29
 f

OAKLAND UNIVERSITY SCHOOL OF ENGINEERING

FIRST QUARTERLY PROGRESS REPORT

on
ERC/NASA

Contract No. NGR 23-054-003 O.U. Account No. 24771
 BIOSYSTEMS EITGINEERING RESEARCH

30 July 1969

School of Engineerıng
Oakland Unıversity
Rochester, Michigan 48063

J. E. Gibson, Principal Investigator

R H. Edgerton
R E. Haskell
J. C. Hzll

FIRST QUARTERLY PROGRESS REPORT
on
ERC/NASA
Contract No. NGR 23-054-003
BIOSYSTEUS ENGINEERING RESEARCH
J. E. Gibson, Principal Investigator
J. C Hzll
R. E. Haskell
R. H Edgerton

School of Engıneering
Oakland Unıversity
Rochester, Mıchigan 48063

INTRODUCTION

Considerable progress has been made during the first quarter of this contract.

The work led by J. C Hill on postural control has led to a deviation of the equations of motion for a seven-element stack man Work has been inituated on an experimental determination of the forcevelocity characteristics of numan muscles.

Some concern has been expressed about the relationship to the mission of NASA of our proposed work on Biomoptics For thas reason support for this activity was lamited to one man month and the object set of defining the proposed area for research. The section of this $\stackrel{3}{3}$ proposal entitled Bio-optics will satisfy this need, we feel.

One of the major areas of work in this effort is to be Biological Pattern Recognition. An interesting start has been made using the techniques of coherent optics and optical data processing. We wish especially to call the attention of ERC to the increase in speed of pattern recognition which is theoretically possible in this approach.

The work on describing function analysis of mar/machine systems is continumg in the final phase of an NSF research inntiation grant This grant will be completed in August of 1969 and no charges have been made for this work as yet on the present grant. The final report to NSF will be forwarded to ERC in September, 1969.

Chapter I.

POSTURAL CONTROL SYSTEM

I. Progress to Date

a. The equations of motion of the seven-element stick man depicted in Figure 1 are being derived by means of Lagrange's equations. In terms of the generalized coordinates indicated in Figure 1 , the total system kinetic energy may be expressed as the sum of the point mass kinetic. energy and the kinetic energy due to the distributed nature of the arms, legs, etc.,

$$
\begin{equation*}
T=T_{\mathrm{DIST}}+\mathrm{T}_{\mathrm{POINT}} \tag{1}
\end{equation*}
$$

The distributed kinetic energy is due only to rotation of the various elements, and $2 s$ easily obtanned as

$$
\begin{align*}
\mathrm{T}_{\mathrm{DIST}} & =1 / 2 J_{\mathrm{TR}} \ddot{\dot{\theta}}^{2}+1 / 2 J_{\mathrm{HD}}(\dot{\theta}+\dot{\zeta})^{2}+1 / 2 J_{\mathrm{UA}}(\dot{\theta}-\dot{\delta})^{2} \\
& +1 / 2 J_{\mathrm{FA}}(\dot{\theta}-\dot{\delta}-\dot{\varepsilon})^{2}+1 / 2 J_{\mathrm{TH}}(\dot{\theta}-\dot{\gamma})^{2} \\
& +1 / 2 J_{\mathrm{SH}}(\dot{\theta}-\dot{\delta}+\dot{\beta})^{2}+1 / 2 J_{\mathrm{FT}}(\dot{\theta}-\dot{\gamma}+\dot{\beta}+\dot{\alpha}) \tag{2}
\end{align*}
$$

The kinetic energy due to the point masses as more difficult to obtain, as it anvolves repetitive application of the relatave velocity theorem together wath a long chain of coordinate resolutions to enable expression of the kinetac energy of each point mass in the form

$$
T=1 / 2 M\left(V_{a}^{2}+V_{b}^{2}\right)
$$

Figure 1. Stıckman

Where V_{a} and V_{b} ane velocity components along any set of perpendicular axes. A tentative derivation of the V_{a}, V_{b} components for each of the masses follows The absolute velociry of, say, the $c g$ of the trunk is dencted by $V_{T R / 0}$, while the relative velocity of, say, the hap with respect to the $c g$ of the trunk is dentoed by $V H / T R$

Unit vectors in a variety of dimections are indicated on the diagram, and are denoted by, for example, $\underset{\sim}{U}$ and $\underset{\sim}{u}$

- The velocity components of each mass point must now be obtained along any convenient set of orthogonal axes, the chozce of which varies during the analysis. We have

$$
\begin{align*}
& V_{\tau T R / 0}=\dot{x} \underset{\sim X}{ }+\dot{y} \underset{\sim y}{U} \tag{3}
\end{align*}
$$

Using the relative velocity theorem, the absolute velocity of the hip can be expressed as the relatzve velocity of the hip with respect to the c.g. of the trunk plus the absolute velocity of the trunk:

$$
\begin{align*}
{\underset{\sim}{H} / O}_{V}^{V} & =V_{\sim H / T R}^{s}+V_{T R / O} \\
& =\ell_{T R M M} \dot{\theta}_{n 0}^{U}+\dot{X}_{\sim X}+Y_{\sim Y}^{U} \tag{5}
\end{align*}
$$

Resolving into ${\underset{\sim N}{ }}_{U},{\underset{U T}{ }}_{U}$ coordinates so that the vector addition can be porformed

$$
\begin{align*}
& {\underset{\sim}{H} / O}^{V}=\ell_{T R M} \dot{\theta}_{U_{\theta}}+[-\dot{x} \cos \theta+\dot{y} \sin \theta] \tilde{U}_{\theta} \\
& \left.+[\dot{x} \sin \theta+\dot{y} \cos \theta]_{\sim}\right]_{T R} \\
& =\left[\ell_{T R M} \dot{\theta}-x \cos \theta+\dot{y} \sin \theta\right]_{v}^{u} \\
& +[x \sin \theta+\dot{y} \cos \theta]]_{T R} \\
& =\mathrm{V}_{\mathrm{H} \theta} \underset{\sim}{U}+\mathrm{V}_{\mathrm{HTR}} \underset{\sim}{\mathrm{U}} \mathrm{TR} \tag{6}\\
& v_{T H / O}=V_{T H / H}+v_{V / O}
\end{align*}
$$

$$
\begin{aligned}
& =\ell_{T H M} \dot{Y}_{\sim Y}^{U}+V_{H O} U_{\theta}+V_{H T R}{\underset{\sim T R}{ }}_{U T R}
\end{aligned}
$$

$$
\begin{align*}
& +[\dot{x} \sin \theta+\dot{y} \cos \theta]]_{T R} \tag{7}
\end{align*}
$$

Resolving anto ${\underset{\sim Y}{ }, \sim_{\sim}^{U}}_{U_{T H}}$ coordinates,

$$
\begin{aligned}
& \left.\left.-{ }_{-\varepsilon_{T R I I}} \dot{\theta}-\dot{x} \cos \theta+\mathrm{y} \sin \theta\right) \sin \gamma\right] \|_{T H} \\
& +\left[-\left(l_{\operatorname{TRM}} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma\right. \\
& +(\dot{x} \sin \theta+y \cos \theta) \sin \gamma] J_{\gamma}
\end{aligned}
$$

$$
\begin{align*}
& =\left[\varepsilon_{\mathrm{THM}} \dot{\gamma}-\left(e_{\mathrm{TRH}} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma\right. \\
& +(\dot{\mathrm{x}} \sin \theta+\dot{y} \cos \theta) \sin \gamma]_{\sim \gamma}^{u} \\
& +[-(\dot{\mathrm{x}} \sin \theta+y \cos \theta) \cos \gamma \\
& \left.-\left(l_{\mathrm{TRM}} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \sin \gamma\right]_{\sim \mathrm{TH}} \\
& -V_{\mathrm{THY}} U+V_{\mathrm{THTHTH}} \tag{8}
\end{align*}
$$

The absolute velocity of the knee is given by

$$
\begin{aligned}
& v_{K / O}=V_{W / H}+V_{H / O} \\
& =\left[\ell_{T H} \dot{\gamma}-\left(\ell_{T R M} \dot{\hat{\partial}}-\dot{x} \cos \theta+\dot{y} \sin \quad \theta\right) \cos \gamma\right. \\
& t(\dot{x} \sin \theta+\dot{y} \cos \theta) \sin \gamma]_{\sim \gamma} \\
& +\left[-(\dot{x} \sin \theta+\dot{y} \cos \theta) \cos \gamma-\left(\operatorname{dar}_{\operatorname{Rin}} \dot{\dot{e}}-\dot{x} \cos \theta+\dot{\mathrm{y}} \sin \theta\right) \sin \gamma\right] \mathrm{U}_{\mathrm{TH}}
\end{aligned}
$$

The absolute velocity of the center of the mass of the shank is given by

$$
\begin{aligned}
& V_{S H / O}=V_{S H / K}+V_{W K / O}
\end{aligned}
$$

$$
\begin{align*}
& =\left\{\ell_{\operatorname{Srm}^{\mathrm{B}}} \dot{\beta}+\left[\ell_{\mathrm{TH}} \gamma-\left(\ell_{\mathrm{TRM}} \dot{\theta}-\dot{\mathrm{x}} \cos \theta+y \sin \theta\right) \cos \gamma\right] \cos \beta\right. \\
& -[-\dot{x} \sin \theta+y \cos \theta) \cos \gamma \\
& \left.\left.-\left(\ell_{\operatorname{TRM}} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right)\right] \sin \beta\right\} \underset{\sim \beta}{U} \\
& +\left[\left[-(\dot{x} \sin \theta+y \cos \theta) \cos \gamma-\left(\ell_{\operatorname{TRM}} \dot{\theta}-\dot{x} \cos \theta\right.\right.\right. \\
& +\dot{\mathrm{y}} \sin \theta) \operatorname{sin\gamma }] \cos \beta-\left[\ell_{T H} \dot{\gamma}-\left(\ell_{T R M i} \dot{\theta}-x \cos \theta\right.\right. \\
& +y \sin \theta) \cos \gamma+(\dot{x} \sin \theta+y \cos \theta) \sin \gamma] \sin \beta\} \underset{\sim}{U} \mathrm{SH} \tag{I0}
\end{align*}
$$

The absolute velocity of the ankle is obtained by substicuting ${ }^{s}{ }_{S H}$ for $\imath_{\text {SHM }}$ in equation (10), glving

$$
\begin{align*}
& {\underset{\sim}{U}}_{A / O}=\left\{\ell_{S_{H}} \dot{\beta}+\left[\ell_{T H} \bar{\gamma}-\left(\ell_{\operatorname{TRM}^{\prime}} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma\right] \cos \beta\right. \\
& -\left[-(\dot{x} \sin \theta+\dot{y} \cos \theta) \cos \gamma-\left(\ell_{\text {TRM }} \dot{\theta}-\dot{x} \cos a+\dot{y} \sin \theta\right)\right. \\
& \sin \beta\}{\underset{\sim}{\beta}}_{U_{\beta}}+\{[-(\dot{x} \sin \theta+\dot{y} \cos \theta) \cos \gamma \\
& \left.-\left(\ell_{T R M} \dot{\theta}-\dot{x} \cos \theta+y \sin \theta\right) \sin \gamma\right] \cos \beta-\left[\ell_{T H} \dot{\gamma}\right. \\
& \left.\left.-\left(\ell_{T R M} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma+(\dot{x} \sin \theta+\dot{y} \cos \theta) \sin \gamma\right] \sin \beta\right\}_{\sim}^{U} U_{S H} \\
& =V_{a O \beta_{\sim}}^{U}+V_{a O S H}{\underset{\sim S H}{ }}^{U} \tag{II}\\
& V_{\sim F T / O}=V_{\sim F T / A}+V_{\sim A / 0} \\
& =2_{F T M} \dot{\alpha}_{\sim \alpha}^{U}+V_{\sim A / O}^{Y}
\end{align*}
$$

Resolving equation (11) into ${\underset{\sim}{\alpha}}^{U},{\underset{\sim}{S H}}^{U}$ coordinates, the absolute velocity of the c g . of the foot is

$$
\begin{aligned}
& d_{\mathrm{FT} / 0}=\hat{b}_{\mathrm{FTM}} \dot{\alpha} \dot{U}_{\alpha}+\left[\mathrm{v}_{\mathrm{aOSH}} \cos \alpha+\mathrm{v}_{\mathrm{aOS}} \sin \alpha\right] \mathrm{v}_{\alpha} \\
& +\left[-V_{\mathrm{aOB}} \cos \alpha+V_{\mathrm{aOSH}} \sin \alpha\right]_{\sim \mathrm{Sr}}
\end{aligned}
$$

$$
\begin{align*}
& -\dot{\mathrm{x}} \cos \theta+\dot{\mathrm{y}} \sin \theta) \sin \mathrm{Y}] \cos \beta-\left[\varepsilon_{\mathrm{TH}} \dot{\gamma}-\left(2_{\operatorname{TRM}} \dot{\dot{\theta}}\right.\right. \\
& -\dot{\mathrm{x}} \cos \theta+\dot{\mathrm{y}} \sin \theta) \cos \gamma+(\mathrm{x} \sin \theta+\dot{\mathrm{y}} \cos \theta) \mathrm{sin} \gamma] \sin \beta\} \cos \alpha \\
& +\left\{\ell_{\mathrm{SH}^{\mathrm{B}}} \dot{+}+\left[\ell_{\mathrm{TH}} \dot{\gamma}-\left(\ell_{\mathrm{TRH}} \dot{\dot{\theta}}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma\right] \cos \beta\right. \\
& \left.-\left[-(\dot{x} \sin \theta+\dot{y} \cos \theta) \cos \gamma-\left(l_{T R M} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \sin \beta\right] \sin \alpha\right]_{\sim}^{U} \\
& +\left[-\left\{\ell_{\operatorname{SH}^{\beta}} \dot{\beta}+\left[\ell_{\mathrm{TH}} \dot{\gamma}-\left(\ell_{\mathrm{TRM}} \dot{\theta}-\dot{\mathrm{x}} \cos \theta+\dot{\mathrm{y}} \sin \theta\right) \cos \gamma\right] \cos \beta\right.\right. \\
& -\left[-(\dot{\mathrm{x}} \sin \theta+\dot{\mathrm{y}} \cos \theta) \cos \gamma-\left(\ell_{\operatorname{TRM}} \dot{\theta}-\dot{\mathrm{x}} \cos \theta+\dot{\mathrm{y}} \sin \theta\right) \sin \beta\right\} \cos \theta \\
& +\left[-(\dot{x} \sin \theta+y \cos \theta) \cos \gamma-\left(\ell_{T R M} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \sin \gamma\right] \cos \beta \\
& -\left[\ell_{T H} \dot{\gamma}-\left(\ell_{T R M} \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right) \cos \gamma+(\dot{x} \sin \theta+y \cos \theta) \sin \gamma\right] \\
& \sin \beta\} \sin \alpha]_{\sim} \operatorname{SH} \tag{12}
\end{align*}
$$

Expressions for the absolute velocities of the shoulder, upperarm, and forearm are obtained in similar fashion

$$
\begin{align*}
& v_{U S / 0}=v_{U S / T R}+v_{T R / 0} \\
& =-\left(l_{T R}-l_{T R M} \dot{\partial U_{V \theta}}+\dot{x} \underset{\sim X}{U}+\dot{y} \underset{\sim y}{U}\right. \tag{13}
\end{align*}
$$

Resolving into $U_{\sim}, U_{T R}$ coordinates, the absolute velocity of the shoulder is obtained as

$$
\begin{align*}
\ddot{v}_{S / O} & =-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}{\underset{\sim}{U}}_{U}+[-\dot{x} \cos \theta+\dot{y} \sin \theta]_{\sim}^{U} \theta \\
& +[\dot{x} \sin \theta+y \cos \theta]_{\sim T R} \\
& =\left[-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right]_{\sim \theta}^{U} \\
& +[\dot{x} \sin \theta+\dot{y} \cos \theta]_{\sim T R} \tag{14}
\end{align*}
$$

The velocity of the $c g$ of the upper arm is then given by equation (15).

$$
\begin{align*}
& V_{U A / O}=V_{U A / S}+V_{S / O} \\
& =\ell_{\operatorname{UAM}} \dot{\delta}_{\sim}^{U}+{\underset{\sim}{S}}^{V_{S}} 0 \\
& =\ell_{U_{A M}} \dot{\delta}{\underset{\sim}{\delta}}_{U}^{U}+\left[-\left(\ell_{T R}-\ell_{T R T i}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right]_{\sim \theta}^{U} \\
& +[x \sin \theta+\dot{y} \cos \theta]_{\sim T R} \tag{15}
\end{align*}
$$

Resolving into ${\underset{\sim}{w}}^{U},{\underset{\sim}{U A}}^{U}$ coordinates gives

$$
\begin{align*}
& -[x \sin \theta+y \cos \theta] \cos \delta\} \psi_{\sim}^{U} \\
& \text { s } \\
& +\left\{\left[\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}-\dot{x} \cos \theta+y \sin \theta\right] \cos \delta+[\dot{x} \sin \theta+\dot{y} \cos \theta] \sin \delta\right\} \hat{U}_{U A} \\
& =\ell_{U A M} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{T R 11}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right] \sin \delta \\
& -[x \sin \theta+\dot{y} \cos \theta] \cos \delta\}_{\sim}^{U} U_{\delta} \\
& +\left\{\left[\left(l_{I R}-\ell_{T R I I}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right] \cos \delta+[x \sin \theta+\dot{y} \cos \theta] \sin \delta\right\}_{\text {UnA }} \tag{16}
\end{align*}
$$

The elbow velocity is obtanned by replacing $\ell_{U A M}$ in equation (16) by ℓ_{UA}

$$
\begin{align*}
V_{E / O}= & \ell_{U A} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{I R M}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right] \sin \delta \\
& -[x \sin \theta+y \cos \theta] \cos \delta{\underset{\sim}{U}}^{U}+\left[\left(\ell_{T R}-\ell_{T R E}\right) \dot{\theta}\right. \\
& -\dot{x} \cos \theta+\dot{y} \sin \theta] \cos \delta+[\dot{y} \sin \theta+y \cos \theta] \sin \delta\} U_{U U}^{U} \tag{17}
\end{align*}
$$

The veloclry of the foream c.g is obtained by the relative velocity theorem as

$$
\begin{align*}
v_{\text {VA/O }} & =v_{v A / E}+v_{v E / O} \\
& =\ell_{F A M} \dot{\varepsilon}{\underset{\sim E}{ }}_{U_{E}}+V_{E / O} \tag{18}
\end{align*}
$$

Resolving into $\underset{\sim}{U},{\underset{\sim}{*}}^{U}$ FA coordinates yıelds

$$
\begin{aligned}
v_{F A / O} & \left.\left.=\ell_{F A M} \dot{\varepsilon}{\underset{v \varepsilon}{U}+\left\{\left[\ell_{U A} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}-x \cos \theta\right.\right.\right.}+\quad+y \sin \theta\right] \sin \delta-[\dot{x} \sin \theta+\dot{y} \cos 0] \cos \delta\right] \cos \varepsilon-\left[\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}\right.
\end{aligned}
$$

$-\dot{x} \cos \theta+\dot{y} \sin \theta] \cos \delta+[x \sin \theta+y \cos \theta] \sin \delta] \sin \varepsilon\} U_{\sim E}$
$+\left[\ell_{U A} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right] \sin \delta\right.$
$-[x \sin \theta+\dot{y} \cos \theta] \cos \delta] \sin \varepsilon+\left[\left[\left(2_{T R}-2_{\Gamma R i H} \dot{\theta}\right.\right.\right.$
$-\dot{x} \cos \theta+\dot{y} \sin \theta] \cos \delta+[x \sin \theta+\dot{y} \cos \theta] \sin \delta] \cos \varepsilon\} U_{F A}$

$$
\begin{align*}
& =\left\{\ell_{\mathrm{FAM}} \dot{\varepsilon}+\left[\ell_{U A} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{T R M_{1}}\right) \dot{\theta}-\dot{x} \cos \theta\right.\right.\right. \\
& +\dot{y} \sin \theta] \sin \delta-[x \sin \theta+y \cos \theta] \cos \delta] \cos s \\
& \left.-\left[\ell_{T R}-\ell_{\text {TR }{ }^{\pi} 1}\right)_{\dot{\theta}}-\dot{x} \cos \hat{\theta}+y \sin \theta\right] \cos \delta+[\dot{x} \sin \theta+\dot{y} \cos \theta] \\
& \sin \delta] \sin \operatorname{sen}_{\sim \varepsilon}^{U}+\left[\ell_{U A} \dot{\delta}+\left[-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}\right.\right. \\
& -\dot{x} \cos \theta+y \sin \theta] \sin \delta-[x \sin \theta+\dot{y} \cos \theta] \cos \tilde{j}] \sin \varepsilon \\
& +\left[\left[\left(\varepsilon_{T R}-\varepsilon_{T R M}\right) \dot{\theta}-\dot{x} \cos \theta+\dot{y} \sin \theta\right] \cos \delta+[\dot{x} \sin \theta+\dot{y} \cos \theta]\right. \\
& \sin \delta] \cos \varepsilon\}_{\sim}^{E} E_{F A} \tag{19}
\end{align*}
$$

Finally, the absolute velocity of the head c.g. is given by

$$
\begin{align*}
& v_{\text {HD } / 0}=V_{H D / S}+V_{S S / O} \\
& =\ell_{\mathrm{HDM}_{\mathrm{M}}} \bar{\zeta}_{\sim \delta}^{U}+{\underset{\sim}{V} / 0}_{V} \tag{20}
\end{align*}
$$

$$
\begin{align*}
& \text { Resolving into } U_{\sim}^{U},{\underset{\sim H D}{ }}^{U} \text { coordinates, } \\
& {\underset{\sim}{V}}_{V D / O}=\ell_{H D M} \dot{\zeta}{\underset{\sim}{V}}_{U}^{U}+\left\{-\left[-\left(\ell_{T R}-\ell_{T R M}\right) \dot{\theta}-x \cos \theta+\dot{y} \sin \theta\right] \cos \zeta\right. \\
& -[\dot{x} \sin \sin \theta+\dot{\mathrm{y}} \cos \theta] \sin \zeta\}{\underset{\sim}{\zeta}}_{U_{\zeta}}+\left\{-\left[-\left(\ell_{T R}-\ell_{T R E}\right) \dot{\theta}\right.\right. \\
& -\dot{x} \cos \theta+\dot{y} \sin \theta] \sin \zeta+[x \sin \theta+y \cos \theta] \cos \zeta\}{\underset{\sim}{U}}^{U} \mathrm{HD} \\
& =\left\{\ell_{\mathrm{HDM}} \dot{\dot{\delta}}-\left[-\left(\ell_{T R}-\ell_{\mathrm{TR} M}\right) \dot{\theta}-\dot{\mathrm{x}} \cos \theta+\dot{\mathrm{y}} \sin \theta\right] \cos \zeta\right. \\
& -[x \sin \theta+\dot{y} \cos \theta] \sin \zeta]_{\sim \zeta}^{U_{\zeta}}+\left\{-\left[-\left(e_{I R}-\ell_{T R I I} \dot{\theta}\right.\right.\right. \\
& -x \cos \theta+\dot{y} \sin \theta] \sin \zeta+[x \sin \theta+\dot{y} \cos \theta] \cos \zeta\}_{\sim}^{U} H D \tag{21}
\end{align*}
$$

Equations (3), (8), (10), (12), (16), (19), and (21) give the velocity components of the trunk, thigh, shank, foot, upper arm, forearm, and head respectavely, these components are obtanred in several different coordinate systems

The velocity components must now be squared, added, and eventually partaally differentiated The expressions are uncomfortably lengthy for manzpulation by hand, although not yet impossibly so.
b. The force-velocity characteristics of human muscles will appear in the generalized forces when these are derived for the equations of motion. A fixture to allow gathering of experimental data on these characteristics for the shoulder extensor and the biceps has been constructed, and is being used to provide verification of the dominant properties of these muscles as previously reported in the literature A relatively small part of the research effort has been devoted to thas area up to the present time

II. Future Work on Postural Cortrol System

a. A way of deriving the equations of motion more effectuve and reliable than hand manzpulation is being sought. The symbolic manipulation capabilities of the FORMAC digital computer program will be evaluated for possible use in the problem of obtaining expressions for the system kinetic energies A program called COSnIC 160, whach pereorms analytic differentiation, is being evaluated for possible application to the partial differentaation phase of the Lagranglan formulation
b Work on the measurement of the force-velocity characteristıcs of human muscle whll contanue.

Chapter II.

BIO-OPTICS

This repont represents progress to date of work on two aspects related to bio-optics the first is to provide a design of a continuously variable focusing system which could be used exther
a) to replace bifocal lenses
b) allow bifocal contact lenses, or
c) provide an astıfucial cornea.
the second is an attempt to descride and model the cornea
The application of luquid crystals for these purposes was rentatıvely chosen as a media because of theur sensitive optical properties which can be readily altered by magnetic, elecirical or mechanical means ($1,2,3$)

Introduction to Spectacle Requirements

To discuss the requirements of a controlled focus system for spectacle wearers, sore rough calculations will be presented in thas section ;

The relatıon of the index refraction to the alelectric constant and the permeabality in the media is known to be related tnrough Maxwoll's equerions

$$
n=\left(\frac{\varepsilon_{0}}{\varepsilon_{0}} \frac{\mu}{\mu_{0}}\right)^{1 / 2}
$$

If the media is nonmagnetic the permeability $\mu=\mu_{0}$, ($\varepsilon_{0}=$ the permittivaty of vacuum then $n=\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{1 / 2}=(k)^{1 / 2}$ where K is the dielectric constant Thus, if as observed by cars ${ }^{(1)}, \frac{K E}{K_{0}}$ of 112 are observable in thin films then

$$
\frac{n_{E}}{n_{0}}=\left(\frac{K_{E}}{K_{0}}\right)^{1 / 2}=\left(\frac{37}{3} 3\right)^{1 / 2}=107
$$

Is readily obtained with nematic (liquid crystal) substances Since optical focal length of a lense is expressed as

$$
f=\frac{\text { radius of curvature }}{\left(n-n_{0}\right)}
$$

If $n_{E}=107$ and $n_{0}=1$ is taken as the index of refraction for air then

$$
\frac{f_{E}}{E_{0}}=\frac{n_{0}-1}{n_{E}-1}=\frac{n_{0}-1}{107 n_{0}-1}
$$

if $n_{0}=\sqrt{33}$ then

$$
\frac{f_{E}}{f_{0}}=\frac{1.82-1}{(107)(182)-1}=\frac{82}{95}=086
$$

s
The focal length can thus be changed by 14% This must be compared wath the accomodation of the lense' If $\frac{f_{e}}{f_{0}}=036$ then the focal porer

$$
\begin{aligned}
& D \equiv \frac{I}{I} \\
& \frac{D_{O}}{D_{E}}=086
\end{aligned}
$$

D_{0}, the focal power of the connea is roughly 50 diopters or

$$
D_{E}=\frac{D_{0}}{.85} \frac{50}{86}=59
$$

Then $D_{E}-D_{0}=59-59=9$ diopters of cnange is possible. From Fig. (I) the physiological accomodation as a function of age for people goes from 16 to 1 diopters. If a change of 9 as possible this would extend the accomodation of a 68 year old to the equavalent of say an average 30 year old

- In practice, spectacles for continuous use are prescrabed as $2 / 3$ the power needed for reading at 40 cm Thus a reading lense of bifocal of $1 / 3$ the total power is often prescribed If a conventional lense were to take the $\left(\frac{2}{3}\right) 15=10$ diopters, then a controlled variation of 5 diopters could easily be supplied with a liquid crystal effect

The problem then is to change the index of refraction by a simple means The orıentation of long molecules by electrical, magnetic and actuve surfaces as well as shear are possible with nematic (thread lıke) Inquad csystals which in turn changes the index of refraction Surface orientation can be ach ieved with p-azoxyanisole by rubbing the surface of a glass sandwich with a cloth in one durection (the drection of orientation desired) Then by one of the field effects described this can then be altered or alternatavely starting from a random dispersion the fields can be used for alıgnment The concern in the present research for using shear induced andey of refraction changes rather than electrical or magnetic is that the possibility exists for control of the index at positions remote from the druving mechanism For example,
vabration of one surface while the other is fixed is simpler than applying a magnetic field perpendicular to the surfaces

Electrically conducting transparent materials for a sandwach material are also being sought but so far the only materials which have been obtaned are tin oxide coated glass. It is felt chat electracally conductive plastics ane a possible material for use in this application If satisfactory materıals can be obtanned

* The other reason for examining the flow or shear effects is the possibiluty of utiluzing the dynamic scattering mode ${ }^{(3)}$ for refraction change In this case the hydrodynamic effects must be understood to develop a design

The analysis of the index of refraction change in the static field situation has been made, by Fricke ${ }^{(5)}$ Thıs analysis has been extended to the shear situation shown an Figure (2) thas sumner startIng from the analysis of the conductivaty of a suspension of ellipsolds representing molecules

Theoretical calculations on the change in dielectric constant for a sheared suspension of particles of symetrical allypsoldal shape have been completed The axis ratio for oblate and prolate ellipsoids was varied and computation of the form factor F_{I} relating the dielectric constant for a sheared suspension to the principle dielectric constants for a completely allıgned suspension defined by

$$
\bar{K}_{I I}=K_{b}+\left(K_{a}-K_{b}\right) F_{I}
$$

$$
\begin{aligned}
& \bar{K}_{22}=K_{b}+\left(K_{a}-K_{b}\right) F_{2} \\
& \bar{K}_{33}=K_{b}+\left(K_{a}-K_{b}\right) F_{3}
\end{aligned}
$$

have been theoretically computed. The computer calculations for the factor F_{3} have been completed and are shom plotted in Figure (3) Similar calculations are in progress for F_{2} and F_{1}

In the limit of large axis ratio $r=\frac{a}{b}$ or very long rods ($r \rightarrow \infty$) these are analytically evaluated as

$$
F_{1}=\frac{\ln 2}{\pi}, \quad F_{2}=0, \quad F_{3}=\frac{I}{2}
$$

Sance the factor F_{1} Is $\frac{I}{2}$ for a random angutar distribution of particles, it is easily seen that for long molecules the effect of shear produced by motion parallel to the $X_{1}{ }^{\prime}$ axis produces theoretically no change in the dielectric constant in the $X_{3}{ }^{\prime}$ drection Vibration of two plates parallel to each other is not therefose an effective way of producing index of refraction changes perpendicular to the plates An effective way to produce a change is to shear the material in the plane and observe the change parallel to the sheam planes Thus variation will be observed in K_{22} as a result of shear parailel to the X_{1} ' axis In thas case for long rods $F_{2}=0$ and the effect is equivalent to complete alignment vich rods rotating in the plane

[^0]A sanduich cell has been constructed to rest the electrical field and shear fleld effects on p-azoxyanisole nematic crystals. The recent avallabilnty of room temperature materials whll assist consideraoly in these experaments Experiments wath a membrane of liquid crystal supported by surface tension and attached to a piezoelectric crystal proved unsuccessful because of the mabllıty to control the liquid crystal consistency and obtain wrell defined shear waves

A fused quartz shear plate is presently under construction to provade better defined shear waves in a sandwich coastruction setup A sandwich construction was selected since it appears that for production of a variable Index of refraction optacal system this type will be required The later introduction of a cusved sandwich is expected if the results of the flat sandrich are promusing

The followng three lines of nesearch on thas applacation are expected to be pursued to continue this anvestigation

I To examine the shear effects experimentally it is planned to complete construction of the fused quartz shear generator, This will allow the study of the shear inder control possible
2. The theoretucal analysis of dielectric constant variation at今 optical frequency is expected to be completed including calculation of the dielectric factors F_{1} and F_{2} for a range of axıs ratios.

3 Construction of a controlled indey lense will then be attempted if several difficulties involving spherical rather than flat or cylundrical geomotry can be circumvented

Corneal model and analysis
This section of research princlpally nevolves anoung an explanation for the transparency of the cornea The present explanations of cornea transparency are based on a "theory" evolved from the calculatıons based on scattering from small cylundrical fibers shorm ir Fig. (4) which predict that the cornea should scatter roughly 90% of the light and hence be opaque (6) The "theory" hypotheslzes a lattice whych in esfect Increases the size of the scatterngg units It is well known that scattering in the cornea can be increased by mechanacal shear or pressure effects (6) To start with thexefore, several pag's eyes were examined, and pressurized by inserting a hypodermic needle through the optic nerve and increasing the pressure in the intact eye A general conclusion was that pressure was more effective in producing "cloudiness" than mechanical distontion

The analogy betreen liquid crystal behavior and corneal stroma was pursued further to reveal the following possibllatles for modeling the cornea or replacing it with liquad crystals

The mechanical shear properties of the stroma are know (6) to be non-elastic in the sense that shearing of outer to inner layers an not resisted, demonstratang the liquad behavaon of this material

An optical analogy is also possible from analysis of the scattering of light from the correa and from liquid crystals in the "Dynamic Scattering Mode" Scattering experiments ${ }^{(3)}$ on (nematic) liquid crystals in this mode demonstrate that the coystals behave not as single molecule scattering centers but as bundles so that scattering theory for cylanders
large in diameter compared to the wavelength of light are applicable rathen than small The same may be true for the cornea if as has been postulated from analysis for small cylinders that the cornea should be opaque

A physical analog of the corneal structure is contemplated utilnzing fiber optac sections to simulate the scattering from the cornea froplls and bundles
_- A satisfactory explanation of the corneal transparency would help to assist in the problems of opacity in fiberous structures and the mechanisms by which theur transparency can be altered

It is planned therefore to attempt to model the cornea with a fiber optic system and also to examine further the "dynamic scattering theory" using liquid crystals as a possible explanation for the observed transparency

References

1. Carr, E. F., "Ordering in Liquid Crystals Owing To Electric and Magnetic Fields" Advances in Chemistry, Series 63, p. 76, American Chemıcal Society, Washzngron, D C (1967).

2 Deutch, CH and Keatıng, $\mathrm{F} . \mathrm{M}$, "The Scattering of Coherent Light from Nematic Liquad Crystals in the Dynamue Scatcering Mode". Bendix Research Laboratomes, prelmmany report 1969

3 Hellmezer, G H , Zaroni, L A , and Barton, L. A , Dynamic Scattering A New Electro-optic Effect in Certain Classes of Nematrc Iiquid Crystals Proc IEEE, vol 56, No 7, p ll62 (1968).
4. Bennett, A. G. and Francis, J. I.," Ametropia and Its Correction In The Eye" (H Davson edition), Academic Press, New York and
.. London, vol 14, P 154
5 Fricke, H , The Electric Conductivity and Capacity of Disperse Systems, Pnysics, vol. 1, p. 106, (1931)
6. Maucice, D M , The Structuce and Transpacency of the Cornea, Jnurnal of Physiology, vol 136, No. 2, p. 263, (1957)
7. Jakus, M A , The Fine Structure of The Human Connea In, "The Structure Of The Eye", (G K Smelser, edution), Acadcmic Fress, New York and London

Figure 1 Accomodation of the humen eye as a function of age (4) Curves A and C are physiological limits and B is the normal

Figure 2 Ellipsold coordinates for a description of particle in a uniform shear field

Figure 3 Variation of the form factor for dielectric the constant of a disperse media in a uniform shear field as a function of one axis ratio a / b of symmetrical ellipsolds (a $1 s$ the axis of symmetry)

Figure 4 Photo of an X ray micrograph of a section of a cornea sectioned perpendicularly to the surface Thas photo shows the fibrils located an lamella at different angles in different lamella but very uniform within a lamella Modıfication of a photo by Jakus (7)

Chapter III.

COHERENT OPTICAL ANALYSIS OF BIOLOGICAL PHOTOMICROGRAPHS

Biological studies remain langely experimental and theories ane developed only after a large quantity of experimental data has been collected and anaiyzed. Major breakthroughs in biology and bio-medicine can be expected only when methods are available which can rapidly analyze thas large amount of expermental data in such a way as to suggest mathematical models and physical mechanisms for the particular biological phenomena being studied.

Since the raw data is in the form of blological slides or photomicrographs it is in a form that can be used durectly in an optical processing system This is in sharp contrast to the case of digital computer processing where one would have to convert ail of the anfomation in the photomicrograph to digital form before one could begin to process the data. Even if one could put all the information in digatal form the tame required to carry out the processing even on a fast computer would probably be excessive considering the very large amount of data to be processed On the contrary the optical processor would carry out the calculatjons for a single photomacrograph essestially instantaneously (at the speed of light)

Research is being conducted to explore the possibilities of using coherent optical processing techniques for rapidly analyzing large quantities of experimental biological data The approach is unique in its attempt to characterize biological photomlcrographs as random signals from
which quantatative statistical information can be obtained. The information is designed to be in such a form as to suggest mathematical models and physical mechanisms for particular biological phenomena. For example, if a certain cell structure has a particular autocorcelation function it is conceivable that knowing that would suggest some underlyang physical theory or mechanism which caused the cell to grow in the manner in which it did Thus, it might de that such quantitative coherent optical measurement techniques could open up new possibilities in developing mathemathical and predictive theornes of blological processes. Such techniques could be applied in all areas of blology and medicine and could have far-reaching implications in the understanding of cell growth and disease

I. Optical Analysis of Biological Photomicrographs

The purpose of this study is to determane what type of quantitative nnfomation about a biological photomacrograph can be obtanned by considering the amount of light transmitted by the photomacrograph at a gaven location to be a random variable. The photomicrognaph represents a two dimensional random process which acts as a random diffracting screen when Illuminated with coherent light. The resulting daffracted light can provide statıstical information about the spatial distribution of the photomacrograph image The progress to date has included an analysis of photomicrographs as random diffracting screens, power spectrum and autocorrelation measurements of some specific photomicrographs and some random test screens, and the design of a new lensless optical processor.

II. Photomicrograpns as Random Diffracting Screens

Figure 1 shows coherent light incident from the left on a photomicrograph which is located in the $x-y$ plane and acts as a diffracting screen. If ${\underset{\sim}{n}}^{(x, y)}$ is the complex amplitude of light just to the left of the screen then the light amplitude just to the right of the screen is given by

$$
\begin{equation*}
\mathbb{V}^{\prime}(x, y)=g_{a}(x, y) \underset{\sim}{U}(x, y) \tag{I}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\sim}{g}(x, y)=A(x, y) e^{j \Phi(x, y)} \tag{2}
\end{equation*}
$$

is the complex transmittance of the photomicrograph The amplitude and phase of thas transmittance, $A(x, y)$ and $\Phi(x, y)$, are consıdered to be twodimensional random functions of the coordinates x and y For convenience

Fig 1
Photomicrograph as a Random Diffracting Screen
the position vector $r=x_{\sim x}+y_{\sim y} y$ can be introduced so the (2) can de written as

$$
\begin{equation*}
\underset{\sim}{g}(\underset{\sim}{r})=A(\underset{\sim}{r}) e^{j \Phi(\underset{\sim}{r})} \tag{3}
\end{equation*}
$$

The random functions $A(\underset{\sim}{r})$ and $\Phi(\underset{\sim}{r})$ are characterized by the onedimensional probabilıty densitles $p\left(a, \frac{r}{\sim}\right)$ and $p\left(\phi, \frac{r}{2}\right)$ Thus, for example, $p(a, r) d a$ is the probability that at the position $\underset{\sim}{r}$, the amplitude $A(r)$ has a value between a and $a+d a$. These one-dimensional probabilıty densities can be used to find the mean values, varıances and higher moments of the random functions $A(\underset{\sim}{r})$ and $\underset{\sim}{\underset{\sim}{r}} \underset{\sim}{r}$ However, they by no means give a complete description of these random functions The most important information in the photom=crograph concerns the spatial distribution of the particular objects photographed (cells, nuclei, etc.) The statistical properties of these spatial distributions are characterızed by hagher order probabilıty density functions The most important of these are the two-dimensional probability density $p\left(a_{1}, a_{2}, r_{1}, \frac{r_{2}}{r_{2}}\right)$ and $p\left(\phi_{1}, \phi_{2}, \frac{r_{1}}{n_{1}}, \frac{r_{2}}{2}\right)$ Thus, for example,
 phase $\left(\tilde{n}_{1}\right)$ has arvalue between ϕ_{1} and $\phi_{1}+C \phi_{1}$ and at the position f_{2} the phase $\Phi\left(r_{2}\right)$ has a value between ϕ_{2} and $\phi_{2}+d \phi_{2}$

These two-dimensional probability densities can be used to calculate the correlation functions $B_{A}\left(r_{1}, r_{2}\right)$ and $B_{\Phi}\left(r_{1}, x_{2}\right)$ Thus, for example

$$
\begin{align*}
B_{A}\left(r_{1}, r_{2}\right) & =\left\langle A\left(n_{1}\right) A\left(n_{2}\right)\right\rangle \tag{4}\\
& =\iint a_{1} a_{2} p\left(a_{1}, a_{2}, x_{1}, x_{2}\right) d a_{1} d a_{2}
\end{align*}
$$

A particular pnotomicrograpn will represent a certann realization of the random processes $A(\underset{\sim}{r})$ and $\Phi(\underset{r}{ })$. The ensemble assoclated with these random processes maght consist of a collection of sumilar photomicrographs from different specimens on photomicrographs of different negions of the same specamen. The random processes $A(\underset{\sim}{r})$ and $\Phi(\underset{\sim}{r})$ are said to be stationary in the wader sense if the expected values $\langle A\rangle$ and $\langle\delta\rangle$ are indepencent of $\underset{f}{ }$ and the correlation functions $B_{A}(\rho)$ and $B_{\Phi}(\underset{\sim}{\rho})$ depend only on the coondinate difference $\underset{\sim}{\rho}={\underset{\sim}{r}}_{2}-r_{n_{1}}$.

The space average of a given function $A\left(\frac{r}{n}\right)$ is defined as

$$
\begin{equation*}
\overline{A(r)}=\lim _{\substack{X \rightarrow \infty \\ Y \rightarrow \infty}} \frac{I}{X Y} \int_{\frac{-X}{2}}^{\frac{X}{2}} \int_{-\frac{Y}{2}}^{\frac{Y}{2}} A\left(\frac{r}{n}\right) d r \tag{5}
\end{equation*}
$$

where $\frac{d r}{n}=d x d y \quad$ If the ensemble average (A) is equal to the space average $\overline{\mathrm{A}(\underset{\sim}{n})}$ the process is sald to be ergodic. For a stationary random process $A(\underset{\sim}{r})$ if the correlation function $B_{A}(\underline{q})=\langle A(\underset{\sim}{r}) A(\underset{\sim}{r}+\underset{\sim}{\rho})\rangle$ is equal to the space cormelation funcion $\overline{B_{A}(\rho)}=\bar{A}(\underset{\sim}{r}) A\left(\underset{\sim}{r}{ }_{\sim}^{r}{\underset{\sim}{~}}_{\rho}^{\rho}\right)$ the process is said to be exgodic wath respect to its correlataon function The optacal methods for measuring the correlation functaon gererally measure the space correlation function An mportant consideration as will be lllustrated below is that the detall of the photomacrograph be fane enough so that a space average over the entire photomicrograph is a good approximation to the ensemble average.

An optical system can be used to produce the Fourler transform of a given photomicrograph. Thus if $\underset{\sim}{g}(\underset{\sim}{n})$ is the complex transmittance of a particular photomicrograph whose total area is $X Y$ then the complex Inght amplitude in the transform piane will be proportional to the Fourler transform of $\underset{\sim}{g}(x, y)$ lenoted by ${\underset{\sim X Y}{ }}^{\left(f_{X}, f_{y}\right)}$ where f_{x} and f_{y} are the spatial frequencies in the x and y directions The light intensity
 where $\underset{\sim}{f}$ is used to denote the spatial frequency vector $\underset{\sim}{f}=f_{x u x} f_{y} f_{y} y$.

For the complex random signal $\underset{\sim}{g} \underset{\sim}{r})$ (assumed to be- stationary) the autocorrelation function $\left.\mathrm{B}_{\mathrm{g}}^{(\underset{\sim}{p}}\right)$ is defined as

$$
\begin{equation*}
B_{g}(\rho)=\left\langle\underset{\sim}{g} \underset{\sim}{g}(\underset{\sim}{r}) \underset{\sim}{g}{ }^{*}(\underset{\sim}{r}+p)\right\rangle \tag{6}
\end{equation*}
$$

The power spectral density $\mathrm{S}_{\mathrm{g}}(\underset{\sim}{f})$ of the random process $\underset{\sim}{g}(\underset{\sim}{r})$ is defined as the two-dimensional Fourier transform of the autocomelation function $\mathrm{B}_{g}(\rho)$. Thus

$$
\begin{equation*}
S_{g}(f)=\int_{\sim}^{\infty} B_{g}(\rho) e^{-j 2 \pi f f}{ }_{\sim}^{\rho} d_{\sim} \tag{7}
\end{equation*}
$$

One can show that $S(\underset{\sim}{f})$ is also related to the Fourien transform of $\underset{\sim}{g}(\underset{\sim}{r})$ by the expression
:

$$
\begin{equation*}
S_{g}(f)=\lim _{X \rightarrow \infty}\left\langle\frac{1}{Y Y} \underset{Y \rightarrow \infty}{ } G_{X Y}(\underset{\sim}{f}){\underset{\sim X Y}{ }}_{\substack{f}}^{(f)}\right\rangle \tag{8}
\end{equation*}
$$

In the case of the optical eyperiment ${\underset{g}{g}}_{(\underset{i}{*})}^{(f)}$ is seen to be proportional to the limat of an ensemble average of the intensity measured in the transform plane This effect will be shown in some experimental results discussed below.

The autocorrelation function $\mathrm{B}_{\mathrm{g}}^{(\rho)} \underset{\sim}{(\rho)}$ is given from (7) by the inverse relation

$$
\begin{equation*}
B_{g}(\rho)=\int_{i}^{\infty} S_{g}\left(\frac{f}{\sim}\right) e^{J 2 \pi f \cdot \rho} \tag{9}
\end{equation*}
$$

$S_{g}\left(\frac{f}{n}\right)$ can be recorded on photographac filn in the transform plane of $\underset{\sim}{g}\left(\frac{r}{n}\right)$. This new signal can then be transformed optically to glve the autocorrelation function according to (9). Exarples of this type of measurement will be described below.

Often the photomicrograph will be characterized by only its amplitude transmittance $A(\underset{\sim}{r})$ on by only its phase transmattance $\Phi(\underset{\sim}{r})$. In general it will be necessary to relate the statistical properties of $A(\underset{\sim}{r})$ and $\Phi(\underset{\sim}{r})$ to the measured statistical properties of $\underset{\sim}{g}(\underset{\sim}{r})$ Some progress along tnese lines has been made and efforts in this area will continue with emphasis placed on being able to experimentally measure these statıstical properties
III. Power Spectrum and Autocorrelation Measurements

A schematic of the basic system used for optical processing is shown in Figure 2 A collimated beam of coherent light is incident from the left on a photomicrograph $g(x, y)$ that is inserted in the $n n-$ put plane The distribution of diffracted light that appears in the transform plane is proportional to the two-dimensional Fourier transform ${\underset{\sim}{X X}}\left(f_{x}, f_{y}\right)$ A photographic film in the transform plane will re-
 If a filter consisting of some type of mask is placed in the transform plane then the filtered amage of the original photomicrograph will appear in the output plane

As a" sumple example of a random daffracting screen let the sugnal in the input plane be two circular holes of diameter a separated by a distance d wich the line of centers oriented at an angle θ to the x-axis as shown in Figure 3 . Let θ be a random variable with a uniform probability density. A circular aperture centered at the origin can be denoted by

$$
\begin{equation*}
g_{0}(r)=\operatorname{carc}\left(\frac{r}{a / 2}\right) \tag{10}
\end{equation*}
$$

where $\operatorname{crrc}(r)=I$ for $r \leq l$ and is equal to zero otherwise. The !
Foumer transform of $g_{0}(\underset{\sim}{r})$ is

$$
\begin{equation*}
G_{0}(f)=\left(\frac{a}{2}\right)^{2} \frac{J_{1}\left(\pi a F_{0}\right)}{a f_{0} / 2} \tag{II}
\end{equation*}
$$

where $f_{0}=\sqrt{f_{x}^{2}+f_{y}^{2}}$ and J_{1} as a Bessel function of the first kind, order one The two hole signal in Figure 3 can then be written as

Fig. 2
Optical Processing Systen

Fig 3
Geometry of Two-hole Pattern

$$
\begin{equation*}
g\left(r_{n}\right)=g_{0}(r):\left[\delta\left(\underset{\sim}{r}-r_{n}\right)+\delta\left(r_{n}-r_{i 2}\right)\right] \tag{I2}
\end{equation*}
$$

The Fourser transform of (12) is

$$
\begin{equation*}
G(\underset{\sim}{f})=G_{0}(\underset{\sim}{\tilde{I}})\left[e^{-] 2 \pi \underset{\sim}{\tilde{I}} \cdot \underline{I}_{I}}+e^{\left.-] 2 \pi \tilde{\sim} \cdot \underline{r}_{2}\right]}\right. \tag{13}
\end{equation*}
$$

Making the substitutions $r_{n}=r_{0}-\frac{I}{2}{\underset{\sim}{n}}^{d}$ and $r_{2}=r_{r_{0}}+\frac{I}{2} \underset{\sim}{d}$ Eq. (I3) can be written in the form

$$
\begin{equation*}
G(f)=e^{-j 2 \pi f_{n} \underline{I}_{0}} 2 G_{0}\left(f_{n}\right) \cos \pi f_{n} \cdot d \tag{14}
\end{equation*}
$$

The intensity in the transform plane will then be proportional to $G(f) G^{*}(\underset{\sim}{f})$ where

$$
\begin{equation*}
G\left(\frac{f}{n}\right) G^{*}\left(\frac{f}{n}\right)=2 G_{0}^{2}\left(\frac{f}{n}\right)[1+\cos 2 \pi \underset{N}{f} \cdot d] \tag{15}
\end{equation*}
$$

Figures 4 and 5 show a two hole pattern and its transform pattern which closely follows Eq (15). The fact that the envelope in Fig 5 is not circularly symmetric as predicted by (11) is due to the fact that the two holes (produced by punching holes in aluminum foil) are not perfectly circular. However, the cosine modulation of the envelope which is related to the separation distance d is clearly visible

To obtain the power spectrum of the random process an ensemble average over all orientations of the two hole signai is required From (15) one can calculate

$$
\begin{align*}
G\left(\frac{f}{几}\right) G^{*}\left(\frac{f}{\pi}\right) & =2 G_{0}^{2}\left(\frac{f}{几}\right)+2 G_{0}^{2}\left(\frac{f}{\pi}\right) \quad \int_{0}^{2 \pi} \frac{1}{2 \pi} \cos \left[2 \pi f_{0} d \cos (\theta-\psi] d \theta\right. \\
& =2 G_{0}^{2}\left(\frac{\pi}{\pi}\right)\left[I+J_{0}\left(2 \sqrt[r]{ } f_{0} d\right)\right] \tag{16}
\end{align*}
$$

Fig. 4
Two-hole Pattern
38.

where $f_{\sim} \cdot \underset{\sim}{d}=f_{0} d \cos (\theta-\psi)$ has been used and $\psi=\tan ^{-1}\left(f_{y} / f_{x}\right)$. From (16) one notes that the power spectrum is proportional to the single nole transform given by (II) which is modulated by a J_{0} Bessel function rerm that contains information about the separation distance d As an attempt to measure an ensemble average a multuple exposure of the transform plane for a lange number of different orientations θ is shown in Figure 6 Techniques for improving this type of measurement and scamming the resulting intensity to detect the modulations are under investigation

In the photomicrograph problem one would like to have the random sample of large enough extent so that the transform of a single photomicrograph will determane the power speccrum of the ensemble (ergodic hypothesis) For example, Figures 7 and 8 are photomicrographs of different regions of a rabbit lens epithelium. The power spectrum of these two photomicrographs are shown in Figures 9 and 10 The extent to whach they represent the power spectrum of a random process is being studied Models of the lens epithelıun from which power spectra can be calculated are being investigated A lower magnification and therefore a larger number of cells in a given signal would improve the power spectrum measurements. However, this increases the chances of the signal being non-stationary since the cell distribution can change over a large region. In fact this change in distribution is an Important feature in the description of cell growth and its quantatative detection by optical techniques would be an important measurement Investigation into these areas is continuing.

If the power spectra in Figures 9 and 10 are used as signals and their Fourler transforms are measured then one obtains the autocorrelation function according to (9) These measurements are shown in Figures 11 and 12 Again tnese measurements are more characteristic of the particular sample rather than the random process due to the relatively small numper of cells in the sample.

As has been pointed out above a signal of large spatial extent is necessary $u f$ spatıal averages are to replace ensemble averages. The size of spatial signals in optical processors is limited by the size of the optical components used -- partacularly the slze of lenses. A new optical processon that uses no lenses at all following the input pinhole has been designed and tested. The system uses a single spnerical mirror as shown in Figure 13. Since high qualıty spherıcal mirrors With diameters of 8 or 10 inches are not uncommon a larger input plane format is possible with this type of processor than wath the standard types using lenses A detalled analysus of this lensless processor is contained in a forthcoming paper

Fug 11
Autocorrelation of Fig 7

Fig. 12
Autocorrelation of Fig. 8

Fig. 13
Lensless Optical Processor

[^0]: K_{a} and K_{b} are the dielectric constants for fields parallel to the ellipsoldal axes and a and b respectively where a is the symmetric axis

