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Isayev, V. K. , Davidson, B. Kh. , and Sonin, V. V.

An Investigation of the Optimal Conditions of Rocket
Motion in the Vicinity of a Planet

Annotation

Several problems of the optimal control of the magnitude and
direction of thrust during a rocket's maneuver in a vacuum in
the vicinity of a spherical planet are examined.

The work is divided into three parts.

In Part I, the problem of optimal programming of the magnitude
and direction of rocket thrust in a central field is examined.
It was shown that when optimal motion is in a sufficiently close
proximity to a planet, there exists a so-called plane of control;
i.e., a vector of the reactive forces is transfered in a plane
connected with the points of an alternating mass and forward
,motion in an inertial ( Galilean) coordinate system. In other words,
the existence of a const,_nt direction with a zero projection of
the vector of optimal thrust was demonstrated.

In Part II, there is an examination of a series of approximated
analytical solutions to the problem of optimal flight of a craft
with low-thrust engines with ideal control of the exhaust velocity.
A recommendation is made for the selection of the parameters of
a translational (circular) coordinate system, and for the inves-
tigation of analytic solutions leading t.G a synthesis of the con-
trol systems of flight  ( from tho overall_ i n formation) . In Part III,,
a numerical analysis is conducted of tlLe solution of problems on
`he optimal (by fuel consumption) landing of a spacecraft at a given
point on the surface of the moon. An examination is made o-= the
trajectory plane for the descent of a craft in a central gravita-
tional field from an elliptic* selenocentric orbit. An optimal
orientation program was found as well as the magnitude limited by
the thrust modulus. An examination was made of the influence of
various parameters (thrust unit, altitude of the initial orbit of
the AES**, the angular distance of the descent sector) on the mag-
nitude of the discharge mass. An analogous problem was solved for
the stage of injecting a craft from the moon's surface into the
orbit of an ASM***.

Parts I and IIlwere written by V.K. Isayev and B.Kh. Davidson; Part
II was by V.K. Isayev and V.V. Sonin.

`Translator's Note: the word elliptic was not used in the Russian
text; the word high-low was, however.
** TN: AES, artificial earth satellite
***TN: ASM, artificial satellite of the moon (lunar orbiter)
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unlike problems joined together by one
trajectory of optimal motion lies at

to a spherical planet (in the third
an affect only on the range of the

2.

INTRODUCTION

The purpose of this work is to study the nature of optimal con-
trol of the points of motion of the transfer of mass in a vacuum
in a central gravitational field.

The solution of the problem was obtained by means of the maximum
principle; however, these problems differ by a degree of general-
ity and the peculiarities of the procedures used. The first was
devoted to an investigation of the structure of optimal control
of the orientati;n of the reactive forces in a central gravitational
field. The existence of analytical solutions for the second pro-
blem (transfer between near-circular orbits by means of engines
with a regulated exhaust velocity) makes it possible -to accomplish
a synthesis of optimal control, and a comparison with a precise
solution makes it possible to explain the range of its applicability.
The third part is devoted to an investigation of the basic peculi-
arities of a numerical solution of the variation broblem of the
soft landing from an ASM orbit of a reactive craft limited by the
magnitude of the thrust.

These, at first glance, are
characteristic feature: the
some fairly close proximity
problem, this assumption has

orbit).

One Characteristic of an Optimal Program of Orientation
tive Force During the Dimensional Motion of a Point of
Lsfer in a Central Gravitational Field.

Led a process of optimal dimensional motion of the points
.ransfer in a vacuum in a central gravitational field. An
for motion in a Cartesian inertial coordinate system connec-
a center of gravity takes the view that

7	 t,

J r;,
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Here, u,v, w comprise the velocity vector,
x,y, N are the coordinate points

	

R= (X2 + y2 + Z2) 
112	

14 (t)
m=the mass points, m=M(0^
u=constant gravitation o a planet
P=thrust of the engine relative to
c=exhaust velocity of a jet stream

6,^=angles of thrust orientation

The operating functions, subject to optimization, may be P,c,6,
and ¢. The structure of the optimal control 6 and 4 does not depend
on a method of selection of the P and c optimal program or assigned
a priori. Below, for definiteness, we examine motion on the assump-
tion that c=const. P may change from null to Pmax'

By means of the L.S. Pontryagin maximum principle (Refs. 1 and 2),
the momentary magnitude of controlling functions are determined
from the conditions of a minimum of the function

0

z
1	 ^-	 J

u

L'

From Eq.(1.3), it is seen that the thrust vector p is a collinear
vector with components Pu, Pv, and Pw(Fig. 1); i.e., the radius
vector of the p-trajectory (Ref. 3). A type of p-trajectory com-
pletely determines the nature of the optimal orientation program.
Conjugate variables of p i are determined by the following equation
system:-

,`'^	 a P.Z.
c	 fv ^	 ^ ^ r/	 \

I i,	 +	 J
' 	̂ #/ / t." 

.j	 /•'^ I
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In addition, in Eqs. .(1.1) and (1.4) there follows a consideration
of the necessary conditions of control optimality of Eqs. (1.2) and
(1. 3) .

The system in Eq. (1.4) clearly depends on the coordinate and may
not be separately integrated. This circumstance does not make it
possible to determine the structure of optimal control, in general,
in the case of motion in a central field.

In Ref. 4 there was presented a uniform spherical model of a gravi-
tational field which approximately described a field of gravitational
force in some spherical layer the thickness of which is sufficiently
small compared with an average distance of R points from the center
of attraction. In a uniformly-spherical fie^d there is assumed a
linear relation of the component gravitational acceleration to the
coordinate

9	 22

Ro is the radius of a circular orbit in the vicinity of which a
motion v 2 = go/Ro results.

The conjugate system, in this case, is especially simple:

^	 J

IV

i

The first six equations of this system, which completely determine
the nature of the optimal orientation control, do not depend on the
coordinate. As a result of the integration, we have

1	 ^	 I' ....	 ,,X ^^ ^L <'L Y

1	 'L.^	 L V
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The components of vector g change according to the sine rule
with one and the same period. Consequently, the hodograph p
is an ellipse the plane of which passes through the initial
coordinate and turns relative to the original coordinate sys-
tem (Fig. 2). The angles of orientation of the ellipse plane
in the Oxyz coordinate system are determined by the initial
value of the conjugate variable. In its turn, the latter are
found from a solution of the double-pointed boundary value
problem for Eqs. (1.1) and (1.6) where P, 0, ands are assigned
as the conditions of the maximum principle for Eqs. (1.2) and
(1.3) .

Thus, with optimal motion in a suff-ciently narrow spherical
m7i1t:r of the central field, the vector	 together with thrust
vector	 do not emerge from some plane translationally shifting
in the Oxy inertial system together with t'ie points of variable
mass. The mentioned plane is designated the control plane (Fig 3).

FART II. Synthesis of Optimal Flight Control of a Craft Between
Close Orbits.

In an analysis of the problem of interplanetary flight in Ref. 2,
the so-called translational coordinate system was utilized.
Essentially, it consists of the fol'Dwing: the appropriate
equations of motion and the bounded conditions are noted in some
mobile system which is selected so that it is easy to find a lin-
ear approximation to a solution of the problem of optimal flight.
With a successful selection of a translational system, a solution
cf the problem, already in a linear approximation, may yield good
precision -- sufficient for all practical purposes.

As a translational system, the coordinate for the problem of
optimal flight between orbits of earth and Mars, in Ref. 5, a
trihedron was selected, moving in a Keplerian orbit the beginning
of which, at the moment of launch, coincided with earth and at the
final moment with a projection of Mars in an elliptic plane.

In this work, the plane of motion between the two near-circular
orbits is examined in the Oxy translational system the beginning of
which moves in a certain average circular orbit during which the
Ox axis is directed along the velocity vector, and Oy along the
radius vector. Let, at the initial moment of time t = 0 3 the
given mass is m(0) = mo, the coordinates and velocity of the craft
in the Oxy translational system	 'u(0) = uo, v(0) = v o , x(0) = xo,
Y(0) = y o	(2.1)
whereupon, this parameter conforms to the motion of the craft along
a certain circular orbit. Furthermore, let it be required that
such programs be found for a change of magnitude and orientation
of the thrust vector in order for time T to convert -,--o a point
moving along a near circular orbit and having the coordinates of

u(T) = u l , v(T) = v l , x(T) = x l ,and y(T) = y 	 (2. 2)
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with minimal consumption of :Hass. We shall consider that in the
process of movement, the deflection of the craft from the initial
translational system is low compared to the radius of the transla-
tional orbit Ro.

Then, disregarding the members of the series x 2 + y 2 1Ro, one may
write an equation for the craft's motion as

N

L	 -

^^
;v^^;

(Refs. 6 and 7), whereu and v are projections of relative velocity
in a translational system of coordinates,u l = N/Nmgx is a dimension-
less power, c is the controlled exhaust velocity, (p is the dip
angle of thrust to the Ox axis, N=2Nmaxlr4(0) and m = 14(t)iM(0)
is a dimensionless mass of the craft, and in addition

m(0) = 1	 (2.4)

Considering the optimal equation of the points of variable mass
the movement of which is described by the system in Eq. (2.3) and
must satisfy the bounded conditions of Eqs. (2.2) and (2.4); then
we maximize the functional appearing to be dimensionless final
mass S(T) = m l . If, during the solution of this problem, it is con-
sidered that the velocity of the exhaust stream may change from 0
to infinity

0<C<-
then, as was shown in Refs. (7) and (8), the optimal control will be
determined by the following correlations:

u l!J - "
CL J

	 L 3Z F'0	 ^'	 ^!/ ^	 r 1 ' r ..f ^J•r..

where a= ( pa + Pb) 112 and (Pu, Pv, Px, Py, . and Pm) is the vector of con-
jugated variables the components of which satisfy the following
systems of differential equations:

i	 7
J .`

1 .^r	 f `	 1
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In Ref. 7 a formula is introduced which makes it possible for each
concrete bounded condition to find programs c(t), 4(t), solving
the original boundary problem. We present it here. First of all,
from the system of linear equations:

	

AC = B
	

(2. 7)

we find a fourdimensional vector C. Elements of matrix A in
vector B are computed by the formula presented in Appendix II.1
and II.2.

After finding Ci ,i = 1,..., 4, from the system in Eq. (2.7) we
find the assumption t = T and the value , 7(T) by the formula

	

^;	 `r

	

r	 r
•i-	 i 1 -	 U	 Si ,^„L,v L	 f ^'^ ^^3 .7-	 `	 j C ^iJ L.' j r

i 	 •

r	 /	 ^	 1	 J

Further, we define the constants (Ref. 8)

4

After that, we compute the four constants

through which in a clear form we express the solution of the
systems of Eqs . (2 . 3) and (2 . 5) . Corresponding formulas are
presented in Appendix II.3 and II.4.

Utilizing the obtained correlation, it is not difficult to find
in a clear form programs of control for ^(t) and c(t) in each
concrete problem (Refs. 7 and 8).

The obtained solutions are utilized for computing the flight from
orbit of radius I in a near-circular orbit. The time of the
flight is considered equal to one-half the period of revolution
along the original orbit, and the angle of flight in the inertial
system is 180 deg. The translational system of coordinates is as-
sumed to be coincidental with the points of the destination. In
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Fig. 4 there is presented a dependence of the functional on
the radius of the final orbit. For a comparison, the result
of a precise solution of the problem is presented which was ob-
tained by a solution of the boundary problem nor an exact sys-
tem of equations of optimal motion in a central field. The
agreement is sufficiently good up to R 1 = 1.05.

APPEAIDIX :

I. The equation for the matrix elements A and vector component
B are

S C. t C	 i	 ] %-

CZ ^J =	 .5

Iq

L^

i

^W

2 -. -j	 j 	 -- S

w y 
1 JJ

z	 J	 '^

'Cv

V	 {	 y

L J--L. c.v l 1

Z	 C•U`	 .^

r
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II. The solution for systems 11.6 and 11.12 as functions of
time is:

X7
L

LAL,

Ck^
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CA^
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PART III. An Optimal Landing of a Reactive Craft on the Surface
of the Moon and the Optimal Injection of that Craft
into t'ie Orbit of an ASM.

In this section we present an investigation of the results of a 	 i
precise solution of the problem of variation of the landing of
a rocket .:raft on she moon and on its flight from the lunar sur-
face to the orbit of an ASM. The following assumptions were made
of the general character:

1. The gravitational field of the moon is central and Newtonian.

2. The orbit of an ASM is circular.

J. The control value P and thrust direction 0 is nonine rtial;
the magnitude of the thrust is limited to 0< P< Pmax•

4. The velocity of the exhaust of the jPt stream is constant.

5. The trajec.ory of the take-off and landing is two-dimensional.
A diagram of the take-off and landing is presented in Fig. 5.

-:ere, Cxy is the Cartesian inertial coordinate system beginning
in the center of the moon, axis Oy is presented throuSh the point
of landira/take-off. Maximizin g the functional s^ives as the final
value of mass m l . An important parameter is the angular dis-
tance q),, the landing part, and W3 the take-off.

The equation for the optimal motion consists of Eck. (I.1) for
the coordinate u, v, x, y, and m, and ti -., e conjugate system (I.4)
and the necessary condition for control optimali*^y (1.2) and
(1.3) where it follows to assume 9 = 0, Pw = Pz = 0.

The bounded conditions in the landing problen, have the following
aspect:

7_

Analogously for the take-off

i
where Ro = H + Ho. Ho is the radius and altitude of the orbit,
R, is the radius of the moon, L is the selenocentric distance
along the surface of the moon, Vn and V.r are the radial and trans-
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versal components of velocity.

Solving the bounded problem in Eq. (1.1)and (1.4) with the boundary
conditions in Eq. (3.1) and (3. 2) , o respect^vely, we fi$d in the
initial moment t = 0, the values Pu, Pv, Px, Py, and Pm. With an
allowance for the intergal,X{ 0 determines the free time T^(T^),
and a number of selected parameters is lowered to four.

The bounded problem was solved by means of a modification of
Newton's method (Ref. 9). In addition, the optimal control was
automatically determined; i.e., the program for regulating the
magnitude and. orientation of thrust, and their corresponding op-
timal trajectory for landing and take-off.

For an account of the-results of the numerical calculation, it
is convenient to start with a description of the p-trajectory;
P = (pu(t)t +pz)(t)^).

From Fig. 6 it can be seen that for the value W 100 deg, the
p-trajectory is close to the arc of t:-ie circle, for 4),= 60 deg
to the arc c.f the ellipse, for 	 = 10 deg to the linear segment
(or arc of the ellipse with great excentricity) which agrees
with the theory of a uniform-spherical (Ref. 4) and plane-paral-
lel (Ref. 3) field of gravitation.

In the process of parametric calculations, the altitude of the
initial bounded orbit varied from 15 km to 200 km, and the angular
distance W (^ Q ) varied from 10 to 180 deg. In the indicated range,
the optimal trajectories were composed of three sectors: two
sectors of maximal thrust (a duration of t i and t 3 - t2each),
divided by the passive sector (see Fig. 7 for the landing and
Fig. 8 for the take-off). That result also agrees with Ref. 4.
In the 15-20 deg interval, the first active sector of the landing
trajectory was small in time and characteristic velocity (Fig. 9).
The impulse is given for the descent from orbit. Basically, it
appears as the second active sector (in which the velocity is
dampened to 98 percent). In a range of short distances, the
active sector is commensurate to the length and characteristic
velocity. The total period of the active sector little depends
on the angular distance, and the duration of the maneuvers depend
on V 7r (^ ) almost linearly when '^i >15 to 20 deg,i=n, S.

For the take-off function, the active sectors change and the
second appears to be the correcting.

In the development VtyQ, ^ i > 20 d`g, the optimal program for
pitch tends to the linear function t. In addition, the average
value d0/dt with increase Vi approaches the angular velocity of
the revolution of the satellite of the moon at zero altitude.
In Fig. 10 there is shown an average angular velocity of pitch
(where such an average has meaning). In the trifle force t1,
the angle of orientation in the sector of descent from orbit changes
insignificantly and a corresponding dependence is presented in Fig.
11 for the coordinate system associated with the horizon in a
point of orbital descent. With an increase of W,rr the impulse

P

4
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the increase of the altitude
e transversal calculation.

optimal program 6(t)is essen-
of the orientation is explained
p-trajectory (see also Refs.

converges to a transversal, at least
of the orbit is a deflection from th

With a small value for distance, the
tially.nonlinear. Such an evolution
by the plot above in a variable type
3 and 4).

in Fig. 12, the trajectory o.L descent is presented (the second
active sector).

The sum of.the calculations is the magnitude of the final mass
after landing on the moon (and in the orbit of an ASi v1) is presented
in Fig. 13. The functional m l quickly increases reaching 	 30
to 40 der, of asymptotic value. The latter little depends on the
altitude of the orbit and thrust units of the craft (Fig. 14) begin-
ning with a value of the initi.al(ground) reactive acceleration
of 0.5.
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