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AN EQUATION FOR VORTEX MOTION INCLUDING 

EFFECTS OF BUOYANCY AND SOURCES 

WITH APPLICATIONS TO TORNADOES 

By Robert C. Costen 
Langley Research Center 

SUMMARY 

A new equation is derived fo r  the motion of vorticity in a general fluid, including 
the effects of viscosity, compressibility, nonhomogeneity, and nonconservative forces. 
This equation results from a kinematical revision in the derivation of Kelvin's circulation 
theorem. It applies, in particular, to vortices which may not move with the fluid flow. 
The equation also admits fluid sources. The source te rm accounts for the influence of 
winds in one atmospheric layer on the motion of vortex tubes in an  adjoining layer when a 
flux of fluid exists between the layers.  

A linearized form of the equation is used to obtain possible explanations for (1) why 
tornado cyclones move to the right of the mean tropospheric winds, and (2) why the 
observed revolution rate of the funnels of a twin tornado about their common center w a s  
retarded with respect to the fluid flow. 
near Elkhart, Indiana. 

This twin tornado occurred on April 11, 1965, 

It is shown that the rightward motion of tornado cyclones may be attributed on the 
basis of order-of-magnitude calculations to the upward flux of air from the core of the 
cyclone into the jet stream. It is also shown that a slowdown in the revolution rate of a 
twin tornado would result from (1) an attractive buoyancy force acting on each partially 
rarefied core in the presence of the radial pressure gradient of the other vortex or (2) an 
attractive magnetostatic force between axial dc electric currents  of like sense in both 
cores.  
was estimated to be 5 percent. The electric current required for comparable retardation 
is on the order of lo6 amperes, which appears to be much too large for atmospheric 
phenomena. According to the linearized theory, the maximum possible retardation for 
two buoyant vortices of like circulations and c ross  sections is 22 percent. This figure 
applies to  hollow vortices revolving about each other in near contact. 

The retardation in revolution rate of the twin tornado due to buoyant attraction 



INTRODUCTION 

An accumulation of evidence exists that atmospheric vortices associated with severe 
s torms do not necessarily move with the local fluid flow. According to reference 1, 
pp. 71-72, and reference 2, pp. 319-321, a storm cell which is destined to  become severe 
moves with the mean tropospheric winds during the initial stages of formation. As the 
storm matures it acquires cyclonic rotation (being thereafter termed a tornado cylcone, 
see ref. 3, pp. 3-4) and commences to  move at an angle of about 25' to  the right of the 
mean tropospheric winds in the northern hemisphere. This is an example of atmospheric 
vorticity which does not move with the fluid. 

A second case of such deviate vortex motion is pointed up in this report. It con- 
cerns  a twin tornado which occurred on April 11, 1965, near Elkhart, Indiana, and whose 
motion is documented in reference 4. Analysis of the data presented in this reference 
shows that the tornado pair apparently revolved about each other at a much slower rate 
than the fluid flow in which the tornadoes were immersed. 

The explanation for these motions would seem to  lie in  a theory embracing the 
motion of vortex tubes, such as the circulation theorem of Kelvin (ref. 5, pp. 35-37). 

JJ I? dS dt Kelvin obtained a formula for the time rate of change of vorticity flux 

through an arbitrary surface S of finite area which moves with the fluid, where 
3 = curl  7 is vorticity and 6 is the unit normal on S. (See ref. 5, pp. 35-37, and 

9 T.  $ which is the dt dt 
ref. 6, pp. 150-151, 162. By Stokes' theorem 

time rate of change of circulation about the closed circuit line 1 which bounds surface S 
and moves with the fluid.) When the fluid is inviscid and subjected to conservative forces 
only, and when the density is either a constant o r  a single-valued function of the pressure 

2 JJ w' - 6 dS = 0, from which the con- 
dt 

(autobarotropic fluid), this formula reduces to  

clusion is reached that under these conditions, the vorticity moves with the fluid. The 

A TJ 3 - 6 dS was also considered by Helmholtz, V. Bjerknes, and others 
dt 

expression 

(as mentioned in refs. 7 and 8). V. Bjerknes evaluated the expression for  the case of an 
inviscid nonbarotropic fluid and considered the effect of the Coriolis force (as discussed 

in ref. 9, pp. 233-261). The expression for 2 JJ 3 * fi dS in  a viscous, compressible 
dt 

fluid is given in reference 10, pp. 51-52. 

But in all these treatments the surface of integration S (or bounding circuit 
loop 1)  is taken to  move with the fluid. What is desired is to have S. and 1 move with 
the vorticity, independent of the fluid, when these two motions are not the same. This 
distinction, being purely kinematical, is readily incorporated. The purpose of this report 
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is to  modify the previous formulas for JJ G5 - dS for application in the general 
dt 

case where surfaces of integration S may move in a manner different from that of the 
fluid, and to derive therefrom an unrestricted formula for  the motion of the vortex tubes 
in a general fluid. A linearized form of this formula is then applied in rudimentary 
attempts to account for  the two cases of atmospheric vortex motions cited. The formula 
may also apply to the motions of hurricanes and frontal cyclones, although these cases  
are not treated herein. A different approach to the movement of rotating s torms is pre- 
sented in reference 11. 

All the usual t e rms  of meteorological importance, such as the viscous t e rms  and 
the Coriolis and centrifugal forces, are included in deriving the equation for vortex 
motion. In addition to these terms,  fluid sources are included as a simple means of con- 
sidering the influence of winds in one atmospheric layer on the motion of vortices in an 
adjoining layer when a flux of fluid exists between the layers.  

The derivation of the magnetic and velocity fields at the ground plane near a tilted 
hydromagnetic vortex is given in appendix A. Appendix B is a description and tabulation 
of empirical data on the twin tornado of April 11, 1965, near Elkhart, Indiana. In appen- 
dix C the circulation of the twin tornado is deduced from its revolution rate. 

SYMBOLS AND NOTATION 

A cross-sectional area of vortex tube, m2 

a radius of funnel A of twin tornado 5-2  at ground, m 

b ratio of circulations, rB/rA 

C dimensionless parameter (eq. (42)) 

1 - sin 2 x c o s 2 q A d l  + tan2>( sin2qA (see eq. (70c)) 

E electric field, V/m 

F' Lorentz force per unit length, N/m 

T Lorentz force per unit volume, N/m3 
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E magnetic field, A/m 

T axial electric current (figs. 11 and 12), A 

i effective axial electric current (eqs. (71b) and (71d)), A 

-c 

J electric current density, A/m2 

L 

1 

M 

A n 

P 

cc 
P 

P 

P' (P)  

P" 

a 
Q 

Q* 

Qe 

q 

length, m 

circuit line of integration, m 

excess mass  present in a vortex tube per unit length, kg/m 

unit normal 

center point of revolution of twin tornado 5 -2  at the ground (figs. 11 and 19) 

pressure tensor including viscous terms,  N/m2 

scalar pressure,  N/m2 

pressure field which is single-valued function of density (eq. (23)), N/m2 

deviation of pressure from single-valued function of density, (eq. (23)), N/m2 

total fluid source strength, kg/sec 

mass  of source fluid being added to a vortex tube per unit length per unit 
time (eq. (36)), kg/m-sec 

fictitious source (sink) strength per unit length in a vortex tube having con- 
vergent flow and updraft, kg/m-sec (see section entitled "Tornado model") 

electric charge, C 

source density; mass  per unit volume and per unit time being added to a flow 
from a fluid source, kg/m3-sec 
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radius from tornado touchdown point in ground plane, m R 

R, 

rA 

rB 

S 

t 

v' 

E' 

V 

4 

V 

X,Y 7z 

CY 

P 

r 

Y 

E 

€0 

e 

center-to-center distance between touchdown spots of funnels A and B of 
twin tornado 5-2, m 

distance of vortex A from center point of revolution P of twin vortices 
in ground plane (figs. 11 and 19), m 

distance of vortex B from center point of revolution P of twin vortices 
in ground plane (figs. 11 and 19), m 

surface area of integration, m2 

time, sec 

velocity of displacement of vorticity, m/sec 

arbitrary abstract velocity field utilized to describe the motion of regions of 
integration S and V, m/sec 

volume of integration, m3 

fluid velocity field, m/sec 

Cartesian coordinates, m 

angle shown in figure 16, rad  

dimensionless parameter (eq. (62c)) 

circulation of a fluid vortex, m2/sec 

effective circulation of a fluid vortex (eqs. ("Ob) and (70e)), m2/sec 

small dimensionless parameter 

permittivity of vacuum, F/m 

angle depicted in figures 13, 14, and 15, rad  

5 
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K 

A 

P 

P' (PI 

P" 

cp 

X 

rc/ 

rat io of axial electric current to circulation for  a hydromagnetic vortex 
(eq. (83)), A-sec/mZ 

dimensionless parameter (eq. (61)) 

direction cosines 

permeability of vacuum, H/m 

Cartesian coordinates used in figures 13 and 14 

mass  density, kg/m3 

density field which is a Single-valued function of pressure (eq. (19)), kg/m3 

deviation of density field f rom single-valued function of pressure (eq. (19)), 

W m 3  

electric-charge density, C/m3 

vector shown in figure 16 

gravitational potential (including centrifugal force in the rotating frame of 
the earth), J/kg 

arbitrary scalar function, m2/sec2 

azimuth angle in symmetrical coordinate system of figure 13, rad 

tilt angle of vortex with respect to  the vertical (figs. 4 and 8), rad 

azimuth angle in ground plane of figures 15 to 18, rad 

azimuth angles shown in figures 11 and 19, rad 

retarded revolution rate of twin vortices with axial electric current I, 
rad/sec 

angular velocity of rotation of the earth, rad/sec 



- w '  fluid vorticity, cur l  3, sec-1 

Superscripts: 

A 

B 

bl boundary layer at ground 

j s  jet stream 

0 

S source fluid 

1 

funnel A of twin t0rnado.J-2 (fig. 4) 

funnel B of twin tornado 5-2 (fig. 4) 

unperturbed vector fields in perturbation expansion 

first-order vector fields in perturbation expansion 

Subscripts : 

funnel A of twin tornado 5-2 (fig. 4) 

funnel B of twin tornado 5-2 (fig. 4) 

moving point 

unperturbed scalar fields in perturbation expansion 

components in spherical coordinate system R,cp,O (figs. 13 and 14) 

components in cylindrical coordinate system (figs. 15 to 18) 

Cartesian components of a vector 

component in Cartesian coordinate system [,q, (figs. 13 and 14) 

first-order scalar fields in perturbation expansion 

field component perpendicular to the ground or to the lower jet-stream 
boundary 
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Mathematic a1 notation : 

e vector (arrow is omitted for magnitude of a vector) 

mean value over a time interval o r  space interval 0 
A unit vector 

Dots over a symbol denote time derivatives. 

Designations: 

A funnel A of twin tornado 5-2; touchdown point of funnel A 

B funnel B of twin tornado 5-2; touchdown point of funnel B 

J -2 twin tornado of April 11, 1965, near Elkhart, Indiana 

DElUVATION OF GENERAL EQUATION FOR 

MOTION OF VORTICITY 

Fluid Sources 

Conservation-of -mass . equation . with fluid sources in integral form. - The condensa- 
tion of water vapor in the atmosphere into rain or hail, which subsequently falls to the 
earth, is an example of naturally occurring sink flow (or negative source flow). The 
conservation-of -mass equation for the main fluid excluding the rain or  hail is, in integral 
form (ref. 6, pp. 132-133), 

where the integrals extend over an arbitrary spatial volume V and its bounding sur -  
face S, with ; taken as the outward unit normal on S. In this equation p is the den- 
sity of air and water vapor comprising the flow under consideration, v is its velocity 
field, and q is the rate at  which mass density is being added to this flow from the source. 
(The source te rm q is negative for condensation, and positive for evaporation o r  
sublimation. ) 

+ 

Conservation-of -momentum . equation with fluid sources - in integral form. - If the rain 
or hail, which will  be termed the source fluid, may be described by a velocity field TS, 
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which is distinct from 7, then momentum is also transferred from the source fluid to the 
main flow at the rate of q? per unit volume. The conservation-of -momentum equation 
for the main flow becomes, in integral form (ref. 6, pp. 132-138, and ref. 9, pp. 233-236), 

where 

- 
P pressure tensor (including viscous terms), N/m2 

cp gravitational potential (including centrifugal force in the rotating frame of 
the earth), J/kg 

2p(? X 5) Coriolis force density, N/m3 

5 angular velocity of the earth, rad/sec 

f Lorentz force density, peE + poz X E, N/m3 

In equation (2) the first integral represents the time rate of increase of momentum 
contained in spatial volume V, the second integral is the rate of efflux of momentum 
through the closed bounding surface 
tractions, and the third integral gives the rate at which momentum is being added to 
volume V by transfer from the source fluid, and by the action of the gravitational, 
Coriolis, and Lorentz forces. 

S by convection and by the action of the surface 

Conservation equations in differential form. - In differential form equation (1) is 

+ div pi; = q (3 1 a t  

and equation (2) is 

p + 7% + ? div p? + p grad 3 - p(T x G) - d i v F  = qys + p grad + 2pT x 6 + (4) a t  a t  2 

where v2 = ? - ? and G = curl  7 (vorticity). When combined and divided by p, as is 
customarily done, these two equations give 



which for Cartesian coordinates may also be written 

( & + T - g r a d ) T = -  1 d i v T - $ ? - T s )  + g r a d @ + 2 T X S + -  f 
P P 

Vorticity Equation 

The vorticity equation is obtained by taking the cur l  of equation (5a) 

An integral form of this equation is given by 

(7) 

where the integrals are taken over an arbitrary spatial surface S of finite area, and 6 
is the unit normal on S, as shown in figure 1. 

/--------- 
Figure 1.- Arbitrary surface S with unit normal 2, 

Kinematics 

Since the integrals in equation (7) a r e  taken with time t fixed, the surface of inte- 
gration S may be regarded as moving and deforming in an arbitrary continuous manner. 
Not being a material surface, S need not move with the velocity 7 of the fluid medium. 
Instead, imagine surface S to be moving and deforming in accordance with some arbi-  
t ra ry  abstract velocity field v"(x,y,z,t), which will in general be different from the veloc- 
ity field 3 of the fluid. For such a moving surface of integration, the following kine- 
matical theorem of Helmholtz, as given in reference 7, pp. 130-132, applies: 

10 



where x(x,y,z,t) is an arbitrary vector field. In this equation the flux of through 

.the moving and deforming surface S, given by 11 A - f; dS, is purely a function of time; 

hence, it is appropriate to take the total time derivative of this quantity as indicated in 
the first te rm of equation (8). 

General Kinematic Form of the Vorticity -Flux Equation 

If the vector field in  Helmholtz' theorem is taken to  be the vorticity = curl  ?;, 
equation (8) becomes 

Eliminating 
the vorticity -f lux equation 

i3w'/at between equations (7) and (9) yields the general kinematic form of 

where the surface of integration S is convected with the abstract velocity field 
f?'(x,y,z,t). The abstract velocity field v" and the fluid velocity field 7 which appear 
in this equation may be regarded as superposed, v" 
of integration S, and ?; the motion of the fluid elements. These two fields of motion 
are (in concept) unrelated. Equation (10) reduces to the usual form of the vorticity-flux 
relation in the special case of setting v" = ?;. 

governing the motion of the surface 

General Equation for Motion of Vorticity 

In relation (10) the abstract velocity v" with which the surface of integration S 
moves is continuous, but otherwise arbitrary.  Now v" is constrained by the specifica- 
tion that S moves in such a manner that the flux of vorticity z through S is con- 
served; that is, 

- fi dS = 0 
dt 

The field v" when constrained in  this manner is designated by the symbol v', where 
8 satisfies the equation 

- ?;) X 3 - 1 d i v T  + g(?; - ?is) - 27  X 6 - (1 1b) P P 

11 



Thus, v' may be regarded as describing the motion of the vortex lines which pass 
through S. 

Equation (12) applies to any surface of integration S having any chosen orientation, 
and the integrand is assumed to be continuous. This is possible only if 

- 
- f;) X 2j - 1 d i v T  + :(T - 7s) - 27  x 6 - = 0 

P P 

or ,  equivalently, 

I I I (3 - T) x 0' - 1 d i v 7  + 9(?; - FS) - 27  x 52 - f  - - = grad @I I 
P P P 

where @(x,y,z,t) is an arbitrary scalar field. 

Equation (13) is the desired general formula fo r  the speed of displacement v' of 
vorticity. Note that v' is not, in general, determined uniquely because of the arbitrary 
function @. Physically, this means that for general distributions of vorticity there are 
arbitrari ly many flux-preserving motions. In the simple case when w' = Constant, any 
area-preserving motion of S perpendicular to w' would also be flux conserving. But 
when a vortex tube is isolated, the displacement velocity 8 of the tube should be uniquely 
determined, except for displacements along the tube. 
absorb forces directed along w' which the term p ( 3  - 7)  X w' cannot balance.) 

Substituting equation (13) back into the momentum equation (5a) gives 

(Also the te rm p grad @ may 

I- " a t  

or  since in Cartesian coordinates 

grad V 2  - = (7 grad)? + 7 x G 
2 

then 

+?;. grad ) 7 = (- U -7 1 X G + grad(@ - @) 
(at (144 

which shows that the Magnus force density p(f f  - 7) X 0' acts directly to accelerate the 
fluid elements. Comparison with equation (5b) shows that in equation (14a), all the non- 
conservative forces,  including the viscous force, a r e  lumped together into one te rm and 
represented by the Magnus force density. The vorticity equation (6) becomes upon sub- 
stitution of equation (13) 

12  
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- aTj - c u r l ( 8  x G) = o 
a t  

or 

(" + v' . grad)w' = (3 - grad)f? - 3 div v' .(14b) 

which is analogous (with v' replacing 7) to  relations first obtained by Helmholtz under 
restrictive conditions. 

a t  

(See ref. 7, pp. 129-130.) 

The pressure tensor 7 has been retained for generality to illustrate that a dis- 
placement velocity v' may be assigned to vortex tubes even in the presence of viscous 
diffusion. For an inviscid fluid, equation (13) becomes 

(15) (5 -3) x G + -grad  1 p + g(7 - 3s) - 2T x 6 - r =  grad 4 
P P P 

where p is the scalar pressure.  

Alternative Forms of the Vortex-Motion Equation 

for an Inviscid Fluid 

The alternative formulas derived in this section are included here for completeness 
although they will  not be used in subsequent sections. Because 4 is arbitrary,  any con- 
servative t e rms  on the left-hand side of equation (15) (i.e., t e rms  which have the form of 
a gradient of some scalar quantity) may be deleted from the left-hand side and absorbed 
in the arbitrary grad 4 term.  Therefore, since 

- 1 grad p = grad(;) - P grad(i) 
P 

equation (15) for an inviscid fluid can be expressed as 

(5-7)  x G -  p grad -TS) - E X  S2 - f  - - =  grad 4 
P 

For an autobarotropic fluid, where pressure is a single-valued function of density (that is, 
p = p(p)), the term - grad p in equation (15) and p grad(:) in equation (17) may be 

deleted by absorption into grad @. If, in addition, all nonconservative t e rms  should be 
omitted, these equations become 

1 
P 

(8 -7) x w ' =  grad @ (18) 
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from which it may be inferred by taking 4 = 0 that the components of v' and 'i; per- 
pendicular to Z are equal, in agreement with Kelvin's theorem that vorticity moves 
with the fluid under these conditions. 

The density may be written 

P = P'(P) + P" (19) 

where p' is a single-valued function of the pressure and p" is the deviation of p 
from p'(p). It follows that 

5 l- - P T  -5-7 PP' P 

and equations (15) and (17) may be written, respectively, 

+ $7 - TS) - 2T x f2 - f  - - = grad 4 [A] P 
(.' - 7) x G + p grad 

where the t e rms  - g r a d p  and pgrad-  [p!bi have been absorbed in the grad 4 

term. Alternatively, if the pressure is written in the form 
P' (PI 

P = P ' b )  + P" (23) 

where p' is a single-valued function of the density and p" is the deviation of p 
f rom p'(p), equations (15) and (17) become, respectively, 

-c 
+ (5 -7) x C +  Lgrad  p" + $7 -Ts) - 2 F X  52 - P - =  grad 4 (24) P 

(c-7) - 2 7 x z - - = g r a d @  f 
P 

From equation (13), (15), or  (17) a speed of displacement v" may be assigned to 
every element of vorticity in a fluid when the other relevant fields, such as pressure,  
density, and fluid velocity, a r e  known. Evidently v' frequently differs from 3. These 
equations may prove to be useful in forecasting the movement of severe local s torms and 

14 



tropical storms. This is because they show explicitly how various atmospheric fields 
affect the movement of vorticity, and vorticity is a characteristic property of such 
storms. Conversely, they may aid in determining the structure of such atmospheric 
vortices from observations of their motion. 

Linearization of Equation for Vortex Motion 

Perturbation series.- Analysis of equation (15) for the motion of vortex lines in an 
inviscid fluid is simplified by linearization as follows: 

4 v = To(x,y,Z,t) + Eiil(x,y,z,t) 

z,t) 

zj = Ed(X,y,z,t) 

q = Eq1(X9Y7z7t) 

- -1 f = E f  (x,y,z,t) 

where E is a small dimensionless parameter. Substituticn of set (26) in equation (15) 
gives for the unperturbed potential flow 

- 1 
P O  
- vpo - 270 x s2 = v@o 

From equation (5a) (with viscous t e rms  omitted), 

V @ , = V @ , - -  ( $) - -  a70 
a t  

where 

and v i  = To - 3'. The first-order perturbation equation is 
Go is the potential for gravitational, centrifugal, and other conservative forces  
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Substituting equation (27) in equation (29) gives 

po(C - To) x GI+ q1(s;0 - F;s) + vpl - p1 - vpo - 2p0+ x 5 - T1 = p0vC#l1 
PO 

For the present purposes it is desirable to simplify equation (30) further by elimi- 
nating the perturbation pressure p1 and velocity 'i;l fields. The te rm Vpl/po may 
be absorbed into the VC#ll t e rm provided the unperturbed density po is taken to be a 
constant. Elimination of T1 requires that the Coriolis force be neglected. With these 
two restrictions equation (30) becomes 

p0 (8  -70) x 3 1  -E ql(? - 7s) - p1 - vpo - T 1 = V$ll 

P O  

In many cases  the arbitrary term 
in general it may be needed in order to balance forces  directed parallel to the vortex 
lines, which the Magnus term po(v' - ?;o) x Z1 cannot balance. 

t e rms  of equation (31) all have the dimensions of force per  unit volume. The first te rm 
p0(C - To) x z1 represents the Magnus force density on vortex filaments which do not 
move with the unperturbed flow velocity To. The second te rm q1(T0 - Ts) represents 
the force density required to accelerate the source fluid from the source velocity TS 

to the flow velocity yo. The third term - Vpo represents a "buoyancy" force which 

acts on density variations in the presence of the unperturbed pressure gradient. It cor re-  
sponds, for  example, to the buoyant lift on a balloon. The fourth te rm T1 represents an 
extraneous, nonconservative force density, which in this study will be taken to be the 
magnetic force density T1 =T1 X go where T1 is a perturbation electric current den- 
sity, and Eo is the applied magnetic field. 

V@l in equation (31) may be set equal to zero. But 

Physical interpretation of - t e rms  -- in linearized equation for  vortex motion. - The 

p1 
PO 

Equation (31) states that the vorticity moves in such a manner that the Magnus 
force, source-force, buoyant-force, and magnetic-force densities vanish (or a r e  equal to 
the gradient of some scalar field). Only the Magnus term po(v' - Yo) x G1 contains the 
velocity of displacement v' of the vorticity. Incidentally, in the derivation of equa- 
tion (31) no attempt has been made to follow the motion of any quantity except the vorticity. 
That is, source strength is not necessarily conserved and density irregularit ies are not 
necessarily followed by the motion 5. 

Linearized equation for the motion _ _  of isolated vortex tubes.- Up to this point the 
vorticity has been considered to be distributed generally throughout the flow. The case 
of an isolated vortex tube of circulation I' will now be considered as a prelude to the 
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treatment of atmospheric vortices. 
tube, it is convenient to integrate over the volume V of the tube included between two 
surfaces S' and S" which are everywhere normal to the vorticity in the tube, as shown 
in figure 2. 

For application of equation (31) t o  an isolated vortex 

_ _ _ - - -  

Figure 2.- Isolated vortex tube with cross-sectional 
surfaces S'  and S" and included volume V 
shown. 

Upon integration, equation (31) becomes 

This volume integral may be written as an integral on a cross-sectional surface S and 
along a line 1 parallel to the vorticity: 

Since 
assigned to 

the integrand is assumed to be continuous throughout V, mean values may be 
the quantities (E - G o ) ,  (3" - ss), Vp,, and V@l on surface S so that 

equation (33) is termwise identical with the following equation: 

1 

where the brackets ( ) denote mean values on the cross-sectional surface S. This 
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equation may also be written 

where 

F1 circulation of the vortex tube 

mass  of source fluid being added to the vortex tube per unit length Q1 

excess mass  present in the tube per unit length M 1  

F1 Lorentz force on the tube per unit length 

A cross-sectional a rea  of the tube (taken perpendicular to $) 

The remaining integration in equation (35) is over an arbitrary length Z of the 
vortex tube, and the integrand is assumed to  be a continuous function of 1;  hence, the 
integrand itself must vanish for all values of 1: 

p 0 ( 8  -To) X y1 + (Yo -TS)Q1 - (vpO) M1 - F1 = (V@l)A 
PO 

The arbitrary term (V@l)A has been retained for  the purpose of balancing possible 
axial forces which cannot be balanced by the Magnus force po(8  - To) x ?. This first- 
order perturbation equation is applicable to an isolated weak vortex tube in an inviscid 
fluid without Coriolis forces. The unperturbed flow must be irrotational and f ree  of 
sources, have constant density po, and must satisfy the equation 

vp0 ( 2) a p  
- = v  PO % - -  a t  (37) 

where +o is the potential for gravitational, centrifugal, and other conservative forces. 

In subsequent sections where equation (36) is applied, the subscript 1 (or super- 
script 1) will be dropped from the perturbation fields F1, Q1, MI, and F1. The sub- 
scipt o (or superscript 0) will  be retained on the unperturbed fields, however. Any 
confusion which might arise from this practice can be resolved by referring back to 
equation (36). 
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APPLICATIONS OF LINEARIZED EQUATION FOR VORTEX MOTION 

TO TORNADOES AND TORNADO CYCLONES 

Rudimentary Approach To Be Used in the Following Applications 

In the following sections equation (36) will be applied to tornadoes and tornado 
cyclones as if they were weak perturbations on an unperturbed potential flow. 
linear effects will clearly be missing in this rudimentary treatment. Moreover, only 
gross  features of these storms, such as circulation, updraft, and core density, will be 
considered together with some effects of the boundary layer at the ground and of the jet 
stream near the tropopause. 

This simplified version of a severe local storm which is producing a tornado may 
be described briefly as fo1lows:l A tornado cyclone, or  parent storm, is regarded as a 
vertical vortex which significantly affects the flow in a region about 16 km (10 miles) in 
diameter. The tornado cyclone has a core that is several miles in diameter and a 
strong updraft within the core.  The cyclone terminates near the tropopause and the 
updraft from i t s  core  is ejected into the jet stream and carr ied eastward. 
produced by this storm is pendent from the cloud base at an altitude on the order of 
0.3 km (1000 f t )  and may extend to the ground. The circulation of the tornado is about 
1 order of magnitude less than that of the tornado cyclone, and its core diameter is from 
1 to 2 orders  of magnitude less. 
fluid from the viscous boundary layer at the ground is drawn up into the tornado. This 
interaction with the boundary layer at the ground is considered capable of affecting the 
speed of displacement of the lower portion of the tornado - but not of the tornado 
cyclone. 
action with the jet stream above. 
and the jet stream acts as a sink, both these effects depend upon the source te rm 
(TO - TS)Q1 in equation (36), and these are the first cases  which will be treated. 

be rarefied so that its motion is influenced by the buoyancy term ( - ) M1 in equa- 

tion (36). 
may be warmer than the surrounding air and therefore buoyant. If the vortices should be 
tilted from the vertical, one effect of their buoyancy would be the presence of upward lift, 
which could affect their motion. 
omitted in the case of the twin tornado because the algebra becomes cumbersome. It 
will also be omitted from the treatment of tornado cyclones because it appears that in this 

All non- 

A tornado 

An updraft exists in the tornado core, and retarded 

The motion of the tornado cyclone, however, may be influenced by its inter-  
Since the boundary layer at the ground acts as a source, 

Because of the high speed of the circulating wind in a tornado, the tornado core may 

vPO 
PO 

Also, the updrafts in a tornado cyclone indicate that the core  of the cyclone 

This effect, although potentially important, will be 

'For a more complete discussion of severe local storms, see reference 2. 
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case the te rm VpI in equation (30) cannot be absorbed into the term, as done 
throughout this report, nor can it be ignored. The case of buoyancy which will be treated 
with equation (36) is that of buoyant attraction between the rarefied cores  of a twin 
tornado. 

The applications of equation (36) are concluded with a hypothetical example which 
depends upon the Lorentz term.  The case treated is that of two parallel vortices which 
are subject to magnetic attraction by virtue of dc axial electric currents  of like sense in 
the vortex cores.  

Effect of the Boundary Layer at the Ground on Tornado Motion 

Description and analysis.- For this analysis the following simplified form of equa- 
tion (36) is used: 

where only the Magnus te rm and source term have been retained, and where the sub- 
script 1 (or superscript 1) has been dropped from the perturbation fields I' and Q. 
Near the ground the flow undergoes a rapid transition from the free-stream flow to the 
retarded flow in the viscous boundary layer. Ordinarily, the boundary layer does not 
significantly affect the free-s t ream flow. But in the event of a tornado, the retarded 
fluid in the boundary layer is sucked up into the free stream as shown in figure 3(a). 
This constitutes a fluid source at the boundary of the free. stream, which is coincident 
with the tornado and can affect i t s  motion. 

The upward flux of fluid from the boundary layer into the tornado core occurs 
essentially as follows: The pressure p in the boundary layer is the same as in the 
free stream, although the flow is considerably retarded. Therefore the radial pressure 
gradient within the free-stream vortex also exists in the boundary layer below. The 
boundary-layer fluid moves radially inward under the influence of this pressure gradient 
and ultimately ascends into the low-pressure tornado core.  Although the magnitude of 
this flux from the boundary layer to the free stream may not be accurately known, there 
is ample evidence of its existence (ref. 12, p. 675, and ref. 3, p. 7). 

This upward flux of fluid from the boundary layer appears as a source to the free 
stream. The total magnitude of this source, in kg/sec, is 

2 = P o q  (39) 

where A is the area of the tornado core at the free-stream boundary, and vl is the 
upward component of velocity at this boundary. The fluid source is located (concentrated) 
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on the lower boundary of the free stream. From equation (38), therefore, a strong dis- 
placement, or kink, would be expected to develop in the tornado at this boundary. But 
observation of tornadoes indicates that this does not occur and that the tornado maintains 

Vortex tube 7 

----- 
bl -V 

(a) Vortex tube drawing f l u i d  up from the  boundary l aye r .  

+ 
( b )  Top view of displacement ve loc i ty  U of vortex tube r e l a t i v e  t o  the 

free-stream ve loc i ty  To and t h e  boundary-layer ve loc i ty  9vb1. 
Figure 3 . -  Effec t  on vortex motion of t h e  boundary l aye r  at t h e  ground. 

a smooth contour, as if the source were distributed over a finite length of the vortex tube 
instead of being concentrated at its lower extremity. It may be that there is a stabilizing 
effect in the tornado which acts to prevent strong curvature of the core, and in so  doing, 
effectively distributes the concentrated source. 

Such a stabilizing effect is assumed to exist and the source strength 2 is consid- 
ered to be distributed over a vertical length L of the lower part of the tornado, whence 

Q=- POA% 
L 
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and equation (38) becomes 

where Tbl 
the brackets have been dropped by taking mean values over the vortex c ros s  section to  be 
approximated by values at the core center. If 

is the unperturbed velocity in the boundary layer (source fluid), and where 

with 0 < c < 1, then 

(8 -70) x F + P ( l -  c)-= Avl 0 L (43) 

+ 
In Cartesian component form, with circulation 
in  the x-direction, equation (43) becomes 

taken along the z-axis and To taken 

u y r +  v0(i - c)-= Avl o 
L (444 

(ux - v o ) r  = o (44b) 

whence 

u = -v0(1 - c)- Avl 
Y r L  

(45b) 

It is clear from equations (45) that the effect of the boundary layer at the ground is 
to  make the base of the funnel move to the right of the local wind To, as shown in fig- 
ure  3(b). In the case of the twin tornado referred to in the Introduction and in appendix B, 
this implies that the lower portions of the two funnels should tend to separate as they 
revolve about each other. According to figure 4, which w a s  prepared by Fujita (ref. 4), 
they did apparently separate from a center-to-center distance of 118.9 m (390 f t )  to  
147.1 m (482.6 f t )  in a period of 52 sec during which time the pair revolved about their 
common center through an angle of about 140°. 
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(a) Damage path and debr i s  marks near  t he  Midway T r a i l e r  Court ind ica ted  
S ix  p i c t u r e s  w e r e  taken i n  the  d i r ec t ion  of t he  arrows. by l e t t e r  M. 

(b)  Sequence depict ing the  i n i t i a l  occurrence of funnel  A, the  subsequent 
occurrence and growth of funnel  B at  the  expense of funnel A, and the  
revolut ion of funnels A and B about t h e i r  common center .  

6 
. . . . . . , e?.. I . . . _ _  . .&*. 3 . . . . .*. . . . . . . .3\.. . . . . . . ..+. . .. . 

t % 
2 

%$+o4 
“6- 

(C) Photogrammetric sketches of t h e  tornado p a i r .  

Figure 4.- Twin tornado 5-2 path  and configuration, as drawn by Fujita (ref.  4 )  
from an aerial  survey and from the  six photographs taken by Paul Huffman. 
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Order-of -magnitude ~ ~- check on boundary-layer effect. - In order  to  check whether the 
observed rate of separation of the twin tornado could possibly have been due to boundary- 
layer interaction, an order-of-magnitude calculation for  this effect may be made as fol- 
lows: For the tornado pair the ratio of radial speed of displacement -Uy to  tangential 
speed of displacement Ux is on the order of -U U, =: 0.1. From equations (45), d 

-U Avl y= (1 - c ) - =  0.1 
UX rLl 

o r  

VI = rL x o . l  
A(l - C) 

A value for A, the area of the core  at the base of one of the funnels, may be obtained 
from figure 5 

A = 6 x 1 0  3 2  m 

where the scale length used in this estimate is the center-to-center distance as given in 
table I, location 4. The circulation r of each funnel, when approximately equal in 
strength at location 4, is estimated in appendix C as 

Taking the mean velocity in the boundary layer equal to one-half the free-stream velocity 
gives, from equation (42), 

c = 0.5 

When these values for A, r, and c are substituted, equation (46a) becomes 

L 
= 6 

which is a relation between the updraft velocity vl in the core  at the boundary layer and 
the length L at the base of each funnel, which is assumed to be affected by the boundary- 
layer interaction. Taking L = 60 m (196 ft) gives vl = 10 m/sec (22.4 mph) for the 
updraft velocity at the boundary layer, a value which appears to be of reasonable magni- 
tude. It is concluded that the increasing separation observed for the twin tornado may 
have been due to its interaction with the boundary layer at the ground. 
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1965; number 4 of a s e r i e s  of s i x  p i c tu re s  taken by Paul  Huffman, s t a f f  photog- 
rapher of t he  Elkhart Truth.  Left funnel i s  shown over t h e  Midway Tra i l e r  
Court ( f i g .  20). Reproduced by permission. 

Effect of the Je t  Stream on Motion of Tornado Cyclones 

The jet stream as a sink fluid.- In this section, equation (36) is again considered in 
the simplified form of equation (38) 

po(v' -To) X F +  (To -Ts)Q= 0 

where all t e rms  except the Magnus term and source te rm a r e  neglected. When a thunder- 
storm matures into a severe storm, which may generate tornadoes and hail, the storm 
cell begins to rotate cyclonically (in the northern hemisphere) according to observations 
reported in reference 3, pp. 3-4. This vortex is termed a "tornado cyclone." In addition 
to  circulation, there is a strong axial flow of rising air within the vortex which frequently 
penetrates the tropopause. In the vicinity of the tropopause at midlatitudes is a narrow 
band of high-speed flow called the jet stream (ref. 13, p. 553). Much of the fluid in  the 
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updraft of the storm is swept eastward by the jet s t ream as shown in figure 6, and forms 
the broad anvil canopy which is characteristic of these s torms  (ref. 1, pp. 67-68, and 
ref. 2, pp. 185-195). For the tropospheric flow below, therefore, the jet s t ream consti- 
tutes a sink fluid. - - 

vj s 

V0 

Figure 6.- Vortex tube e j ec t ing  fluid i n t o  the  j e t  stream. 

The efflux of fluid from the tornado cyclone into the jet s t ream will affect the 
motion of the tornado cyclone in the troposphere below the jet s t ream. In particular, an 
attempt will be made to  show on the basis of equation (38) that the storm will tend to move 
to  the right of the mean winds in the troposphere in agreement with observations reported 
in reference 1, pp. 71-72, and reference 2, pp. 319-321. 

The winds in the troposphere below the jet s t ream vary considerably in direction 
with altitude, as described in reference 2, pp. 319-336. Moreover, the actual location of 
the fluid sink is near the upper extremity of the storm, where the cyclone core intersects 
the lower boundary of the jet stream. Despite the wind variation and sink concentration, 
the s torms are observed to  move, more or less, as a unit, although the core of the storm 
may be tilted from the vertical by as much as 20' (ref. 1, p. 69). Possibly the storm 
structure resists deformation of the core of the cyclone and in so doing effectively spreads 
out localized effects over its entire vertical extent. If this is the case,  it would seem 
appropriate to distribute the sink strength uniformly over the vertical extent L of the 
storm and also to define a mean wind velocity 'iio for  the troposphere below the jet 
s t ream. 
assumed to  flare out horizontally upon penetrating the jet stream so that the tube as such 
is confined to the flow region below the jet stream. 

This is the view which is adopted in  this section. The vortex tube is also 

The total strength of the sink is poAvI, which in t e rms  of total source strength 
in kg/sec is 
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2= -P0AV1 (47) 

where A is the cross-sectional area of the rising column of fluid at the lower jet- 
s t ream boundary and vl is its upward velocity a t  the boundary. When this source 
strength is distributed over the height L of the vortex, the source strength per  unit 
length is 

POAV, Q =  -- 
L 

and equation (38) becomes 

where fijs is the fluid velocity in the jet stream (sink fluid) and 7 is the mean fluid 
velocity in the troposphere below. The brackets are eliminated in equation (49) by taking 
the mean values over the vortex-core c r o s s  section to  be approximated by values at the 
core  center. If is taken along the x-axis of a Cartesian coordinate system and r 
along the z-axis, equation (49) becomes in component form 

whence 

u y r -  ( v 0 - V I  ,)% - - = o  
L 

(ux - v o ) r  - v i  kAVl L- - 

. Avl 

Y r L  
u, = VO + VIS- 

u = ( 0  v - v  g)% 
Y rL 

Sample solutions for ~~ the motion of tornado cyclones.- The dimensionless constant 
Avl/rZ in equations (51) may be estimated by using the following typical values: 

Circulation of the tornado cyclone (ref. 1, p. 76), 
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Vertical extent of s torm (ref. 2, pp. 176-177), 

L = 12.2 km (40 000 f t )  

Upward velocity of fluid in  the cyclone core (ref. 12, p. 675), 

vI = 152 m/sec (500ft/sec) 

Area of core, assumed circular with radius fi km (ref. 1, p. 74), 

A = 6.28 x lo6 m2 

The resultant value for the dimensionless constant is 

Avl 
rL -= 0.78 (53) 

In order to determine the storm displacement velocity 0, two other quantities must 
be specified in equations (51). These are the ratio vjs/vo of the wind magnitude in the 
jet  s t ream vjs  to that below vo, and the included angle between To and Yjs. (In the 
vector diagrams of figure 7, the vortex is viewed from above and F0 is always taken to 

lie in  the same direction.) In figure 7(a), the wind-speed ratio is vjs - 

diagrams are sketched for various included angles between 'iio and Tjs in 15' incre- 

ments. 

of-displacement vector v' is usually found to l ie to the right of both ?io and ?;jS in 
agreement with observation. The general condition that v' lie to the right of To is 
that (Tjs - TO) - ?;o > 0. 

and vector F-  z 

vjs - Similar diagrams are presented in figure 7(b) for Note that the speed- F-  T' 

Effect of Core Buoyancy on Revolution Rate of a Twin Tornado 

Occurrence of twin tornado J -2 . -  On April 11, 1965, a twin tornado (fig. 5) occurred 
near Elkhart, Indiana. 
erence 4, and an abbreviated account is given in appendix B of this paper. The funnels 
were parallel, about 122 m (400 f t )  apart (center-to-center distance), and were tilted at 
an angle of about 29' from the vertical. Their circulations were of like sense (cyclonic) 
and they revolved about each other while slightly increasing the distance of separation. 
The relative motion of this tornado pair is an interesting case to which equation (13) 
should apply. Rather than attempt this at present, the linearized form, equation (36), will 
be applied, despite its limitation to weak vortices in an inviscid fluid without Coriolis 
forces. 
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Figure 7.-  Top views of displacement ve loc i ty  

vo 

v j  s 

vo 
(b) - = 2. 

-) 

U of tornado cyclone r e l a t i v e  t o  f r e e -  
stream ve loc i ty  $0 and je t -s t ream ve loc i ty  3 s  f o r  d i f f e ren t  or ien ta t ions  of ?js. 

Tornado model.- Figure 8 depicts a physical model for the twin tornado to which 
equation (36) may be applied. The vorticity is assumed to be largely contained in two 
tubes which are finite in c r o s s  section, semi-infinite in length, and terminate at the 
ground. The tubes are parallel, but tilted with respect to the vertical, and do not neces- 
sarily have the same circulation strength. Updrafts a r e  present within the cores  as an 
outlet for  the convergent flow in  the boundary layer at the ground, which was mentioned 
in the section entitled "Effect of the Boundary Layer at the Ground on Tornado Motion." 

29 



I 

Figure 8.- Model used for twin tornado: t i l t e d  vortex tubes with 
updraft and influx. 

One model for  tornadoes (refs. 14 and 15) assumes that such a convergent flow 
exists not only within the boundary layer at the ground, but at every point along the ver -  
tical extent of the funnel in the free stream. This convergent flow is conceived as main- 
taining the concentration of vorticity in the funnels. Thus besides circulation r, each 
core  has convergence Q", in kg/m-sec, which represents the rate at which convergent 
fluid is entering the core per unit length in the free s t ream. The asterisk notation is 
needed because within the core this convergent flow of fluid turns  upward in a rising 
column which remains a part  of a total f ree-s t ream flow field. If the converging fluid 
were actually withdrawn from the flow (as by entering a pipe), the asterisk notation would 
be unnecessary. 

This circulation-convergence -updraft model will be adapted herein for tornadoes. 
Thus the cores  in figure 8 are assigned individual circulations and rB and con- 
vergences QI and Qg. For a given location of the tubes the velocity field Tj outside 
the cores  may be solved for, assuming that the external fluid is inviscid, incompressible, 
and irrotational, and that it does not penetrate the ground. The velocity field thus deter- 
mined should be a good approximation to  the real flow except within the cores  and within 
the boundary layer at the ground. The effect of the boundary layer at the ground, which 
is to make the cores  move to  the right of the local flow (and thus tend to separate) has 
already been discussed in the section entitled "Effect of the Boundary Layer at the Ground 
on Tornado Motion." 

Absence of source force ~. density - despite possible convergent flow.- The motion of 
the co res  may be determined from equation (36). The source te rm (To - Ys)Q in this 
equation would apply if QI and Q& were true sinks. However, they are fictitious in 
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that the converging fluid is not withdrawn from the free-stream flow, but is simply 
deflected upward. 
it penetrates through a surface of discontinuity into a different flow region. Any such 
penetration point is assumed to occur only at altitudes which are large compared with 
the separation distance of the two tornadoes, so that the relative motion of the two funnels 
near the ground is unaffected by it. Therefore, despite convergence in the tornado model, 

the source term (7" - 7') Q in equation (36) is properly equated to  zero for this study 
of the mutual interaction between the funnels. 

Buoyancy terms.-  Now if the Lorentz force density F' in equation (36) is also not 

considered, the buoyancy term ___ M remains to influence the motion of the vortex 

pair: 

This rising column does not constitute a sink except at a point where 

PO 

The possibility exists that the cores  of the tornado pair are partially rarefied. 
occur if  the circulating winds approach the speed of sound near the cores,  as illustrated 
in the compressible-vortex example presented in reference 10, pp. 158-159. 
excess mass  M per unit length is negative, and each vortex is buoyant in the radial 
pressure gradient of the flow field of the other. 
upon the pair should be attractive and tend to slow down their revolution rate. 

This will 

Thus the 

Consequently, the buoyancy force acting 

Effect of tilt neglected.- Although the convergences Q i  and QL do not appear 
explicitly in equation (54), they still influence the velocity fields and pressure gradients 
in this equation and thus complicate the solution. The problem of two buoyant vortices 
with influx is simplified if the pair a r e  taken to be alined with the vertical and to be iden- 
tical in influx and circulation, as illustrated in figure 9 where 
Q i  = QL = Q*. The equal influx and circulation strengths correspond to  the state of the 
tornado pair at location 4 of figure 4. Neglecting the tilt angle appears to be warranted 
in the following order-of -magnitude calculation to determine whether buoyant attraction 
could cause signficant retardation in  the revolution rate of twin vortices with influx. In 
appendix C it is estimated that the revolution rate of the twin tornado w a s  retarded by at  
least 50 percent with respect to the fluid. 

to calculate the motion ffA of vortex A, the unperturbed flow, represented by ? 
and po in equation (54), is taken t o  be the flow field due to  vortex B. Similarly, the 
motion of vortex B is determined by considering the unperturbed flow to  be that due to 

rA = rB = I? and 

Adaptation of linearized equation for vortex motion to twin-vortex model.- In order 

31 

I... . 



r 
Q* 

J 
X 

Figure 9.- Vertical vortex tubes having identical circulation 
("."A) (%'".)* and influx with centers at 

vortex A. For either vortex equations (54) and (37) apply: 

po(v' - y o )  X - M (( V a0 -$)-S)=A(V@) (55) 

where v: = y o  . p. In the Cartesian coordinate system of figure 9 where the z-axis is 
vertical, the x- and y-components of equation (55) are, for vertical vortices, 

where the brackets have been eliminated by taking the mean values over the vortex cores  
to be approximated by values at the core centers.  The A (V@) t e rm was retained in 
equation (55) only for the purpose of balancing possible axial forces. For vertical vor- 
t ices  this te rm need have only a z-component and therefore does not appear in equa- 
tions (56). 

Suppose now that the vortex giving r i se  to the unperturbed flow is located at the 
moving point xm(t),ym(t). The velocity components for the unperturbed flow are then 
given by 
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where 

These velocity fields and their x-, y-, and t-derivatives, if evaluated on the line 
y - ym = 0, take the form 

(59d 
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where dots denote time derivatives, and where K and G are taken to be constants. 

Now take 
x-axis at equal 

the two moving vortices of figure 9 to be momentarily located on the 

distances %/2 from the origin, as viewed from above in figure 10. 

(- +, 0) (+, 0) 

Figure 10.- View of figure 9 from above when both vertical vortices are 
momentarily located on the x-axis at equal distances from the origin. 

Substituting equations (58) into equations (56) for the motion gA of vortex A in the fields 
due to vortex B gives 

where the identifications 

the problem dictates that 

x m = U E  and y m = U y  have been made. The symmetry of 

U - -U . Hence, equations (59) become -B - -A 
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UxG A U A K 

M e RE 
+ J X  2TpoG A -.;)+-- K Y= 0 

The excess mass  M in  the partially rarefied cores  is negative and may be 
expressed as 

where a is the core radius and A, which has  the range 0 5 A 5 1, is a dimensionless 
parameter which describes the degree of rarefaction. Substituting equation (61) into 
equations (60) and collecting t e rms  gives the following equations for  the displacement 
velocity GA of vortex A when it is located on the x-axis at a distance of R, meters  
from the vortex B (also on the x-axis): 

G Rc GRc Rc 

U e ( 1 -  p) + uy" y - -= K 0 
RC 

Solving these equations for cA gives 

where 

Aa2 P = 7  
2RC 

UA 1 -2B(l+$)+P2(1+$) 
Y= 
r/2aRC 1 - P 2 ( l + $ )  

35 



Result (63a) shows that one effect of buoyancy is to speed up the rate of approach of two 
vortices with convergent flow (Q* negative). It will be shown from result  (63b) that 
another effect of buoyancy is to slow down the revolution rate of vortices of like sense. 

Correlation of the twin-vortex - - model with data from the twin tornado. - - According 
to results (63) for  the model of twin vortices with convergence, the two vortices spiral  
inward toward each other, and buoyancy serves  to increase the rate of approach. But 
instead of spiraling inward, the two funnels of the twin tornado actually increased their 
distance of separation from 118.9 m (390 ft) to 147.1 m (482.6 ft) according to figure 4(b). 
Therefore, the convergence Q* of the twin tornado may be regarded as zero, or  as dom- 
inated by the boundary-layer interaction which tends to make the vortices separate. This 
simplified comparison, which neglects tilt, cas t s  some doubt on the existence of significant 
convergence in tornadoes except within the boundary layer at the ground. 

The revolution rates predicted by the present model and those observed for the 
twin tornado will now be compared. If Q*2/$ is neglected, as seems permissible 
from the preceding analysis, result (63b) becomes 

UA 

r p R ,  
Y - q) 

( I + % )  

With both vortices momentarily located on the x-axis, equation (64) gives the ratio of the 
revolution rate of a buoyant vortex pair to what it would be if the vortices moved with the 
fluid. This expression will now be evaluated for the time when the tornado w a s  in loca- 
tion 4 of figure 4, at which time both funnels appear to  have had approximately equal 
strengths (in agreement with the assumptions of this section) according to the sketches in 

a2 figure 4(c). From the photograph of the pair at location 4 in figure 5, - = 0.1 at the 

ground. If A is taken to be 0.5, which corresponds roughly to  sonic speeds at each core 
periphery, buoyant attraction is found to re tard the revolution rate of twin vortices by 
about 5 percent. 

Rc2 

According to an estimate made in appendix C, the revolution rate of the twin tornado 
was retarded by at least 50 percent with respect to the fluid flow. The effect of buoyant 
attraction, although tending in  the right direction, is not sufficiently strong to account for 
this much retardation in the linearized theory. 

The maximum possible value of a2/Rz for two vortices of equal core size is 1/4, 

which corresponds to  the two vortex cores  in  actual contact. The retardation in this case 
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for  A = 0.5 is then about 12 percent. Totally evacuated cores  (A = 1) or cores  filled 
with hydrogen gas (A = 1) would raise the maximum retardation to about 22 percent. 

Influence of Axial Electric Current on Revolution 

Rate of Twin Vortices 

Speculative hydromagnetic -vortex hypothesis. - In this section equation (36) will be 
taken in the simplified form 

The Lorentz force te rm F' in this equation is capable of exerting an attractive force on 
the funnels of the twin tornado which could retard their revolution rate to  any degree, 
stop it altogether, or even reverse it. The possible existence of such electromagnetic 
forces  in tornadoes is highly speculative, but it does provide an instructive application of 
equation (36). 
references 16 and 17. 

For a bibliography of other electrical theories concerning tornadoes, see 

It is well  known from electrodynamics that two parallel w i r e s  will  exert an attrac- 
tive force on each other if (a) they are oppositely charged or (b) they a re  conducting elec- 
t r ic  currents  of like sense. Since the two funnels of the twin tornado were in contact 
with the ground, it seems unlikely that opposite static electric charges on the two funnels 
could be maintained. But axial electric currents of like sense could conceivably have 
existed in the two funnels, and this is the case that will  be treated in this section. 

Fluid vortices with strong axial dc electric currents are termed hydromagnetic 
vortices. They have been discussed by Busemann (refs. 18 and 19) for the somewhat 
different case of a fluid with uniformly high electrical conductivity. In the analysis to 
follow high conductivity is assumed to persist  only in  the tornado cores .  

Hydromagnetic -vortex model. - Each vortex tube of the twin-tornado model (fig. 8) 

This sketch is a view of the ground plane in the proximity of the touchdown 
is characterized by coincidence of the fluid and electromagnetic states depicted in fig- 
ure  11. 
points A and B of the tornado funnels. The broken lines represent projections in the 
ground plane of the tilted axes of tornadoes A and B. 

Equation for  vortex motion with axial electric current - in a magnetic field.- The ~- -___I 

Lorentz force per unit length on an electric current filament in the presence of a mag- 
netic field is given by 

- +  
F = p o I  XH 
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where T is the current in amperes, H' is the magnetic field in amperes/meter, and 

po 
into equation (65) gives  

is the magnetic permeability of vacuum in henries/meter. Substituting equation (66) 

- 
where in this linearized equation, I is viewed as a perturbation current and Eo as 
the unperturbed magnetic field. 

( a )  Velocity f i e l d s  i n  ground plane due t o  t i l t e d  vortex tubes 

of c i r cu la t ion  fl and I? . B 

I 

(b)  Magnetic f i e l d s  i n  ground plane due t o  t i l t e d  current  
f i laments  I* and 1'. 

Figure 11.- Duplicate view from above of t he  ground plane, showing touchdown 
poin ts  of t i l t e d  hydromagnetic vo r t i ce s  A and B, with pro jec t ions  of t h e  
vortex axes ind ica ted  by broken l i n e s .  
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As in the section entitled "Adaptation of linearized equation for vortex motion to 
twin-vortex model," the unperturbed fields To and go at one vortex will  be those due 
to the other vortex. For vortex A in figure 11, equation (67) becomes 

where the brackets have been dropped as in equations (49) and (56). And for vortex B, 

If the cylindrical coordinate system R, +, z, with z perpendicular to the ground (see 
appendix A), is applied to both hydromagnetic vortices in figure 11, the radial components 
of equations (68) become at the ground 

po(U$ - .$)e + poH$It = 0 

Formulas for v and H+ at the ground plane near a tilted hydromagnetic vortex * 
a r e  derived in appendix A. 
are found by applying equation (A24) of appendix A 

The fluid velocity fields vA and v6 at the ground plane IC/ + 

where R, is the center-to-center distance in the ground plane and 

yB  = F ( I  r B  - sin x COS qA) 

D = / V i -  1 - sin x cos  +A 1 + tan x sin2QA 

Also, 



where 

and 

where 

B The magnetic fields HA and HIC, are obtained from equation (A23): IC, 

(7 I C )  

Expressions (70) and (71) will be used as mean values for the velocity and magnetic fields 
over the vortex c ros s  sections. 

The vortex end points A and B a r e  assumed to revolve about the point P (fig. 11) 
defined by the equations 

r A + ' B = &  

with displacement velocities 

and 

(7 3) 

(74b) u@ B = rB&B(l) 

where the revolution rate +*(I) = +B(I) is now a function of the axial electric currents 
in the vortex cores.  Equation (72) may also be written, by use of equation (73), 

(7 5) YB - YA + YB 
rA Rc 
-- 
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Solution for revolution rate of inclined hydromagnetic vortex pair at the ground. - 
Substituting equations (70), (71), and (73) in equations (69) and noting that rz = r cos  x 
and I, = I cos  x for both touchdown points (see appendix A) gives at A 

and at B 

If equation (76a) is multiplied by the factor (1 + sin x cos @ 
by the factor (1 - sin x cos  I ,~~)/D,  equations (76) become upon substitution of equa- 
tions (70b), (70e), (71b), and (71d) 

D and equation (76b) 
A)/ 

and 

Equating the left-hand sides of equations (77a) and (77b) and collecting te rms  gives 

Relation (72) then shows that 

which verifies that point P is the center point of revolution of points A and B in the 
ground plane, as assumed for equations (74). 

If equation (77a) is multiplied by 2nRc and equation (75) is substituted, then 



+ ” is the revolution rate $A of touchdown points A and B in the absence of 2 2rRC 
But 

axid electric currents,  and equation (80) may be written 

p y y  l - - = p i i  o A B  [ O A B  

where denotes the revolution rate of points A and B with axial electric currents, 
and &A the revolution rate without electric currents.  Substitution of definitions (70b), 
(7Oe), (71b), and (71d) also gives 

r r [ I - -  = P I I  o A B  o A B  

Now take the axial electric current for each funnel to  be proportional to  its individ- 
ual circulation 

Substitution of these relations in  equation (82) results in the following equation for K ,  

in A-sec/m2, 

Order of magnitude ._ of axial electric ._ current which would account for retarded 
revolution rate of __ twin tornado.- In appendix C it is estimated that the revolution rate of 
the twin funnels was retarded by at least one-half with respect to the fluid flow and that 
the actual circulation of the pair r A  + r B  w a s  probably greater than 104 m2/sec. 
Substituting the values 

PO = 1.18 kg/m3 

42 



r-l, = 477 X lo-'' H/m 

in equation (84) gives for air near sea level 

K = 6.86 X lo2 amp-sec/ma (86) 

and by equations (83) the total axial electric current which would be required to  slow down 
the f ree  revolution rate of the twin tornado to one-half that of the fluid flow is 

I + IB = 6.86 X lo6 A A 

It w a s  estimated in the section entitled "Effect of Core Buoyancy on Revolution Rate 
of a Twin Tornado" that buoyant attraction could have reduced the revolution rate  of the 
twin tornado by about 5 percent. To accomplish the same 5-percent reduction by mag- 
netic attraction would require a total axial electric current of 2.16 X lo6  amperes in the 

funnels. This would make the total magnetic energy of a tornado I S $ d V  com- 

parable in magnitude with its kinetic energy rII 'f$f dV. Such electric currents  a r e  
" 

much larger than values previously proposed as possibly existent in tornadoes (refs. 20 
to 24). 

CONCLUDING REMARKS 

The new equation for the motion of vorticity derived in this paper is found to have 
application to the motion of tornadoes and tornado cyclones. Quantitatively, the most 
successful of these applications of the equation in its linearized form appears to be the 
explanation given for the tendency of severe local s torms (tornado cyclones) to  move to 
the right of the mean tropospheric wind by virtue of their interaction with the jet  stream. 
Also successful was  finding that the effect of the boundary layer at the ground on the twin 
tornado of April 11, 1965, near Elkhart, Indiana, w a s  to make the two funnels separate, 
as they were observed to do. The increasing separation of the twin tornado also appears 
to  constitute evidence against the possibility of convergent flow in the funnels of the twin 
tornado except within the boundary layer at the ground. 
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Less  successful, quantitatively, were attempts at explaining why the funnels of the 
twin tornado apparently revolved about each other at a much slower rate than the fluid 
flow. The retardation in revolution rate was estimated to  be about 50 percent with 
respect to the fluid. Two mechanisms were found which could retard the revolution rate: 
(1) buoyant attraction of each partially rarefied tornado core in  the radial pressure gra-  
dient of the other core, and (2) magnetostatic attraction between axial dc electric currents  
of like sense in the cores .  The retardation due to buoyant attraction was calculated to be 
about 5 percent for  the twin tornado. In general buoyant attraction could retard the revo- 
lution rate of hollow-core or helium-core vortices of like sense by as much as 22 percent. 
Retardation by magnetostatic attraction requires electric currents  in the tornado cores  
which are much larger than existing evidence would indicate. 

A potentially important buoyancy effect was not included in this report, that is the 
upward lift on buoyant atmospheric vortices which are tilted with respect to the vertical. 
The most significant new result appears to be the equation for vortex motion, itself. 
Since it is f r ee  of constraints on the fluid medium or on the flow or force fields, it should 
find applications in meteorology concerning the motions of various cyclones. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., July 24, 1970. 
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APPENDIX A 

DERIVATION OF MAGNETIC AND VELOCITY FIELDS AT THE GROUND 

PLANE NEAR A TILTED HYDROMAGNETIC VORTEX 

Determining the velocity field due t o  a tilted vortex above the ground is identical 
with the problem of determining the magnetic field due to  an electric current in a tilted 
wire above the ground when it is specified that the magnetic field does not penetrate the 
ground. This is assured by making the ground plane a perfect electrical conductor, as 
shown in figure 12(a). Of these two analogs, the electrical lends itself simply to  solution 

i I 

(a) Original configuration with tilted 
current-carrying wire terminating 
in ground plane. 

(b) Equivalent image configuration 
for determining the magnetic 
field for z I O .  

Figure 12.- Image method for magnetic fields due to steady electric current I in tilted 
wire above perfectly conducting ground plane. 

-c ape 
by the method of images because div J = --, whereas div 3 = 0. This distinction 

means that a vortex line cannot terminate at an interior point of the flow field, while an 
electric-current filament can terminate (by allowing accumulation of charge at the ter- 
mination point) and this is what is needed in the method of images. 
electric -current -magnetic -field problem will be solved initially by the method of images, 
and the circulation-velocity -field solutions will be determined afterward by analogy. 

a t  

Therefore, the 

In the image method the perfectly conducting ground plane of figure 12(a) is 
replaced by the image of the wire, as depicted in figure 12(b). The magnetic-field 
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APPENDIX A - Continued 

solution for  this sharply bent wire is then obtained by superposition of the magnetic-field 
solutions for  the two straight semi-infinite wire sections. The first concern, therefore, 
is to  determine the magnetic field about a straight semi-infinite wi re  bearing a uniform 
current I, as illustrated in figure 13. 

f 

Qe 

Figure 1.3.- Semi-infinite w i r e  i n  spher ica l  coordinate system, 
showing uniform d i r e c t  current  I along the  (-axis  and 
charge accumulation Qe a t  the  o r ig in .  

3 

A suitable representation for  the current density J. in the wire is given by 5 

where 6 is the Dirac delta function and H([) is the Heaviside unit step function. The 
continuity equation for  current and charge densities 

requires a buildup of negative charge density 
represented by the expression 

pe at the termination point of the wire, as 

(This negative charge will be canceled out upon superposition by an equivalent positive 
charge at the end of the image wire.) Maxwell's equations in a medium with negligible 
electric and magnetic polarization are 
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APPENDIX A - Continued 

curl  Z =  e o Z + 3  
-c 

div E ~ E  = pe 

h 

where H' has been equated to zero  because the free current density 5 = CJC and the 
displacement current density E oE are constants. 

It is apparent from the geometry in  figure 13 and from equations (A4b) and (A4c) 
that the electric field E' is purely radial, is spherically symmetric, and is given by 

E =  6~~ 

where 

It 
2 E R =  - 

47r~ 

Hence, 

I 
2 E R =  - 

47r~ 

The integral form of equation (A4a) on a spherical surface S of radius R is 

If the closed contour line 1 is taken to be a circle perpendicular to the wire and if  the 
area of integration S is that portion of the spherical surface enclosed by 1, as depicted 
in figure 14, equation (A7) becomes 

Integrating the last t e rm of equation (A8) and collecting t e rms  gives for the &symmetric 
azimuthal magnetic field 

I (1 +COS e) H =-  
CP 47rR sin 8 
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APPENDIX A - Continued 

E 
Figure 14.- Surface of in tegra t ion  S for equation (A7) 

and i t s  bounding c i r c u i t  l i n e  2 on the  spher ica l  
surface R = Constant i n  the  coordinate system R,B,rp. 

Now take the straight semi-infinite wire to lie in the xz-plane of a Cartesian coor- 
dinate system, inclined at an angle x t o  the z-axis, as pictured in figure 15. The 
radius vector E will now be confined to  the xy-plane. The amplitude of the magnetic 
field Hq (eq. (A9)) at all points in the xy-plane (or Rq-plane) will now be determined. 
All that is necessary is to  evaluate cos  6 and sin 8 of equation (A9) in t e r m s  of the 
angles x and @. 

The formula for cos  8 from analytic geometry is 

where the direction cosines XI,/+,vI of I and X R , k , v R  of line E are given by 

and 
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APPENDIX A - Continued 

- a  
-It 

X 

Figure 15.- Configuration of f igu re  13 t i l t e d  and embedded i n  a Cartesian 
coordinate system x,y ,z .  The current-carrying wire i s  taken t o  l i e  
i n  the  xz-plane and the  radius  vector  R i n  the  xy-plane. 

Thus, 

c o s  8 = sin x c o s  rC, 

and 

sin e = 4- 1 - sin x c o s  \I/ 

and the magnitude of the magnetic field at points in the xy-plane is given by 

H - I (l + sin xCos  \I/) 
2 2 CP 47rR 

1 - sin ~ C O S  \I/ 
(z = 0) 

This magnetic field is oriented in the direction of 7 where 7 is normal to the 
plane formed by the vectors and R, as shown in figure 16. 
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APPENDIX A - Continued 

c 

+ 
Figure 16.- Direction T of magnetic field % at z = 0 

due to a semi-infinite tilted current-carrying wire. 
The horizontal component, denoted 5/2, is also shown. 

If X , L V  are the direction cosines of 5 the condition that 7 be perpendicular t o  
both T and is expressedby 

(A16a) hIX + VI” = 0 

XRA + pRp = 0 (A16b) 

A2 + p2 + v2 = 1 (A16c) 

where the fact that 4 = vR = 0 has  been used. Substituting v from equation (A16a) 
and p from equation (A16b) into equation (A16cj and solving for  A2 gives 

-1 

X2= ( 1 + - +  $ Q 
o r  from equations (All)  and (A12), 

A2 = (csc2*+ t a n q - l  
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APPENDIX A - Continued 

In figures 12 and 16, the z-component of €Iq at points on the xy-plane will be 
nullified by the z-component of the image wire. But the horizontal component, which is 
proportional to sin a, will be doubled by the image field on the xy-plane. Therefore, 
the total magnetic field in the ground plane xy due to current in a straight tilted wire 
above the ground plane is horizontal, purely azimuthal, and given by 

H = 2H sin a (2 = 0) * c p  

In t e rms  of the direction cosines of ?, 

and from equation (A16b) 

Substituting equations (A12) and (A18) gives after some reduction 

- 1/2 
sin a! = (I + sin2q tanax) 

Substitution of equations (A15) and (A22) in relation (A19) gives for the magnetic 
field H* in the ground plane due to current I in a straight tilted w i r e  above the 
ground plane 

where the coordinates R and * in  the ground plane and the tilt angle x are shown 
in figure 17. 
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APPENDIX A - Concluded 

e 

Figure 17.- Coordinate system for equation (A23). 

* 
Since 7 and H' in electrodynamics are analogous to  r and 7 in fluid 

dynamics, 

(2 = 0) (A241 r 1 + sin x cos + 
- sin 2 x cos  --q- + 1 + tan x sln 

where v 
culation r above the ground plane. The vortex configuration for equation (A24) is 
shown in figure 18. 

is the velocity field in the ground plane due to a straight tilted vortex of c i r -  + 
e 

1 

Figure 18.- Coordinate system f o r  equation (A24). 
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APPENDIX B 

DESCRIPTION AND TABULATION OF EMPIlUCAL DATA 

ON TWIN TORNADO OF APlUL 11, 1965, 

NEAR ELKHART, INDIANA 

An unusual tornado, identified 5-2 in reference 4, occurred on April 11, 1965, near 

Six photo- 
Elkhart, Indiana. This tornado developed a second funnel, and the two funnels revolved 
about each other fo r  about 1 minute, and then the original funnel disappeared. 
graphs of the tornado were taken during the period of duality by Paul Huffman of the 
Elkhart Truth. One of these photographs is reproduced in figure 5. On the basis of these 
photographs and aerial examination of the damage paths, Fujita determined that the circu- 
lation of both funnels during their brief period of individuality w a s  cyclonic, and he pro- 
duced figure 4 (fig. 49 in ref.  4) which shows to scale the motion of the two vortices. The 
time intervals between the photographs w e r e  determined from the translational speed of 
the storm, about 22.4 m/sec (50 mph). 

From a fourfold enlargement of figure 4(b), the following parameters have been 
obtained for  each of the locations 3 to 6: 
twin vortices; (2) the tilt angle x of the pair with respect to the vertical; and (3) the 
azimuth angle qA of the pair in the ground plane. These quantities are listed in 
table I. The aximuth angle +A is the angle at funnel A measured counterclockwise 
from the broken line labeled "tilt 29'" in figure 4(b) to the line AB connecting the cen- 
t e r s  of the vortex pair. The diameters of the spots in figure 4(c) were taken to be indic- 
ative of their relative strengths and were used to calculate the tabulated values for the 
ratio I' I' . d A 

(1) the center-to-center distance R, of the 

For each of the three intervals between these four data points interpolation gives 
the mean separation (&), the mean tilt angle ( x), the mean azimuth angle (qA), 
the mean revolution rate ($A), and the mean circulation ratio ( rB/rA). These 

quantities a r e  listed in table II. Also included for use in appendix C are mean values 

(D) where D 
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APPENDIX C 

CIRCULATION OF THE TWIN TORNADO AS DEDUCED 

FROM ITS REVOLUTION RATE - 
EVIDENCE THAT THE FUNNELS MOVED MORE SLOWLY THAN THE FLUID 

Circulation Estimate From Revolution Rate 

In this appendix the total circulation r A  + rB of the twin tornado will first be 
estimated from its revolution rate with the assumption that the funnels move with the 
fluid. According to equation (36) this means that the buoyancy and source t e r m s  are 
neglected as well as a possible Lorentz force F'. The effects of these t e rms  have been 
determined, subject to certain simplifications, i L  the sections entitled, "Effect of Core 
Buoyancy on Revolution Rate of a Twin Tornado,'' "Effect of the Boundary Layer at the 
Ground on Tornado Motion," and "Influence of Axial Electric Current on Revolution Rate 
of Twin Vortices." After the first estimate is obtained, the effects of the neglected t e rms  
on this estimate will be considered. 

The velocity fields are determined in accordance with the twin-vortex model pre- 
sented in the section entitled, "Tornado model" and illustrated in  figure 8. Effects of 
the tilt angle x and of the unequal circulations and rB of the two vortices are 
included. But the convergences Q; and Q& of this model are equated to zero in order 
to conform to the observation that the twin funnels did not approach each other, as 
explained in the section entitled, "Correlation of the twin-vortex model with data from the 
twin tornado." 

Velocity field at ground plane due to single inclined vortex.- Consider a single vor- 
which terminated on the ground plane and is inclined to the vertical 

___-___ 

tex of circulation 
by the angle x as in figure 18. The velocity field at the ground plane (RG-plane) for 
such a vortex in a perfect fluid is found in appendix A (eq. (A24)) to be purely azimuthal 
and given by the formula 

(2 = 0) 

Twin-vortex model.- Now, consider the configuration shown in figure 8 as viewed 
from above in figure 19. Here the two tilted, semi-infinite vortices terminate at spots A 
and B in the ground plane. The broken lines in this figure represent the projections of 
the vortex axes in the ground plane, as in figure 4(b). Take the two inclined vortices to 
be parallel to each other and to have cyclonic circulations r A  and l?, in a perfect 
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APPENDIX C - Continued 

I 
I 
I 

Figure 19.- View of ground plane f r o m  above (as i n  f i g .  4(b)) 
showing the  touchdown points  of two vor t ices  A and B, t h e i r  
ve loc i ty  f i e l d s ,  and or ien ta t ion  with respect t o  project ions 
of t h e  vortex axes. 

The velocity field TB at point B is perpendicLAr to  fluid which is otherwise at rest. 
the line AB, as shown in figure 19, and is given by 

where 

and 

D = \/I - sin2X cos2+A\ l~  + tanax sin2qA 

Similarly, the velocity field TA is given by 

,A=- YB * 2nRc 

where 

1 - s i n  xcos * 
YB = D( A) (C 5) 
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APPENDIX C - Continued 

and the substitution qB = 'CIA f T has been made. The quantities y A  and yB will be 
referred to as the "effective circulations" of vortices A and B. 

Define point P on the line AB, as shown in  figure 19 so that 

Then the revolution rates of points A and B about P are given by 

But by relation (C6a) 

and point P is seen to be the center point of revolution of points A and B in the ground 
plane. (Since yA and yB a r e  different functions of qA, the location of point P on 
line AB will also vary with the azimuth angle qA of the pair.) Combination of equa- 
tions (C6a) and (C6b) gives 

Hence, the theoretical revolution rate in the ground plane of a tilted vortex pair of like 
sense in a perfect fluid is given by 

yA + yB 
2 2 aRc 

+A = 

The effective circulation yA + yB of the vortex pair is related to the circulation 
+ rB by adding equations (C2) and (C5) 
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APPENDIX C - Continued 

where D is given by equation (C3). Combining equations (C11) and (C12) gives 

~ ~ T R ~ D $ ~  2 = rA(1 + b) + rA(1 - b)sin X C O S  $'A 

where b rB A. Solving for rA: P 

rA= ~ 

(1 + b) + (1 - b)sin x COS qA 

and multiplying by (1 + b) gives 

27TRCDSIA(1 2 + b) 
r + r B = -  

(1 + b) + (1 - b)sin x COS +A A 

For intervals 3-4, 4-5, and 5-6 mean values 

tuting values from table I1 for (Rc), ( D ) ,  (qA), ( b ) ,  (x), and ($A) in 

formula (C15). This gives the following estimate for (FA + r,) in m2/sec: 

(rA + rB) can be determined by substi- 

x lo3 (Interval 3-4) 

x 103 (Interval 4-51 (rA + rB> = 
4.91 x lo3 (Interval 5-6) 

Averaging these values gives 

(rA + rB) = 4.92 x 103 (interval 3-6) 

for the total circulation in  m2/sec of the tornado pair, as computed from the revolution 
rate of their touchdown spots on the ground with the assumption that the funnels move 
with the fluid. 
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APPENDIX C - Continued 

Evidence That the Revolution Rate Was Retarded 

With Respect to the Fluid 

Examining the wind damage shown in figure 20 shows that the value (C17) for 

( rA + rB) 
Trailer Court from the north. This trailer court was hit by the twin tornado. The two 
funnels moved from right to left across  this photograph and were tilted toward the bottom 
edge of the photograph. Figure 5, which depicts the funnels at location 4, was  taken while 
funnel B was over the trailer court. 

is too small by at least a factor of 2. This photograph views the Midway 

Figure 20.- Aer ia l  photograph of severe damage t o  t h e  Midway T r a i l e r  Court near 
E l k h a r t ,  Indiana.  Devastatidn seen near center  of p i c tu re  was  caused by the  
l e f t  funnel of t he  tornado shown i n  f igure  5 ,  while the  r i g h t  funnel moved 
over the  plowed f i e l d  from r i g h t  t o  l e f t ,  cu t t ing  across  upper corner of the  
court .  
Apri l  13. 

Damage occurred at 5:32 p.m. CST, Apr i l  11, 1965; p ic ture  w a s  taken 
Courtesy T. F u j i t a  ( r e f .  4). 

Note the damage near the lower edge of figure 20 left of center. One trailer has a 
side blown out, and next to it is one which was upturned (wheels up). The maximum pos- 
sible wind speed at this point due to the calculated value (C17) for 
determined by combining the two funnels into a single vortex on the nearest tornado path 
and tilting this vortex directly toward the upturned trailer. The center of the nearest 

( r A  + r,) can be 
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APPENDIX C - Concluded 

path is a distance of 89.9 m (295 f t )  from the upturned trailer. (This distance estimate 
assumes that the trailers were typically 15.2 m (50 ft) long.) The nearest path is that of 
funnel B, which cut diagonally from upper right to  center left across  the trailer court and 
caused the devastation near the middle of the photograph. 

The velocity field at the ground due to a single tilted vortex (fig. 18) is given by 
equation (A24). Substituting the values 

r = 

R = 89.9 m (295 f t )  

x = 29' 

r A  + rB) = 4.92 x 103 m2/sec ( 

@A= 0' 

in  equation (A24) gives 

v@ = 14.8 m/sec (33.1 mph) (C 19) 

as the maximum possible wind speed at the upturned trailer due to the circulation value 
( r A  + rB) = 4.92 x 103 m2/sec calculated from the  revolution rate of the pair, assumed 
to move with the fluid. This wind speed is clearly too low, and it is not augmented by the 
speed of the storm, about 22.4 m/sec (50 mph), because the site of the upturned t ra i ler  
was on the northern side of the tornado path, where the storm velocity opposes and tends 
to reduce the circulation velocity. In reference 3, Fujita reports  an anemometer 
recording which shows winds of 67 m/sec (150 mph) at the edge of a damage path of a 
tornado generated an hour later by the same storm. The conclusion therefore is that the 
actual circulation of the twin tornado w a s  much greater than the value (4.92 x 103 m2/sec) 
calculated from its revolution rate by assuming that the vortices moved with the fluid. 
Apparently, the revolution rate was retarded with respect to the fluid by at least a factor 
of 1/2. 

The possibility of local wind shear causing this retardation has  been considered. 
A continuous source of wind shear is the tornado cyclone in  which tornado J - 2  was 
embedded. This wind shear can be estimated from the paths of the family of tornadoes 
generated by the tornado cyclone, as presented in the maps of reference 4. The wind 
shear estimated in this way is found to be too low to affect the revolution rate of the twin 
tornado J - 2 significantly . 
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TABLE 1.- PARAMETERS FOR TWIN TORNADO 5-2  

OBTAINED FROM FIGURE 4 

._ 

Center -to-center 
separation in  Tilt angle with 
ground plane, 

f t  m 

respect to vertical, 
x t  deg 

Location 
Azimuth 

angle , 
+A, deg 

62 

3 
4 
5 
6 

~- 

Interval 
between 
locations 

390 118.9 
431.8 131.6 134.1 
478.2 145.7 151.4 

237.0 482.6 147.1 1 I i3 1 96.9- 

- __._ ____ 

3 -4 
(13 see) 

4-5 
(8 sec) 

(31 sec) 
5 -6 

an le, 
Mean tilt Mean azimuth 

angle 9 (x), deg (*A71 deg 

- 

rB/rA 

0.6 
1.00 
1.35 
2.75 

_ _ _  - 

__ 

rate (observed), 
Mean revolution 

(*A)’ rad/sec 

TABLE 11.- MEAN VALUES FOR PARAMETERS OF TABLE I AND 

125.2 

138.7 

146.4 

f t  

410.9 
__  - 

455.0 

480.4 
__ ~. 

I - - .  - - ~  

0.8 111:; 1 o:!l 1.17 29 

29 194.2 2.05 

30 

- -__  

1.1 

.973 

.891 

- 

NASA-Langley, 1970 - 13 L-5738 
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