\sigma_3$ $\sigma_4$ $\sigma_5$ $\sigma_6$ $\sigma_7$ $\sigma_8$ $\sigma_9$ $\sigma_{10}$ $\sigma_{11}$ $\sigma_{12}$     | $\begin{array}{c} 1\ 3\ 116\ 4\ 9\ 045\ 2\ 36\ 2\ 7\ /\ 26\ 15\ 3\ 148\ 7\ 36\ 0\ 0\ 0\\ -9\ 31\ 7\ 8\ 1\ 0\ 2\ 9\ 8\ 7\ /\ 7\ 26\ 4\ 8\ 7\ 6\ 0\ 0\ 0\\ 5\ 7\ 6\ 3\ 7\ 9\ 4\ 1\ 9\ 4\ 5\ 7\ 6\ 0\ 0\ 0\\ -1\ 0\ 4\ 7\ 9\ 4\ 9\ 4\ 5\ 7\ 6\ 0\ 0\ 1\ 3\ 1\ /\ 7\ 26\ 4\ 8\ 5\ 7\ 6\ 0\ 0\ 0\\ -1\ 0\ 4\ 7\ 4\ 9\ 4\ 5\ 7\ 6\ 0\ 0\ 0\ 1\ 3\ 1\ /\ 7\ 26\ 4\ 8\ 5\ 7\ 6\ 0\ 0\ 0\\ -3\ 4\ 2\ 6\ 4\ 6\ 6\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$ |

.

| <b>.</b>   |                       |                                        |
|------------|-----------------------|----------------------------------------|
| Order = 14 | $\sigma_0$            | 005730205/172204032                    |
|            | $\sigma_1$            | -140970750679621/5230697472000         |
|            | ° 2                   | 89541175417277/871782912000            |
|            | $\sigma_{3}$          | -34412222659893/12454844.6000          |
|            | $\sigma_{4}$          | 570AA5014358161/1046139494400          |
|            | $\sigma_{5}$          | -31457535953413/38745907200            |
|            | $\sigma_{6}$          | 134046425652457/145297152000           |
|            | $\sigma_{j}$          | -350379127127877/435891456000          |
|            | $\sigma'_{a}$         | 310429955675453/581188608000           |
|            | $\sigma$              | -10320787460413/38745907200            |
|            | σ                     | 7222659157949/74724244600              |
|            | σ                     | =21029162113651/871722912000           |
|            | $\sigma^{11}$         | Autosija7020/174154552000              |
|            | - 12<br>T             |                                        |
|            | <sup>©</sup> 13       | -1044647638177402381244000             |
|            |                       |                                        |
| Order = 15 | $\sigma_{0}$          | 13335453746373/2414168664000           |
|            | $\sigma$ .            | 13323433333335372(14100001010          |
|            | $\sigma$              | 3046331,70311001713023771701311332000  |
|            | $\frac{-2}{\sigma}$   | 37804212/0213461/31344104832000        |
|            | ~3<br>~               | =/3991702345039770053984000            |
|            | <u></u> 4             | 25298910137091429731304184832000       |
|            | <u></u> 5             | -261407937074173371961511552000        |
|            | <u>6</u>              | 1/023475453313503710461394944000       |
|            | σ,                    | -2166415342637/127/025750              |
|            | °8                    | 13760072112094753/10461394944000       |
|            | σ <sub>9</sub>        | -1544031478475483/1961511552030        |
|            | <i>α</i> 10           | 1600835x7907359774483454976000         |
|            | σ <sub>11</sub> .     | -58242413384023/4903778880000          |
|            | $\sigma_{12}$         | 85923647660+231/31304184432000         |
|            | C 13                  | -696561442637/178317232000             |
|            | σ <sub>14</sub>       | 1166309819657/4483454976000            |
|            |                       |                                        |
| Ordon = 16 | ~                     |                                        |
| Order - 16 | <u> </u>              | 362555126427073762768369664000         |
|            | <u>1</u>              | -2161567671243849/62768369664000       |
|            | <sup>0</sup> 2        | 240161309731949748283 <b>3612</b> 80u0 |
|            | $\sigma_{3}$          | -4372481480074367/8966909952000        |
|            | σ <b>4</b>            | 72558117572259733762768369664000       |
|            | σ5.                   | -[31963191940828581762766369664000     |
|            | <sup>0</sup> 6        | 624877;3170967631/20922789868000       |
|            | $\sigma_{7}$          | -70nu6xx29707739x3/209227898880000     |
|            | $\sigma_{8}$          | 62029181421193981/20922789888000       |
|            | $\sigma_{\mathbf{q}}$ | -129930094104237331/52768369664000     |
|            | $\sigma_{in}$         | 1010347877754706978966909952000        |
|            | σΪ                    | -2674355537386529/5706215424000        |
|            | σ <sub>12</sub>       | 9038571752734087/62764369664000        |
|            | $\sigma_{17}$         | -1934443196892599762768369664000       |
|            | $\sigma_{14}^{13}$    | 366071822736697896698952000            |
|            | $\sigma_{1e}^{14}$    | =25221445798402304                     |
|            | 1.3                   |                                        |

y -- -1

ì

#### Table 6

ĮĮ,

#### Adams-Moulton Corrector, Non-Summed Ordinate Form

!

| Order = 1 | $\sigma_0^{\bullet}$                                                                                                                                                                                                                                                                      | <b>1</b>                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Order = 2 | $\sigma_0^*$<br>$\sigma_1^*$                                                                                                                                                                                                                                                              | 1/2<br>1/2                                                                                                             |
| Order = 3 | $\begin{array}{c} \sigma_0^* \\ \sigma_1^* \\ \sigma_2^* \end{array}$                                                                                                                                                                                                                     | 5/12<br>2/3<br>-1/12                                                                                                   |
| Order = 4 | $\sigma_{1}^{*}$ $\sigma_{2}^{*}$ $\sigma_{3}^{*}$                                                                                                                                                                                                                                        | 3/8<br>19/24<br>-5/24<br>1/24                                                                                          |
| Order = 5 | $ \begin{array}{c} \sigma_{0}^{*} \\ \sigma_{1}^{*} \\ \sigma_{2}^{*} \\ \sigma_{3}^{*} \\ \sigma_{4}^{*} \end{array} $                                                                                                                                                                   | 251//20<br>323/360<br>-11/30<br>53/360<br>-19/720                                                                      |
| Order = 6 | σ<br>σ<br>σ<br>σ<br>τ<br>τ<br>τ<br>τ<br>σ<br>σ<br>τ<br>τ<br>σ<br>σ<br>τ<br>τ<br>τ<br>σ<br>σ<br>τ<br>τ<br>τ<br>σ<br>σ<br>τ<br>τ<br>σ<br>σ<br>τ<br>σ<br>σ<br>σ<br>τ<br>σ<br>σ<br>σ<br>τ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ | 95/288<br>1427/1440<br>-133/240<br>241/720<br>-173/1440<br>3/160                                                       |
| Order = 7 | σ0<br>σ1<br>σ2<br>σ3<br>σ4<br>σ5<br>σ6                                                                                                                                                                                                                                                    | 19087/60480<br>2713/2520<br>-15487/20160<br>586/945<br>-0737/20160<br>263/2520<br>-363/60480                           |
| Order = 8 | 0<br>0<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                          | 5257/17280<br>139849/120960<br>-4511/4480<br>123133/120960<br>-88547/120960<br>1537/4480<br>-11351/120960<br>275/24192 |

41

•

.

| Order = 9  | σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1070017/3628800<br>2233547/1614400<br>-2302297/1814400<br>2797679/1814400<br>-31457/22680<br>1573169/1814400<br>-645607/1814400<br>156437/1814400<br>-33953/3628800                                                                                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25713/89600<br>9449717/7257600<br>+1408913/907200<br>200029/90720<br>-8641823/3628800<br>6755041/3628800<br>-462127/453600<br>335983/907200<br>-116687/1451520<br>8183/1036800                                                                                                                                                                                      |
| Order = 11 | ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26842253/95800320<br>164045413/119750400<br>296725163/159667260<br>12051709/3991680<br>23765029/8870400<br>222/571/623700<br>21677723/8870400<br>23643791/19958400<br>12318413/31933446<br>9071219/119750400<br>-3250433/479001600                                                                                                                                  |
| Order = 12 | $     \sigma_{0}^{\circ} \sigma_{1}^{\circ} \sigma_{2}^{\circ} \sigma_{3}^{\circ} \sigma_{4}^{\circ} \sigma_{5}^{\circ} \sigma_{5}^{\circ} \sigma_{5}^{\circ} \sigma_{7}^{\circ} \sigma_{8}^{\circ} \sigma_{9}^{\circ} \sigma_{10}^{\circ} \sigma_{11}^{\circ} \sigma_{11}^{\circ} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4777223/17418240<br>1274799219/958003200<br>-99642413/45619200<br>36465037/9123840<br>-102212233/17740800<br>1007253561/159667200<br>-91910491/17740800<br>C01289903/159667200<br>-87064741/63866880<br>384709327/958003200<br>-68928781/958003200<br>4671/788480                                                                                                   |
| Order = 13 | $\sigma_0^*$<br>$\sigma_1^*$<br>$\sigma_2^*$<br>$\sigma_3^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_7^*$<br>$\sigma_8^*$<br>$\sigma_9^*$<br>$\sigma_1^0$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_5^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma_1^*$<br>$\sigma$ | 703404254357/261534873600<br>Ac95204069/4402944000<br>=551368413119/217945728000<br>1346677425651/261534873600<br>=48500845331/5813860800<br>A4400835489/8072064000<br>=487432027/486486000<br>529394045911/72648576000<br>=229882484333/5818860800<br>40632786317/261534873600<br>=30336027563/72648576000<br>=724891251/39626496000<br>=13895774093/2615348736000 |

.

- -

42

T

Order = 14

| Order = | 14 | $\sigma_{0}^{0}$<br>$\sigma_{1}^{0}$<br>$\sigma_{2}^{0}$<br>$\sigma_{3}^{0}$<br>$\sigma_{3}^{0}$<br>$\sigma_{4}^{0}$<br>$\sigma_{5}^{0}$<br>$\sigma_{6}^{0}$<br>$\sigma_{7}^{7}$<br>$\sigma_{6}^{0}$<br>$\sigma_{7}^{0}$<br>$\sigma_{11}^{0}$<br>$\sigma_{12}^{0}$<br>$\sigma_{13}^{0}$ | 104344763<br>741197087<br>-169735945<br>6964495066<br>1748248003<br>9575580965<br>7866111554<br>1335017017<br>5797645651<br>5124051955<br>4590817002<br>1636420<br>-69091417<br>2724234       | 1817/402361         171/475517         379/581188         809/261534         809/261534         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/581188         907/58138         907/58138         907/58138         907/58138         907/58138         907/58138         907/58138         907/58138         901/377395         901/377395         901/377395         901/377395         901/375517 | 344000<br>952000<br>8736000<br>499200<br>608000<br>91200<br>66600<br>9494400<br>8736000<br>2000<br>9494400<br>952000                                                                       |
|---------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = | 15 | $\sigma_{0}^{*}$<br>$\sigma_{1}^{*}$<br>$\sigma_{2}^{*}$<br>$\sigma_{3}^{*}$<br>$\sigma_{5}^{*}$<br>$\sigma_{5}^{*}$<br>$\sigma_{5}^{*}$<br>$\sigma_{7}^{*}$<br>$\sigma_{8}^{*}$<br>$\sigma_{9}^{*}$<br>$\sigma_{10}^{*}$<br>-18                                                        | 1164309819<br>3173185470<br>2845148956<br>3933201478<br>1363886250<br>8649476129<br>1201002274<br>38829005<br>6770944732<br>6159487787<br>7504936597                                          | 657/448345<br>929/196151<br>217/313441<br>249/490377<br>691/448345<br>9477/196151<br>911/104613<br>249/127702<br>449/104613<br>579/196151<br>931/313841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4976000<br>1552000<br>84832000<br>4976000<br>1552000<br>94944000<br>5750<br>94944000<br>1552000<br>84842000                                                                                |
|         |    | $\sigma_{11}^{11}$<br>$\sigma_{12}^{12}$ = 1<br>$\sigma_{13}^{13}$<br>$\sigma_{14}^{14}$                                                                                                                                                                                                | 37955863<br>  110480969<br>  24922452<br>  132282840                                                                                                                                          | ) 53/700539<br> 927/3 384 <br> 271/196151<br> 127/3 3841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84000<br>84832000<br>1552000<br>84832000                                                                                                                                                   |
| Order = | 16 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                   | 25221<br>5145058751<br>0997287611<br>2744541065<br>5168598347<br>7453071993<br>9313009617<br>878057876755<br>7781959848<br>4485158419<br>7515713789<br>7515713789<br>7219384289<br>3867689367 | 1445/934023<br>1073/627683<br>1259/570621<br>557/627683<br>557/827683<br>5571/827683<br>7631/209227<br>5233/209227<br>5331/209227<br>5331/627683<br>9069/896690<br>7319/627683<br>1057/627683<br>599/627683                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04<br>5424000<br>5424000<br>9952000<br>69644000<br>69644000<br>897688000<br>897688000<br>897688000<br>897688000<br>897688000<br>897688000<br>897684000<br>69654000<br>69654000<br>69664000 |

· \_

.

.

Table 7

| Order = 1 | λ <sub>o</sub>                                                                                                                                      | 1                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Order = 2 | $\lambda_0 \\ \lambda_1$                                                                                                                            | 1                                                                                                                |
| Order = 3 | $\begin{array}{c}\lambda_{0}\\\lambda_{1}\\\lambda_{2}\end{array}$                                                                                  | 13/12<br>-1/6<br>1/12                                                                                            |
| Order = 4 | $\lambda_0$<br>$\lambda_1$<br>$\lambda_2$<br>$\lambda_3$                                                                                            | 7/6<br>-5/12<br>1/3<br>-1/12                                                                                     |
| Order = 5 | $\lambda_0$<br>$\lambda_1$<br>$\lambda_2$<br>$\lambda_3$<br>$\lambda_4$                                                                             | 299/240<br>-11/15<br>47/120<br>-2/5<br>19/240                                                                    |
| Order = 6 | $\begin{array}{c}\lambda_{0}\\\lambda_{1}\\\lambda_{2}\\\lambda_{3}\\\lambda_{4}\\\lambda_{5}\end{array}$                                           | 317/240<br>-133/120<br>187/120<br>-23/20<br>109/240<br>-3/40                                                     |
| Order = 7 | $\begin{array}{c} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{6} \end{array}$                | 84199/60480<br>-15487/10080<br>52991/20160<br>-34963/15120<br>30731/20160<br>-5071/10080<br>863/12096            |
| Order = 8 | $\begin{array}{c} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{6} \\ \lambda_{7} \end{array}$ | 22081/15120<br>-4511/2240<br>40933/10040<br>-300227/k0480<br>9857/2520<br>-39017/20160<br>3319/k048<br>+275/4032 |

.

# Störmer Predictor, Non-Summed Ordinate Form

Т

| Order = 9         | λο<br>λ1<br>λ2<br>λ3<br>λ4<br>λ5<br>λ6<br>λ7<br>λ8                                                                                                                                                                | 5537111/362800<br>-2302297/907200<br>5347667/907200<br>-7830799/907200<br>615621/72576<br>-5083159/907200<br>2161547/907200<br>-537217/907200<br>337537518400                                                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Order</b> = 10 | 入<br>0<br>入1<br>入2<br>入3<br>入4<br>入5<br>入5<br>入7<br>入8<br>入9                                                                                                                                                      | 1153247/725760<br>-14089137453600<br>74077837407200<br>-128424037907200<br>2985533771814400<br>-24601137181440<br>62731517407200<br>-25973337907200<br>3245417518400<br>-31837129600                                                                                                                                                                                                                            |
| Order = 11        | 入<br>0<br>入1<br>入2<br>入3<br>入4<br>入5<br>入6<br>入7<br>入8<br>入10                                                                                                                                                     | 263465639/159667200<br>-276725183/77833600<br>1742730263/159667200<br>-424402351/19958400<br>2337301223/79833600<br>-1155556647/39916800<br>1637523663//9833600<br>-2906497073/2851200<br>-39999043/15966/200<br>-53797223/79833600<br>3250433753222400                                                                                                                                                         |
| Order = 12        | $\begin{array}{c} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \\ \lambda_{4} \\ \lambda_{5} \\ \lambda_{6} \\ \lambda_{7} \\ \lambda_{8} \\ \lambda_{9} \\ \lambda_{10} \\ \lambda_{11} \end{array}$ | 19494601/11404800<br>-99642413/22809600<br>40313623/2851200<br>-4955914883/159667200<br>278428557/5702400<br>-4496090419/79833600<br>65525177/19958400<br>1050348479/79833600<br>-627827071/159667200<br>84671/118800<br>-4671/78848                                                                                                                                                                            |
| Order = 13        | λ 0<br>λ 1<br>λ 2<br>λ 3<br>λ 4<br>λ 5<br>λ 6<br>λ 7<br>λ 8<br>λ 9<br>λ 10<br>λ 11<br>λ 12                                                                                                                        | $\begin{array}{c} 4421155471343/2615348736000\\ +551368413119/103972864000\\ 7835423954493/435391456000\\ +571403503363/13076743680\\ 1493310871199/19372953600\\ -1851455205449/18162144000\\ 3147964546373/31135104000\\ -1364797279699/18162144000\\ 161456197531/3874590720\\ -1095489820701/65333718400\\ 1967857329773/435891436000\\ -81782398949/108972364000\\ 13495779093/237758976000\\ \end{array}$ |

Order = 14λ<sub>0</sub> 681136420843/373621248000  $^{\lambda}$ 1 -148235945379/29059430400 λ2345 λλλλλλλλ 97440171237477435891456000 -370764875990477653837184000 20432239461349/174356562400 -253074040744897145297152000 9405415337281/43589145600 -295957398557/1729728000 11133#46558873/96864768000 λ, -1+838921713701/261534973600 <sup>ک</sup> 10 11749270309175331376000  $^{\lambda}\mathbf{n}$ -44710455301/8/17829120  $\lambda_{12}$ 147146567207/237/58975000 λ<sub>13</sub> -2724234453/39625496000 Order = 15λo 5357739561133/2853107712006  $^{\lambda}\mathbf{1}$ -102484148956217/15542092416000 λ<sub>2</sub> 34322393311201/1255367393280 λ3 -125041930211741/1569209241600 λ. 5400177701622671/31304184832000 λ, -4454639438617463/15692092416000 λ<sub>6</sub> λ<sub>7</sub> λ<sub>8</sub> λ<sub>9</sub> 3786744279520091/10461394944000 -94084230621037/261534873600 582610405386187/2092278948800 -2611731901394711/15692092416000  $\lambda_{10}$ 2346998122997353/31384184832000 λ<sub>11</sub> -176730n09641141/7846046209000  $\lambda_{12}$ 36237832148313/6276836466400 λ<sub>13</sub> -2583707059781/3138418483200 λ<sub>14</sub> 137282440127/2414168664000 Order = 16 $\lambda_0$ 7577074249153/3723023104000  $\lambda_1$ -20997287611259/2353107712030.  $\lambda_{\mathbf{2}}$ 103451289345973/3138418483200  $\lambda_{\mathbf{3}}$ -14518474965251/139485265420 λ**4** 1925847372615359/7846046208000  $\lambda_{\mathbf{5}}$ -13958696412680209/31384184832000 λ<sub>6</sub> 9887964365484539/15692092416000 λ**7** -294803041434953/418455797760 λ<sub>B</sub> 81497235474541/130767436800 λ<sub>9</sub> -13639152695198227/31384184832000 λ 10 3703157429222323/15692092416000  $^{\lambda}$ 11 -3082107A27403329/313A4184832000 λ<sub>12</sub> 15771040394797/523059747200 λ<sub>13</sub> -40478n26255543/6276836966400 ک<sub>14</sub> 1034213182041/1207084032000  $^{\lambda}$ 15 -2439651053/49268736000

í

#### Table 8

#### Cowell Corrector, Non-Summed Ordinate Form

- -

| Order = 1 | $\lambda_0^*$                                  | 1                                                                                             |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Order = 2 | $\lambda_0^{\bullet}$<br>$\lambda_1^{\bullet}$ | 0                                                                                             |
| Order = 3 | λ,<br>,<br>λ,<br>,<br>λ,<br>,<br>,<br>,<br>,   | 1/12<br>5/6<br>1/12                                                                           |
| Order = 4 | 入<br>0<br>入<br>1<br>入<br>2<br>入<br>3           | 1/12<br>5/6<br>1/12<br>U                                                                      |
| Order = 5 | λο"<br>λ1<br>λ2"3"<br>λ4                       | 19/240<br>17/20<br>7/120<br>1/60<br>-1/240                                                    |
| Order = 6 | λο.1.2.3.4<br>λλλλλλλ<br>λ5                    | 3/40<br>209/240<br>1/60<br>7/120<br>-1/40<br>1/240                                            |
| Order = 7 | እስኪ የ<br>እ እ እ እ<br>እ እ እ እ እ<br>እ እ እ እ እ እ እ | 843/12046<br>8999/10080<br>-769/20160<br>1997/15120<br>-1609/20160<br>263/10080<br>-221/60480 |
| Order = 8 | እ እ እ እ እ እ እ እ<br>"O" 1 "2" 3 "4" 5 " 6 " 1   | 275/4032<br>13831/15120<br>-2079/20160<br>-11477/60440<br>29/315<br>-517/20160<br>19/6048     |

.

| Order = 9  | *0*1*2*3*4*5*6*7*8<br>入入入入入入入入入入入入                                 | 33953/518400<br>424759/453600<br>-81629/453600<br>11143/28350<br>-27533/72576<br>110563/453600<br>-23017/226800<br>5627/226800<br>-7829/3626800                                                                                                                                                                                                    |
|------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | へいいいです。<br>*0*1*2*3*4*5*6*7*8*9                                    | 3163/129600<br>694999/725760<br>-240191/907200<br>536063/907200<br>-613393/707200<br>990713/1814400<br>-54311/181440<br>99431/907200<br>-2711/113400<br>407/172800                                                                                                                                                                                 |
| Order = 11 | <b>* 0*1*2*3*4*5*6*7*8*9*10</b><br>* 0*1*2*3*4*5*6*7*8*9*10        | 3250433/53222400<br>3124027/3143344<br>-57124721/159667200<br>16745741/19958400<br>-88645069/79333600<br>42375577/34716800<br>-2342533/3143344<br>7137837/19958400<br>-14674153/159667200<br>1433419/7933600<br>-330157/159667200                                                                                                                  |
| Order = 12 | 入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入<br>入 | +671//8548<br>79707557/79833600<br>-73217741/159667200<br>45558097739916800<br>-1369115297738916800<br>76162079739916800<br>-126135369779833600<br>480161374989600<br>-6694051374989600<br>-669405137157657200<br>9683229779833600<br>-35479217157667200                                                                                           |
| Order = 13 | 入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入                               | 13495779093/237758976000<br>221883255067/217945728000<br>-244077242177/435691456000<br>-944077242177/435691456000<br>-44021467453/19372453600<br>114400317337736324288000<br>-96285993157/31135104000<br>82048551867736324286000<br>-23019733793719322953600<br>632815333977435891456000<br>-557786335777435891456000<br>-428116347772615348736000 |

Ł

Order = 1422242314-3/39626496000 入入入入入入入入入入入入入入入入入入入 5362495961753374464000 -143540241611/217945728005 137630465779767178291200 -4340076363637261534873600 444112/35397/96864768000 -204187601549736324284000 1041426962817/217945728000 -12977594477/4151347200 2640872682977174356582400 -3437357761137653837184000 574641635197435891456000 -98640675677435891456000 7007+443/47551795200 Order = 15入入入入入入入入入入入入入入入入入入入入入 13228284012772414168064000 334163086201/320246704000 -25204921134079/31384184832000 3741241671441/1569209241600 -30855021230321/02/6836966400 122004052952359/15692092416000 -100765294790557/10461394944000 12254660322337/13376743683000 -2133204511431/293898998404 2043461754691/627683696640 -59274n37071469/31334184632000 4434781236437/7846046208000 -4457039213359731344184332000 43108396921/3138418483200 -11976223877895693995230 Order = 16入入入入入入入入入入入入入入入入入入入入入入 2639651053/49268736000 421415880763173923023104000 -29217737232529/31384184832000 9299454583377/3138418483200 -+1239763079291/6276836966400 8949564154434777846046208000 -54442653869569/3487131648030 90008734243873/5230697472000 -31328482761927/2092273988800 111081308877980755776 -174045267344139/31384184832000 35854167680299/15692092416000 -21454775613309/31384184832000 23230500333371569239241600

-123040457219/4276836466440 97997951/80472268800

.

#### Table 9

#### Adams-Bashforth Predictor, Summed Ordinate Form

| Order = 1 | a.                                                                                                                                       | 1/2                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 2 | a'<br>a'                                                                                                                                 | -5/12                                                                                                                                                      |
| Order = 3 | a 1<br>a 1<br>a 2                                                                                                                        | 31/24<br>-7/6<br>3/8                                                                                                                                       |
| Order = 4 | a'<br>a'<br>a'<br>a'<br>a'                                                                                                               | 1181/720<br>-177/80<br>341/240<br>-251/720                                                                                                                 |
| Order = 5 | a0'<br>a1'<br>a2'<br>a3'<br>a4'                                                                                                          | 2837/1440<br>-2543/720<br>17/5<br>-1201/720<br>95/288                                                                                                      |
| Order = 6 | a <sub>0</sub> ,<br>a <sub>1</sub> ,<br>a <sub>2</sub> ,<br>a <sub>3</sub> ,<br>a <sub>4</sub> ,<br>a <sub>5</sub> ,                     | 130241/60480<br>-309047/60480<br>198251/30240<br>-145477/30240<br>23077/12096<br>-19087/60480                                                              |
| Order = 7 | a <sub>0</sub> ,<br>a <sub>1</sub> ,<br>a <sub>2</sub> ,<br>a <sub>3</sub> ,<br>a <sub>4</sub> ,<br>a <sub>5</sub> ,<br>a <sub>6</sub> , | 11603/4480<br>-104861/15120<br>1344989/120960<br>-20617/1890<br>156551/24192<br>-32371/15120<br>5257/17280                                                 |
| Order = 8 | a 0'<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7                                                                                    | 10468447/3620800<br>= 32656759/3628800<br>698003/403200<br>= 1540/047/725760<br>12186649/725760<br>= 3359933/403200<br>1227727/518400<br>= 1070017/3628800 |

Ś

| Order = 9  | a 0'<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8                                                      | 3286521/1036800<br>-40987771/3628800<br>10219841/403200<br>-135352319/3628800<br>167287/4536<br>-9439609/403200<br>5393233/518400<br>-9401029/3628800<br>25713/89600                                                                                                                                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | a<br>a<br>1<br>a<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                     | 1×535079×7/479001400<br>-220×095719/159×67200<br>235733009/6652800<br>-×0708×591/9979200<br>1152537553/159×6720<br>-3×86873049/26611200<br>5376023/156400<br>-253022557/19958400<br>149484787/53222400<br>-26842253/95800320                                                                                                                                                                                                |
| Order = 11 | a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                       | 1469763199/958003200<br>-3966011741/239500800<br>1495154823/35481600<br>-1947363563/13305806<br>4194305967/3850<br>2087883637/28609600<br>-86656259/1900800<br>76795519/5068800<br>-144794759/47900160<br>4777223/17418240                                                                                                                                                                                                  |
| Order = 12 | a<br>a<br>1<br>a<br>2<br>a<br>3<br>a<br>4<br>a<br>5<br>a<br>6<br>a<br>7<br>a<br>8<br>a<br>9<br>a<br>10<br>a<br>11 | <ul> <li>10449057787627/2615348736000</li> <li>51048495009647/2615348736000</li> <li>2727419198593/523069747200</li> <li>24085096927479/174356562400</li> <li>19053402071457/47176291200</li> <li>15761456733287/62270208000</li> <li>13439569126937/62270208000</li> <li>11714049460703/67178291200</li> <li>10361255662077523069747200</li> <li>7668133483077237758976000</li> <li>-70360425435772615348736000</li> </ul> |
| Order = 13 | a o<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 10<br>a 11<br>a 12                        | 733526173/172204032<br>-59344044597373/2615346736000<br>104639269835229/1307674368000<br>-102675649234999/523069747200<br>121844991963321/348713164800<br>-40316232897599/87173291200<br>31975145463/69498000<br>-149631214658501/435691456000<br>66393001798471/348713164800<br>-13247642672623/174356582400<br>491703913717/23775897600<br>-960065932063/2615348736000<br>106364763817/402361344000                       |

~

â

| 0 1 - 14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 14 | a o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10911485674373/2414168064000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -818273552637263731354184832000                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 524691352929703/52306974/2000                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4247744706499627/15692092416000                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A7213AA3A963287/1255367393280                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2780205445380617/3487131648000                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | a,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 338AADA8e327559/373621248000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | a.'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2066463417427663/2615348736000                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1831406147461367/3487131648000                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -32HE73933136217/1255367393260                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | a'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13563642841100771426553856000                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | a'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12413431525295375230697472000                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 880335732056172414168664000                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | a 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -116610961965774483454976000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | ~ 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -110910/01/05//110215//0000                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Order = 15 | a :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | ~0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 294786756763073/62768369664000                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 299786756763073/62768369664000<br>-116361307155361/3923023104060                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | α <sub>1</sub><br>α <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 294786756763073/62768364664000<br>-116361307155361/3923023104060<br>2586771996343167/20922789688000                                                                                                                                                                                                                                                                                                                                                                       |
|            | a 1<br>a 2<br>a 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000                                                                                                                                                                                                                                                                                                                                      |
|            | 21<br>22<br>23<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 299786755763073762768369664000<br>-11636130715536173923023104060<br>2586771998343187720922789688000<br>-3569852791482977980755776000<br>198844236627074972510734786568                                                                                                                                                                                                                                                                                                    |
|            | ~0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 299786755763073762768369664000<br>-11636130715536173923023104000<br>2586771996343187720922789688000<br>-3569852791482977980755776000<br>198844236627074972510734786560<br>-5711953662057497435691456000                                                                                                                                                                                                                                                                   |
|            | ~0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 294786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20422789688000<br>-356985279148297/980755776000<br>1486442366276749/2510734786560<br>-571195366206749/435691456000<br>5010647670421057/2988969944000                                                                                                                                                                                                                                 |
|            | α1<br>α2<br>α3<br>α3<br>α4<br>α5<br>α6<br>α7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771996343157/20922769688000<br>-356985279148297/980755776000<br>198844236627674972510734786560<br>-5711953662067497435891456000<br>501064767042105772988969944000<br>-313235639513171277025750                                                                                                                                                                                                    |
|            | α 1<br>α 2<br>α 3<br>α 4<br>α 5<br>α 6<br>α 7<br>α 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771995343157/20922789688000<br>-3569852791482977949/251073676000<br>198649736627674972510734786560<br>-5711953662067497435891456000<br>501064767042105772988969844000<br>-713235639513171277025750<br>903084974779085976974263296000                                                                                                                                                              |
|            | 2 1<br>2 1<br>2 2<br>2 3<br>3 4<br>4<br>2 5<br>2 4<br>4<br>3 5<br>4<br>4<br>4<br>5<br>2 6<br>6<br>4<br>7<br>2 8<br>2 9<br>4<br>4<br>4<br>4<br>4<br>5<br>2<br>4<br>4<br>4<br>4<br>4<br>5<br>2<br>4<br>4<br>4<br>4<br>4<br>5<br>2<br>4<br>4<br>4<br>4<br>4<br>5<br>4<br>4<br>4<br>4<br>5<br>5<br>4<br>4<br>4<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000<br>1988492366270749/2510734786560<br>-571195266206749/435691456000<br>5010647670421057/2988969944000<br>-2132356395131/1277025750<br>9030444747790859/6974263296000<br>-121630328435299/156920924160                                                                                                                                 |
|            | ~0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000<br>1988492366270749/2510734786560<br>-571195268200749/435891456000<br>5010047670421057/2988969944000<br>-2132256395131/1277025750<br>9030444747790859/6974263296000<br>-121630328435299/156920924160<br>200655473520353/5706215424000                                                                                                |
|            | 2 1<br>2 1<br>2 2<br>2 3<br>3 4<br>4<br>2 5<br>2 4<br>4<br>2 5<br>2 6<br>6<br>2 7<br>2 8<br>6<br>2 7<br>2 8<br>6<br>2 1<br>7<br>2 8<br>6<br>2 1<br>7<br>2 8<br>6<br>2 1<br>7<br>2 1<br>2 1<br>2 2<br>2 2<br>3 3<br>2 4<br>4<br>2 2<br>2 2<br>2 3<br>3 4<br>4<br>2 2<br>2 2<br>2 3<br>3 4<br>4<br>4<br>2 5<br>5<br>5<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000<br>1988492366270749/2510734786560<br>-571195366201749/435691456000<br>5010047670421057/2988969944000<br>-2132356395131/1277025750<br>9030444747790859/6974263296000<br>-121630328435299/156920924160<br>200655474759053/5706215424000<br>-3478073249303/29719872000                                                                  |
|            | 2 1<br>2 1<br>2 2<br>2 3<br>3 4<br>4<br>2 5<br>2 6<br>2 7<br>2 6<br>3 7<br>2 6<br>3 7<br>2 9<br>2 1)<br>2 1<br>2 1<br>2 1<br>2 2<br>2 3<br>3 4<br>4<br>2 5<br>3 6<br>6 2<br>2 7<br>2 7<br>2 7<br>2 7<br>2 7<br>2 7<br>2 7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000<br>1988492366270799/2510734786560<br>-571195366208799435691456000<br>5010847670769421097/2988969944000<br>-2132356395131/1277025750<br>9030844747790859/6974263296000<br>-121630324435299/156920924160<br>2006563473520353/5706215424000<br>-3478673243303/29719872000<br>1302216192465774928336128000                               |
|            | ~0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 1)<br>a 11<br>a 12<br>a 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771996343187/20922789688000<br>-356985279148297/980755776000<br>148644736627074972510734786560<br>-5711953662087497435691456000<br>501084767042105772988969944000<br>-213235639513171277025750<br>90304447779085976974263296000<br>-121630324435297156920924160<br>200656547352035375706215424000<br>-3478673243503/29719872000<br>13022161924662774928336128000<br>-21560966112974560431872000   |
| •          | 20<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 1)<br>a 11<br>a 12<br>a 13<br>a 14<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 10<br>a 10 | 299786756763073/62768369664000<br>-116361307155361/3923023104000<br>2586771998343187/20922789688000<br>-356985279148297/980755776000<br>198844736627674972510734786560<br>-5711953662087497435691456000<br>501084767042109772988969944000<br>-213235639513171277025750<br>903044474779085976974263296000<br>-1216303244352997156920924160<br>200656547352035375706215424000<br>-3478673249303729719872000<br>13022161924662774928336128000<br>-21566046611297560431872030 |

#### Table 10

#### Adams-Moulton Corrector, Summed Ordinate Form

| Order = 1 | a *'                                                        | / 2                                                                                                                                          |
|-----------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 2 | a *'<br>a *'                                                | 5/12<br>1/12                                                                                                                                 |
| Order = 3 | a *<br>a 1<br>a 2                                           | 3/6<br>1/5<br>-1/24                                                                                                                          |
| Order = 4 | a * .<br>a * .<br>a * .<br>a * .<br>a * .<br>a * .          | 251/720<br>59/240<br>-29/240<br>19/720                                                                                                       |
| Order = 5 | a<br>0,<br>a<br>1,<br>a<br>2,<br>a<br>3,<br>a<br>4          | 95/288<br>77/240<br>-7/30<br>73/720<br>-3/160                                                                                                |
| Order = 6 | a 0'<br>a 1'<br>a 2'<br>a 3'<br>a 4'<br>a 5'                | 17087/60430<br>23719/60430<br>-11371/30240<br>7331/30240<br>-5449/60480<br>863/60480                                                         |
| Order = 7 | a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6               | 5257/17260<br>6961/15120<br>-66109/120960<br>33/70<br>-31523/120960<br>1247/15120<br>-275/24192                                              |
| Order = 8 | a 0°<br>a 1°<br>a 2°<br>a 3°<br>a 4°<br>a 5°<br>a 6°<br>a 7 | 1070017/3628800<br>1903311/3628800<br>-299587/403200<br>115963/145152<br>-426809/725760<br>112477/403200<br>-273921/3628800<br>33453/3628800 |

.

۰.

.

.

.

| Order = 9         | a a a a a a a a a a a a a a a a a a a                                                       | 25713/89600<br>427447/725760<br>-3493217/3628800<br>500327/403200<br>-6467/5670<br>2616161/3628800<br>-24019/80640<br>263077/3626800<br>-d433/1036800                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Order</b> = 10 | a a a a a a a a a a a a a a a a a a a                                                       | 26842253/45800320<br>103793439/159667200<br>-24115343/19958400<br>18071351/4979200<br>-159314453/79833600<br>25152927/15966720<br>-860609/9979200<br>6322573/19958400<br>-11011481/159667200<br>3253433/479001600                                                                                                                                       |
| Order = 11        | a (<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 6<br>a 6<br>a 6<br>a 10                  | 4777223/17418240 $8099901/11404800$ $-67283209/45619200$ $14380247/5702400$ $-c17263181/159667200$ $76561/24948$ $-c37204019/159667200$ $41021471/39916800$ $-107151937/319334400$ $15813379/239500000$ $-46/1/768480$                                                                                                                                  |
| Order = 12        | a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 8<br>a 9<br>a 10<br>a 11          | 703×04254357/2615348736000<br>2005×06735343/2615348736000<br>=927122844417/523069747200<br>11406860045973871316480<br>=433079246049787178291200<br>541749826023/62270206000<br>=26216313/433/62270206000<br>240244462687787178291200<br>=8366341105/6974263294<br>1851899847597523069747200<br>=166147043473/2615348736000<br>13695774073/2615348736000 |
| Order = 13        | a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a | 104364763817/402361344000<br>307515172443/373621246000<br>-2709005666077/13076/4368000<br>2309990746931/523069747200<br>-507942835493/69742632960<br>4007043002299/435891456000<br>-2215533/250250<br>2815516533573/435691456000<br>144690945961/104613949440<br>-486772076771/1307674368000<br>160495253651/2615348736000<br>-2224234463/475517952000  |

54

I

Order = 14

.

| a •!                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۳ <b>٥</b> ,                                                                               | 1166309819657/4483454976006                                                                                                                                                                                                                                                                                                                                                                                                               |
| a •'                                                                                       | 2504631949133/2853107712000                                                                                                                                                                                                                                                                                                                                                                                                               |
| a.*'                                                                                       | - 1255 - 2496 05050 / 5230 / 020 200                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            | -12332677367737/323087/7/2000                                                                                                                                                                                                                                                                                                                                                                                                             |
| <sup>4</sup> 3                                                                             | 83195143546091715692092416000                                                                                                                                                                                                                                                                                                                                                                                                             |
| a .                                                                                        | -64631301332531/6276836966400                                                                                                                                                                                                                                                                                                                                                                                                             |
| a *'                                                                                       | 50972790156553/3487131648000                                                                                                                                                                                                                                                                                                                                                                                                              |
| .a.*'                                                                                      | -42070457451313/2615348736000                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · · ·                                                                                      | 51160//90565//3/3621248000                                                                                                                                                                                                                                                                                                                                                                                                                |
| a <sub>8</sub> .                                                                           | -31173567791351/3487131648000                                                                                                                                                                                                                                                                                                                                                                                                             |
| a, '                                                                                       | 27577902895821/6276836966400                                                                                                                                                                                                                                                                                                                                                                                                              |
| a                                                                                          | ~247%7711059413/1569209241A000                                                                                                                                                                                                                                                                                                                                                                                                            |
| a                                                                                          | 2049/4749/95 3/5930/97430000                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~11                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <sup>12</sup>                                                                              | -14004/0490209/31384184032000                                                                                                                                                                                                                                                                                                                                                                                                             |
| a 13                                                                                       | 132282840127/31384184832000                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a •'                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a                                                                                          | 25221445/98402304                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a 0°<br>a 1                                                                                | 25221445798402304<br>365455114515373923023104000                                                                                                                                                                                                                                                                                                                                                                                          |
| a 0°<br>a 1'<br>a 2'                                                                       | 25221445/98402304<br>3654051145153/3923023104000<br>-172527345401401/62768369664000                                                                                                                                                                                                                                                                                                                                                       |
| a 0<br>a 1<br>a 2                                                                          | 25221445/98402304<br>3654651145153/3923023104000<br>-1/2527345401401/62768369664000<br>2283592894083/126918592000                                                                                                                                                                                                                                                                                                                         |
| a 0<br>a 1<br>a 2<br>a 3                                                                   | 25221445/98402304<br>365451145153/3923023104000<br>-172527345401401/62768369664600<br>2293797894083/326918592000                                                                                                                                                                                                                                                                                                                          |
| a 0<br>a 1<br>a 2<br>3<br>a 4                                                              | 25221445/98402304<br>3654551145153/3923023104000<br>-1/2527345401401/62768369664000<br>2293797894083/326918592000<br>-886761467394133/62768369664000                                                                                                                                                                                                                                                                                      |
| a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5                                                     | 25221445/98402304<br>3654551145153/3923023104000<br>-172527345401401/62768369664000<br>2292797894083/326918592000<br>-886761467394133/62768369664000<br>3496517827389/156920924160                                                                                                                                                                                                                                                        |
| a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6                                              | 25221445/98402304<br>3654n51145(53/3923023104000<br>-172527345401401/62768369664000<br>2292797894083/326918592000<br>-886761467394133/62768369664000<br>3496n17827389/156920924160<br>-192339437673109/6974263296000                                                                                                                                                                                                                      |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654551145(53/3923023104000<br>-172527345401401/627683696646000<br>2292797894083/326918592000<br>-886761467394133/627683696640000<br>3496517827389/156920924160<br>-192339437673109/6974263296000<br>249531097/13030875                                                                                                                                                                                              |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654551145153/3923023104000<br>-172527345401401/62768369664000<br>2293797894083/326918592000<br>-886761467394133/62768369664000<br>3496517827389/156920924160<br>-192339437673109/6974263296000<br>349531097/13030875                                                                                                                                                                                                |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654n51145153/3923023104000<br>=172527345401401/62768369664000<br>2293797894083/326918592000<br>=86761467394133/62768369664000<br>3496n17827389/156920924160<br>=192339437673109/6974263296000<br>349531097/13030875<br>=427489960816779/209227898885000                                                                                                                                                             |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654551145153/3923023104000<br>=172527345401401/62768369664000<br>2793797894083/326918592000<br>=886761467394133/62768369664000<br>3496517827389/156920924160<br>=192339437673109/6974263296000<br>349531097/13030875<br>=427489960816779/20922789885000<br>5256082896499/435891456000                                                                                                                               |
| a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 7<br>a 6<br>a 9<br>a 1<br>i             | 25221445/98402304<br>3654551145(53/3923023104000<br>-1/2527345401401/62768369664600<br>2292797894083/326918592000<br>-886761467394133/62768369664000<br>3496517827389/156920924160<br>-192339437673109/6974263296000<br>349531097/13030875<br>-427489960816979/20922789885000<br>5256682896499/435891456000<br>-13579171932259/2510734786560                                                                                              |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654551145153/3923023104000<br>-172527345401401/62768369664000<br>2293797894083/326918592000<br>-886761467394133/62768369664000<br>3496517827389/156920924160<br>-192339437673109/6974263296000<br>349531097713030875<br>-42748996616729/20922789888000<br>52566828964997435891456000<br>-13579171932259/2510734786550<br>1748609541047/980755776000                                                                 |
| a a a a a a a a a a a a a a a a a a a                                                      | 25221445/98402304<br>3654551145153/3923023104000<br>-172527345401401/62768369664000<br>2293797894083/326918592000<br>-886761467394133/62768369664000<br>3496517827389/156920924160<br>-192339437673109/6974263296000<br>349531097/13030875<br>-427489980816979/20922789889000<br>5256682896499/435691456000<br>-13579171932259/2510734786560<br>1748609541047/980755776000<br>-8530634387437/209227898880001                              |
| a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>a 5<br>a 6<br>a 9<br>a 11<br>a 12<br>a 13<br>a 13       | 25221445/98402304<br>3654n51145153/3923023104000<br>-1/2527345401401/62768369664000<br>2293797894083/326918592000<br>-886761467394133/62768369664000<br>3496n17827389/156920924160<br>-192339437673109/6974263296000<br>349531097/13030875<br>-427489960816729/20922789885000<br>5256082896499/435891456000<br>-13579171932259/2510734786560<br>1748609541047/980755776000<br>-8530634387437/20922789888000                               |
| a 0<br>a 1<br>a 2<br>a 3<br>a 4<br>5<br>6<br>7<br>a 6<br>9<br>a 11<br>a 12<br>a 13<br>a 14 | 25221445/98402304<br>3454n51145153/3923023104000<br>=172527345401401/62768369664000<br>2793797894083/326918592000<br>=886761467394133/62768369664000<br>3496n17827389/156920924160<br>=192339437673109/6974263296000<br>349531097/13030875<br>=427489960816729/20922789885000<br>5256n82896499/435891456000<br>=13579171932259/2510734786550<br>1748809541047/980755776000<br>=8530634387437/20922789888000<br>226717571111/3923023164000 |

.

Order = 15

Table 11

Störmer Predictor, Summed Ordinate Form

| Order = 1 | ک <b>ر</b> '                                             | 1/12                                                                                                                          |
|-----------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Order = 2 | $\lambda_0$<br>$\lambda_1$                               | 1/c<br>-1/12                                                                                                                  |
| Order = 3 | ኢ <sub>0</sub><br>ኢ <sub>1</sub><br>ኢ <sub>2</sub>       | 59/240<br>-29/120<br>19/230                                                                                                   |
| Order = 4 | λ,<br>λ,<br>λ,<br>1,<br>λ,<br>2,<br>λ,<br>3,             | 77/240<br>-7/15<br>73/240<br>-3/40                                                                                            |
| Order = 5 | λο<br>λ2<br>λ3<br>λ4<br>λ5                               | 23719/60480<br>-11371/15120<br>/381/10080<br>-5449/15120<br>863/12396                                                         |
| Order = 6 | λο<br>λ1<br>λ2<br>λ3<br>λ4<br>λ5                         | 6961/15120<br>~66109/60460<br>79/70<br>~31523/30240<br>1247/3024<br>~275/4032                                                 |
| Order = 7 | 入<br>へ<br>へ<br>1<br>2<br>3<br>人<br>4<br>、<br>5<br>人<br>6 | 1903311/3628800<br>-297587/201600<br>115963/48384<br>-425809/181340<br>112477/80640<br>-278921/604800<br>33953/518400         |
| Order = 8 | ኢ o<br>1 2 3<br>ኢ ኢ ኢ<br>ኢ ኢ<br>ኢ ኢ<br>ኢ ኢ<br>ኢ ኢ        | 4274877725760 $-349321771814400$ $5003277134400$ $-1293472835$ $26161617725760$ $-24019713440$ $2630777518400$ $-41837129600$ |

56

T

| Order = 9  | እ እ እ እ እ እ እ እ እ<br>እ እ እ እ እ እ እ እ እ እ እ                                                          | 103793439/159667200<br>-24115443/9979200<br>[8071351/3326400<br>-157314453/19958400<br>25162927/3193344<br>-8666609/1663200<br>6322573/2851200<br>-11011481/19958400<br>3250433/53222405                                                                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | 入0,1,2,3,4,5,6,7,8,9,0,<br>入1,2,3,4,5,6,7,8,9,0,<br>入入入入入入入入入入入入入10                                 | 30398017/1404300<br>-67233209/22809600<br>14330247/1700800<br>-c17263181/39916800<br>382805/24948<br>-x37204019/26611200<br>41021471/5702400<br>15613379/26611200<br>-4671/78348                                                                                                                                                             |
| Order = 11 | 入 Λ 1,2,3,4,5<br>Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ 1,2,3,4,5<br>Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ | 2105406735343/2615348/36060<br>922122844417/261534873600<br>11806800459/11623772160<br>433079266349/21794572800<br>341749826023/12454041600<br>2427163137433/10378366000<br>240244462687/12454041600<br>4326341105/371782912<br>135189987759/58118860800<br>13695779093/237758976000                                                         |
| Order = 12 | λ 0.1.2.3.4.5.6.7.8.9.10.1.1.2.<br>λ λ λ λ λ λ λ λ λ λ λ 1.1.1.1.2.                                 | 307c15172043/373621248000<br>-2709005666077/653637164000<br>2309298746931/174356582400<br>-507942835443/17435658240<br>4007043002299/87178291200<br>-6646599/125125<br>2816016533573/5227020800<br>175102023617/6227020800<br>194693945961/11623772160<br>-486772076771/130767436800<br>160495253651/2377589/6000<br>-2224234463/39626496000 |

| Order = 13        |                   | 2504431949133/2853107712000<br>-12555699585959/2615348736000<br>88195194545091/5236697472000<br>-64631301332531/1569209241600<br>50772790155553/697426329600<br>-42070657551313/435891456000<br>5116077905657/53374464000 |
|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                   | -31(735d7791351/435391456000<br>2763760709030000                                                                                                                                                                          |
|                   |                   | -24/5/711059413/1559209241600                                                                                                                                                                                             |
|                   |                   | 2041667423953/475517952000                                                                                                                                                                                                |
|                   |                   | -1806476396209/2615348736000                                                                                                                                                                                              |
|                   |                   | 13228264312772414158854330                                                                                                                                                                                                |
| <b>Order</b> = 14 | $\lambda_{c}^{*}$ | 3454051145153/3923023104000                                                                                                                                                                                               |
|                   | <u>^</u> 1,       | -172527345401401/31384184832000                                                                                                                                                                                           |
|                   | λ.                | 2272777894083/108972864000                                                                                                                                                                                                |
|                   | ٨.*               |                                                                                                                                                                                                                           |
|                   | λ                 |                                                                                                                                                                                                                           |
|                   | $\lambda_{s}^{3}$ | 2447667679713030475                                                                                                                                                                                                       |
|                   | እ <sub>7</sub> י  | -427439980316929/2615348736000                                                                                                                                                                                            |
|                   | $\lambda_{s}$     | 5250182890499/48432384000                                                                                                                                                                                                 |
|                   | λġ                | -13577171932259/251073478656                                                                                                                                                                                              |
|                   | λ <sub>10</sub> ' | 1748809341047789159616000                                                                                                                                                                                                 |
|                   | $\lambda_{11}$    | -853363438743771743565624000                                                                                                                                                                                              |
|                   | × 12              | 226717570111/3017710u8000                                                                                                                                                                                                 |
|                   | ^ 13              | -2639651353/49268736000                                                                                                                                                                                                   |

#### Table 12

Cowell Corrector, Summed Ordinate Form

,

| Order | =  | 1 | λ <mark>.</mark> •'                                                 | 1/12                                                                                                                          |
|-------|----|---|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Order | 11 | 2 | $\lambda_0^+, \lambda_1^+$                                          | 1/12<br>D                                                                                                                     |
| Order | =  | 3 | $\lambda_0^*$<br>$\lambda_1^*$<br>$\lambda_0^*$                     | 19/240<br>1/120<br>-1/240                                                                                                     |
| Order | 8  | 4 | λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>3                      | 3/43<br>1/48<br>-1/60<br>1/243                                                                                                |
| Order | =  | 5 | 入。<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | 363/12096<br>67/1390<br>-389/10080<br>71/3780<br>-221/60430                                                                   |
| Order | =  | 6 | λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ<br>λ            | 2/5/4032<br>221/432J<br>-2117/3024J<br>253/5040<br>-1171/6048<br>19/6048                                                      |
| Order |    | 7 | 入入入入入入入入入入入入入入入入                                                    | 33953/518400<br>40769/604600<br>-5353/48384<br>13937/181440<br>-14513/241920<br>11729/604600<br>-9829/3628800                 |
| Order | -  | 8 | 入入入入入入入入入入入入入入                                                      | 5183/129600<br>33327/403200<br>-96827/604600<br>135577/725/60<br>-4307/30240<br>53287/1209600<br>-34929/1814400<br>407/172800 |

•

| Order = 9  | へ入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入                                                                                    | 1253433/53222400<br>572741/5702400<br>-8/01681/39916800<br>4025311/13305600<br>-917339/3193344<br>7370569739916300<br>-1025779113305600<br>754331/39916600<br>-3301577159667200                                                                                                                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order = 10 | 入入入入入入入人入入入入入入入入                                                                                                         | 4671/78848<br>212153/1814400<br>-11334197/39916800<br>6073979/13305600<br>663407/1596672<br>-3073447/13305600<br>3337047/139916800<br>-2962873/159667200<br>24377/13305600                                                                                                                                                                                             |
| Order ≈ 11 | へんえん <u>んんんんんんん</u><br>*0*1*7*3*4*5*6*7*8*9<br>10<br>10                                                                  | 1 1495779043/23775697400<br>34861746509/261534873600<br>-23393350176457651200<br>14930342079721794572800<br>-17732542449712454041600<br>4092052377494208000<br>-7157710869712454041600<br>4130492139724504041600<br>413049213972453000<br>-1786550083719372353600<br>-42511644777261534873600                                                                          |
| Order = 12 | 入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入入                                                                                    | 2224234463/39626496000<br>601557/157/10236134400<br>22479964869/2767564800<br>9479964869/2767564800<br>91954909977/62270206000<br>61903076741/1037836800<br>66917018671/87178291200<br>17305227231/174356582400<br>-140839977333976000<br>70074463/47551795200                                                                                                         |
| Order = 13 | 入<br>へ<br>1<br>2<br>3<br>4<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>11<br>2<br>11<br>11<br>11<br>11<br>11<br>11 | 13223264012772414160064000<br>17241301771162377216<br>-1837066126477348713164800<br>1333731845677112086374400<br>-4670890938637232475443200<br>26637354127710378368000<br>-186036426051774724249600<br>530446397972905943040<br>-77220056327777491814400<br>3084157832877784504620600<br>-3400585233783026944000<br>1525675617787178291200<br>+11976220877396690995200 |

60

T

Order = 14

| 1.41              |                                         |
|-------------------|-----------------------------------------|
| ^o.               | 2639651053749268736000                  |
| λ,                | 184733369019/1048139494400              |
| λ.*'              |                                         |
| · · ·             | -14433320000000000000000                |
| λ <b>.</b>        | 4877518313897313341848320               |
| λ.*'              | -402558375376772092278988800            |
| . <b>.</b> .      |                                         |
| ^ 5               | 24325827856577581188688000              |
| λ.                | -2375338127311/523069747200             |
| <u>ک</u> • •      | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
| ~7                | 9492227515111114140000                  |
| ኢ <b>*'</b>       | -596016550799/232475443200              |
| λ. <b>*'</b>      | 3986335976783/1138418483200             |
| . 9               |                                         |
| ^ 10 <sup>°</sup> | -2374718841769/5230697472000            |
| λ,*'              | 2179227217/193/2953600                  |
| · · · · ·         | · · · · · · · · · · · · · · · · · · ·   |
| ^ 12              | -107753276973/6276836966400             |
| \ <b>`</b> `      | 000000000000000000000000000000000000000 |
| ^ 13              | A1AA1A21190415568900                    |

.

•