
S "i ^J 4:S Al a.	 d2,j `,,A

C

NASA 'I'M X- 53962

T

W OV 970
1969

os00yzv. oZoQO

NASA TECHNICAL
MEMORANDUM

cq

co

cn

z
COMPUTATION RESEARCH AT MSFC

RESEARCH ACHIEVEMENTS REVIEW

VOLUME III	 REPORT NO. 9

SCIENCE AND ENGINEERING DIRECTORATE

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER, ALABAMA

GEORGE (.MARSHALL SPACE FLIGHT

ASSOCIATE DIRECTOR 	
DIRECTOR

FOR
SCIENCE	 DEPUTY	 I	 DEPUTY

DIRECTOR	 DIRECTOR
TECHNICAL	 MANAGEMENT

m_-_-____-

SAFETY
UNIVERSITY

AFFAIRS
PUBLIC

AFFAIRS
PROCUREMENT

POLICY
g REVIEW

CMIEF COUNSEL
NASA

REGONAL
INSPECTBR

HASd
REGIONAL

AUDIT OFFKQ

PROGRAM SCIENCE PROGRAM ADMINISTRATION
DEVELOPMENT 8 EMWNEERIMG MANAGEMENT

S TECHNICAL

SERVICES

MANAGEMENT RESEARCH PLANNING A
CONTRACTS

PLANgIgG COST TECHNOLOGY
SUPPORT
OFFICE

PLANNING
OFFICE

QESOURCEf
OFFICE OFFICE

A RESOURCES
OFFICE

REDUCTION
OFFICE

UTILIZATION
OFFICE

PROGRAM ADVANCED PRODUCTS PROJECT SYSTEMS SAFETY
PATENT FACT CITIESPLANNING

OFFICE
PROGRAM

SUPPORT OFFICE pPFICE LOGISTICS
OFFICE

6 MAgNQD FLIGHT
ADARENESS OFFICE COUNSEL OFFICE

ADVANCED MISSION 8 CENTRAL HERO. SATURN SQYLAp CENTER PLANS MANAGEMENT
SYSTEMS ANALYSIS PAYLOAD SYSTEMS ASTROOTNAMKf PROGRAM PROGRAM A RESOURCES SERVICES

OFFICE PLANNING OFFICE QNGINEQRIgG LABORATORY OFFICE OFFICE OFFICE OFFICE

PRELIMINARY ADVANCED ENGINE Miff1OJ FINANCIAL PURCHASINGA

OFFKE PO0FECES I OFGRA OPOFFICE^S

EME

ENT
OFFICE

UTATION
LLA-.`GRATINIY OFFICELABORA70RY FACILITY FACILITY OFFICE

QUALITY

B RELIABILITY SPACE

ASSURANCE
SCIENCES

LABORATORY
LABORATORY

RESEARCH ACHIEVEMENTS REVIEWS COVER

THE FOLLOWING

FIELDS OF RESEARCH

• Radiation Physics

• Thermophysics

• Chemical Propulsion

• Cryogenic Technology

• Electronics

• Control Systems

• Materials

• Manufacturing

• Ground Testing

• Quality Assurance and Checkout

• Terrestrial and Space Environment

• Aerodynamics

•	 Instrumentation

• Power Systems

• Guidance Concepts

• Astrodynamics

• Advanced Tracking Systems

• 'Communication Systems

• Structures

• Mathematics and Computation

• Advanced Propulsion

• Lunar and Meteoroid Physics

NASA TM X-53962

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C.

F	 ^

q
i +

RESEARCH ACHIEVEMENTS	 I

VOLUME III
	

REPORT NO.

COMPUTATION RESEARCH AT MSFC

oy OT
Av'y0y. ^

SCIENCE AND ENGINEERING DIRECTORATE

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER, ALABAMA

1969

PREFACE

In February, 1965, Dr. Ernst Stuhlinger, now Marshall Space Flight
Center's Associate Director for Science, initiated a series of Re-
search Achievements Reviews which set forth those achievements
accomplishedby the laboratories of the Marshall Space Flight Center.
Each review covered one or two fields of research in a form readily
usable by specialists, systems engineers and program managers.
The review of February 24, 1966, completed this series. Each re-
viewwas documented in the "Research Achievements Review Series . "

In March, 1966, a second series of Research Achievements Reviews
was initiated. This second series emphasized research areas of
greatest concentration of effort, of most rapid progress, or of most
pertinent interest and was published as "Research Achievements
Review Reports, Volume II. " Volume II covered the reviews from
March, 1966, through February, 1968.

This third series of Research Achievements Reviews was begun
in March, 1968=, and continues the concept introduced in the second
series. Reviews of the third series are designated Volume III and
will span the period from March, 1968, through March, 1970.

The papers in this report were presented September 25, 1969

William G. Johnson
Director
Research Planning Office

iii

Page intentionally left blank

CONTENTS...

MEMORY REDUCTION THROUGH HIGHER LEVEL LANGUAGE HARDWARE

By H. Kerner and L. Gellman
Page

ABSTRACT..	 1
INTRODUCTION ..	 1
PROBLEM DEFINITION AND APPROACH	 2
INSTRUCTION SET AND PREPROCESSOR 	 3
ORGANIZATION AND OPERATION OF THE FORTRAN LANGUAGE PROCESSOR 	 5

EVALUATION ..	 8
CONCLUSIONS ...	 12

REFERENCES ..	 13

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

J.	 Arithmetic and logic processors .. 	 2
2. Instruction set ..	 4
3. FLP flow diagram ..	 6
4. Tradeoff equation (2) , small quantity (n = 5) , high reliability (r = 3) 	 10

5. Tradeoff equation (2), large quantity (n = 50), high reliability (r = 3) 	 10

6. Tradeoff equation (2), large quantity (n = 50), commercial reliability (r = 1)........... 	 it

FUNCTIONAL DESIGN CONS I DERATIONS FOR AN EXECUTIVE SYSTEM FOR A

GENERAL PURPOSE SPACEBORNE COMPUTER

By J. R. Kennedy

Page

ABSTRACT .. 	 15

SUMMARY ...	 15

v

CONTENTS (Continued)...
Page

INTRODUCTION ... 	 15

FUNCTIONAL REQUIREMENTS ..	 15

OPERATING SYSTEM FUNCTIONAL DESCRIPTION	 17

CONCLUSION .. 	 26

REFERENCES .. 	 26

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Control of system monitors and monitor intercommunications	 19

2. Simplified interpreter ... 	 21

3. Monitor intercommunications and control task routing	 22

4. Intermonitor communications buffer format 	 23

5. Launch complex computer configuration	 24

6. Event entry in mission schedule ..	 25

PARALLEL PROCESSING METHODS AND MANNED SPACE MISSIONS

By M. E. Stegenga
Page

INTRODUCTION .. 	 29

ARRAY PROCESSORS ... 	 29

THE HOLLAND MACHINE .. 	 31

A DISTRIBUTED PROCESSOR ... 	 33

A MULTIPLE COMPUTER SYSTEM	 35

CONCLUSIONS .. 	 35

REFERENCES .. 	 37

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1.	 Array structure of the Illiac IV system	 30

vi

CONTENTS (Continued)...
Page

2. Array structure of the Holland Machine	 32

3. Distributed processor system .. 	 34

4. Multiple computer system ... 	 35

OPTIMIZATION OF AN INSTRUCTION SET FOR A GENERAL PURPOSE
S PACEBORNE COMPUTER

By J. R. Kennedy
Page

ABSTRACT .. 	 39

SUMMARY ... 	 39

INTRODUCTION	 40

BASIC INSTRUCTION SET .. 	 41

IMPACT ANALYSIS ... 	 44

LIST OF TABLES

	

Table	 Title	 Page

1. Instruction Summary .. 	 45

2. Instruction Distribution .. 	 47

3. Bit Requirements and Number of Registers Provided by Several Register
Allocation Schemes ... 	 50

4. Number of Bits for M Registers ..	 50

5. Register Layout ... 	 51

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

i.	 Computer block diagram .. 	 40

2. Instruction word formats ... 	 43

3. Four schemes for register usage ..	 49

vii

CONTENTS (Continued)
Page

4. Bit cost per register for four schemes.	 51

5. Partially complete formats ... 	 52

EFFICIENCY AND QUEUEING TIME CALCULATIONS FOR COMPUTER

BANKS

By B. G. Grunebaum
Page

ABSTRACT .. 	 57

INTRODUCTION ... 	 57

FORMULATION OF THE PROBLEM	 57

RESULTS ... 	 59

NUMERICAL DETAILS .. 	 63

REFERENCES .. 	 64

BIBLIOGRAPHY ... 	 64

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1.	 Basic subsystem .. 	 58

APPLICATION OF DISCRETE DIGITAL SIMULATION LANGUAGES TO THE DESIGN

OF ADAPTIVE DATA BUFFERING STRATEGIES

By L. K. Paul, Jr.
Page

ABSTRACT ..	 65

DISCUSSION ...	 65

CONCLUSION ..	 68

BIBLIOGRAPHY ...	 69

viii

CONTENTS (Continued)...

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Space station environment......... ®	 66

2. Abbreviated roster of GPSS II blocks 	 67

3. Typical information flow problem .. 	 67

4. Buffer problem coded in GPSS .. 	 68

AUTOMATIC MALFUNCTION ANALYSIS (AMA) FOR DISCRETE SYSTEMS

By D. T. Thomas and R. L. Jaegly
Page

SUMMARY ... 	 71

AMA FUNCTIONS .. 	 72

THE SYSTEM MODEL ..
PREPROCESSOR PROGRAM ... 	 76

AUTOMATIC MALFUNCTION ANALYSIS	 80

COMPUTER PROCESSING .. 	 82

LIST OFD TABLES

	

Table	 Title	 Page

1. Boolean Operators .. 	 73

2. Run Analysis 	 83

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

i.	 Hardware configuration .. 	 71

2. Typical relay schematic 	 73

3. Simple logic equation sample..... <	 74

4. Typical series circuit	 75

ix

CONTENTS (Continued)...
Page

5. Typical parallel circuit .. 	 76

6. Simulation history printout ...	 78

7. State list from discrete network simulation 	 79

8. Test procedure verification by discrete network simulation 	 80

9. AMA display .. 	 81

MARSYAS -- A SOFTWARE SYSTEM FOR THE DIGITAL SIMULATION OF

PHYSICAL SYSTEMS

By H. Trauboth and N. Prasad
Page

SUMMARY .. 	 85

INTRODUCTION .. 	 86

SIMULATION CAPABILITY ... 	 87

ENGINEER-ORIENTED LANGUAGE	 89

MATHEMATICAL FOUNDATION ...	 90

SOFTWARE STRUCTURE .. 	 98

POTENTIALS AND IMPLEMENTATION OF MARSYAS	 101

REFERENCES .. 	 102

LIST OF TABLES

Table	 Title	 Page

1.	 Extract from List of Standard Elements	 88

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Example of a model described by a block diagram of multiple input/output blocks

	

anda nested block ... 	 89

2. MARSYAS — Program of the example shown in Figure 1	 91

x

CONTENTS (Continued).. .
Page

3. Overview diagram of the mathematical process 	 95

4. Flow of numerical solution of matrix equations	 97

5. Overview of MARSYAS systems software 	 99

REAL-TIME SPACE VEHICLE AND GROUND SUPPORT SYSTEMS SOFTWARE
SIMULATOR FOR LAUNCH PROGRAMS CHECKOUT

By H. Trauboth, C. O. Rigby, and P. Brown
Page

SUMMARY .. 	 105

INTRODUCTION .. 	 105

SCOPE OF SIMULATION ... 	 106

SIMULATOR SOFTWARE ... 	 111

CONCLUSIONS .. 	 127

REFERENCES .. 	 128

LIST OF TABLES

Table Title Page

I. Magnitude of Equations for Instrument Unit 110

2. Buffer Description Tables .. 115

3. Pre-simulation Phase Capabilities .. 116

4. Format of Equation on Disc ... 118

5. Equation Cross-Reference Listing	 .. 119

6. Switch and Cross-Reference Block .. 120

7. Initialization Phase Capabilities .. 121

8. Hold Phase Commands .. 122

9. Hold Phase Capabilities	 ... 122

10a, Results of Successive Evaluation of Logical Equations with Two Different Initial
Conditions if DO Changes State From "1" to "0" 124

xi

CONTENTS (Continued)...
Page

fOb. Transition Table for All Possible States 	 124

if.	 Queue Format .. 	 125

12. Real-Time Phase Capabilities ...	 125

13. Post-Simulation Phase Capabilities .. 	 125

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Saturn V Launch Computer Complex configuration	 107

2. Real-time simulator computer systems configuration	 108

3. Example of a typical discrete/analog circuit 	 109

4. General flow of Simulation Processor	 112

5. DDAS Simulator commutation memory tables 	 113

6. Master Equation Tape format .. 	 116

7. Cross-Reference File .. 	 117

8. DDAS Assignment File .. 	 117

9. Simulator flow diagram .. 	 126

STATE VARIABLE DESCRIPTOR SYSTEM (SUDS)

By N. F. Geer
Page

SUMMARY .. 	 131

INTRODUCTION ... 	 131

MATHEMATICAL MODEL .. 	 131

SYSTEM BLOCK DIAGRAM ... 	 132

PROGRAM OPERATION ... 	 134

APPLICATION .. 	 137

CONCLUSIONS .. 	 142

REFERENCES .. 	 142

Xii

CONTENTS (Continued)...

LIST OF TABLES

Table	 Title	 Page

1. Coding of Block Diagrams for Computer Input	 133

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Matrix block diagram ...	 132

2. Sample system block diagram ...	 134

3. Subroutine example .. 	 137

4. Role of SV DS in dynamic system analysis 	 137

5. Numerical integration by the Runge-Kutta method	 140

6. Adjoint system ... 	 141

STORAGE SCOPE GRAPHICS AND EXPERIMENTAL APPLICATIONS

By R. Seitz
Page

INTRODUCTION .. 	 143

TEXT AND FORM EDITING ...	 145

AMTRAN ... 	 148

LIST OF TABLES

Table	 Title	 Page

1. Current Status of the Implementation of AMTRAN	 148

LIST OF ILLUSTRATIONS

Figure	 Title	 Page

1. Prototype version of AMTRAN terminal 	 143

2. Space shuttle configuration ...	 143

3. Logic circuit ... 	 144

xiii

CONTENTS (Concluded).. .
Page

4. Printed circuit board ..	 144

5. Fresnel curve .. 	 144

6. Solution of a family of differential equations 	 144

7. Computation Laboratory Form 1125 	 145

8. Schedule for branch project ...	 145

9. Form 1122 .. 	 147

10. Completed Form 1122 ... 	 147

li.	 Editing process ... 	 147

12. Edited process displayed on 1122 ..	 148

13. Curve with evenly spaced points ..	 149

14. Result generated by AUTOMATH routines when applied to the curve of Figure 13.......... 149

xiv

MEMORY REDUCTION
HIGHEREL LANGUAGE

By

H. Kerner and L. Gellman`

ABSTRACT

Traditional assignment of computer functions to
logic and memory are evaluated based on trends in
their cost and mission characteristics. The higher
information content of a higher level language is
exploited for the savings of memory. An instruction
set was selected from the directly executable state-
ments of FORTRAN, and the remaining statements
were identified for compilation. Programs written
in this language occupied 75 percent less memory
than those obtained by compilation. A computer for
the execution of the selected FORTRAN statements
was functionally designed in order to estimate the
corresponding logic hardware effort. The tradeoff
between costs saved through memory reduction and
expenditures for the additional logic hardware
considered development, manufacturing, power, and
weight costs. The proposed concept shows a cost
advantage for missions with a high weight penalty
and large memory requirements. Another advantage
is the higher execution speed inherent in this
organization.

INTRODUCTION

Innovations in hardware technology and extraordi-
nary performance demands will prove a major factor
in the organization of future spaceborne computers.
Advancing semiconductor technology such as large
scale integration (LSI) will make large scale com-
puters on board spacecraft a reality. Indeed, the
sophistication of future spacecraft will make such an
onboard computer a necessity.

One of these future spacecraft may be an Earth-
orbital space station that supports 10 or more astro-
nauts, carries equipment and supplies for some 300
scientific experiments, and has an orbiting lifetime
of several years. The computer requirements of

such a mission for experiment control and data
processing, attitude control, guidance and navigation,
performance monitoring, maintenance support,
communication, etc. can be expected to be of a
magnitude equivalent to a computer with real-time
characteristics supporting a large ground-based
laboratory. Another spacecraft, unmanned, on a
journey to Mars would require extraordinary
reliability and demand computer services for data
compression, guidance and navigation, and communi-
cation. Without a man on board, a large scale
computer could increase the efficiency of the mission
by data sampling and choice making through an
adaptive mode of operation [1].

Such extraordinary reliability and durability
requirements, combined with constraints on its
power supply and launch costs of volume and weight,
impact directly on the computer organization and
may result in a substantial departure from present-
day organization. In the design of spaceborne com-
puters, these reliability and cost considerations
prove especially relevant in the tradeoff between
functions assigned to logic hardware and to memory.
Presently, any particular balance of function alloca-
tion between logic hardware and memory is based on
their respective manufacturing costs. Current
trends in LSI technology promising manufacturing
cost savings and weight reduction will shift that
balance. These considerations demand a re-
evaluation of logic-memory function assignments.

Expected LSI progress in the first half of the
1970's should reduce the weight of logic hardware
by a factor of 30, while weight reduction in magnetic
memories is expected to be much less drastic. This
means that computers with present-day organization
implemented in the technology of the mid-1970's
will have the bulk of their weight concentrated in
memory devices. For computers used in weight
(or volume) sensitive missions, a design approach
is indicated that will minimize memory at the
expense of adding logic hardware. The validity of

"` The authors greatly appreciate the critical review and advice of Mr. Sidney Stein and Mr. James Kennedy.

H. KERNER AND L. GELLMAN

this approach is reinforced by the cost reduction
expectations in logic hardware through LSI technology
when compared with the limited cost reduction
possibilities in memory technology.

For these reasons, this paper reinvestigates
the traditional logic-memory balance that has
survived three computer generations and offers a
memory saving approach that exploits the higher
information content of higher level languages.

PROBLEM DEFINITION AND APPROACH

Consideration of several types of computer
languages provides insight into how memory savings
can be realized. Computer languages can be
categorized by levels, each characterized by a
degree of generality:

Level Types of Languages

L4 Problem-Oriented Languages (COGO,
GPSS, -----)

L3 Procedure-Oriented Languages
(FORTRAN, ALGOL, PL1, -----)

L2 Machine Peculiar Languages

L1 Microcode

A program written in a particular level language
processed by the appropriate compiler produces a
program in the language of the next lower level. The
higher level language together with its compiler
defines the detailed machine actions as completely
as the compiled program does in the language of a
lower level. The above mentioned points and the
fact that higher level language programs occupy an
order of magnitude less memory than the compiled
versions demonstrate the memory saving qualities
of these languages.

To exploit these language properties, a technique
was required that interprets higher language state-
ments and immediately executes an equivalent group
of lower level machine actions. Since it avoids the
"assembly" of the total program into the next lower
level, this interpretive principle can be used to
reduce memory requirements. Whether in the
microprogrammed or hard-wired version, this
approach is valid between any two language levels.

The goal of this study is to define a computer
organization that introduces a level of control above
the conventional level of arithmetic and logic proc-
essors (Fig. 1). This system features several
processors on this control level capable of receiving
higher level language statements, interpreting them
each in their respective language, and controlling
their immediate execution in lower level processors.
The statement repertoire of each language and its
associated control processor shall be sufficient for
the description and control of complete programs or
program segments.

MEMORY
HIGHER LEVEL
LANGUAGE
PROCESSORS

LANGUAGE A I •	 I	 FLIP	 I ... I LANGUAGE X

.	 ARITHMETIC
I .LOGIC

Figure 1. Arithmetic and logic processors.

The resulting computer organization will mini-
mize computer memory by adding logic hardware.
A comparison with conventional design will be made
with respect to:

manufacturing cost

power requirement	 generalized cost

weight and size

speed

reliability

For this comparison, the problem is restricted
to direct code interpretation and execution between
two adjacent language levels; specifically, the
procedure oriented language and the machine
language levels. Further restrictions limit the
system to one processor on each of these levels.

The selection of the higher level language will
certainly influence the result of the comparison.
Languages designed primarily for numerical
calculations, well matched to existing general

2

H. KERNER AND L. GELLMAN

purpose computer organizations, offer scant
opportunity for higher level execution. Therefore,
languages rich in sophisticated control features
are expected to yield more favorable results than
languages strong in arithmetic and logic character-
istics. For instance, a language designed especially
for the writing of executive programs lends itself
extraordinarily well to the implementation through
high level control processors. Such a language
would also make less use of the lower level
processors.

FORTRAN IV was chosen as the higher level
language for this study for the following reasons:

1. FORTRAN IV's control features are
balanced with arithmetic and logic features.

2. A great variety of programs including
spaceborne applications were available for evaluation
of the proposed design.

3. It has wide usage and a comparison is
therefore of broad interest.

The corresponding processor will be called FORTRAN
Language Processor (FLP) .

It is probable, however, that FORTRAN IV will
not be the language best suited for spaceborne com-
puter programming. If other, more specialized,
languages prove better suited to space applications,
the results of this study will represent a worst case
for the proposed computer organization.

Aside from the language selected for this study,
the sophistication of the higher level language
processor design constitutes a second influence on
the results obtained. Since the computer is destined'
for spacecraft application, desirable design simpli-
fication can be attained through the use of a ter-
restrial computer preprocessor program. Such a
ground-based preprocessor would sort out the pro-
gram statements, compile those statements not re-
quired for execution, and format the others for inter-
pretative execution by the spaceborne computer. Pre-
processed programs can be loaded into the computer
before and during a spacecraft mission. This approach
simplifies the FLP by avoiding the difficulties of a
complex hardware compilation without compromising
the memory saving features of the design [2-4].

Input/output (I/O) statements were eliminated
from the study comparisons because of the difficulty
of obtaining ground-based analogues to spaceborne
applications. Terrestrial machines of the type
available for the study read cards, tapes, discs,
drums, and output through these media, while the
spaceborne computer will collect data from sensors
through various data acquisition equipment and
transmit results to actuators or to data links on
Earth. Future spaceborne computer I/O repertoire
is expected to include the combined I/O features of
ground-based process control, checkout, navigation,
communications, and general-purpose computers.

INSTRUCTION SET AND PREPROCESSOR

The allocation of functions to the preprocessor
and the higher level language processor was governed
by the following considerations:

e The requirement for maximum memory
saving with minimum additional logic hard-
ware cost.

e That execution speed should not be less than
that obtained with a conventional compiler
approach.

a That speed improvement possibilities
uncovered be incorporated only if they can
be obtained with minor hardware penalty.

An analysis of the FORTRAN language in light of
these considerations suggested the classification of
FORTRAN statements into five categories; arithmet-
ic, control, input/output, compilation aids, and
comments. Compilation aids and comments are
handled by the preprocessor since they do not
produce executable code. From the remaining three
statement types, the control and the arithmetic
statements proved candidates for implementation
in hardware, because every instruction of this type
offers opportunity for substantial memory savings
through higher level execution. For reasons
previously mentioned, I/O statements were not
exploited in this study, despite the fact that large
memory savings and improved speeds are expected
from hardware implementation of the specialized
I/O requirements of spaceborne systems.

H. KERNER AND L. GELLMAN

Arithmetic FORTRAN statements require special
consideration. The analysis of the structure of an
expression, as well as the optimization of computa-
tional sequences, does not directly contribute to
memory savings. However, associated address
modifications expedited by the controls of the
arithmetic-logic processor and supported by the
high efficiency of data transfer between the two
levels of processors, are considered worthy of
implementation in the higher level language
processor.

The result of this analysis of FORTRAN state-
ments resulted in the following instruction set,
chosen for implementation in the higher level
language processor:

1. GO TO (includes COMPUTED GO TO)

2. IF (logical and arithmetic)

3. DO

4. CALL (no argument)

5. Library Call (arguments included)

6. RETURN

7. Input/Output (READ, WRITE)

8. Parts of Arithmetic Statements:

Address Processing

Control of Arithmetic and Logic Processor

9. Replacement (_)

Although this list appears small, it can be verified
that all basic FORTRAN IV control operations can
be performed using this instruction set.

Memory reduction goals also governed the
instruction word format selected. A variable sub-
field format was used to conserve memory despite
the additional decoding required. Whenever possible,
two instructions were packed into one 36-bit word.
More than one half-word is required for some
arithmetic and I/O statements, the library call,
COMPUTED GO TO, and arithmetic IF statements.

The only common feature of all instruction
words is the 3-bit operation code (Fig. 2). The
right portion of the half-word contains a 13- to

3	 1	 14

GO TO	 1	 0	 1 C	 NEW ADDRESS

3	 1	 1	 13

IF	 1	 1	 1 S L/A	 NEW ADDRESS

3	 3	 1	 1	 S	 6

1>0	 0	 1	 0 S l	M3 M 1	M?	 LAST ADDRESS

3	 is
CALL	

F-7-1-
01	 SUBROUTINE ADDRESS

3	 1	 14

LIBRARY CALL	 0	 0	 0 1	 NUMBER OF ARGUMENTS

3 1 14

RETURN 0	 0 0 0 EMPTY

3 3 1	 11

1/0 1	 0 0 ADD 1/0 ADINFO

3 3 1]	 1

ARITHMETIC 0	 1 1 ADD L/W	 OPER	 ADINFO

3 3 13

STORE I	 1 0	 ADD ADINFO

Figure 2. Instruction set.

15-bit address, or instruction modifiers supporting
the operation code. The ADD field in the I/O,
ARITHMETIC, and STORE instruction specifies
the method of addressing data as follows:

000 Integer data accompanying the instruction

001 The actual data address in memory

010 An FLP register address

011 The previous address plus 1

100-111 Dimensioned data

Another feature employed for code compacting was
the construction of standard instruction modes for
the commonly expected simple cases and the
indication of extraordinary cases in short fields
(labeled S and Sl) that control the decoding of
words following in sequence.

The two approaches to memory compression
discussed above, i, e. , the use of a procedural
language for the total program and compact coding
within each specific instruction word, both require
a substantial increase in logic hardware.

4

H. KERNER AND L. GELLMAN

The search for a device to keep the hardware
within bounds leads to the idea of the preprocessor
executed on a ground computer, which would relieve
the higher level language processor from all func-
tions not absolutely necessary for the primary goal
of code compression. This preprocessor was
assigned functions of an assembler and of a com-
piler. The typical assembler tasks are:

1. Translation of the mnemonic code into
binary code in a nearly one-to-one correspondence
with each FORTRAN statement,

2. Assignment of relative addresses for
program variables, instructions, and statement
labels.

3. Formatting and packing of the code into the
instruction word.

Preprocessor compiler tasks are:

1. Separation of FORTRAN statements directly
executable by the FLP from statements requiring
further analysis such as arithmetic statements.

2. Generation of additional instructions for
initialization of registers before the beginning of
computational sequences and for transitions from one
sequence to another one.

3. Elimination of operations involving mixed
modes of data types.

4. Data placement according to DATA
statements.

5. Optimization of arithmetic operations and
control paths.

6. Optimization of data addresses relative to
the order of program execution.

ORGANIZATION AND OPERATION OF THE
FORTRAN LANGUAGE PROCESSOR

A quantitative evaluation of the proposed
approach toward memory reduction required the
design of a language processor capable of inter-
preting the selected higher level instruction set. A
functional design of the higher level language
processor proved sufficient to estimate its hardware
complexity considering the heavy influence of other

factors on the tradeoff evaluation. The products of
this functional design were a description of the
decoding scheme for the variable format instruc-
tions, a chart depicting the flow of data between
registers, and a definition of the pertinent program
execution events and the corresponding control
mechanism. A simplified flow diagram of the FLP
illustrating the following discussion is shown in
Figure 3.

Instruction execution begins as soon as one
memory word (containing two instruction words)
has been obtained from memory and loaded in a
32-bit instruction register with a capacity of two
memory words (four instruction words) . A fetch
overlap feature loads the next two instruction words
into this register while the first two instruction
words are decoded and executed. A memory
address register specifies the next (double) instruc-
tion location in memory in the usual way, while a
pointer locates the instruction to be executed within
the instruction register. The memory address
register and the pointer combined act as an instruc-
tion location counter. The multiple instruction
register allows multiple word instructions to be
executed without further access to memory. For
example, with the four instruction word register,
DO loops of four instructions or less can be
executed directly without accessing instruction
memory until the loop is completed.

A special situation occurs during a fetch
operation of an instruction word supported by more
than four trailer instruction words. After decoding
the first words, the resultant state is stored in a
special register. The execution of this state is
deferred until loading and decoding of the remaining
instruction words have been completed.

The decoding of the variable field instructions
requires a more complex decoding scheme than
usually employed. The main decoder analyzes the
instruction code and routes the subfields to
corresponding subsections for further decoding.

A special case of a multiple word instruction
is an arithmetic statement that is represented
(after preprocessing) by a string of arithmetic
instructions. When encountering the first arithmetic
instruction of the string, the decoder initializes
processing of the string by setting control flip-flops
which indicate that string processing is in progress
and which discriminate between logical and numeri-
cal arithmetic and between real and integer operands.

I

IF

I
1

GO TO

I

DATA	 PREPARATION
FETCH	 FOR LIBRARY
AND	 CALL AND
STORE I	 RETURN

LIBRARY CALL
AND RETURN

CHECK TRANSFER
OUT OF DO LOOP

L___ _
DO LOOPS

SPECIAL

DIMENSIONING DIMEN-
SIONING

H. KERNER AND L. GELLMAN

TO ARITHMETIC
	

DATA
	

INSTRUCTION
LOGIC PROCESSOR

	
MEMORY
	

MEMORY

CPU DATA
	

ARITHMETIC
	

INSTRUCTION

REGISTERS
	

CONTROL
	

CONTROL AND FETCH

DECODING
I-----

INPUT
OUTPUT

I

CPU
REGISTER
OPERATIC

I

i L-T

	

1	 4

ff75
I

	

ARITHMETIC	
3 INS

I	 CONDITION	
DEC

DECODING6 0,1I

DO LOOP
i	 INITIALIZATION

1

INCREMENT AND
TERMINATION
CHECK

ADDRSS
MODI [CATION

Figure 3. FLP flow diagram.

All operations were coded in the most concise	 If the operand of an arithmetic operation is an
form by taking advantage of some high frequency	 integer, its value can be stored in the next
occurrences. These special cases offering maximum	 consecutive instruction word, or if its value is
opportunity for shortening references to data are 	 less than 28 , it can be stored in the ADINFO field
detected and specially treated by the processor in 	 of the same instruction. Some operands are
order to compress instruction memory.	 intermediate results of previous arithmetic opera-

tions, which reside in one of the 32 internal CPU
The arithmetic instruction type will be used as	 registers. These operands can be referenced in

one example to illustrate this method. Seven special 	 the CPU registers by the ADINFO field of the
cases of arithmetic operations, which are expected 	 calling operation instruction. Frequently operands
to occur frequently enough to be exploited for 	 can be arranged in consecutive memory locations.
shortening memory references, are discussed 	 Whenever this is possible, data of such a string
below.	 can be obtained by retaining the address of the first

6

H. KERNER AND L. GELLMAN

data item and incrementing this address by one for
each consecutive operation of this arithmetic string.

Arithmetic operations dealing with dimensioned
variables are treated as three different cases. In
the general case (seven dimensions are permissible
in this language processor implementation) , the
address of the first word in the array is contained
in the instruction word immediately following the
calling operation instruction. Subscripts are
referenced in the ADINFO field of this second
instruction word. If the values of the subscripts
do not reside in internal CPU registers, an additional
instruction word refers to their memory locations.
For variables in a dimension greater than two, the
data address will be computed by software algorithms.
For one- or two-dimensional variables, data
addresses are computed by special hardware
routines using subscript values stored in internal
registers. Only one subsequent instruction word,
locating the first word of the array, is required.

The above special cases are differentiated by
the preprocessor which relates this information to
the FLP through the-3-bit ADD field of the arithmet-
ic instruction.

A similar approach was taken in the case of the
DO loop statement. The DO loop variables of this
statement have the following standard meanings:

mi:	 starting value of the loop index

m2: limiting value of the index

m3: increment by which the index is modified

Special values of these parameters occur frequently
and this fact can be utilized as follows to save bits
and time when referencing memory.

If the starting value of the index (ml) is
either one or two, this value can be noted in the
1-bit ml field of the DO instruction. If the maximal
value of the index (m2) is less than 32, it will be
stored in the 5-bit m2 field of the DO instruction
word. Whenever mi and m2 do not fall within the
above range of favorable values, an additional
instruction word is needed for references to memory
locations containing the parameter. It can, however,
be assumed that these general cases will not occur
too frequently.

As with the arithmetic operations, the pre-
processor discriminates among the combinations
of mi and m2 for the general or the special cases
and encodes this information in the 2-bit DOFLAG
field of the DO instruction.

Since DO loop indices are most frequently
incremented in steps of 1 (m3 = 1) , a special
m3 field in the DO instruction format identifies
this case. In the general case of m3 0 1,
additional instruction space is required.

The value of the last address of the DO loop
can be encoded in shorter form by measuring its
numerical distance from the beginning address of
the loop. If the distance is less than 63, it can be
referenced in the 6-bit last address field of the DO
instruction, and the absolute address can be calcu-
lated from this information. The general case of
a distance larger than 63 is indicated by zeros in
this field and the value is carried in an additional
instruction word.

DO loops can be nested within DO loops. In this
implementation, the information concerning the
first seven levels of nested DO loops are stored
in a stack of seven special registers. An adjunct
3-bit register designates the level of the currently
active loop.

Similar techniques exemplified by the arithmetic
and DO loop instructions analyzed above were
employed in handling the remaining FLP instructions.
In summary, these techniques take advantage of high
frequency occurrences to develop special case
algorithms that allow more concise coding than a
general approach covering all cases. High incidence
of such opportunities appears in the location or
arrangement of data, in the constraints imposed
upon the length of data string addresses, and in
the definition of statement parameters. Memory
references are also reduced by storing intermediate
results in a special set of internal CPU registers
whenever possible.

In general, the techniques employed require
that additional information regarding any special
exploitable characteristics of the operation be part
of the instruction word. The additional bits needed
to signify these characteristics are expected to be
highly repaid through the total memory savings
achieved by this method. Also, the large number

H. KERNER AND L. GELLMAN

of variations in the instruction word format imply
• complex execution logic. This situation demands
• highly sophisticated preprocessor as an inter-
mediate step to keep the size of the logic hardware
within reasonable bounds.

In the following section the economical implica-
tions of these techniques will be evaluated in terms
of memory savings. Classes of computer systems
and applications for which these techniques appear
to be advantageous will be explored.

EVALUATION

Having functionally designed the FLP and
defined the rules for the preprocessor program,
we then evaluated the proposed approach to memory
reduction by quantitative approximation.

Estimates were made of memory savings and
of the added effort in hardware logic based on costs
expected in the mid-1970's. These values were
entered into a tradeoff equation that evaluates the
relative influence of memory versus logic hardware.
Four different missions are presented as examples
of the memory-logic tradeoff evaluation.

For obtaining an estimate of memory savings,
several programs were manually processed accord-
ing to the rules established for the preprocessor.
The programs were selected on the basis of their
spaceborne application characteristics such as
guidance and navigation programs. Manual pre-
processing assembled and compiled the statements
and packed the resulting instructions into the
required FLP format. I/O instructions were
omitted. A count of the FLP formatted words
represents the FLP memory requirements of the
programs.

The same programs were compiled on the
IBM 7094. Code generated by I/O operations was
deleted, and memory allocated for data storage was
not taken into account. The number of words
generated represents the comparative memory
requirements for instruction storage on a computer
executing machine language.

The ratio of the storage requirements for the
machine language code over the FLP code, which
is called compression ratio, resulted in an average
of approximately 4:1 for the programs compared.

The estimate of the additional hardware cost
was only concerned with the logic of the FLP that
would have to be added to a conventional computer.
Possible savings in the original computer control
section, which might occur because of performance
of similar functions in the FLP, were not considered.
These concessions tend to produce conservative
evaluation results. For purposes of this study, the
design of the FLP was limited to the definition of the
various registers and the associated information flow.
The logic requirements were estimated by multiply-
ing the number of register flip-flops by the ratio of
logic gates to flip-flops usually found in computers.
This ratio was obtained by examining several com-
puters and was found to vary between the values
20:1 and 40:1. The lower case, 20, was used to
calculate the number of logic gates required, because
the FLP is a device using many more registers than
is normal in computers. There are 2270 flip-flops
employed in registers of the FLP, consequently the
additional number of gates required was calculated to
be 45 000 or less than 50 000. Since this amount of
logic is common in medium to large scale computers,
50 000 gates is considered an upper limit to the size
of the FLP.

For the tradeoff analysis, a memory compression
ratio of 4:1 and a corresponding hardware estimate of
50 000 gates were used to arrive at a comparable
cost figure. The total cost differential (C) between
a computer using a FORTRAN Language Processor
and one without this addition consists of differentials
in manufacturing and development cost (M) , in
direct power cost (P) , and in launch cost (L) . The
following equation expresses the generalized cost (C)
for a total of n computers manufactured and one
launched.

C = nM+P+L	 (i)

The manufacturing and development cost
differential (M) contains three terms. The first
term represents memory cost saving, the second
term represents manufacturing cost of the additional
logic hardware, and the third term represents the
LSI chip development cost.

g - d - cc - co

ml	 -m2	 -m3 , (2)

H. KERNER AND L. GELLMAN

where

M = net cost savings realized (memory
reduction versus added logic) ,

s = size of memory saved (bits),

b = bit cost ($),

r = cost factor because of reliability
requirements,

g = number of gates added,

d = chips per gate packing density,

cg = manufacturing cost per gate ($) ,

cc = development cost per chip ($) ,

co = fraction of total chips requiring new
development,

and

n = number of computers to be manufactured.

Cost savings as a result of reduced power consump-
tion and launch weight follow from equations (3) and
(4).

P = (pm - pl) • cw
	

(3)

L = (wm - wl)1 + (pm - pl) ww • 1 	 (4)

where

P = power consumption cost savings ($) ,

L = launch weight cost savings ($) ,

wm = weight of saved memory,

wl = weight of FLP logic,

pm = power saved because of memory reduction
(W)

pl = power penalty because of the added logic
hardware (W) ,

cw = cost per watt ($/W)

ww = weight per watt (lb/W)

and

1	 = cost to launch 1 pound ($/lb) .

As a first example for the tradeoff evaluation
expressed by equation (1), consider a computer
aboard an Earth-orbiting space station in the last
half of the next decade. This computer controls a
portion of the 300 experiments aboard and processes
their output data, a task which may vary from simple
reformatting of data to fairly complex pattern recog-
nition. It monitors spacecraft subsystems, and
predicts and diagnoses failures. Data management
and transmission are important functions of the
computer which also serves as the center of command
and control activities and is the heart of the guidance,
navigation, and attitude control systems.

The memory requirements for this mission were
estimated to be 260 000 38-bit words. Sixty-thousand
words were allocated for storing the executive pro-
gram, data, and work area leaving 200 000 words
available for instruction storage. The instruction
storage compression ratio of 4:1 expected with the
FLP approach indicates a memory savings of
150 000 words of 5. 7 million bits.

The other values needed for solving the tradeoff
equations (1) through (4) were obtained from the
literature (5-7] and updated with current information
obtained from component vendors. The following
table lists these values: (E means the exponent of
the base 10, as used in FORTRAN notation) .

s memory saved 5. 7 E6 (bits)
b bit cost 3 E-2 ($)
r cost factor because of

higher reliability 3
g number of gates 50 000
cg cost per gate lE-1 ($)
d chips per gate 1. 5 E-3
cc development cost per chip 2 E4 ($)
co fraction of new chips 3 E-1
n number of computers n

Figure 4 shows the plot of the three terms of
equation (2). Manufacturing cost is represented by
m2, and m3 represents development costs. The
term representing the savings through memory
reduction, ml, is shown as a function of the reduced
bit size. The manufacturing cost ($15 000 each)
represented by m2 was calculated for a production
run of five computers: the flight computer, another

9

H. KERNER AND L. GELLMAN

K$

$510,000

The preceding findings were applied to a pro-
duction run of 50 of the same computer for possible
use in military ground or airborne applications.
The chip development costs, m3, distributed over
the 50 computers were reduced to $9000 per unit.
The combined chip development and manufacturing
cost, m2 + m3, per unit totalled $24 000. This
indicates an advantage for the FLP approach when
memory savings are 270 000 bits (7200 words) or
more (Fig. 5).

00
102	

m2+m3=$I(
	 10

m 3 =$.90,001
	

`I

	

I	 I

	

I-°	 I a

	

o	 to^°

	

°	 ^o

	

^£	 I

	

o	 fa

	

H	 In
I,"

105	 106	 107

-_p. bits

Figure 4. Tradeoff equation (2) , small quantity
(n = 5), high reliability (r = 3).

for testing, two for program development, and one
backup computer. The development cost, m3,
calculated as $90 000 per computer is nearly one
order of magnitude larger than m2, the manufac-
turing costs ($15 000) of the FLP. The combined
chip development and manufacturing cost (m2 + m3)
equals $105 000, which differs from mi by
$410 000 for a memory savings of 150 000 words.
Five computers could therefore be produced at a
savings of more than 2 million dollars ($2 050 000) .

Figure 4 also shows that the costs for logic and
memory break even at a memory size of 1 million
bits. For larger memories, the FLP approach
should be economically superior.

To compensate for the uncertainty of the values,
the plots of the ml term and of the combined .
m2 + m3 term were represented by bands whose
limits were defined by twice and one-half the calcu-
lated values. Figure 4 shows that even in the worst
case (the lower boundary of m1 and the upper bound-
ary of m3) the tradeoff is in favor of the FLP
approach for memories of over 4 million bits.

102

101

105	 106	 107

-® bits

Figure 5. Tradeoff equation (2) , large quantity
(n = 50), high reliability (r = 3).

For commercial computers (Fig. 6, r = 1) , with
chip development and manufacturing costs (m2 + m3)
of $14 000, a break-even point appears at 500 000
bits or 13 000 words. Consequently, a memory
reduction of 150 000 words in a commercial version
of the FLP would save $146 000 per computer.

Assuming the memory compression ratio of 4:1,
it is concluded that military computers with more
than 10 000 words and commercial computers with
more than 17 000 words required for instruction stor-
age can benefit from a high level language processor.

^m2 = $ 15,00,00

10 1 	.0

IOo

104

100

104

10

H. KERNER AND L. GELLMAN

K$

I0'	 10"	 IU_ —01bi16 10'

Figure 6. Tradeoff equation (2) , large quantity
(n = 50) , commercial reliability (r = 1) .

For spaceborne computers, the cost of the
power supply and the launch cost of the computer
may constitute a substantial portion of the cost of
the total computer system.

The cost savings resulting from the reduced
power requirements (P) of the FLP design were
calculated by equation (3) , P = (pm - pl) • cw,
using the following values:

pm, memory reduction of 150 000 words saves:
580 W

pl, the added hardware logic consumes: 50 W

cw, cost per watt (solar cells): 200 $/W,

then

P = $106 000.

Launch cost savings (L) attributable to the FLP
design were calculated by equation (4) ,
L = (wm - wl) + (pm - pl) ww . 1, using the
following values:

wm, weight of saved memory: 230 lbs

we, weight of added logic: << 230 lbs

(pm - pl) , reduced power requirements: 530 W

ww, weight per watt: 0. 16 lbs/W

1, cost of launching one pound: 1000 $/lbs

then

L = $230 000 + $85 000

L = $315 000

(The weight of added logic hardware was considered
negligible when compared with the weight of the
memory saved.)

Equation (4) indicates that the weight of a com-
puter with a 260 000 word memory could be reduced
315 pounds by adopting the FLP approach (230 pounds
could be saved through memory reduction and 85
pounds through reduced power requirements).

The above launch cost savings of $315 000 is for
an Earth-orbiting mission where current launch costs
average about $1000 a pound. These savings appear
insignificant when compared to the 2 million dollar
reduction in manufacturing costs or when compared
to the cost of the total mission.

Launch costs of $20 000 per pound are predicted
for interplanetary missions of the mid-1970's. In
this case, launch cost savings because of weight
reduction of the FLP approach will exceed 6 million
dollars in addition to the 2 million dollars saved in
manufacturing costs. The ultimate payoff of this
savings is the opportunity it affords for payload
sophistication, thereby increasing the scientific
value of the mission.

However encouraging this result is for interplane-
tary missions, the final analysis of a spaceborne
computer system must include its reliability. This
task must be postponed until sufficient data on LSI
reliability is available.

it

H. KERNER AND L. GELLMAN

CONCLUSIONS

This paper attempts to answer the question of
whether the traditional allocation of functions
between logic and memory will change under the
impact of new technology or extraordinary perform-
ance requirements such as those imposed by space
flight. The conclusions reached as a result of this
investigation stand on projections of manufacturing
costs in the mid-1970's, on a particular language,
compressed instruction coding, and interpretive
logic. Despite wide variances, tolerated in all
numerical values used in this paper, the authors
contend that some positive conclusions were reached
regarding the benefits of the higher level language
processor approach.

From the economical point of view, the example
worked suggests advantages for all four cases
whenever the memory required for the application
was sufficiently large. For a computer with a
memory of 260 000 words, it was considered feasible
to reduce its size to 110 000 words through the
approach offered. This reduction of 150 000 words
implied a manufacturing cost savings of about
$400 000 for computers demanding high reliability
when produced in a batch of 5. For computers
manufactured in batches of 50, a break-even point
between the additional logic hardware and the saved
memory occurred around 13 000 words for commer-
cial computers and at around 7000 words.for high
reliability hardware. Since these represent rather
small memories, the addition of a higher level
language processor appears to be advantageous even
in commercial quality hardware. The reduction in
manufacturing costs for such computers containing
larger memories appears to be the significant
factor (some $100 000). For interplanetary
missions, however, the reduction in weight and
volume proved more important. A key consideration
for these long duration missions is the impact the
additional processor would have on system
reliability.

The economies of the higher level language
processor approach demonstrated in this paper
suggest that additional benefits can be derived
through improvements in the scheme. Investigations
of languages other than FORTRAN may reveal even
greater opportunities for code compression. Some

excellent candidates should be found among real-time
control languages and algebraic types capable of
processing arrays of data or executing complex
algorithms by single instruction [8-10). Problem-
oriented languages, which we ranked one level above
procedure-oriented languages in code compacting
qualities, seem to offer great opportunities for code
compressions. An investigation of data structures
should uncover additional memory saving possibil-
ities. A more detailed analysis than the one done
for this paper should investigate individual features
implemented in logic hardware and evaluate the
tradeoff involved.

Further improvement of the tradeoff results
seems to be possible through standardizing some
of the logic components, especially heavily used
stacks and counters. Employment of micropro-
gramming schemes could replace specialized logic
by standardized microcontrol hardware. This
approach may improve the reliability of the system
through the interchangeability of the micropro-
grammed control devices.

Besides cost, the computer organization implied
by the higher level language approach can influence
other factors of computer architecture. It can for
example, offer a solution to the program segmen-
tation problems encountered in multilevel memory
schemes (paging, cache technique [11-131), because
complete statements are transferred to lower level
processors, where the equivalent of small segments
are generated. Furthermore, since the higher
level statement is not compiled into memory
machine steps, extensive look-ahead features can
be more easily implemented.

Future computers also face a bandwidth problem
in the internal communication between computer
subsystems. This is especially serious in the case
of distributed logic computers. The instruction
stream through such computers can be greatly
reduced through the employment of higher level
language processors.

In conclusion, this paper indicates that employ-
ment of more comprehensive instructions or com-
plete higher level languages is desirable not only
because of their inherent speed and programming
advantages, but because they also provide
economical advantages by virtue of their memory
saving properties.

12

H. KERNER AND L. GELLMAN

REFERENCES

1. Spaceborne Multiprocessing Seminar. NASA Electronics Research Center, Cambridge, Mass.,
October 1966.

2. Bashkow, T. R.: A Sequential Circuit for Algebraic Statement. IEEE Transactions on Digital
Computers, April 1964.

3. Lawson, Harold W.: Programming Language Oriented Instruction Streams. IEEE Transactions on
Digital Computers, vol. C17, no. 5, May 1966.

4. Burroughs 6500/7500 Information Processing System Characteristics Manual. September 1968.

5. Wainer, R. M.: Comparing MOS and Bipolar Integrated Circuits. IEEE Spectrum, June 1967.

6. Einhorn, Richard N.: LSI Improves Computer Memory Bit by Bit. Electronic Design, April 1, 1968.

7. Brown, D. W.; and Burkhordt, D. L.: The Computer Memory Market. Computer and Automation,
January 1969.

8. Seitz, Robert N.; Wood, Lawrence H.; and Ely, Charles A.: AMTRAN: Automatic Mathematical
Translation. Interactive Systems for Experimental Applied Mathematics, Proceedings of the
Association for Computing Machinery Inc. Symposium, Washington, D. C., August 1967, p. 44.

9. Falkoff, A. D. ; and Iverson, K. E.: The APL/360 Terminal System. Interactive Systems for
Experimental Applied Mathematics, Proceedings of the Association for Computing Machinery Inc.
Symposium, Washington, D. C., August 1967, p. 22.

10. Symes, Lawrence, R.; and Roman, Roger V.: Structure of a Language for a Numerical Analysis
Problem Solving System. Interactive Systems for Experimental Applied Mathematics, Proceedings
of the Association for Computing Machinery Inc. Symposium, Washington, D. C., August 1967, p. 67.

11. Wilkes, M. V.: Slave Memories and Dynamic Storage Allocation. IEEE Transactions on Digital
Computers, April 1965.

12. Conti, C. J.; Gibson, D. H.; and Petowski, S. H.: Structural Aspects of System/360 Model 85.
IBM Systems Journal, vol. 7, no. 1, 1968.

13. Liptay, J. S.: The Model 85 Buffer Storage. IBM Systems Journal, vol. 7, no. 1, 1968.

13

Page intentionally left blank

FUNCTIONAL DESIGN	 NIDEATION FOR
AN EXECUTIVE SYSTEM

GENERAL PURPOSE SPACEBORNE
By

J. R. Kennedy

ABSTRACT

An overview to spaceborne computer require-
ments for general purpose application in advanced
missions is discussed in this paper. An approach
to a functional design for an executive system that
satisfies these gross requirements is presented
from an organizational viewpoint with no considera-
tion given to implementation. The level of detail
brings out the feasibility aspects of communications,
task routing, application command and control,
organizational modularity, and mission schedule
interpretation.

SUMMARY

Spaceborne computer usage is envisioned as a
broad application of computational facilities in the
form of a centralized (complex of) computer(s).
The requirements associated with this concept are
summarized and shown to be extensive. Detailed
requirements have not yet been developed. However,
based on a heuristic functional classification of
applications, an overview to a functional design
approach for an executive routine is offered for con-
sideration. It is inherently reliable and flexible, and
allows for multiple implementation schemes that can
be comparatively analyzed for their relative merits.

INTRODUCTION

The concept of digital computers for spacecraft
guidance is well established [11 and has proven
itself in manned flight [2] on numerous occasions
during the latter phases of the Apollo project.
Furthermore, the desirability of using digital
computers for a wide variety of additional functions
including monitoring and adaptive control of telem-
etry systems and monitoring vehicle systems for
malfunction detection is an accepted goal [3]. In
fact, it is clear that the desire for higher capability

outstrips the ability of technology to provide the
facilities [4]; that is, large scale integration (LSI)
has not yet become a reality. However, major
research efforts, partially funded by NASA and the
Air Force, have been underway, notably at the
Autonetics Division of North American Rockwell
Corporation [51, the Federal Systems Division
of UNIVAC [6], and the Hamilton Standard Division
of United Aircraft Corporation [7] . There is
therefore a large amount of work being done in an
effort to determine modular approaches to the
design of ultrareliable general purpose digital
computers. This report outlines a functional,
rather than a computer hardware control-oriented
[8, 91 approach to the design of an operating system
(executive routine) for. the utilization of future
spaceborne general purpose computers. The major
objection to a functional approach is that it seldom
considers detailed hardware aspects, such as
interrupt system control. It is felt that most of
the details of hardware mechanization can and should
be submerged below the level of normal programming,
including that for the operating system, by intelligent
use of microprogrammed control logic. This is not
necessarily a popular opinion, though it has been
suggested elsewhere [6, 101. It is true that the
problems associated with such things as interrupt
processing must be solved on future spaceborne
computers. However, it is suggested that the
problems are hardware oriented and should — and
will — be worked out in the future by a new, hybrid
breed of system specialist; i. e. , the firmware
programmer/ designer. On the other hand, there
is much to be gained from a functional design
approach as will be seen in the considerations to
follow. Several of the concepts advocated in this
report lean heavily toward total (but alterable)
computer control of future space missions, from
countdown to mission completion.

FUNCTIONAL REQUIREMENTS

Functional requirements for the spaceborne
computer of the near future have been well outlined

15

J. R. KENNEDY

elsewhere and will not be amended here except to
point out a few of the more important requirements
and to summarize.

Mission Oriented Requirements

FLEXIBILITY

Based on historical evidence related to both
ground-based and spaceborne computer development
and implementation, the attainment of general
purpose capabilities can be expected to cost large
sums of time and money. For this reason, primarily,
the systems that evolve should be designed around the
concept of mission independence (flexibility) . This
will enable an amortization over many missions with
an expected lower cost than a single-mission design
approach. It should be possible, for example, to
reconfigure both the hardware and software with a
minimum of redesign so as to accommodate a variety
of missions equally well — from manned or unmanned
Earth-orbital missions to lunar landing, planet flyby,
deep space probe, etc. It is expected that this
inherent flexibility will also improve mission
reliability by an increase in the system's capability
to perform in a state of "graceful degradation";
many of the features required for true mission
independence are the same as those needed for
performance under conditions of failure.

RELIABILITY

This term applies here in all of its software
and hardware aspects, but particularly in its
relation to crew performance. The system should
include facilities for crew supportive functions such
as training, testing, and morale sustenance on long
duration manned flight or orbits. For instance, it
has become obvious that even a short mission, such
as the 74-hour translunar trip, is extremely boring
and requires supplementary crew entertainment
and training to enrich the long, idle hours.

SUMMARY

The many functional requirements as outlined by
Gruman and Schaenman [3] and suggested by Black
[11] are summarized here to emphasize the extent
to which the application of computing power is
envisioned. This is the framework on which the
executive design is based.

It is intended that the general purpose space-
borne computer provide services for test and check-
out, astronaut-computer interaction, data processing,
vehicle systems, experiments, and communications
systems.

In the area of experiments, it is necessary that
the computer function as a process control sub-
system for the purpose of sensor monitoring, data
logging, control signal calculations and generation,
equipment calibration, experiment initialization,
and data analysis [12, 131.

For effective astronaut services the operating
system must include provisions for the control of
astronaut display/keyboard-entry facilities for
astronaut-computer interaction. It should also
provide a "desk calculator" facility and an astro-
naut diary [log] . In general it must be the communi-
cations medium whereby an astronaut-scientist can
direct the progress of experiments and command
various vehicle subsystems to perform in arbitrary
or predetermined sequences. Other examples of
astronaut services that will be provided are command
generation to enable the control of guidance equip-
ment and checkout capabilities, malfunction analysis
assistance, and the ability to review and edit a
preplanned mission schedule.

Services in support of test and checkout functions
include the generation of system stimuli, the
acquisition and analysis of system responses,
malfunction detection, monitoring, and analysis,
confidence testing, and diagnostic control. This
capability must interface smoothly with the astronaut
interaction facility to allow the astronaut to direct
various testing and checkout procedures and to
assist him in the possible replacement of malfunc-
tioning line replacable units [141.

In support of vehicle systems, the operating
system will provide facilities for vehicle system
monitoring, control, and calibration. In addition
to the normal calculations for steering, navigation,
propulsion systems control, control moment gyro
control, and life support system monitoring, the
vehicle system capability within the operating
system will allow for power management and control.
This latter function will pay particular attention to
computer system dynamic power requirements to
ensure minimum power consumption as a function of
computing requirements. This task can be performed

16

J. R. KENNEDY

by switching power off or to standby on computer
system modules that are not required because of
reduced demands.

Communications system support facilities will
include the ability to perform data buffer manage-
ment, provide for packet transmission, and provide
for data compression and expansion as a means of
bandwidth (power) control. Certain standard data
compression algorithms such as those required for
reducing or eliminating redundancy and smoothing
by polynomial fitting will be provided as standard
procedures for all telemetry data. Also, the
communications capability will allow for dynamic
priority and tolerance control over data channels.
Various transmission diagnostics will be available
along with the ability to interpret the results of
system performance. A capability for controlling
telemetry format on a dynamic, real-time basis
will be provided to further adapt the telemetry
system to changing demands [15 J.

Certain functions related to the existence of the
general purpose computer will be required in the
form of executive control services. Those that
are directly related to the spacecraft itself include
mission schedule interrogation and interpretation,
event recognition and verification, mission
schedule editing, time keeping, and priority con-
flict resolution.

Data processing capabilities must be provided
to enable the astronaut-scientist to perform a
variety of data analysis and manipulation functions.
For instance, it will be desirable to convolve one
block of data points with another, perhaps for
visual image pattern recognition [16] to assist
in star-pattern detection. Fourier transforms
and inverses will be necessary for experimental
data power and frequency spectral analysis.
Conventional operations such as block additions,
averaging, correlation, etc. will also be provided.
A comprehensive set of operational capabilities
[17] is required to enable effective onboard data
evaluation; careful data analysis will most certainly
reduce telemetry requirements and improve
astronaut decision capabilities.

OPERATING SYSTEM FUNCTIONAL
DESCRIPTION

This preliminary document is an interim report
covering a basic design approach for a general

purpose spaceborne digital computer operating
system. The intent of the document is to set forth
the gross organization of the operating system and
to define the various functional building blocks
making up the system. Since the effort expended
up to the time of this report was concerned with a
conceptual approach as opposed to a detailed
implementation plan, the design as outlined herein
is somewhat independent of any specific computer
configuration. However, certain assumptions
simplify discussion and are listed here.

Configuration Assumptions

In most cases, the actual omission of assumed
features from any feasible future target machine will
simplify the task of the operating system, but in no
case will an omission compromise the design concept.

MULTIPLE PROCESSORS

It is assumed that the hardware will be made
up of several processors which can execute in
parallel. No assumption is made about the organi-
zation of these processors. They may each be
capable of performing identical tasks, but possibly
not at the same level of performance, or they may
have diverse functions such as input/output control,
high level language execution [181, arithmetic
processing, etc. Furthermore, no assumption
is made as to what tasks are being performed by
the various processors. It is assumed, however,
that there is a hardware mechanism (special
registers) for operating system control of the
assignment of tasks to the various processors
according to arbitrary decision criteria. In par-
ticular, it is assumed that the operating system,
while being interpreted (executed) by one processor,
can cause another processor to cease its current
activity and commence to interpret (take over alone
or simultaneously with another processor) portions
of the operating system code. The effect of the
above functions is that the operating system can
arbitrarily schedule the work of any processor,
including the ability to switch portions of itself
from one processor to another or cause parallel,
possibly synchronous, interpretation of itself by
several, possibly redundant, processors. The
obvious reasons for these assumptions is to allow
for processor scheduling, including multiprogram-
ming of processors, and to increase overall
reliability in case of certain processor malfunctions.

17

J. R• KENNEDY

MASS STORAGE

Second, it is assumed that the hardware system
will contain mass storage facilities for software
program and data residence. It should be pointed
out at this time that the class of programs residing
on this mass storage is noncritical in the multiple
sense that: (1) they are not time-critical and (2)
they are not mission-critical. The procedures
making up this class can all be reconstructed from
at least two sources: ground-based via telecommuni-
cations and spaceborne via astronaut. Those
elements of the system that are time-critical or
mission-critical are assumed to reside permanently
in, possibly, a nondestructive read-out read-only-
memory (ROM) , although they could reside in a
more conventional memory with less reliability.
The reason for this assumption is to reduce cost.

INTEGRATED SYSTEMS

Finally, it is assumed that all checkout and
test equipment, astronaut-computer communications
equipment, vehicle (controllable) systems, experi-
ment packages and telemetry equipment are accessi-
ble from the central spaceborne computer and that
the defined function of this spaceborne computer is
to monitor, control, and communicate with any and
all of this equipment essentially on a demand basis
in a virtually asynchronous mode of operation. This
assumption is self-explanatory.

Operating System Functional
Organization

As mentioned before, the operating system will
have the broadly expressed functions of monitoring,
controlling, scheduling, and communicating with
all spacecraft systems, including communications
with ground-based systems and other spacecraft
(such as logistics systems, relay satellites, etc.)
that are considered to be logical extensions of the
spacecraft's own systems. In order for these
functions to be performed in a reasonably coherent
way, the overall organization of the operating
system is structured in a modular form that allows
for the deletion or inclusion of certain subsections,
provided that the resulting system exhibits self-
consistent integrity. For instance, although the
system is envisioned to include a section that is
capable of interacting with an astronaut-scientist,
this section could be deleted in its entirety without
any reprogramming for a nonmanned mission and
with no effect on the remaining portions of the system,

except insofar as the exclusion of an astronaut-
scientist affects the mission. A section having to
do with automatic test and checkout of spacecraft
systems other than the central computer could be
excluded at the expense of the reliability of those
systems. It is equally feasible to envision that as
missions become more complicated, other sections
might be added although they may not be obvious at
this time. There is an inherent advantage to a
modular organization found also in the concept of
graceful degradation. For instance, by associating
an operational (usage) priority with each system
module, the system becomes more adaptive [19].

As is shown in the following section, the
operating system is composed of a set of monitors
that function somewhat autonomously to perform the
particular function for which they are best suited.
These monitors depend on a system monitor, called
the executive monitor, for common services such
as intercommunications among monitors when this
is required. The executive monitor serves as the
operating system prime mover in the sense that it
interrogates a coded mission schedule and translates
the schedule elements into event occurrences and/or
monitor tasks that drive all monitors to perform
their function according to the mission schedule and
for overriding its controlling sequence from
external (ground-based) or internal (astronaut)
sources. These will be discussed later at a more
appropriate point.

In the following discussion, monitor functions
are represented as self-contained capabilities for
the sake of simplicity of presentation.

MONITOR STRUCTURE

Monitors are all structured in an identical form
in the interest of simplicity and compatibility
(Fig. 1). A uniform structure results in simpler
program verification during implementation in
addition to an acceleration of the development effort
involving coding because of similarities in pro-
gramming techniques and interfacing between
monitors. The major benefit of a uniform structure,
however, takes the form of simplified flow of control
within the operating system and among the various
monitors. This will lead to a formulation of more
natural algorithms for the development of large
general purpose sections of the system. Furthermore,
documentation will be simpler and more under-
standable, another feature related strongly to pro-
gram verification and development rate.

18

J. R. KENNEDY

KEYBOARD

	

PROCESSORS	 C SYSTEM	 , KDISPLAYS	 D SP RAYS	
SYSTEMS 1
	

EXPERIMENTS	 TELEMETRY

EXMTCM	 OPM	 AIM	 VSM	 EXM	 CSM

ECLI	 TCLI	 DALI	 AILI	 VSLI	 PCLI	 r CSLI

	

CT) IB I	 I CT I IS I	 I CT i 18 I	 I CT I 18 I	 I CT I 18 I	 I CT 1 1B I	 I CT I 18

 - --
TYPE "TASK"

CTDT--- ITD	 TYPE	 DATA
----^----	 IDD

"SEND"TRAP

r TYPE

CONTROL	 J	 L ° J_ -
TASKS 1	 I

L--^-°^
MONITORS (M)

INTERCOMMUNICATION
EXM: EXECUTIVE
TCM: TEST/CHECKOUT

BUFFER DPM: DATA PROCESSING
AIM: ASTRONAUT INTERACTION

VSM: VEHICLE SYSTEMS
IS	 INTERCOMMUNICATION BUFFER

EXM: EXPERIMENTS

CT	 CONTROL TASK
CSM: COMMUNICATIONS SYSTEM

CTD	 CONTROL TASK DISTRIBUTOR LANGUAGE INTERPRETERS (LI)
ITO	 INFORMATION TYPE DECODER

ECLI: EXECUTIVE CONTROL
IDD	 INTERCOM DATA DISTRIBUTOR TCLI: TEST/CHECKOUT

DALI: DATA ANALYSIS
AILI: ASTRONAUT INTERACTION
VSLI: VEHICLE SYSTEMS
PCLI:PROCESS CONTROL
CSLI: COMMUNICATIONS SYSTEM

Figure 1. Control of system monitors and monitor intercommunications.

General Concept. Each monitor contains a
control language interpreter that examines a
sequence of instructions (commands or procedures)
and performs the indicated actions in order to
fulfill its function. In addition to a control language
interpreter, each monitor contains a set of pro-
cedures that perform services peculiar to that
monitor. These services are the heart of the com-
putation portion of each monitor and as such con-
tain all the detailed instructions to allow the monitor
to perform its primary function. The final logical
portion of each monitor is an intermonitor communi-
cations package. The purpose of this collection of
routines within each monitor is to allow the monitor
to send and receive data to and from other monitors.
These data normally take the form of monitor state
parameters that are communicated back and forth
on a dynamic basis between subsections of the
spaceborne system to enable logical communications
among the various pieces of hardware and software,

Consider the following normal mode of operation
for a monitor. A control task is routed to a monitor
based on the occurrence of some event. The event
could be mission scheduled, astronaut provoked,
or internally generated. The control task is
interpretively executed by the monitor control task
interpreter with the result that execution will cause
the performance of certain service functions as
specified by the control task. In this way a control
task normally establishes the state of a monitor
(configures the monitor) , thereby directing it to
perform its function in a certain way. It is possible
for the monitor service procedures to collect and
transmit various parameters via the intermonitor
communications mechanism for use by other
monitors. It is further possible for a monitor to
receive parameters that will be used in the per-
formance of. its service functions. The process of
sending and receiving via intermonitor facilities is
directed by control tasks. Depending on the nature

19

J. R. KENNEDY

of a particular control task, it may be replaced at
some arbitrary time by another task that could
reconfigure the mode of operation of a particular
monitor by changing its relation to external elements.
Whether a particular active task can be replaced by
another task at a given time will be determined by
the currently active task thus providing the facility
for locking-out external changes in the monitor
configuration depending on the state of the monitor.

Control Interpreter. The language used to
control a particular monitor is unique to that
monitor and is problem-oriented in the sense that it
is tailored to the requirements for command of the
monitor as they relate to the unique functions for
which the monitor is responsible. For instance,
the control language for the test/checkout monitor
is an automatic checkout language [20] that will
direct the service facilities of the test/checkout
monitor in the functions of testing, calibrating,
monitoring, etc. the systems properly interfaced
to the computer. One or more of these control
procedures might communicate with the astronaut
through a test/checkout panel for manual control
and intervention. Another important example of
current day usage of languages that are interpretively
executed is the commonly used job control language
[21] for ground-based systems. These languages
are normally expressed in the form of punched
cards inserted at the beginning of program decks
that are to be processed by third generation multi-
programming systems. Job control language cards
are interpreted by a service routine within the
operating system and are used by a programmer to
control the operations to be performed by the
system. Examples of functions that can be controlled
by the programmer in this way are language trans-
lation, program loading, mass storage allocation,
file opening and closing, etc. An executive monitor
within the spaceborne system will be directed in a
similar manner by a command language.

It should be emphasized that these languages
are interpreted, not compiled. Interpretation has
many inherent advantages over compilation when the
language is used as a controlling (command) medium
instead of a computing medium as is normally the
case. For instance, interpreters are far simpler
to design, implement (code and verify) , and modify
than are compilers. Furthermore, when the lan-
guages are simple and direct, as are the controlling
languages being considered here, execution of the
control procedures expressed in these languages is
generally faster than a compilation would be.

However, speed of execution is not felt to be a
critical factor in the case of procedures used
simply for monitor control. In fact, interpretive
techniques have been used quite successfully [1]
in cases requiring speed and accuracy. Also, the
use of interpretive control permits the retention of
procedures in their source language form
(compressed) thereby allowing for ease in editing
to modify control procedures, a powerful flexibility
feature that enhances the ability to cope with
unexpected contingencies.

In addition to the advantages cited above,
interpreters can be easily implemented as micro-
programmed ROM control logic. This would greatly
increase execution speed and overall system
reliability. Furthermore, certain portions of an
interpreter are common to all interpreters. An
example of this commonality is found in the case of
a procedure for scanning source language statements.
This procedure can be programmed as a general
algorithm which allows it to be used in an elegant
and powerful way to scan arbitrary source code.
In this way it can be shared among all of the
interpreters possibly as a re-entrant routine
in microprogrammed ROM for a large savings in
memory.

Figure 2 shows a simplified flow chart for an
interpreter to illustrate the relationships between
control tasks, interpreter decoder, and control
loop, and service routines. A hardware designer
familiar with the concept of microprogramming will
recognize immediately the striking similarity
between this and a diagram for digital computer
stored-logic control. This similarity is a natural
one since the process of microprogrammed control
is, in fact, an intepretive procedure. This likeness
strongly suggests that the system interpreters be
implemented as microprogrammed logic. If the
control tasks can be structured with language ele-
ments that are syntactically homogeneous (stem
from a common grammar) , it will be possible to
consider using a single interpreter to execute all
control tasks. This would be true, of course,
regardless of the implementation. A comparative
analysis of the tradeoffs associated with each
approach would have to be made to determine which
scheme is best for a particular monitor.

Service Procedures. The performance of
monitor services is implemented by a collection of
logically independent blocks of procedures making
up the computing core of a monitor. These blocks are

20

tCT)
CONTROL TASK	 (CS)

J. R. KENNEDY

INTEPRETER /DECODER AND CONTROL LOOP

	

LOOP	 t

1	 NO	 I

	

XEOT CT	 I

	

NO	 ?

YES

	

MORE	 YES
STATEMENTS	 SET CS POINTER

	

SCAN	 I
(DECODE)

CS

RECOGNIZE	 I
NEXT

OPERATOR

SERVICE
ROUTINES

	

YES	 END OF
STATEMENT	 RI

NO

OPERATOR	 R2
Ty ANSF E R	 •

•
•

0

•	 t
•	 ••
•	 R,y	 m

Figure 2. Simplified interpreter.

concatenated into sequences of logical steps by the
interpretation of control tasks that specify the order
in which procedural blocks are to be executed. The
service procedures consist of routines to perform
control task services and to provide utility and
housekeeping capabilities within the monitor.

Those routines that perform control task services
are a logical part of the interpreter and are connected
to it by a transfer vector (or jump table) . As the
interpreter scans control task statements, it branches
through the transfer vector to appropriate service
procedures for execution of the statements. The
housekeeping and utility routines perform incidental
functions such as stack manipulations, input/output,
storage allocation, etc.

As an example of specific service procedures,
consider the vehicle systems monitor. To provide
guidance control commands, service calculations

will be performed by the monitor to obtain param-
eters for subsequent output to a control system to
gimbal the propulsion engine for steering purposes.
Other procedures will be required for coasting,
tracking, burn sequences, position updating, etc.
Another example is found in the experiments
monitor where procedures for controlling experi-
ments and gathering data (logging) are provided.

Intermonitor Communications. Information to
be routed between monitors is formatted and encoded
by the sender and decoded by the receiver. The
routing of each buffer is handled by one of two
service procedures within the executive monitor,
the control task distributor (CTD) or the inter-
communications data distributor (IDD). A buffer
to be routed from a monitor is fetched from the
sender by an information type decoder (ITD) routine
within the executive monitor. One scheme for routing
is adequate.' It is referred to as SEND and is

21

F____1
I	 TASK

TASK

DATA

J. R. KENNEDY

discussed below. The fetching operation of the ITD
is activated by a SEND request issued by the sender.
The ITD examines the buffer to determine its type
(task or data) and routes it to the proper distributor
for transfer to the receiver (Fig. 3) .

This mechanization is the software equivalent
to a hardware data bus within a multimodule digital
system. The advantage of this technique is, of
course, that each monitor is logically isolated from
the rest of the system by bussing routines. This
allows a particular monitor to be removed from the
system for mission adaptation without affecting the
remaining portions of the system. (This is not true
of the executive monitor, since its purpose is to
integrate the other parts of the system.)

There are constraining implications that result
from this approach. Each buffer must be formed as
two logically separate parts: a head and tail. The
head contains rigidly formatted information for use
by the bussing routines in determining buffer length,
receiver identification (address) , sender identifica-
tion, and buffer tail content type. Other coded
information might also be included in the head but
the above examples give the important items.

The tail contains variable, coded data that are
the information to be transferred to the receiver.

This information can be the "name" of a control
task (in this case the buffer type is "task") to be
routed to the receiver for subsequent interpretation,
or the buffer tail can serve to route various data
values (buffer is type "data") among the monitors.
A specific example of control task routing might be
the activation of a control task for the vehicle
systems monitor to inhibit response to astronaut-
generated steering commands. The test/checkout
monitor might initiate this action upon detection of
a malfunction in the engine gimbal system, or the
data processing monitor could cause the test/
checkout monitor to perform a specific data
acquisition task for the purpose of subsequent data
analysis by the astronaut-scientist. Another
example of data routing is the transfer of a block
of 100 sampled data values from the experiments
monitor to the data processing monitor for corre-
lation with another block of data.

SEND (Forced Buffers). The ability to allow
a monitor to send an unrequested buffer is a forcing
feature needed by all monitors. This communications
mode requires that the sender format a standard
buffer containing head and tail information as outlined
previously. A SEND request making available a
pointer s to the buffer is issued by the sender to the
executive monitor. The information type decoder
uses the pointer to examine the buffer for type and

DATA	 14J

Figure 3. Monitor intercommunications and control task routing.

22

J. R. KENNEDY

turns control of routing over to the appropriate
distributor.

If the buffer type is data, the buffer is queued on
a received data stack for the receiving monitor.
This queueing is accomplished by the intercommuni-
cations data distributor 2 . When the receiving
monitor removes the entry, buffer, from the stack,
it then decodes the contents of the buffer tail for
action. The tail can contain either pure data, in
cases where there can be no possible ambiguity, or
coded data. Coded data normally consists of a
sequence of pairs (code, values). The first
member of the pair is a unique code known to both
sender and receiver and represents the medium
for dialog between the monitors. The second
member is an array of data values (possibly nil)
to be associated with the code. The array contains
as its first element a count of the number of elements
remaining in the array. See Figure 4 for an
illustration of a typical buffer.

MISSION SCHEDULE

It was mentioned earlier that the mission
schedule is envisioned as the system driver. Some
general comments regarding the feasibility of this
concept seem in order. The nearest related
procedure4 currently being employed that can be
extrapolated into this concept is the semiautomatic
Saturn V launch countdown. For this discussion,
a brief review of launch procedures is in order.

The countdown sequencing is, of course, based
on a countdown clock which gives decreasing time-
to-launch (T) . This time is used by a large number
of test engineers as a reference baseline into a
launch procedures handbook unique to each particular

POINTER
BUFFER TYPE

SENDER (ORIGIN) 	
HEAD

RECEIVER (DESTINATION)

BUFFER LENGTH

CODE 1

ARRAY 1, 1
(NUMBER OF VALUES (N)

ARRAY 1, N1

CODE 2

ARRAY 2, 1 (N2)

TAIL

ARRAY 2, N2

CODE M

ARRAY M, 1 (NM)

ARRAY M, NM

Figure 4. Intermonitor communications
buffer format.

mission. Simply stated, as the clock cycles down,
each test engineer or group of engineers looks
ahead in the handbook to find the next test for which
he is responsible. When the clock coincides with
the time at which he is to conduct a test, he presses
buttons on his test console (consisting of various

1. When a buffer pointer is relayed to another monitor, the buffer space in memory is automatically
relinquished to the receiving monitor. Hardware could be designed to make this space inaccessible
to the sending monitor.

2. This queue suggests the nature of driving each of the monitors (excepting the executive) . That is,
each monitor has an idle loop wherein it continually checks the status of various queues, one of which
is the received data queue.

3. There is a set of system-oriented global codes used by all monitors to communicate functions that are
common to all monitors. An example of a global code is the code for DATA REQUEST used by a
monitor requesting data from another monitor.

4. The word procedure is a better choice than system since the process is actually sequenced by humans.

23

J. R. KENNEDY

displays that enable him to visually validate test
results) to direct the test(s).

The time required to perform and visually
validate tests has been compensated for in the
procedures handbook so that, as the clock cycles,
each test is conducted such that there is plenty of
time between the end of one test and the beginning
of the next. This slack in the time-base is necessary
of course because of the large standard deviation of
the human test engineer from mean test time.

The significant point brought out above is that
the launch countdown is actually sequenced
(conducted) by humans according to a pre-recorded
guide manual. Refer to Figure 5 and consider the
role of the computer.

SATURN V
INSTRUMENTATION
UNIT (IU)	 I ONBOARD

COMPUTER LVDC

I	 ^

I	 II	 II	 I
INTERFACE LVDA

I	 I

RCA 110A I LAUNCHI RCA 110A
COMPUTERS

LVDC: LAUNCH VEHICLE DATA COMPUTER TEST

LVDA: LAUNCH VEHICLE DATA AD,	 I CONSOLES

Figure 5. Launch complex computer
configuration.

The launch computers contain programs coded
to perform each test required during the countdown.
In addition, they update the countdown time and
monitor the Launch Vehicle Data Computer (LVDC)
located in the instrumentation unit on the vehicle.

At time T-168 seconds, control and sequencing
of the countdown are switched to an automatic
launch sequencer program in the LVDC, and no
test conductor intervention is allowed except to
signal an abort.

Prior to T-168 seconds, the launch testing
functions are controlled by test engineers through
functionally oriented test consoles; the launch com-
puters have no programmed knowledge of how to
sequence the tests. In this respect, the launch
computers play a passive role, as does the LVDC
until T-168.

It is instructive, however, to consider a con-
ceptual change that would give equivalent results
but be more viable in an evolutionary sense.
Suppose the guide manual was used in abbreviated
form wherein it provided the name of tests to be
performed as a function of countdown time and the
address of the test console where the test is to be
validated. This coded countdown schedule could
then be fed into the launch computers where it would
serve as a computerized sequencer for all test
procedures. It would be possible to program the
computer to operate in two modes: a permission
mode wherein it would request permission from
each test engineer in turn before proceeding with a
test and an exception mode wherein it would proceed
with each test automatically until instructed to hold.

The permission mode would be operationally
equivalent to the current countdown concept except
that the test engineers would play a more passive
role, and the launch computer would play a more
active roles.

It should be clear that either of these two modes
could incorporate all of the capabilities and flexibility
of the semiautomatic scheme such as holds,
recycling, etc. Furthermore, it would be possible
to resequence tests by simply editing the

5. There have been recent procedural changes that will allow certain no go decisions to be made by
computers to allow reduction in countdown staffing requirements that tend to support these concepts.

24

J. R. KENNEDY

computer-stored launch schedule either prior to or
during a countdown.

One point that was seemingly ignored above in
the case of the exception mode is the validation of
test results. Many tests are performed for the
simple purpose of verifying that a quantum of
sampled data is within some previously established
set of limits. These limits could easily be encoded
along with the other entries in the handbook. In
cases where test engineers are essential to validation,
the launch computers would be programmed to
support man-machine communications.

This discussion has led to a point where we
are able by induction to extrapolate the sequencing
under computer control beyond the launch count-
down and into the mission itself, with the sequencing
operation responsibility shifting at some point prior
to liftoff to the onboard computer. If we permit
arbitrary events, in addition to test and checkout,
to be encoded as a function of mission time, then
we have a fully automatic, mission-schedule driven,
astronaut-in-the-loop system for spacecraft con-
trol. This seems like a giant step in automation of
space missions, but it is clearly feasible and will
no doubt be the standard sooner or later.

What does the mission schedule look like in
stored form, and is it necessary for the entire
mission to be encoded in advance? The answer to
the second question is no, since it would be possible
to transmit to the spacecraft a section of the schedule
at a time. One minute of transmission time would
probably send a schedule that would drive the
mission for over 400 days with a mission event
rate of one event per minute. It may even be
desirable to update the schedule each minute or
hour, or the computer could be driven in real time
by an on-line ground-based system.

The various parameters required to encode a
mission schedule event would include:

• Schedule (mission) time

• Event destination (system monitor)

• Whether a unique control task is required
and a task identifier

• An event identifier or code

• Event priority, etc.

Since events are problem oriented (e. g., checkout,
experiment, etc.) , no general form can be given
other than one that would include the five specific
items given above in a rigid format (Fig. 6) to
enable a program to scan the schedule to recognize
events.

MISSION TIME

I EVENT DESTINATION

TASK IDENTIFIER

EVENT PRIORITY

EVENT IDENTIFIER

VARIABLE

Figure 6. Event entry in mission schedule.

Refer to Figure 3 for a gross flow chart of how
the mission schedule influences the system as a
result of a scanning operation performed by the
executive monitor. Notice that entries from the
schedule are queued for distribution to the appro-
priate destination. It is important to note also that
an event is treated as if it were data. Actually, an
event is considered as a subset of the class "data"
which we have already discussed. The event
scheduler shown in Figure 3 has the additional
function of making the event conform to the standard
data buffer format.

It is not sufficient to treat the queues as FIFO
stacks for several reasons, the most obvious of
which is the possibility of degradation arising from
a relative timing pecularity between events and
tasks generated internally by monitors other than
the executive, and those of mission schedule origin.
Normally, the internally generated information
would have higher priority, but it would be necessary
to allow the schedule to override in certain cases.
A priority operator, referred to as a conflict
resolver, has been included to rearrange queues
in priority order.

In summary, the mission schedule can be
considered as consisting of at least the following
functional timelines which are interrelated to form
the complete mission:

25

J. R. KENNEDY

* Automatic Checkout Timeline

* Astronaut Timeline

o Orbit/Trajectory (Maneuver) Timeline

a Experiments Timeline

e Housekeeping Timeline

These various timelines can drive the complete
system through a closely coupled alliance of

computer system mission interpretation and astronaut
and ground control intervention.

CONCLUSION

A gross-level overview for a supervisor
organization has been presented in conceptual form.
The features satisfy requirements for mission
independence, ease of development, and software
reliability. Although this review has been neces-
sarily brief, it exhibits one design approach that is
flexible and has many features that allow for com-
parison of several implementation schemes.

REFERENCES

1. Volpi, R. L.: Apollo Guidance Computers. Electronic Progress, vol. 9, no. 2, 1965, pp. 14-20.

2. Thomas, B. K., Jr.: Apollo 8 Proves Value of Onboard Control. Aviation Week and Space Technology,
January 20, 1969.

3. Gruman, E. L. ; and Schaenman, P. S.: Functional Requirements of Spaceborne Computers on Advanced
Manned Missions. Paper presented at the Spaceborne Multiprocessing Seminar, Museum of Science,
Boston, Massachusetts, N68-15439, 1966.

4. Meginnity, D. L.: Advanced Hardware Characteristics of Aerospace Computers. Presentation given
at the Spaceborne Computer Software Workshop sponsored by AFSSD and Aerospace Corporation,
September 20-22, 1966.

5. Koczela, L. ; and Burnett, G.: Advanced Space Missions and Computer Systems. IEEE Transactions
of Aerospace and Electronic Systems, vol. AES-4, May 1968, pp. 456-467.

6. Joseph, E. C.: Computers: Trends Toward the Future. Univac.

7. Failure Tolerant Modular Flight Computers. Hamilton Standard System Center, Division of United
Aircraft Corporation, Slides SP 02U69, vol. III, January 20, 1969.

8. Andrews, L. J.: Aero/Space Software in Perspective. Proceedings, First Spaceborne Computer
Software Workshop, El Segundo, California, September 20-22, 1966.

9. Hokom, R. A.: Executive Program Control for Spaceborne Multiprocessors. Paper presented at
Spaceborne Multiprocessing Seminar, Museum of Science, Boston, Massachusetts, N68-15441, 1966.

10. Wirth, N.: On Multiprogramming, Machine Coding, and Computer Organization. Communications of
the ACM, vol. 12, no. 9, September 1969.

li. Black, N. E.: An Examination of Spacecraft Computer Requirements for Experiment Data Processing.
Computer Sciences Corporation Report, NAS8-18405, September 1968.

12. Quann, J. J. ; and Keipert, F. A.: A New Approach to Telemetry Data Processing: The Data Reduction
Laboratory. AIAA Aerospace Computer Systems Conference, no. 69-972, September 1969.

26

J. R. KENNEDY

REFERENCES (Concluded)

13. Automated Control and Data Acquisition. IBM Journal of Research and Development, vol. 13, no. 1,
January 1969.

14. Judge, J. F. : An Airborne Data Explosion. American Aviation, September 16, 1968, p. 66.

15. Dabul, A.: Information Transfer Systems in Space Communications. MSFC Technical Note,
NASA TN D-3405.

16. Rosenfeld, A.: Picture Processing by Computer. Academic Press, Inc., 1969.

17. Hewlett-Packard Model 5450 Fourier Analyser. Hewlett-Packard Company, 1501 Page Mill Road,
Palo Alto, California 94304.

18. Kerner, H.; and Gellman, L.: Memory Reduction Through Higher Level Language Hardware. AIAA
Aerospace Computer Systems Conference. Los Angeles, California, no. 69-963, September 1969.

19. Brewer, M. A.: Adaptive Computers. Information and Control, vol. 11, A68-23159, October 1967,
pp. 402-422.

20. ATOLL Reference Manual. NASA, MSFC, R-QUAL-PSC-65-R2.

21. Executive Control Language. UP-4144, Section 5, UNIVAC Data Processing Division, 1968.

27

Page intentionally left blank

PARALLEL PROCESSING METHODS AND MANNED SPACE MISSIONS
By

M. E. Stegenga

INTRODUCTION

Parallel processing began with the introduction
of Solomon in 1959. The use of this concept has
continued in such computers as the Univac 1108,
CDC 6600, Illiac IV, and modern Fast Fourier
Transform computers. Parallel processing con-
cepts and designs were identified to determine
which were applicable to a computer for a manned
space mission. For example, image processing
could be accomplished much faster by having several
processors processing portions of an image than by
having any one processor processing the image. A
parallel processing computer is one capable of
simultaneously executing two or more instruction
streams.

As an example of parallel processing, consider
the computation of D = (A + B) 	 (E + F). One
processor would add A + B while another processor
adds E + F. Then, either processor would multiply
the two numbers together.

A major reason for using a parallel computer
system is to decrease the execution time required
for a particular program. This is accomplished by
having several processors simultaneously executing
portions of a program. Parallel processors are
cheaper for several reasons. First, many identical
modules are manufactured reducing the development
cost; second, the ratio of hardware to throughput
is decreased, because, in the case of an array
processor, the control hardware is required only
once. The exponential nature of the cost versus
speed curve for hardware costs means that using
several cheaper components to achieve the same
throughput of a system can result in a relatively
cheaper system. A third aspect of parallel systems
is that graceful degradation is possible. This pro-
vides a natural means for reliability in that switching
out a module will result in less computing capability
without causing the system to fail.

The computation reduction ratio is the ratio of
execution time on a parallel system to the execution
time on a sequential machine with equivalent hardware

An approximate computation reduction ratio for
spaceborne applications programs would be 30 [1].

ARRAY PROCESSORS

An array processor increases the speed of a
computer by having an array of processors all
executing the same instruction simultaneously.

An array processor with N processors all
executing an instruction simultaneously will be up
to N times as fast without costing N times as much.
A system with N computer units (a unit includes a
control unit) and N instruction streams would be
more versatile and more expensive. (See multiple
computer systems.)

Ideally, a compiler should take a sequential
program in a source code and transform it into
optimized machine code for an array processor.
A large number of computation algorithms should
be available to enable problems to be computed
using many processors.

Illiac IV

The Illiac IV [2-6], a parallel network system,
is being developed jointly by the University of
Illinois and industry. The computer is to be
delivered to the University of Illinois in 1970.
The Illiac IV controls a number of data streams
with a single instruction stream. It is an array
computer consisting of 256 processing elements
(PE's) , 4 control units, and a B6500 computer.
Each processing element has a 2048-word thin-film
memory, each word having 64 bits, with a cycle
time of 240 nsec. The arithmetic and memory
speeds match.

The 256 processing elements are divided into
4 subarrays, each consisting of 64 PE's and having
their own control unit. Each subarray is capable
of independent processing. The subarrays can be
arranged to form 2 subarrays of 128 PE's each or a

29

M. E. STEGENGA

single array of 256 processors. The advantages to
this arrangement are that failure in any subarray
does not preclude continued processing by other
subarrays, and the size can be designed to fit a
particular problem solution. Figure 1 is a diagram
of the Illiac IV system array structure.

The 64 PE's in an array are arranged in a string
(Fig. 1) and are controlled by the control unit (CU)
that receives the instruction stream and transmits
this to PE's for execution. Direct connections
exist for nearest neighbors and PE's eight elements
away. Thus PE-17 connects to PE-16, PE-18,
PE-9, and PE-25. PE-0 connects to PE-63. Local
control of a PE is provided by mode control that
enables or disables execution of the current
instruction.

Data and instructions are stored in the array
memories. A CU has access to all memories while

a PE has access only to its own memory. There
are instructions for transferring data from one PE
memory to another along the direct connections.

Basically the Illiac IV is a single instruction
stream computer in which each instruction is
executed on several processors simultaneously.

Min IV Software

INTRODUCTION

Most of the software for Illiac IV [5] (some
application programs excepted) is in the design
phase. A simple batch processing operating
system, an assembler, and a high level language
compiler, TRANQUIL, are being designed.
Several applications programs have been
coded.

COMMON DATA BUS
(MEMORY ADDRESS AND COMMON OPERAND]

PE-0 	 I--j- - - -
	

PE•6

CONTROL
UNIT

PE
MEMORY-0	 --

OPERAND
FETCH
STORE

PE
MEMORY-63

CO 	 UNIT BUS
1INSTRUCTION AND COMMON OPERANDS1

Figure 1. Array structure of the Illiac IV system.

30

M. E. STEGENGA

TRANQUIL

TRANQUIL is a higher level language for
Illiac IV that will enable users to become familiar
with the machine. TRANQUIL is basically ALGOL
with some additions and deletions.

An Illiac IV program consists of a storage
algorithm and a computation algorithm. TRANQUIL
will have variable and constant declarations. The
declaration will include word type along with word
length. Arrays, in addition, will be declared by the
type of storage desired; i. e. , straight or skewed.
Statements will be included so that an array may be
partitioned to best fit the machine. TRANQUIL will
have statements to provide for arithmetic operations
on either whole arrays or a subarray (a column or
row, etc.) .

There will be two types of FOR statements,
and each type will allow three types of indexing.
A single index variable can vary over a single
index set. Also, index variables can be paired off
with index sets, and the several index variables can
be varied simultaneously, over their respective
index sets. Finally, a vector can be varied over
the cartesian product of index sets. A sequential
FOR statement and a simultaneous FOR statement
(several instructions executed simultaneously) will
be used. Conditional branching statements will be
provided so that vectors or subvectors may be
compared.

THE HOLLAND MACHINE

General

The Holland machine [7, 81 was originally
proposed by John Holland in 1959. He says, "The
present formulation is intended as an abstract
prototype which, if current component research is
successful, could lead to a practical computer. "
To date, no machine of the Holland type has been
built.

Because fabrication costs for large scale
integration (LSI) may be small compared to develop-
ment cost, computer organizations with a large
number of identical modules will be more desirable.
The Holland machines are examples of such com-
puters. Also, a Holland machine has local control.

The computer is composed of general purpose
modules in a two-dimensional rectangular grid
(Fig. 2) . Each module consists of a binary storage
register with associated circuitry and some
auxiliary registers. Each module may be called to
execute its word as an instruction, to use the
register as an accumulator, or to provide the word
as data. Since the memory is nonstandard, new
concepts are required to replace program execution
and data accessing. Each module is connected to
its four nearest neighbors; i, e. , the four in the
vertical and horizontal directions. Each instruction
of a module is located in a single module. If a
module M1 executes an instruction, then the
successor module, adjacent to Mi and determined
by the bits Si, s2 in the auxiliary register of Mi,
is executed unless the instruction is the equivalent
to a transfer instruction. The predecessor module
is determined by the bits qi , q2 in the auxiliary
register. Since more than one module can be active
at one time, several subprograms can be executed
simultaneously.

The action of a module during a time step can
be divided into three successive phases.

1. Input Phase: A module's storage register
can be set to any number supplied by a source
external to the computer.

2. Path Building Phase: An active module
determines the location of the operand; i. e. , the
storage register upon which the instruction is to
operate.

3. Execution Phase: The active module
interprets and executes the operation in its storage
register.

I nput

During the initial phase of each time step, a
module's storage register can be set to a chosen
value. It is expected that most of the modules will
receive input only when storing the program.

Path Building

If bit P in the auxiliary register is set to 1,
then the module is designated as a P-module. A
path is divided into straight-line segments. An

31

M. E. STEGENGA

IARWII F

Figure 2. Array structure of the Holland Machine.

instruction can, at most, add or delete one segment
from a path or begin a path with a segment. All
paths begin at P-modules.

Building a path consists of the following three
steps: (1) locate the starting point; (2) if a path
already exists there, then move to its termination
point; and (3) build the segment in the direction and
length specified.

	

First, the path specification bits y o ,	 y

	

o	 n
and di , d2 in the auxiliary register are gated over
the line of predecessors to the first P-module. If
a path begins at a module, then the appropriate star
register, (b i bz)	 in the auxiliary register of a
module is turned on. A path once marked persists
until erased. The path determination data is then
gated to the end of the path, and a new path is

32

M. E. STEGENGA

n-1
constructed of length Z yk and direction (di , d2)

k=0
provided yn = 0. If y t 0, then the last segment

is erased.

Execution

The active module contains the operation code
in bits i1, ... , i4. The path termination of the first
preceding P-module contains the operand in its
storage register. There must be a module that
serves as an accumulator. A module is an
A-module if, and only if, the bits (P,A) are set
to (0, 1). Thus, no P-module can be an A-module.
The accumulator is the first A-module encountered
along the line of predecessors.

The execution of an instruction occurs in the
following sequence:

1. The operation code is sent down the line of
predecessors to the nearest A-module.

2. When the operation code passes through the
P-module, a signal is sent down the path from the
P-module to its termination indicating that this is a
fetch command.

3. The operand (data) is sent to the appropriate
A-module via the P-module.

4. The operation is accomplished. The
operation could be performed as the operand arrives
at the A-module.

5. A completion pulse is sent to the active
module via the line of successors.

6. The active module turns itself off and its
successor on.

Summary

With the present state-of-the-art technology,
such a computer would be expensive to build because
of the large amount of hardware involved. With
the advent of LSI, such a computer seems feasible.
A related disadvantage is the low rate of hardware
utilization. Another important problem is the
difficulty in programming such a machine, although
several people think that a compiler is within the
state-of-the-art.

A DISTRIBUTED PROCESSOR

General

The distributed processor machine was designed
as an onboard computer that would take full advan-
tage of LSI technology projected for the late 1970's.
It is a parallel processing machine designed so that
graceful degradation is possible. In one state it
can function as an array processor and in another
state it can function as a distributed processor
(the computations are distributed over the modules) .
Programming such a computer would be quite
difficult.

The distributed processor is divided into groups
where each group consists of a collection of cells
or modules [1, 91 (Fig. 3). The cells in a group
are interconnected (neighboring cells are connected
and there is an intercell bus) and groups are
connected by an intergroup bus. Each cell has its
own 16-bit word, 512-word memory. In addition,
there is a bulk memory unit for loading and unloading
the cells. Parallelism can exist between cells of a
group and between groups. Also, a group or part of
a group can function as an array processor. In
Reference 1 the system is organized into four groups
of 20 cells each. There is an executive and an
executive backup for the system of four groups, and
each group has its own executive in a controller
cell.

Cells

All cells in a group are identical. Each cell
is provided with several accumulators and at least
three index registers to reduce memory require-
ments. The word length is 16 bits. Complete
arithmetic and control functions are incorporated
in each cell. A cell is provided with several
possible states so that both local and global control
can be utilized. The possible cell states are listed
below:

1. Permanently failed — power off

2. Shutdown — power saving state

3. Independent

4. Dependent under global control (global state)

5. Dependent under local control

33

M. E. STEGENGA

GROUP

INTER GROUP BUS	
BULK MEMORY

GROUP SWITCH

GROUP
INTER CELL BUS

`SERIAL COMMUNICATION PROVIDED
FOR WHEN UNDER GLOBAL CONTROL.

Figure 3. Distributed processor system.

6. Dependent in wait state

7. Controller cell

Independent cells function essentially the same
as a sequential computer. They fetch instructions
and operands from their own memory and execute
them. A cell remains in this state until the con-
troller cell commands it to change states. Dependent
cells are under the control of the controller cell,
the cell which controls the cells of a group.

Each cell is designed to fit on an LSI chip.
Approximately one-tenth of a cell's hardware is in

the processor portion and nine-tenths are in the
memory section. A cell, if necessary, can use

memory space in adjacent cells. Each cell can
function in any one of the seven states.

Software

Programming such a computer will be quite
complex, and no work has been done- on a compiler
as yet. The executive consists of three parts — the
system executive, the group executive, and the cell
executive.

34

M. E. STEGENGA

R MULTIPLE COMPUTER SYSTEM

General

A multiple computer system decreases the
execution time of a program by having many modules
simultaneously computing different portions of a
program. It is a general purpose system with many
instruction streams executing simultaneously. The
primary advantages to this type of system are that
a program can be executed faster and that the
system can be gracefully degraded.

A multiple computer system is a computer con-
sisting of several (more than 1) processors and
several memory units which, in addition, is capable
of simultaneously executing several different
instruction streams. A multiple computer system
is a more general purpose system than an array
processor.

Curtin's Computer

Curtin's computer system [10] consists
primarily of M memory units nominally of 4096
words storage each, and N computers where the logic
and arithmetic functions are combined. The com-
munication between computer and memory is provided
by a data bus. Each computer has access to memory
once each memory cycle. This concept is a time
division of the communication medium. Each com-
puter would have several memories (at least one)
assigned to it. Communication between computers
is accomplished by reassigning memories from one
computer to another. A separate data transfer bus
would be provided between the input/output and the
memories. This system makes parallel computations
possible in that different computers can compute
different portions of a program. Programming this
machine would be difficult, because each separate
computer must be programmed individually. No
facilities are given for timing separate sequences of
a program. For a general diagram of Curtin's
computer, see Figure 4.

CONCLUSIONS

Illiac IV is a problem-oriented machine and is
most applicable for solving such problems as con-
volutions, Fourier transforms, partial differential
equations, matrix manipulations, and weather
predictions. It is an example of an array processor

Figure 4. Multiple computer system.

Illiac IV has a distributed memory, a method for
broadcasting data to all processing elements, and a
technique for determining whether or not a particular
processor executes an instruction. The latter is
useful for branching.

An array processor would be very inefficient as
a general purpose computer, because many modules
would be inactive at any particular instant of time.
Some problems, such as orbit prediction, are not
amenable to solution on an array processor with
many processing elements. Such a problem could

35

M. E. STEGENGA

be subdivided into different tasks to be solved on
separate modules. This would require several
instruction streams. Thus, the overall concept of
an onboard computer should not be that of an array
processor. An array processor could, however,
be used as a module in a multiple computer con-
figuration. Then, certain types of problems, such
as transformation of coordinates, would be solved
more quickly and efficiently at less cost per
computation. A major advantage of an array
processor is the speed of execution. A significant
disadvantage is that, except for special applications,
the array processor is inefficiently used.

The multiple computer system seems to be an
excellent architecture for use as an onboard com-
puter system. Several program streams can be
executed simultaneously (as many instruction
streams as there are modules) . Graceful degrada-
tion can be accomplished by switching out a module
as soon as it fails. Programs would be executed,
under priority, only when modules become available
to run them. Parallel processing could be applied
when necessary to speed up the execution of a pro-
gram. The parallelism of a program could be
specified by the use of Fork and Join statements; or,
if the state of the art changes, a compiler could be
used to transform a sequential program. Special
modules could be incorporated, such as an array
processor, for particular applications.

The distributed processor combines features of
an array processor, a Holland machine, and a
multiple computer system. The ability of modules
(cells) in a group to function as an array processor
or as individual elements in a multiple-computer-
type architecture is one feature that could be applied
to any multiple computer system. Incorporating
this feature reduces memory requirements and
simplifies some application programming in this
system. The distributed processor allows for
graceful degradation and the switching-in of replace-
ment modules. Because of its unusual architecture,
considerable design work would be necessary. The
time frame (1978) of its design appears to be too
distant for immediate use on a space station. For

interplanetary distances and reliability periods of
several years (it was designed for this purpose) ,
its architecture would be applicable. Programming
the distributed processor would be difficult, and a
compiler is beyond the present state-of-the-art.
Some functional designs of an executive have been
done.

The Holland machine is not developed enough
for 1975 and provides poor utilization of available
hardware. Local control, modularization, and
graceful degradation are particularly interesting for
possible incorporation into a spaceborne computer
system. The computer architecture which seems
most applicable as an onboard computer system is
that of a multiple computer system.

Below is a table presenting the subjective eval-
uation of the computer systems in this report in
tabular form. A value of 1 means that the system
does not have the property, a value of 2 means the
system possesses the property to some degree, and
a value of 3 means the system possesses the property
to a large degree. The basis of comparison is the
CDC 6600. "H" will represent a Holland-type
machine, "A" an array processor, "MC" a multiple
computer system, and "DP" a distributed processor.

Characteristic DP MC A 6600 H

Graceful
Degradation 3 3 1 2 3

Speed 3 3 3 2 1

Programma-
bility 1 2 2 3 1

Low Cost per
Computation 2 2 3 2 1

Versatility 3 3 1 3 2

Within State-
of-the-Art 1 2 3 3 1

36

M. E. STEGENGA

REFERENCES

1. Koczela, L. J.: The Distributed Processor Organization. Advances in Computers, Academic Press,
New York, 1968, pp. 286-353.

2. Barnes, G. H., et al.: The ILLIAC IV Computer. IEEE Transactions on Computers, vol. C-17,
August 1968, pp. 746-758.

3. ILLIAC IV Quarterly Progress Report. July, August, September, AD665916, 1967.

4. ILLIAC IV Quarterly Progress Report. October, November, December, AD667280, 1967.

5. Kuck, D. J.: ILLIAC IV Software and Application Programming. IEEE Transactions on Computers,
vol. C-17, August 1968, pp. 758-770.

6. Stokes, R. A.: ILLIAC IV: Route to Parallel Computers. Electronic Design, 26, December 20, 1967,
pp. 64-69.

7. Holland, J. H.: A Universal Computer Capable of Executing an Arbitrary Number of Subprograms
Simultaneously. Proc. E. J. C. C. , 1959, pp. 108-113.

8. Holland, J. H.: Iterative Circuit Computers. Proc. W. J. C. C. , 1962, pp. 259-265.

9. Burnett, G. J.; Koczela, L. J.; and Hokom, R. A.: A Distributed Processing System for General
Purpose Computing. Proc. F. J. C. C., 1967, pp. 757-768.

10. Curtin, W. A.: Multiple Computer Systems. Advances in Computers, vol. 4, 1963, pp. 245-301.

37

Page intentionally left blank

OPTIMIZATION OF AN INSTRUCTION SET FOR

GENERAL PURPOSE SPACEBORNE COMPUTER
By

J. R. Kennedy

ABSTRACT

The development of a general purpose digital
computer is at best a compromise between macro-
instruction flexibility versus hardware logic com-
plexity on one hand and application data word sizes
and data path width on the other. When the machine
is designed with stored logic control, the first
tradeoff burden is eased considerably to the extent
that macroinstruction flexibility is compared with
the cost of read-only-memory (ROM) . The data
path width should be considered simultaneously
with the organization of the macroinstruction set
to determine an optimal data path width including
memory bus and register widths. The final word
size should therefore be based on data precision and
instruction bit requirements. With these ideas in
mind, the problem was envisioned and structured
throughout the development of this report as
follows:

1. Given a set of functional registers and a
feasible, conjectured instruction format, develop a
basic instruction set to perform the general purpose
functions of control including:

a. Register load and store

b. Register content logical manipulation

c. Register content arithmetic

d. Instruction sequence routing

e. Procedure linkage

f. General control

2. Analyze the instruction set developed in
step 1 for similarities among various instructions and
interrelations among the various fields; as a result
of the analysis, take advantage of various tradeoffs
and relations to enable a more efficient organization
of the registers, fields, and instruction formats with

the objective of improving memory utilization
(efficiency) both in main core memory and the ROM.

3. Consider data precision requirements, and
adjust the main memory word size (bus width) to
optimize manipulation of both data and instructions.

4. Specify the resulting preferred instruction
set and formats, data formats, and affected data
routing schemes.

SUMMARY

For the purposes of this report, a micro-
programmed digital computer is envisioned as a
general purpose processor having a scratch pad
memory accessible by macrolevel programs, four
accumulators, four base registers, and four index
registers along with a potentially useful instruction
word formatting scheme.

A set of space-oriented functional requirements
is first transformed into a set of computer operations
containing advanced and basic operations. Then,
with the stated assumptions regarding the computer
organization, a basic instruction repertoire is
developed.

Next the repertoire is studied to ascertain its
weaknesses and their causes. This analysis leads
to consideration of alternate organizational schemes
having to do primarily with formatting and register
usage. Modifications are recommended that are
shown to (1) reduce the number of instructions in the
repertoire by 17 percent, (2) reduce the number of
format configurations by 54 percent, (3) reduce the
amount of coding required for a sample program by
28 percent, (4) give greater programming flexibility,
and (5) make it possible to expand the repertoire by
a larger factor as requirements grow.

This discussion is a condensation of a more
detailed report titled "Basic Instruction Set for a

39

A

J. R. KENNEDY

Proposed 24 Bit General Purpose Spaceborne
Digital Computer," dated 13 August 1969.

INTRODUCTION

This section gives a brief description of a
24-bit digital computer that is controlled by the
microprogrammed ROM. A block diagram is
included along with a descriptive trace of an
instruction word fetched from memory.

Block Diagram

Figure 1 shows a gross-level block diagram
for the specified 24-bit word length computer. The
normal sequence of operation is as follows:

1. A word (program address counter) in the
ROM is accessed for the main core memory address
of the next instruction.

2. This address is loaded into the MAR, and
main core memory is strobed to read the contents
into the instruction register (OPC). The operation
code field is translated through an ROM address
map into the sequencer for the initial ROM micro-
word location and all subsequent microwords
required to interpret this instruction. The micro-
code sequence will update the program address
counter for the next instruction fetch cycle.

The above is not concerned with details of
instruction decoding or data word fetches from
main core memory; the intent is only to give an
intuitive feel.

BLOCK DIAGRAM NOTATION

ADD/SUB 4-Bit Adder Register
ACC	 48-Bit Accumulator Register
SPM	 24-Bit Scratch Pad Memory
MAR	 24-Bit Memory Address Register
MQ	 24-Bit Multiplier/Quotient Register

OPC 24-Bit Op Code (Instruction) Register
SEQ 8-Bit Sequencer
ROM 64-Bit Read Only Memory
MEM 24-Bit Main Core Memory
MISC Miscellaneous

Figure 1. Computer block diagram.

40

J. R. KENNEDY

Cost Factors

The development of a general purpose digital
computer is at best a compromise between macro-
instruction flexibility versus hardware logic com-
plexity on one hand and application data word sizes
and data path width on the other. When the machine
is designed with stored logic control, the first
tradeoff burden is eased considerably to the extent
that macroinstruction flexibility is compared with
the cost of ROM. The data path width should be
considered simultaneously with the organization of
the macroinstruction set to determine an optimal
data path width including memory bus and register
widths. The final word size should therefore be
based on data precision and instruction bit require-
ments. In most cases various tradeoff analyses
result in a bus and register width that is smaller
than required by a majority of the data precision
and instruction formats. At this point, a decision
is usually made as follows:

1. If the computer is to be used for general
purpose scientific problem solution where high
throughput is a necessity, the bus and register
width tends toward favoring high data precision
and long instruction formats. In this case the high
throughput is "paid for" by emaciation of useful
memory because of unused bits, particularly where
instructions are concerned.

2. If the machine is to be used in a dedicated
way and flexibility is required along with relatively
low cost, then memory conservation and logic sim-
plicity are the guidelines, and the bus width
invariably shrinks to the lowest viable width con-
sistent with reasonable throughput capability.

With these ideas in mind the task was envisioned
and structured throughout the development of this
report as the following problem:

1. Given a set of functional registers and a
feasible, conjectured instruction format, develop a
basic instruction set to perform the general purpose
functions of control including:

a. Register load and store

b. Register content logical manipulation

c. Register content arithmetic

d. Instruction sequence routing

e. Procedure linkage

f. General control

2. Analyze the instruction set developed in
step 1 for similarities among various instructions
and interrelations among the various fields; as a
result of the analysis, take advantage of various
tradeoffs and relations to enable a more efficient
organization of the registers, fields, and instruction
formats with the objectives of improving memory
utilization (efficiency) both in main core memory
and the ROM.

3. Consider data precision requirements, and
adjust the main memory word size (bus width) to
optimize manipulation of both data and instructions.

4. Specify the resulting preferred instruction
set and formats, data formats, and affected data
routing schemes.

The following topic specifies the basic instruction
format and summarizes the instruction set; the
section entitled "Impact Analysis" discusses an
alternate approach to register usage and shows
the improvements that result. This report repre-
sents a condensed version of the original. The
original report includes more detailed considerations
with examples and a discussion of scratch pad
memory usage, interrupts, debug features, etc.

BASIC INSTRUCTION SET

This section outlines a basic instruction set
to allow stored program control of the specified
general purpose digital computer. The initial
instruction set is designed around a given word
format to provide for basic logical and arithmetic
control functions at the macroinstruction level. An
attempt is made to describe the individual instruc-
tions to a level of detail that allows for unambiguous
comprehension but does not hamper the freedom of
development of interpretation logic at the micro-
programming level.

Functional Computer Requirements

The subject computer is viewed as a potential
candidate for space station digital computations
including the following problem oriented functions:

41

J. R. KENNEDY

1. Input/ Output (1/0)

a. Analog-to-Digital Converter Sampling
(Input)

b. Digital-to-Analog Converter Control
(Output)

c. Display Beam Driving (Point
Coordinates) (Output)

d. Character Message (Input and Output)

e. I/O Device Status Sensing (Input)

f. Device Controller/Multiplexer Function
Command (Output)

2. Interpretation

a. Tests and Comparisons

(1) Branch on Equal

(2) Scan Further on Not Equal

(3) Memory/Register Content
Comparison

b. Procedure Linkage and Return
Control

c. Conditional and Unconditional Instruc-
tion Sequencing

3. Process Control for Experiments

a. Interval Clock

(1) Set Timer

(2) Queue Requests

b. Calculate Control Values

(1) Fixed Point Arithmetic

c. Sample Data Automatic

(1) Scanner Interval

(2) Storage Management

4. Navigation

a. Transformations

b. Floating Point Arithmetic

c. Vector Algebra

d. Trigonometry Functions

5. Guidance/Control

a. Most of the Above

Based on the above problem-oriented require-
ments, the list below indicates potential candidates
for inclusion in a total instruction repertoire.

1. Arithmetic

a. Floating Point

b. Fixed Point

2. Queue/Stack

a. Pointer Manipulation

b. Data Component Packing/
Unpacking

c. List Data Processing

3. Test/Compare

a. Register with Memory

b. Inter-Register

4. Vector (Floating Point)

a. Dot Product

b. Add

c. Subtract

5. Trigonometry

a. Sine

b. Cosine

42

J. R. KENNEDY

c. Square Root

d. Tangent

6. Subroutine Linkage

a. Call

b. Return

7. Interval Timer Control	 r

8. Program Address Counter Access

9. Instruction Sequence Control

a. Unconditional Branch

b. Conditional Branch

10. Bit Manipulation

a. Shift

b. Rotate

11. Character Manipulation

12. Interrupt Control

a. Enable/Disable

b. Status Sense/Clear

13. Input/ Output

Of the candidates listed above, those having an
asterisk to their right were considered necessary
to provide a basic control capability. Those not
starred are considered to have undefined properties
or were excluded because they are not justifiable
without further requirements analysis.

Instruction Formats

Two instruction formats based on a 24-bit main
memory word length are specified as shown in
Figure 2. The fields are defined as follows:

OP CODE	 6-bit operation code provides for
63 memory reference instructions.

A 2-bit accumulator provides for specifi-
cation of 1 of 4 possible accumulators
numbered (addressed) 0 to 3.

B 2-bit base register provides for
specification of 1 of 4 possible base
registers addressed 0 to 3.

X 2-bit index register provides for
specification of 1 of 4 possible index
registers addressed 0 to 3.

DISP 12-bit displacement provides for
specification of a constant K where
0<_K<4095.

EOP 6-bit extended operation code provides
for an additional 64 nonmemory
reference instructions.

SPM 6-bit scratch pad memory address
provides for referencing high speed
memory location K where 0s K:5 63.

Two exceptions that were taken in the development
of the instruction set are explained later.

23	 18 1 17	 16	 15	 14	 13	 12	 11	 0
6 2 2 2 1'L

FORMAT 1: OP CODE A B X DLSP

a.	 Memory Reference

23	 18 17	 16 15	 14 13	 12 11	 615 0
6 'L 2 L 0 6

FORMAT 2: OP CODE A B X EOP SPM

b.	 Nonmemory Reference

Figure 2. Instruction word formats.

Register Functions

ACCUMULATORS

The four accumulators are used as working
registers in that all main core memory data fetches
and stores take place via these registers; shift
operations, arithmetic, testing, and miscellaneous
functions also make use of these utility registers.

43

J. R. KENNEDY

BASE REGISTERS

Because of the small (24-bit) word size com-
bined with a possibly large (on the order of 100 000
or more words) main memory, it is not possible to
completely specify the absolute address of a datum
within an instruction word. Primarily for this
reason (there are other procedure organization
and data structuring benefits) , the effective absolute
memory address is formed by making use of one of
these 24-bit registers. This allows memory to be
expanded to 224 locations depending on storage
requirements and weight only.

INDEX REGISTERS

To allow array indexing operations, these
registers are treated in a functionally identical
fashion to the base registers. In conjunction with
the value, d, specified in the displacement field,
the content of the specified index register (x) is
combined with the content of the specified base
register (b) to calculate the effective absolute
memory address, E, of the instruction operand.
Thus, E _ (b) + (x) + d, where enclosure in
parentheses implies "contents of" the specified
register. For reasons that are explained in detail
in "Impact Analysis," index register 11 0" is not
available so that the address 11 0" can be used to
indicate that E is to be calculated as E _ (b) + d,
with no indexing applied.

Instruction Summary

Table 1 gives a condensed summary of the basic
instruction repertoire. A more detailed explanation
can be found in the complete report.

IMPACT ANALYS IS

This section summarizes features of the instruc-
tion set of Table 1 according to format and compares
an alternative approach to providing a functionally
equivalent repertoire that may require less memory
for implementation in the ROM and less memory for
programming in the main memory.

Distribution of Instructions

The instruction repertoire summarized under
"Basic Instruction Set" was analyzed and compared

with instruction sets for several existing, widely-
used computers. It is considered to be basic from
the point of view that no sophisticated capabilities
are provided, but it is certainly not minimal in that
certain operations can be performed by the use of
several other operations in sequence.

Of interest now is a table showing the distribution
of instructions according to format and field usage.
Table 2 shows this in condensed form where the
number of instructions in each configuration is
shown in column NI. Notice that although only one
format is represented in Table 2, a, several
different configurations are represented, and only
24 of 50 instructions make use of all the fields
specified by the format. In Table 2. b, six different
configurations are found and none of the instructions
make use of all the fields specified by the format.

These interesting observations show that 52 of
the total of 76 instructions (or about 68 percent) do
riot make use of all the fields provided. Since the
space provided for the fields represents wasted
main memory when it is not used, we can expect a
program written using the scheme specified in the
topic entitled "Basic Instruction Set" to make
inefficient use of main memory.

In addition to the above considerations, inspec-
tion of the instruction set in the topic entitled 'Basic
Instruction Set" will show that there are several
instructions devoted to transferring information
from one register to another, as from an accumu-
lator to a base. This could be avoided by having
an instruction to load the base from memory and by
allowing arithmetic and logical operations to be
performed using the base contents as an operand.

Two fundamental weaknesses in the specified
approach are concluded as follow:

1. The formats cause inefficient main memory
usage because of frequent occurrence of unused fields.

2. The register usage restrictions cause main
memory inefficiencies.

The obvious question is, therefore: Given the
basic capability exhibited by the specified instruc-
tion repertoire, is there a more efficient formatting
and register usage scheme? If so, what effect would
it have on the programming of ROM; would it be
more extensive or more complicated?

44

J. R. KENNEDY

TABLE 1, INSTRUCTION SUMMARY

Mnemonic Arguments Short

a.	 Format 1

LA a b x d Load Accumulator
SA a b x d Store Accumulator
LD a b x d Load Double
SD a b x d Store Double
LM a b x d Load Masked
SM a b x d Store Masked
SP b x d Store p in Memory
SRA a b x d Store Right Accumulator
CLM b x d Clear Memory
CAM a b x d Or Accumulator to Memory
AAM a b x d And Accumulator to Memory
EAM a b x d Exclusive Or Accumulator to Memory
OMA a b x d Or Memory to Accumulator
AMA a b x d And Memory to Accumulator
EMA a b x d Exclusive Or Memory to Accumulator
CM b x d Complement Memory
ADD a b x d Add Memory to Accumulator
SBR a b x d Subtract Memory from Accumulator
MLT a b x d Multiply Accumulator by Memory
DVD a b x d Divide Accumulator by Memory
SMZ b x d Skip on Memory Zero
SMN b x d Skip on Memory Not Zero
SMP b x d Skip on Memory Plus
SMM b x d Skip on Memory Minus
SALM a b x d Skip on Accumulator less than

Memory
SAEM a b x d Skip on Accumulator Equal to

Memory
SANM a b x d Skip on Accumulator Not Equal to

Memory
SAGM a b x d Skip on Accumulator Greater than

Memory
EXC a b x d Execute
JP b x d Jump
ALI a	 d Accumulator Less than Immediate
AEI a	 d Accumulator Equal to Immediate
ANI a	 d Accumulator Not Equal to Immediate
AGI a	 d Accumulator Greater than Immediate
LEA a b x d Load Effective Address
SAL a b x d Set Alarm
IIS a	 x d Increment Index
DIS a	 x d Decrement Index
SSA d Set Stall Alarm

45

J. R. KENNEDY

TABLE 1. (Concluded)

Mnemonic Arguments Short

IA a	 d Increment Accumulator
IB b	 d Increment Base
IX x d Increment Index
LKA a	 d Load Constant into Accumulator
LKB b	 d Load Constant into Base
LKX x d Load Constant into Index
R a	 x d Rotate
RP a	 x d Rotate Pair
S a	 x d Shift
SP a	 x d Shift Pair
UP b x d Load and Jump

b.	 Format 2

HPR Halt and Proceed
NOP No Operation
LJA a Last Jump Address
SPA a Store p in Accumulator
SIS a Sense Interrupt Status
SIM a Set Interrupt Mask
RIP a Return from Interrupt Process
DSB Disable Interrupts
ENB Enable Interrupts
CIM a Clear Interrupt Mask
SXP x Skip on Index Plus
SXM x Skip on Index Minus
SXZ x Skip on Index Zero
SXN x Skip on Index Not Zero
SA LX a	 x Skip on Accumulator Less than

Index
SAEX a	 x Skip on Accumulator Equal to

Index.
SANX a	 x Skip on Accumulator Not Equal to

Index
SAGX a	 x Skip on Accumulator Greater than

Index
RSA Reset Stall Alarm
CA a Complement Accumulator
CB b Complement Base
CX x Complement Index
TAB a b Transfer Accumulator to Base
TBA a b Transfer Base to Accumulator
TAX a	 x Transfer Accumulator to Index
TXA a	 x Transfer Index to Accumulator

46

J. R. KENNEDY

TABLE 2. INSTRUCTION DISTRIBUTION

a. Format 1 Configurations

OP A B X D NI

X X X X	 X	 24
x x x	 x	 9
X X	 X	 2
x x	 1
x x x	 x	 6
x x x	 6
X X X	 2

Total	 50

b. Format 2 Configurations

OP A B X S XOP NI

x x	 5
x x x	 7
x x x	 1
x x x	 5
x x x x	 2
x x x x	 6

Total	 26

Register Usage

REGISTER FIELD SPECIFICATION

Inspection of the formats depicted in Table 2
shows that a predominant feature existing in nearly
all the configurations is that at least one register is
specified. In some cases, only one register is
required.

Also, it should be noted that, by definition,
base and index registers are functionally identical.
That is, they are both intended to be used in the same
(additive) way in calculating effective main memory
addresses. Note, however, that in order to
implement certain instructions within the framework
of the specified formats, these registers have been
used for other purposes (consider IIS, DIS, IA, etc. j.
This seems to indicate that the registers are not
functionally dedicated to the task of indexing.

It is clear that rather than add more instructions
to allow base and index registers to be manipulated,
there should be a search for a scheme to specify
which type and which unique register is desired —
all within a single field that can be used to identify
any register; and, in cases where the type specifica-
tion is critical, it must be specified within the

operation code field. This scheme would provide
a field that can be designated as "R" (register)
with no particular function associated with the field
other than a register addressing function.

REGISTER ADDRESSING

A way to address the various registers and to
derive field formats for inclusion in an instruction
needs to be specified. Notice that two aspects of
register usage are of concern: one is how a given
register is to be treated functionally during instruc-
tion execution and the other is which registers will
be allowed to be addressed within given fields.

The formats shown in Figure 2 allow for two
bits each to address four accumulators, four base
registers, and four index registers, all dedicated.
It was decided that only three of the index registers
would be defined so that the fourth address could
be used to specify that no indexing was to be applied
in calculating effective addresses. This choice was
felt to be better than forcing the programmer to
clear an index to prevent incorrect address calcu-
lation (in practice, this would result in only three
effective index registers) . The result of this
dedicated register scheme, therefore, is that 6 bits
are required to address it (or 12) registers; and
even though the address of a base register in the A
field can be specified, the microprogram will always
take this address to be that of the dedicated accumu-
lator with the same address.

If these same 12 registers, whose properties
are identical, are specified within an instruction
format that specifies one functional R-field and two
functional X-fields (for indexing) and all registers
are allowed to be addressed in all fields, 12 bits
(4 for each field) are needed. Since 4 bits allow up
to 16 registers to be addressed in each field, all 16
registers may as well be defined to allow greater
flexibility. Clearly, there are many addressing
schemes; and in order to analyze various ways to
specify formatting, we establish the following
features:

i. A register function is specified by the
instruction field in which it appears. Field functions
are defined as follows:

a. R-field: a register-addressing field
wherein the associated function is
specified only by the operation code
field.

47

J. R. KENNEDY

b. I-field: a register addressing field
dedicated to the specification of an
indexing function; microcode always
associates an indexing function with
registers addressed by this field. (If
there are two I-fields, they will be
referred to as B and X.)

2. Registers are grouped by type as follows

a. A-type: Registers of this type belong to
a group whose members can have their
contents used in all manipulative opera-
tions exclusive of the calculation of
effective main memory addresses.

b. B-type: Registers with this type
designation belong to a group whose
members can have their contents used
in the calculation of effective main
memory addresses.

c. X-type: Registers with this type desig-
nation belong to a second group whose
members can have their contents used
in the calculation of effective main
memory addresses.

d. G-type: Registers whose type designa-
tion is A, B, and X.

Figure 3 shows several schemes for register
usage. that can be considered for possible implemen-
tation. Scheme i consists solely of general (G-type)
registers. From the macroprogramming and micro-
programming points of view, this is the best scheme.
However, reference to Table 3 will show by compari-
son that for a given number of registers, it costs
the most in terms of total bits for field addressing.

Scheme 2 is the least expensive in terms of
required addressing bits but is the least desirable
from the programming and efficiency point of view.
(Results in one type register are c ontinually needed in
a context (field) in which they can not be referenced.)

Scheme 3 is a hybrid approach, as is scheme 4.
Scheme 4 is the nearest scheme to an even tradeoff
in terms of programmability and cost. This can be
seen in the summary (Table 4) and schematically
in Figure 4.

Most of the desirable features are provided by
scheme 4, case a in that accumulator functions can
be performed with base and index contents. Since
it would be hard to over-emphasize the benefits in
efficiency arising from being able to perform
accumulator functions with base and index contents,
scheme 4 is preferred when compared to all others
except scheme 1; only the high cost of scheme 1
makes it hard to justify.

With scheme 4, as shown in Table 5 it can be
seen that there are 15 registers. Accumulator
functions can be performed with any register by
giving its appropriate four-bit address in an
R-field. Indexing functions are performed by those
registers whose four-bit address is specified by
explicit designation of the two low order bits in the
X field of an instruction; the X field designation
implies that the two high order bits of the four-bit
address are 11 00. " Base addressing is accomplished
in a similar way with the two low order bits
expressed in the B field, which implies that the two
high order bits are 11 01. "

When an index field (B or X) is used in an
instruction, the two high order bits will be supplied
by postprocessing the specified addresses in
microcode prior to an actual reference. This is not
too restrictive since it can likely be done before
exiting the fetch sequence prior to interpretation.
Although it does complicate the code, the additional
flexibility afforded the macrolevel instruction
repertoire and the associated reduction in main
memory requirement is felt to outweigh the extra
space, which should be negligible, required in ROM.
In addition to flexibility, which has a negative
effect on ROM size, we gain simplicity in format
configuration requirements as shown below.

REGISTER FIELD FORMATS

To implement the scheme described above,
four bits are required for an R-field and two bits
each for a B and X field. From the point of view
of R, B, X, and D fields, the configurations of
Table 2 can be accommodated as illustrated in
Figure 5 wherein the R, B, and X fields are
determined completely. The associated Basic
Instruction Set configurations that can be
represented with these formats are shown on the
right.

48

J. R. KENNEDY

FIELD	 TYPE

RI	 NG	 G

NB=NX=NA=NG

Scheme 1: All registers are type
G and can be referenced
in R- or I-fields. No
registers are dedicated.

FIELD	 TYPE

R	 NA	 A

Ii	NB	 B

12	 NX	 X

NA=NB=NX

Scheme 2: All registers are
dedicated; A-type
registers can only
be referenced in an
R-field, B in an Ii-
field, and X in an
I2-field. There are
no type G-registers.

FIELD	 TYPE

RIi	NB	 AB

RI2	NX	 AX

NB=NX
NA=NX+NB

Scheme 3: Registers are grouped
into two sets of semi-
dedicated registers.
AB-registers can be
referenced in R- or Ii-
fields and AX can be
referenced in R- or I2-
fields. There are no
general registers.

FIELD	 TYPE

R	 NA	 A

RIi	NB	 AB

RI2	NX	 AX

NX=NB
NA = (NX + NB)'

Scheme 4: There are one set of
dedicated A and two
sets of semidedicated
registers similar to
those in scheme 3.
There are no general
registers.

Figure 3. Four schemes for register usage.

49

J. R. KENNEDY

TABLE 3. BIT REQUIREMENTS AND NUMBER OF REGISTERS PROVIDED
BY SEVERAL REGISTER ALLOCATION SCHEMES

Number of
Number of Registers Field Bits Total

Case Bits RegistersG A B X R B X

Scheme 1

a 4 4 4 4 2 2 2 6 4

b 8 8 8 8 3 3 3 9 8

c 16 16 M 16 4 4 4 12 16

Scheme 2

a 0 4 4 4 2 2 2 6 12

b 0 8 8 8 3 3 3 9 24

c 0 M 16 M 4 4 4 12 48

Scheme 3

0 8 4 4 3 2 2 7 8a

b 0 16 8 8 4 3 3 SO M

c 0 32 16 M 5 4 4 13 32

Scheme 4

0 8 4 4 4 2 2 8 16a

b 0 16 8 8 5 3 3 it 32

TABLE 4, NUMBER OF BITS FOR 16 REGISTERS

Scheme/Case Number Bits Number Registers

4/a 8 16

3/b 10 16

2/a-b 6-9 12-24

1/c 12 16

50

12
N

m

J
W_

LL

LL	 8
O

Q:
LU
co

Z

4

0	 4	 8	 12	 16	 24	 32	 48

J. R. KENNEDY

16

NUMBER OF REGISTERS

Figure 4. Bit cost per register for four schemes.

TABLE 5. REGISTER LAYOUT

Register
Address Function Name

0 0 00 NO INDEXING (0 or nil)
0 0 01 INDEX 1 X1 or R1
0 0 10 INDEX 2 X2 or R2
0 0 11 INDEX 3 X3 or R3

0 1 00 BASE 0 BO or R4
0 1 01 BASE 1 B1 or R5
0 1 10 BASE 2 B2 or R6
0 1 11 BASE 3 B3 or R7

1 0 00 ACCUMULATOR 0 AO or R8
1 0 01 ACCUMULATOR 1 Al or R9
1 0 10 ACCUMULATOR 2 A2 or RIO
1 0 11 ACCUMULATOR 3 A3 or R11
1 1 00 ACCUMULATOR 4 A4 or R12
1 1 01 ACCUMULATOR 5 A5 or R13
1 1 10 ACCUMULATOR 6 A6 or R14
1 1 11 ACCUMULATOR 7 A7 or R15

51

J. R. KENNEDY

4	 2	 2
i	 R	 B	 X	 D I	 abxd

2	 2
2 B	 X	 D b x d

4
3	 R D ad, bd, xd

4 4
4	

R R2	 D a	 x d

4 4
5	 R1 R2 ab, ax

4
6	 R a, b, x

7 D^ d

Summary and Derived Repertoire

This section has shown how an alternate
approach to register usage can effect a better blend
of cost and flexibility. Factors other than register
usage should certainly be considered but are beyond
the scope of this discussion.

The final instruction set and associated formats
are given below in summary form.

Figure 5. Partially complete formats.

FORMAT 1
23	 18 17	 14 13	 12 11	 10 9	 0

6
OP CODE

4
R

2
B

2
X

10
C

OP CODE MNEMONIC SHORT

01 L Load

02 S Store

03 LD Load Double

04 SD Store Double

05 LM Masked Load

06 SM Masked Store

07 SRR Store Right Register

10 ORM OR Register to Memory

11 OMR OR Memory to Register

12 ARM AND Register to Memory

13 AMR AND Memory to Register

52

J. R. KENNEDY

OP CODE MNEMONIC SHORT

14 ERM XOR Register to Memory

15 EAR, XOR Memory to Register

16 ADD Add to Register

17 SBR Subtract from Register

20 MLT Multiply to Register

21 DVD Divide Register

22 SRLM Skip on Register Less Than Memory

23 SREM Skip on Register Equal to Memory

24 SRNM Skip on Register Not Equal to Memory

25 SRGM Skip on Register Greater than Memory

26 EXC Execute

27 LEA Load Effective Address

30 SAL Set Alarm

FORMAT 2
23	 18 17	 14 13	 10 9	 0

6
OP CODE

4
R1

4
R2

10
C

OP CODE	 MNEMONIC	 SHORT

31	 IRS	 Increment Register and Skip

32	 DRS	 Decrement Register and Skip

FORMAT 3
19	 18 17	 14 13	 12 it	 10 9	 0

(=77)	 6
OP CODE

4
XOP

2
B

2
X

i0
C

OP CODE	 XOP MNEMONIC	 SHORT

77	 0	 SP	 Store P

1	 CLM	 Clear Memory

2	 CM	 Complement Memory

53

J. R. KENNEDY

OP CODE	 XOP MNEMONIC SHORT

3 SMZ Skip on Memory Zero

4 SMN Skip on Memory not Zero

5 SMP Skip on Memory Plus

6 SMM Skip on Memory Minus

7 JP Jump

10 LJP Load and Jump

FORMAT 4
23	 18 17	 14 13	 10 9	 0

(=76)	 9

OP CODE
4

XOP
4

R
10

C

OP CODE	 XOP MNEMONIC SHORT

76	 0 RLC Register Less than Constant

1 REC Register Equal to Constant

2 RNC Register Not Equal to Constant

3 RGC Register Greater than Constant

4 IR Increment Register

5 LRI Load Register Immediate

6 R Rotate

7 RP Rotate Pair

10 S Shift

11 SP Shift Pair

12 LJA Last Jump Address

13 LRP Load Register from P

14 SIS Sense Interrupt Status

15 SIM Set Interrupt Mask

16 CIM Clear Interrupt Mask

17 CR Complement Register

54

J. R. KENNEDY

23	 18	 17	 12	 11	 0
FORMAT 5	 (=0) 6	 6	 12

OP CODE	 XOP	 C

OP CODE	 XOP MNEMONIC SHORT

00	 00 HPR Halt-Proceed

01 NOP No Operation

02 RIP Return from Interrupt Processor

03 DSB Disable Interrupts

04 ENB Enable Interrupts

05 SSA Set Stall Alarm

06 RSA Reset Stall Alarm

FORMAT 6
23	 18 17	 12 11	 8 7	 4 3	 0

(=75)	 6
OP CODE

6
XOP

4
R1

4
R2

4
R3

OP CODE	 XOP MNEMONIC

75	 0 SL

1 SE

2 SN

3 SG

4 TRR

5 XR

6 AR

7 SR

SHORT

Skip Less

Skip Equal

Skip Not

Skip Greater

Transfer Register to Register

Exchange Register

Add Registers

Subtract Registers

55

Page intentionally left blank

EFFICIENCY AND QUEUEING TIME CALCULATIONS

FOR COMPUTER RANKS

By

B. G. Grunebaum

ABSTRACT

This paper describes mathematically the
behavior of a set of computers connected in parallel
to a queueing memory and fed by a probabilistic or
rather stochastic sequence of programs. Possible
underlying hypotheses are discussed and the ones
that appear to be most practical from the standpoint
of the system designer are used as the basis of
closed analytical solutions for the calculation of the
design parameters. Some specialized numerical
procedures are indicated. Expectable variations of
the basic problem and the mathematical modifications
and/or additions that they imply are briefly discussed
to show the applicability of these techniques in the
design of more complex systems.

INTRODUCTION

Computing systems expected to fulfill require-
ments that are only known on a probabilistic basis
are usually designed by simulation. This approach
becomes rather cumbersome if the system is suffi-
ciently complicated and/or if the number of variables
involved is fairly large and varies over a wide range.
A spaceborne computing system can be expected to
fall into this category; and, in such cases, it is
believed advantageous to use an analytical approach
based on the knowledge of the behavior of individual
subsystems. By isolating a sufficient number of
distinct subsystems, they can be combined to any
level of complexity.

The most frequently used subsystem, and
probably the most difficult to analyze properly, is
the simple system described in this paper. The
results are presented without proof, because of
space limitations; for additional details, see
Reference 1.

FORMULATION OF THE PROBLEM

A bank of N identical computers is connected in
parallel to a source of programs, which shall be
refered to as the requestor (Fig. 1). The requestor
emits an irregular sequence of execution requests,
one request or call at a time. If, at the time of the
call, at least one of the computers is not operating,
one such computer will start executing; if all com-
puters are operating, the request, i. e. , the program
called, will wait until the first termination occurs
and then enter that computer. If another program is
already waiting, the new request will queue sequen-
tially. Every request will finally be handled by one
and only one computer, unless the system is unstable
by definition; i. e. , the queue of requests keeps
growing indefinitely. Some of the obvious refinements,
not considered in this paper, are the existence of
priorities, interrupt capabilities, and multiprocessing
requests.

Answers are being sought for the following
implied questions:

1. A stability criterion, in terms of the average
running times of the programs and the probability of
being called.

Furthermore, assuming the system to be stable:

2. The load factor L per computer; i. e. , the
average fraction of time each computer is operating.

3. The average processing time T
0 ;

i. e. , the

average time it takes a computer to execute a program.
The waiting time, if any, is not included in T .

0

4. The probability q(t) that at least one com-
puter becomes available in time t or less, if we
interrogate at some random moment.

57

B. G. GRUNEBAUM

Figure 1. Basic subsystem.

5. The average waiting time Ti for at least one
computer to become receptive. In other words, if
the computer bank is interrogated at some RANDOM
moment, there is an average waiting time T i until
at least one computer becomes receptive.

6. The probabilities qi k(t) of having exactly

k calls of the program u
i

in the interval (0, t], if the

last preceding call of u,
i

occurred at t = 0.

7. The probabilities Q i k (t) of having exactly

k calls of the program u
i

in a random interval (0, t] .

8. The probability A
0

(t) of having zero calls in

a random interval (0, t] .

9. The probability r
0

(t) of having zero calls in

(0, t] , if the last preceding (unspecified) call
occurred at t = 0.

10. The probability a(t) that at least one com-
puter becomes available in time t or less, if inter-
rogation is at a moment when some computer starts
executing a program and all other computers are
known to be operating.

If. The probability a(t) that at least one com-
puter becomes available in time t or less, if inter-
rogation is at a moment when some computer starts
executing a program and there is no information on
the status of the other computers.

12. The probability 0(t) that a queue of non-zero
length, i. e. , containing at least one program, will
remain unchanged during the next time interval of
length t, if interrogation is at random.

13. The probability b (t) that a queue of constant
non-zero length lasts at least time t.

14. The probability 0(t) that a queue of zero
length lasts time t.

15. The average duration T2 of a constant non-
zero length queue.

16. The average duration T3 of a zero length queue.

17. The average time T4 that a program will
remain in the same position in queue, if it arrived in
a different position.

18. The probabilities Pk, k = 0, 1, 2, ... that

58

B. G. GRUNEBAUM

we have a queue of length k at some random inter-
rogation moment.

19. The average waiting time T 5 for any pro-
gram; i. e. , the average time between being called
and being admitted to a computer for execution.

20. The maximum queue length h not to be
exceeded with a specified probability.

RESULTS

The following definitions apply:

M = number of distinct programs ui;

N = number of parallel processors;

t.
i

= average execution time of program
ui ,i=1, (1),M;

Q = time quantum (depends on experi-
mental considerations and is other-
wise arbitrary);

and

ni = average number of times the program
u is called in a time quantum (0, Qj.

The classical stability criterion is usually
written in the form

T> NQ	 (1)

where

T

	

	 niti	 (2)
i= 1, (1), M

and essentially says that the system is stable if, on
the average, the working time requested is less than
the computing time available. Nevertheless, it has
been shown in Reference 1 that the condition (1) does
not preclude the existence of finite probabilities for
infinite waiting times and that in order to assure
finite waiting times, the criterion (1) must be
replaced by

nT0 <_ NQ	 (3)

where

n	 n i	 (4)

i = 1, (1), M

and

To = T	 E	 n. t.2	 (5)

(1), M

-Notice that formula (5) also represents the
answer to question 3.

The load factor, as requested by question 2,
is simply

L = NQ	(6)

To answer the next questions, it is necessary to
assume that the programs have been indexed such
that

t0<ti<t2<... <tM 	t'r!

where t = 0.
0

Since the execution times t. are measured
i

values, it can be assumed that they are all distinct.

The answer to question 4 is now
N

q(t)=1- 1-T ci +t	 n.	 LN

j = i, (1), M	 (8)

where the index i is determined from

ti - 1 :5t< ti	 ,	 i = 1, (1), M	 (9)

and

c i =	 E	 nj^	 i=1, (1), M
j =0, (1), i- 1	 (10)

Thus, ci = 0, q(0) = i - LN , and q(t >_ tM) = 1.

It is obvious that q(0) < 1, since one or more
computers may be available at a random moment.

The answer to question 5 is
t
M

Ti = f	 t q (t)dt	 (11)
0

59

B. G. GRUNEBAUM

To present the answers to the remaining ques-
tions, the following definitions will be introduced:

Pi
 (t) = probability that the interval between

two consecutive calls of the program
u is not greater than t,

F i (t) = probability that the interval between
a random interrogation moment and
the next call of the program

a
is not

greater than t,

and

	

fi (
t) = F' (t)	 >

The M functions p
i
(t) may be assumed known

and the functions f. and F. can be determined with
1	 1

the aid of

	

oo	 p
1
i (t + T) f

l
. (T)

	

fi (t) = f	 1 _	 (T)	 dT 	 (12)

	

0	 pi

a homogeneous Fredholm-type integral equation of
the second kind, and

t
	Fi(t) = f fi (T) dT	 (13)

0

It will be explained later how to determine the
functions pi from experimental data and how to solve

equation (12) numerically. It must be mentioned at
this point that, in general, the functions p

i
are not

even approximately exponential, so that the proba-
bility of a program u being called at some specific

time does depend very much on the time of the pre-
ceding call of the same program and, perhaps,"also
on the times of other preceding calls. In other
words, the oversimplification that the calling
sequence is devoid of memory is avoided. Neverthe-
less, many of the forthcoming formulas assume the
simplifying approximation that the probability of a
specific program being called at some time depends
at most on the time of the one preceding call of the
same program. See Reference 1 for a detailed
justification of this assumption.

The second assumption is that M > > 1 in the
sense that the probability of any program being called
at some specific time is very nearly independent of

the time of the last preceding call. This restriction
may, nevertheless, be dropped if all functions pii
are exponential; i. e. , very unlikely to occur in
practice.

Without any restrictions, the answers to ques-
tions 6, 7, 8, and 9 are

gi3O (t) = 1 - pi (T)

t	 (14)

qi k (t) - f Pi (T)gi k- i (t - T)dT
'	 0	 '

Q i3O (t) = i - Fi(t)

t	 (15)

Qi,k(t) = f fi(T)gi,k- 1 (t- T)dT
0

with k = 1, 2, 3, ... in formulas (14) and (15).

A (t) =	 R	 Q. (t)	 (16)

o	 i = 1, (1), M	
a,o

and

ro (t)	 = 1
n Ao(t)

q.1

ni	 '	 (t)	 (17)
Qi,o

i = 1,	 (1), M

with n specified by formula 4.

Notice that

gi'o (0) =	 Q i'o (0) =	 1
(18)

gi,k (0) = Qi,k(0) = 0	 k> 0

and

gi,k (0) =	 Qi,k(0) =	 0	 k> 1

gi ^ o (0) _	 -Pi(0) Qi o (0)	 T.' ii	 (19)

gi,1(0) =	 Pi(0) Q1 1(0)	 = T1

ii

60

B. G. GRUNEBAUM

where

Q = f tp' (t)dt	 (20)T i' 1	
n
	 0	 i

is the average time between two consecutive calls
of u..

Furthermore,

A0 (0) = r0 (0) = 1

(21)

A 1 (0) = r'(0)0	 o	 Ts

where Ts = @ is the average time between con-
secutive calls, without specifying the nature of the
programs. This constant is related to the function
r0 (t) by

Ts = - f tr0 (t)dt	 (22)
0

The functions r 0 (t) and A0 (t) may be general-

ized by the following definitions:

rk (t) = the probability that there will be
exactly k calls in (0, t] if there
was an unspecified call at time 0,

and

A (t) = the probability that there will be
exactly k calls in a RANDOM
interval (0, t].

Then,

t	 ,

rk(t) _ - f ro (T)rk- 1 (t- T)dT, k= 1,2,3,...

0	 (23)

t	 ,

Ak(t) _ - f A 0 (T)rk . - 1 (t -T) dT, k=1,2,3,... .
0	 (24)

In particular,

Ak(0) = rk (0) = 0	 k> 0

A i (0) = r i (0) = T	 (25)
s

Ak(0) = rk(0) = 0	 k> 1

The function a(t) specified in question 10 is
given by

N-i

	

c i\\	 1a(t)=1- i
(

j--i' (i)'M

-T t i-

Tci +t 	 nj^

M>> 1	 (26)

with c, specified by formula (10) and T by formula

(2) . The indexing must be such that the inequalities
(7) and (9) are satisfied. Notice that a(0) - 0 and
a(t ? tM) = i.

The answer to question 11 is

ai (t) = i - I 1 - a(t)1 LN - 1	 (27)

with a(t) specified by formula (26) and L by formula
(6).

The answer to question 12 is

N

^(t) =A0 (t) 1- T̂ci+t	 n^.
j=i, (1),M

M >> 1	 (28)

and the same conditions hold as for equation (26).

The function b(t) of question 13 is given by

I bi (t) + T b2 (t)
b(t) =	 s	 0	 ,	 (29)

	

1	 N

	

Ts	 TO

61

8. G. GRUNEBAUM

where and

b, (t)	 =	 r	 (t)	 ^(t)	 (30)o	 A(t)

tM

T4	 =	 f	 t a ' (t) dt (37)o 0

and The answers to the important question 18,
r	 l namely the probabilities Pk , are given by

b2 (t)	 =	 Ao (t)! i - a(t)
J

(31)

L
T39m,0 m-1(1-A)m

(38)
The answer to question 14 is Po T3 + (2m-1)T2

m = 1,	 (1),
(t)	 _	 00 (t) +	 01(t) +	 02(t) + ...	 (32)

and

where m-1(i-A)m
TZg	

A
^Uo(t)	 =	 A

r

(t)0 P	 =	 ^,	 T3 +m'(2m-1)T2h

t m =h, (1),

01(t) =	 -	 f	 OO W a(x) 00(t-x)dx
0 h = 1, 2, 3,	 ... (39)

M > > 1	 (33)
and where

1
t	 ,

Ok (t) _	 -	 f ro (X) ai (x) Ok	 1 (t - x)dx
T

A66 T6 = @ (40)-
0 N+T6	 To

M>> 1

The constant To is determinable also with the aid of
The function O(t) may also be determined with

the aid of the integral equation formula (21) .

t
(t) +	 ro (x)ai (x)' (t - x)dx =A o (t) [1 - a(t)]

The constants gm, h' M = 1, 2, 3, ... ,

h = 0, (1) , m,	 are mathematical constants
0 whose meanings are further explained in Reference 2.

They can be calculated with the following recurrences:

+	 f A 0 (t-x)I
r

r
o

o (x)ai (x)-A
°

o (x)a(x)J dx
j

LLL gi o = 1
'

M> > 1	 (34) 2(2n-1)_
gn+1 0	 n + 1	 n og	 n = 1, 2, 3, .. , (41)

The answer to question 15 follows immediately
from formula (29), namely,

t gn, l - gn+1, 0 	 n = 1, 2, 3, ... (42)

T2	 =	 f	 t b^(t) dt	 (35)
0 and

Similarly, the answers to questions 16 and 17 are

gn,k	 (n+k)	 (k-1)	 gn,k-i	 '	 n =2, 3,	 .. .

T3	 =	 -	 f t 0 (t) dt	 (36)
=

, n
k	 2,	 (1),

0 (43)

62

B. G. GRUNEBAUM

where the index i has been dropped for convenience.
If the measurements are sufficiently numerous,
p(tn) = i is assumed so that 	 k

p(tk) = n

If some of the tk's are equal, keep only the one

with the HIGHEST index and drop the remaining ones
T	 P	 Ti	

Ph	 (44)	 from the list. Thus, the listing of the t k's may

h=1 1) ,
5= TIPo +T 4	 ^	 h + N	 'L T4	 contain less than n numbers but the highest index is

always n. If s is the lowest index and k, is the index
next higher to k, p(t) is obtained as a step function in

with Po and Ph given respectively by formulas (38) the form
and (39). For control purposes, the inequality

2 < TL _ 1
LHT4

must be satisfied.

To answer question 20, simply observe that the
probability for having a queue not longer than h
programs is

Qh	 z	 Pi	 (46)
i = 0, (1), h

The maximum queue length h not to be exceeded
with a specified probability c will be the greatest
value of h such that Q s c.

NUMERICAL DETAILS
	

tki < t
k2 < ... < tkm	 (50)

The suggested procedure for the determination 	 where
of the functions pi (t) from experimental data is as

km = nfollows.

For every program u i , the times of arrival are	 Then,
measured over a sufficiently long interval of time. Let	 1 /	 k.
ti , t2 , t3 ... to be the INTERVALS between consecutive f(t) = T (\ 1 - n /i	 tk :5t < tk	 (51)
arrivals of u., ordered so that 	 1]	 + 1

i

ti	 t2 < t3	 ... 5 t	 (47)	 J = 0 1 (1), m
n k = 0

0
Then,	 t = 0

0

p (tk) = n p (t n)	 (48)	 tkm + 1 -

It should be noted that the stability of the
system requires A <_ 2, which can be shown to be
equivalent to formula (3) .

The average waiting time T51 i.e., the answer
to question 19, is now obtainable in the form

(45)

p(t) = 0	 0:5 t < is

Lt
	 f	 (49)

p (t) = n	 tk t < tk

where
tk^
	 if k = n. This is admittedly an

approximation, but experience has shown that it
appears to be much closer to the truth than any
continuous function that could have been fitted to the
information.

Assuming that the functions p i (t) are specified

in the form (49) , the Fredholm equation (12) is
solved as follows.

Drop the index i for convenience as before and
rewrite the inequality (47) , after elimination of equal
terms as explained preceding formula (49), in the
form

63

B. G. GRUNEBAUM

and

F(t) = t	 0<_ t < t
T 1 	k1

_k

T n	 k.-k. i tk	 1- ') t
1	 J,	

J 1
	 i

t < t<tk^	 kf + 1

I = 1, (1), m-1

k = 0
0

=1	 t	 <_ t	
oo'	 k

m

As a final observation, let it be mentioned that
special subroutines have been developed for the fast
computational handling of the convolutions and other
quadratures. It has not been found particularly
difficult to modify this mathematical model for various
requirements regarding priorities and interrupts.

x(52)

REFERENCES

1. Grunebaum, B. G.: Efficiency and Queueing Time Calculations for Computer Banks. NASA Contractor
Report, Contract No. NAS8-18405, July 1969.

2. Grunebaum, B. G.: The gn k Numbers. Submitted for Journal Publication, Available from Computer
Sciences Corporation. 	 '

BIBLIOGRAPHY

Grunebaum, B. G.: The Algebra of Probability Density Functions. NASA Contractor Report No. 61295,
May 1969.

Grunebaum, B. G.: Random and Non-random Expectancies. NASA Technical Note, In Print.

64

APPLICATION OF DISCRETE I ITA SIMULATION LANGUAGES

TO E DESIGN OF ADAPTIVEBUFFERING 	 E I

By

L. K. Paul, Jr.

ABSTRACT

Some of the design problems of computer-
information networks are briefly discussed, with
special reference to the anticipated requirements
of a space-station/space-base system. The applica-
tion of digital simulation techniques to the charac-
terization of computer-information networks is
described. Preliminary results of the discrete.
simulation of a data buffering scheme are
presented.

DISCUSSION

Preceding papers have introduced the idea of a
spaceborne computer system for an orbiting space
station. Research efforts are currently underway
at the Computation Laboratory of Marshall Space
Flight Center that are designed to isolate and analyze
the data management problems associated with such
spaceborne computer systems.

The objective of this research is to identify data
management problems by utilizing operations research
techniques. One extremely useful operations research
technique is the application of discrete simulation
languages.

Therefore, the objective of this presentation is
to introduce one of these simulation languages and
illustrate how it is being used for designing space-
borne computer systems that will be capable of
managing the data onboard a space station.

A space-station environment (Fig. 1) provides a
unique setting for both the spaceborne computer and
the data management system. This elaborate
communications network consists of (1) the space

station with its associated ancillary satellites, (2) the
logistics shuttles, (3) the data relay satellite system,
and (4) the ground-based command and control
facilities. Each element of this network may need
to communicate with every other element. Thus,
the spaceborne computer system must perform its
data management tasks within the context of a densely
populated information network.

In addition to these external data management
demands imposed upon a space station by its environ-
ment, there exist internal data management problems,
many orders of magnitude more complex, which
originate from within a space station itself.

For instance, the spaceborne computer system
will be responsible for monitoring and controlling all
operational systems onboard the space station.
Budgeting of consumables, environmental control,
malfunction detection, fault isolation, platform
alignment, artificial gravity control, and verification
of structural integrity will all require constant
attention from the spaceborne computer. In addition,
the spaceborne computer must collect, edit, and
process data required for ephemeris determination,
maneuver planning and execution, attitude stabiliza-
tion, rendezvous targeting, and orbital traffic control.
Even the scheduling of experiments as well as
instrument setup, calibration, and checkout will be
under the watchful eye of the spaceborne computer.

One way of gaining quantitative insight into these
problem areas is by constructing a mathematical
model of the system and subjecting this math model
to extensive testing on the computer. Such experi-
mentation is call "simulation. "

To minimize the time required to code and
checkout a math model, special simulation languages
were developed. One of the most popular of these
simulation languages is called GPSS, which stands
for General Purpose System Simulation.

65

ELAY
,ITE

SHUT?

0®
0

L. K. PAUL, JR.

SPACE STATION

ANCILLARY SATELLITE

Figure 1. Space station environment.

The vocabulary of GPSS (Fig. 2) consists of
over 50 prefabricated subroutines called "blocks"
that can be selected and easily arranged by the
systems engineer to represent his problem. The
deck, consisting of one punch card for each block
of the model, is submitted to the computer which,
in turn, uses its compiler to complete the messy
coding details and to produce a program that is
completely checked out and ready to run. In general,
modeling with GPSS is about four times faster than
coding in FORTRAN.

Suppose that data arrive at a data compressor
at a specified number of transactions per time unit
(Fig. 3). The data compressor destroys the
redundant data, and the worthwhile data continue
to flow through the system until it arrives at a buffer.
Here the data await their turn to be transmitted to

the ground. The basic problem for such a system is
that during periods of peak loading, the buffer may
overflow. This may be prevented in several ways.
The data transmission rate can be increased as the
nonredundant data fill the buffer to 25 percent and
50 percent of its capacity. If the buffer becomes
75 percent full, a priority test can be imposed upon
those data arriving for admission into the buffer.
If the buffer continues to fill to 100 percent, all new
data will be lost regardless .of their importance.
There are two basic logic loops; one that relates the
data transmission rate to the buffer fullness and
another that relates the buffer fullness to the priority
required for admission. A communications engineer
may wish to know such things as (1) how much data
is redundant, (2) what percent of the data is lost
because of a full buffer, (3) what percent is lost
because of insufficient priority, (4) what is the

66

L. K. PAUL, JR.

X,YJ,/ LA HELP

XINTERRUPT

[LS] LOGIC

<= LOOP

2

PRIORITY

o TERMINATE

1; NAME SELECTION NEXT NEXT MEAN
;LOCATION (LEFT JUSTIFIED) X Y Z MODE BLOCK A BLOCK B TIME MODIFIER REMARKS

1 1 2 7	 ;13 17 25 31 37 43 49 55 61
i

67	 173

RANX Ass)G;W 1 FNZ 919 TH V/P 0l ILL

I V/P C 014 PA xE PI GE FA)3 QUE

p{lLd TERM / }VA TE 1

Figure 2. Abbreviated roster of GPSS II blocks.

Figure 3. Typical information flow problem.

67

700%

c^
Z
wJ

1	 w
W

W

CY

d

L

0, FN 1
(0.5)_1 0, 0, VI

PR / \ FN3

RMINA

(A)

(B)

(G)

3 YRS	 TIME

L. K. PAUL, JR.

average buffer size, and (5) what is the average time
spent waiting in the buffer?

This problem can be coded in GPSS as shown in
Part A of Figure 4. By making full use of the power
of GPSS, the problem can even be compacted into
only three statements as shown in Part B of the
same figure.

Part C of Figure 4 illustrates some typical
results that may be produced by such a GPSS simula-
tion, namely a time history of the buffer fullness.
For instance, one would expect to see the buffer fill
to 25 percent of its capacity at which point the data
transmission rate would be increased. The buffer
may continue to fill to the 50 percent point, and the
transmission rate would increase to maximum. If
the buffer continued to fill to the 75 percent level,
a priority test would be invoked upon the incoming

data. Under severe loading, the buffer could con-
ceivably become saturated. Such information may
reveal that after a period of 3 years a buffer of length
L would be adequate, thus eliminating the require-
ment for priority electronics as well as cancelling
the need for variable transmission capability.

CONCLUSION

This then is a typical example of an information
flow problem and how it is coded in GPSS language,
along with some traditional results that are available
from such a simulation. From our research it is
concluded that by using such operations research
techniques as simulation, NASA will be able to
design spaceborne computer systems that will be
capable of managing the data onboard a space station.

Figure 4. Buffer problem coded in GPSS.

68

L. K. PAUL, JR.

BIBLIOGRAPHY

General Purpose Systems Simulator II. Reference Manual No. UP-4129, Univac Division of Sperry Rand
Corporation.

Wallace, Gabriel R.: Buffer Fullness for a Data Compressor Using Saturn Vehicle Data. Research
Achievements Review, Volume III, Report No. 5, NASA TM X-53810, 1968.

69

Page intentionally left blank

AUTOMATIC MALFUNCTION ANALYSIS (AMA)

FOR DISCRETE SYSTEMS
By

D. T. Thomas and R. L. Jaegly

SUMMARY

The requirements for more automated checkout
techniques and procedures have become more
demanding as the complexity of aerospace systems
increases. The original concept of checkout is
changing from a semiautomated environment where
computers are used to assist the test engineer in
verifying performance of a system to a more
autonomous environment where the computer is used
not only to detect that a malfunction has occurred
but also to isolate the cause of malfunction. Auto-
matic Malfunction Analysis (AMA) is a tool that can
be used in system checkout to verify testing proce-
dures and determine failure candidates when a mal-
function occurs.

The original effort on AMA was begun by General
Dynamics Corporation, Convair Division, for fault
isolation in the checkout of the Saturn IC stage at
Marshall Space Flight Center (MSFC) . The program,
at that time, was written for the IBM 7094 and was
successfully demonstrated in checkout of the engine
cutoff system of the S-IC. The operational philosophy
was to use an Automatic Test and Checkout Launch
Language (ATOLL) Test Procedure written for
execution on the checkout computer as the driving
function. The basic functions of the procedures are
to verify the systems performance and to control the
checkout sequence. The ATOLL procedure, by
comparing the predicted status of all discrete test
points against the actual status, would detect a
no-go condition when the predicted and actual profiles
did not agree. Since the IBM 7094 was not on-line
to the checkout computer, an analysis was made by
AMA prior to the actual checkout of that system,
assuming all possible combinations of no-go condi-
tions at each point within the test procedure where
the status of the discrete test points was to be
checked. This precheckout analysis was made and
the failure candidates for each possible no-go con-
dition were generated on magnetic tape. Since the
status of the system under checkout is maintained
by AMA throughout the step by step simulation

and analysis, the failure candidate tape generated
on the 7094 can be accessed by the Test Procedure
on the checkout computer, and failure candidates
for any given discrete no-go condition can be
determined. The results with this mode of operation
were satisfactory; however, the time required to
do the entire postcheckout simulation and analysis
(5 to 7 hours) for one subsystem would be pro-
hibitive in a normal checkout environment. To
eliminate the excessive run time, the 7094 version
was converted to the Univac 1108 and restructured
so it could be accessed in near real-time from a
remote checkout computer. In this case the check-
out computer is an RCA-110A remoted via a
Telpak A communication link.

Figure 1 illustrates the hardware configuration
that is presently being used to further test AMA.
It should be noted here that the use of the S-IC
facility to develop the AMA techniques should not
be interpreted as restricting AMA to this particular
type of malfunction analysis. The availability of the
facility, the RCA-i10A, and the Univac 1108 simply
afforded the ideal environment in which to develop
AMA. In this hardware configuration, the system
being checked out is still under control of the
RCA-110A, where the Test Procedure is being
executed. Once a no-go condition occurs, the
number of the discrete test points that created the
no-go condition are transmitted to the Univac 1108
for analysis by AMA. AMA, using a mathematical
model of the system under test, will then evaluate
the Boolean equations representing the system at
the point where the no-go condition occurred. In
the 1108 version, the Test Procedure is still used
as the driving function for AMA.

SYSTEM	 RCA 110A	 UNIVAC 1106
UNDER	 CHECKOUT	 TELEPAK Line	

(AMA)
TEST	 COMPUTER

Figure 1. Hardware configuration.

By analyzing the data sent to the Univac 1108
by the checkout computer, AMA knows precisely

71

D. T. THOMAS.AND R. L. JAEGLY

where the no-go condition occurred in the execution
of the Test Procedure. AMA will then begin the
analysis from that point. A state list is generated,
and failure candidates for that particular malfunction
are transmitted back to the checkout computer to be
displayed on the Test Conductor's CRT display.

The on-line analysis allows the checkout com-
puter to access AMA only when a malfunction
occurs, thereby, drastically reducing the time
required for analysis.

AMA FUNCTIONS

The analytical techniques in the Automatic
Malfunction Analysis programs permit malfunction
analysis to be made on a complex discrete system.
These techniques can be broken down into six basic
steps.

1. Prepare a model describing the network or
system using logic or Boolean equations.

2. Analyze the equations to establish the
interrelationships of the model.

3. Simulate real-time operation of the system
using test procedures.

4. Using simulation, establish the system state
at each point where analysis is to be made.

5. Analyze the system for each indicator
to determine possible failure candidates.

6. Format data for display.

There are three primary programs required
for Automatic Malfunction Analysis; however,
Automatic Malfunction Analysis as used in this
report refers to the total process which includes
the following programs:

i. Preprocessor

2. Simulation

3. Automatic Malfunction Analysis

THE SYSTEM MODEL

The model is a series of Boolean algebra
equations that logically describe the component
interrelationships of a system network or partial
system network. The Discrete Network Simulation
(DNS) programs will chronologically simulate
events occurring as a result of dynamic interactions
among elements in a model. The use of the term,
"Discrete Network, " implies a system of variables
defined in an interdependent relationship. Each
variable is discrete as its action is a binary event
in the network: on or off, acting or not acting,
available or not available, true or false, i or 0,
etc. The variables represent components, events,
or activities. The network is described by: (1)
a set of Boolean equations that completely define all
interrelationships; and (2) a characteristic activity
time associated with each variable (the time required
for the effective change of state of a particular
variable) , which forms a complete mathematical
model of a physical system.

Data for Model Building

To develop a model, the following information
must be available:

i. A complete set of circuit diagrams for the
system to be modeled.

2. Information that shows mechanical to
electrical ties and vice versa, such as, limit and
position switches for valves. If a written descrip-
tion is not available, all the related mechanical
drawings will be needed.

3. Design specifications for relays, automatic
swtiches, etc. , where operating times are given.

4. An analysis prior to starting the model
should be made to determine the boundary of the
model, the number of variables that the model
contains, and the inputs that will be necessary to
make the model function.

5. The variables in a system to be modeled
must be named prior to writing the model. Variables

72

BUS

D. T. THOMAS AND R. L. JAEGLY

can have any name as far as the computer programs
are concerned (not to exceed 30 characters with
current modification of the programs) . The names
should be easily identified on the documents from
which they are written.

Boolean Equations and Time Parameters

The concept of using Boolean equations to
describe electrical networks or other system intra-
dependencies is well established. If individual time
parameters can be attached to each element in a
Boolean equation and evaluated, then a timed
sequence description of a system operation can be
generated. This section reviews the basic concept
of using Boolean equations to describe an electrical
network and describes the use of the parameter
cards in the AMA programs.

Normally, all drawings show systems in a
de-energized state. This applies especially to
electrical drawings as indicated in the following
circuit (Fig. 2). Where Ki, K6, and K5 are relay
coils, CK2, GK3, CK4, and CL5 are contacts
operated by coils K2, K3, K4, and K5 which are
not shown on the diagram. As shown, the 1-2
contacts of coils K2 and K4 are normally open when
coils K2 and K4 are de-energized, and the 2-3
contacts of K3 and K5 are normally closed when
coils K3 and K5 are de-energized. To energize
coil Ki, coil K2 must be energized, K3 must
remain de-energized, and the bus must be energized.

Operators used in Boolean equations written to
describe the hardware model are as shown in
Table 1. An equation using the operators as indi-
cated in Table 1 for K1 can be written as follows:
Ki = K2*/K3* Bus. Equations are written from
drawings that show the system in the de-energized
state.

TABLE I, BOOLEAN OPERATORS

OPERATOR MEANING

= Equal
Period

/ Not
And

+ Or

BINARY REPRESENTATION OF VARIABLES

Because every variable in the system can only
be described as energized or not energized
(VARIABLE or /VARIABLE, respectively) and
since all variables are described in Boolean algebra,
there are only two possible states for a variable. In
Boolean algebra the two states are represented by
a i and a 0. A l represents a signal, or energized,
and 0 represents a lack of a signal, or not energized.

OPERATION OF A BASIC SIMULATION

Consider the simple circuit shown in Figure 3
as a system to be modeled. The equations that

Ki	 CK2
	

CK3

Figure 2. Typical relay schematic.

73

D. T. THOMAS AND R. L. JAEGLY

describe this circuit are:

Ki = Bus

CKi = K1

and

K2 = Bus CKi

K1

•^I

BUS

i
CKi

2

K2

Figure 3. Simple logic equation sample

In the static condition of the model, all variables
are a binary 0. Changing this static model requires
the change of state of some variable. To input the
bus as a binary 1 would correspond to applying
voltage to the bus in the hardware. When the bus
becomes a 1, it will cause the coil Ki to become a
1 at a later time. This will depend on the operating
time (pickup time) that was assigned to the coil.
At a still later time, CKi will become a i, and, still
later, K2 will become a 1. The time that these
events take place depends on the operating time
(pickup time) of the coil and the contacts. The
model will then stay in this condition; that is, all
variables are a binary 1. If the bus is input to a
binary, 0, all the variables in the model will go to 0,
just as would happen in the hardware if the bus is
de-energized. The time of deactivation will depend
on the dropout time assigned these variables. These
are normally the times shown on the design specifi-
cations for the different variables. The pickup and
dropout times required for each variable are entered
in the model via the parameter card.

PARAMETER CARD

A parameter card is required for each variable
in the model and is used for three different functions.

i. The parameter card is used in the equation
compiler program to simplify the writing of the logic
equations.

2. The parameter card is used in the AMA
programs as the source of the activation times and
as classification codes for each component in the
model.

3. The parameter card can be used to store
information related to each variable in the model
that can be used for future reference. This infor-

mation is not used in any way by the AMA programs.

The parameter card contains the variable name,
from 1 to 6 time fields, each containing 6 charac-
ters, and up to 40 data fields, each containing not
more than 42 characters. For use with the AMA
programs, all the parameter cards associated with
a single model must contain the same number of
fields. The fields are delineated and labeled by a

control card used with the AMA preprocessor
program.

On the individual parameter cards, following
the variable name, the fields are designated by

data followed by a comma or a blank followed by a
comma. The end of the data field string is termi-
nated by the use of a period. This is defined
further in the preprocessor program description.

The time fields, which are used in system
simulation, define the activation times for each
component in the model. Up to six time fields may
be defined, and any two from these six may be used
in the system simulation to represent activation and
deactivation times respectively. The time base for
each variable may be individually specified and can
cover the full range from microseconds to days.
On the parameter card, the time units can be
specified using up to five digits and a base designated
by a single letter.

Information placed in the data fields at the time
of model preparation classifies the variables as
active or inactive in terms of the system simulation
and catalogs the variables into classifications relating
to the electrical or physical description of the
variable. This classification is used in the AMA

74

D. T. THOMAS AND R. L. JAEGLY

programs to determine which components should be	 The negation sign preceding the variables J7,
considered as possible malfunction candidates and	 CK4, and J6 indicates that there is normally a com-
under which state (on or off) they could be mal-	 pleted circuit through these variables when the pin
function candidates. 	 jacks are connected and through CK4 when CK4

is de-energized.

Writing Equations

This section describes the techniques that can
be used to prepare or describe the system that is to
be simulated and/or analyzed. The AMA program
will process any set of Boolean equations. The
accuracy of the simulation and/or analysis is a
function of how accurately the set of Boolean equa-
tions can describe a given system. The examples
given and the principal applications of the AMA
programs have all been based on electrical networks,
but this is not to imply any limitation in the pro-
grams themselves to handle only electrical networks.
Any set of Boolean equations could be processed.

The following example including the rules and
guidelines stated therein have been found to be
effective and accurate when used in conjunction with
the AMA programs to permit a system simulation
and subsequent malfunction analysis. They can be
used and expanded to describe other types of
systems for which simulation and analysis is desired.

SIMPLE SERIES CIRCUIT

Equation (1) is written as follows to describe
the simple series circuit shown in Figure 4.

KI = CK3 == /J7 /CK4=x/J6-,=Bus	 (1)

Equations are normally written from the power
consuming elements to the power source. In this
example K1 represents a coil, CK3 the normally
open contacts of another coil whose circuit is not
shown, J7 a pin jack connection through which
current can normally flow, CK4 the normally
closed contacts of another coil whose circuit is not
shown, J6 another pin jack connection, and finally
the bus represents the power source.

The negation sign, or 'not' operator, is
normally used to represent a de-energized state.
The use of the negation sign in front of variables
representing pin jacks in other inactive type com-
ponents represents a compromise between a true
system description and the mechanics of the AMA
programs. The pin jacks and other passive type
components such as fuses normally stand by them-
selves in the logic equations. They do not appear
in any cause and effect relationship. To describe
a completed circuit, each of these passive com-
ponents would have to be set to a 1 value by an
external input to the simulation portion of the AMA
program. The use of the negation sign causes the
0 or de-energized state of the component to appear
as a 1 in the total program, thus eliminating the
need for many arbitrary inputs to the simulation
program for the passive type of components.

PARALLEL CIRCUIT

Equation (2) describes the parallel circuit shown
in Figure 5.

K1 = /CK4 * CK2 Bus + /CK3 CK5 4, Bus .

(2)

Equations that describe the parallel circuits
can be written using parentheses as shown in
equation (3) . However, if the model is to be used
for Automatic Malfunction Analysis, equations con-
taining parentheses cannot be processed by the
current version of the AMA program.

K1 = (/CK4 CK2 + /CK3 m CK5) „ Bus

(3)

' I	 -' ^---c	 	 11^	 4
K1	 CK3	 J7	 CK4	 J6	 BUS

Figure 4. Typical series circuit.

75

D. T. THOMAS AND R. L. JAEGLY

Figure 5. Typical parallel circuit.

PREPROCESSOR PROGRAM

The Discrete Network Simulator Preprocessor
is a versatile data reduction program. It is used
for reformatting, coding, and filing simulation model
data into various formats as desired by the user.
The program was designed to shorten and reorder
model equations and names so that subsequent
programs are not required to utilize the model data
in its original format of name/parameter and equa-
tion card images. The names in the original model
are descriptive engineering names that are necessary
for accurate correlation between the model and the
system. The model data must be coded and reduced
for fast and efficient internal computer manipulation.
The preprocessor program accomplishes this func-
tion and records the processed model data on files
that provide rapid direct usage by the simulation
and AMA programs. The capability for subsequent
programs to print out the processed data with
engineering names still is possible through special
print processing subroutines. The output files are
stored on three separate tapes, plus a standard
model listing with error identification. One output
tape file is formatted for use by the simulation pro-
gram and one is generated in a format for use by
the AMA program. The first tape is the standard
preprocessor output tape and can be produced without
generating either of the other output tapes. This
tape must be used as an input tape to the preprocessor
program for constructing either one or both, as
desired, of the other output tapes. The Standard
Model Tape also is utilized as an input tape to the
preprocessor editor program to further process the
model and produce cross references and inter-
dependency tables for analysis.

The data are extracted for processing as out-
lined by the field assignment or * VARIABLES
control card. The total number of fields used in
conjunction with each variable is tabulated for use
during processing. The active variables (variables
that can- change state during system operation) and
those that are inactive are separated and counted.
these totals are listed on the printout for reference.
During the initial processing, the variables are
assigned internal numeric codes that are repre-
sented by their implied position in the active or
inactive names tables. The active names will
start at table location 1 to N and the inactive names
will be from N + i to the table end.

As the equations are processed for use by
subsequent programs, they are packed into equation
tables containing coded (shorthand) versions with
extraneous blanks, etc. , removed. The variables
used . in the equations are negated before being
packed into the tables. For the simulation model,
the equations are searched, and the active vari-
ables that affect other variables by their use in the
equations are tabulated and their relationship to
each other is identified. Reference tables reflecting
this relationship are generated. An Indirect
Reference table lists the total number of variables
that each individual variable directly affects. This
table also provides an address that points to a
location in a Direct Reference table that contains
the locations of the equations for the affected
variables in a separate equation table. In addition
to the reference and equation tables, a model is
created in which the inactive variables are removed
for the simulation program.

76

D. T. THOMAS AND R. L. JAEGLY

This model has the equations reformatted, or
culled of the inactive variables, and is constructed
of the internal code numbers. The actuation times
are cataloged into files that can be readily identified
with their associated variable during simulation
execution. For Automatic Malfunction Analysis,
each name is assigned a computer word by implied
position as before, only this new table will contain
all of the characteristics of the variable indicated
by Bit flags. The characteristic will include the
classifications for: active or inactive; whether the
variable is to be considered as a failure candidate
including which type of failure, on or off; the
variable common point level, or the number of
indicators the variable can affect; and the starting
address of the variables equation. A failure names
table is also created that lists all of the variables
designated as failure candidates and with a corre-
sponding search key section that will eliminate
unnecessary testing of variables during the AMA
program execution.

By the use of control cards, several options
in processing the model are controlled. Function
of the *VARIABLES control card is to define the
variable parameter card formats. The card has a
free field format and must occur before the variable
parameter cards. Two required pieces of informa-
tion must be obtained from the card: (1) the
number of fields associated with the variables, and
(2) which fields are time fields. The fields may
be assigned a label or left blank and referenced by
the relative position on the card.

The number of fields associated with the
variables is determined by the number of commas
plus i. The field signifying the time fields must
have the word TIME between the commas (or comma
and terminating period). Field 1 is always , con-
sidered to be the variable name.

The *CULL card controls the equation proc-
essing. All variables that are not classified as
active as defined by the CULL card are deleted from
the equations.

*CULL, FIELD TITLE = IDENTIFIER.

(A) "CULL is placed behind *VARIABLES
card and before any time cards.

(B) FIELD TITLE = IDENTIFIER.

FIELD TITLE is the actual name assigned
to identify the field position of the informa-
tion controlling the active-inactive
designation.

IDENTIFIER is the BCD code that identifies
an active variable card.

Example:

*CULL, TYPE =A.

Field title is TYPE, and identifying code is A. Thus,
*VARIABLES, TYPE control card indicates that the
first data field contains active-inactive code, and
any variable card with an A in the first field is treated
as active. Automatic Malfunction Analysis control
cards define the information in the AMA model for
each variable.

*FAILURE CLASS, title. Identifies the name of
the variable definitions field that will classify
failure candidates.

*ZEROS, codes. Indicates the zero failure
classes. Codes are alpha-numeric values in
field designated by the failure class card that
will identify a zero candidate. Each code is
separated from the previous by a comma, and
the card terminates with a period. Maximum
of 50 codes.

*ONES, codes. Same as *ZEROS, except the
data concerns one's failure candidates.

*INDICATORS, title = codes. Card identifies
the monitored variables in an AMA system.
Title is the name of the variable definitions
field that contains the identifying code for
indicators. Codes are alpha-numeric values
in field designated by the title that will identify
an indicator. Maximum of 50 codes.

*LOCATION, field 1, field 2. Card identifies
two variable definitions fields which contain
additional data to be included when failure
candidates are listed.

Discrete Network Simulation Program

After the system model has been processed
through the preprocessor editor programs, system
operation can be simulated using the Discrete Network
Simulation (DNS) program. The model, as written,
represents the system in a static condition. A set
of drive functions (test procedures) is then required
to establish the model in the initial condition for the
simulation and to represent the activities to be simu-
lated. The results of the simulation are recorded on
the output tape. The printout includes:

77

D. T. THOMAS AND R. L. JAEGLY

f. The order of events occurring.

2. The time of each occurrence.

3. A list showing the state of all variables
at any selected time.

The program first establishes an initial con-
dition for the state of the variables in the model.
On the basis of this state, it examines all equations
in the model, and the logic predicts what variables
will change state. The simulation represents real
time; therefore, after the prediction has been
made, the program looks up the activation times
for the variables changing state and imposes that
time delay on the program before allowing the
predicted changes to occur. This process is
indicated on the printout. "Input" is the code word
indicating that the state of this variable is being
set by an external command in the input deck. The
code word, "Enter" indicates that this variable is
changing state because of the logic of the equations
combined with the computer program.

This simulation represents real-time. The
time of the simulation is printed in the columns
on the right side of the sheet and as indicated by the

headings, can be described in days, hours, minutes,
or seconds. The seconds are resolved down to the
nearest millisecond. The time printed for each
activity line represents the actual time for the
activity to occur.

Figure 6 is a typical printout from the simula-
tion program. The printout shows the complete
operational history of the system being simulated.
The procedure identification is IDA 5010. At step
number 5, substep 00, when DO 179 is input to 1,
it predicts that relay 190K5 will come on. Relay
19OK5 comes on and predicts that DI's 176, 177,
and 178 and relays 27K43, 44, and 45 will turn off.
Following the predictions, the actual events take
place and the absence of any predicted results shows
that no further activities take place as the result of
DO 179 being turned on.

At the end of the simulation of each section of
the procedure, the simulation program is commanded
to print out a list showing the status (on or off) of
each of the components (variables) in the system;
an example is shown in Figure 7. This indicates,
at the end of the procedure, which relays were on
and which were off at this point in the procedure.
In the simulation program, a record has been kept

= HEAD LIST
*NAME	 IDA5010

TYPE DESCRIPTION VALUE NO OF SECONDS
EVENTS

*BEGIN, 10000.
r *STEP NO 000500
INPUT D0179 1 1 .100

190K5 1 .105
ENTER 190K5 1 1 105

DI176 0 .105
DI177 0 .105
DI178 0 .105
27K43 0 .110
27K44 0 .110
27K45 0 .110

ENTER DI176 0 6 .105
ENTER DI177 0 5 .105
ENTER DIf78 0 4 .105
ENTER 27K43 0 3 .110
ENTER 27K44 0 2 .110
ENTER 27K45 0 1 .110

THERE WERE 8 EVENTS IN CASE 45.

Figure 6. Simulation history printout.

78

D. T. THOMAS AND R. L. JAEGLY

EDS TEST PROCEDURE VERIFICATION

149 602A5K69 =	 0. 130
150 602A5K70 =	 0. 134
151 602A 5K71 =	 0. 132
152 602A5K78R =	 1. 0
153 602A5K78S =	 0. 0
154 602A 5K40 =	 1. 0
155 602A5K41 =	 1. 0
156 602A5K42 =	 1. 0
157 602A5K65R =	 1. 0
158 602A5K65S =	 0. 0
159 602A5K66R =	 1. 0
160 602A5K66S =	 0. 0
161 602A 5Ki 1 =	 0. 6
162 602A5Ki2 =	 0. 6
163 602A5K13 =	 1. 7
164 602A5K14 =	 0. 8
165 602A5K21 =	 0. 10
166 602A5K22 =	 0. 10
167 602A5K23 =	 1. 11
168 602A5K24 =	 0. 12
169 602A5K31 =	 0. 4
170 602A5K32 =	 0. 4
171 602A 5K33 =	 0. 4
172 602A5K34 =	 0. 4
173 602A5K77 =	 1. 69
174 602A5K8 =	 1. 91
175 602A5K15 =	 0. 8
176 602A5K16 =	 1. 9
177 602A5K17 =	 0. 10
178 602A5K18 =	 0. 10
179 602A5K25 =	 0. 12
180 602A5K26 =	 1. 13
181 602A5K27 =	 0. 14
182 602A5K28 =	 0. 14
183 602A5K35 =	 0. 4
184 602A5K36 =	 0. 4
185 602A5K37 =	 0. 4
186 602A5K38 =	 0. 4

Figure 7. State list from discrete network simulation.

of the history of the activities of each of the variables
in the system, as shown in the right hand column.
A zero in this column indicates that these relays
have not been turned on or off in this portion of the
procedure. It also shows that relay 602A5K69 was
turned on or off 130 times during this procedure.
Each count represents a half cycle which results
from that element being turned on or off. If the
figure in this counter happens to be an odd number
(such as the occasion for item 163 relay A5K13) , it
indicates that this relay is left in the opposite state
at the end of the procedure compared to what it was
at the beginning of the procedure.

From these examples it can be seen that con-
siderable information about the effect of a given test
procedure upon the hardware or system under
analysis can be deduced by careful evaluation of
results of the system simulation - provided a
carefully prepared model is used.

Test procedure verification using the Discrete
Network Simulation program is diagrammatically
shown in Figure 8. Using the schematic, a logic
model of the electrical networks is constructed.
From the test procedure tape, the commands to the
stage and the electrical support equipment are

79

D. T. THOMAS AND R. L. JAEGLY

TEST
PROCEDURE	 SCHEMATICS
TAPE

INPUTS	 LOGIC	 SIMULATIONMODEL

INDICATORS FROM	 COMPARATOR	 INDICATORS FROM
TEST PROCEDURE	 PROGRAM	 SIMULATION

DIFFERENCES

Figure 8. Test procedure verification by discrete network simulation.

abstracted and these, together with the model,
make up the input to the Discrete Network Simula-
tion program.

The simulation program produces a time
oriented history of the normal sequence of operation
of the electrical networks. The complete history
of the normal network operation is used to validate
the accuracy of the Iogic model. However, the
checkout computer can only evaluate the results of
inputs it has supplied in terms of discrete indicators.
Therefore, an edited version of the simulation
history is produced that shows only the commands
from the computer and the results that are trans-
mitted back to the computer.

The test procedure tape, in addition to the
command functions, normally contains the predicted
results for the procedure. These predicted results
are abstracted from the test procedure tape and
compared to the results of the discrete network
simulation by a comparator program. Differences
between predicted results and the test procedure
and results of the simulation are printed out for each
step and substep of the test procedure.

AUTOMATIC MALFUNCTION ANALYSIS

Automatic Malfunction Analysis is a compre-
hensive analysis technique to determine component
failure that will affect designated test or monitoring
points that indicate the status of equipment. This
technique is based on an orderly analysis process

to determine the failure candidate (s) that would
cause specific no-go test-point patterns for each
test point in a test procedure.

Functional failures can occur individually, in
the sense that a failure is independent of other
failures. An independent failure of a component is
considered a single failure — an occurrence AMA
is designated to detect. A single failure can effect
no indicators, effect a single specific indicator, or
effect multiple indicators. Because AMA is com-
prehensive, data are generated to encompass all
possible single failures that would have any single
or multiple effects.

In use, the on-line AMA must have as inputs
from the test terminal suitable formatted input
data that include:

1. The location within the test where malfunction
or no-go occurred. This is normally the block, step
and substep, etc. of a particular procedure.

2. The indicators or DI's that are in an incorrect
state or no-go.

Upon receipt of this data, the test location data
are stored and the simulation starts. Each of the
variables are initialized to their test beginning
states and an internal Block Initialization Test is
accessed to update the state lists to the correct test
block. The simulation will then continue through
the test block of the procedure until it reaches the
point (step and substep) that corresponds to the one
sent from the test console. After the simulation is

80

D. T. THOMAS AND R. L. JAEGLY

complete, the states of the variables at this point
are added to the internal tables. The automatic
malfunction subprograms will analyze the relation-
ship of each variable within each equation as deter-
mined by the normal state of each variable at this
block, step, and substep. The results of this
analysis produce a cause and effect classification
of all variables in the system for the time that the
no-go occurred. The causes are compared with the
no-go indicators that were input from the test con-
sole, and if an exact match or pattern of DI's is
found that could be effected by a particular variable
(from the cause and effects table) , these variables
will be uptranslated to do their original engineering
format and returned to the test console for display.
The display will include such information as
necessary to identify the variable clearly and indi-
cate where it may be found on the schematics. If
an exact match is not found, the nearest group of
single failures that falls within the no-go set is
flagged as the cause with notation to this effect.

Figure 9 is an example of the information dis-
played on the CRT display of the checkout computer
as the result of requesting AMA data. This informa-
tion was generated on the Univac 1108 and trans-
mitted to the checkout computer. The information

that was transmitted to the 1108 is sent back and
displayed to check that the correct analysis was
performed.

1. The Test Procedure is 321.

2. AMA data is requested at Block 2, Step 1,
Substep 82 of this procedure. The following infor-
mation was returned:

1. DI 1000 was not included in the logic model,
therefore no information is available.

2. The state of DI 921 as transmitted agrees
with the normal state as defined by the system
simulation. Therefore, it is not a valid no-go.

3. There are three DI's, 855, 856, and 859
processed as no-go's.

4. There were three malfunction candidates;
any of the three if they failed would have caused
the multiple DI no-go pattern.

5. If each DI were considered a separate inde-
pendent failure effect, then there is one component
for each DI which could cause that no-go.

DNS/AMA DATA - TP321, BLOCK 2,	 STEP 1,	 SUBSTEP 82.

THE FOLLOWING, NOT IN THE MODEL, WILL BE IGNORED
DI1000

SIMULATION INDICATES THE FOLLOWING IS NOT A VALID NO-GO ...
DI921

THE FOLLOWING NO-GO DI LIST WAS PROCESSED
DI855	 DI856	 DI859

MALFUNCTIONS EFFECTING THE MULTIPLE NO-GO DISCRETES ARE -
1587 CONTACT I i 2A3'K4'J8SHSI	 GSE	 294
769 BUS 1 12A3'21D110	 GSE	 294

1137 COIL'12A3'K4'J8SBSC	 GSE	 294

MALFUNCTIONS WHICH EFFECT THE SINGLE DISCRETE DI855 -
1577 CONTACT'12A3'Ki'J8GH 	 GSE	 294

MALFUNCTIONS WHICH EFFECT THE SINGLE DISCRETE DI856 -
1580 CONTACT'12A3'K2'J8PR 	 GSE	 294

MALFUNCTIONS WHICH EFFECT THE SINGLE DISCRETE DI859 -
1582 CONTACT' 12A3'K3'J8SAZ	 GSE	 294

ENDATA

Figure 9. AMA display.

81

D. T. THOMAS AND R. L. JAEGLY

6. For every component listed the following
information is displayed.

a. The complete name as written in the
equation.

b. The internal code number which could
be used to call up additional information
about the component if it were included
in the model data base.

c. The location of the component as to
stage, GSE, or facility.

d. The sheet number of the schematic
where that component is used.

COMPUTER PROCESSING

The procedures employed to implement the
AMA technique on the Univac 1108 were based on
performing simulation and malfunction analysis only
for a specific no-go test point encountered while
running a test procedure. The procedures utilized
successfully in a previous application on the IBM
7094 were based on performing all required simula-
tion and malfunction analysis for the entire test
procedure prior to conducting the actual test
procedure.

The AMA program normally requires from
2 to 3 minutes of CPU time to process a typical
no-go discrete indicator pattern. The average
CPU time based on a representative group of nine
separate runs was 2.48 minutes. However, a
comparison of the processing time required for the
1108 and 7094 may be made based on the total
processing time required to achieve the end result;
i. e. , display of the malfunctions causing a particu-
lar no-go. The figures from the 7094 experience
have been adjusted to reflect the test procedure
used with the 1108. This is shown in Table 2. The
preprocessing of the data for the Univac takes only
16 minutes while the total preprocessing and analysis
would take 105 minutes on the 7094. The on-line
simulation and analysis with the 1108 requires 2. 5
minutes. Since all analysis on the 7094 was pre-test,
only a tape search was required, approximately
1 minute.

The AMA program file is a segmented absolute
program occupying approximately 12 contiguous
fastrand tracks. When executed, the AMA program

utilizes approximately 45 000 core locations, con-
sisting of 9000 program locations and 36 000 data
locations. The sizing for the block of data locations
was based on data processing requirements for a
system model of approximately 3200 variables.
AMA is a tool rather than an end item; therefore,
its value depends upon how it is applied and the
value of the information produced. The AMA
technique can be applied in two different modes of
operation for future space programs support:
(1) onboard, depending upon the size and capability
of the data processing system and the total opera-
tional system requirements; and (2) as a ground
based analytical technique with the inputs and outputs
relayed to a space station by the telemetry systems.
The application of AMA can be discussed independ-
ently of the exact mode of application. The follow-
ing are some typical examples of how the AMA
technology could be utilized to improve the opera-
tional capability of a space system.

Onboard Maintenance

In its most direct application, AMA answers
the following question. Given a complex system
with a set of system indicators, the AMA programs
will perform a rigorous analysis to say: Given a
subset of system indicators that indicate a no-go
condition at a particular point in the operational
sequence, the following are the only components
that would cause the specific no-go indicator pattern
to occur if they failed. To restate in simpler terms,
AMA can say to a space crew, for any possible
failure pattern, replace these components to correct
the malfunction. Depending upon the data processing
capabilities of the space system, this type of data
could be generated onboard using the AMA programs
or the information generated before a flight on the
ground and stored in a data retrieval file. It could
also be transmitted to the onboard system by the
telemetry system.

System Monitors

To be able to generate complete malfunction
information as described in the previous paragraph,
implies that a sufficient number of system monitor-
ing points have been designed into the system. If
the AMA programs are used during the design phase,
they can insure that a total monitoring capability
has been incorporated into the system using the
minimum number of test points for the monitoring
system. It can also insure that there are no

82

D. T. THOMAS AND R. L. JAEGLY

TABLE 2. RUN ANALYSIS

MODEL COMPARISON 1108 7094

DEMONSTRATION MODEL SIZE

VARIABLES
Discrete Indicators 224 130

Other Active Variables 2308 2295

Inactive Variables 523 624

Total 3055 3049

EQUATIONS 2265 2413

PROCESSING FOR TP321 1108 Time	 7094 Time

Model Processing 16 min.	 18 min.

Simulation -	 7 min.

AMA & AMAEDIT -	 80 min.

SUMMARY

Preprocessing and file
generation and storage
prior to utilization for test 	 16 min.	 105 min.

Retrieval, analysis,
and display	 2. 5 min.	 1. 0 min.

*This is for a tape search only, no analysis.

components in the final system that could fail and are prepared by a third party, the simulation pro-
not be detected by one of the system indicators. gram can be used to determine the accuracy of the

procedures.

Procedure Validation
System Engineering

AMA requires the preparation of a system
model and the use of discrete network simulation The development and validation of the logic
program.	 One of the inputs used by the simulation model required with the DNS programs is an
program is the normal test or operational procedures effective method for insuring the development of
that provide the driving function for the system effective system specialists.	 The results of the
simulation.	 This system model can be used to simulation depict the normal operational sequence
either validate or assist in-the development of the of a complex system with a minimum of manual
test or operational procedures. 	 If the procedures analysis of the schematic drawings. 	 The simulation

83

D. T. THOMAS AND R. L. JAEGLY

provides a means of investigating the effects of
proposed design changes and it provides a rigorous
printed output that can be used to establish positive
control over system interfaces.

Cost Effectiveness

There are other areas where DNS/AMA could
be effectively applied, -such as to determine what

modes of degraded operation are possible with a
component failure and to reduce the amount of
ground maintenance testing. These applications
require additional study and development.

84

MASASA SOFTWARE SYSTEM FOR THE DIGITAL

SIMULATION OF PHYSICAL SYSTEMS
By

H. Trauboth and N. Prasad'

SUMMARY

In the design analysis, evaluation, and check-
out of complex aerospace systems, many simulations
of varying depth have to be performed to test all
possible mission conditions. The Marshall System
for Aerospace Systems Simulation (MARSYAS) is a
software system that allows easy setup and control
of the simulation of the continuous and discrete
dynamics of large physical systems on a digital
computer. It is particularly suited to the engineer
who has little experience in simulation and computer
programming. The physical systems are modeled in
the form of block diagrams. The blocks can have
multiple inputs and multiple outputs, and a block
can contain other blocks within itself; i. e. , block
diagrams can be built in hierarchies. The block
diagram can contain analog computer elements,
transfer functions, algebraic equations, and logical
functions. Elements of the block diagram that are
used frequently are available in a Standard Elements
List. This list is not fixed; it can be updated easily.
For infrequently used elements, a FORTR.^_N sub-
routine can be submitted. MARSYAS should also
serve as a storage and retrieval system for models
as a basis for a "model configuration control"
system on the central time-shared computer,
UNIVAC 1108. The development of models is
costly, and, therefore, they should be utilized by as
many people as possible. The language allows a
standard description of models and easy modification
of already stored models specifying their blocks or
hierarchies of blocks and their interconnections
with names as in engineering drawings. The outputs
of the simulation system can be not only time-
responses but also other analysis data such as
stability parameters, steady-state response,
frequency response, power spectrum, and sensitivity

The models referred to in this paper can be
mathematically described by ordinary differential
equations, algebraic equations, and logical functions.
To provide the additional analysis capability and to
obtain efficient computation speed, analysis tech-
niques of modern control theory have been employed
for the mathematical foundation of the simulation
system. The differential equations generated from
the block diagram are in the form of vector-matrix
state equations, which do not need to be . ordered
for their numerical integration. Several integration
modes can override the standard mode. Algebraic
loops are identified by the processor. The mathe-
matical foundation has great potential for expanding
the capability and improving the computational
efficiency of MARSYAS. For instance, during the
numerical solution cycle, matrix multiplications
and additions have to be performed that could be
done simultaneously on several parallel processors
and thereby speed up the simulation tremendously.

The language is designed in such a way that the
user has to transmit to the computer only such
information that is essential to describe the model
and to specify the simulation run, but the user does
not concern himself with the programming of the
computer. If an engineer has no knowledge of
modeling, he can call up a pre-stored model and
run a simulation after specifying only the model
input signals. On the other hand, if the engineer
has FORTRAN programming knowledge, the language
gives him some programming capability for special
control of the simulation. The MARSYAS language
is divided into modules that describe independent
functions of the simulation. Within these modules,
several MARSYAS statements are available that are
written in free format and need no special ordering.

The MARSYAS software compiles a MARSYAS
program, which describes a model and specifies

The authors wish to extend special credit to Mr. H. Wisnia, Mr. H. Gabow, and Mr. H. Smith of
Computer Applications, Incorporated, who made major contributions in the language implementation and
software design, and to Dr. R. Sevigny and Mr. T. Balentine of Computer Sciences Corporation, who are
responsible for the software implementation and programming.

85

H. TRAUBOTH AND N. PRASAD

the simulation, into a FORTRAN program that con-
tains the arrays and subroutines for the numerical
solution of the various matrix equations. It is built
for time-sharing operations on MSFC's central
computing facility, UNIVAC 1108. The software
allows several users access to MARSYAS and its
models simultaneously from remote stations.
Although maximum use is made of the UNIVAC 1108-
EXEC VIII operating system, the MARSYAS software
could be used at other facilities since it is written in
FORTRAN. To have the MARSYAS system evolve
while it is in operation, it is mandatory to break it
into many relatively independent program modules
and tables.

The ease and speed of setting up and running a
precisely repeatable simulation together with its
special analysis capability make MARSYAS a
valuable tool for analyzing and evaluating complex
aerospace systems.

INTRODUCTION

New aerospace systems that will be developed
in the next decade such as the Space Shuttle Vehicle
and Space Station will be used for more versatile
missions; they will be more autonomous and independ-
ent from ground operations; and, therefore, their
design will be more complex than that of present
space flight systems. To design these new systems
optimally for all mission phases, extensive design
analyses, evaluations, and tradeoff studies have to
be performed before a design can be finalized. This
means that many simulations of varying depth have
to be run to test all possible mission conditions.
Then, the integrated hardware and software systems
have to undergo extensive testing and checkout
before they are flight ready.

Several years ago, the Quality Assurance &
Reliability Laboratory conducted a feasibility study
to determine if simulation of large physical systems
on a digital computer would aid the checkout engineer
[1] . The study showed that digital simulation would
indeed be a very desirable tool that would enable
the checkout engineer to design and evaluate test
procedures prior to hardware delivery. It would
also assist him in determining critical test points
and provide a better insight into the functions of the
equipment that must be checked out. The Computa-
tion Laboratory then began designing the simulation
system more than two years ago.

For the Apollo Program, several enormous
simulation facilities have been installed at con-
tractor and NASA. sites. These consist of various
types of simulators such as special purpose hard-
ware simulators; flight trainers; and analog,
hybrid, and digital computers [2-41. Analog
computers and special purpose simulators have
played a major role in simulation until a few years
ago, although first attempts were made to simulate
analog computer block diagrams on a digital com-
puter as early as 1955 [5]. Since then, the great
flexibility of modern digital computers has been
explored in a number of developments of digital
simulation languages particularly for non-realtime
analyses [6]. To direct the development of digital
simulation languages, a standard language was
introduced that is particularly suited for the simu-
lation of analog computer-like block diagrams mixed
with FORTRAN subroutines and statements [7] .
Most of the common digital simulators are pre-
compilers that generate FORTRAN code and order
the integrator statements automatically so that the
numerical integration for each integrator can be
performed in the proper sequence. In comparison,
the digital simulation system described in Reference
8 interprets linear block diagrams of transfer
functions and converts them into a matrix equation
whose coefficients are determined by the numerical
convolution for each transfer function block [9].

A blueprint of the digital simulation system
described in this paper was given in Reference 10.
This simulation system addresses itself to the
engineer who has little experience in simulation and
in computer programming and who wants to simu-
late large physical systems. It should be used for
a variety of applications such as for design analysis
and •evaluation, checkout, and malfunction analysis.
This simulation system should also serve as a
storage and retrieval system for models as a basis
for a "model configuration control' s system on a
central time-shared computer. The development
of models is costly, and, therefore, they should be
utilized by as many people as possible. The
language allows a standard description of models
and easy modification of already stored models,
assuming the physical system is described by
multiple input/output blocks or hierarchies of blocks
and their interconnections using names as they
appear in engineering drawings. The outputs of the
simulation system are not only time-responses but
also other analysis data such as stability parameters,
steady-state response, frequency response, power
spectrum, and sensitivity.

86

H. TRAUBOTH AND N. PRASAD

During the operation of a system of this magni-
tude, one has to reckon with certain alterations of
the operational features of the system. Therefore,
the simulation systems software is designed in a
modular form to keep the impact of possible design
changes to a minimum. To provide the additional
analysis capability and to obtain efficient computa-
tion speed, analysis techniques of modern control
theory have been employed for the mathematical
foundation of the simulation system. The differential
equations generated from the block diagram are in
the form of vector-matrix state equations, which do
not need to be ordered for their numerical
integration.

The description of the user language, the
mathematical foundations, and the software struc-
ture will be brief in this paper; however, separate
papers are being prepared to cover these areas
more exhaustively.

SIMULATION CAPABILITY

Before a physical system can be simulated, a
model of its functions has to be generated. In most
cases, the derivation of a model requires human
judgement and, therefore, is a manual process.
Only in special cases, such as electrical circuits,
does a direct relationship exist between the physical
components network and the mathematical descrip-
tion of its functions. In such a case the physical
network can be described directly to the computer
which then generates the mathematical model and
solves for it [11, 12]. For the design of MARSYAS,
a model of the guidance and control system of the
Saturn V and a model of the propulsion system of the
S-IVB stage were used as test models representa-
tive of other space vehicles' electrical, mechanical,
and hydraulic systems. The models referred to in
this paper represent the continuous and discrete
dynamics of physical systems which can be mathe-
matically described by ordinary differential equa-
tions, algebraic equations, and logical functions.

The engineer prefers to describe a model by
block diagrams because their graphical representa-
tion is visually comprehensive. The blocks of the
diagram can have multiple inputs and multiple
outputs, and a block can contain other blocks within
itself; i. e. , block diagrams can be built in
hierarchies, or in other words they can be nested
at several levels. At the lowest level where the

block cannot be broken down further, the block is
called an element. There are linear and nonlinear
elements. A linear element is represented by a
transfer function or more generally by a linear
differential equation. A nonlinear element is
represented by an algebraic equation or by a
logical or switching function or by a nonlinear
differential equation. Elements that are used
frequently are called standard elements and are
available in a Standard Elements List (Table 1) .
This list is not fixed; it can be updated easily using
MARSYAS statements. For infrequently used
special elements, a FORTRAN subroutine can be
submitted. Thus, the block diagram can contain
analog computer elements, transfer functions,
algebraic equations, and nonlinear ordinary
differential equations. Figure i depicts a typical
block diagram of a model.

A block diagram is specified to the computer
only by the names of the blocks, inputs, and outputs;
by the names and values of the element parameters;
and by the unidirectional interconnections of the
block. The names can be up to 36 characters long,
so that the same names as found in engineering
documentation can be used. The block diagram
can be stored permanently in the Functional Data
Base (FDB) or an already-stored model can be
modified. Only authorized personnel having the
access-key can write into the FDB, whereas
everybody can read out and use models of the FDB.

For a simulation run, the input signals or
excitation functions can be pre-stored analytical
functions such as exponential sinusoidal time
functions or digitized signals recorded on magnetic
tape. These recorded signals may be measured
signals or output signals generated by a previous
simulation run. The outputs of the simulation can
be manifold. Any commection point in the block
diagram can be chosen for obtaining a systems
output signal. The dynamic systems output signals
can be plotted or printed as functions of time.
The steady-state response can be calculated from
the matrices available. For linear systems,
additional analysis information can be computed
such as frequency response, power spectrum,
stability, and parameter sensitivity.

The ability for the user to control the internal
processing of the various simulation functions is
kept to a minimum and restricted to functions
essential to the simulation. The user can specify
the relative truncation error, the integration step

87

H. TRAUBOTH AND N. PRASAD

TABLE i. EXTRACT FROM LIST OF STANDARD ELEMENTS

OF 7 OF MN E- LIST OF PARAMETERS IN THE ORDER IN WHICH THEY
CLASS BLOCK DIAGRAM SYMBOL

INPUTS

OUT
MONIC

INPUT — OUTPUT RELATION
APPEAR IN THE ELEMENTS STATEMENT

N
^ bl d l`ft) _

I e a1
I drl

BLOCK
1(r) } = p e(r)

I 1 BL I _ 0 N,*N• 'N—I' *N-2 	 bN , bH_l- bN_2,..,be

I	 bis) a	
d11(r)

= 0 dl'
(=0

CONSTANT I(f)	 e(t)
K 1 1 CM p(l) a K i(f) K

MULTIPLIER

12	 II

o(d
N

ADDER I N I AD e(t)=I11(r) NONE

i = 1

iN

OUTPUT

SLOPE _ _

LIMITER
i(r)	 c(r)

1 1 LM b
INPUT

SAMPLE AND
HOLD

'(r)	 1_`	 Ta	 o(r)
1 1 SH o(r)= i(nT),	 -T'r<(ni 1)T, T

MULTIPLIER
il(t) o(t)

K 2 1 ML oltl=	 I l (t) . 1 2(r) NONE

i2(r)

i2(r)

i l (r)	 o(r) II Il r l, i 2(t) s 0
o(rl=S'I 2 1 BRO NONE

YYYYYY 0"2(t) = 0

BOOLEAN RELAY

2 1 SRI 0''2 -0o1r) _^

i2(t)

i l(r)	 o(r)
NONE

i l rt),	 0i 2 =

i3

i t °1

RESOLVER
'2

o2 3 2 RE

sin'iC^^^co ^li 3)

7] C2^

NONE
ai	 li)	 co	 (i	 1

88

H. TRAUBOTH AND N. PRASAD

CONTROL SYSTEM — XI

I

f G.-4 EXAMPLE OF A MODL'L DESCRIBED BY A BLOCK DIAGRAM OF MULTIPLE INPUT/
OUTPUT-BLOCKS AND A NIESTED BLOCK. c

Figure 1. Example of a model described by a block diagram of multiple input/output
blocks and a nested block.

size, or the numerical integration method if he wants
to override the standard built-in method. Algebraic
loops are identified automatically by the software.

ENGINEER-ORIENTED LANGUAGE

The language is designed in such a way that the
user has to transmit to the computer only that
information which is essential to describe the model
and to specify the simulation run, but does not con-
cern himself with the programming of the computer.
If an engineer has no knowledge of modeling he can
call up a pre-stored model and run a simulation
after specifying only the model input signals. On
the other hand, if the engineer has FORTRAN
programming knowledge, the language gives him
some programming capability for special control of
the simulation.

The MARSYAS language is divided into modules
that describe independent functions of the simulation.
These language modules are the Description Module,
Modification Module, Simulation Module, Continua-
tion Module, Post-Processing Module, and Analysis
Module. Within these modules, MARSYAS state-
ments are written in free format and need no special
ordering. However, the ordering of the modules
themselves has to follow a simple logical rule; e. g. ,
a Simulation Module has to be preceded by a
Description Module because the model must first
be described before it can be simulated. A statement
consists of an operator and an argument, which can
be subdivided into several variable argument fields
depending on the "operator. "

The Description Module is used to describe the
model given in form of a block diagram. It is headed
by the MODEL-statement. The ELEMENTS-statement
contains the name of the element, the type of standard

89

H. TRAUBOTH AND N. PRASAD

element (to be found in the List of Standard
Elements) , and the parameters. The parameters
are written in the proper format for the particular
element type and are either the numerical values or
names. The numerical value of a named parameter
is given by the PARAMETER-statement. If the
element is not in the Standard Element List, a
FORTRAN subroutine carrying the same name as
the element follows the ELEMENT-statement. A
block that is stored in the Functional Data Base
(FDB) is called by the SUBMODEL-statement con-
taining the embedded model name and its input and
output names. The CONNECT-statement carries
the names of strings of inputs and outputs of
elements, submodels, systems inputs, or systems
outputs to be connected to form the model block
diagram. For elements or submodels having a single
input/output, only the name of the element or sub-
model appears in the CONNECT-statement. The
INPUT-statement designates names to the inputs of
the model, and the OUTPUT-statement designates
names to the outputs of the model. The STORE-
statement, carrying the proper key-code, transfers
the Description Module into the permanent FDB.
Thus, the Description Module can be used for
storing and retrieving models as well as for
describing the model for a subsequent simulation
run. Figure 2 illustrates the MARSYAS program
for the example shown in Figure i.

The Modification Module allows inserting,
deleting, and disconnecting of elements and sub-
models through the use of the INSERT- and
DISCONNECT-statements. Statements of the
Description Module are used to specify the elements,
parameters, and interconnections that are to be
modified. The Modification Module can be used for
modifying models of the FDB or for a subsequent
simulation.

The Simulation Module is used to define the
course of the simulation. The INITS-statement
specifies non-zero initial conditions at the outputs
of the linear elements and submodels. The
EXCITE-statement tells the MARSYAS processor
what excitation functions or record tapes are fed
into what systems inputs of the model. If a numeri-
cal integration method other than the standard method
is to be used, the INTMOD-statement specifies the
integration method and the relative truncation error
or the integration step-size (for fixed step-size
integration methods) . The IF-statement determines
the condition under which the simulation should
terminate or hold; e. g. , if a certain time or certain

amplitudes of certain output signals have been
reached. If the simulation calls for the repetition
of a simulation run with modified parameters, the
VARY-statement specifies the parameters to be
changed and their values. The STOP-statement
terminates, and the HOLD-statement discontinues
the simulation.

The Continuation Module initiates the temporary
storing of intermediate results that are necessary
to continue the simulation run at a later time. This
module is particularly useful when the user wishes
to insert check points to obtain intermediate outputs
in a lengthy simulation run. (The user can also
change the integration mode at these check points.)
Based on these outputs the user can decide if the
run is worth continuing.

In the Post-Processing Module, the user
indicates which output signals he wishes to print
or plot and the format and labels of the output. The
FORMAT-statement resembles the FORMAT-
statement in FORTRAN.

The Analysis Module allows the user to designate
the type of analysis output be wishes; e.g., the
FREQ-statement calls for the frequency response
within the specified frequency range. Other analysis
information includes steady-state response, power
spectrum, stability, and sensitivity for which special
statements are available.

MATHEMATICAL FOUNDATION

Analytical Formulation

In the formulation of the mathematical process
that converts the block diagram into an internal
format digestible by the computer, we distinguish
between three parts of the model: (1) the "dynamic"
elements, (2) the "non-dynamic" elements, and
(3) their interconnections. A "dynamic" element
has the property of storing signal information while
a "non-dynamic" element responds instantaneously
to an input signal. The 'constant multiplier' (or
ideal amplifier) and the 'summer' are linear
"non-dynamic" elements. The linear elements
'time-delay,' 'sample-and-hold,' and 'differentiator'
are treated as pseudo-nonlinear elements. For
explaining the mathematics, it is assumed that the
model consists of interconnected "dynamic" and
"non-dynamic" elements of various types but of no

90

H. TRAU80TH AND N. PRASAD

BEGIN, MARSYAS - PROGRAM - X $

MODEL, ACTUATOR - STAGE 1-3 $

INPUTS, Al, A2, A3 $ OUTPUTS, ACTS, ACT2 $

ELEMENTS, BL, MOTOR -A (2, 0, 3, 5, 2, 4, 7) $

_ , LM (1, -3,3) $

SUBMODEL, GIMBAL-3 (IN, Gl) (OUT, GIM-1, GIM-2) $

NAMING, GS, I1, GIM-1, Ti, GIM-2, T2 $

ELEMENTS, AD, ADl, AD2 $

CONNECT, A2, ADS, MOTOR-A, AD2, II, T2, LIMITER-C,

ADi $ _, A1, AD2 $ _, A3, ADl $

Ti, ACTS, T2, ACT2 $

END $

MODEL, CONTROL SYSTEM - XS $

INPUTS, X, Y $	 OUTPUTS, HORIZONTAL, VERTICAL $

ELEMENTS, RE, RESOLVER -B 	 $

SUBMODEL, ACTUATOR-STAGE 1-3 (IN, Al, A2) (OUT, ACTS, ACT2) $

_, GIMBAL-3 (IN, Gl) (OUT, GIM-1, GIM-2) $

CONNECT, X, Al, ACT1, RESOLVER-B (U1), RESOLVER-B (Wl), HORIZONTAL $

Y, A2, ACT2, RESOLVER-B(U2), RESOLVER-B(W2),

Gl, GIM-1, A3 $ _, GIM-2, VERTICAL $

END $

SIMULATE, CONTROL SYSTEM - X1 $

INITS, MOTOR - A (1. 5, 12) $

EXCITE, FSTEP (5. 0), X, FSIN (1, 3000, 0), Y $

IF, TIME. GT. 2. 0, STOP $

PRINT-STEP, 0. 01, X, Y, HORIZONTAL, VERTICAL $

END $

END. MARSYAS - PROGRAM - X $

Figure 2. MARSYAS - Program of the example shown in Figure 1. (It is assumed that model
GIMBAL-3 is stored in the functional data base.)

nested submodels. By some software processing, 	 The linear " dynamic " element ' transfer
the MARSYAS processor has already unwrapped 	 function' is characterized by the following
these nested submodels. 	 relationship:

91

H. TRAUBOTH AND N. PRASAD

	b d
ko t) _	 a	

dki (t)
L,	 (1)
k=0

k
dtk 	k=0

k
dtk

where a and b are constant coefficients and p

is the order of the differential equation (or number
of poles in the complex frequency domain) . It is
assumed that q < p. If p = q, the 'transfer
function' element can simply be split into one with
q < p and one 'constant multiplier' and 'summer'
element. The output signal is o (t) and i (t) is
the input signal of the element. Using the method
as described in References 13 and 14, this differen-
tial equation can be converted into a state variable
matrix equation. For the jth element the following
is obtained;

X (J) (t) = A (J) X(J) (t) + P(J)i(J)
(t)	

(2a)

0(j)
(t) =

C (j) xj0) (t)	 (2b)

xl(j)

X (J) (t) =	 is a state vector of the jth

x (J)

p

element, and X (J) (t) its time derivative. A (J)

C W, and P (J) are constant real matrices of the
dimension p x p and can be obtained by algebraic
calculations from ak and b of equation (1):

b	 a 1
--b	 1 0... 0	 P

P	 P(;) = 1 ap-2

b	 bP
0	 1... 0

P	 a0

AU)	 (2c)
b1	 1 0... 0

-b	 0 0... 1	 W

b0 	 0 0... 0
b	 0 0... 0

P

For a collection of m "dynamic" elements,
the following can be written:

X(t) = AX(t) + PI(t)	 (3a)

O(t) = CX(t)	 ,	 (3b)

where

	

X (1) (t)
	

X (1) (t)

	

X(t) =I X (J) (t)	 , X (t) = X (j) (t)
I

	

X (m) (t)
	

X (m, (t)

A(1)

	

A=
	

A (j)

A (m)

P (1)

P =	 P (j)

P(m)

C(1)

C =	 C (J)

C(m)

	

1(1) (t)
	

0(1) (t)

I 	 = iW
(t)
	 , and O (t) = 0(J) (t)

	

i (m) (t)	 0 (m) (t)

92

e I I e12 ..	 '
elm

E -	 e21 e22 elm

eml em2' emm

f 11 f 12	
....

f 1

F =	 f21 f22 f 2

f ml f m2
....

fmk

911 912'''' 91m

G	 921 922 g2m

911 912	
....

glm

h11 h12	 '	 '	 '	 ' h 1

H =	 h21 h22 ' '	 '	 ' h 2

hll h12	
....

hlk

and

H. TRAUSOTH AND N. PRASAD

It is now assumed that the "dynamic" elements
are connected in any way through 'constant
multipliers' and 'summers' to form a linear model.
The following linear interconnection matrix
equations can then be written:

I(t) = EO(t)+FU(t)	 (4a)

W(t) = GO(t) +HU(t)	 (4b)

with

where

U (t) = vector of inputs (excitations) into
model

W (t) = vector of outputs from model

m	 = number of "dynamic" elements in
model

k	 = number of inputs into model

and

1	 = number of outputs from model.

The coefficient e., in E means the total
1J

constant gain along the path from the output o,
J

of

"dynamic" element j to the input i,
1

of "dynamic"

element i. The coefficient f.. in F is the total
13

constant gain along the path from the model input
u to the input oi . The coefficient gij in G is

the total constant gain from the output o,
J

to the

model output wi . The coefficient hij in H is

the total constant gain from the model input u. to
model output wi.	 J

By substituting equation (4a) into equation (3a)
and equation (3b) into equation (4b) , the model
overall matrix equations are obtained:

X(t) = A *X(t) + P* U(t)	 (5a)

and

W(t) = C"* X(t) + D*U(t)	 ,	 (5b)

where

A* = A+PEC, P* = PF

C * = G C, and D* = H	 .	 (5c)

93

W(t) = GO(t) +HU(t) +K"Y(t) 	 (70
X (t) = eA

"t
P* I

0
(10)

H. TRAUBOTH AND N. PRASAD

andNonlinear elements of the form

y (J) (t) = f 	 (r0) (
t)) t)	 (6a)

are now included, where y (J) (t) denotes the out-

put vector, r (J) (t) the input vector, and f (J)
the function of the jth nonlinear element. For a
collection of nonlinear elements it is

Y(t) = F [R(t)]
	

(6b)

For the inputs to all "dynamic" elements and to
all nonlinear elements, respectively, the following
nonlinear interconnection matrix equations are
written:

I(t) = E O(t) + F U(t) + K Y(t)	 (7a)

and

R(t) = E'O(t) +F'U(t) +K'Y(t) 	 (7b)

where the vectors Y (t) and R (t) represent the
collection of the output vectors and input vectors
of all nonlinear elements of the model. The output
vector W (t) for the model becomes

W(t) = C X(t) + D*U(t) + M(O, U, t) , (8b)

with A*, P* , C*, and D'` being the same
matrices as in equation (5c). N(O, U, t) and
M (O, U, t) are the nonlinear column vectors
[ni (O, U, t) , n2 (O, U, t) , ... nm (O, U, t)) and

	

M I (0, U, t), M2 (0, U, t),	 MI (0, U, t)]
respectively. It is assumed here that there are no
"algebraic loops" in the model. An overview
diagram of the mathematical process is given in
Figure 3.

The matrices A*, P * , C * , and D* are
characteristics for a linear model and can be used
for a number of analyses. The stability can be
obtained from the eigenvalues of matrix A*; i, e.
the model is unstable if there is at least one
eigenvalue in the right half of the complex frequency
plane. The frequency response can be computed
in the following way. The analytical solution of
equation [5a] is

t

X 	 = eA„t X (0) + f eA (t-X) P"U(A) d;

	

0	 (9)

By applying the impulse function I at the
model inputs, the impulse responses or weighting
functions at the model outputs are obtained, so that
for U(t) = I (= identity matrix) and X(0) = 0
equation (9) becomes

The matrices E ... E", F .. F", and K ... K"
represent the cumulative gain along the various
paths between the inputs and outputs of the "dynamic"
elements, nonlinear elements, and the model.

By'substituting equation (7a) into equation (3a)
and equation (3b) into equation (7c) and using
equations (6a) and (7b) , the following are obtained:

X(t) = A *X(t) + P*U(t) + N(O, U, T) 	 (8a)

By applying the Fourier transformation to Xo (t)

X0 (jw) is obtained and from equation (5b)

Wow) = C * X0 Ow) +D*	 (11)

The parameter sensitivity 8W/8a.. is
iJ

determined by applying 8X/8ai .
J
 to equation (5a) ,

where aij is a coefficient of matrix A*. The

94

H. TRAUBOTH AND N. PRASAD

INTERCONNECTION MATRIX EQUATIONS

INTERCONNECTIONS
I = E0+ FU + KY

R = E'0 + F'U + K'Y

W=GO+NU+K*f

p®

STATE VARIABLE EQUATIONS

LINEAR TRANSFER FUNCTIONS X—AX+PI
DYNAMIC 0 = CX
ELEMENTS DIFFERENTIAL EQUATIONS

I

ALGEBRAIC EQUATIONS IMPLICIT NONLINEAR FUNCTIONS
I

NONLINEAR
ELEMENTS Y = F (R)

LOGICAL FUNCTIONS

JI

NUMERICAL SOLUTION	
Z,'

OVERALL
SYSTEM Xn+)	 Xn +h	 ` CX F(XK,Kh)

K = n p

MATRIX
MANIPULATION

OVERALL STATE VARIABLE MATRIX EQUATIONS

X= A'X+P'U+N(O,U,t)

M = C'X+D'U+M (O,U,I)

VARIOUS ANALYSES

USING A', P', C', AND D"

Figure 3. Overview diagram of the mathematical process.

steady-state response can be found also for a non-	 Numerical Solutionlinear model by setting X(t) = 0 in equation (8a)
and obtaining Nearly all numerical methods for the solution

of differential equations are based on the numerical

X(t) _ -A =F -1 P ` (U (t) + N(O, U, t)
\
	(12a)	 integration of first order differential equations1 [15-17]. Hence, the state-variable matrix

equations are particularly suited for these methods.

and	 A system of first order differential equations, in
general of the form

W (t) = C * X(t) + D* U(t) + M(O, U, t),, (12b)

which involves the inversion of A* prior to the
numerical solution.

X(t) = F(X(t), t) 	 (13)

is usually approximated by single-step evaluation
or multistep predictor-corrector methods where

95

K4 = h F (Xn + h, to + K3) O = C Xn	 n

H. TRAUBOTH AND N. PRASAD

X (t) , X (t) , and F (X (t) , t) are the column vectors

[xi (t) , ... xM M] T , Lxi (t) , ... xM (t)] T , and

[fi (X, t) , ... f (X, t)] T , with M equal to the

total number of state variables within the model.
The most common single-step method is the Runge-
Kutta (4th order) which approximates equation (13)
for t = (n+l)-h into

Xn+1 _ Xn + 6 (Ki + 2K2 + 2K3 + K4)	 (14)

with the vectors

Ki = h F (X n, t n)

KZ = h FI,Xn + 2 n + 2)	 '

used. For instance, for the Adams-Bashforth
predictor it is cn-3 = - 9/24, cn-2 = 37/24,

cn-1 = - 59/24, and cn = 55/24; and for the Adams-

Moulton corrector it is ido-2 = 1/24, d o-1 = - 5/24,

do = - 19/24, and do+i = 9/24 [181.

One can show that numerically solving the
overall matrix equations (7) and (8) is not the most
efficient way, because the matrices A * , P*, C * ,,
and D* contain many zero elements. Less compu-
tation steps are necessary if one uses the individual
equations (3), (6a), and (7).

The following is the numerical process (Fig. 4):

0 First the excitation vector U(t) is updated
for t = nh and the following is calculated:

K3 = hF (Xn + 2 in+ 2)	 2O or O(nh) = C X (nh)	

(17)

where h is the time step.

The multistep predictor-corrector methods are
of the following form:

Predictor

Xp [(n+i)h] = X(nh) + h Z ck F [X (kh), kh]
k=n-p

(15)

Corrector

n
X [(n+1) h] = X (nh) + h Z d F [X (kh) , kh]

kI
=n-q	

l
+ h do+1 F Xp [(n+i)h], (n+l)h } ,

(16)

with p being the order of the predictor and q being
the order of the corrector polynomial, and c and

d are constant coefficients depending on the method

(From now on, the subscript n will be used for the
time instant t = nh.)

3O Part of the input vector R(t) is computed
from equation (7b) for those nonlinear elements
whose input is not connected to other nonlinear
elements. For these nonlinear elements, the output
can now be calculated using equation (6a). Then,
that part of R(t) can be calculated which contains

known yn0) . Through alternate use of equations (7b)

and (6a) and assuming that the nonlinear equations
were already properly ordered, the complete vector
Y can be calculated. Now, the input vector In

can be obtained by use of equation (7a) .

@ I = EO +FU +KY	 ,	 (18)
n	 n	 n	 n

and the model output vector W
n

of equation (7c) is

0 W = GO +HU +K"Y	 (19)
n	 n	 n	 n

96

H. TRAUBOTH AND N. PRASAD

Figure 4. Flow of numerical solution of matrix equations.

97

H. TRAUBOTH AND N. PRASAD

Knowing In we go to equation (3a) ,

X(t) = F(X(t) , t) = AX(t) + PI(t) ,

and evaluate

60 k = Fn = AX n + P In	(20)

Then, using equation (15) , the predicted value of
Xn+1 is

O Xn 1 = Xn + h z c F(Xk)	 (21)
k=n-p

and the corrected value of Xn+l' i.e., the final

value of X, for t = (n+1)h is

n

O Xn+l - Xn + h ^ dk F (Xk)
k=n-q

+ h F(Xn+1)
	

(22)

The sequence of the numerical evaluation is outlined
in Figure 4. One can see that within each block,
only matrix multiplications and additions have to be
performed. The row-by-column multiplications
are not dependent on each other; hence, the sequence
in which they are executed is immaterial. This
property has the advantage that several vector
multiplications and additions could be computed
simultaneously resulting in a tremendous speedup
of the computations if several parallel processors
were available.

SOFTWARE STRUCTURE

General

The prime objective of the MARSYAS software
is to transform a MARSYAS program that describes
a model and specifies the simulation into a FORTRAN
program that contains the arrays and subroutines
for the numerical solution of the various matrix
equations. The MARSYAS software is, so-to-speak,

a pre-compiler for compiling MARSYAS language
statements into a set of FORTRAN subroutines,
arrays, and control cards, i, e. , the Object Program,
and a controller for the execution of these FORTRAN
programs. It is built for time-sharing operations
on MSFC's central computing facility, UNIVAC 1108.
The software should allow several users access to
MARSYAS and its models simultaneously from
remote stations. Although maximum use of the
UNIVAC 1108-EXEC VIII operating system is made,
the MARSYAS software could be used at other
facilities since it is written in FORTRAN. To have
the MARSYAS system evolve while it is in operation,
it is mandatory to break it into many relatively
independent program modules and tables. The
major Program Modules (PM) are defined by the
language modules. Hence, we distinguish between
the Description PM, Modification PM, Simulation PM,
Continuation PM, Post-Processing PM, and
Analysis PM. Outside these Program Modules
there are other programs, such as the FORTRAN
Object Program (OP) , library routines for
standard elements and excitation functions, scientific
subroutines for the numerical integration of first
order differential equations, scanning routines,
error recovery routines, and control routines. The
Object Program is compiled by the FORTRAN
compiler and then executed like any manually
generated FORTRAN program. Figure 5 is an
attempt to present an overview of the main flow of
action; it is, of course, a simplification.

Object Program

The FORTRAN Object Program consists of the
MAIN program which has a fixed structure and calls
up various subroutines of fixed and variant structure.
"Variant" means that the program length varies
with each simulation run. The OP reads from four
files as follows:

1. The Simulation Temporary File, which con-
tains all arrays for solving the matrix equations of
Figure 4.

2. The Change File, which contains those
parameters that are to be changed as specified by
the VARY-statement.

3. The Continuation Permanent File, which
stores intermediate results of a discontinued simu-
lation run such as the state vector X (t) .

98

MARSYAS-
PROGRAM

DESCRIPTION PROGRAM MODULE

D TRANSLATING BLOCK DIAL
GRAMS INTO TEMPORARY
MODEL DESCRIPTION TABLES

B

=MODIF

& NAME DICTIONARY

MODIFICATION P.M.

HAND

NSERTING AND DELETING IN/FRO
MODEL DESCRIPTION TABLES

 FOB

S E
C R
A
N

R
0

SIMULATION N R
STATEMENTS 1

N
G H CONTINUATION PROGRAM MOD.

E
R C GENERATING CONTROL CODE IN
0 K IN, OBJECT PROGRAM TO STORE INTER.
U
T

MEDIATE RESULTS AND TO
RESUME SIMULATION

CONTINUATION I
STATEMENTS E

S
POST_PROGESSING P.M.

GENERATINGCONTROL CODE IN
FORTRAN O.P. TO PRINT, PLOT,

POST—PROCESS. AND RECORD SIMULATION RESULTS
STATEMENTS

ROUTINE
ARRASS FOR A

NO AIS
"L

P.M.

 C` SIAND
ANALYSIS	 D•	 YNAYS
STATEMENTS

TEMPORARY SIMULATION PROGRAM MODULE SIMULATION TEMPORARY FILE
INTERNAL
TABLES CHANGE FILE

•MERGING MODEL DESCRIPTION
TA B LES AND FDB CONTINUATION FILE

^j•G ENE RATING SIMULATION POST PARAMETERS FILE
TEMPORARY FILE, CHANGE FILE,
AND CONTINUATION FILE

.P ATH-TRACING FOR LINEAR &
NONLINEAR INTERCONNECTION

PERMANENT
ARRAYS

.1 IDENTIFYING "ALGEBRAIC LOOPS"
FORTRAN OBJECT PROGRAM

DATA BASE .CONVERTING "STRICT" TRANSFER	 I a INTERCONNECTION EQUATIONS
FDB FUNCTIONS TO' PROPERLY STRICT" SOLVERS

• GENERATING FORTRAN — -DRIVER FOR NONLINEAR & EXCITATION
OBJECT PROGRAM FUNCTIONS LIBRARY ROUTINES

e DIFFERENTIAL EQUATION INTEGRA-
TION ROUTINES

•VARY PARAMETER	 LOOP
e EXIT CONDITIONS ROUTINE
TERROR RECOVERY ROUTINES

0.	

•CONTROL ROUTINE S& INDICATORS
•EXEC-VIII CONTROL CARDS
•ANALYSIS ROUTINES
•OUTPUT PROCESSING ROUTINES

FORTRAN — COMPILER
LIBRARY

OF STANDARD NONLINEAR
ELEMENTS & COMPILATION OF
EXCITATION FUNCTIONS FORTRAN OBJECT PROGRAM

EXECUTION OF FORTRAN
OBJECT PROGRAM

SIMULATION RUN

ANALYSIS RUN

PRINTOUT, PLOTTING

10

y
A
D
C0
O
y
S
D
Z
O
Z

A
D
a0

Figure 5. Overview of MARSYAS systems software.

H. TRAUBOTH AND N. PRASAD

4. The Post-Parameters File, which keeps those
parameters and labels that are specified in the Post-
Processing Module.

The Object Program also generates the Simulation
Output Tape which contains the numerical values of
all model output signals and the associated time for
a complete simulation run.

The subroutines of fixed structure perform the
following functions:

TRNSX transforms the initial conditions of
the output signal vector O(o) into
the initial state vector X (o) .

XDUPDT	 evaluates the derivatives k = F (Xn)
of equation (20) .

PCHNG	 changes parameters stored in the
Simulation Temporary File as
specified in the Change File.

TIDY	 writes intermediate simulation
results into the Continuation
Permanent File.

GENO	 generates the output vector O
from equation (17).

n

The variant subroutines are the following:

UVECTR	 generates the vector U by access-

ing the proper library routines for
the various excitation functions.

WVECTOR	 generates the vector W from

equation (19) using the routines
UPGAIN and UPNLIO.

UPGAIN	 creates the array G(I) which con-
tains the cumulative gain of the Ith
path between a "source" (variable
O, U, or Y) and a "terminator"
(variable I, W, or R) .

UPNLIO	 updates outputs of nonlinear devices,
which are already sequenced in the
proper order for evaluation, using
library routines for the various
standard nonlinear elements.

UPBLKI	 generates the vector I
n

from

equation (18) using UPGAIN and
UPNLIO.

DIFFEQ	 is the general integration routine
that calls a specific integration
routine such as RKG for Runge-
Kutta-Gill (4th order) or AM for
A dams-Bashforth-Moulton
predictor-corrector, etc.

POST	 writes the Simulation Output File.

EDIT	 prints and plots output data
generated by POST.

PDP-Elements specify the dimensions of the
various COMMON-arrays in the
OP routines.

ANALYSIS	 is a collection of special subroutines
to generate the overall matrices
A*, P*, C * , and D* and to
perform special analysis
computations.

Description and Modification
Program Module

The subroutines of the Description Module
translate the MARSYAS-statements describing a
model block diagram into the Model Description
Tables for the elements, submodels, inputs,
outputs, parameters, and connections. These
tables are packed into several records and fields
to save storage space. The names are converted
into unique identification code words (ID) via the
Name Dictionary, so that in the internal processing
shorter Name ID's can be used. The connections
are ordered into pairwise connections (predecessor/
successor terminals) . Since the statements can
be written in any order, the END-routine has to
check for certain formal errors such as undefined
names, missing elements, and improper connections
after all tables have been filled. If the model is to
be stored into the permanent Functional Data Base
(FDB), the temporary Model Description Tables
are transcribed into the FDB-file.

The Modification Program Module subroutines
are similar to those of the Description Module in
the sense that they also access the Model Descrip-
tion Tables and modify them.

Simulation and Continuation
Program Module

The subroutines of the Simulation Program
Module have to perform a variety of functions.

100

H. TRAUBOTH AND N. PRASAD

Those tables of the Functional Data Base that con-
tain submodels specified in the SUBMODEL state-
ments and the temporary Model Description Tables
are emerged into the Model Tables File (MTF) .
Blocks representing transfer functions of equal
numerator and denominator order are converted
into blocks where the order of the numerator is one
less than the denominator. The various Simulation
Module statements for initial conditions, excitations,
integration mode, etc. , are translated into the
Simulation Specification Tables File. The Connection
Tables File of the MTF is used for path tracing to
generate the Gain Table that contains the cumulative
gains between the various terminals. The nonlinear
elements are sequenced in the Nonlinear Elements
Table. From intermediate tables such as the Model
Tables Files, Simulation Specifications File, etc.,
the final files used by the Object;Program, (i. e. ,
the Simulation Temporary File, Change File, and
Continuation Permanent File) and the Program File
(i, e. , the Object Program) are generated. The
Simulation Program Module also generates the
Continuation Permanent File if a HOLD-statement
is included in the MARSYAS program.

The Continuation Program Module accesses the
Continuation Permanent File and places, among
other control data, the X-vector into the Initial
Conditions Record of the Simulation Temporary
File, so that the simulation run can be continued by
the Object Program.

Post-Processing and Analysis
Program Module

The Post-Processing Program Module generates
the Post Parameters File and the subroutines POST
and EDIT of the Object Program. The Analysis
Program Module generates the parameter arrays
representing the matrices A*, P'`, C	 and D*
for the various analysis subroutines in the OP.

POTENTIALS AND IMPLEMENTATION
OF MARSYAS

The scientific subroutines of the Object Program
and the library subroutines have been successfully
tested with linear and nonlinear test cases. The
systems software is coded and is presently in the
final checkout process on MSFC I s time-sharing
computer, UNIVAC 1108. The detailed design
specifications are documented and revised [19].
The present implementation, however, does not

include blocks of differential equations of arbitrary
format and time-varying systems. The systems
software for the various analyses has not been
implemented.

The mathematical foundation and the software
structure allow for expanding the capability of
MARSYAS and for improving its language and
internal processing. Thus, elements in the model
block diagram that contain ordinary differential
equations of any order in form of mathematical
equations will be included. The coefficients of
the differential equations can also be functions of
time. While presently algebraic loops can be
identified, but not solved for (except by inserting
an artificial time delay or an implicit function) ,-
it is expected that a separate mathematical
procedure that assures convergence can be found
to solve identified algebraic loops. The matrix
equation formulation of the physical system in
MARSYAS resembles closely the manner in which
electrical networks are mathematically described
for analyzing on the digital computer [20]. Methods
for partitioning sparse matrices in electrical
circuit analysis might, therefore, be applicable
to further improve the computation speed, par-
ticularly for large physical systems [21]. The
language is structured in such a way that it should
be straightforward to input block diagrams and
simulation statements via graphical display into
the computer and thereby enhance the man-machine
communications tremendously. The MARSYAS
language can still be polished to reduce the amount
of writing by the user. However, language improve-
ments will be delayed until the user has gained
practical experience in the operation of MARSYAS.

As was pointed out previously, the MARSYAS
language is well suited for an easy description of
dynamic models, and the MARSYAS software
system allows easy storage, retrieval, and modifi-
cation of models in a central data bank. Thus,
MARSYAS could become the basis for a "Model
Configuration Control" System that keeps informa-
tion concerning the functions of aerospace hardware
up-to-date and available to many engineers and
systems analysts in a common language, similar
to the computerized Vehicle Configuration Control
System that keeps the information about the configu-
ration of the hardware up-to-date. The ease and
speed of setting up and running a precisely
repeatable simulation together with its special
analysis capability make MARSYAS a valuable
tool for analyzing and evaluating complex aero-
space systems.

101

H. TRAUBOTH AND N. PRASAD

REFERENCES

1. Requirement specification part I and analysis of dynamic simulation methods for launch vehicle
component level simulation. Apollo Support Department, General Electric Company, Daytona
Beach, Florida, MSFC Contract NAS8-20060, Final Report, March 1966.

2. Gale, G. R.: The Boeing Huntsville Simulation Center. Simulation, vol. 5, no. 4, October 1965.

3. Saturn V System Development Breadboard Facility Data Plan. The Boeing Company, Document
no. D5-15207, NASA Contract NAS8-5608.

4. Flight Software Development Laboratory. Document no. IBM-68-U60-0022, IBM Under NASA
Contract, 1968.

5. Brennan, R. D.; and Linegarger, R. N.: A survey of digital simulation: digital analog simulator
programs. Simulation, vol. 3, no. 6, December 1964.

6. Strauss, J. C.: Digital simulation of continuous dynamic systems - An overview. Proceedings of
Fall Joint Computation Conference, 1968.

7. The SCi Continuous System Simulation Language (CSSL) . SCi-Committee, Simulation, vol. 9, no. 6,
December 1967.

8. Trauboth, H. H.: Digital simulation of general control systems. Simulation, June 1967.

9. Trauboth, H. H.: Recursive Formulas for the Evaluation of the Convolution Integral. Journal of
ACM, vol. 16, no. 1, January 1969.

10. Trauboth, H. H.; Mitchell, J. R.; and Moore, J. W.: Digital simulation of an aerospace vehicle.
Proceedings of ACM National Meeting, Washington, August 1967.

11. 1620 Electronic Circuit Analysis Program (ECAP) . Application Program 1620-EE-02X, IBM
Corporation, Data Processing Division, White Plains, N. Y., 1964.

12. NASAP 69/I, Network Analysis for Systems Applications Program. Contract NAS12-663, NASA,
Electronic Research Center, January 1969.

13. Zadeh, L. A.: Linear System Theory. McGraw-Hill, New York, 1963.

14. Derusso, P. M.; et al.: State Variables for Engineers. John Wiley, New York, N. Y. , 1965.

15. Benyon, P. R.: A review of numerical methods for digital simulation. Simulation, vol. 11, no. 5,
November 1968.

16. Martens, H. R.: A comparative study of digital integration methods. Simulation, February 1969.

17. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. John Wiley & Sons,
New York, N. Y., 1962.

18. Conte, S. D.: Elementary Numerical Analysis. McGraw-Hill, New York, N. Y., 1965.

19. Programming Specifications for the MARSYAS System. Vol. I (1968), Vol. II and III (1969),
Computer Applications, Inc., New York, N, Y., NASA Contract NAS8-21061.

102

H. TRAUBOTH AND N. PRASAD

REFERENCES (Concluded)

20. Branin, F. H. : Computer Methods of Network Analysis. Proceedings of the IEEE, vol. 55, no. 11,
November 1967.

21. Tinney, W. F.; and Walker, J. W.: Direct Solutions of Sparse Network Equations by Optimally
Ordered Triangular Factorization. Proceedings of the IEEE, vol. 55, no. il, November 1967.

103

Page intentionally left blank

REAL ,-TIME SPACE VEHICLE

SOFTWARE SIMULATOR FOR LAUNCH PROGRAMS CHECKOUT
By

H. Trauboth, C. O, Rigby, and P. Brown'

SUMMARY

A digital simulator was developed by Marshall
Space Flight Center (MSFC), which simulates
major functions of the Saturn V Launch Complex
in real-time in response to the test programs of the
two RCA-110A launch computers. The simulator
consists of the SDS 930 digital computer, a specially
built hardware interface unit, and a large data base
containing the mathematical model of the launch
vehicle and its ground support equipment (GSE) .
The objective of this development program was to
find a new way to perform major functions of the
Saturn V Breadboard with a more flexible digital
computer, so that launch computer programs could
be checked out, test programs could be evaluated,
and the effect of malfunctions could be investigated
without possible damaging effects on the expensive
hardware systems under test. The launch com-
puters send out sequences of discrete stimuli
controlled by actual test programs, and the simu-
lator responds in real-time by generating timely
discrete and analog signals. The software is
designed in such a way that no reprogramming is
necessary when a configuration other than the
Saturn V has to be simulated, as long as the hard-
ware functions can be described by the same
nomenclature for the data base. The Saturn V
configuration was used as a test bed to demonstrate
the flexibility of the approach. In using the simu-
lator, the engineer communicates directly with the
computer.

The vehicle and GSE function are described by
large sets of logical equations that may contain
analog time functions also. The logical equations
can contain pickup and dropout times or thresholds

resulting in time-delays; the analog functions are
described by polynomials or tables. The total
Saturn V is described by about 15 000 equations of
varying length. The software is divided into three
major areas: (1) Interface Support Software, (2)
Simulation Processor, and (3) Simulator Diagnostics.
The main portion is the Simulation Processor,
which generates the data base in the computer from
card input, evaluates the equations iteratively
during the simulation run, controls many clocks,
and initiates the selective printout of the simulation
results. It comprises the five major phases: (1)
Pre-Simulation, (2) Hold, (3) Initialization, (4)
Real-Time Simulation, and (5) Post-Simulation.
The design is modular and strongly influenced by
many constraining factors such as limited core
space, real-time responses, and disk access time.
To minimize the computation time during the
simulation run, as many functions as possible are
assigned to the Pre-Simulation Phase prior to the
Real-Time Simulation Phase.

INTRODUCTION

To assure the integrity of the flight systems,
the launch of a Saturn V vehicle is preceded by a
complicated chain of checkout operations, which
involve a large system of checkout and launch
equipment in the Launch Control Center and in the
Mobile Launch Facility at the Kennedy Space Center.
This checkout and launch system consists of manual
checkout panels, ground support equipment, telem-
etry stations, data links, and two RCA-110A launch
control computers. Commands initiated in the
Launch Control Center are transferred by these
computers to the launch vehicle under checkout.

* The authors wish to extend special credit to Mr. R. G. Abe of Computer Sciences Corporation who
prepared the detail design and implemented the major portion of the simulation software, to Mr. T. L.
Balentine and Mr. C. O. Rigby for their development of the diagnostic'software, to Mr. E. E.
Branstetter and Mr. R. Hull for their programming contributions, and specifically to their colleagues at
Astrionics Laboratory who provided the hardware systems operations and the data base.

105

H. TRAUBOTH, C. 0. RIGBY, AND P. BROWN

The computer sends out stimuli and receives
responses that are evaluated based on predicted
values stored in the computer memory. Sending
out stimuli and monitoring the responses is done in
a controlled sequence by test programs residing in
the launch computers. These test programs must
be thoroughly checked out before they are allowed.
to run at the launch facility. The rigid testing of
the launch computer programs is done at simulation
facilities that imitate, as closely as possible, the
environment of the launch computers; i. e., the
functions of the vehicle, the GSE, and the checkout
system. Most of the checkout is performed with
hardware simulators such as the Saturn V Bread-
board, which uses partly actual flight hardware and
simulates certain mechanical and hydraulic equip-
ment by electrical circuits [1, 2] .

To aid the checkout engineer in the design and
evaluation of test programs, two major software
simulators have been developed by MSFC. These
software simulators simulate the on-off functions of
discrete networks by evaluating large sets of
Boolean equations including discrete time-delays
for pickup and dropout of relays, valves, etc. They
evaluate the equations in non-real-time and are
driven by predetermined sequences of states of
switches and stimuli as generated by test programs
[3,4].

More than three years ago, a joint effort between
the Astrionics Laboratory and the Computation
Laboratory of MSFC began to define a simulation
system in which a digital computer would simulate,
in real-time, the vehicle and GSE functions in
response to stimuli originating from the two launch
computers. The objective of this project was to
find a new way to perform major functions of the
Saturn V Breadboard with a more flexible digital
computer, so that RCA-110A launch computer
programs could be checked out, test programs
could be evaluated, and the effect of malfunctions
could be investigated without having to use and
possibly damage expensive hardware. The primary
design objectives were to insure that:

1. The simulator would act in such a way that
the test programs of the two launch computers
would think they were working with the actual
vehicle and GSE in real-time.

2. The prime portion of the simulator, the
software, should be structured in such a way that no
reprogramming is necessary when a configuration
other than Saturn V had to be simulated, as long as

the hardware components could be described by the
same nomenclature for the data base.

3. To provide the engineer with the capability
to communicate directly with the computer when
using this simulator.

It was determined that the feasibility of this
approach could best be demonstrated by using the
Saturn V configuration as a test bed.

The emphasis of this paper is on describing
the software of the simulator. The operation of
the simulator facility and the form of the mathe-
matical models that are input into the computer
are described in detail in Reference 5. However,
to understand the structure and problem areas of
the software, it is necessary to understand the
configuration of the hardware also.

SCOPE OF SIMULATION

Hardware Configuration

A simplified diagram of the Saturn V Launch
Computer Complex configuration is shown in
Figure 1. The launch computers in the Launch
Control Center (LCC) and in the Mobile Launch
Facility (MLF) send out discrete signals (up to
2040 "Discrete Out or DO") to the vehicle through
the GSE. The sequence and addresses of these
signals are determined by the test programs. The
vehicle then sends discrete and analog responses
(measurements) back to the computers. Most of
the discrete measurements (up to 3024 "Discrete
In or DI, " i, e. , open/closed relay contacts, valves,
switches, or gates) are fed through the GSE, while
all the analog measurements and a few digital
measurements are transmitted through the digital
data acquisition system (DDAS) or telemetry
system into the DDAS Computer Interface. The
DDAS is the whole collection of equipment that lies
between the sensors and the DDAS Computer Inter-
face; i, e. , a transmitter, a line driver and
receiver, and a digital receiver station for each
vehicle stage. The transmitter consists of a
scanner, a digital and analog multiplexer, A/D
converters, a generator of identification codes, and
modulators; the line driver and receiver contain
amplifiers and demodulators. The digital receiver
station converts the demultiplexed measurement
information into synchronized data words and
address words and sends them to the Computer

106

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

Figure 1. Saturn V Launch Computer Complex configuration.

Interface. The Computer Interface is mainly a
digital memory that can store up to 8192 words and
a special controller that stores one measurement
word every 278 µsec in proper sequence and allows
the launch computers to retrieve stored data at
random under several modes. The data are stored
in the Computer Interface according to their
identification number containing the stage, channel,
frame, multiplexer, and master frame numbers.
The controller makes sure that the data request
from the RCA-110A computer is properly decoded
to find the requested measurement. For a measure-
ment that has to be scanned at a higher rate, the
scanner moving with constant speed accesses the
sensor several times and, therefore, stores it at
several places. The RCA-110A computer can access
the data in the Computer Interface in several modes;
e. g. , the request can be synchronized with the
incoming data or locked at a specific measurement.
Up to 4500 DDAS measurements can be handled by
the Computer Interface [6].

The launch computers themselves are connected
through a data link for exchange of information. The
test conductor controls the launch checkout through
the Saturn V display, which is driven by a small
DDP 224 computer. The coordination of the many

test programs, display programs, and control
programs for the peripheral equipment (printer,
card reader, etc.) is done by the RCA-110A
Operating System.

The simulator should perform the functions of
the equipment shown in the upper portion of Figure
1. The hardware portion of the simulator comprises
the SDS-930 digital computer with 32 000 words of
core memory and its peripheral equipment and bulk
memory devices and a special purpose interface
(SDS Interface) that is similar to a small computer
in size (Fig. 2). This interface performs the
functions of the DDAS Computer Interface but does
not contain a memory, since a portion of the
SDS-930 memory is dedicated to these functions.
The SDS Interface contains counters, special
registers, and controllers that enable the two
launch computers to communicate with the SDS-930

computer in the same modes as in their actual
launch complex environment.

Data Base

The functions of the vehicle and its ground
support equipment as seen by the test programs can

107

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

M	 S
DIGITAL COMPUTER	 EI

SDS 930	
M	 DISK	

U
32K	 R	

LY
A

tD 	 DI	 DDAS	 4	 T

	

TAPES	 0
R

SDS
DATABASE	 INTERFACE

DO	 DO

DI	 DDAS	 DI
LAUNCH

SATURN V LCC	 MLF	 COMPLEX

DISPLAY	 RCA 110A	 LINK	 RCA 110A	 COMPUTERS

DDP 224	
32K	 32K

'— — — — — TEST PROGRAMS — — — — — —
PERIPHERALS	 PERIPHERALS

4 1	 1	 1	 f q
TAPES"__VAPES LI

Figure 2. Real-time simulator computer systems configuration.

be described by large sets of logical equations and 	 where
by analog time functions that are described by
polynomials or tables. The logical or Boolean equa- 	 (i)	 (i)	 (i)(f)tions are time-dependent in the sense that they	 Y	 = HZ (P	 , D
consider pick-up and drop-out time as a time-delay. 	 pq	 pq \ pq	 pq
The logical equations consist of AND and OR terms
(* and +) and negations of a single variable (-) .	 or
Special relays such as lock-out, lock-up, -and latch-
ing relays can be expressed by equivalent circuits(i) _ (-) Z (i) 	 P (i)	 (i)^,
of regular relays. Figure 3 shows a simplified 	 pq	 pq	 pq D pq
example of a typical discrete/analog circuit. For
more detailed information, see References 5 and 7.

There are basically two types of equations Ppq	 = pick-up time (amplitude) of element
possible: Z (1)

pq

1.	 Logical equation D (1)	 = drop-out time (amplitude) of element
pq (i)Z

(i)	 (i)	 (i) (i) pq.,.E	 =	 Y	 >^^ Y	 ...='11	 21 YK11 and i, p, q,	 and a are unlimited index integers
1, 2, 3,	 ; i. e. ,	 the number of equations,

+ Y M	 y M	 ,;
12	 22	 r

y G) OR-terms, and AND-terms is not limited. 	 Pick-up
K22 time for a relay is the time between activation of

the coil and the closure of an associated contact.
+...+Y (i)...+Y(i)	 :, y(i)	 , * Y (i) Drop-out time is the time between deactivation of

la	 2a K a the coil and the opening of an associated contact.a

108

E4001 (T)
(volts)

0L
0

SUPPLY VALVE	 I	 I VENT VALVE

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

A

1 400
1

800 1 1200	 1600
1

2000

Y1'Y2 •Y1'Y2	 Y1`Y2	 ®Y 1'•Y2

TIME T (msec)

ANALOG TIME FUNCTION E4001

COMB I NED LOG I CAL/ANALOG EQUATI ON FOR S I GNALS TO COMPUTER:

ANALOG SIGNAL E4001 = 06110-Yl °Y2 	 /P, 10, 150, M5000, NO, M(500)1
+06110-Yl*-Y2 /P, -25, 150, M50000, NO, M(200)/

Y

LOGIC	 ANALOG

D I S CRETE S I GNAL B 1= 04110*E4001//4000, 3500//

Figure 3. Example of a typical discrete/analog circuit.

Generally, pick-up time is the time-delay between
cause and effect, and drop-out time the time-delay
of the reverse action. Mathematically, if ti is the
time instant of activation (deactivation) , the discrete

variable Z iis
Pq

Z (1) = 0 for time t < t + P (1) t 2: t + D(1)
Pq	 1	 Pq	 1	 Pq)

(1) = 1 for time t _ t + P (1) t > t + D (1)Z
Pq	 1	 Pq	 1	 Pq)

For a relay that has a pick-up/drop-out time of
less than 10 msec, the time-delay is ignored because
the delay does not have an effect on slower mechani-
cal devices. Thus, relay races between fast relays
cannot be simulated, and it is not intended to detect
them because the test programs do not check for
them. For most relays, the bracket term can be
deleted.

The value of a logical variable may depend on
the amplitude of an analog value; e. g. , the
pressure in a line, instead of a time delay. Then,
the terminators, //, are written instead of brackets.

The discrete variables can have different
physical meaning. We distinguish between a "DO"
(Discrete Output signal from RCA computer) , "DI"
(Discrete Input signal) , digital DDAS, manual
switch, power bus, and an "IV. " An "IV" is an
internal variable that is needed for internal
computation when a circuit stores a signal.

2. Combined logical/analog equation

A logical equation can be combined with an
analog function. Each analog function can be
associated with only one OR-term of the logical
equation. An analog function can be described in
eight different ways as a polynomial, table, cyclic
function, etc. [5]. In any case, the analog function
is described to the computer by a one-letter code F

109

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

designating the type of format and a variant set of
parameters, all of which are enclosed within the
terminators, /... /. These parameters also con-
tain the sampling rate for that particular analog
variable, the maximum and minimum amplitude
limits, the maximum time, and the period of the
time function. The general form of a combined
logical, analog equation is

A (1) = logical OR-term 1/F, analog function
parameters i/

+ logical OR-term 2/F, analog function
parameters 2/

where A (1) is an analog value.

The interpretation of this equation is as follows;
Assuming that only one OR-term generates a "i"
at one time (exclusively OR-terms) , then the
analog function of that particular OR-term is evalu-
ated at the specified sampling rate.

The data base for the total Saturn V including
the GSE amounts to about 15 000 equations of
various length (Table 1). If other than Saturn V
systems are to be simulated, another data base has
to be established, but no reprogramming is necessary
as long as the functions of the physical system can
be described by the same types of equations. The
data base is initially set up via the card reader;
modifications of it and control commands for the
simulation are input via teletypewriter.

TABLE 1. TVIAGNITUDE OF EQUATIONS FOR INSTRUMENT UNIT

DDAS

DO SWITCH DI DI BUS IV TOTAL

Discrete
Variables 247 557 791 186 69 579 2429

Ei Analog
^ Variables 505
H

Discrete & Analog 2934

04 Discrete

M
Equations 791 186 69 579 1625

Analog
Equations 505

Variables about
10 000

H Max. Computer 4032 about
Capability 1000 6048 3000 3000 17 000

aa
Capability for
DDAS (Analog) 4000

LENGTH OF EQUATIONS (Rough Estimate)

Smaller than 10 OR-terms about 40%
Between 10 & 100 OR-terms about 357o
Larger than 100 OR-terms about 20%
Up to 1000 OR-terms some

110

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

SIMULATOR SOFTWARE

General

The software for the simulator can be divided
into three major areas: (1) Interface Support
Software, (2) Simulation Processor, and (3)
Simulator Diagnostics. The Interface Support
Software controls the input into the DDAS-tables
of the SDS-930 core memory and the output from
it to the RCA-110A computer supported by the
hardware of the SDS Interface. It also controls
the transmission of the DO's, DI's, and analog
values; various counters; and clocks. The Simula-
tion Processor generates the data base in the com-
puter from the card input, evaluates the equations
during the simulation run, and controls the selective
printout of the simulation results (Fig. 4) . The
Simulator Diagnostics checks all hardware units of
the SDS Interface such as counters, data link
control signals, and data transfer registers, and
the communication between the SDS-930 and
RCA-110A computers. The diagnostics check
especially for critical timing.

The design of the software is modular so that
modifications can be made relatively easily. The
total software excluding the simulator diagnostics
consists of about 315 subroutines, which amounts
to about 26 000 instructions. These figures should
give a feel for the magnitude of the software effort.

Interface Support Software

As stated previously, the simulator must
provide all data input values to the launch complex
computers as those are provided by the launch
vehicle, the ground support equipment, manual
checkout panels, mechanical and pneumatic systems,
etc, at the Saturn V Launch Computer Complex.
Additionally, the simulator must accept input data
from the launch complex computers and provide
the necessary stimuli to the launch complex com-
puters. These stimuli, in the form of DO signals,
DI signals, and DDAS signals are provided by the
interplay between the Interface Support Software
and the SDS Interface.

Each discrete signal (DI and DO) is represented
in fixed locations of the SDS-930 memory by the
presence or absence of a single bit in the DI and DO
Status Table, thus allowing 24 discretes to be repre-
sented in each 24-bit computer word.

Software is also provided to support the input/
output requirements to direct access communication
channels, time-multiplexed channels, etc. for the
storage and retrieval of data from mass storage
and the recording of data on magnetic tape.

DISCRETE OUT/DISCRETE IN SIGNALS

The Real-Time Phase of the Simulation
Processor receives DO signals from either of the
two RCA-110A computers via the SDS Interface and
stores these signals in the DO Status Table. Upon
receipt of the DO's, a chain of Boolean and DDAS
equations is evaluted by the Real-Time Simulation
Program, and the results of the evaluation are
placed in either the DI Status Table or in the DDAS
Data Table. Both the DI Status Table and the DDAS
Data Table are scanned continuously by the SDS
Interface, thereby providing current information to
the RCA-110A computers upon request.

DIGITAL DATA ACQUISITION SYSTEM

The basic function of the DDAS facility at the
Saturn V Launch Computer Complex is to periodically
sample vehicle parameters and make this real-time
data available to the two RCA-110A launch computers.
In a simulated environment, the simulator and its
associated interface hardware must commutate data
for use by both RCA-110A checkout computers.
This commutated data must be in the same format
as the data provided by the Launch Computer Com-
plex. This will allow the simulator to provide
information for the RCA-110A through the commuta-
tion processing of the SDS Interface. The DDAS
data represent both analog and discrete data. The
analog data are represented in 10 bits of a 24-bit
SDS-930 computer word. Each discrete is represented
by the presence or absence of a single bit. There
are ten discretes represented in each SDS-930
computer word.

DDAS simulation requires three DDAS memory
tables within the SDS-930 computer for use by the
simulator and the SDS Interface (Fig. 5). The
DDAS words that are the results of the evaluation of
the combined discrete/analog equations are stored
in a block of memory of the SDS-930 computer that
is referred to as the DDAS Commutation Data Table.
The address of this data word is stored in the DDAS
Commutation, Address Table according to the sampling
rate required for this measurement. As a final step
in the commutation process, the data words are

111

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

ENTRY

EQUATIONS, E0UATI0M

PARAMETERS CROSS RE FERENCE
LISTING

PRESIMULATION PDATED
MASTER (IF AMY) PHASE ASTER

fEQUATIONEQUATION
TAPE TAPE5

ENTRY DISC AND CORE
ASSIGNMENTS

DO'S& SWITCHES LISTING
REFERENCED,
PARAMETERS

—f
RESTART

TAPE
(DATA BASE)

-4

INITIALIZATION
PHASE

DATA

QA
BASE
TO
DISC

ENTRY
3 vm®

ACTIONS DURING
RESTART	 (IF NEEDED) HOLD

TAPE

NEW
(IF REQ.)

HOLD PHASE RESTART
TAPE

OPERATOR
REQUESTS

MISTO RY
TAPE

A
CONSOLE SWITCH

SETTINGS
HISTORY

RCA DDAS-DI'S) FLOW

DO'S REAL-TIME PHASE

RCA
110A (DDAS-DI'S)

SIMULATED SYSTEM ALARMS

DO'S & SWITCHES

CONSOLE SWITCH 4
SETTINGS PLOT OF ANALOG

VARIABLE

PARAMETERS

POST-SIMULATION
PHASE HISTORY FLOW

LISTING
HISTORY DATA FLOW

FLOW of
TAPE

LOGIC FLOWt
Figure 4. General flow of Simulation Processor.

112

DDAS COMMUTATION
DATA TABLE'

23	 10	 0
1
(Data Word Ai
I
Data Word B1

DDAS COMMUTATION
ADDRESS TABLE'

23 1211 1

Address Bi , I Address Ai

Address B2 :Address BZ

Data Word A2

Data Word B2

(4500 memory locations
scanned once every
250 milliseconds)

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

DDAS COMMUTATION
OUTPUT TABLE'

23	 12 11	 0
Word	 I	 Word

1	 Data Word Ai Data Word Bi	1

I
2	 Data Word A2I Data Word B2	2

I	 i

1	 '

CONTROL
LOGIC

20-BIT
REGISTER

(4500 memory locations
updated once every 250
milliseconds)

4500	 14500

CONTROL AND
INTERFACE
LOGIC

RCA 110A

i. Table is updated by the Simulator Program. Reserved during Initialization Phase.

2. Table is used by interface hardware for control of data transfer from Data Table to Output Table.
Setup during Initialization Phase.

3. 24-bit words available to the RCA 110A l s from this table. All accesses by the RCA 1i0A are through
the interface hardware. Reserved during Initialization Phase.

Figure 5. DDAS Simulator commutation memory tables.

stored by the SDS Interface in the appropriate loca-	 A set of 190 elapsed time counters provides the
tions in the DDAS Commutation Output Table, where 	 capability for establishing arbitrary time-delays for
they can be accessed by either RCA-ilOA computer 	 scheduling of time-critical equation evaluations or
via the SDS Interface. 	 re-evaluations. The counters are fixed, consecutive

cells in the SDS-930 memory that are incremented
TIME COUNTERS AND CLOCKS 	 by the interface hardware at 1-msec intervals. The

number of counters is limited to 190, because
Two methods of timing are provided in the	 incrementation of each counter requires two cycles

Simulation Processor to establish the necessary 	 (3. 5 µsec) of memory access time (maximum of
control for scheduling timed events during the	 0.665 msec, leaving 0. 335 msec for DDAS commuta-
Real-Time Phase of simulation. 	 tion and for servicing RCA-110A data requests)

113

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

The Real-Time Simulation Phase stores the comple-
ment of the desired elapsed time in a predefined
memory location and initiates the hardware incre-
mentation which is then automatic until a cell
counts to zero. When a cell has counted to zero,
the automatic incrementation halts, the address of
the zero cell is recorded by the SDS Interface, and
a program interrupt occurs. The Interrupt Service
Routine then schedules the associated equation for
evaluation by placing it in the highest priority
queue. The Interrupt Service Routine also removes
this clock from the queue of active clocks and
reinitiates the automatic incrementation. The
automatic incrementation must be restarted within
i msec to insure that all clocks are updated
accurately.

The system real-time clock provides the
relative time of events during the Real-Time Phase
of the simulation processes. The real-time clock
is serviced at 1-msec intervals by a system-
generated interrupt. At each interrupt, the Real-
Time Program increments the real-time clock.

DISC/TAPE-CORE COMMUNICATIONS

The Direct Access Communication Channel
(DACC) controls the transmission of equations from
the rapid access disc (RAD) to the SDS-930
memory. Initiation of the transmission is controlled
by the Real-Time Simulation Phase, which uses the
buffer code/disc address of the equation in conjunc-
tion with the Buffer Description Tables (Table 2)
to compute the number of words to be transmitted
and then initiates the transmission that remains
under DACC control until completed. Upon com-
pletion, a program interrupt is generated. The
Interrupt Service Routine transfers the equation
to a specified memory location for later evaluation
and initiates the transmission of the next equation
to be input.

During the Real-Time Phase, thetime-multiplexed
communication channel is used for generating a
complete history of events to magnetic tape.

Simulation Processor

GENERAL

The prime objective of the simulation processor
is to prepare and execute the simulation in such a
way that the stimuli of the RCA-ilOA computers are

all received and their response signals (often
several responses to one stimuli) are generated
with the same precise time lag as in reality [8, 91.
The huge size of the equation data base (15 000
equations) , the limited core size of actually only
13 000 words (19 000 of the 32 000 are used by the
DDAS decommutator) , the relatively long average
access time of the disc memory (17 msec), and
the minimum response time of some circuits to be
simulated (about 100 msec) constrain the design of
the Simulation Processor considerably. Consider-
ing the above constraints and in order to minimize
the computation time during real-time simulation
activity, as many functions as possible are per-
formed in the Pre-Simulator Phase.

The Simulation Processor is divided into five
major phases:

• Pre-Simulation Phase

• Hold Phase

o Initialization Phase

® Real-Time Simulation Phase

® Post-Simulation Phase

An overview of the general flow of the simulation
processor is given in Figure 4.

PRE-SIMULATION PHASE

The Pre-Simulation Phase was designed to
perform initial processing for all functions that
could be predefined and established prior to
execution of the Real-Time Phase. This approach
was taken to simplify the real-time processing
functions and to significantly reduce execution time
and core memory space.

The Pre-Simulation Phase consists of 85 sub-
routines and approximately li 200 instructions.
The Pre-Simulation Phase consists of four subphases
that are overlayed during execution in SDS-930
memory. A summary of Pre-Simulation Phase
capabilities is shown in Table 3.

Phase 0 contains the utility and I/O subroutines
for the remaining three subphases. This phase acts
as the Pre-Simulation Phase monitor and remains
in memory ,during execution of phases 1, 2, and 3
to control overlay and input/output operations.

114

H. TRAUBOTH, C. 0. RIGBY, AND P. BROWN

TABLE 2. BUFFER DESCRIPTION TABLES

BUFFER CODE ADDRESS TABLE*

WORD DEFINITION
0	 ADDRESS OF START OF BUFFER GROUP WITH CODE 0
1	 ADDRESS OF START OF BUFFER GROUP WITH CODE 1
2	 ADDRESS OF START OF BUFFER GROUP WITH CODE 2
3
4

N	 N = 31

BUFFER CODE SIZE TABLE

WORD DEFINITION
0	 NUM. OF LOC. ALLOTED TO EACH EQU. REC. IN BUFFER GROUP 0
1	 NUM. OF LOC. ALLOTED TO EACH EQU. REC, IN BUFFER GROUP 1
2	 NUM, OF LOC, ALLOTED TO EACH EQU, REC. IN BUFFER GROUP 2
3
4

N	 N = 31

BUFFER CODE NUMBER TABLE,,***

WORD DEFINITION
0	 NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP 0
i	 NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP i
2	 NUMBER OF BUFFERS ALLOTED IN BUFFER GROUP 2
3
4

N	 N = 31

BUFFER CODE AREA TABLE****

WORD DEFINITION
0	 TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 0
1	 TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 1
2	 TOTAL NUMBER OF LOCATIONS IN BUFFER GROUP 2
3
4

N	 N = 31

115

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 3. PRE-SIMULATION PHASE
CAPABILITIES

• Edits all equations input to the system.

• Builds a cross reference index of equations
versus equation terms.

• Establishes tables for time-related equation
terms.

• Arranges input equations into the proper
equation calling sequence for real-time
processing.

• Merges the cross reference values and the
time-related values with the equation calling
sequence.

• Using card input values, establishes an
assignment file for all DDAS values.

• Produces a Master Equation Tape (magnetic
tape) consisting of:

a. Equation cross reference file

b. Equation file

c. Ordered DDAS assignment file

• Lists the Master Equation Tape.

The functions of the vehicle and the ground
support equipment are described by Boolean equa-
tions that are punched on cards. These cards,
containing the data base for the vehicle to be simu-
lated, are input to phase 1 where the equations are
edited. During this editing process, all
equations that contain an error are listed on the
line printer with each error flagged. The equations
that are error-free are sorted and all duplicate
equations are eliminated. The sorted, error-free
equations are then used to update the Master
Equation Tape (Fig. 6) which contains all equations
that describe the vehicle configuration to be simulated.
During the Master Equation Tape update, sorted
equation cross-reference information is generated
and output to magnetic tape for use in later
processing.

Phase 2 of the Pre-Simulation Phase completes
the development of the Cross-Reference File (Fig. 7)
and the Transfer Equation File. This is accomplished
by merging the cross-reference information with
all related equations and generating the Cross-
Reference File and the Transfer Equation File of
the updated Master Equation Tape (Fig. 6).

All DDAS assignments are made by card input.
The function of Phase 3 is to make the DRS, multi-
plexer, frame, and channel assignments from infor-
mation contained on the input cards and develop the
DDAS Assignment File (Fig. 8) of the updated
Master Equation Tape. This information is ordered

(— CROSS REFERENCE FILE	 TRANSFER EQUATION FILE I
k

DDAS ASSIGNMENT FILE --^

1
1 E E 1 1 E256 256 256 256 256 256R ... R O ... O R ... R OWORDS WORDS WORDS WORDS WORDS WORDSG G F F G G F

The three files are composed of both physical and logical records. Physical records have an arbitrarily set
word count of 256 words; logical records have a variable word count contained in the first word of the logical
record. Each physical record may contain one or more logical records or only a 256 word portion of a
logical record (as in File 2) . Thus, a logical record may span one or more physical records (as in File 2) .

Reference Figure 7
Reference Figure 8

EOF = End of File
IRG = Inner-Record Gap

Figure 6. Master Equation Tape format.

116

A
co
u'1

.

OF
REI'p'TED EQU e

ti
ESIZ	 IDEQU.

BELATEDas o o ., o
SIZEEQUAT L RID pgDGi o 0 0 .,

LOGIC 	EQU.

o SIZE OF REI'P'
ID

BELATED EQU.o N	 o
W o 0 o at

EQUATION ID SIZ®
I,pGICA1' gEC pgD

q o ZEROSpUT VOLTAGE
-o

U
w

>	 a	 w

w	 o o N

DROP
TION ID SIZEp',

a
o

LpQG CAL
gECORD,

co

o ZEROS	 E
UP VOI'TP'G

a>da^w
w o 0 o cu

PICK-	 ID
EQU	 SIZECTA gECORD
I,OGI

o ZER?pUT TIME .s--^
>^a^w

>	 0

DROP-	
ID

EQU RECpgD SIZE
CAL

0 0	 .
LOGI

ZEROSC)
PICK-UP TIME.> d a	 w
EQ	 SIZEUATIO RIDpgD>000
LOGICAL',

Figure 7. Cross-Reference File.

Q
O
U
w
P4
a

xa

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

to conform to the requirements of the Initialization
Phase, which develops the 4500-word commutation
address table (Fig. 5).

INITIALIZATION PHASE

The Initialization Phase performs the final
processing before real-time operations. It creates
the proper environment in the SDS-930 computer and
on the disc storage to initiate the simulation run.
The simulated switches and DO's to be input during
the Real-Time Phase are also input on punched cards
during the Initialization Phase. The Initialization
Phase utilizes these simulated variables and the
Cross-Reference File of the Master Equation Tape
to determine which equations will be active during

NOTE-

FOR SIDE A AND SIDE B ADDRESSES, ONLY ONE REAL DDAS
ANALOG VARIABLE (E—CODE) MAY BE ASSIGNED TO THE
SAME RELATIVE LOCATION WORD. A MAXIMUM OF TEN
DISCRETE DDAS ANALOG (D—CODES) VARIABLES CAN BE
ASSIGNED TO THE SAME RELATIVE LOCATION WORD.

*XXXX— BITS 0-9 CONTAIN THE DDAS BITS POSITION OF
1-10 FOR THE D—CODE VARIABLE. BITS 10-23
CONTAIN THE NUMERIC SUB—GROUP IDENTIFIER
OF THE D—CODE.

E—CODE VALUE= 10 BIT DDAS DATA WORD

D—CODE VALUE=STATUS OF 1 BIT IN A 10—BIT
DDAS DATA WORD

Figure 8. DDAS Assignment File.

117

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

the simulation run. Only the active equations will
be reformatted and stored on the disc (Table 4) .
Initialization also produces a line printer listing of
the active equations and all related cross-reference
information (Table 5) . To relate the simulated
switches and DO's to the equations on disc during the
simulation run, the Initialization Phase creates
blocks of cross-reference information for the
switches and DO's and transfers them to the disc
(Table 6) . Address tables, reference tables, data
tables, status tables, history buffers for recording
real-time events, and a 4500-word commutation
table are dynamically allocated in-core and initialized.
The remaining available core can then be assigned
as equation buffer areas. To facilitate this assign-
ment, a list of equation sizes versus the number of

equations of that size is output to the teletype along
with the location and size of core blocks available
for use as equation buffers. Utilizing the above
information, the user determines the optimum
number of buffers and buffer sizes and provides the
information on cards for input by the Initialization
Phase. All equation buffer information required by
the Real-Time Phase is arranged by the Initialization
Phase into the four buffer description tables
(Table 7) .

HOLD PHASE

The Hold Phase program provides a convenient
transition to real-time activities either initially or
following a hold or suspension of a prior real-time

TABLE 4. FORMAT OF EQUATION ON DISC

WORD DEFINITION

0	 NUMBER OF WORDS IN EQUATION RECORD (P+1)
1	 DISC ADDRESS ASSIGNED THIS EQUATION RECORD
2	 EQUATION MNEMONIC ID
3	 REF, TO PICK-UP TIMES (REL. ADD. J FROM WORD 2)
4	 REF. TO DROP-OUT TIMES. (REL. ADD K FROM WORD 2)
5	 REF. TO PICK-UP VOLTAGES (REL. ADD, L FROM WORD 2)
6	 REF. TO DROP-OUT VOLTAGES (REL. ADD. M FROM WORD 2)
7	 REF. TO RELATED EQUA ID'S (DISC. ADDRESSES) (REL ADD. N)
8	 FIRST WORD OF ACTUAL EQUATION
9	 2ND WORD OF ACTUAL EQUATION

LAST WORD OF ACTUAL EQUATION ($ OPERATOR)
J	 1ST PICK UP TIME
J+1	 2ND PICK UP TIME

ETC.
K	 1ST DROP-OUT TIME
K+1	 2ND DROP-OUT TIME

ETC.
L	 1ST PICK-UP VOLTAGE
L+1	 2ND PICK-UP VOLTAGE

ETC.
M	 1ST DROP-OUT VOLTAGE
M+1	 2ND DROP-OUT VOLTAGE

ETC.

N	 BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. (BITS 5-23)
N+1	 BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. (BITS 5-23)

BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD. (BITS 5-23)
P	 BUFFER CODE (BITS 0-4) RELATED EQ. DISC ADD; ' (BITS 5-23)

118

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

X0000
X0001
X0002
X0007
X0008
X0009
X0010
X0011
X0012
X0013
X0014
X0015
X0016
X0017
X0018
X0019
X0020
X0021
X0022
X0023
X0024
50001
50002
S0009

TABLE 5. EQUATION CROSS-REFERENCE LISTING

E0001	 E0002
E0002
E0003	 F0026
A0004
E0004
E0004
F0016
F0026
F0026
E0016
F0016
E0016
F0017
F0027
E0018	 E0028	 F0018
	

F0028
E0019
E0019
FO111
F0211
V0112 F0012
V0112 E0029 F0012
01110 06020 06100
A0001
V0011 V0012 V0112 V1000 V2222	 V2500	 A0001	 A0004
06020 06100 D1600 D2500 D3000	 D4200	 D5050	 E0001
E0007 E0009 E0010 E0011 E0016	 E0018	 E0019	 E0028
F0026 F0027 F0028 FO111 F0211

V0011 E0011
V0012 A0011
V0112 V0012
V1000 E0006
V2222 E0007
V2500
A0001 E0003
A0004 E0005
A0005
A0006
A0007
A0011
01110 V0012	 A0005	 A0007
06020 A0006	 E0003	 E0004
06100 A0001	 A0004	 D16OO
D1600
D2500
D3000
D4200
D5050
E0001 DV	 2999.00

PV	 4098.00
F0111 V0011
F0211 V0011

A0011	 D3000	 E0007	 E0011	 E0018

D4200	 D5050	 E0002	 E0006

119

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 6. SWITCH AND CROSS REFERENCE BLOCK

FORMAT OF SWITCH CROSS REFERENCE BLOCK

WORD	 DEFINITION

0	 NO. OF ENTRIES (6+K+3*M)
1	 BUF. CODE/DISC ADDR OF THIS BLOCK
2	 NO. OF ENTRIES/REL. ADDR OF ORIG. IDS
3	 NO. OF ENTRIES/REL. ADDR. OF REASSIGNED IDS
4	 NO. OF ENTRIES/REL. ADDR. OF RANGES
5	 /REL. ADDR. OF RELATED IDS
6	 BUF. CODE/DISC ADDR OF 1ST RELATED ID
7	 BUF. CODE/DISC ADDR OF 2ND RELATED ID

ETC.
5+K	 BUF. CODE/DISC ADDR OF 1ST RELATED ID
6+K	 1ST ORIG. ID
7+K	 2ND ORIG. ID

ETC.
5+K+M	 M(TH) ORIG. ID
6+K+M	 START REL ADDR/END REL ADDR OF IDS RELATED TO 1ST ORIG
6+K+M	 START REL ADDR/END REL ADDR OF IDS RELATED TO 2ND ORIG

ETC.
5+K+2M	 START REL ADD/END REL ADD OF IDS RELATED TO M(TH) ORIG
6+K+2M	 1ST REASSIGNED ID
7+K+2M	 2ND REASSIGNED ID

ETC.
5+K+3M	 M(TH) REASSIGNED ID

WHERE M=NO. OF ORIGINAL IDS
K=NO. OF RELATED IDS FOR ALL ORIGINAL IDS

FORMAT OF DO CROSS-REFERENCE INDEX BLOCK

WORD

0

4^

2

3

4

2+M
3+M
4+M

2+M+R1
3+M+Ri
4+M+R1

DEFINITION

NO. OF ENTRIES (3+M+R1+R2...+RM)
BUF. CODE/DISC ADDRESS OF THIS BLOCK
REF. TO START OF RELATED IDS (3+M)
NUMERIC PORTION OF 1ST DO ID/REL. ADDR. OF LAST REL. ID
NUMERIC PORTION OF 2ND DO ID/REL. ADDR, OF LAST REL. ID
ETC.
NUMERIC PORTION OF M(TH) DO/REL ADDR OF LAST REL. ID
BUF. CODE/DISC ADDR. OF 1ST DO RELATED TO DO OF WORD 3
BUF. CODE/DISC ADDR OF 2ND DO RELATED TO DO OF WORD 3
ETC.
BUF. CODE/DISC ADDR OF Rl (TH) DO RELATED TO DO OF WORD
BUF. CODE/DISC ADDR OF 1ST DO RELATED TO DO OF WORD 4
BUF. CODE/DISC ADDR OF 2ND DO RELATED TO DO OF WORD 4
ETC.

120

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 7. INITIALIZATION PHASE CAPABILITIES

• Extracts the specific equations to be active from the cross-reference file of the Master Equation
Tape utilizing information input from cards.

• Prints a cross-reference listing of all variables to be active.

• Outputs a summary of number of equations versus equation length. 	 r

• Outputs the location and size of core blocks available for use as equation buffers.

• Assigns a disc address to each active equation.

• Reformats each active equation and its cross-reference data and stores the combined results on
disc.

• Prints a listing of all equations stored on the disc.

• Creates cross-reference data for all active DO's and switches in a format usable in real-time.
This is also stored on the disc.

• Assigns core locations for all necessary tables.

• Assigns core locations to be used as equation input buffers.

•	 Initializes all tables and buffers.

simulation and gives the user the capability to con-
trol the environment of a specific test. He utilizes
this capability by issuing commands to the Hold
Phase Program via the teletype, which initiates
execution of predefined functions (Table 8) . He may
request the current value or status of any active
variable, or perform debugging activities such as
dumping any area of core or disc.

A very important option is the capability to
create a restart tape. This tape contains an image
of core memory and disc memory as it was established
at the end of the Initialization Phase. Thus, the
restart tape provides the means by which the same
or a similar real-time simulation can be executed
without repeating the Initialization Phase processes.
The Real-Time Simulation Phase overlays the Hold
Phase in memory when the user issues the "T"
directive (Table 8) .

A list of Hold Phase capabilities is given in
Table 9.

REAL-TIME SIMULATION PHASE

The Real-Time Simulation Phase drives the
SDS-930 computer and the SDS Interface (Fig. 2)

for the actual simulation of the launch vehicle com-
plex. Operation during the Real-Time Phase also
requires the execution of the launch computer pro-
grams, operating asynchronously, in the RCA-1f0A
computers. Collectively, the three computers,
their operating software, the interface hardware,
and the launch complex/vehicle mathematical model
provide the principal ingredients for the simulation
of a Saturn V launch vehicle complex (Fig. 2).

The simulation process consists primarily of:
(1) equation evaluation triggered by inputs from
the launch computers, by internally generated values,
and from the card reader by manual input; and (2)
outputs developed as a result of equation evaluations
that are made available to the SDS Interface for use
by the launch computers.

The communication between the launch computers
(RCA-110A) and the Simulator (SDS-930) is through
the SDS Interface. This communication is in the
form of discrete signals sent from either RCA-110A
to the SDS-930 (DO) , discrete signals requested by
either RCA-110A from the SDS-930 memory (DI) ,
and DDAS analog and discrete signals available at
the SDS Interface for the RCA-110A computers to
access when desired. Simulated DO's and switch

121

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 8® HOLD PHASE COMMANDS

Hold Phase directives (commands) and options
requested are as follows:

DIRECTIVE	 OPTION
CHARACTER	 REQUESTED

I	 Print Hold Phase Instructions

N	 Write Memory on New Restart

R	 Restore Memory from Previous
Tape

P	 Proceed to Post-Simulation Phase

T	 Proceed to Real-Time Simulation
Phase

F	 Print F-Type Data Table

E	 Print E-Type Data Table

U	 Update Data Value or Update
Status

Q	 Dump Disc on Line Printer

V	 Write Memory and Disc on Restart
Tape

D	 Restore Memory and Disc from
Restart Tape

S	 Print Summary of True Status

B	 Branch to 32K Debug

C	 Exit Debug

settings can be input to the Real-Time Simulation
Phase from the card reader by operator action.

Upon receipt of a Discrete Output from the
SDS Interface, the Real-Time Simulation Phase will
schedule a chain of Boolean equations for evaluation.
Some equations must be evaluated when there is a
change in status of a dependent variable, some other
equations must be evaluated at regular time inter-
vals or at the end of a set time period, and still
others must be evaluated when a specific analog
variable reaches a particular value.

TABLE 9. HOLD PHASE CAPABILITIES

• Record memory in an initialized state on a
magnetic tape.

• Restore memory to an initialized state from a
previously created tape.

• Record memory in an initialized state and the
disc contents on a magnetic tape.

• Restore memory and the disc contents to an
initialized state from a previously created
tape.

• Print the status of any variable within the
system.

• Change the status of any variable within the
system.

• Advance the simulator to the real-time phase.

• Advance the simulator to the post processing
phase.

• Utilize the capabilities of the SDS Program,
32K DEBUG.

Each equation that is to be evaluated must be
retrieved from the disc where it was stored during
the Initialization Phase. Each equation record
contains information required for evaluation, such
as pick-up and drop-out times, pick-up and drop-
out values, and equation identifiers of related
equations. The identifier or ID of an equation is
the name used to refer to'the dependent variable on
the left side of an equation.

In general, each DO received from the SDS
Interface will require an equation evaluation that,
in turn, generates a response (DI) to be supplied
to the SDS Interface that makes the response avail-
able to the RCA-1i0A computers. During equation
evaluation, DDAS responses are also developed and
provided to the SDS Interface for DDAS commutation
to the RCA-i10A computers. The generation of a
response may require the evaluation of several
dependent equations. An example should explain
the evaluation process [10). It is assumed that
the following three logical equations are given:

122

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

Yi = Y3 + DOA, Yi + DO'Y2

Y2 = DO*Yi = Y3 + Y2 *D0 + Y2 ,,Yi

Y3 = Yi * DO'r Y2 + Yi DO Y2 + Yi * Y3 + Y3 , DO

POST-SIMULATION PHASE

The Post-Simulation Phase processes the
Real-Time Phase history tape according to options
selected from the SDS-930 console. The test con-
ductor is provided the following options that he
can choose via the switches:

1. A listing of all events on the history tape
The three variables Yi , Y2 , and Y3 appear on the
left side of the equations and also on the right side
of the equations. If the external variable DO
changes state from "1" to "0," the first evaluation
of the three equations yields the intermediate
result Yi = 1, Y2 = 0, Y3 = i. The next evaluation
of the same equations using these intermediate
results yields the new values Yi = 1, Y2 = 0,
Y3 = 0. This process of successive evaluation is
continued until a stable state is reached; i. e. , no
change of state of any variable. In this example,
four evaluations have to be performed. If no stable
state can be reached, the circuit oscillates. This
case occurs in the example if another initial con-
dition is used where the fourth evaluation yields
again state I. Table 10 (a) illustrates the evaluation
process, and Table 10(b) depicts all possible states
of the example.

As each equation evaluation is completed, the
necessary information with which to schedule the
evaluation of all affected or related equations must
be immediately available. This is done by having
all related equation ID's available as each equation
is brought in from disc and by logging all related
equation ID's into the appropriate queue (Table 11)
It is obvious from this example that the processing
of many equations within the Real-Time Phase can
become time-critical.

Throughout the Real-Time Phase execution, a
complete record of events is recorded on the History
Tape. This magnetic tape contains information such
as equation ID's; times a state changed; and in the
case of analogs, the actual value of the variable at a
given time. This tape is used as input to the Post-
Simulation Phase to record on the printer the com-
plete history of the particular simulation run.

A list of capabilities of the Real-Time Phase
is shown in Table 12 and a simplified diagram of
the overall processing is shown in Figure 9.

2. A listing of only events where a change in
status or value occurred

3. A line printer plot of up to eight analog
variables (analog value versus time)

The user also specifies (via card input) which
system variables (1 to 10) he desires to be printed
and the relative time of the first and last event to
be printed (nominally 0 to 24 hours) . This card
input is then used in conjunction with options i or 2
above to provide the particular listing desired.

A complete list of Post-Simulation Capabilities
is shown in Table 13.

Simulator Diagnostics

GENERAL

The functional design of the acceptance and
diagnostic program not only provides a method for
thorough checkout of the SDS-designed interface
equipment, but also results in an effective and
permanent system of diagnostic procedures [11, 12 1.
Modularity, simplicity, and thoroughness comprise
the basic philosophy used in the design of the
acceptance test procedures. To simplify system
programming problems, the acceptance test and
diagnostic programs function'within the framework
of the standard capabilities provided by the RCA-110A
TAME System (assembler, library routines, utility
routines, and loader).

The order in which the diagnostic tests are
performed follow the order as outlined in the design
specification [13, 14j. This is to insure that
certain interface equipment components are working
correctly before that component is used in another
test. The functional design of the system, however,

123

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 10 (a) . RESULTS OF SUCCESSIVE EVALUATION OF LOGICAL EQUATIONS WITH
TWO DIFFERENT INITIAL CONDITIONS IF DO CHANGES STATE FROM "1" TO "0"

Logical equations:

Yi = Y3 + DO=S Y1 + DO* Y2

Y2 = DO*Yi * Y3 + Y2 = D0 + Y2^ y1

Y3 = 71 mDO*y2 + 71 *D0*Y2 + Yi *Y3 + Y3 *DO

Variable
(= Equation) Initial No. of Evaluation Initial No. of Evaluation

Name State I	 H	 III	 IV State I	 II	 III	 IV

Yi 0 1 1 0 0 1 1 0 0 —1
Y2 0 0 0 0 0 1 1 1 1 1

Y3 1 1 0 0 0 1 0 0 1 0

Stable transition 1D 	Unstable transition 0
TABLE 10 (b) . TRANSITION TABLE FOR ALL POSSIBLE STATES

Y1 Y2 Y3
DO

0 1

0 0 0

0 0 1

0

0

1

1

1

0

1 1 0

1 1 1

1 0 1

1 0 0

O O O O

• denotes transition state

o denotes stable state

OO O stable transition

unstable transition

124

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

TABLE 11. QUEUE FORMAT

WORD DEFINITION

0
	

NUMBER OF CELLS IN QUEUE
1
	

POINTER TO NEXT AVAILABLE
LOCATION (4 TO N)

2
	

POINTER TO EQUATION BEING
EVALUATED (3 TO N)

3
	

POINTER TO LAST EQN. BROUGHT
INTO CORE (3 TON)

4
	

FIRST ENTRY BUFFER CODE AND
DISC ADDRESS

5
	

SECOND ENTRY

N
	

LAST ENTRY PRIOR TO CYCLING TABLE

TABLE 12. REAL-TIME PHASE
CAPABILITIES

• Responds to DO inputs from the RCA-110A's.

• Responds to SWITCH inputs from the card
reader.

• Responds to simulated DO inputs from the
card reader.

• Responds to system interrupts — millisecond.
clock, elapsed timer and system error
interrupts.

• Responds to disc interrupts.

• Evaluates appropriate Boolean equations.

• Maintains tables of all conditions of the
system.

• Maintains clocks for various timing processes.

• Records all variable changes and evaluation
results of the system on magnetic tape.

• Terminates real-time functions upon command
when the system becomes stabilized.

provides complete test independence. Therefore,
the order of tests may be selected at random to
facilitate rapid location of a suspected malfunction.

TABLE 13. POST-SIMULATION PHASE
CAPABILITIES

• Time span — time to begin and end printing

• Variables to be listed

Only the changes in value or status of
variables on the history tape will be printed
unless the test conductor specifies that all
information be printed by setting a
"BREAKPOINT" on the SDS-930 console.

A secondary function of the post processor is
to provide a line printer plot of any analog
variable within the system. The value of the
analog variable is plotted against time. Again,
the test conductor is allowed to specify the time
span and the analog variable (s) to be plotted.

Since the diagnostic programs operate within
the RCA-110A, the standard RCA-1f0A main frame
diagnostics are used to insure that the RCA-110A
main frame, I/O data trunks, and all peripheral
equipment (excluding the SDS Interface) are
operating properly.

SDS-930 — RCA-1i0A COMMUNICATIONS

To effectively control and coordinate the tests
and diagnostic programs, the RCA-110A issues
command words (DO's) that consist of a predefined
octal bit configuration to the SDS-930 via the
Discrete Output Channel. Once the command word
is received by the SDS-930, it is interrogated to
determine which test should be initialized. When
the interrogation procedure is satisfied, a response
word is sent back to the RCA-110A via the Discrete
Input Channel.

TEST CONTROL LOOP

The Test Control Loop is the system monitor
that controls the scheduling of tests. It monitors
the various sense switches and transfers control
to the requested diagnostic subprogram when the
appropriate switch is toggled.

Each diagnostic subprogram has the ability to
print a list of Predicted versus Received data
(PRED/RCVD) for each error. This option is

125

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

M
	

A	 R	 D	 S	 L	 V	 C

$0̂ 4	 j'o}w

Ae

/-o, { 0 1,

A'po

$o^Ow

1-0

	

TIMED EQUATION ' HISTORY TAPE' DATA IN-CORE DATA FROM DISC _RCA-110A (DO) ' SIMULATED INPUT STABILITY	 TERMINATE
PROCESSING	 PROCESSING	 TO EVALUATE	 PROCESSING	 INPUT	 PROCESSING	 PROCESSING	 REQUEST

PROCESSING

INTERRUPT OUTPUT
ENTRY To	 INITDATE	 PLACE DISC	 DISC ADDR.	 RELATIVE TIME

	

TOP	 TRANSFER	 ADDRESS	 OF INDEX	 (MILLISECONDS)
PRIORITY	 FROM DISC	 OF RELATED	 TO QUEUE	 TO TELETYPE

	

QUEUE	 ACCORDING	 EQUATIONS

	

PSEUDOTAPE	 INITIATE	 TO QUEUE	 IN QUEUE	 DE-ACTIVATE SDS

	

INTERRUPT	 TAPE	 ENTRIES	 INTERFACE
HARDWARE

	

PROCESSING	 OUTPUT	 PROCESSES
INDEX EQU.	 V	 C

A I EVAL. EVAL.

	

R	 S	 L
DISC	 UNPROCESSED

ADDRESS	 QUEUE ENTRIES
OF ALL	 TO HISTORY TAPE
RELATED EVALUATE	 BUFFER

EQUATIONS	 EQUATION
TO LOWEST
PRIORITY
QUEUE	 RESULTS

1	 TO HISTORY	
OUTPUT NECESSARY

O	 HISTORY BUFFERS
D BUFFER

EQUATION CHANGED IN STATUS 	
NO

t YES	 i
LOG DISC ADDR. OF ALL	 SET TIMER IF EQU. IS TIMED	

RETURN TO

RELATED EQUS. IN QUEUE	 D	 HOLD PHASE

Figure 9. Simulator flow diagram.

selected during monitor control by toggling a sense
switch on the RCA-1i0A control panel. It causes
the diagnostic subprogram to list all interface data
errors (predicted value and actual erroneous

values received) encountered by the data validity
checks performed within each diagnostic subprogram.
Control may be transferred to the monitor at any
time by setting a priority request switch.

An option for dumping raw data exactly as it
was received from the SDS Interface is available
to the user by setting a sense switch before each
diagnostic test is executed. Another sense switch
assignment permits automatic looping of a test.

The Discrete Output Diagnostic is designed to
insure the communication link between the RCA-110A
and SDS-930 computers via the DO data channel is
operating properly. Since the DO data channel is
used for systems test control, the validity of this

link must be tested before any other tests are
conducted. Five unique bit configurations are
transmitted via the DO data channel to the SDS-930
and are immediately strobed back into the RCA-ifOA.

The Discrete Input Diagnostic checks the two
DI data channels between the RCA-i i 0A and
SDS-930 computers. All modes of DI scan are
executed by transmitting a unique bit configuration
to the SDS-930 via the DO data channel followed by
the DI, scan that gathers the same data back into
RCA-ilOA core memory (Status and Log Tables) .
Each bit configuration transmitted is compared to
each bit configuration received. Data channels
are also checked for parity error, inoperative, etc..

The Multiple Operand Address Diagnostic
(MTOAD) assures that the addressing of more than
one group of DO lines will cause an error condition
and automatically inhibit further DO transmission.

126

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

The test consists of generating successive pairs of
illegal addresses until all addresses have been
made; e.g., 1-2, 2-3, etc. Between each MTOAD
condition, an attempt to transmit a legal address is
made as a check on the automatic inhibit caused by
the MTOAD. When the legal address fails trans-
mission, the interface is reset, and the next
successive MTOAD is generated.

The time signals used with the discrete signals
include those of the Eastern Standard Time and the
Relative Time Counter. The Relative Timer
Diagnostic checks the bit incrementation of the
Relative Time Counter (27 bit, 1 msec) . This
counter supplies the means for having a zero time
reference in the computer that can be reset under
program control.

The EST Timer Diagnostic checks for proper
setting and incrementation of the Gray Code counter.
Preset Gray Code values are sent to the SDS Interface
via the DO data channel. If the preset value is not
returned or is returned in error, two more attempts
are made before an error message is printed. Upon
detection of the proper preset value, the RCA- Ii0A
checks for proper incrementation. Any errors
detected are logged with the expected time and the
received time.

The Elapsed Timers Diagnostic is initiated by the
RCA-iiOA, but the main functions of the diagnostic
checks are performed within the SDS-930. (See
the topic entitled Time Counters and Clocks.) After
the first timer has counted to zero, an interrupt
occurs, whereupon the elapsed timers are interro-
gated and compared to timing criteria within the
discrete and DDAS activities.

The first part of the Digital Data Acquisition
System Diagnostic assures that commutation occurs
at a 3. 6-kc rate. This test is initiated by the
RCA-ilOA but is performed by the SDS-930 program
that cycles through and updates each DDAS data word
once every 250 msec. After the commutation test
is completed, the RCA-i10A starts the DDAS Inter-
face Test, which consists of exercising the DDAS
Interface to insure proper commutation on all Digital
Receiving Stations (DRS) , and verifying valid data
and time responses for all modes and submodes of
DDAS scans.

The ACE Interface Diagnostic checks for proper
transfer of data words between the RCA-110A and
the SDS-930 computers via the ACE equipment by
comparing four data words with different bit patterns.

TOTAL DYNAMIC SYSTEM TEST

This test is designed to exercise all interface
equipment between both RCA-110A computers and
the SDS-930 computer. The programs are executed
in such a manner that peak data transmission
operations occur between the three computers.

Either of the two RCA-110A computers may
initiate the test by transmitting the appropriate
command word. The SDS-930 computer initializes
its discrete system, commutation is started on all
five Digital Receiving Stations, and the Eastern
Standard Clock is preset to zero. All three com-
puters (both RCA-110A 1 s and the SDS-930) record
the type and number of system errors detected,
total number of discrete transmissions, and the
time duration of the test.

CONCLUSIONS

The simulator was successfully demonstrated
in January 1969 with several RCA-110A test pro-
grams for the Instrument Unit (1U). The IU was
used because it is the most complex system of the
Saturn V, and it was determined that, if it could be
simulated, then the other stages could be simulated
also.

The checkout of the software for all timing and
logic combinations was extremely difficult within a
real-time computer network and the special hard-
ware interface. Often hardware and software
errors occurred simultaneously and obscured the
source of the error.

The successful simulation runs of the IU test
programs have proven that the concept of the real-
time digital simulation for test program evaluation
is feasible. Though the determination of all timing
limitations with respect to size of data base and
minimum component time-constants is still subject
to further study, it is established that the simulator
can be used in many applications without changes in
the software. Systems that predominantly contain
devices with relatively large time constants such
as electro-mechanical, mechanical, and pneumatic
devices are particularly suited for this simulator.
Fast electronic logic circuits can also be sim-
ulated if they control other slower devices so that
the minimum time between stimuli output and
response input is in the range of milliseconds to
seconds.

127

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

The software allows easy change of parameters,
of tolerances, and of the configuration of the hard-
ware under test for studying its effects on the overall
systems performance, for evaluating the complete-
ness of test programs, and for locating malfunctions.
Hence, the real-time software simulator can be used
for applications such as test-program design and
evaluation, malfunction analysis, hardware design
analysis, and training of checkout and launch
personnel.

The data base can be set up easily since trans-
lation of the schematics into the logical/analog
equations is not difficult. However, the data base
should be established while the hardware systems are
being designed so that the design engineers are
modeling their own design, thus assuring the
establishment of a data base that accurately reflects
the hardware design. Also, the simulator can then
be utilized as an active tool during the design phase
and can be used for early test program design and
evaluation before hardware delivery.

It is also conceivable that the logic/ analog
equations may describe the functions of sub-

systems on a higher level than the piece-part
level, thus very large systems could be sim-
ulated to less depth.

Space missions of great complexity and of longer
duration, and a greater frequency of launchings will
require speeding up the checkout operations and a
constant thorough knowledge of the status of all
systems within the space vehicle. The vehicles
themselves will be more complex and their configu-
ration will be varied greatly, which will result in an
increase in the design of new and more sophisticated
test procedures. Narrow launch windows and more
frequent launchings will result in the need for short
turnaround time at the launch pad. To meet this
challenge in new space programs such as the Space
Shuttle and Space Station, plans are being made as
to how this powerful simulation system can be
optimally used for these new programs. Primarily,
hardware changes for the interfaces have to be
identified in order to make them more general. The
software changes of the actual simulation program
are expected to be minor; however, it might be
necessary to write some data formatting routines
for the interfaces.

REFERENCES

1. Saturn V System Development Breadboard Facility Data Plan. The Boeing Company, Document No.
D5-15207, NASA Contract NAS8-5608, January 1965.

2. Saturn V System Development Breadboard Facility Operational Plan. The Boeing Company,
Document No. D5-15201, NASA Contract NAS8-5608, November 1964.

3, ESE Simulation. General Electric Company, GE-Apollo Support Department, Daytona Beach, Fla.,
NASA Contract NASw-410, May 1965.

4. Jaegly, R. L.: Test Procedure Validation by Computer Simulation. AIAA Paper No. 69-280, AIAA 2,
Paper Presented at Flight Test, Simulation and Support Conference, March 1968.

5. Brooks, L. W.; and Stahley, J. A.: Real-Time Digital Simulation of the Saturn V System. Sperry
Rand Engineering Review, Systems-Computer Applications, 1969.

6. VLF-39-1 Digital Data Acquisition System (DDAS) for Saturn V. Interim Technical Report,
MSFC-ASTR.

7. Brooks, L. W.; Gellman, L. J. ; and Stahley, J. A.: Transfer Equation Preparation Manual for
Launch Vehicle and Ground Support Equipment System Simulator. Prepared for NASA/MSFC/R-ASTR-ESA
by Sperry Rand, Space Support Division, 1967.

8. Abe, R. G.; and Scarborough, K.: General Design Specification for Launch Vehicle and Ground Support
Equipment Simulator System. Computer Sciences Corporation, March 1967.

128

H. TRAUBOTH, C. O. RIGBY, AND P. BROWN

REFERENCES (Concluded)

9. Program Specifications for Launch Vehicle and Ground Support Equipment Simulator System. Computer
Sciences Corporation, February 1970.

10. Caldwell, S. H.: Switching Circuits and Logical Design. John Wiley & Sons, New York, N. Y., 1958,
p. 468.

11. Balentine, T. L.: Operating Procedures for RCA-ilOA Computer Programs for DEE-6D Modification
Acceptance Tests. Computer Sciences Corporation, June 20, 1968.

12. Acceptance Test Procedure — DEE-6 Simulator System. Scientific Data Systems, Document No.
SDS-144934, NASA Contract NAS8-11809, May 1967.

13. Balentine, T. L.; Rigby, C. 0.; and Abe, R. G.: Design Documentation for RCA-110A Computer
Programs for DEE-6D Modification Acceptance Tests. Computer Sciences Corporation,
December 19, 1967.

14. Brooks, L. W.; and McCubbins, C. L.: Integrated Test Plan for Acceptance of DEE-6D Modification.
Sperry Rand Corporation, June 1967.

129

Page intentionally left blank

STATE VARIABLE DESCRIPTOR SYSTEM (SVDS)
By

N. F. Geer

SUMMARY

A digital computer program, State Variable
Descriptor System (SVDS) , has been developed for
reducing the system block diagram of a dynamic
system to a state variable description. Programs
are also available that utilize the output of SVDS to
perform particular types of analyses. The SVDS
is intended to be used on systems with a number of
time-invariant elements and a large number of
integrators. However, the system being analyzed
can contain time-varying and nonlinear elements.
SVDS was designed for and implemented on remote
time-sharing terminals and is intended for use by
those persons familiar with state variable types of
analyses. For a full utilization of SVDS, the user
should have some knowledge of FORTRAN.

INTRODUCTION

summing junctions and assign the elements of the
state vector as outputs of the simple integrators.
The inputs to each integrator, expressed in terms
of the state variables, form the A matrix, and the
values of the output vector in terms of the state
variables form the C matrix. The B and D
matrices are formed from values of inputs to the
integrators and the output vector in terms of the
system input vector. For large complex systems,
the manual determination of the matrices can
become a long, tedious process. SVDS will deter-
mine the A, B, C, and D matrices and identify
the elements of the vectors.

SVDS is particularly useful to those persons
using state variables to describe large dynamic
systems. The user can write time-sharing digital
programs that utilize the outputs of SVDS to perform
particular types of analyses. This report covers
some of the types of analyses that have utilized
SVDS.

A modern approach for analysis of linear
systems is the state variable method. The state
variable method permits describing a system in
compact form by use of matrix equations. The
matrix equations are generally in the form

X = AX + BU	 (1)

and

Y = CX + DU	 ,	 (2)

where X is the state variable vector, U is the
input vector, and Y is the output vector. A, B,
C, and D are matrices that can be time varying.
Techniques for manipulating these equations are
covered in several texts [1, 2] .

A general practice for finding the matrices for
a system described by block diagrams is to reduce
any transfer functions to simple integrators and

MATHEMATICAL MODEL

The mathematical model generated by SVDS
can best be visualized by the matrix block diagram
of Figure i. SVDS separates from the input those
components that are linear time-invariant. These
elements are summing junctions, gain constants,
simple integrators, and transfer functions. Com-
ponents that do not fall into these categories are
grouped as nonlinear elements. The term non-
linear is used as a matter of convenience, and it
should be understood that it includes linear time-
varying elements as well as the usual nonlinear
elements. In Figure 1, A, B, C, and D are
constant matrices that SVDS determines from the
linear time-variant elements. The N block of
Figure 1 accounts for the nonlinear elements.

N should not be interpreted as a matrix but as a
group of functional relationships between elements
of U'^° and Y .

131

N. F. GEER

Figure 1. Matrix block diagram.

SYSTEM BLOCK DIAGRAM
	

4. Class 4 — Transfer Functions

The system to be analyzed uses five types or
classes of blocks to describe the system. Table 1
lists these blocks. Because of the general block,
class 5, these blocks are sufficient to describe any
system. All the blocks are single output and are
identified by a block number and a class number.
The outputs of each block assume the name of the
block (i. e. , block number) ; thus, there must be
no duplication of block numbers. The following
describe each class of blocks:

1. Class f — Input Block

Class 4 is for transfer functions that are
the ratio of two polynomials in the S-domain.
The only restriction is that they must be
realizable transfer functions; i. e. , the order
or the numerator ? the order of the denominator.
The transfer functions are reduced by SVDS to
simple integrators and summing junctions. The
reduction method used is the so-called
"M-Method. "

For the M-Method of reduction, the transfer
function is placed in the following form:

Class i designates the input points to the
system. Class 1 blocks are used to form the
U l vector.

2. Class 2 — Summing Junctions

Summing junctions also include gain
constants. If a summing junction has only a
single input, it then becomes a simple gain.

3. Class 3 — Simple Integrator

Class 3 is used to designate simple inte-
grators in the system. The outputs of these
simple integrators form the state vector.

Y = (AnSn +A n-i Sn-i +A I S + A0) U.

(S
n +B n-1 S n-1 +B I +Bo)

The simulation diagram is as follows:

132

N. F. GEER

TABLE 1. CODING OF BLOCK DIAGRAMS FOR COMPUTER INPUT

CLASS I	 DESCRIPTION	 I	 INPUT FORMAT

1	 BLK. NO.

(INPUT) INPUT	 -► BLK. NO	 BLK. NO., 1

BLK. NO.
Z

2	 Z2	
Al	

BLK.NO .	 BLK, NO., 2

(SUMMER)	 Z	
A2	

n, Z l , A l , Z2 , A2 ,Z n , A,n

	

n	 An

3	 BLK. NO.	 BLK. NO., 3
(INTE- ZZ^ 	1

GRATOR) Z,	 S	 BLK, NO.	 z

4	 BLK. NO.	 BLK. NO., 4
M

F, a.s , 	 BLK.
(TRANSFER Z1	 ! =0 1	 NOS.	 m, n, Zl

FUNCTIONS	
bksk	 a0' a l'am

k=0
b0, b l ,bn

BLK. NO.
5	 BLK. NO., 5

(NON-LIN. Z1

TIMOR	 Z2	 NL	 BLK,	 n
NO.FUNCTIONS Z	 Z1, Z2,Zn

n

SVDS generates the additional blocks, assigns the
transfer function block number to the output summing
junction, and assigns consecutive numbers to the
other blocks starting with the integrator nearest the
output summing junction. Thus, for transfer func-
tions, N + 1 additional consecutive block numbers
must be reserved where N is the order of the
denominator. For instance, if a transfer function

is of order 3 and has a block number of 5, block
numbers 6, 7, 8, and 9 will also be used.

5. Class 5 — Nonlinear and/or Time-Varying
Blocks

The class 5 blocks are general and are
used to designate functions not covered by the

133

N. F. GEER

other classes of blocks. When these blocks
are encountered, the system input vector is
augmented by the U* elements. The output
vector is searched for the required Y
elements. If they are not present in the Y
vector, the Y vector is augmented to accommo-
date the Y* elements. SVDS maintains a
record of these blocks for identification
purposes.

6. Output Vector

The output vector is initially established by
listing in the input to SVDS those blocks whose
output is to make up the system output vector.
As stated above, the class 5 block will augment
this vector if required.

PROGRAM OPERATION

The program is divided into three major
routines: (1) input routine, (2) variable identifica-
tion routine, and (3) matrix generation routine.
The following describes the operation of each of
these routines. A description is also included of the
routine that generates a set of simulation equations.
The sample problem of Figure 2 will be used to
illustrate outputs for the various routines.

Input Routine

The first item of input is the system output
vector description Yi . This is performed by
entering the number of output points and the list
of block numbers whose output makes up the output
vector. The remainder of the block diagram infor-
mation can be entered in any order. Encoding of
the blocks is that shown in Table 1. The first two
items of each block are the block number and class.
The block class is used as a control, not only to
catalog the block, but also to read the remainder
of the block information.

The input routine performs certain error checks.
As each block is read, the number is checked against
previous blocks for a duplication of block number.
If a duplication does occur, the block information is
not processed and a program abort will occur on
completion of the reading of input. The input routine
also checks the transfer functions, class 4, for
realizability. Nonrealizable transfer functions will
also cause an abort.

The input routine prints out any missing blocks
and redundant blocks. When this occurs, the program
will continue, but the user is alerted to possible
errors in the input. If a block requires input from
a missing block, the output of the missing block is
assumed to be zero.

CLASS 1	 CLASS 3

Figure 2. Sample system block diagram.

134

N. F. GEER

Variable Identification Routine

The variable identification routine identifies
the elements of the X, U, and Y vectors to the
outputs of the specific blocks of the block diagram.
The state variable vector elements, Xi , are

assigned to outputs of the simple integrators
including those of the transfer functions. The input
vector elements, UP are assigned to the outputs

of the system input blocks, class 1, and the outputs
of the class 5 blocks. The output vector elements,
Y

i
, are assigned to the initial blocks listed for

output and augmented by class 5 blocks when
required. In all cases, the sequence for assigning
the indexes is the sequence encountered on input.
In addition to these vector identifications, identifica-
tion of the class 5 elements is provided. The
following is an identification list for the system
on Figure 2.

VARIABLE IDENTIFICATION

X BLOCK X BLOCK X BLOCK X BLOCK

1 3 2 6 3 7 4 9

Y BLOCK Y BLOCK Y BLOCK Y BLOCK

1 11 2 13 3 5 4 2

U BLOCK U BLOCK U BLOCK U BLOCK

1 1 2 10 3 12

The following functions are to be supplied by
the user:

OUTPUT INPUTS

U BLOCK

2	 10

Y BLOCK

3	 5

Y BLOCK

4	 2

Matrix Generation Routine
After the input routine is completed, the block

diagram is retained in memory as four arrays.
These arrays are from the first three classes of
blocks and the output vector. Transfer function
blocks, class 4, no longer exist since they have
been reduced to simple integrators and summing
junctions. The nonlinear elements, class 5, have
been replaced by augmenting the input and output

vectors. However, an identification list for non-
linear elements is maintained in the disk files.
Thus, after the input routine is completed, the only
thing contained in memory is the block description
of the linear time-invariant portion of the system.
The A, B, C and D matrices are generated from
the linear time-invariant elements of the system.

From equations (1) and (2) it is seen that the
A and C matrices are coefficients of the state
vector, and the B and D matrices are coefficients
of the Y vector. To compute these matrices one
can think of the matrices as being the gains between
particular points in the system. As an example,
the first column of the A matrix contains the gains
between the output of the integrator that has been
designated as xi and the inputs to each integrator.
In other words, if the output of xi is assigned the
numerical value of 1 and the inputs to each integrator
are evaluated, these values will be the elements of
the first column of the A matrix. It should be
noted that these values are a result of the gain
constants contained in the summing junction, class 2,
blocks only. Columns of the C matrix are found
from the values of the output points. The B and D
matrices can be found in a similar manner, except
the output of the system input blocks are set equal
to 1.

The procedure used by SVDS to accomplish this
is to establish an output array for the -blocks.
Indexing of the array is by the block number, and
the output of each block can be computed and stored
in this array. For the J column of the A and C
matrix, the block output array is nulled, and the
output array element that corresponds to the
integrator for x is set equal to one. Since the

interest is only in the gain between x and the

inputs to the integrators and the system output
points, only the output of the summing junctions
requires evaluation. To obtain this evaluation it is
necessary to iterate the summing junctions. The
reason for this iteration is that the description of the
summing junctions are stored in a random manner
in the summing junction array. For instance, if
summing junction N requires input from summing
junction M and N is stored before M, N will not
obtain the correct input until the second evaluation.
The iterations are repeated until there is no change
in the outputs of the summing junctions. When the
outputs of the summing junctions have converged,
the numerical value of the inputs to integrators will
form the J column of the A matrix, and the value
of the system output vector is the J column of the

135

N. F. GEER

C matrix. These values are written directly into
an A matrix disk file and a B matrix file. Thus,
no additional computer memory is required to
store these matrices.

The B and D matrix files are determined in
the same manner except the outputs of the system
input blocks, class 1, are set equal to 1. The
first two items of information contained in all matrix
files are the dimensions of the matrices. These
dimensions are determined from the variable
identification routine. When a null matrix occurs,
the dimensions are set to 0, 0.

In the present system no provision is made
for solving linear algebraic loops. If loops do
occur, the iteration of the summing junctions will
fail and the program will abort. Algebraic loops
are not a frequent occurrence, but it is recognized
that they can exist. Methods for solving algebraic
loops are under evaluation.

State Equation Routine

The state equation routine generates a sub-
routine of FORTRAN statements to be used in
system simulation. These FORTRAN statements
contain all the information contained in the matrix
equations but are in a more compact form. In
general, the matrices will contain a very large
number of zeroes, but in the state equation routine,
terms with zero coefficients are not printed.

From Figure i the simulation equations in
matrix form are:

Ui = F (t)

Y = CX + DU

U* = N (Y)

and

X=AX +BU

If the D matrix exists, it can be seen that the U
vector depends on Y, and Y depends on the U
vector. Since digital computations are sequential,
the equations for the U* and Y elements must be
properly sequenced.

The method used is to establish two Boolean
type matrices; i. e. , 0, 1 matrices. The first
matrix, E, is obtained from the nonlinear identifi-
cation and indicates the required elements of the Y
vector for each U element. The second matrix,
DP, is obtained from the D matrix by replacing
non-zero elements with a i. The matrices for the
sample problem would appear as follow:

E MATRIX	 DP MATRIX

Y	 U

	

1	 2	 3 4	 1	 2	 3

1	 0	 0	 0	 0	 1	 0	 1	 0

	

U 2 0 0 1	 1	 Y 2 1	 1 0

3	 0	 0	 0	 0	 3	 0	 0	 0

4 0 0 0

The zero rows in the E matrix indicate that those
U elements are external inputs to the system. The
zero rows of the DP matrix indicate that those Y
elements are functions only of the state variables.

Sequencing is started by searching the E matrix
for a zero row. As each zero row is encountered,
the U index is stored in a sequencing array, and
the corresponding column of the DP matrix is set
to zero. All the rows found on the first search of
the E matrix will be the external forcing functions.
After the search of the E matrix is complete, the
DP matrix is searched for zero rows. As each
zero row is encountered, the Y index is stored in
the same sequencing array used by the U vector,
and the corresponding column of the E matrix is
set at zero. The process is repeated until no zero
rows are found. The stored indexes in the sequencing
array are in the proper computation sequence, and
this index array is used by the remainder of the
routine to control the printing of the U. and Y.

	

equations.	
i

Although it has not occurred in actual practice,
it is possible that an algebraic loop can exist through
the nonlinear elements and the D matrix. If this
should occur, the elements cannot be sequenced by
the above procedure, and the routine will indicate
those equations that cannot be sequenced.

The remainder of the routine is primarily a
print routine. The files of the A, B, C, and D

136

N. F. GEER

matrices are used to determine the coefficients.
Any zero coefficient terms are not printed. Figure 3
gives the printout for the example of Figure 2.

SUBROUTINE DERIV
COMMON T, XDOT (4),X(4),Y(4),U(3)
U(I)=EXTERNAL
U (3) =EXTERNAL
Y(3)=X(2)+X(3)
Y(4)=X(1)
U(2)=FUNCTION OF Y'S 3 4
Y (i) =2. 00000E+00 rX (4)+U (2)
Y (2) =2. 00000E+00* X (4)+U (1) -U (2)
XDOT (1) =-2. 00000E+00 *X (1)+U (1)
XDOT (2) X (3)
XDOT(3)=-X(2) -X (3) -2. 00000E+00°X(4)+U (1) -U (2)
XDOT(4)=U(3)
RETURN
END

Figure 3. Subroutine example.

APPLICATION

Figure 4 shows the role that SVDS has played
in various types of analyses. The primary outputs
of SVDS are A, B, C, and D matrices and the
nonlinear identification. This information is stored
on disk files, and particular types of analysis use
these files.

Simulation (Time Response)

For system simulation the subroutine DERIV
described previously is used by available library
numerical integration routines to obtain the system
time response. Before compiling the DERIV sub-
routine, the user must supply the specific functions
for the elements of the U vector. U (i) I s that are
designated as EXTERNAL are the system forcing
functions. Each must be replaced by specific
FORTRAN statements. These external forcing
functions are, in general, functions of time. In
studies on optimal switching functions, they can be
functions of the state variables.

The U (i) I s that are generated by the class 5
blocks must also be replaced by specific FORTRAN
statements. The required Y(J) I s to generate
the U(i) are specified in each case, and it is only
necessary for the user to supply the relationship.
It is evident that forcing functions and nonlinearities
could be automatically generated. In the develop-
ment of SVDS, consideration was given to providing
these functions. However, it became apparent
that for time-sharing computer users, this did not
serve a useful purpose but tended to restrict the
general application of SVDS. If the various types
of nonlinearities and forcing functions were provided
automatically, it would be necessary to have a large
catalogue of these functions. However, in particu-
lar applications, only a small portion of the catalogue
would be used, but the total catalogue must be

"SVDS"

SYSTEM

MATRIX * FILES

CODINGO 	
I	

"STATE"IN PUT

	

INPUT	 STATE EQUATIONS

	

ROUTINE	
MATRICES	 "TRANSFUN"	 "FREQRES"

RKG•	"STATE"

	

L
FI
RIABLE

	

	 ADJOINT STATE
CATION	 EQUATIONS

 TINE	 TIME RESPONSE	 TRANSFER FUNCTIONS	 FREQUENCY
RKG'	 COEFFICIENTS	 RESPONSE

MATRIX
COMPUTATION

	

ROUTINE	 'RKG IS A STANDARD
RUNGE - KUTTA -
GILL INTEGRATION

NOISE RESPONSE	 ROUTINE
STATISTICS

Figure 4. Role of SVDS in dynamic system analysis.

"INV"

137

N. F. GEER

available for use as subroutines. In time-sharing
applications, computer memory is usually at a
premium and to include a comprehensive catalogue
of functions would require extensive file operations
resulting in slower program operation. Many non-
linear functions are very simple FORTRAN state-
ments. By having the user supply the FORTRAN
statements, the user is not restricted to functions
available in a catalogue, but by his own ability to
describe the function. In time-sharing remote
terminal operation, this user capability is very
practical.

There are usually several types of integration
routines available in a time-sharing library._ A
common routine is the fourth order Runge-Kutta.
Runge-Kutta is particularly suited to remote
terminal operation, because its accuracy can be
quickly checked by integrating over a small time
interval and then comparing results obtained over
the same time interval but using one-half the
original integration interval. It has been this writer's
experience that Runge-Kutta is faster than predictor-
corrector methods when the system contains
discontinuous functions. Figure 5 gives a typical flow
diagram for carrying out the numerical integration.

Adjoint Systems

For time-varying systems it is sometimes
desired to find the impulse response matrix,
H (T, T) , where T represents the time of the
impulse input to the system and T is the time of
output. H is also referred to as a weighting
function. Very often, the output at a specific time
Ti resulting from inputs at specific times in the
past is desired. In a linear time-invariant case,
the response at Ti depends only on the time
difference, T i-T. In time-varying cases the
response is dependent on the specific time of input.
To find the response at Ti resulting from impulse
inputs at specific T's by use of normal state
equations would require an integration for each T .
The reason for this is that the independent variable
or running variable is T and not T. In an adjoint
system only one integration is required for a speci-
fied terminal time T i . For the adjoint system, T

becomes the running variable with real time running
backwards. Essentially, the adjoint of a system is
found by interchanging inputs and outputs of each
block on the block diagram. When this is performed,
the Yi vector becomes an input vector, U i becomes
an output vector, summing junctions become branch
points, and branch points become summing junctions.
Thus, one could obtain the adjoint of a system by
redrawing the system block diagram and executing
SVDS. However, there are direct relationships
between the matrix descriptions of a system and its
adjoint. The adjoint of Figure 1 would be that
shown in Figure 6.

One can now note that the form of Figure 6 is
the same as that of Figure 1. The difference is
that the matrices have been transposed, and the B
and C matrices interchanged. The N block con-
tains all the time varying constants and, in this
case, can be treated as a matrix.

The routine INV of Figure 4 reorganizes the
file names so that the routine STATE will read the
correct files to give the adjoint equations. The
DERIV routine will contain the same variables as
for the forward system; i, e. , U is the input
vector to the adjoint system and Y is the output
vector. However, the indexes of U and Y are
interchanged. The circled variables of Figure 5
are the variables used by DERIV.

To obtain the impulse response matrix at Ti,
impulses must be used as inputs, in sequence, on
the input elements. Most often Yi is a
scalar and the output Ui can be a vector. Inte-
gration is carried out with T running from zero
to T 1 and the time varying coefficients computed
from the real time, Ti-T.

For simulation of a unit impulse, the equiva-
lence of initial conditions on an integrator and an
impulse input is utilized. If the input to an
integrator is a unit impulse through a gain K, this
is equivalent to an integrator with zero input and an
initial condition of K. The simulation flow diagram
of Figure 5 is the same except the initialization of
the X vector. For a scalar input, U(1) , this
block is replaced by the following operations:

138

(4)Y = CX + DU

I
SET	 I
X=0

N. F. GEER

and

the transfer function description would be

U(1) = 1	 y = G(s) U	 ,

where Y and U are the Laplace transforms of

CALL	
Y and U. G(s) is the transfer function matrix

DERIV,	
with elements g(s)J

K.
Each element has the

form	 '

X=X

U(1) = 0

Transfer Functions

The routine TRANSFUN was developed for the -
purpose of finding the transfer functions for passive
linear networks. Theoretically, it can be applied
to any linear time-invariant system and obtain the
transfer functions between input points and output
points of the system. However, it should be pointed
out that transfer functions do not contain any more
information than is contained in the state variable
description of the system. As an example, the
poles of a system are the characteristic values of
the A matrix. In reality, the problem that is
being solved by TRANSFUN is the changing of the
state variable description of a linear time-invariant
system to the classical transfer function description.

ao + ais + a2 S 2 + a
P

sp

g (s) J, K = bo + b
is + b2s2 + bnsn

with p:5 n. G(s) is found by taking the Laplace
transform of equation (3) and solving for X to*
give

X = [sI - A] -1 BU	 ,	 (5)

Taking the Laplace transform of equation (4) and
substituting for X will give

Y = [CEB + D] U

and, thus,

G(s) = CEB+ D	 ,

where

For a linear time-invariant system described	 E = [sI - A] -1

by

TRANSFUN performs the inversion of [sI - A]-i
X = AX + BU	 (3)	 using a method similar to that used by Zadeh [11.

139

N. F. GEER

START

SET:
INITIAL TIME
FINAL TIME
INTEGRATION INTERVAL (DT)
INITIAL PRINT TIME
PRINT INTERVAL

RUNGE-KUTTA
ROUTINE

STOP
ROUTINE

PRINT
ROUTINE

Figure 5. Numerical integration by the Runge-Kutta method.

Each element of the transfer function matrix	 function can be achieved by the cancellation of
is the ratio of two polynomials in s. The denom_ina- 	 identical poles and zeroes.
for of each element is the same for all elements
and is the characteristic equation obtained from the
A matrix. After the coefficients of the numerator	 Frequency Response
and denominator are found, a root finder routine
can be used to find the poles and zeroes of the	 FREQRES finds the frequency response between
system. In many cases reduction of the transfer	 an input point, specified by the user, and specified

140

(E3

Yl

N. F. GEER

i

Figure 6. Adjoint system.

output points for the linear time-invariant portion In the frequency domain these can be written as
of a system.	 The frequency is in Hertz, and the
response is given in both rectangular and polar _
form.	 The use of FREQRES is recommended only jw X = A X + BU
on systems of tenth order or less.	 The routine
requires the inversion of complex matrices, and,
for large matrices, the computation time can be and
very long.	 The computation method is made simple
by the use of complex variables and complex matrix _	 _
routines. Y = C X + DU

For the linear time-invariant portion of the
system the state equations are, as given before:

_
where X and Y are complex and j = 4--1 .
From equation (8)

X = AX + BU	 (6)

X = [jwI-A] -1 BU

and

(8)

(9)

and

Y+CX+DU
	

(7)	 Y = C [jwI-A] -1 BU + DU

141

N. F. GEER

At each frequency step, [jcwI - A) -1 is evaluated,
and, if A is large, this can be along computation
process. After this inversion is found, the
remainder of the computation is by complex matrix
multiplication and addition. In the computation,
only a selected input element in the U vector is set
equal to one and all other elements are set equal
to zero.

obtaining a state variable description of the system.
The SVDS is intended for remote terminal operation.
All computation routines are maintained in BCD
form and can be changed, if required, by the user.
At the present time, the SVDS is implemented on
the GE 605 Desk Side computer system. An 1108
version is being developed.

CONCLUSIONS

For the analysis of large complex systems,
SVDS provides the engineer with a fast method for

REFERENCES

i. Zadeh, L. A.; and Desoer, C. A.: Linear System Theory. The State Variable Approach, McGraw-Hill,
New York, N. Y. , 1963.

2. Derusso, P. M.; Roy, R. J.; and Close, C. M.: State Variables for Engineers. John Wiley & Sons,
Inc., New York, N. Y„ 1965.

142

GRAPHICSSTORAGE SCOPE	 RI	 L APPLICATIONS

By

R. Seitz

INTRODUCTION

One of the research tasks that the Man-Machine
Systems Branch of the Computation Laboratory at
Marshall Space Flight Center has undertaken is the
investigation of low priced graphic display equipment.
At the present time, most interactive graphic termi-
nals cost between $ 50 000 and $ 100 000 per station.
This Branch has been investigating a new type of
graphic display unit that costs between $ 5000 and
$ 10 000 per station, putting it in the price range
of a keypunch or an 1108 teletype. These low priced
graphic displays are not a direct substitute for the
more expensive graphic displays but should suffice
for a number of applications within NASA such as
computer-aided design, engineering simulation, and
management information display. The display con-
soles under investigation utilize one or two Tektronix
611 storage display scopes, a pushbutton keyboard,
and an electronic interface. They may or may not
include a selectric typewriter, a graphical input
device, and, when it becomes available, a $ 3000
photostatic copier. Another option that may be
available soon is a high speed acoustic telephone
coupler. This would permit the Tektronix terminal
to communicate with a computer through any standard
telephone receiver, thereby rendering the graphics
station truly portable. Figure 1 shows a prototype
version of such a display unit. This particular unit
is interfaced to an IBM 1130 computer and has been
operational since early 1968. It affords a character-
writing rate of about 900 characters per second.

Figure 2 shows an application for which one of
these terminals is currently being used; i.e., the
design and display of hypersonic lifting bodies simi-
lar to the space shuttle configurations. The IBM 1130
computer, with display, is used interactively to
assist the designer by filling in the airframe in detail
and displaying it, based upon general design infor-
mation supplied by the user. When a design appears
to be acceptable, its X, Y, Z coordinates are punched
out on cards for simulation on the UNIVAC 1108's.

Figure i. Prototype version of AMTRAN terminal.

Figure 2. Space shuttle configuration.

Figure 3 shows one of the circuits used in
constructing the interface between the low priced
display and the IBM 1130. This suggests another
application for these low priced displays; i.e.
printed circuit board design. It is noted that this
figure was prepared from a Polaroid transparency

143

R. SEITZ

taken directly from the scope face. Polaroid trans- 	 low cost Tektronix photostatic copier is desirable
parencies may be used to prepare "instant slides", 	 to provide a hard-copy record of alterations to the
with the picture generated and formatted by the 	 form.
computer.

Figure 3. Logic circuit.

Figure 4 shows a printed circuit board layout
prepared as a demonstration of the resolution and
information content of the scopes.

(` ^ iM
r.}

4[111 11j

L.. ^-.x'	 {fit y	 -e H:	 }^L...

m

°

	

r`
j5

r - m,4	 A'

Figure 4. Printed circuit board.

Figure 5 shows a plot of the Fresnel integral

z)f sin C 2 dx.

Figure 6 shows a family of solutions of a differ-
ential equation, illustrating some scientific applica-
tions of such displays.

Figure 7 shows a Form 1125 (Request for
Computational Support) as it appears on the storage
scope display. This figure exemplifies another
application well-suited to the storage-scope displays;
editing of the text appearing on forms. Graphic capa-
bility is required to display the form, and high reso-
lution is necessary to display the fine print and
special character sets found on forms. Also, the

Figure 5. Fresnel curve.

Figure 6. Solution of a family of
differential equations.

144

R. SEITZ

BEUST FM EOPIRAt[M 9 WT
	

TEXT AND FORM EDIT 1 NG

Figure 7. Computation Laboratory Form 1125.

Figure 8 shows an automatically formatted
schedule chart for one of the projects of the Man-
Machine Systems Branch. Such schedule charts
may be updated on a weekly basis. This chart was
automatically formatted and taken directly from the
scope using a special Polaroid camera marketed by
Tektronix.

Figure 8. Schedule for branch project.

The Man-Machine Systems Branch has developed
software and has encouraged the development of
hardware for storage-type graphics displays. They
are now felt to be ready for use at the Marshall
Space Flight Center and at other NASA installations.

One application utilizing the low cost graphics
terminal has been the development of an experimental
Text and Form Editing program. An objective of
this study has been to develop general, but simple,
software in an effort to define and evaluate how man
can interact with the computer, and to determine the
value of such capability in a management information
environment. The development of a prototype system
on the IBM 1130 computer is being coordinated with
the Research Planning Office at MSFC. The system
will provide online updating and editing capabilities
for a file of approximately 500 Research and Tech-
nology Resumes, NASA Form 1122. The system
currently provides the capability to allow for defini-
tion of up to 20 different single-page business forms
and to establish files of associated information. The
system provides software that allows online creation,
maintenance, editing, and display of text information
in the form. The program utilizes a two-scope dis-
play unit. The left scope is used for displaying the
form and current information. The right scope is
used to display commands and to provide a working
area for item construction and editing.

The experimental system has been programmed
to recognize 16 mnemonic commands to facilitate the
display, editing, and maintenance processes. In
addition to the commands, the system recognizes a
character set consisting of 54 alphabetic, numeric,
and special characters. Commands are entered by
pressing the operator keys followed by alphanumeric
file, code, and item identifiers. The character keys
are arranged in standard typewriter position and are
used to type in identifying information following
operators and for entering text information. Com-
mands and characters are immediately displayed on
the scope upon entry.

The following commands are recognized by the
system:

i. FILE — Identifies a particular file of infor-
mation and the associated graphic form.

2. FORM — Causes the graphic form associated
with the previously identified file to be displayed.

145

R. SEITZ

3. CODE — Causes the specified logical record
of information to be read from the random access
disk into an in-core work area. When the informa-
tion is read, the form and associated information
is displayed on the scope.

4. ALL — Causes all current information from
the in-core work area to be displayed in the appro-
priate blocks on the form.

5. EXCEPT — Causes all information except
specified items to be displayed in the appropriate
blocks on the form.

6. LIST — Causes specified items to be dis-
played in the appropriate blocks on the form.

7. ENTER — Allows information for a specified
item to be input and concurrently displayed in the
construction area on the right scope.

8. EDIT — Initiates the editing process for a
specified item by displaying the current contents of
the item at the top of the construction scope. The
EDIT feature of the system is under cursor control,
and the following control keys operate in conjunction
with the EDIT command:

a. LINE FEED

b. WORD FEED

c. CHARACTER FEED

d. LINE DELETE

e. WORD DELETE

f. CHARACTER DELETE

g. CONTINUE

Using the feed controls keys, the user steps through
an item down to the position at which he wishes to
modify the text. As the user steps through the item,
a second copy of the information is displayed in the
middle section of the construction scope. The cursor
indicates the current position in the original item at
the top of the scope. When the position at which a
change is to be made is reached,. the user can strike
out information in the original by using the delete
control keys. New information can then be typed in
to replace the deleted information. At this point, the
cursor will move to the second copy in the middle of
the scope and will follow along as new information
is entered. The stepping and deleting process can

be continued by pressing CONTINUE, if subsequent

information in the item is to be edited. Strict
insertion is accomplished by stepping to the position
and typing in information without deleting. The EDIT
procedure is completed by pressing the EOM key.
Upon completion of an EDIT, the contents of the
item are displayed at the bottom of the construction
area for final verification. The edit algorithm pro-
vides automatic line length adjustment so that
information will fit in the block provided on the
graphic form.

9. TRANSFER — Causes the information re-
sulting from an ENTER or EDIT operation to be
transferred into the in-core work area, replacing
the previous information for the item.

10. ABORT — Causes a command to be aborted
without modifying the in-core information.

11. ERASE — Causes the left display of the form
and information to be erased.

12. PRINT — Causes the current in-core infor-
mation to be printed on the 1132 Printer along with
the identifying titles for each item number.

13. TYPE — Causes the current in-core infor-
mation to be typed on a NASA 1122 form utilizing
the IBM selectric typewriter on the console.

14. STORE — Causes all of the current in-core
information associated with a particular work order
number to be stored permanently on the disk in place
of the old information.

15. NEW — Causes the system to be set up for
the specified new code number. The form is dis-
played on the left scope, and the system is ready to
start accepting information using the ENTER
command.

16. DELETE — Causes the specified code number
to be deleted from the disk file.

Example of An Edit Operation

Figures 9 through 12 are provided to illustrate
an example of the editing procedure. This process
is the result of the following operations:

1. FILE 1122 — Identifies the file room from
which information is to be processed.

146

Figure 10. Completed Form 1122.

R. SEITZ

2. FORM — Causes the form (Figure 9) to be
displayed on the left scope.

3. CODE 125-23-02-20-62 — Causes a logical
record of information associated with the work order
number to be read from the disk and displayed on the
left scope along with the form (Figure 10) .

Figure 9. Form 1122.

4. EDIT 24 — Causes the contents of item 24
to be displayed at the top of the right scope (Fig. ii).
Figure 11 shows a string of X's and Y's replacing
the word THE on the third line of the item.

5. TRANSFER — Causes the modified item to
replace the in-core information for that item.

6. ERASE — Causes the left scope to be erased.

7. FORM — Causes the blank form (Fig. 9) to
be displayed on the left scope.

8. ALL — Causes the information to be dis-
played in the form (Fig. U). Note the change in
item 24.

9. The system is ready for the next command. 	 Figure il. Editing process.

147

R. SEITZ

Figure 12. Edited process displayed on 1122.

AMTRAN

Automatic Mathematical TRANslation, is a
conversational mode, mathematically oriented
language developed to assist engineers and scien-
tists in solving a wide variety of mathematical,
statistical, and engineering problems with a mini-
mum of programming effort by the user. Table 1
shows the current status of the various implemen-
tations of AMTRAN.

The motivation for developing AMTRAN was to
reduce programming costs and improve convenience
and accessibility conditions for the user. The total
programming costs throughout NASA probably exceed
100 million dollars per year. Any techniques that
could significantly reduce that expenditure rate would
quickly pay for their development costs.

TABLE 1. CURRENT STATUS OF THE
IMPLEMENTATION OF AMTRAN

Implementation
Machine Language Remarks

IBJI 1620 MACHINE • Completed in 1966 — Ob-
solete

UNIVAC ALGOL -Usable on B5500
1108 -Not Usable on 1108

• Extended Programming
Features

Time-Shares 10 Teletypes
Somewhat Machine-

Dependent

IBM 1130 FORTRAN IV • Ready for user Evaluation
& MACHINE -Runs on Standard

MSFC 1130
-Sloe, Basic, but Reliable

IBAI 1130 :MACHINE -University of Georgia
-Fast, Ne\+, Untested
•Runs on Standard

1ISFC 1130

Some of the features of AMTRAN which distin-
guished it from FORTRAN are:

1. Automatic vector and matrix arithmetic are
provided, together with vector and matrix operators
such as SUM, TRANSPOSE, CONCATENATE, etc.
This reduces the need for constructing DO loops
when carrying out operations on one- and two-
dimensional arrays.I

2. Less manual bookkeeping is required than
is the case with FORTRAN. Dynamic memory allo-
cation eliminates the need for DIMENSION and disk
calls. Other similar features exist that tend to free
the programmer from a certain amount of detailed
accounting.

1. AMTRAN's array arithmetic contributes two important side benefits in addition to reducing the program-
ming requirements. AMTRAN utilizes an interpreter to provide special services such as error checks and
dynamic memory allocation to the user during the execution of a program. In general, interpreters are very
slow and inefficient in execution compared to FORTRAN compilers. However, AMTRAN's automatic array
arithmetic tends to lead to execution speeds that approach the speeds of FORTRAN. This permits AMTRAN
to be used for efficient batch-processing. At the same time, AMTRAN's higher level instruction set results
in a more compact code requiring less storage space than the machine language instructions generated by a
FORTRAN compiler. (The reduced core required by the AMTRAN interpreter must be balanced against the
storage requirements for the interpreter itself.)

148

3. Extensive error checks and diagnostic
printouts are carried out during execution that can
not occur with compiled object code.

4. Graphical input and output is available as
an option for 1130 AMTRAN, using the low priced
graphics terminals.

5. An interactive, numerical, analytical
problem-solving system called AUTOMATH has
been written in the AMTRAN language to facilitate
the solution of numerical problems..

6. Various features have been incorporated
into the language to facilitate compatibility with
either interactive or batch processing. These
include some symbolic capabilities, a text editor,
and a built-in reference.

At the present time, AMTRAN is available to
users at the Marshall Space Flight Center through
the five IBM 1130 computers installed at MSFC. One
of these machines has graphics terminals attached
to it. For many small scientific and engineering
problems, such as the evaluation of integrals or the
solution of differential equations, 1130-AMTRAN
can reduce problem-solving turnaround time to a
few minutes.

An application for which AMTRAN was used at
MSFC was in support of Dr. Lawrence Wood's
doctoral thesis problem. Dr. Wood's problem con-
sisted of computing the plasma current drawn by a
charged space vehicle, with to-earth orbital workshop
operations. Dr. Wood found that when trying to
numerically integrate a curve with evenly spaced
points, the results were not accurate to one decimal
place (Fig. 13) . This led to the development of
the AUTOMATH subroutines in which the computer
picks the interval sizes through accuracy tests that
are too tedious for a human being to perform. The
result generated by the AUTOMATH routines when
applied to the curve shown in Figure 13 is depicted
in Figure 14. The point density is visibly enhanced
in the steep portion of the curve, and, in addition,
there is an invisible guarantee of accuracy of better
than 1 part in 10 million. This yields an integral
with a guaranteed six decimal place accuracy.

The full set of operators in the AUTOMATH
system are:

REPRESENT — Numerically represents mathe-
matical formulas, selecting near optimum step sizes,
assuming a cubic polynomial fit. Automatically
detects singularities, cusps, discontinuties, and
"hairpin" extrema.

Figure 13. Curve with evenly spaced points.

Figure 14. Result generated by AUTOMATH routines
when applied to the curve of Figure 13.

fNumerically integrates mathe-

matical formulas using variable-step-size error-
controlled algorithms. Accommodates the general
integral

h(x)
ff (x, x') dx'
g(x)

including special cases such as

B	 B
ff(x')dx',	 f	 f(x')dx', etc.
A	 x

DERIV	 Calculates the numerical
derivative using a cubic fit (variable interval
spacing).

149

R. SEITZ

SYMDIF — Symbolically derives the
analytical derivative, given the analytical formula.
The resulting analytical derivative is in the form of
an executable code string, which may be evaluated
to give numerical values for the derivative.

SOLVE	 — This operator solve sets of
simultaneous algebraic or ordinary differential
equations. The differential equation solver currently
uses a variable-step-size, Runge-Kutta integration
package developed at Aerospace Corporation that will
handle any number of simultaneous first- or second-
order differential equations. Error control is pro-
vided by a Simpson's rule check on the fourth-order
Runge-Kutta integration formula. The algebraic
equation solver currently uses the Crout reduction
technique. It can also solve partial differential
equations by the method of characteristics.

INVERT — The INVERT routine, when
applied to a scalar, gives the reciprocal; when applied
to a numerical representation of a monotonic function
Y(X) , gives the functional inverse X(Y) ; and when
applied to a matrix A, gives the inverse matrix
A-i.

ZEROES — Locates all real zeroes within
the range of definition of functions which have been
generated by the REPRESENT operator. Gives
warning if multiple roots are possible.

MINIMAX — Locates all relative extrema
within the range of definition of functions which have
been generated by the REPRESENT operator.

LET	 —	 The LET operator causes a
numerical change of variables (for functions known
only in tabular form) .

STEP. FCT — STEP. FCT(T) is the unit
step function defined by

u(t) = 0,	 t < 0

u(t)=1,	 t>_0

INTERPOLATE—Given two monotonic sets of
numbers X and Y in one-to-one correspondence
with each other, and a new set of x's (Xi) , the
INTERPOLATE operator provides a new set of y's
(Yi) corresponding to the X1's. A Newton third-
order interpolation formula is used. The Xi array

need not be the same size as the X and Y arrays
and, for example, may consist of only a single
number. The form is Yi = INTERPOLATE Xi,
X, Y.

CUBIC CUBIC accepts X and Y as
inputs and generates four arrays A, B, C, and D of
coefficients for the overlapping cubic

AX3+BX2+CX+D

fits for Y(X) .

SCOPE — This nonmathematical auto-
matic-formatting display operator may be followed
by various modifiers and combinations of modifiers
such as: POLAR, LOG. X, LOG. Y, VECTOR,
GRID, HACHURE, MAGNIFY, etc. One or more
curves may be plotted simultaneously with the scale
factor automatically determined so that it is common
to all the curves. In the absence of any such modifiers,
the system displays the data in Cartesian form,
selecting one of 25 different plotting formats, based
upon the data, with printed scale factors and labeled
axes.

SUM. OF. SERIES — The SUM. OF. SERIES
operator is used to expedite the generation of func-
tions by series expansions.

ERF(X) — The ERF(X) operator accepts
an array expression as input and yields an array
of error function values defined by

2	
x

f exp(-t2) dt
NFTT	 0

as the result.

LAPLACE — The LAPLACE operator
accepts an array f(t) of exponential order as input
and delivers the numerical representation of the
Laplace transform, F(s) , as output.

The AVERAGE, SIGMA, MOMENTS, REGRES-
SION, and CORRELATION routines are self-
explanatory statistical operators. The LEAST,
SQUARES operator provides the coefficients for a
quadratic least-squares fit to numerical data Y(X) .
All the trigonometric and hyperbolic operators are
also present.

150

R. SEITZ

Certain other operators based upon these
fundamental algorithms are either available or are
readily constructed.

Since 1130-AMTRAN is written in FORTRAN IV,
• second way in which AMTRAN might be used is as
• "conversational front end" for existing FORTRAN
programs, to handle conversational interaction and

graphical output. This has not been tried, but it
appears promising.

A third way in which AMTRAN might be used is
as a programming system for the construction of
higher level, special-application languages. Since
programming rates are high and since checkout is
also swift, some engineering applications languages
can be assembled in a short time.

151

APPROVAL	 TM X-53962

RESEARCH ACHIEVEMENTS REVIEW

VOLUME I I I	 REPORT NO. 9

The information in these reports has been reviewed for security classification. Review of any
information concerning Department of Defense or Atomic Energy Commission programs has been made by
the MSFC Security Classification Officer. These reports, in their entirety, have been determined to be
unclassified.

These reports have also been reviewed and approved for technical accuracy.

17&^ Wj
DR. H. HO LZER
Director, Computation Laboratory

152

UNITS OF MEASURE

In a prepared statement presented on August 5, 1965, to the
U. S. House of Representatives Science and Astronautics Committee
(chaired by George P. Miller of California) , the position of the
National Aeronautics and Space Administration on Units of Measure
was statedbyDr. Alfred J. Eggers, Deputy Associate Administrator,
Office of Advanced Research and Technology:

"In January of this year NASA directed that the international
system of units should be considered the preferred system of units,
and should be employed by the research centers as the primary
system in all reports and publications of a technical nature, except
where such use would reduce the usefulness of the report to the
primary recipients. During the conversion period the use of cus-
tomary units in parentheses following the SI units is permissible,
but the parenthetical usage of conventional units will be discontinued
as soon as it is judged that the normal users of the reports would
not be particularly inconvenienced by the exclusive use of "SI units. "

The International System of Units (SI Units) has been adopted
by the U. S. National Bureau of Standards (see NBS Technical News
Bulletin, Vol. 48, No. 4, April 1964) .

The International System of Units is defined in NASA SP-7012,
"The International System of Units, Physical Constants, and
Conversion Factors," which is available from the U. S. Government
Printing Office, Washington, D. C. 20402.

SI Units are used preferentially in this series of research re-
ports in accordance with NASA policy and following the practice of
the National Bureau of Standards.

CALENDAR OF REVIEWS

FIRST SERIES (VOLUME 1)

REVIEW DATE RESEARCH AREA REVIEW DATE RESEARCH AREA

1 2/25/65 RADIATION PHYSICS 12 9/16/65 AERODYNAIMICS

2 2/25/65 THERMOPHYSICS 13 9/30/65 INSTRUMENTATION

3 3/25/65 CRYOGENIC 14 9/30/65 POWER SYSTEMS
TECHNOLOGY

15 10/28/65 GUIDANCE CONCEPTS
4 3/25/65 CHEMICAL

PROPULSION 16 10/28/65 ASTRODYNAMICS

5 4/29/65 ELECTRONICS 17 1/27/66 ADVANCED TRACKING
SYSTEMS

6 4/29/65 CONTROL SYSTEMS
18 1/27/66 COMMUNICATIONS

7 5/27/65 MATERIALS SYSTEMS

8 5/27/65 MANUFACTURING 19 1/6/66 STRUCTURES

9 6/24/65 GROUND TESTING 20 1/6/66 MATHEMATICS AND
COMPUTATION

10 6/24/65 QUALITY ASSURANCE
AND CHECKOUT 21 2/24/66 ADVANCED PROPULSION

11 9/16/65 TERRESTRIAL AND 22 2/24/66 LUNAR AND METEOROID
SPACE ENVIRONMENT PHYSICS

SECOND SERIES (VOLUME II)

REVIEW DATE

1 3/31/66

2 3/31/66

3 5/26/66

4 7/28/66

5 9/29/66

6 1/26/67

RESEARCH AREA REVIEW DATE

RADIATION PHYSICS 7 3/30/67

THERMOPHYSICS 8 5/25/67

ELECTRONICS 9 7/2767

MATERIALS f0 9/28/67

QUALITY AND RELIA-
BILITY ASSURANCE 11 11/30/67

CHEMICAL 12 125/68
PROPULSION

RESEARCH AREA

CRYOGENIC TECHNOLOGY

COMPUTATION

POWER SYSTEMS

TERRESTRIAL AND SPACE
ENVIRONMENT

MANUFACTURING

INSTRUMENTATION
RESEARCH FOR GROUND
TESTING

THIRD SERIES (VOLUME 111)

REVIEW DATE RESEARCH AREA REVIEW DATE RESEARCH AREA

1 3/28/68 AIRBORNE INSTRU- 6 1/30/69 THERMOPHYSICS
MENTATION AND
DATA TRANSMISSION 7 3/27/69 RADIATION PHYSICS

2 5/22/68 ASTRODYNAMICS, 8 6/26/69 METEOROID PHYSICS
GUIDANCE AND
OPTIMIZATION 9 9/25/69 COMPUTATION RESEARCH

3 7/25/68 CONTROL SYSTEMS SO 12/18/69 MATERIALS RESEARCH
FOR SHUTTLE AND

4 9/26/68 AEROPHYSICS SPACE STATION

5 11/21/68 COMMUNICATION AND 11 1/29/70 MICROELECTRONICS

TRACKING RESEARCH FOR SHUTTLE
AND SPACE STATION

12 3/26/70 COMPUTATION RESEARCH

Classified. Proceedings not published.

Proceedings summarized only.

Correspondence concerning the Research Achievements Review Series should be addressed to:
Research Planning Office, S& E-R, Marshall Spaco Flight Canter, Alabama 96812

MSFC—RSA, Ala

1

