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PREFACE 

This report presents i n  i t s  four volumes the r e s u l t s  of s tud ies  

conducted during the  period March 6 ,  1967 -June 30,  1968, under NASA 

research cont rac t  NSR 05-003-189, "Materials Studies Related t o  Lunar 

Surface Exploration." This study w a s  sponsored by the  Advanced Lunar 

Missions Directorate, NASA Headquarters, and w a s  under the  technical  

cognizance of  D r .  N. C. C o s t e s ,  Space Sciences Laboratory, 

George C. Marshall Space F l ight  Center. 

This report r e f l e c t s  t h e  combined e f f o r t  of f i ve  facul ty  investiga- 

t o r s  and a f u l l  t i m e  p ro jec t  manager/engineer ass i s ted  by s i x  graduate 

research a s s i s t an t s ,  representing several  engineering and s c i e n t i f i c  

d i sc ip l ines  per t inent  t o  study of lunar surface material propert ies .  

James K. Mitchell ,  Professor o f  Civ i l  Engineering, served as Principal  

Invest igator  and w a s  responsible for  those phases of the  work concerned 

with problems r e l a t ing  to  lunar so i l  mechanics and the  engineering 

propert ies  of  lunar s o i l s .  Co-investigators were Ian C. Carmichael, 

Professor of Geology, i n  charge of geological s tudies;  Joseph Frisch,  

Professor of  Mechanical Engineering, who w a s  responsible f o r  analysis  of 

f r i c t i o n  and adhesion problems and the t e s t i n g  of materials under high- 

vacuum conditions; Richard E .  Goodman, Associate Professor of Geological 

Engineering, who w a s  concerned with the engineering geology and rock 

mechanics aspects o f  the  lunar  surface; and Paul A. Witherspoon, 

Professor of  Geological Engineering, who conducted s tud ie s  re la ted  t o  

thermal and permeability measurements on the  lunar surface.  

Francois E.  Heuzg , Assis tant  Spec ia l i s t  , served as p ro jec t  manager and 

contributed t o  s tudies  i n  the areas of  rock mechanics and engineering 

geology. 
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INTRODUCTION 

I. OBJECTIVES 

I t  i s  axiomatic t h a t ,  among the myriad of technical  and s c i e n t i f i c  

fac tors  t h a t  must be considered i n  the  lunar exploration program, the  

nature of lunar s o i l  and rock surface materials is of prime importance 

i n  the design of spacecraft  landing systems, the design of surface 

mobility systems, the design of experiments t o  be conducted on the  lunar 

surface,  mission planning, and, ult imately,  t o  mission success. With- 

out  spec i f ic  knowledge of  the mechanical properties of lunar so i l s ,  

designers and mission planners have no choice but t o  adopt ultraconser- 

vative designs and procedures i n  an e f f o r t  t o  insure astronaut sa fe ty .  

Thus it is  of paramount importance t h a t  as much spec i f i c  information as 

possible about lunar surface material propert ies  be obtained p r io r  t o  

the  f i r s t  manned lunar mission, and t h a t  planning and design options for  

fur ther  missions remain open the rea f t e r  i n  order t o  accommodate changes 

as more and more spec i f ic  data  become avai lable .  

The study described i n  t h i s  report  w a s  i n i t i a t e d  i n  an e f f o r t  t o  

b e t t e r  define both the surface material  re la ted  engineering problems 

and the relevant  propert ies  of the materials themselves. 

developed as a r e s u l t  of t h i s  e f f o r t  w a s  then u t i l i z e d  i n  spec i f i c  

s tudies  of problems considered t o  be of c r i t i ca l  importance and f o r  the 

development of  analysis  and t e s t ing  methods t h a t  appear pa r t i cu la r ly  

promising f o r  the  study of lunar  surface propert ies  by both remote and 

t a c t i l e  means. 

Information 

I 

Specific objectives t h a t  were set a t  the  onset of the study w e r e :  

1. To define geological and engineering problems associated with 

on-site lunar exploartion dependent on knowledge of s o i l  and 

rock propert ies  fo r  solut ion.  

2. To c r i t i c a l l y  evaluate current  knowledge concerning lunar 

surface materials, t h e i r  propert ies ,  and t h e i r  re la t ionships  

t o  problems associated with on-site lunar exploration, and t o  

s e l e c t  reasonable models fo r  lunar surface conditions. 
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3,  To make preliminary formulations of desirable on-site soil and 

rock mechanics studies for extended lunar exploration and to 

make recommendations as to appropriate apparatus and required 

astronaut skills for performance of such investigations, 

4. To undertake preliminary studies for development of rock testing 

devices for use in a borehole on the lunar surface for the 

determination of the stress-strain characteristics of rocks. 

5. To review friction and adhesion problems and to make recommenda- 

tions for improved design o f  existing apparatus for determina- 

tion of frictional and adhesive characteristics of different 

metallic and nonmetallic materials under high vacuum and at 

high and low temperatures. 

6. To make recommendations and cost estimates for the design of 

apparatus for measuring silicate mineral solubility and viscosity 

at high temperatures and pressures and for determining the 

distribution of silicates between gas and liquid phases. 

7. To review critically theories for the origin of the moon and to 

consider logical sequences for investigations to be carried out 

on the lunar surface for most efficient determination of 

composition, structure and history of the moon. 

The results of studies of this type are intended to aid in attain- 

ment of the following longer range goals: 

1. Development of capability for predicting, at least in a semi- 

quantitative manner, soil conditions at any point on the moon 

on the basis o f  remote measurements. 

2. Development of capability for detailed quantitative determina- 

tion of soil and rock properties at any chosen site where 

scientific or engineering work is contemplated. 

3 .  Development of methods of analysis suitable for soiution of 

soil and rock mechanics problems on the moon. 

4. Utilization of the information obtained, both as an aid in the 

interpretation of geologic processes on the moon and as a means 

for developing improved understanding of soil and rock behavior 

on the earth, 
i X  



rr ,  SCOPE OF WORK AND OUTLINE OF FINAL REPORT 

A s  work proceeded on each of these object ives  several  spec i f i c  

topics emerged as pa r t i cu la r ly  needing more de ta i led  study, and, 

consequently, during the later phases of the study e f f o r t s  were 

intensively d i rec ted  a t  these topics.  Thus the trend has been from 

s tudies  of a braod and general  nature within a pa r t i cu la r  area to the 

i so l a t ion  of spec i f i c  problems and more de ta i led  s tud ie s  of these 

problems. This is re f lec ted  i n  the general  ou t l ine  of the  4 volumes 

cons t i tu t ing  t h i s  repor t ,  as shown below: 

VOLUME I 

LUNAR SOIL MEXHANICS AND SOIL PROPERTIES 

Chapter I. Lunar So i l  and Rock Problems and Considerations i n  
Their Solution 

(James K. Mitchell)  

Chapter 2. Engineering Properties of Lunar Soils 

(James K. Mitchell  and Scot t  S. Smith) 

Chapter 3 .  Materials Properties Evaluations from Boulder Tracks 
on the Lunar Surface 

(James K. Mitchell and Scot t  S. Smith) 

Chapter 4. Impact Records as a Source of Lunar Surface Material 
Property Data 

(James K. Mitchell, Donald W, Quigley, and Scott S. Smith) 

Chapter 5, Lunar Stratigraphy as Revealed by Crater Morphology 

(Francois E. Heuzg and Richard E. Goodman) 

Chapter 6. Geochemical Studies 

(I. S. E. Carmichael and J. Nicholls) 

Appendix. Library of Lunar Surface Exploration Materials 

(Francois E. H e w & )  



VOLUME I1 

APPLICATION OF GEOPHYSICAL AND GEOTECHNICAL METHODS 

TO LUNAR SITES EXPLORATION 

Chapter 1. The Application of Geophysical Methods to Lunar Site 

(Richard E. Goodman, Jan J. Roggeveen, and 

Studies 

Francois E. Heuz6) 

Chapter 2. Investigation of Rock Behavior and Strength 

(Francois E. Heuzg and Richard E. Goodman) 

Chapter 3 .  The Measurement of Stresses in Rock 

(Francois E. Heud and Richard E. Goodman) 

Appendix. Data Interpretation from Stress Measurement 

Chapter 4. The Measurement of 

(Richard E. Goodman 

- 

Rock Deformability in Bore Holes 

and Francois E, Heuzg) 

VOLUME I11 

PRELIMINARY STUDIES ON SOIL/ROCK ENGINEERING PROBLEMS 

RELATED TO LUNAR EXPLORATION 

Chapter 1. Trafficability 

(James K. Mitchell, Scott S. Smith, and 
Donald W. Quigley) 

Appendix 1-A. Recent Trafficability and Mobility 
Literature 

Appendix 1-B. Determination of Vehicle Mobility Index 
for Use in Army Mobility Branch (WES) 
Method of Trafficability Analysis 

Chapter 2. Friction and Adhesion in Ultrahigh Vacuum as Related 
to Lunar Surface Explorations 

(J. Frisch and U. Chang) 

Appendix. Design of Rolling Friction Experimental 
Apparatus 
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VOLUME I11 (COn't,) 

Chapter 3.  Utilization of Lunar Soils for Shielding Against Radiations, 
Meteoroid Bombardment, and Temperature Gradients 

(Francois E. Heuzg and Richard E. Goodman) 

VOLUME IV 

PRELIMINARY STUDIES FOR THE DESIGN OF ENGINEERING PROBES 

Chapter 1. The NX-Borehole Jack for Rock Deformability Measurements 

(Richard E. Goodman, Tranh K. Van, and Francois E. Heuzg) 

Appendix. Analytical Solution for Unidirectional Loading 
of Bore Hole Wall 

Chapter 2. Permeability and Thermal Conductivity Studies for 

(Paul A. Witherspoon and David F. Katz) 

Lunar Surface Probes 
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CHAPTER 1 

LUNAR SOIL AND ROCK PROBLMS 

AND CONSIDERATIONS IN THEIR SOLUTION 

(James K. Mitchell) 

I. INTRODUCTION 

A number of geotechnical engineering (soil mechanics, engineering 

geology, rock mechanics) problems related to lunar exploration have been 

identified. In this section these problems are listed, and an assessment 

of priorities for acquisition of the data needed for their solution is 

given, as well as a statement of the suitability o f  existing analysis 

methods. General considerations on the measurement of lunar soil and rock 

properties are listed, and possible test methods for their determination 

are suggested. 

11. PROBLEMS 

Geobechnical engineering problems that are related to lunar exploration 

can be divided conveniently into two groups: (1) those that must be solved 

for early lunar science missions and (2 )  those pertinent to extended lunar 

exploration and the development of lunar bases. 

A. Early Mission Problems 

1. Dynamic and static bearing capacity of the lunar surface. 
Spacecraft must be designed to land safely on the lunar 

surface without danger of excessive sinkage or tilting during 

the landing event. The surface static bearing capacity must 

be adequate to support the spacecraft after landing and to 

support astronauts during their extravehicular activities. 

Results from the Surveyor Program have indicated, however, 

that inadequate bearing capacity is not likely to be a major 

problem, at least in areas similar to the Surveyor landing 

sites. 
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2, Surface erosion by rocket exhaust. Spacecraft support must 

not be impaired during either landing or takeoff as a result 

of surface material erosion under the action of rocket engine 

exhaust. The results of the Surveyor V erosion experiment 

have indicated that the lunar surface material can be eroded 

by the rocket exhaust gases. 

3.  Contamination of systems by eroded surface material and 

exhaust gases. Characteristics of materials that are likely 

to be eroded by exhuast gases should be determined and the 

probability of spacecraft systems becoming contaminated by 

eroded material must be assessed. Aseptic sampling requires 

that the depth and radial distance beyond the exhaust gas 

impingement point to which contamination has extended 

be determined. 

4. Trafficability of lunar soils and mobility of lunar surface 

vehicles. Mission safety demands that sufficient data be 

available for assessment of vehicle mobility on a "go - nc 
go" basis for any proposed roving vehicle (or walking astronaut). 

Proper vehicle design and mission planning will require much 

more specific information concerning vehicle-surface inter- 

action. 

5, Siting of ALSEP Packages. Apollo Lunar Surface Experiment 

Packages must be located on stable ground, and soil conditions 

must be adequate to insure continued stability for the life 

of the experiment. A high degree of stability will be 

particularly important in the case of emplacement of astro- 

nomical observation devices. 

6. Sampling. The return of representative samples of lunar 

surface materials is of prime importance in the attainment 

of lunar science objectives. Sampling techniques and 

sampling devices cannot be designed without some knowledge 

of the properties of the materials to be sampled. 

7. Drilling. The drilling of bore holes for sample recovery 

from depth or the emplacement of test devices requires 

knowledge of material properties for design of drills, 
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B. 

selection of coring and sample recovery procedures, 

determination of power requirements, and anticipation 

of special problems, such as the prevention of caving of 

the bore holes e 

8. Identification of hazard areas. Safety requires that 

potentially hazardous areas be avoided. Such areas as 

unstable slopes and crater walls, hidden crevasses and 

cavities, and local soft spots must be identified during 

mission planning if possible. 

Problems Related to Extended Lunar Exploration and Lunar Base 

Development 

A l l  of the problems listed above may be expected to continue to 

be important during advanced phases of lunar exploration and development. 

In addition, the following problems must be considered. Each will involve 

considerations of soil and/or rock mechanics and soil and/or rock properties 

if satisfactory solutions are to be developed. These problems include: 

1. Excavation 

2. Undergound construction 

3. Underground storage 

4. Waste disposal 

5. Radiation shielding using soil materials 

6, Thermal insulation 

7. Location of construction materials 

8. Mineral resource location 

111. PRIORITIES 

Methods of analysis to be used for solution of these problems, except 

possibly in the areas of soil trafficability and vehicle mobility, are 

reasonably well advanced and probably adequate, provided the appropriate 

soil data are available. The results of the Surveyor Program have been 
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invaluable in providing improved estimates of pertinent soil properties; 

however, the ranges of values must be narrowed and the variability for 

different sites determined, Unproven assumptions remain in most quanti- 

tative estimates of soil properties that have been made thus far. 

Consequently first priority should be given to determination of the 

engineering parameters of lunar soils. All available data from the 

Surveyor Program should be carefully evaluated in an effort to select the 

best quantitative values possible. Orbiter photographs should be carefully 

studied and techniques perfected for the determination of physical 

properties from photographic and other remote sensing techniques. 

Considerable progress in this area has already been made and is discussed 

in more detail in Chapters 3 ,  4, and 5 of this volume. 

Since planning for early Apollo missions is now well along, and it 

is known that the mission constraints will permit only the simplest 

testing and sampling programs by the astronauts, every effort should be 

made to extract significant soil property data from the various phases 

of lunar surface operations. Examples of the types of data that, while 

not specifically obtained to provide direct measures of soil properties, 

can be used for estimating properties, include strain gage records during 

spacecraft landing, photographic records of astronaut footprints, LM 

sinkage into the lunar surface, photographic records of soil disturbance 

during landing, verbal descriptions of materials by the astronauts, and 

determination of slope angles and surface characteristics from photographs. 

Development of techniques for analyzing these types of information should 

be made prior to missions and the mission plan adjusted when practicable 

to optimize the quality of the data obtained. 

In later Apollo missions it may be possible to conduct direct tests 

on the lunar surface for determination of strength, compressibility, and 

permeability. Apparatus for such tests must be simple, lightweight, 

rugged, adaptable to the harsh lunar environment, and automated to the 

extent possible. The test methods should yield data which can be inter- 

preted meaningfully in terms of the parameters needed for soil and rock 

mechanics analyses. Existing and proven theories and methods of analyses 
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should be used wherever possible. 

design concepts are under study as a part of a continuation of our work 

under a new contract., 

Specific test methods and apparatus 

As test results become available they should be correlated with 

remote sensing data so that the reliability of analyses based on remote 

measurements can be improved. Remote sensing, provided reliable methods 

can be developed, may prove ultimately to be the most economical means 

for determination of general surface material properties, 

Since in early missions opportunities for direct measurement of the 

mechanical properties of lunar soils will be limited, studies of returned 

lunar samples will play an important role. 

to the design of samplers and sampling methods. The returned samples from 

early missions will be severely limited in both size and quantity and 

chances for complete preservation of the in-situ soil structure are 

probably small. 

mechanical properties will have to be inferred from observations of other 

characteristics; e.g. grain size, shape, and textures. 

Thus attention must be directed 

Thus meaningful direct measurements of pertinent 

IV. PROPERTY DATA NEEDED FOR SOLUTION OF DIFFEPENT PROBLEMS 

Table 1-1 has been prepared, based on the major problem areas listed 

above, to indicate specific properties of lunar materials that must be 

known if reasonable solutions to the problems are to be obtained. Also 

listed is an assessment of the suitability of existing analytical methods 

for handling the problems. Problems are listed in order of decreasing 

chronological importance, assuming that initial missions will involve 

primarily landing, sampling, and limited surface mobility; whereas, the 

development of semi-permanent or permanent lunar bases may become a reality 
in the future. 

V. PROPERTY MEASUIUQJENT 

Whereas Table 1-1 relates soil and rock properties to specific problems 

associated with the scientific and engineering aspects of lunar exploration, 

Table 1-2 is concerned with methods for determining the different properties. 
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Properties are listed in order of decreasing importance as relates to 

solution of the problems listed in Table 1. Note is made also of those 

properties of particular importance for scientific interpretation of 

the moon. An indication (which in many cases is an opinion) is given 

for each of the following factors wherever possible. 

A. Whether the determination can be made by remote sensing ( R S ) ,  

tests-in-situ (TIS), tests on earth returned samples (ERS), 

or tests on samples at a lunar base (LBS) * 

B. A recommendation as to which of the four possible approaches 

listed in A should be used for 

1. Gathering data for classification and science purposes ( C ) .  

2. Preliminary mission planning (PMP). 

3. Final mission planning (FMP) . 
4. Determination of design parameters (DP). 

The recommendations under B are idealizations and represent what 

might be considered the best engineering applications of the data 

obtained by the various approaches. Time, cost, and other factors will 

probably not allow (1) extensive testing in-situ, (2) the return of 

undistrubed samples suitable for detailed measurement of mechanical 

properties, or ( 3 )  tests at a lunar base. Thus in most instances it is 

probable that design and planning will have to be based on remote observa- 

tions and extrapolations of in-situ data from one location to another. 

VI. TEST METHODS 

Table 1-3 presents a listing of some specific test methods which 

might be used for acquisition of the data necessary for property determi- 

nation. An indication is given (again an opinion in most cases) concerning 

the suitability of existing test methods, that are widely used for studies 

of terrestrial soils and rocks, for use in determination of lunar material 

properties. Useful techniques already developed for study of lunar 

surface materials are noted where appropriate. Of particular importance 

in the development of testing methods and apparatus for in-situ lunar 

soil tests and tests performed at lunar bases are (1) the harsh erivironment, 
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(2) the necessity to keep payloads to a minimum, (3)  the limited dexterity 

of a space-suited astronaut, and (4) the desirability for techniques that 

are simple, reliable, and rapid. 

The possible test methods in Table 3 are listed in order of decreasing 

ease of data acquisition within the framework of current information 

concerning the experiment plans for lunar missions. In general, the 

acquisition of the most reliable data for good quantitative determination 

of soil properties requires the use of the less easily performed test 

methods. 

The data that are most urgently needed from analysis of Orbiter and 

Surveyor data and from early Apollo missions to the moon are those that 

will permit evaluation of bearing capacity, erodability, load-sinkage 

characteristics, and lunar soil trafficability characteristics. 

Unfortunately the quantitative reliability of property values that 

can be deduced from Orbiter photographs is quite restricted. 

data are considerably better from a quantitative standpoint, however, the 

information covers only a limited number of locations on the moon. It 

is imperative therefore that maximum advantage be taken of early Apollo 

The Surveyor 

missions. for acquisition of additional data. 

with these missions, however, is that astronaut time and payload are very 

severely restricted. 

automatically obtained or acquired with a minimum expenditure o f  time and 

effort. Studies should begin at once for the purpose of determining the 

extent to which such data as those provided by LM landing dynamics records, 

photographic coverage of landing pad sinkage and astronaut footrpints, and 

simple tests (e.g., penetration, trenching, sliding) using the Apollo hand 

tools can be used to determine quantitative values for the needed properties. 

The problem in connection 

Thus maximum use must be made of data that are 

It is essential also that a method for lunar trafficability 

analysis be decided upon and that appropriate methods, preferably using 

simple tests and test apparatus, be developed as soon as possible. 
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VI1 (. CONCLUSION 

Table 1-3 represents a first attempt at classification of problems, 

soil and rock properties, and test methods in a form which has been 

helpful for formulation of subsequent research efforts. 

ment of all aspects of the topics covered will ultimately be needed. 

Emphasis has been on determination of properties for use in solution of 
specific engineering problems. 

type suggested, however, may be expected to be of scientific value as 

well. For example, particle size, shape, and size distribution are a 

direct consequence of the lunar processes which caused them. Relative 

density reflects the extent of past static and dynamic loadings and 

in-situ stresses and can be used to deduce past stress and deformation 

history. Consolidation data may reveal the extent of any lunar erosion 

processes from comparison of present overburden pressure and maximum 

past pressure. It goes without saying, of course, that compositional 

data are essential for scientific study of the moon. 

Further refine- 

Data obtained from measurements of the 
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CHAPTER 2 

ENGINEERING PROPERTIES OF LUNAR SOILS 

(James K, Mitchell and Scott S .  Smith) 

I. INTRODUCTION 

Speculation concerning the composition and properties of lunar 

soils and rocks has been widespread for hundreds of years. Until 

July 28, 1964, when Ranger VI1 sent back the first close up photographs 

of the lunar surface, this speculation was based on the results of 

earth-based observations of various types, and there were several 

hypotheses, summarized by Mitchell (1964), for the nature of the 

materials. These hypotheses ranged from thick layers of loose, 

unconsolidated dust through a slag-like surface to vesicular rock froth. 

The Ranger and Orbiter programs have provided the first close up 

photographic information about the lunar surface, and the Surveyor and 

Luna programs have yielded a wealth of both photographic and tactile 

data. Thus the earlier speculations are largely of historical scientific 

interest; whereas, the results of these later space programs have 

provided a reasonable basis in fact concerning the nature of lunar soils 

and rocks. 

detail the findings of the various missions in these programs, and 

many analyses have been made from which the compositional and mechanical 

properties of lunar surface materials have been deduced using a variety 

of data and analysis methods. 

A large number of papers and reports have appeared which 

A critical review of this information has been made and the results 

are summarized in Table 2-1. Emphasis was concentrated on information 

derived from the Ranger, Orbiter, Surveyor, and Luna Programs, although 

some consideration was also given to earth based observations and tests 

on simulated materials. Each section of the table pertains to a different 

property or characteristic. Quantitative values are included wherever 

possible. The first column gives the reference. The second column 
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provides a brief indication of the basis used for determination of the 

property considered. The third column indicates whether the determination 

was made on the basis of remote or direct observation, or from the results 

of tests on simulated lunar soils. Photographic data obtained from the 

Ranger and Orbiter series have arbitrarily been classed as remote, whereas, 

Surveyor TV data are considered as direct observations. In the last column 

the value or nature of the characteristics under consideration is listed. 

Since these tables are largely self-explanatory, only brief discussion 

is included here. Surveyor VI and VI1 reports were not available at the 

time of preparation of this report, thus no data from these missions are 

included in Table 2-1, Same findings from these missions have been 

obtained, via personal communication with Dr, R. F. Scott and others active 

in these missions, and are included in the discussion where appropriate. 

Following this a summary table (Table 2-1) is presented indicating our best 

estimate of the various properties. Future revision of the table will be 

made if appropriate, based on final analyses of the data from all Surveyor 

missions. 

11. GENERAL LUNAR SOIL PROFILE 

It now appears well established that the moon is covered with a 

fragmental layer of variable thickness. This layer appears to be granular 

and lightly cohesivel with particle sizes ranging from large blocks down 

to 1 micron. The thickness of this layer apparently may range from a few 

centimeters or less to tens of meters. Evidence from the Soil Mechanics 

Surface Sampler (SMSS) tests during the Surveyor I11 and VI1 missions 

suggests that the strength of the fragmental layer increases with depth. 

Except in regions where rock outcrops can be seen, the precise depth 

to bedrock is somewhat uncertain, although estimates are possible through 

study of crater morphology. A critical review of the determination of 

lunar stratigraphy from study of crater morphology is presented in 

Chapter 5, this volume. 



111. LURAR SLOPE ANGLES 

Choate (1966) determined lunar slope angles i n  the v i c i n i t y  of the 

Ranger 7 ,  8, and 9 impact areas.  H e  found t h a t  most craters have uniform 

slopes with a shor t ,  nearly horizontal  central port ion and gent ly  rounded 

r i m s .  The maximum slope angles of ta lus- l ike  s lopes appeared t o  be 33 t o  

35O. 

with these findings fo r  the maria areas of the moon. 

Subsequent observations by Orbi ters  and Surveyors are compatible 

Choate determined the proportion of the impact areas  covered by 

slopes of d i f f e r e n t  inc l ina t ion .  The r e su l t s  of t h i s  analysis  i n  the  

form of slope angle versus percentage of slopes grea te r  than t h a t  angle 

are shown i n  Fig. 2-1. Subsequent analyses of observations from Surveyors 

and Orbi ters  a r e ,  i n  general ,  compatible with these findings f o r  the maria 

areas of the moon. Slope angle d i s t r ibu t ion  re la t ionships  a re  discussed 

more f u l l y  i n  Volume 3, Chapter 1, t h i s  report ,  i n  connection with t r a f f i -  

c a b i l i t y  on the lunar surface and models fo r  t e r r a i n  character izat ion.  

I V .  LUNAR SOIL PROPERTIES 

Data from the  Surveyor program have shown the s o i l  to be q u i t e  

s imilar  i n  appearance and propert ies  a t  all f ive  landing sites (Surveyors I,  

111, V,  V I ,  V I I ) .  I t  is s ign i f i can t  t o  note t h a t  these sites a r e  separated 

from each o ther  by considerable distances.  

one is  i n  the lunar highlands (Tycho r i m ) .  The evidence suggests t h a t  the 

propert ies  of the surface s o i l s  may be qu i t e  s i m i l a r  over the surface of 

Four are i n  maria a reas  and 

the moon. Current estimates of the propert ies  of the surface material a re  

summarized i n  the following paragraphs and i n  Table 2-2. 

A. Composition 

Both remote (radar and op t i ca l  measurements) and d i r e c t  (y-ray, 

apha sca t te r ing ,  magnetic) observations indicate  the lunar surface mater ia l  

t o  be bas ic  i n  composition and s imilar  t o  terrestrial iron-rich basa l t .  

Measurements on a rock fragment during the Surveyor VI1 experiments gave 

a densi ty  range of 2.4 t o  3.2 with a most probable value of 2.8 t o  

2.9 gm/cm3 fo r  the so l id  material .  
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B, Grain Size, Shape, and Distribution 

Photographs of the lunar surface provide the only unambiguous 

data concerning the particle size and shape characteristics of the lunar 

soil, Unfortunately conclusions based on estimates of permeability 

(Surveyor V surface erosion experiment), thermal properties, and optical 

properties involve assumptions that cannot be verified, and in several 

cases the data do not yield unique answers. 

Camera resolution limits the fineness of particle that can be 

distinguished to the order of 1 mm. It seems clear, however, that a 

significant proportion of the soil at the Surveyor sites is finer than 

this, probably extending down to 1 or 2 microns, 

that more than 50 per cent of the particles must be finer than about 

60 microns in order to account for the honeycomb pattern retained on the 

lunar surface after impression by the Surveyor I11 footpads. Those 

particles that can be clearly distinguished are bulky in character and 

exhibit varying degrees of angularity, probably reflecting the extent to 

which they have been subjected to lunar "weathering" processes. A well- 

graded size distribution is observed with sizes ranging up to boulders 

in some areas. 

Simulations have shown 

C. Density and Porosity 

Estimates of lunar soil density and porosity have been based 

on remote observations (thermal, optical, radar) I tactile measurements 

(y-ray, failure mode under Surveyor footpads, landing dynamics) and 

simulations. Unfortunately data obtained with these methods are capable 

of several interpretations dependent upon assumptions in the analysis, 

and definite values remain to be determined. It does appear, however, 

that density increases and porosity decreases with depth below the 

surface. 

surface may range from 0.6 to 1.2 gm/cm3 increasing to 1.5 or 2.0 gm/cm3 

at depth. 

density of 1.5 to 1.7 gm/cm3 to a depth of about 10 em; with a value of 

1.5 gm/cm3 being the most probable. 

From the available data it would appear that the density at the 

Bearing capacity analyses of Surveyor data indicate an average 
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Porosity estimates range from 35 to 80% or more, The nature 

of this porosity is important from an engineering property standpoint 

and is as yet undetermined. 

porosity may not be indicative of high compressibility under moderate 

stress application. If particles are vesicular with sealed pores, then 

the permeability characteristics of the soil will differ from those of 

a material with the same porosity but open pores. 

If particles are vesicular then a high 

D. Compressibility 

Photographs of the Surveyor footpad imprint areas show that 

deformation of the soil during landing was accompanied by some heave of 

the surface adjacent to the footpad, thus suggesting that the soil 

deforms more in shear than by densification. This is characteristic of a 

material with low compressibility under loads of the magnitude involved. 

Deformation patterns accompanying the Soil Mechanics Surface Sampler 

operations during the Surveyor VI1 mission also are consistent with what 

is observed for relatively incompressible terrestrial soils. A great 

number of well defined boulder tracks have been found in Orbiter photo- 

graphs, clearly indicating either compression or displacement of soil 

under the rolling boulders. Detailed study of boulder tracks would appear 

desirable to ascertain whether an uplifted ridge has formed parallel to 

the track which would also be compatible with low compressibility. On 

the other hand if the volume of the track cannot be accounted for in 

this manner, then it would appear that the soil compressed under the 

weight of the boulder. 

E. Strength Parameters 

Estimates of strength parameters for unconsolidated lunar soil 

indicate the material to be predominantly frictional in nature but 

to possess a small amount of cohesion, as indicated both by the ability 

of the soil to stand on vertical slopes and by the appearance of tensile 

cracks on the surface adjacent to the point of application of bearing 

pressures. Estimates of cohesion range from 0.002 to 2 psi, although 

0.05 to 0.1 psi is typical for the Surveyor landing areas. An upper 

bound on the value of cohesion of 0.1 psi has been established at the 
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* 
Surveyor VI and VI1 sites using the results of (1) the surface erosion 

experiment, (2) stress analysis on the surface adjacent to SMSS bearing 

tests, and (3) measurement of the load required to cause failure of a 

SMSS trench wall. 

Studies of slopes on the moon show that the angle of repose is 

seldom greater than 35 to 40'. Choate (1966) studied slope angles from 

Ranger data and concluded that the angle of repose of lunar surface 

material, as indicated by the angle of repose of crater slopes, is in 

the range of 33 to 35'. In the absence of significant cohesion these 

values might represent a lower bound on the angle of internal friction. 

In the presence of cohesion the significance of these values is less 

certain. Analyses of the failure geometry (lateral distance over which 

soil has heaved) adjacent to Surveyor footpads and to the SMSS when used 

in the plate bearing test mode indicate friction angles of 35 to 37'. 

Jaffe (196733) has estimated friction angles as high as 55O, however, his 

estimate was based on the assumption of a completely compressible soil 

as opposed to one that is incompressible during shear. Thus 35O - 37O 
would appear reasonable for analysis purposes. 

* 

An attempt was made to crush a piece of lunar rock during tests 

with the Soil Mechanics Surface Sampler (Surveyor 111) and was unsuccessful, 

thus indicating the rock capable of withstanding a compressive stress of 

at least 2 X l o 7  dynes/cm2. 

F. Bearing Capacity 

Bearing capacity is not a basic soil property; but depends on 

density and strength parameters. Since it is considered as one of the 

lunar surface mechanical properties in much of the literature, however, 

it has been included in Table 2-1. Table 2-1 indicates that estimates of 

bearing capacity have been made using a variety of techniques. 

clearly indicate that the bearing capacity increases with depth and 

breadth of loaded area. These results support the concept of a frictional 

soil layer. Static analysis of boulders and blocks resting on the lunar 

The data 

* 
Scott, R. F., personal communication. 
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surface would seemingly provide reasondble lower bound estimates of 

bearing capacity, but in each case an assumption of boulder density is 
required. Bearing capacities of 0-72, 0,73, and 0 - 7 4  psi ( 0 - 5 0  - 
0.51 N/cm2) are obtained as lower bound bearing capacities required to 

support the dead weight of Surveyors I, 111, and V, respectively, 

A compressible soil model has been assumed for landing dynamics analysis 

by Jaffe (196723) and Christensen et al. (1967~1, but evidence favors at 

most only partial compression during shear, thus making these estimates 

of bearing capacity questionable. SMSS bearing tests (Surveyor 111) 

indicated a bearing capacity on a 5 X 2.5 cm bearing area of 3 psi 

(2 X l o 5  dynes/cm2) at 5 - 7.5 cm depth. 

It appears, therefore, that while the bearing capacity at the 

surface may be as low as a few tenths of a lb per sq in. and increase 

to several lb per sq in. at depths of several centimeters, exact values 

corresponding to specific values of sinkage cannot be established from 

the data available for this review. Now that the rather reliable values 

of $I = 35 - 37O and c = 0.05 - 0.1 psi have been determined, a reasonable 
calculation of ultimate bearing capacity can be made for specific loading 

conditions. Load vs penetration data were obtained with the SMSS on 

Surveym VII, which when available may proved useful for estimation of 

the load-settlement relationship for lunar soil. 

G. Dynamic Properties 

Few data are yet available on the dynamic properties of the 

lunar surface. The relationships used for the landing dynamics analyses 

of Surveyors have been in terms of inertia and momentum transfer between 

the footpad and the deforming soil mass. 

dynamic modulus and damping coefficient do not form a part of the 

relationship used. One analysis has been made, however, by Christensen 

et al. (1967b) based on Surveyor I11 strain gage records during landing,, 

They deduced that the soil possessed an effective spring constant of 
about 7000 psi (4.9 X l o8  dyne/cm2) If this constant is considered 

analogous to a dynamic modulus in compression, it is of the same order of 

magnitude as observed for terrestrial compacted silty or sandy soils with 

some cohesion. 

Dynamic properties such as 



He Permeability 

An estimate of permeability was made from the results of the 
surface erosion experiment during the Surveyor V mission (Christensen 

et al., 1967~). It was concluded that the absolute permeability should 

be in the range of 1 X lo"-* - 7 X lo'-' an2 to a depth of 25 cm. 

value is consistent with the permeability of a silty soil. 

* 

This 

I Erodabilitx 

The vernier engine firing experiment (Surveyor V) indicated 

that the lunar surface material could be eroded by the rocket exhaust 

blast. Particles appear susceptible to movement by both viscous erosion 

and diffusion erosion (blowout) 

v, SUMMARY 

As a result of this review of available information on the properties 

of lunar soil, tentative values for use in the analysis of engineering 

problems have been selected. These values are listed in Table 2-2. 

Subsequent to preparation of this summary, Bank has summarized linear 

surface property data as determined from the results of landing impact 

analyses and science experiments on Surveyors 111, V, VI, and VII. Bank's 

listing reflects the results of studies by R. F. Scott of the Surface 

Sampler Experiment (Surveyor 111) and the Lunar Mechanical Properties 

Working Group at the Jet Propulsion Laboratory (JPL) e Results from 

Surveyor missions VI and VI1 were included in arriving at the values 

indicated. 

soil property data conducted to arrive at the values listed in Table 2-2. 

A listing of the JPL values is also presented in Table 2-2, It may be 

seen that in general the values corroborate each other, which, of course, 

is not unreasonable since the conclusions in each case were based on the 

same data sources (with the exception of Surveyors VI and VII), 

** 

These results were not available to us during the review of 

* 
Method used described by Scott, R. F. and KO, H. Y., "Transient Rocket- 
Engine Gas Flow in Soil," in press J. AIM, 
** 
Bank, H., Letter to 0. H. Vaughen and N. C. Costes, MSFC, March 21, 1968. 
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CHAPTER 3 

MATERIALS PROPERTIES EVALUATIONS 

FROM BOULDER TRACKS ON THE LUNAR SURFACE 

(James K. Mitchell  and Scot t  S. Smith) 

I. INTRODUCTION 

Photographs provided by Lunar Orbiters have shown t h a t  a number of 

areas  show d i s t i n c t  t racks formed a s  a r e s u l t  of large boulders r o l l i n g  

and s l id ing  on the lunar surface.  To da ta  several  hundred t racks have 

been ident i f ied .  These t racks appear t o  be of three d i f f e r e n t  types,  

i .e. (1) regular ,  continuous tracks such as might be formed by an 

approximately spherical  boulder ro l l i ng  over a compressible and/or 

displaceable surface layer ,  Fig. 3-1; (2)  segmented t racks  suggestive of 

boulder movement by a bouncing or  skipping act ion,  Fig. 3-2; and 

( 3 )  r e l a t ive ly  shor t  t racks suggestive of a plowing o r  skidding ac t ion ,  

Fig. 3 - 3 .  

Study of these t racks is of i n t e r e s t  from two standpoints which may 

be s t a t ed  i n  the form of two questions: 

1. What processes set the boulders i n  motion? 

2 .  What information can be deduced about the physical p roper t ies  

of the boulders and s o i l s  over which they ro l led?  

Although no a t t en t ion  has as yet  been directed by us t o  the study 

of the f i r s t  question, possible  mechanisms might include: 

1. The boulders forming the t racks  a re  e j ec t a  from primary and 

secondary craters.. 

2 .  The boulders, o r ig ina l ly  r e s t ing  on lunar slopes,  w e r e  set  i n  

motion by ground motions caused by seismic or meteorite impact 

events. 

3 .  Motion of the boulders, o r ig ina l ly  a t  rest on the lunar surface,  

w a s  i n i t i a t e d  through loss of support r e su l t i ng  from some type 

of lunar "erosion" or  "weathering" process. 
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FIG. 3-1. Continuous Boulder Track 
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FIG. 3-2. Segmented Boulder Track 
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FIG. 3-3. Boulder Track Caused by Plowing or Skidding 
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With respect to the second question, the deduction of s o i l  and boulder 

properties, a few analyses have been published (Nordmeyer, 1967; Filice, 

1967; Eggleston, 1967) and some additional analysis has been made by us. 

Attention has been directed only at the regular and continuous type of 

track. The nature of these analyses, the results obtained, and the potential 

for meaningful determination of soil and boulder properties through study 

of boulder track records are discussed in this section. 

11. ANALYSIS DIFFICULTIES 

Insofar as we are aware a rational theoretical solution to the problem 

of the rolling of an essentially rigid spherical body on the surface of a 

deformable material has not yet been made. In the case of highly compressible 

surface materials, it might be anticipated that both sinkage and bulldozing 

deformations would result from the action of the rolling boulder. For 

incompressible soils both displacement along a line parallel to the track 

as a result of bearing capaity failure and bulldozing action might be 

important. Track cross sections corresponding to the first type of deforma- 

tion should be as shown by Fig. 3-4(a), whereas, those for the second type 

should appear as in Fig. 3-4(b). Thus careful study of whether or not the 

tracks visible in Orbiter photographs have raised rims should be indicative 

of the compressibility characteristics of lunar soils. Based on Surveyor 

results it would be anticipated that raised rim tracks should be the rule 

provided the surface material in the boulder track areas is similar to that 

at the Surveyor sites. While some tracks with raised rims have been identi- 

fied, no systematic study has yet been made. 

Proper theoretical description of the boulder-surface interaction 

process could be expected to require specific knowledge of the following 

variables and parameters: 

1. Boulder size and shape 

2. Track cross section profile 

3 - Surface slope 

4. Boulder velocity 

5. Boulder density 

6. Soil density 
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FIG. 3-4 (a). Cross Section of Boulder Track in Highly Compressible Soil 

FIG. 3-4 (b) . Cross  Section of Boulder Track in hcompressible Soil 
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7. Soil compressibility 

8 ,  Soil strength and stress-deformation characteristics 

It is conceivable that, with the aid of appropriate experimentation 

and theoretical analysis, relationships could be developed which would 

provide a quantitative description of the mechanisms of track formation. 

The application of these relationships to lunar boulder tracks could then 

provide quantitative information on boulder and/or soil properties. The 

theory so obtained would also be of use for study of the general problem 

of wheel-soil interaction. 

If it is assumed that development of such relationships is an 

attainable objective, then their application to the study of Lunar Orbiter 

photographs will still be limited rather severely because: 

1. The resolution of Orbiter photographs is insufficient to provide 

highly accurate values of boulder size and shape or of track 

cross section characteristics. 

2. Slope angles cannot be determined with high precision. 

3 .  The number of soil and rock properties will exceed the number 

of independent relationships so that computation of any one 

property will require assumptions for other properties. 

It appears, therefore, that as applied to Lunar Orbiter data, boulder 

tracks analyses can best be used for assessment of the uniformity of 

different areas and the variability in properties from location to location 

on the moon. For this purpose use of the same method of analysis and 

assumed values for soil and rock properties is required for a l l  sites. 

On the other hand tracks left by rolling stones at Surveyor sites and 

those that may be encountered during Apollo missions may be useful for 

more specific quantitative study. This is so because of greater photo- 

graphic resolution, more precise knowledge of slope angles, and more 

specific knowledge of pertinent properties and stratigraphy that will be 

available. 
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111, ANALYSIS OF THE: SABINE D ROLLING BOULDER 

The boulder track that has been given the most study in an effort 

to determine properties is that found in the high resolution Orbiter I1 

photography of the Sabine D crater (Nordmeyer, 1967; Filice, 1967; 

Eggleston, 1967). A review of the published analyses as well as some 

further analysis done by us is useful for illustration of (1) the 

variability in answers that may be obtained when different theories are 

applied to analysis of the same data, (2) the necessity for assuming a 

number of properties in order to estimate some other property, and 

(3 )  the types of analysis methods that might be useful. 

A photograph of the Sabine D track is shown in Pig. 3-1. A profile 

of the slope, determined using photoclinometry, is given in Fig. 3-5. 

The average slope angle along the path of the boulder is approximately 

30'. The boulder was determined to be approximately nine meters in 

diameter and nearly spherical in shape. The track width averaged five 

meters and was nearly uniform along its length. Lunar gravity is taken 

as 1/6 that of the value for earth; i.e. 5.4 ft per sec2 = 163 cm per sec . 
These values are used in the following analyses. It should be noted that 

the estimates o f  the boulder size and shape, the track width, and the 

2 

slope angle cannot be considered precise, and, in fact, may be in error 

by a significant amount. Dimensions are probably no closer than k 0.5 m. 

A. Static Bearing Capacity Method 

Nordmeyer (1967) assumed that the boulder was supported by the 

forward half of the buried segment of the boulder as it slowly rolled 

downhill; i.e., by the segment AB shown in Fig. 3-6. Values of soil 

properties were assumed as follows: 

Cohesion, c = 0.05 psi 

Angle of friction, Cp = 33O 

Density, p = 1.55 

The Terzaghi bearing capacity equation €or a square or circular fcoting, 

Qult 
~ ~ ~ ( 1 . 3  cNc + zpgN + 0-6 P9m 

q Y 



* 
0 

k 
V 
w 
0 

m 
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AB - Cord of Segment in Contact with Surface AC - Depth of Track 

FIG. 3-6 . Boulder Rolling Down Crater Wall 
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where R = radius  of foot ing and M N , and N a re  bearing capacity 

u l t '  fac tors ,  w a s  used t o  estimate the supported weight of the boulder Q 

Then using the  known volume of boulder, a boulder densi ty  of 2-6 gm/cm3 

w a s  calculated for the boulder considered to  be lying on a horizontal  

surface; whereas, 2.7 gm/cm3 was obtained fo r  a surface incl ined a t  30°. 

c r  q Y 

An a l t e rna t ive  analysis  was made by us considering the boulder 

t o  represent  a loaded foot ing located on the  face of a slope and using 

the analysis  presented by Meyerhof (1957). According t o  Meyerhof the  

ult imate u n i t  bearing capci ty  fo r  a rough s t r i p  footing i s  given by 

where N 

footing, the  angle of i n t e r n a l  f r i c t i o n  and the slope inc l ina t ion ,  and 

B is the width o f  footing. Reference t o  Fig. 3-6 indicates  t h a t  dis tance 

AB may be a reasonable assumption f o r  the width of footing. Since the 

base of the boulder represents  a c i r cu la r  ra ther  than a s t r i p  foot ing,  

and N 
cq Yq 

are bearing capacity fac tors  dependent on the depth o f  

Equation 3-2 should be modified t o  

xlt = 1 .2  c N  + 0.6 pgB N (3-3) 
cq Yq 

From later Surveyor r e s u l t s  it is now known t h a t  values of 

c - 0.1 p s i  and @ = 37O are more reasonable than those used by Nordmeyer, 

Unfortunately Meyerhof (1957) only gives  values of N f o r  the case of 

c = 0 and values of N 

However s ince the cohesion is  r e l a t ive ly  small the f i r s t  term i n  

Equation 3-3 can probably be neglected without too g r e a t  a loss i n  accuracy. 

Yq 
for the case of @ = 0 f o r  footings on slopes. 

cq 

With these assumptions and fu r the r  assuming t h a t  the boulder is  
* 

supported by a c i r cu la r  area with AB (Fig. 3-6) as a diameter and t h a t  

* 
This i s  not  s t r i c t l y  correct since the  bearing area under conditions 
shown by Fig.  3-6 w i l l  be elongate normal t o  the plane shown. 
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the  sinkage to  diameter ratio is 0.3, then the  bearing capacity may be 

computed, For Cp = 37O, a slope angle of 30°, N 

we obtain 

= 38, and AB = 289 cm, 
YS 

The value of pg, the u n i t  weight of the soi1,may be taken the same a s  

used by Nordmeyer (1); i.e.,  1.55 gm/cm3 (ear th  gravi ty)  o r  0.258 gm/cm3 

( lunar g rav i ty ) .  

lunar grav i ty  f i e l d .  The t o t a l  force that can be supported by the so i l  

is  given by t h i s  u n i t  capacity times the bearing area o r  1 1 . 2  X l o 7  gm. 

The volume of a sphere nine meters i n  diameter is 382 X lo6 cm3, thus 

the maximum u n i t  weight of boulder of t h i s  s i z e  t h a t  could be j u s t  

supported by the s o i l  on a 30° slope would be 

Thus the bearing capacity becomes 1700 gm/cm2 i n  the 

= 0.293 gm/cm3 11.2 x i o 7  
38.2 x 1 0 7  Y =  

Such a boulder would have a spec i f ic  grav i ty  of only 1.76, a value t h a t  

appears unreasonably low, a t  least by comparison with t e r r e s t r i a l  rocks, 

On the other hand it could more r a t iona l ly  be argued, s ince  

the  boulder is known t o  have ro l led  down the 30' slope r a the r  than t o  

have been supported as assumed i n  the ana lys i s ,  t h a t  the Meyerhof analysis  

simply shows t h a t  a boulder of more reasonable spec i f i c  grav i ty ,  say 

2.5 - 3.0, would not be expected t o  be s t a b l e  on the 30° slope. 

The p r o f i l e  i n  Fig. 3-5 indicates  t h a t  the boulder came t o  rest 

on a 13' slope. For t h i s  slope angle the  value of N is 80. For t h i s  

condition the  s o i l  could support 23.6 X l o 7  gm, and the corresponding 

value of boulder spec i f ic  grav i ty  becomes 3.70. 

compared with the spec i f i c  gravi ty  of t e r r e s t r i a l  rocks. 

values of N a re  very sens i t i ve  t o  small var ia t ions i n  both the f r i c t i o n  

YS 

This value is high 

Unfortunately 

'YS 
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angle of the  soil  and the slope angle, I t  is evident,  therefore ,  t h a t  any 

type of boulder track analysis  based on bearing capacity fac tors  can be 

only approximate a t  bes t  unless the t rack  dimensions, bearing areas, and 

s o i l  o r  boulder propert ies  are qui te  accurately known. 

Fe l ice  (1967) made a lower bound extimate of the bearing capacity 

of the s o i l  under the boulder by assuming t h a t  the average width of t rack 

approximates the diameter of a circle, the f ron t  ha l f  of which supports 

the boulder. H e  assumed a boulder densi ty  of 2.7 gm per c m 3 .  

a minimum bearing capacity of 25 pounds force per sq in .  (17.2 newtons per  

sq  c m )  is obtained. 

t o  support a boulder of the assumed densi ty  and bearing area.  

Meyerhof theory, however, i f  the s o i l  has Surveyor s o i l  p roper t ies ,  then 

more reasonable bearing capacity values of 20.9 and 44.0 p s i  a r e  obtained 

f o r  30° and 13O slopes,  respectively.  

On t h i s  bas i s  

“his value represents the absolute minimum required 

From the 

Eggleston (1967) a l so  made a s ta t ic  analysis .  However, the 

weight of the  boulder w a s  assumed supported by the f u l l  surface area of 

the spherical  segment on which the boulder rests. On t h i s  bas i s  an even 

lower value of bearing capacity fo r  a boulder densi ty  of 2.7 gm per  cm3 

i s  estimated. 

B. Work of Compression Method 

Nordmeyer (1967) assumed the boulder t o  be r o l l i n g  downhill 

slowly a t  constant veloci ty ,  and t h a t  the work done as it r o l l s  downhill 

is  equal to  the work done i n  compressing the  s o i l .  With the same s o i l  

property assumptions as used i n  h i s  analysis  of the s t a t i c  bearing capacity,  

he obtained a value of boulder density of 1.2 gm per c m 3 .  This value 

appears unreasonably low i n  the l i g h t  of data  now ava i lab le  on lunar s o i l  

and rock propert ies .  

C. Constant Rolling Velocity Analysis 

Recent tests ca r r i ed  out a t  the  University of Michigan reported 

by Gray (1967) have establ ished unique empirical re la t ionships  between 

track dimensions, s o i l  p roper t ies ,  r o l l i n g  sphere cha rac t e r i s t i c s ,  and 

the slope angle of a bed of sand necessary t o  obtain constant ve loc i ty  
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rolling of the sphere, Fig. 3-7 shows the slope angle, sin a ,  required 
for constant sphere velocity as a function of the parameter 

(2/3 IT) sin-' E) where b is the track width and D is the sphere 
diameter. 

sand density. It is not, however, independent of friction angle or 

sphere density, as would appear at first glance, since a depends on these 
variables; i.e., the slope angle must be varied to obtain a constant 

velocity for different sands or sphere densities. 

It may be seen that this relationship is independent of the 

Fig. 3-8 shows the relationship between slope angle for constant 

velocity, sand friction angle, and specific gravity of sphere. It should 

be noted that while these relationships appear unique and well established 

by the data, they are empirical. 

These figures may be used to estimate the density of the 

Sabine D rolling boulder. For a track width of 5 meters and boulder 

diameter of 9 meters, Fig. 3-7 yields a value of about 0.46 for sin a ,  
and the slope angle for constant rolling velocity would be 27.5O. Thus 

the boulder should have accelerated on slopes greater than 27.5O, and 

decelerated on slopes flatter than 27.5O. If velocity was constant and 

the tra6k width was 5 meters as the boulder passed along a 27.5' region 

of the slope, then from Fig. 3-8, assuming Surveyor soil (0 = 37'1, the 

boulder density would have to be of the order of 3.0 gm/cm3. This value 

is quite reasonable, and further study of relationships such as shown in 

Figs. 3-7 and 3-8 would appear desirable for application to the lunar 

rolling stone problem. 

D. Analysis by Trafficability Methods 

Another approach to the analysis of the rolling boulder - soil 
interaction problem is within the framework of existing methods of 

trafficability analysis by considering the boulder analogous to a rolling 

wheel. Three such methods were examined in terms of their suitability 
for deducing soil properties. 

1. Rigid wheel analysis. An empirical relationship has been 

developed by the U. S. Army Engineer Waterways Experiment Station (Freitag, 

1965) which relates the drawbar pull to wheel and soil parameters for a 

rigid wheel in a frictional soil; i.e., 
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: P&) pT - =  
W (3-4) 

where : 

PT = pull on wheel 

W = load on wheel 

G = cone index gradient 

b = wheel section width 

d = wheel diameter 

For application to the rolling boulder problem the wheel 

section width to wheel diameter ratio must be considered. 

the sinkage o f  the wheel is such that its soil contact area approximates 

in shape that of the soil contact area of the boulder is the analysis of 

the rigid wheel developed by the WES approximately comparable to the 

boulder problem. The contact area geometries for a rigid wheel and for 

a spherical boulder are compared in Fig. 3-9. 

Only when 

Elevation 

Wheel-soil 
contact area 

Plan 

Rigid Wheel 

Boulder-soil 
- /contact area 

Plan 
Boulder 

FIG. 3-9. Comparison of Contact Area Geometry f o r  R i g i d  Wheel and Spherical 
Boulder. 
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Assuming t h a t  the contact areas are approximately equal and t h a t  P 

the component of boulder weight parallel t o  the slope, W i s  the component 

of boulder weight normal t o  the  slope, b is the t rack width and d is the 

boulder diameter, t he  cone index gradient  fo r  the lunar soi l  can be esti- 

mated by means of Equation (A-61, Chapter 1, Volume 111, i f  it is  noted 

t h a t  G = C/Z, For the Surveyor s o i l  conditions n = 

k = 0 have been suggested by Scott;  thus G is computed t o  be 5 lb/in.  

(ear th  g rav i ty ) .  

becomes, for any slope angle,  a 

is  T 

3 
k9 = 5, and * 

C 

I f  the  boulder weight is  denoted by WB, Equation 3-4 

8 W s i n  a 
w cos a 5 

- -  - B 

B 

which reduces t o  

112 
[WB cos .] 

6 t an2  a WB = 9.6 X 10 cos a (3-5) 

With the a i d  of t h i s  re la t ionship  and the known boulder 

volume, t he  boulder densi ty  ( spec i f ic  gravi ty)  required fo r  constant 

veloci ty  r o l l i n g  down a slope of any inc l ina t ion  may be computed. 

r e s u l t s  of t h i s  computation are shown i n  Fig. 3-10. I t  may be seen t h a t  

the nature of t h i s  empirical re la t ionship  is  such that the higher the 

densi ty ,  the  grea te r  is the slope angle needed f o r  constant ve loc i ty  

ro l l i ng ,  probably because of the  grea te r  sinkage accompanying the  densi ty  

increase.  Since Equation 3-4 w a s  developed fo r  wheels r a the r  than 

spherical  bodies,  it is not l i ke ly  t h a t  it should hold exactly f o r  the 

ro l l i ng  boulder. Nonetheless, it is s ign i f i can t  to  note from Fig. 3-10 

that fo r  Surveyor type s o i l  and an average slope angle of 3 0 ° ,  as f o r  

the Sabine D crater, a boulder density of 4.4 gm/cm3 is obtained. 

value appears t o  be unreasonably high. 

The 

Th i s  

I f  constant ve loc i ty  r o l l i n g  is 

* 
Scot t ,  R. F . ,  Personal communication, May 1968. 



3-19 

5. c 
Qc 
W 

J 
3 
0 rn 
LL 4.c 0 
>- 
I- 
> 
U 

0 
LL 
0 w a. 

n 

- 
a 
0 3.0 

- 
- 

m 2.0 

I .o 

0 I I I I I 
0 IO 20 30 40 50 

SLOPE ANGLE cu(degrees1 

FIG. 3-10. Relation Between Boulder Density and Slope Angle for Constant 
Velocity Rolling According to WES Empirical Equation 



3-20 

developed at a slope angle of 27,5O, as suggested by Analysis 3, then a 

value of about 3.5 gm/cm3 is obtained, which is still somewhat high in 

comparison with values reported from Surveyor test results. 

2. ' Soil value system analysis. The Bekker soil value system 

may be used to estimate the boulder density. 

Bekker (1960) has developed the following equation: 

With the aid of Equation 3-1, 

where : 

N = force normal to soil 

d = wheel diameter 

b = wheel section width 

Z = sinkage 

n = soil constant 

Again assuming the Surveyor soil properties as estimated 

by Scott, kc = 0, kO = 5, and n = 1, and noting that for the boulder, 

b = 500 cm, Z - 75 cm, and d = 900 cm, Equation 3-b becomes 

"900 x 75 
w B cos a = ( 5 )  42.54 X 2.54 2.54 

W cos a = 1.98 X l o 6  lb force 
B 

For a 30° slope W = 2.29 X l o 6  lb and the corresponding density of 
boulder (specific gravity) is 2.72. This value is very reasonable. 

The value, however, is sensitive to the value chosen for n. If, for 

B 
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example, n had been taken as 0,5,  then a value of boulder density of only 

0.392 would be computed. Thus t h i s  method can be expected t o  be r e l i a b l e  

only i f  accurate values of n a re  avai lable .  

3. Simili tude analysis.  I n  Volume 111, Chapter 1, of t h i s  

repor t ,  a s imi l i tude  approach to  analysis  of soil-wheel i n t e rac t ion  w a s  

outl ined. I t  w a s  noted t h a t  a dimensionless number could be used t o  

character ize  behavior. For sands the sand mobility number w a s  used, 

G (bd) 3’ (6/h) /W. 

the  (6/h) term, t i r e  def lec t ion  divided by sect ion height ,  does not  have 

meaning when applied to a r o l l i n g  boulder. 

has presented cor re la t ions  between the sand loading number, G (bd) 3’ 2/W, 

and various performance f ac to r s  fo r  s ing le  wheels. The cor re la t ions  were 

developed from the r e s u l t s  of tests on one sand (Yuma sand) using d i f f e r e n t  

t i res  in f l a t ed  t o  give d i f f e r e n t  def lect ions.  The sand w a s  placed a t  

d i f f e ren t  dens i t i e s  so t h a t  values of cone index gradient  i n  the range 

of 0.7 t o  8.3 could be studied. Fig. 3-11 shows the sinkage coe f f i c i en t  

vs b / h  fo r  severa l  values of G(bd) 3’2/W. 

t o  b / h  = 0 and corresponding values of sand loading number and sinkage 

number read off  t o  give the  re la t ionship  shown i n  Fig. 3-12. 

Such a relat ionship cannot be used d i r e c t l y  because 

On the other  hand Green (1967) 

These curves can be extrapolated 

The r e s u l t s  i n  Fig. 3-12 may be applied t o  the Sabine D 

boulder by noting t h a t  from the boulder t rack and boulder s i z e ,  

Z/d = 0.75/9.0 = 0.0833. Thus the corresponding value of sand loading number 

is  175. Knowing t h a t  G = 5, b = 197” (800) m) , and d = 354” (900 cm) the  

weight of boulder normal to  the  slope is  computed as 0.525 X l o 6  lb .  

a 30° slope the  boulder weight would then be 0.606 X l o 6  lb. From the 

known volume of boulder, a spec i f ic  grav i ty  of 0.72 is  obtained. This 

value is inordinantly low and cas t s  doubt on the app l i cab i l i t y  of the  

method. It is not surpr i s ing ,  however, t h a t  a questionable r e s u l t  is 

obtained s ince  the cor re la t ions  used w e r e  based on the r e s u l t s  of tests 

with pneumatic t i r e s .  I t  w a s  shown i n  Volume 111, Chapter 1, t h a t  t h e  

s imil i tude cor re la t ions  developed fo r  pneumatic tires w e r e  not adequate 

t o  account f o r  the behavior of proposed lunar vehicle  wheels, It appears 

t h a t  they are equally inva l id  when applied t o  r o l l i n g  boulders. 

For 
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IV, CONCLUSION 

The analysis of boulder tracks on the lunar surface should be 

potentially rewarding in terms of yielding information on soil and rock 

variability in the areas covered by Orbiter photography. Reasonable 

quantitative determinations should be possible in those cases where 

relatively accurate values of boulder size, track shape and sinkage, 

and slope angle can be obtained, as should be the case for some of the 

Surveyor results, and as will be possible during Apollo missions. 

Theoretical and experimental studies are desirable in order that a 

rational analytical framework may be developed. The results will be 

useful not only for boulder track analysis, but also for study of the 

trafficability problem. 

The Sabine D boulder track has been analyzed using several methods 

in addition to those already presented in the literature (Nordmeyer, 1967; 

Filice, 1967; Eggleston, 1967). The results of these analyses are 

summarized in Table 3-1. It is shown by means of Meyerhof's bearing 

capacity factors (Meyerhof, 1957) for footings on sand slopes that a 

boulder of specific gravity similar to that for terrestrial rocks; ?.e., 

2.7 - 3.0, would be unstable on a 30° slope having Surveyor soil character- 
istics. On the other hand it would be stable on a 13' slope, the estimated 

slope on which the Sabine D boulder finally came to rest. 

Analysis of the boulder within the framework of empirical correlations 

developed for constant velocity rolling of spheres down slopes of cohesion- 

less soil (Gray, 1967) led to the very reasonable boulder density estimate 

of 3.0. From application of an empirical equation developed to describe 

the rolling resistance of a rigid wheel in sand (Freitag, 1965), a 

boulder density of 3.5 was obtained. An estimate obtained using traffi- 

cability relationships based on the soil value system (Bekker, 1960) gave 

a density of 2.7 for an assumed value of n equal to 1. An analysis based 

on similitude relationships for trafficability (Green, 1967) gave an un- 

realistically low value for density. In all cases the estimates involved 

a number of approximations and assumptions. Whatever the final methods 

selected for boulder track analysis, it will be imperative that the same 

method be applied in the same manner to all tracks if meaningful comparative 
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results are to be obtained. 

description of the mechanics of boulder track formation be developed for 

this purpose. 

It is recommended that a rational theory for 

Finally, it should be noted that only regular, continuous tracks 

have been considered herin. Tracks formed by bouncing, skipping, and 

skidding boulders must be analyzed separately. 
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L i s t  of Symbols 
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t rack  width 

width of footing 
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cone index 

wheel diameter 

sphere diameter 

void r a t i o  

accelerat ion a t  gravi ty  

cone index gradient  

t i r e  sect ion height 

s o i l  parameters 

coef f ic ien t  = k /b + k 4 C 

s o i l  constant 

force normal t o  s o i l  

bearing capacity fac tors  

bearing capacity fac tors  

p u l l  on wheel 

ult imate u n i t  bearing capacity 

ultimate bearing capacity as weight of boulder 

radius  

load on wheel 

boulder weight 

depth 

sinkage 
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slope angle 

u n i t  weight 

t i re  def lec t ion  

densi ty  

angle of f r i c t i o n  
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CHAPTER 4 

IMPACT WCOFtDS AS A SOURCE OF LUNAR SURFACE MATERIAL PROPERTY DATA 

(James K. Mitchell, Donald W. Quigley, and Scott S. Smith) 

I. INTRODUCTION 

The use of impact penetrometers for remote determination of soil 

properties has been under study for some time, for both terrestrial and 

extra-terrestrial applications, 

investigate the mechanics of dynamic penetration into soil and rock 

materials. Tests have been carried out for determination of character- 

istic signatures of instrumented penetrometers into soils of different 

types, and it appears feasible to determine in some detail the soil 

profile characteristics from the time-acceleration history recorded 

during a penetration event. Recent contributions to this subject, which 

deal with various aspects of penetrometer design and instrumentation, 

analysis of impact events, and analysis of data for determination of soil 

properties, have been made by McCarty and Garden (1968) and Womack and 

Cox (1967). These investigators have concerned themselves mainly with 

the development and application of instrumented penetrometers for remote 

area investigation. 

A number of studies have been made to 

The possibility exists as well that the results of certain natural 

lunar phenomena might be used for inference of surface material property 

data. Moore (1967) recognized from Lunar Orbiter photographs that many 

secondary impact craters exist which were formed by ejecta blocks thrown 

out during formation of primary craters. These observations led him to 

a study of the characteristics of these secondary craters and the develop- 

ment of a relationship between penetration depth and characteristics of 

the surface material and penetration. Naturally, in the analysis of this 

type of a record a number of assumptions are required. 

are block size and shape, penetration depth (both limited in accuracy by 

photographic resolution), and the approximate range from the primary impact 

crater to the secondary impact point. 

The data available 
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An analys is  of ex is t ing  s o i l  penetration equations has been made i n  

an e f f o r t  t o  a r r ive  a t  the most su i t ab le  equation f o r  analysis  of 

secondary impact c r a t e r s .  I t  is  important t o  note t h a t  f o r  t h i s  study 

only re la t ionships  t h a t  could be applied without knowledge of the  de- 

ce le ra t ion  h is tory  during penetration were investigated.  Following t h i s  

work a study w a s  i n i t i a t e d  of the penetration process based on analysis  

of deformation pa t te rns  under the base of an impacting penetrometer. 

The analyses presented by Scot t  (19621, which have been used i n  p a r t  

f o r  study of Surveyor footpad penetrations,  are used as a s t a r t i n g  point.  

This sec t ion  reports  the  r e s u l t s  of the  study of ex is t ing  penetrat ion 

equations; r e s u l t s  of the  analysis  of deformation mechanics during penetra- 

t i o n  w i l l  be reported subsequently. 

11. SECONDARY IMPACT CRATER ANALYSIS 

A. Moore's Analysis 

H. J. Moore (1967) attempted t o  analyze quant i ta t ive ly  the data  

obtained from Lunar Orbi ter  photographs showing secondary impact craters 

caused by e j e c t a  blocks spewn out from meteor explosion c ra t e r s .  H e  

noted t h a t  the depth of penetration of a block was roughly proportional 

t o  i t s  dis tance from the  meteor c ra t e r .  This suggested a re la t ionship  

between depth of penetration and impact veloci ty ,  s ince range and veloci ty  

are r e l a t ed  by simple b a l l i s t i c s  equations. A semi-theoretical s o i l  

penetration predict ion equation w a s  derived which could be used f o r  the 

analysis  of the secondary impact c r a t e r  data .  The equation w a s  developed 

with the a i d  of tests on the  penetration of rods i n t o  granular s o i l s .  

The following assumptions were made: 

* 

1. Penetration resis tance is proportional t o  the densi ty  of 

the s o i l ;  

2. Penetration resis tance is proportional t o  the accelerat ion 

of gravi ty;  

3 .  Penetration res i s tance  is  proportional t o  depth of pene- 

t r a t i o n  ; 

* 
Ejecta blocks impact the lunar surface a t  ve loc i t i e s  of about 50 - 200 f t / s e c  

based on the range from the primary to  secondary crater, These a r e  considered 
low ve loc i t i e s  f o r  the purposes of t h i s  report .  
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4, Energy ava i lab le  fo r  penetration is proportional t o  the 

k ine t i c  energy of the penetrator .  

By equating the  work required f o r  penetration t o  the energy 

avai lable  f o r  penetrat ion,  Moore arr ived a t  the following relat ionship:  

VO 1/2  
1 -- P 

- =  L c[?) g1/2 &2 

i n  which P = depth of penetration of  the p r o j e c t i l e ,  L = length of 

p ro jec t i l e ,  c = constant,  

density of the  s o i l ,  g = gravi ta t iona l  constant,  VO = v e r t i c a l  component 

of the impact veloci ty  of the p ro jec t i l e .  

p t  = mass = mass densi ty  of the p ro jec t i l e ,  
pP 

The assumptions used fo r  development of t h i s  equation appear 

reasonable f o r  penetration i n t o  granular ( f r i c t i o n a l )  so i l  mater ia ls .  

A d i r e c t  proportional&ty between penetration res i s tance  and densi ty  

probably does not e x i s t ,  bu t  i n  the absence of spec i f i c  data  it may be a 

good f h s t  approximation. If a s o i l  i s  considered which der ives  i t s  

s t rength  only from f r i c t i o n ,  i f  penetration res i s tance  is d i r e c t l y  

proportional t o  shear s t rength ,  and i f  density does not vary with depth, 

then assumptions ( 2 )  and (3 )  w i l l  be s a t i s f i e d .  Assumption (4) depends 

on the p a r t i t i o n  of energy between penetrat ion and other losses ,  e.g., 

hea t ,  as a function of i n i t i a l  penetrator  energy, and says,  i n  effect, 

t h a t  t h i s  p a r t i t i o n  w i l l  be the same f o r  a l l  impacts regardless  of 

penetrator s i z e ,  shape, mass, or veloci ty .  An experimental value of c 

was determined from the  r e s u l t s  of low veloci ty  penetrat ion tests i n t o  

a dense f i n e  sand. 

impact crater da ta  from 

i n  Fig. 4-1, where the d i f f e ren t  symbols represent boulder impacts on 

d i f f e r e n t  areas  of the moon. From the scatter of the da ta ,  Moore concluded 

t h a t  the lunar surface is  inhomogeneous over the areas  invest igated.  

* 
Moore then used the  equation t o  evaluate secondary 

Lunar Orbiter photographs, with the r e s u l t s  shown 

* 
The coe f f i c i en t  c is  given by the value of = 1. 
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Since t h i s  conclusion is  a t  variance with the findings a t  the 

f ive  Surveyor landing sites, and because Orbiter da ta  are now ava i lab le  

fo r  a number of other a reas  on the lunar surface,  fur ther  study has been 

made of re la t ionships  t h a t  might be used fo r  study of secondary impact 

c r a t e r s .  

of pp, p,, and 8 ,  the boulder e jec t ion  angle. 

pt = 0.8 gm/cc, and 8 = 60'. Fig. 4-2 shows t h a t  a l l  the  s c a t t e r  i n  the 

secondary impact c r a t e r  data  can be accounted fo r  by appropriate choices 

of the values of p I p,, and 8. The l i n e  on the f igure  labeled "Theory" 

corresponds t o  the assumed values of c = 2.82 X 

The other  l i n e s  on the f igure correspond to  values of the above var iables  

which would make data  poin ts  f a l l i n g  on these l i n e s  correspond with the 

theory by appropriate choice of p , P t r  and 8. 

In  the analysis  cer ta in  assumptions must be made fo r  the  values 

Moore used p = 2.4 gm/cc, 
P 

P 
p , pt, and 8. 
P 

For example, the data  point  marked "A" i n  Fig. 4-2 can be made 

t o  correspond t o  Moore's theore t ica l  l i n e  i f  the boulder were e jec ted  from 

the  main meteor c ra t e r  a t  an angle of 15O ra ther  than a t  60° as Moore 

assumed. Similarly,  po in t  "B" would correspond to  the theo re t i ca l  l i n e  

i f  the boulder w e r e  e jec ted  a t  an angle of about 75O, and point  "C" would 

s h i f t  t o  the theore t ica l  l i n e  i f  the surface mass densi ty  were s l i q h t l y  

g rea t e t  than 2.5 ra ther  than 0.8 gm/cc as assumed. 
* 

I f  the  values of the var iables  assumed by Moore a re  reasonable, 

then the scatter in  the data  must be accounted f o r  by o ther  means. The 

most l i k e l y  cases of such da ta  s c a t t e r  a r e  (1) the Moore equation f o r  

p r o j e c t i l e  penetr.ation does not represent  the process of dynamic penetra- 

t i o n  on the lunar surface and/or (2 )  the equation does not take i n t o  account 

cer ta in  f ac to r s  neglected i n  the der ivat ion of the p r o j e c t i l e  penetrat ion 

equation on ea r th ,  but which w i l l  be encountered on the lunar surface.  

* 
In  the l i g h t  of Surveyor da ta  obtained s ince Moore's o r ig ina l  analysis  an 

assumed value f o r  pt of 1.5 gm/cc would appear more reasonable than 
0.8 gm/cc. An assumption of t h i s  value would s h i f t  the theo re t i ca l  l i n e  
and a l l  da t a  points  i n  Figs. 1 and 2 ,  but the scatter would not be reduced. 
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B, Soil Penetration Equations 

In an attempt to resolve some of the uncertainty associated 

with the above findings, Moore's equation was examined in more detail, 

and its ability to account for dynamic penetration data beyond those 

used in its derivation was studied. 

for penetration depth prediction were examined. 

that all of the equations to be discussed are earth-derived and earth- 

oriented. 

moon is discussed later. 

In addition other equations developed 

It must be noted, however, 

The problem of their applicability to soil penetration on the 

Equation 4-1 can be put in a more convenient form by the 

following rearrangement of terms: 

1/2 1/2 
L1/2 P g 

Pt 
VO P = c -  

1/2 g1/2g1/2 

The weight-to-area ratio of the projectile (Q) is defined as 

Q = W/A 

W = weight of penetrator, 

A = gross cross-sectional area of the penetrator, 

Therefore 

(4-2) 

(4-3) 

Q = LPpg 
I 

(4-5) 
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The un i t  weight of the t a r g e t  s o i l  (y 1 is by de f in i t i on  t 

Yt = Pt9 

Therefore 

For a given value of g (32.2 f t /sec2 for the Earth) : 

i n  which 

Taking i n t o  account the nose shape of the  penetrator ,  t he  equation can be 

w r i t  t en  

(4-10) 

c 

i n  which K" = a propor t iona l i ty  constant, and N = a r e l a t i v e  p r o j e c t i l e  

nose shape constant. Young (1967) has determined empirical values of n 

from low-velocity (VO < 200 f t / sec)  p r o j e c t i l e  penetration tests i n  

various soils. Typical values of  n are given i n  T a b l e  4-1. 
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TABLE 4-1 

Val ues of Pro j e c t i  1 e ose-S hape Coeff i c i  en t  n 

Nose Shape n 

F la t  nose 
Hemispherical nose 
2.2 crh tangent ogive* 
6.0 crh tangent ogive 
9.25 crh tangent ogive 

0.56 
0.72 
0.82 
1 .oo 
1 . l l  

*A [i] crh tangent ogive is  a geometrical form as shown below: 

The form of Equation 4-10 can be seen from the data  p lo t t ed  i n  

Fig. 4-3. These data ,  taken from low veloci ty  (V, < 200 f t / sec)  impact 

s tud ies  conducted by the  Sandia Corporation (Thompson, 1967), show that 

the value of K” is not a constant,  but  is  d i f f e r e n t  f o r  each s o i l ,  

For these tests so l id  mild steel  penetrators  were used f o r  tests 

i n  s o i l s ,  and hardened steel penetrators  w e r e  used fo r  drops i n t o  rock. 

With the exception of pa in t  abrasion observed on penetrators  dropped in to  

fine-grained s o i l s ,  the  penetrators  w e r e  undamaged. Heavy s t r i a t i o n  marks 

w e r e  observed a f t e r  penetrat ion in to  granular s o i l s .  
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SANDLA DATA PLOTTED IN Tl lE  FORM OF TIle 

MODIFIED MOORE EQUATION 
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For comparison the relat ionship determined by Moore from h i s  

tests is a l so  shown on Fig, 4-3, This is an extrapolated relat ionship,  

however, because the range of values of n -- Vo] for  Moore's tests 

i s  much less than tha t  f o r  the  Sandia tests. 

s o i l ,  it can be combined with [l/yt1'2) t o  form a "so i l  constant," K. 

The Modified Moore Equation thus becomes 

[ Q1'2 
1 /2  

y t  
Since K" depends upon the 

(4-11) 

By plo t t ing  the data as shown in  Fig. 4-4, values of K can be determined 

f o r  the d i f f e ren t  s o i l  types. A s m a r y  of typical  values thus deter-  

mined is given i n  Table 4-2. 

TABLE 4-2 

Values of Soil Constant, K 

Description of Soil K ( i n .  - sec / lb1 I2 )  

Dense, f ine sand 

S t i f f ,  dry,  s i l t y  clay 

10.5 x 10-3 

t ransparent  gypsum) 4.7 x 10-3 
7.3 x 10-3 

Hard, moist gyps i te  and s e l e n i t e  ( c l e a r ,  

Layered ( s o f t  over s t i f f )  s i l t y  clay 11.6 x lo-' 

The constants a re  consistent. with the following uni ts :  

p = ps i ,  and V o  = f t /sec.  

p = f ee t ,  

The accuracy of the modified Moore Equation can be seen from 

Fig. 4-5 i n  which actual  depths of penetration are  compared with predicted 

depths fo r  the Sandia data.  The accuracy of the equation a s  a function 
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of impact velocity can be determined by normalizing all the Sandia data 

to that of a standard condition (Q = 15 psi, crh = 0 [flat nose], 

K = 4-3 X by the following equation: 

(4.12) 

where P 

for a data point, and K, n, Q = the appropriate values for a data point. 

= normalj-zed depth of penetration, PA = actual depth of penetration N 

The normalized data are shown in Fig. 4-6. From this graph it 

may be seen that, while the data are rather spread out in the range of 

lower velocities, most of the points fall within k 20% rieviztion lines. 

The Sandia Corporation has conducted a large number of instru- 

mented projectile penetration tests into a variety of soils over a wide 

range of impact velocities. Their early data were used by Young (1967) 

to develop the following empirical penetration prediction equation for 

impact velocities less than 200 ft/sec: 

(4-13) 

where 

S is a soil constant 

Typical values of S for the soils studied are given in Table 4-3. 

Woodward-Clyde and Associates (1962-1967) have analyzed the 

Sandia data in an effort to correlate depths of penetration, for a 

given projectile and impact velocity, with the average standard blow 

count and total unit weight of the soil. The equations developed were 
* 

* 
Obtained from the standard penetration test - see Terzaghi and Peck (1967), 
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TABLE 4-3 

Values of Soil Constant, S 

Soi 1 S -- [;;;;:I 
Sof t ,  sa turated clay 
Sof t  San Francisco Bay Mud 
Layered (soft over s t i f f )  s i l t y  clay 
Loose-to-medium dense moist sand 
S t i f f ,  dry,  s i l t y  clay 
Hard, moist gypsite and se l en i t e  
Rock 

50.0 
22.2 
9*1 
6.5 
5.0 

2.43 
1.07 - 1.30 

based on tests covering a range of impact ve loc i t ies  from 100 t o  

1400 f t /sec.  The equations are empirical i n  nature but a re  i n  the form 

of the R e s a l  and Poncelet equations (ear ly  h i s t o r i c a l  penetration 

equations) as shown below: 

Resal Equation 

1 
a P = - In (1 + P V ~ )  

where 

(80 + N) YtC 

625,000 RQ a =  

@ = 1.26 A X 

R = 0.042 (crh) + 0.942 

(4-14) 

(4-15) 

(4-16) 

(4-17) 
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C = 1 + 3/2 sech (NJ10) - 5/2 exp (- N2/52) (4-18) 

i n  which 

N = the average standard blow count over the depth of penetration 

yt = the average total  un i t  weight of the s o i l  over the depth 

of penetration 

A = cross-sectional area of the penetrator. 

The uni t s  used a re  P = feet ,  Vo = f t /sec,  Q = p s i ,  y t p c f ,  and A = sq in.  

Poncelet Equation 

p = -  l n ( 1  + bVi) 
a 

where 

(85 + N) (1.29 - 350 X 

14400 RQ 
V O )  y tC  

a =  

(4-19) 

(4-20) 

b = 0.431 X lom6 A (4-21) 

The accuracy of the equations 4-13, -14, -19 -Young, R e s a l ,  

and Poncelet - w a s  assessed by using only the Sandia low veloci ty  da ta  

(Vo < 200 f t / s ec ) .  It  can be seen from Figs. 4-7, -8, -9 t h a t  only the 

Young equation approaches adequate prediction of depths of penetration 

fo r  t h i s  veloci ty  range. This is understandable, however, since only the 

Young equation was derived expressly f o r  l o w  impact ve loc i t ies  

(Vg < 200 f t / s e c ) ,  On the other hand, the Resal and Poncelet equations 

give very good r e su l t s  i n  the higher range of ve loc i t ies  from 200 t o  

1400 f t /sec.  

Because of the inadequate r e s u l t s  obtained from these equations, 

it was decided t o  change the constants of the equations i n  an attempt t o  

obtain a b e t t e r  f i t  t o  the low velocity data.  In  addition, the R e s a l  

and Poncelet equations w e r e  simplified a s  w i l l  be shown below. 
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The Young equation can be rewritten as 

P = KiS n Q”’ ln(1 + K2Vt) 

where 

~ 1 ,  K2 = constant coefficients 

and the Resal equation may be rewritten as 

(4-22) 

(4-23) 

where 

C1, Car C3 = numerical constants. 

Since k depends upon the nose shape of the penetrator and (Cl + N)y t C 
depends upon the soil, the Resal equation can be simplified and re- 

written as follows: 

P = KsS’n’Q ln(1 + K4A Vo 

where 

K3, K4 = constant coefficients 

S’ = soil constant 

n’ = projectile nose-shape coefficient. 

The Poncelet equation can be rewritten as 

(4-24) 

(4-25) 

where 

Di, D2, D g ,  D4, D5 = constants. 
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By the same reasoning given above for  the R e s a l  equation, the Poncelet 

equation becomes 

(4-26) 

where 

K 5 ,  K6, K7 = constant coeff ic ients  

s’/ = s o i l  constant 

n” = pro jec t i l e  nose-shape coeff ic ient  

I t  has been advantageous t o  assume tha t  S I  S’, S” are equal a s  

S t r i c t l y  speaking t h i s  is not correct ;  however, a re  a lso n, n’, and n’-. 

the respective S and n values should be proportionally re la ted  between 

d i f f e ren t  s o i l s  and penetrator nose shapes. Therefore, actual  differences 

i n  magnitude of these values can be accounted for  by appropriate choices 

of the K-constants i n  the equations. Thus the modified equations can be 

f ina l ly  rewri t ten a s  follows: 

Modified Young Equation 

P = K1S n Q112 l n ( 1  + K2Vg) 

Modified Resal Equation 

P = K5S n Q l n ( 1  + K6Vo) 

Modified Poncelet Equation 

(4-27) 

(4-28) 

(4-29) 
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The constant coefficients for these equations have been deter- 

mined by finding a “least-squares” fit to the Sandia low velocity data. 

The values of the constants thus determined are given in Table 4-4. (The 

units are those needed for consistency with those of the variables.) 

TABLE 4-4 

Constant Coefficients of Modified Sandia Equations 

Coefficient Value 

K1 

K2 

3.52 x 1O-I 
3.61 x lG5 
9.02 x 

3.29 x 10-4 
- 8.00 x 10’ 
- 3.76 x 10- 
9.17 x 10-3 

The accuracy of the modified equations can be seen from the 

results plotted in Figs. 4-10, -11, -12. The variation of the experi- 

mental data between actual and predicted penetration depths can be seen 

to be the smallest for the Modified Young Equation, and the greatest 

for the Modified Poncelet Equation. The effect of impact velocity can 

be seen in Figs. 4-13, -14, -15, where the data have been normalized 

to a standard condition (Q = 15 psi, crh = 0 (flat nose), S = 2.0, 

nose diameter = 9 in.) in the following manner: 

Modified Young Equation 

(4-30) 
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Modified Resal Equation 

ln(1 + 3.29 X X 63-6 Vo) 

ln(1 + 3.29 X X A Vo) 
(4-31) 2 0 0 56 15 

'N = 'A (--$I (-1 

Modified Poncelet Equation 

ln(1 - 3.76 X 10- X 63.6 V f )  

ln(1 - 3.76 X 10- X A Vo) 

2 0 0 56 15 
'N = 'A 

(4-32) 

These graphs also show that the Modified Young Equation gives the best 

results, with a large majority of the data points falling within f. 20% 

of the predicted values. 

As noted in the introduction a number of other investigators 

have also been studying the use of accelerometer-mounted projectiles €or 

remote soil reconnaissance, especially on the lunar surface. McCarty 

and Carden (1962) showed that the depth of penetration for a given shape 

of projectile and with impact velocity less than 30 ft/sec could be 

predicted by the following equation: 

m '/' v02/3 P = k -  D (4-33) 

in which k = a soil constant, m = the mass of the projectile, and 

D = the diameter of the projectile. 

range for which this equation is valid, it cannot be used for the analysis 

of secondary impact craters. 

velocity data to further evaluate the Modified Moore and Young equations 

- the most accurate of the available penetration equations studied thus 
far. 

Because of the very low velocity 

But it has been advantageous to use low- 
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D a t a  taken from Hanks and McCarty (1966) and shown i n  Fig, 4-16 

indicate qu i t e  c lear ly  t h a t  the Modified Young equation is extremely 

velocity dependent i n  the low velocity range. This is not unreasonable 

because the Modified Young equation is empirical and intended f o r  greater  

velocities than those i n  question. It is thus obvious t h a t  the Modified 

Young Equation can not be extrapolated i n t o  velocity ranges for  which it 

w a s  not intended, 

On the other hand, data  from Carden (19671, McCarty and Carden 

(1962) and Hanks and McCarty (1966) tend t o  support the Modified Moore 

Equation f o r  impact ve loc i t ies  substant ia l ly  less than 100 f t /sec,  as 

may be seen from Figs. 4-17, -18, -19. However, these very low veloci ty  

da ta  have a l so  shown t h a t  the s t r a igh t  l i n e  relat ionship between P and 

n * Q'12 e VO does not pass through the  or ig in  but in te rcepts  the ordinate 

axis  a t  a f i n i t e  value of P. It might be concluded therefore  t h a t  a be t t e r  

f i t  t o  the data  would be obtained by the following form of the equation 

(4-34) 

where 

PO = the " s t a t i c "  depth of penetration. 

However, it must be remembered tha t  both the impact ve loc i t ies  and weight- 

to-frontal  area r a t io s  w e r e  re la t ive ly  s m a l l  fo r  these tests. Therefore, 

l i t t l e  e r ro r  should be involved i n  applying the regular Modified Moore 

Equation t o  heavier p ro jec t i l e s  and grea te r  impact ve loc i t ies ,  because 

the intercept  on the ordinate axis  w i l l  be small compared t o  measured 

depths of penetration. 

Further substantiation of the Modified Moore Equation can be 

provided by means of dimensional analysis.  Assuming t h a t  

(4-35) 
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use of the Buckingham Pi Theorem yields equations for two dimensionless 

parameters: 

~1 = Q ~ ~ Y ~ ~ ’ v ~ ~ ~ P  = (ML -1 T -2 x1 (ML -2 T -2 y1 (LT-’)’~(L) 

These relationships yield two sets of simultaneous equations: 

Solving, we obtain: 

x2 = 1 

Y2 = - 1 

22 = - 2 

(4-36) 

(4-37) 

(4-39a) 

(4- 39b) 

(4- 39Q) 
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Therefore 

y tp  
7T1 = - 

Q 

In  other words 

Therefore, we  can say 

(4-40) 

(4-41) 

(4-42) 

(4-43) 

The form of t h i s  function is shown i n  Fig. 4-20 using Moore's laboratory 
Y v2 Y P  

data ,  where it may be seen t h a t  Log [ - igO] = 2 log [+] + const. Thus 

(4-44) 

(4-45) 
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Therefore, 

P =  k1 Q%O 
'v 1/2 1 / 2  

(4-46) 

For a given soil and known value of g 

P = K Q1I2V0 (4-47) 

Taking into account different projectile nose shapes: 

p = K n Q ~ / ~ v ~  (4-48) 

Equation 4-48 is readily identified as the Modified Moore Equation. 

the results of these analyses it is reasonable to conclude that the 

Modified Moore Equation provides quite an accurate basis for prediction 

of low velocity (< 200 ft/sec) projectile penetrated on earth. 

From 

C .  Effects of Related Factors 

Returning now to a consideration of lunar secondary impact 

craters, the scatter in Fig. 4-1, if not caused by material inhomogeneity, 

must be attributed to other factors which hinder the accurate use of the 

equation. 

Because there is essentially no atmosphere on the moon, there 

can be no pore air pressures developed during dynamic penetration of lunar 

soils. This is in direct contrast to soils on Earth, where the dynamic 

strength can be greatly affected by excess pore air pressures.. On Earth 

excess pore air pressures develop when soils are forced to either compress 

or dilate rapidly causing air to be forced out of or into the soil pores. 
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I f  t he  soi l  i s  f i n e  grained, i t s  a i r  permeability may be q u i t e  low 

thereby r e s t r i c t i n g  the  flow of a i r .  

o r  negative excess pore a i r  pressures.  I n  a loose s o i l ,  which tends t o  

compress during shearing (as i n  p r o j e c t i l e  pene t ra t ion)  , t he  p o s i t i v e  

excess pore a i r  pressures decrease in te rgranular  pressures  r e s u l t i n g  i n  

a loss of shear strength.  This is shown c l e a r l y  by Fig. 4-21, prepared 

from da ta  of Hanks and McCarty (1966). When the average p a r t i c l e  s i z e  

f a l l s  below a value between 27 and 65 &I, t he  a i r  permeabili ty becomes 

too low t o  permit a i r  t o  escape as the  material attempts t o  compress. 

Excess pore a i r  pressures develop, t h e  s t r eng th  is reduced, and t h e  

pene t ra t ion  is  increased. 

This r e s u l t s  i n  e i t h e r  p o s i t i v e  

Conversely, i n  a dense s o i l  which tends t o  d i l a t e  upon shearing, 

t he  negative excess pore a i r  pressures increase in t e rg ranu la r  pressures  

and lead t o  an increase i n  shear s t rength .  Thus, when two s o i l s  - one 

loose and one dense -a re  placed i n  a vacuum, the e f f e c t  i s  t o  reduce 

depths of p r o j e c t i l e  pene t ra t ion  i n t o  the  loose s o i l  and increase  them 

f o r  the  dense s o i l  as compared t o  values obtained from s i m i l a r  tests under 

atmospheric conditions. Nonetheless, t he  r e s u l t s  of Clark and McCarty (1963) 

show t h a t  t he  r e l a t ionsh ip  between depth of pene t ra t ion  and p r o j e c t i l e  and 

s o i l  parameters remains i n  the  form of the  Modified Moore Equation when 

t h e  s o i l  is t e s t e d  in-vacuo. However, the  value of K f o r  pene t ra t ion  

in-vacuo can be g rea t e r  o r  smaller than t h a t  fo r  pene t ra t ion  under atmo- 

spheric conditions,  depending upon whether the s o i l  is  dense o r  loose. 

Thus p red ic t ion  of K values f o r  the lunar soil cannot be made from the  

r e s u l t s  of penetration tests on e a r t h  without some consideration being 

given t o  these  e f f e c t s .  Surveyor r e s u l t s  y i e ld  permeability values 

c h a r a c t e r i s t i c  of silts and f i n e  sands. These types of soils are l i k e l y  

t o  be the  m o s t  suscept ib le  t o  excess pore a i r  pressure a f f e c t s  during 

dynamic loading. Thus, it appears t h a t  it is  not poss ib le  a t  t he  present  

t i m e  (without t he  r e s u l t s  of penetration tests of e a r t h  s o i l s  in-vacuo) 

t o  accura te ly  p red ic t  the  s p e c i f i c  type and nature of lunar s o i l  from 

the  ava i l ab le  secondary impact crater data, since the  s ign i f icance  of 

lunar K values cannot y e t  be assessed. I n  addi t ion ,  it should be noted 

t h a t  a l l  of the  analyses have assumed a homogeneous lunar s o i l  p r o f i l e ,  
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I t  is l ike ly ,  however, t h a t  the lunar s o i l  is underlain by bedrock a t  

d i f f e ren t  depths i n  d i f f e ren t  locations,  The depth t o  bedrock, i f  within 

the depth of penetration, should have a pronounced e f f e c t  on the depth 

of penetration. 

On the other hand the investigation of secondary craters would 

st i l l  appear t o  be useful f o r  the assessment of lunar s o i l  va r i ab i l i t y  

since only r e l a t ive  values of parameters are  needed. I n  t h i s  case any 

problems created by reduced gravity conditons on the moon need not be 

considered. 

Various invest igators  have shown tha t  the penetrator nose shape 

has an influence upon depths of p ro jec t i l e  penetration. In  f ac t ,  t h i s  

is  accounted f o r  by the empirical constant,  n,  i n  the Modified Moore 

Equation. Values of n ranged from 0.56, fo r  a flat-nosed p ro jec t i l e ,  t o  

0.725, f o r  a hemispherical p ro jec t i le .  Higher values a re  obtained f o r  

more pointed nose shapes. Assuming t h a t  the nose shape of the boulders 

which created the lunar secondary craters ranged between f l a t  and hemi- 

spherical ,  an e r ror  of If: 13% might be incurred i n  the calculated values 

of n Q1'2 Vo i f  an average value of n = 0.643 is assumed fo r  the lunar 

bouldexs. This amount of e r ro r  is i n  addition t o  t h a t  caused by uncertainty 

as t o  how the boulder contacted the ground -whether on i t s  "nose" (as we 

have assumed), on i t s  long f l a t  s ide,  o r  i n  some other intermediate posit ion.  

There is r e a l l y  no way of knowing with only the Lunar Orbiter da ta  available.  

A l l  earth-based tests of low-velocity p ro jec t i l e  penetration 

i n t o  s o i l s  have shown t h a t  the depth of penetration is  independent of 

p ro jec t i l e  diameter as long a s  Q remains constant. However, no tests have 

been conducted with p ro jec t i l e s  of diameter greater  than one foot  -much 

less of diameters approaching 5 m as are those of the secondary impact 

crater boulders. But since the lunar boulders a re  of the same magnitude 

of diameter, we can hopefully conclude t h a t  the r e s u l t s  w i l l  not be 

affected by t h i s  factor .  

All of the secondary crater boulders t h a t  can be analyzed bounced 

upon impacting the lunar surface. This may have been due t o  t h e i r  low 

angles of impact (assumed by Moore 119671 t o  be a t  60' from the horizontal) .  

In  a l l  of the analyses, it was assumed that boulder bouncing has a 

negligible e f f e c t  upon depth of penetration, and only a very small portion 
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of the impacting energy is consumed by boulder bouncing, 

angles of impact less than 90° (ver t ica l )  are  accounted f o r  by using 

the normal component of veloci ty  as the effect ive impact veloci ty  which 

determines depth of penetration. To invest igate  these assumptions, a 

series of oblique impact tests was performed using spherical  p ro j ec t i l e s  

impacting an air-dry, powdered, medium dense, s i l t y  clay a t  ve loc i t ies  

from 20 - 70 fps. Three d i f f e ren t  spherical  p ro j ec t i l e s  w e r e  used, and 

fo r  each the  normal component of veloci ty ,  

the angle of impact was varied from 30° to  90'. 

Furthermore,. 

w a s  kept constant while 'n 

The test  r e su l t s ,  shown i n  Fig. 4-22, indicate  t h a t  there  i s  a 

s l i g h t  trend fo r  depths of penetration t o  decrease with a decrease i n  

impact angle. While there are probably other fac tors  involved, one t h a t  

seems most apparent is t h a t  p ro j ec t i l e  rebound caused less than the f u l l  

amount of e f fec t ive  v e r t i c a l  kinet ic  energy t o  be used i n  the penetration 

process. I n  the t e s t s  described, the spherical  p ro j ec t i l e s  invariably 

bounced out of t he i r  associated c ra t e r s  a t  impact angles of 60' o r  less. 

In  some cases they bounced out for angles a s  high a s  75O. I t  was noticed 

that the lower the impact angle, the greater  was the distance (both 

horizontally and ve r t i ca l ly )  t h a t  the p ro jec t i l e  bounced a f t e r  impact. 

This would seem t o  account fo r  the lesser and lesser depths of penetration 

a s  the angle of impact became smaller and smaller. 

It would appear from these r e s u l t s  t ha t  very l i t t l e  e r ro r  is  

involved i n  assuming a s ingle  angle of impact ( i .e.  60O) fo r  all secondary 

impact crater boulders i f  the actual angles d i f f e r  from the value by no 

more than If: 15% (45O - 75O). In  such a case the e r ror  range would only 

be If: 3%, provided the ve r t i ca l  component of boulder veloci ty  a t  impact 

i s  known. Unfortunately, however, as the analysis is applied, the impact 

velocity is computed using the range from the primary t o  secondary crater 

and a simple b a l l i s t i c s  equation where it is assumed t h a t  the e jec t ion  

angle is  60°. This component w i l l  range from 70,7% t o  96.5% of the  boulder 

velocity over an impact angle range of 45O t o  7 5 O .  

A s  already noted, surface layering i s  a problem t h a t  may mask 

out  the e f f e c t s  of weak, th in  layers of s o i l  over hard rock. The r e su l t  

would be to  give an "average" hardness of the surface - a value t h a t  would 

be too g rea t  fo r  the soil  layer.  The only way of avoiding t h i s  e r ro r  is 
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t o  exclude from the analysis any secondary crater t h a t  is abnormally 

shallow as compared t o  its width. 

surface a t  a very shallow depth. But on the other hand, the iden t i f i -  

cation of such craters provides a valuable clue to lunar stratigraphy. 

Such a crater would imply a hard 

I n  analyzing the secondary craters, the density of the boulder 

must be assumed. E s t i m a t e s  of rock density on the moon have ranged 

from 1.0 t o  over 3.0 gm/cc. I f  a value of 2.0 gm/cc is assumed f o r  

calculations,  it can be shown t h a t  e r ro r s  i n  calculated values of 

n 0 Q1’’2 e Vo up t o  30% may occur i f  the assumed value is incorrect .  

Of course, it is  of no consequence i f  the assumed density i s  incorrect  

as long as a l l  the boulders have the same density,  since as has been 

s ta ted  the most feasible  purpose of the  analysis a t  t h i s  stage 

should only be t o  assess the va r i ab i l i t y  of K values and not t h e i r  

absolute value and meaning. 

.- 

It  has a l so  been customary t o  assume t h a t  the boulders’ range 

is  measured from the edge of the meteor c ra t e r .  In  f a c t ,  i f  it w e r e  

spewn out from the center of the c ra te r ,  the e r ror  i n  the calculated 

impact veloci ty  may approach 15% and thus cause considerable scatter i n  

the data. 

Because of the many factors  l i s t e d  above and the possible e r rors  

involved, it does not s e e m  prudent to  a t t r i b u t e  a l l  the sca t t e r  i n  the 

secondary impact c r a t e r  da ta  t o  va r i ab i l i t y  of the lunar surface materials. 

It must therefore  be concluded tha t  from the information available it is 

not possible t o  assess, with any confidence, absolute values of lunar 

s o i l  propert ies  by using secondary impact c ra te r  data  from Lunar Orbiter 

photographs; however the determination of lunar soil var i ab i l i t y  a t  

d i f f e ren t  locations may be possible. 

111. CONCLUSIONS 

Soi l  penetration equations have been presented which adequately 

relate depth of p ro jec t i l e  penetration t o  s o i l  type on ear th .  The 

Modified Moore Equation has been shown t o  give the bes t  r e su l t s  of a l l  

the equations. Because of t h i s  and because of i t s  r e l a t ive ly  simple form, 

i ts  use for fur ther  analysis of secondary impact c r a t e r s  is recomended 

i n  preference t o  the other equations examined. 
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However, analyses of the factors involved in the investigation of 

lunar secondary impact craters indicate that there exist great possi- 

bilities for error which can completely negate the purpose of the analysis 

if it is applied in the hope of determining absolute soil property values. 

It appears that at the present time conclusions can only be drawn concerning 

lunar soil variability on the basis of lunar secondary impact crater data. 

In addition information on secondary impact craters has proved beyond 

any doubt that large areas of the moon's surface are covered by soil to 

a depth of at least one to two meters. Because the boulders bounced 

out of the secondary craters, it would appear that the lunar soil offers 

a significant resistance to penetration. 

It is to be hoped that continued study of secondary cratering 
phenomena will lead to a reduction of the uncertainties in the analyses, 

and that more specific quantitative estimates of soil properties can be 

obtained. 
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List of Symbols 

a grouping of certain terms in the Poncelet Equation 

A gross cross-sectional area of penetrator 

b constant depending on A in the Poncelet Equation 

C constant 

C constant depending on N 

C1, C1, C3 numerical constants in the Resal Equation 

D diameter of projectile 

D1r D2‘ D3‘ constants in the Poncelet Equation 
D4r D5 

g gravitational constant 

k soil constant 

k’ proportionality constant 

K soil constant 

1 /2 equals c/g 

K” proportionality constant 

Klr K2 constant coefficients in the Young Equation 

K3, K4 constant coefficients in the Resal Equation 

K5, K6, K7 constant coefficients in the Poncelet Equation 
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R 

L 

m 

n 

/ n 

n’e 

N 

P 

pN 

PO 

Q 

S 

SO-- 

VO 

vn 

W 

constant depending on projectile nose shape 

length of projectile 

mass of projectile 

relative projectile riose shape constant 

projectile nose shape constant in the Resal Equation 

projectile nose shape constant in the Poncelet Equation 

average standard blowcount over the depth of penetration 

depth of penetration of projectile 

actual depth of penetration 

normalized depth of penetration 

static depth of penetration 

weight-to-area ratio of projectile 

soil constant 

soil constant in the Resal Equation 

soil constant in the Poncelet equation 

vertical component of impact velocity of projectile 

normal component of velocity 

weight of penetrator 
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Xlr X2 

a 

B 

yt 

6 

pP 

pt 

exponents in dimensional analysis 

exponents in dimensional analysis 

exponents in dimensional analysis 

equals (80 -+ N)YtC/(625,000 LQ) 

constant depending on cross-sectional area of projectile 

unit weight of target soil 

boulder ejection angle 

dimensionless parameters 

mass density of projectile 

mass density of soil 
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CHAPTER 5 

LUNAR STRATIGRAPHY AS REVEALED BY CRATER MORPHOLOGY 

(Francois E. Heuz6 and Richard E. Goodman) 

I. INTRODUCTION 

The stratigraphy of the moon's surface has been under investigation 

for a number of years and the consensus is that, over the maria, a 

fragmental layer of fine grained material overlays a hard base composed 
of one or several layers of possible volcanic origin. 

not until very recently (1966) that the first conclusive attempts were 

made to determine the extent and the thickness of this surficial layer. 

These efforts are important for lunar engineering because: 

However, it is 

(1) The trafficability of planned traverses depends upon the depth 

of the "soft" surficial layer. 

( 2 )  The planning of borings for sampling or testing purposes can 

be optimized in terms of power requirements and adequate 

drilling tools only if the rock/soil profile is known. 

( 3 )  Analysis of foundation settlements for major structures 

(nuclear plants, observatories, etc.) requires a knowledge 

of the soil/rock profile. 

(4) For construction of excavations and embankments, e.g., for 

foundations and thermal radiation shielding, one must 

determine what kind of material is available, and how much 

of it can actually be used. 

Earlier studies (Baldwin, 1963; Engel, 1962; Baldwin, 1965) 

concerned themselves with the morphology of lunar craters in order to 

determine their origin. A scaling law (Baldwin, 1963) was proposed 

relating crater depth (d) and diameter (D) (meters): 
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D = 0,025 d2 + d + 0.630 

This r e l a t ionsh ip  w a s  app l i cab le  t o  man made impact craters and t o  t h e  

small lunar  craters (D less than a few ki lometers) .  

Sal isbury and Smalley (1963) then reviewed d i r e c t  and i n d i r e c t  

evidence f o r  t h e  na ture ,  o r i g i n ,  and geometry (depth and ex ten t )  of  t h e  

lunar  sur face  mater ia l s .  

They presented t h e i r  conclusions as follows: 

MEASUREMENT CONCLUSION 

Infrared Emission 

Radi o Emi  ssi on 

Radar Reflection 

Polarization 

P ho  tome t ry  

Albedo and Color 

Low thermal conductivity 

Low thermal conductivity 

Low density. Surface gradient 1 i n  11 
on a meter and 10 cm scale 

Agglomerated powder composed of opaque 
grains 

High porous, complex and i r regular  
surface. Relief many times the 
wavelength of l i g h t  

Non-terrestrial re f lec t iv i ty  

The mechanisms c i t e d  f o r  producing a fragmental l a y e r  were: 

meteoroid impact, micrometeoroid i n f a l l ,  r ad ia t ion ,  i n t e r n a l  seismic 

shock, volcanism, and thermal f r a c t u r e .  The pulver iz ing  e f f e c t  of 

meteoroid impacts w a s  r e t a ined  as being by f a r  t he  most important 

of these mechanisms. 
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Besides cons idera t ions  of entrapment of meteoridal deb r i s  and 

e l e c t r o s t a t i c  t r anspor t ,  major conclusions were concerned with roughness 

and depth of t h e  blanket .  By analogy with the  e a r t h ,  t h e  s i z e  o f  blocks 

e j e c t e d  from c r a t e r s , a  t r a f f i c a b i l i t y  cons t r a in t ,  w a s  r e l a t e d  to  the  

volume of t h e  craters they o r ig ina t ed  from. Typical block s i z e s  

would be 4.5 m around c r a t e r s  100 m i n  diameter and 16 m around craters 

with D = 1 km i f  no secondary fragmentation occurs. Average depth 

estimates w e r e  obtained f o r  maria and highlands based upon frequency 

and volume of primary c r a t e r s .  These and o the r  conclusions a re  

presented i n  Table 5-1. 

However good these estimates proved t o  be i n  the  l i g h t  of l a te r  

inves t iga t ions ,  they could not  be used as such f o r  d e t a i l e d  planning 

of missions a t  s p e c i f i c  sites. With t h e  advent of spacecraf t s  and t h e  

a v a i l a b i l i t y  of higher  r e so lu t ion  photographs of t he  moon (Rangers), 

f u r t h e r  s t u d i e s  ( Ja f f e ,  1965, 1966a, 196633; Walker, 1966) were made t o  

est imate  the  depth of  unconsolidated materials r e s t i n g  on a harder  base 

on the  lunar  sur face .  They were followed as r e so lu t ion  s t i l l  improved 

(Orbi ters  and Surveyors) by the  development of new techniques based upon 

d i r e c t  observat ions (Lunar O r b i t e r  Photo Data Screening Group, 1967a, 

196733, 1968; Rennilson, 1966; Shoemaker, 1967a, 1967b; J a f f e ,  1967) or 

modeling (Gault ,  1966; Oberbeck and Quaide, 1967; Harbour, 1967; Quaide 

and Oberbeck, 1968; Ross, 1968).  

11. DETERMINATION OF SURFICIAL LAYER THICKNESS 

Four techniques can be recognized among the  la tes t  at tempts  t o  

analyze s u r f i c i a l  lunar  s t r a t ig raphy .  

A. Comparative Study of Ranger Photographs - Laboratory Simulation 

of Overlay Deposition 

Observing Ranger V I 1  photographs , J a f f e  (1965) noted t h e  "sof t"  

appearence of some lunar  craters and i n f e r r e d  t h a t  t h i s  w a s  a t t r i b u t a b l e  

t o  an overlay of dus t  or o t h e r  granular  material deposi ted a f t e r  crater 

formation. 

The erosion and depos i t iona l  processes which a f f e c t  t he  r e l a t i v e l y  

small lunar  c r a t e r s  are luna r  "dusting" and downslope movement. Lunar 

dus t ing  r e f e r s  t o  the  process by which fragments produced by primary and 
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secondary impacts r a i n  down onto the  luna r  sur face ,  I f  t h e  assumption 

is  made t h a t  meteoritic impact of  t he  luna r  sur face  takes  place i n  a 

random manner,. then  it follows t h a t  a luna r  dus t  blanket  of uniform 

thickness  would r e s u l t  i f  t h e  fragments w e r e  deposi ted on an even sur face .  

The t e r m  downslope movement can be used t o  include th ree  d i f f e r e n t  types 

of e ros iona l  processes.  

of t he  c r a t e r .  Another type of  downslope movement occurs  when t h e  frag- 

ments produced by meteorite impacts elsewhere r a i n  down onto the  crater 

w a l l  and bounce down the  s lope.  A downslope movement assoc ia ted  with 

t h i s  l a t te r  type occurs when fragments which h i t  t h e  crater w a l l  induce 

the p a r t i c l e s  composing t h e  w a l l  t o  also move down the  s lope  ( J a f f e ,  1965; 

Ross, 1968).  I f  t he  assumption is  made t h a t  t he  slumping process i s  no t  

important i n  changing the  morphology of s m a l l  craters, then the  luna r  

dus t ing  process  is  seen to  be the  m o s t  i n f l u e n t i a l .  

One type cons i s t s  of the  slumping of t h e  w a l l s  

To ob ta in  an experimental r e l a t i o n  from which to  determine the  

depths of overlay on lunar  c r a t e r s ,  a number of dus t ing  experiments were 

performed. They cons is ted  of reproducing i n  the  labora tory  th ree  types 

of c r a t e r s .  Two of them w e r e  made by impressing the  sur faces  of f l a t t e n e d  

spheres i n t o  dry s i l i c a  sand, and the  t h i r d  w a s  made t o  be somewhat f l a t -  

bottomed with conica l  s i d e s  produced by slumping. The c r i t e r i o n  f o r  

choosing t h e s e  p a r t i c u l a r  shapes w a s  t h a t  they showed s i m i l a r i t y  to  those 

appearing on some Ranger V I 1  photographs. Once a c r a t e r  had been impressed 

i n t o  the  sand, it w a s  spr inkled  with sand. Measurements of t he  depth of 

overlay a t  a number of p laces  on i ts  su r face  were made. 

P i c t u r e s  of t h e  experiments w e r e  then matched with those  taken of 

l una r  craters by Ranger V I I ,  and measurements i n  t h e  labora tory  w e r e  

sca led  up t o  what hopeful ly  w a s  t he  depth of the  overlaying materials on 

t h e  lunar  sur face .  J a f f e  concluded t h a t  a t  t he  si tes of Ranger V I 1  

photographs, the depth of overlay w a s  a t  least f i v e  meters, and poss ib ly  

much more. The technique w a s  r e f ined  and appl ied  t o  Ranger V I 1  

(Jaffe, 1966a) and Ranger V I 1 1  and I X  ( J a f f e ,  196633) photographs g iv ing  

r e s u l t s  c o n s i s t e n t  with those of t he  f i r s t  study. 

Objections have been r a i sed  (Walker, 1966) aga ins t  such a 

procedure; namely the  i n s u f f i c i e n t  considerat ions of  crater age, of  a l l  

poss ib l e  e ros iona l  processes  ( including impacts), and the  apparent 
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dependency of the r e s u l t s  on c ra t e r  diameter fo r  small c ra t e r s  (D < 30 m ) ,  

However, the  main shortcoming of the technique remains the f a c t  t h a t  only 

a l o w e r  bound of layer thickness i s  provided. I t  cannot be assumed t h a t  

the layer ex is t ing  p r io r  t o  impact has s ign i f icant ly  d i f fe ren t  propert ies  

than the one deposited a f t e r  impact. 

t o  be developed. 

"Upper bound" techniques had then 

B. Direct Study of Orbiters and Surveyors Photographs -Block Fields,  

Terraces, and Outcrops 

Further improvement of photographic resolution was achieved by the 

Orbiter spacecrafts missions (Lunar Orbiter Photo Data Screening Group, 

1967a, 1967b, 1968). Two d i rec t  techniques were then used by the  Lunar 

Orbiter Photo Data Screening Group t o  analyze the lunar surface 

stratigraphy. 

Wherever w e l l  developed annular terraces  o r  prominent layers  can be 

recognized on crater walls, d i r e c t  measurements of the thickness of each 

layer  can be achieved knowing the slope angle of the walls. 

usually be done fo r  medium s i z e  c ra t e r s  (100 t o  several  hundred m e t e r s ) ,  

where the upper p a r t  of the  w a l l s  is not covered by debris.  In the  

presence of smaller c ra t e r s  one might thus look for  the presence o r  

absence of boulder f i e lds  inside and outside the c ra t e r .  These 

boulders are assumed t o  or ig ina te  from the hard substratum by frag- 

mentation upon meteorit ic impact. Accordingly, fo r  a par t icu lar  area 

of the lunar surface,  the depth of the smallest c r a t e r  or  c r a t e r s  with 

blocky r i m  o r  f loor  is assumed t o  be the  thickness of the s u r f i c i a l  

unconsolidated layer.  Indeed, a scarc i ty  of block f i e l d s ,  a subdued 

c ra t e r  appearance, and/or the absence of outcrops are indicative of 

f a i r l y  deep fragmental layer.  These techniques applied t o  a var ie ty  

of sites (see Table 5-1) gave very consis tent  resu l t s .  

This can 

Successful Surveyor and Luna missions (Rennilson, 1966; Shoemaker, 

1967a, 196713; J a f f e ,  1967; Gault, Quaide, Oberbeck, and Moore, 1966) 

provided the highest resolution photographs. The s t ra t igraphic  

in te rpre ta t ion  of these photographs which w a s  based on observations of 

block f i e lds ,  yielded r e su l t s  agreeing with those of Orbiter photograph 

s tudies  (see Table 5-1). 
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Besides thickness estimates, these s tudies  resul ted i n  some 

major conclusions which can be summarized as follows: 

f i s s u r e s  has a l so  been proposed for  a few s m a l l  c r a t e r s  ( Ja f fe ,  1967; 

Shoemaker, 196733). 

Young o r  fresh c ra t e r s  (Lunar Orbiter Photo Data Screening 

Group, 1967b) w i l l  provide most of the needed information. 

The impact or ig in  of s m a l l  and medium s i ze  c ra t e r s  is  hypo- 

thesized from the following observations: lunar c ra t e r  s ize-  

frequency d is t r ibu t ion  (Showmaker, 1967a) i s  s i m i l a r  t o  the 

one of experimental impact craters, and block s i z e  d is t r ibu t ion  

(Lunar Orbiter Photo Data Screening Group, 1967b) around 

lunar c ra t e r s  i s  s imilar  t o  the one around explosion craters 

(i .e. ,  Danny Boy) . 
The fragmental lunar surface layer is  very weakly cohesive 

since the impact c r a t e r s  observed have raised r i m s  which 

would not e x i s t  i n  cohesive materials (Gault, Quaide, Oberbeck, 

and Moore, 1966). This obviously corroborates the Surveyors 

s o i l  experiments and extends t h e i r  resu l t s  t o  greater  depths. 

However, the cohesion i s  thought t o  increase somewhat with 

depth (Lunar Orbiter Photo Data Screening Group, 1967b). 

I t  is t o  be mentioned t h a t  a drainage or ig in  in to  subsurface 

The technique presented here appears t o  be the most r e l i a b l e  for  

it does not involve any correlat ion o r  scaling. However, impact crater- 

ing experiments (Gault, Quaide, and Oberbeck, 1966, 1967) have suggested 

st i l l  another method of analysis whose application was attempted on a 

large scale.  

C. Comparative Study of Orbiter Photographs - Impact Crater Morphology 

1. The Technique. Quaide and Oberbeck (1968) presented the - 
basis  for  t h e i r  s tudies  as follows: 

“In laboratory crater ing studies inspired by the 

Ranger photographs, Gault., e t  a l .  (1966) observed t h a t  

impacts against  t a rge ts  of fragmental materials over- 

laying a rock substrate  could produce c ra t e r s  with a 

peculiar concentric or  terraced s t ructure .  They found 

t h a t  c r a t e r s  with normal spherical  segment or  conical 
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geometry developed when the fragmental materials w e r e  

of such thickness t h a t  the rock substrate  did not 

i n t e r f e re  with c ra te r  growth, Examination of Orbiter I 

photographs revealed t h a t  numerous c r a t e r s  with concentric 

geometry are present on the lunar surface, and t h a t  they 

might be used t o  estimate the thickness of the fragmental 

surface layer .  Careful study of selected photographs 

revealed fur ther  tha t  a l l  fresh craters with diameters 

less than a few hundred meters can be s t ruc tura l ly  

c l a s s i f i ed  and t h a t  the crater s t ruc ture  is s i z e  depen- 

dent. This prompted an investigation of the conditions 

of formation of a l l  crater s t ructures  a r i s ing  through 

impact against  a ta rge t  consisting of fragmental materials 

res t ing  on a cohesive substrate .  These s tudies  show t h a t  

a l l  the morphologic classes recognized can be produced 

by impact i f  the thickness of a fragmental surface layer  

res t ing  on a cohesive substrate  is  varied." 

The application of t h i s  procedure w a s  r e s t r i c t ed  t o  c ra t e r s  

with a diameter D < 500 m giving the stratigraphy t o  a depth of about 50 m. 

In view of the possible engineering applications mentioned above, t h i s  is  

a sa t i s fac tory  depth l i m i t .  The study w a s  a lso r e s t r i c t ed  to  "fresh" 

c ra t e r s  defined a s  those with sharp appearance i f  D < 70 m o r  those sur- 

rounded by l i g h t  rays o r  halos i f  D > 70 m for  Orbiter I medium resolut ion 

photographs, This boundary w i l l  change i f  the photographic resolut ion changes. 

Three (Oberbeck and Quai.de, 1967) then four (Quaide and 

Oberbeck, 1968), morphologic c lasses  were thus recognized t o  which an R value 

bracket w a s  assugned fo r  impact t e s t s  with R being defined as: 

R = D /t or  D / t  A 

where 

D o r  D = apparent crater dianeter  ( r i m  t o  r i m )  
A 

t = s u r f i c i a l  layer thickness 
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The four classes can be approximately presented here as* 

normal craters : R < 4  

flat bottom craters : 4 < R < 7.5 

central mound craters : 4 < R < 7.5 (maximum mound height 
for R 6) 

concentric craters : R > 7.5 

Identifying the crater type and measuring D, one can thus compute. 

Latest refinements in the correlation (Quai.de and Oberbeck, 1968) include 
the effect of such variables as impact velocity, angle of impact, projectile 

properties, angle of repose of surficial debris, strength of substrate, 

and gravity. The substrate strength has a non neglible effect on R. 

A new parameter D /D (where D = diameter of the floor of the surficial 

crater in flat bottom and concentric craters) is also introduced and 

found to be subject to boundaries for each crater class. Application of 

this technique to selected Orbiter photographed sites gives results very 

similar to those obtained by the Orbiter Screening Group (see Table 5-1) .  

F A  F 

Other major conclusions of these studies can be summarized 
as follows: 

a) A new weight of evidence has been produced in favor of 

the impact origin of small lunar craters. 

b) The surficial layer is a slightly cohesive fine grained 

aggregated with in situ angle of repose from 33 to 35O. 

c) Some past volcanic activity is exhibited under the form 

of terrace levels of flow layers. 

d )  Rock, not permafrost, is exposed on terraces in crater walls. 

*See Ref. 18 and 20 for detailed presentation of R boundaries. 
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2. Objections -- to the validity -- of the technique, Whatever 

good agreement with other determinations was obtained by this method, 

it has been found inapplicable by some investigators, Moore (Lunar 

Orbiter Photo Data Screening Group, 1968)(Orbiter V-8 site) states, 

"Attempts to calculate the thickness of soil-like layer using the 

method and data of Oberbeck and Quaide (2967) indicate that the computed 

thickness is unfortunately a function of crater diameter and not any 

given thickness of a soil-like layer." Harbour (1967) (Orbiter I11 

P-12 site) also comments, "Using moderate resolution photographs Quaide 

and Oberbeck (1967) estimate the thickness of the regolith in this area 

as 5 to 15 meters by noting the morphology of fresh craters less than 

40 m in diameter. However craters much smaller than those they observed 

possess the same morphologic features,... The variety of morphology of 

fresh craters in this area and the variety in size of craters of similar 

morphology indicates the size and morphology relationships cannot be 

applied in any simple way to determine depth of the lunar regolith.'' 

Five conclusions concerning the relationship between 

crater morphology and size are then possible according to Harbour. 

Multiple layers may occur in the area and may affect 

the morphology of craters bottoming near their upper 

boundary. 

Crater morphology may be governed more by velocity 

and density of the projectile than by Layering of 

the target material. 

The thickness of the regolith may vary within short 

distances. 

Cohesion of mare material may vary within short 

lateral distances. 

The regolith varies both in thickness and properties. 

3 .  Discussion. Latest studies by Quaide and Oberbeck (1968) 

seem to exclude alternative b, the effects of projectile properties 

having been analyzed and found to be minimal. 

apply to the layers of consolidated igneous rocks deposited upon successive 

Alternative a would 
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volcanic floodings. 

is an average 10 meters, Alternatives c, d, and e can apply to this 

layer. At a given site, the erosion-deposition processes due to impact 

will give it a complex structure (Salisbury and Smalley, 1963) owing to 

the wide variation in the size of craters formed through the ages and 

the intricate overlapping of the ejecta. Each crater, however small, 

might then reflect this non homogeneity and increase in bearing capacity 

which is known to start at the very surface of the blanket(Rennilson,l966; 

Shoemaker, 1967a; Jaffe, 1967). 

The minimum depth of rubble/soil cover above them 

D. Use of a Mathematical Model (Time-Dependent Lunar Crater 

- Rim-Erosion and Floor-Deposition) 

Meteoritic bombardment being taken as the primary source of 

erosion on the lunar surface, a simplified mathematical model for time 

dependent erosion of lunar craters was presented by Ross (1968). The 

model takes into consideration the angular distribution of impacting 

meteorites and ejecta and the topography and mechanical properties of 

the lunar surface. Calculations indicate that craters 1, 10 (D/d = 3) 

and 100 (D/d = 5) meters in diameter disappear almost completely after 

l o7 ,  lo*, lo9 years, respectively. Mass movement of eroded material is 

thought to accompany the meteoritic erosion process and, probably result 

in an erosion rate 50 to 100 times greater than erosion due to ejection 

without downslope movement. This is believed to be a continuous process 

and no mention is made of large slope failures or slumps having been 

identified by the author. 

Assuming that the maria are at least 2 X lo9 years old, it is 

inferred that several generations of impact craters of the order of 10 m 

in diameter have been effectively removed as topographic features since 

formation of the maria. 

overlay at least 2 or 3 meters thick. 

unconsolidated material is thought by Ross to be somewhat greater and 

and to vary considerably. 

This process would have produced a depositional 

The total depth of rubble and 
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Discussion, Here, as in Jaffe's work, the question arises, from 

an engineering stand-point, of the usefulness of determining the thickness 

of an "overlay" when the total depth of unconsolidated material remains 

unknown. It is not clearly stated either what the significant differences 

might be in the engineering properties of these two constituents of the 

lunar surface or how sharply one could or should draw a boundary between 

them. 

111. CONCLUSION -FURTHER RESEARCH 

Altogether, studies based upon visual observation of lunar craters, 

comparison with experimental results, or analytical models have appreciably 

narrowed the range of conclusions regarding the lunar surface stratigraphy. 

Most of the maria's surface is believed to be overlain by a layer of fine 

grained, cohesionless to weakly cohesive fragmented rock whose thickness 

varies from a few meters to a few tens of meters, (see Table 5-11." 

Compressibility decreases and average grain size increases from the surface 

down. Rubble is probably present.. Still, this fragmental blanket can be 

excavated and handled without the use of explosives except in the vicinity 

of large craters where large size blocks, several cubic meters, would be 

buried. Further research is needed to determine if excavation and back- 

filling of this material of limited thickness would prmide adequate 

meteorite and radiation shielding of structures. Drilling and construction 

planning based upon the above conclusions must condider the stability 

problem; uncased boreholes are unlikely to be stable and medium-height 

slopes might have to be rather flat to stand up (embankments, excavation 

walls, etc.). Additional research is therefore also suggested in the 

field of slope stability of the lunar surface blanket. Beneath it, 

non-fragmented rock layers are thought to exist as a result of successive 

lava floodings. As mentioned by Watkins and Whitcomb (1968) , "Near 
surface lunar rocks may be shattered and broken as a result of stresses 

created during formation of large craters." 

underground storage projects or sealing off of underground cavities for 

dwelling purposes in the event the blanket is too thin to provide adequate 

shielding. 

This will have bearing upon 

*For the reader's convenience, salient conclusions of each reviewed work 
are summarized in Table 5-1. 
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Previous discussion of techniques applied to lunar stratigraphy 

determination leads to the conclusion that for final mission planning, 

at a given site, extensive high resolution photographic coverage is 

mandatory, and the interpretation should rely upon visual observation, 

(Lunar Orbiter Photo Data Screening Group, 1967a, 1967b, 1968) with the 
other procedures still being too open to discussion. However, if the 

required resolution for using this technique is not achieved and if only 

the gross morphology o f  craters can be recognized, the method developed 

by Quaide and Oberbeck (1967, 1968) can then be used for a first estimate. 
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I. 

used 

CHAPTER 6 

GEOCHEMICAL STUDIES 

(I. S, E. Carmichael and J. Nicholls) 

INTRODUCTION 

Geochemical studies provide one source of information that can be 

for development of an improved understanding of the composition, 

structure, and history of the moon. While geochemical studies have not 

formed a large part of the research under this contract, a limited 

amount of work has been done and is reported here. 

In particular, study was made of the probable characteristics of 

lunar lava and the implications of these characteristics in the inter- 

pretation of lunar composition and history. An attempt was made to 

develop an answer to the following question: 

on the lunar surface, in what way may the specific lunar environment 

stamp its influence on the lava and so perhaps modify it in a direction, 

or to an extent, unlike a terrestrial lava? The approach followed was 

to attempt isolation of the influence (if any) of the terrestrial atmo- 

sphere from that of the "atmosphere" carried by the lava itself. Then, 

since the lunar environment is essentially free of atmosphere, tentative 

conclusions should be possible concerning possible differences between 

Assuming that lavas erupt 

terrestrial and lunar lavas. 

11. SUMMARY OF REXULTS 

The one component of the terrestrial atmosphere that is most likely 

to affect the crystallization of lavas is oxygen. In sufficient amount 

oxygen has the capacity to change the Fe 

liquid, 

solid phases, as well as the viscosity of the liquid lava and its ability 

to flow long distances. This hypothesis implies that the volatile phase 

impresses its oxygen requirements on the molten basalt. Since the 

2+ 

This will in turn change the nature or the order of precipitating 

/Fe3+ ratios in the basaltic 
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availability of oxygen in the terrestrial and lunar atmospheres is mark- 

edly different, it is possible that the properties of lunar and terrestrial 

basalts may differ. 

These considerations form the background for the study reported by 

Carmichael and Nicholls (1967). From the results of this work it was 

concluded that there appears to be no reason for the pristine mineralogy 

of terrestrial and lunar lavas to differ. On the other hand, because of 

the influence of atmosphere on the cooling crystalline basalt, lunar 

basalt may have different properties than terrestrial basalt, especially 

with respect to the magnetic minerals. 

Although terrestrial lavas never precipitate metallic iron, there 

seems to be no reason a priori why a lunar lava might not contain iron as 

a phase. If metallic iron is absent, then the iron-titanium oxide phases, 

which are unlikely to be involved in the common terrestrial superimposed 

oxidation, will have less intense magnetization than terrestrial lavas, 

regardless of the very weak or absent lunar magnetic field. 

An interesting possibility that emerges from this is that the carriers 

of magnetization, the Fe-Ti oxides, could have Curie temperatures inter- 

mediate between the diurnal lunar temperature limits, i-e., "daily 

fluctuating 'magnetization". This could provide a constraint on the inter- 

pretation and collection of the remanent magnetization in returned lunar 

samples. 

Following this an attempt was made to estimate activity coefficients 

of iron and titanium in natural liquids. Unfortunately all attempts to 

do so were unsuccessful. 

The next line of inquiry concerned if and how lack of oxygen could 

totally suppress the precipitation of Fe-Ti oxides (magnetic materials). 

Apparently oxygen is not the only inhibitor of their precipitation, 

and variation of gross composition of a silicate liquid could have 

the same effect. 

group of Fe-Ti free terrestrial lavas has been described by Nicholls 

and Carmichael (1969) - 
budget that it would be unwise to assume that lunar lavas generally do not 

carry magnetic minerals. 

This aspect of Fe-Ti oxide suppression in a small 

These lavas are so rare in the Earth's igneous 
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APPENDIX 

LIBRARY OF LUNAR SURFACE EXPLORATION REFERENCES 

(Francois E. Heuz6) 

During the course of t h i s  research e f f o r t ,  a l i b ra ry  of lunar 

exploration reports  and papers w a s  b u i l t  up as a supporting f a c i l i t y .  

In  addition t o  readily avai lable  material i n  each department, over 500 

references w e r e  thus indexed. Each one is  characterized by a few 

KEY WORDS (average: f ive)  among those presented i n  the following pages. 
* 

The r e t r i e v a l  system is a Jonker-Termatrex (p l a s t i c  cards and l i g h t  

tab le )  enabling easy and f a s t  cross-indexing of up t o  10,000 references. 

A card f i l e  by author i s  a l so  available.  

* 
Apparent duplications exis t .  They are intent ional ,  allowing more 

specif ic  repor t  characterization. 
duction of new key words (missing numbers). 

Present set-up allows a l so  fo r  intro- 
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