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ABSTRACT

Orbiting astronomical observations have the potential for making
observations far superior to those from earth-based mirrors. In order
for this performance to be reslized, the contour of the primary mirror
must be very accurately controlled. A thermally activated sygtem for
correcting symmetrical distortions in space telescope mirrors has been
evaluated. This system utilizes thermally induced elastic strains to
correct axial distortions in the mirror. The relation between axial
distortion and thermal inputs was determined by a finite difference
solution of the equations for thin elastic shells.

The use of this technigue was demonstrated analytically on a
beryllium paraboloid. This mirror had 10 equally spaced thermal inpubs.
Distortions due to an acceleration-type loading were shown to be corrected
to well within the required accuracy. Axial temperature gradients
resulting from the application of the thexrmal inputs to the rear surface

of the mlrror were shown to be quite small.
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CHAPTER I
INTRODUCTICN

The resclution of ground-based optical astronomical cbserva-
tories is limited by atmospherie turbulence. To minimize the effects
of turbulence, many observatories are located at relatively inaccess- !
ible areas atop tall mountains. Even at these locatlons the very best
telescopes seldom have a resolubion bhetter than 0.3 second of arc.

In space, telescopes would be limited only by the diffraction limit
and, therefore, large mirrors (120 in. dia.) should be able to resolve
0.03 arc second at 5,000 angstroms (Ref. 1). Also, space telescopes
will be able o view portions of the spectrum not currently available
for observation due to atmospheric absoxrption.

The National Aeronautics and Space Administration is currently
investigating the problems associated with the operation of large
(120 in. dia. aperture) space telescopes. Several studies of space
telescopes have been conducted and are reported in References 2, 3,
and 4. These studies have defined thé scientific objectives of a
space telescope and ocutlined some of the major problems involved in
its design and fabrication. A1l of these studies have recommended
the use of a Cassegrain optical system which requires a paraboloidal
primary mirror. In order for the optical system to have the desired
resolution, the contour of the primary mirvor must be maintained to
within 2 microinches of the design value (Ref. 3). If this accuracy

canuot be maintained, the resolution of space telescopes will be



degraded relative to their potential capabilities and their performance
may be less than that of ground-based observatories.

Two types of primary mirrors have heen proposed for use in space
telescopes. The firsgt tyjp; iz a passive mirror which wonld be degigned
to retain the proper contour without correction for the life of the
telescope. This mirror would consequentl:;sr be rather massive and may
impose a severe welight penalty on the launch booster. The second con-
cept is known as an active optics system and ubtilizes 3 thin mirror
which is pemmitted to deform moderately under operational loads.
Distortions in the mirror would be monitored and analyzed hy a figure
error sensor. This sensor would activate a control system to apply
correction loads which would remove the distortions.

One active optics s;lfstem utilizing precision jacks to provide
corrective loads has been investigated analytically. .This analysils has
been experimentally verified using a thin deformable mirror 30 inches
in diameter (Ref. 5). However, this system requires either a very
shiff back plate for the jacks to react against or a determination of
the coupling between the back plate and the mirror. Also, this is an
electromechanical system and is relatively complicated for space use.
Angther type of acbive optics system that has been sugsested utilizes
thermal inputs to provide the corrective distortions. FRlastic strains
introduced by differential heating would be used to force the mirror
to assume the pré)per contour.

The object of this investigation is to develop a technigque for

determining the relation between deformations parallel to the mirror



axis and the thermsl inéuts necessary for error correction in such a
system. Thermal inputs in the form of a prescribed temperature distri-
bution were considered to be applied to the rear surface of the mirror.
In order tq illustrate the fessibility ;f such a technigue, & cpsine-
type temperature profile was considered for the loading. The axial
temperature gradient introduced in the mirror due to front surface
radiation loss was shown to be small. The relation between the mirror
distortions and the ﬁhérmal inputs was cbtained by a computerized finite
difference solution of the elastic shell equations. The relation was
expressed in the form of‘q flexibility matrix. The thermal inputs
necessary to correct distortion at specific control points were deter-
mined by inverting the flexibility matyix to form a stiffness matrix.
An example of the thermal inputs necessary to correct distortions due

to an acceleration-type loading is shown.



CHAPTER TT
THERMAY, CONTROL SYSTEM

Description of Telescope

The space~telescope model selected for this analysis is a pre-
liminary design of the type discussed in Reference 3. A sketch of
this model iz shown in Figure 1. The b§sie telescope configuration
congiste of twe large cylindrical shells which are aﬁtacized to the
telescope cabin. The cylindrical shells enclose the main optical
elements -~ the primary and secopndary mirrors. Attached to the ouber
shell is a system of doors that prevents sunlj:ght from falling on the
optical system during maneuvers. The lmner shell is a thermaq. shield
which reduces solar heating loads on t'he prjma,zy.milrror.i 211 optical
imaging devices and sensing instruments are contained in the ‘telescope
cabin. This cgbin will also provide the necéssaxy gnvzlroment, fpz: \
manned support. One significant departure from pr;viously degisnad
space systems is that the belescope must be capable of continuous
operation for several years. Therefore; the telescobpe must receive
manned support from a docked or nearby space staticn.

The telescope has a Cassegrain-type optical system with a
focal ~length-to-aperture diameter (f/d) of 30. The primary mirror is
a shorf-focal-length (£/d = &) paraboleid, while the smaller secondary
mirror is a hyperboloid. If this opbical system could be fabricated
with perfect geometry it would image a point souree, such as a sbtar,

in the focal plane as a bright central dise (Airy dise) with
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Figure 1.~ Sketch of an orbiting space telescope.




surrounding diffraction rings. The Airy disc would conbain approxi-
mately 85 per cent of the incident energy with the nema.in;'mg 15 per cent
scattered in the surrounding rings. However, due to fabrication errors
in the mirrors, operating loads and inherent absorption losses, the
energy in the central disce will be reduced and the resolving power of
the telescope may be severely limited. ,If the distortions in the
optical system are such that 68 per cent of the energy :,Lies in the
central disc with 32 per cent i the diffraction rings, the'system is

1 ¥
operatbing at the Rayleigh criterion for resolubion. An analysis of thg

¢ A

optical system for this diffraction-limited operation wis 'c‘onsidered. in’

i »
¢ A s

Reference 3. This analysis estimatés that. the primary mirror Will~ :

N "\ -

require a surface contour having distortions less than i.97 mcro:mches .
(l/lO wavelength at 5,000 angstroms) from,the deS:Lgn para.bolo:.d. In
{ .

addition, a roob-mean-square surfage accuracy of 0.37 mlcr01nch (1[53

N *

wavelength at 5,000 angstroms) will be requlred.

[ .

It was noted previously tha.t distortions in the optical syst'em
may bhe produced by operational loads. Other sources’ of 'di’s’qoftion may
ineclunde (1) the introduction of elastic strains in changing from an
earth gravity enviromment to a zero gravity space environment,

(2) relaxation of residual strains introduced during the fabrication of
the mirror billet, (3) relaxation of residuwal strains introduced by
machining and polishing operations, and (4) plastic stx:a.ins introduced

by launch and environmental loads.



Thermal Activelthics System

In order o maintein the mirror contour within the required
gecuracy, a bechnique to introduce corrective distortions may be
necegsary. The technigue envisioned in this analysis for correcting
mirror distortions is to apply thermal inpubs to the rear surface of
the mirrvor. These thermal losds will induge elastic strains which will
deform the mirror surface to the desired paraboloidal contour. A
schematic diegram of a thermal active optics system is shown in
Figure 2. Distortions in the primary mirrpr'are detected by the figure
error sensor using interferometric technigues. These errors are in the
" form of fringe patterns and must be interpreted to determine the size
gnd divection of the distortion. This interpretation ls performed by
the analyzer and phase debector at fixed control points on the mirror
surface,; The analyzer will alsc calculate the amplitude of the con-
trolled temperaturs scurce necessary to correct distortions at the
control points. The function of the control system is to apply the
desired inputs, thereby reducing the distortions at the control points
to (or below) the acceptsble level.

A sketch illustrating the control points and location of the
thermal inputs is shown in Figure 3. The thermal inputs are in the
form of controlled back surface temperzture distributions. The radial
and circumferential location of the thermsl inputs, in addition to
their size, may vary. It is only necesgsery to determine the influence

pf the thermal inputs at specifie control points on the surface.
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Figure 2.~ Schemstic of thermal active optics



Figure 3.- Sketch showing control points and location of

thermal inputs on rear surface of telescope mirror.

Most practical structures, including the telescope mirror dis-
cugsed in Reference 5 have been shown to exhibit approximate linear
behavior. In order to detemmine the influence of the thermal inputbs,
it was assumed in this amalyseis that the thin parsboloidal shell
behaves as a linear structure. Thus the influence of thermal inputs
can be analyzed using linear theory. One advantage of such a struc-
tural theory ig that it permits the application of the principle of
guperposition. This principle states that stresses and deformations
produced in a structure by a seb of loads in combination can be obtained

by adding the stresses and deformations produced by each load acting
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separstely. Thereflore, the distortions at the control points may be

expressed as a function of the applied thermal inpubs by the following

equations:
‘\
81 = cll?l + c12T2 + 015‘.135 + clll-Tl(- PR clnTn
52 = CElTl - C22T2 + 023T3 + CE&'T}%‘ + s e cEnTn ? (1)
By = Cp1Eq + 2,575 4 °n5T5 e+ . oo .oy T J

£y

The coefficients (cij) specify the contribution due to an increase in
temperature from each thermsl iuput (Tj) toward the distortion (B;) at
the control point (i). These equablons may be written in the mowe con-

venient matrix notation as

1) = [c] il (2)

The sgquare mabrix [C] is generally called the structure flexibility

matrix and the component terms are deflection influence coefficients.
The thermal inputs necessary to correct mirror distortions can

be expressed by inverting the flexibility matrix and multiplying by the

measured distortiocas.

|1 = [X] |8] (3)

where

(-]



In order for the active optics system to perform properly it is

necessary to accurately determine the coefficients kij for each

conbrol point and store the coeffipients in the system analyzer.

11



CHAPTER TIIT
THERMAL. ANATYSIS

Degcription of Mirror Geomebry

No firm design of the space telescope has been formulated. The
technique developed in this investigation is applicable to any thin
telescope mirror. The example shown in this and subsequent sections
illustrates the use of this technigue.

A sketch of the mirror used in this analysis is shown in
Figure k. The mirror is a thin paraboloidal shell having s diameter
of 120 inches and & focal length of 480 inches. Since no firm design
of the telescope has been formulsbted, certain assumptions concerning

the mirror geometry were necessary. For example, the diameter of the

Foeal
point
L_'. 1 - I
[ 480 Tﬁm

Figure .- Sketch of telescope mirror.

12
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center hole will depend upon the telescope optical system and manu-
facturing considerations. The hole was assumed %o have a diameter equal
to one-tenth (12 inches) the diameter of the mirror. In the weightless
environment of space, only a very thin reflective surface would be
necessary for the primary mirvor. However, practical considerations

of manufacbure will require the mirror to be sufficiently thick to with-
stand grinding and polishing in a gravity environment. For this investi~
gation, the thickness of the mirror was one-hundredth (1.2 inches) of
the diameter (Ref. 7). The thickness .wa,s assumed to be consbant in

both the circumferential and meridional directions.

Metal mirrors are ideally suited for thin one-piece construction
because they have high stiffness-to-weight rabtios. Beryllium has one of
the highest stiffness-to-weight ratios of any structural metal ~nd ie
eurrently being considered ag cne of the prime candidate mater-rals for
telescope mirrors (Ref. 8). The paraboloid shown in Figure I was con-
sidered to be fabricated ciwm a homogeaeous andl isotropic billet of
beryllium. The properties of ihe berylliug material for this mirror
are shown in Table I.

The mirror was restrained at the outer rim by & .sysbem which
accommodates only symmebrical loading about the mirror axis. This
support system restrains the wirvor only in the axial direcbion and is
usuvally referred to as a hinged support on rollers. A sketch of the
support condition-is shovn in Fﬂgure 5. ,Thié system ig similar %o a
three-point tangent-bar mounting suspens&on considered in Reéerence 3.

The systems are similar in that both will accommodate differential



ik

Figure 5.- Sketch of mivror cross gsection illustrating
boundary conditions.

radial expansion beatween the mirro£ and support structure without
introducing loads in the mirror. No restraints were applied st the
central cutout portion of the mirvor.

For the 1llustration of the thermal active optics system,
symmetrical distortions of the primary mirror were considered. Sources
with a controlled tempergturg distribufion were selected to provide the
thermal inputs. The controlled sources were applied to the rear
surface of the mirror. In order to simplify the problem, only steady-
state distortions were examined, Therefore, the results of this study
are gpplicable only if observations are made efter steady-stete

conditions exist.
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Ten equally spaced stations along the meridian of the mirror
were selected as the control points. The location of these stations
is shown in Figure 6. The points wgre separated by & meyidional dis-
tance of 5.40% inches. Ten control points were considered to be a
sufficient number to demonstrate thig technigue. Tlae uge of more
control points would only have generaEbed_ s larger matrix of influence
coefficients and would have added little to the demonstration of the
technique. TFor an actual cor\ltrol Sy:stem, a larger number of heaiers
ma.y'be desirable toi inerease the eontrczl capability. No cpntrol point
was located at the’perigiphery of the fsh:e';Ll because of the axial restraint
imposed by the bounda.r:y condition. A thermal input at that location,
howevea;, wonld influence the distortion a.1:, the other control points.

The thermal inputs applied by the strip heaters to the rear

surface of the mirror were assumed to have the form

Y R | (¢ - &n) A

A(E-‘-!--E-cos L—E_IL) lg - gnl SE.
k (5)

) Fa

0 . l§"§n|>g

A sketch of this thermal input applied at a control point on the mirror
surface is shown in Figure 7. Thermal inputs of this form were selected
because they can be represented by a concise mathematical expression.
Also, these inputs should be relatively easy to simulate experi-
nmentally since théy produce no severe radial gradients. It should

be noted in the figure that the thermal inpubts were applied to one-half



: 5.404" typical
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Figure 6.~ Sketch of mirror cross section showing location
of contrel points.
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1 2 3
t : .
- - <
T = A [1/2 + 1/2 cos _Tr_(_gn_@l] |E Enl A4
" = {0 Ig - En! > A4
Figure 7.- Thermal inputs applied at control points along rear

surface of mirror.

It
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of the interval represented by the control point. This permits a
spacing between the strip heaters.

The thermal inputs of Figure 7 were used at every control point
except station 1 (see Fig. 6). .Aﬁ station 1 a siight modification of
the thermal ipput was wsed. Only the right half of the distribution
shown in Figure 7 was applied and the interior of the hole was assumed

to be insulabed.

Internal Tamperature Histribution
The temperavuve distribuition ipdicabed in equation (5) was
applied to the resr surface of the mirror at each control point. The
application of this sxially symmetric therms) input will result in
two-dimensional heat flow within the mirror inbterior. Therefore, the

interior temperature of the mirror (T ) will be

Tm = Tm(g:g) (6)

vhere . & 1s the meridionsl coordinate and € is the normal to the
neutral gurface. This temperabture distribution must be determined in
order to evaluate the effect of the thermal inputs in reducing mirror
distortions. The internal temperature distribution could be signifi-
cantly affected by the radistion heat loss from the mirror front sur-
face. In order %o evaluste the front surface heat loss at each control
station, a thermai model of the ltelescope was examined. This model is
shown in Figure 8. The mirror was represented by a flat cireular disec.

A disc was considered %o be a good approximation becavse the mirvor is



430"

120"

Primary mirror

Thermal
—390° R /_ shield

\\\——Structural

support

Figure 8.- Thermal model for calculation of axial heat loss.
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a very shallow paraboloid with an edge to center depth of approxi-
mately 1.9 inches. The temperature of the mirror and thermal shield
are 1}070 R and 390° R, respectlvely, and are assumed to be constant
over the surface. These temperatures are based on a preliminary heat-
transfer analysis reported in Reference 3. The interior of the thermal
shield was coated with lampblack which has an emissivity of 0.96. The
purpose of this coating is to eliminate stray radiation from falling
on the telescope opiics and introducing noise in the observations.
Also, the secondary mirvor and support struts were omitted from the
model becanse the ares was considered small.

The front surface radistion emitted by the mirror will be

Q;n = UemAmeh (7)

where the emissivity and absorptivity are considered equal since the
mirror and thermal shield are at approximately the same temperature.
The mirror temperabture is not ‘considered to be significantly increased
by the thermsl inputs. The radiation from the thermal shield that

strikee the mirror is

Qyp = 80 T E (8)

vhere F, is the view factor and represents that portion of the
energy emitted by the thermal shield which is u:i.ntercepted by the
mnirror. Neglectiilg reflections, the net heat loss from the front

surface of the mirror is equal to the radiation emitted by the mirror

(gamAmImh) minus the radiabtlon absorbed by the mirror from the thermal


http:aamA,.Tj
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shield (chTSI*ASFsm + ay). This is expressed in equation form by the

following relation:

Q= UﬁmAmel+ - U"3'sTsl}*“‘s]’-'smam i (9)

In oyder to caleulate the heat loss fxom the mirror it will be necessary
to evalunate the view factor (Esm) relating the radiant emission from the
thermsl shield which goes directly to the mirror. Since view factors
are generally difficult to caleulate due to involved integrals, simpli-
fying relations are often scught., In order to determine the view factor
between the thermal shield apd mivror (Fg,), 1t will be related to the
view factor between the mirror and open port (Fmp) which 'ca.n be readily
evaluated.

Since the mirror, heat shield, and opening at the end of the
telescope (port) effectively form an enclosure and the disc does not

radiate to itself, S

T _+F =1 (10)
Uging this equation and the reciprocity relation

Asﬁ;sm = Apfmg (11)

the viey factor ¥y, can be determined. 3By equation {(11)

- Anfmg

F
sm AS

(12)
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Substituting for from equation (10)

ms
(1 - Fpp)
Fo = b P (23)
‘AS
Replacing P, in equation (9) by equation (13) yields
- L h I
Q = Apoay|Ty' - Tg ag{l - Fump) (1)

In order to solve equation (14), it is necessary to determine the view

factor Fmp' A sketch of the geometyy is shown in Figure 9. From this
sketch and the definition of the view factor (Ref. 9), we have
cos ¥, cos V.
ey e [ [ Tlagoe (15)
Am xb
vhere
cos ¥ = cos ¥, = L (16)
and
2 2
\’L + (pm - pp) (17)

Substituting the above equations into eguation (15) and also substituo-

ting for dAp gives the following eguation:

2

A f j Eﬂj -2 pp A8, dhy (18)

:r[L2 + (pp - oy) 32




] 80"

Figure 9.~ Sketch of geometry to determine wview factor.
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Inbegrabing this equation over dpp and d.BP and substiltuting

L = 430 in. yields the following integral over the mirror area:

~ 5 _
A =J ] - 1.849 x 10 . Pm{80 - pp) .
Ay 1.849 x 102 + (80 - p )%  1.849 x 102 + (80 ~ pg)®
P _1(80 - Pm) -1/ ~Pm
— = - —_— 1
¥ k30 o 430 = 420 n ( ,9)

Only the heal loss from the front surface at the control points
is of interest. Fach coutrol point represents a small portion of the

total mirror area. Therefore, since A, 1is small in relation to AP’

equation (19) gives the view factor Fpp directly in terms of the

P

mirror redius where it is to be evaluabed. Therefore,

e o1 1.849 x 107 . (80 - Pp)
" 1.849 X 107 + (80 - py)®  1.849 x 107 + (80 - pp)?
A P ——-——--—-—80 - pm) + tan ™} pI“) (20)
430 430 430

A1l terms necessary for evaluabting the heat loss (eq. (14)) are
now knewn. The calculated values for the view factor and the heat flux
(Q,/Am) at each control point are shown in Table II. The view factors
are quite small and do not vary significantly with the location of the
control point. Since the heat flux is directly proportional to the

view factor, it is also guite small.
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The temperature gradient at the mirror surface can be determined

using the Fourier heat cconduction eguation

4T
- = = o
Kby =7 (21)
Simplifying this equation,
ar _ .1 &
ot XL (22)

An exemination of a typical temperature gradient (control point 5)
indicates that

ar - 1.861 x 107 R/in. (23)

as

This is & smwall temperature gradient due to the view factor and the
high thermal conductivity of beryllium. Since the temperature gradient
abt the mirror front surface is small, Tthis boundary may be assumed to be
insulated (am/df b = 0) vhen determining the interior temperature
digtribution. Several ncnmetallic materials, including ceramics and
glasses, are also being considered for mirror fabrication. These
materials have a very low thermal conductivity and therefore would have
a larger temperature gradient at the mirror front surface.

The in'teribr temperature distribution was examined by applying
g Thermel input of unit amplitude to the flat circular disc. A section

view of the disc idJustrating the coordinate system and thermal input
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is shown in Figure 10. The thermel input is epplied over the interval
Pg+ The front surface 1s thermally insuwlated due to the low-temperature
gradient discussed previously. It should be noted that the conditions
considered in this anslysis are somewhat different from those shown

in Figure 7. The thermal input is applied to the circular disc from
“the center outward, whereas the actual telescope would have the central
portion removed. The solid disc was chosen because it should have
little effect cn the inbernal temperature distribubtion and the finite-
ness condition at the center (discussed later) readily permits evalua-
tion of consbtants necessary for the solution of the differential

equation.

) \\u—Thermal Insulation

Figure 10.- Sketch illustrating the coordinate system and
boundary conditions for debermining the temperature
digtribution in a ecircular disc.
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The general differential equation for an axisymmetric steady-state

temperature distribution in a circular disc is given below (Ref. 10):

2 2
9T, 1or, 9T _ (2h)
2 P 2
The boundary and finibteness conditions applicable to this
problem ars
T(0,§) is finite (25)
T .
— =0 insulated front surface (26}
ot
£=t
T(0,0) = A(E -  cos 222 (27}
2 2 Pt ) .
Therefore,
EE =0 (28)
dpip=pg

The finiteness condition (eq. (25)) results from physical limitations
on the temperature at the center of the dise. It was noted that the
disec was chosen instead of an annular ring because the finiteness
condition simplifies the scolution without significantly modifying the
problem. The second boundary condition (eq. (26)) has been discussed
previocusly. FEquation (28) can be shown directly from the imposed
temperature distribution given as equation (27). The equation for the

applied distribution (eq. (27)) is different from equation (5); however,



the actual thermal input is the ssme. The goveming differential
equation {eq. (2%)) can be solved by the separation of variables

technique. Assume a product solution qf the form

T(p,) = R(p)z(8)
Substituting equation (29) into eqpation (2&) and performing the
indicated differentiation yields the relation

1 %%

- d————

G

1¥R LR
R 32 B0 0P

Since the left-hand portion of the equation is independent of § and

28

(29)

(30)

the equivalent right-hand member is independent of p, bpth sides must

‘therefore be independent of § and P and may be set equal to a

constant -KE.

2
,Z!._BR+_].__B_§__7\2
R 502 RO op

1 3%z -

=== A

2y

Equation (31) is a Bessels equation.

8, Bessels funchion of the second kind of order zevo.

(31)

(32)

The solution to this egquation is

Equation (32) is

an ordinary linear differential equation whose solutlon may be obtained

using gperator techniques.

in equations (33) and (34), respectively.

The solutions to bth equations are given
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R = C;J,(M0) + C¥ (Mo) (33)
A ~AL (34 )

The temperature may now be determined from the product of equa-

tions (33) and (34).
T = R(P)Z(5) = [0 d, () + cor, ()]0 A a, e'ké] (35)

The congtants will be determined by jmpesing the boundary and finiteness
conditions. The first condition requires that Cp = O because the
Yimit Yo(lp)‘—aw. Redefining and combining constants, the btemperature

p =0
may be expressed as

o= [%l e + Cy e"Ké]Jb(WD) (36)

Partial differentiation of equation (36) with respect to § and
imposing the boundary condition of eguation (26) yields the following
relation between constants €y and C, where t denotes the mirror

‘thickness.

(37)

Therefore,

MM equ] (38)

T= can(xp)[%
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The separabtion constant A may be defined by the fourth boundary

condition given in equation (28).

S . N-2h | A
5 - = cthi(kpﬁ)[% + e J 0 (39)

The only way this equation may be satisfied without having a trivial

solution is for
A (M) =0 (40)

which yields the following first four values for A:

A =0 h
A = 38317
1 p_b
& (h1)
7.0156
7\2 =
Py
A = 10.173
Py )

The general golution of the equation must involve the sum over all A

and may be written as

T =2C, + Z C,J5 (Mp)[e_)\ng-QRn‘t + e;)\ng:r (h2)

n=1.

The above eguation specifies the interior temperature distribution of a
flat circular disc with the front surface insulated against heat losses.

The relation is complete except for determining the constant ¢ which
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may be defined using the imposed temperature distribution. By examining

the distribution over the interval from 0 to p " and noting the

orthogonality relation, the congtants can be determined from equations

defined in Reference 11. From the reference, the constants are

1 [Py
¢, = _..gpt fo pT(p,0)dp (%3)
1 Py ,
C, = ~ N fo pT(0,0)J, (A0 )dP (b )

B, = L v b[Jo(?\np )_’}2 dp (45)

where n = 1,2,3,k,...,0.

Substituting A(% - % cos %"ﬁ) for T(p,0) into the equation
&

for Cg, that constant can be found to be

6 = (16)

Performing the same substitution, C, may be found to be

A f"t ( 21(9)
Q. = - plecos —\J (A _p)ap (7)
il - (1 + e-gknt) o Py, o' n

3

where B, 1s given in Reference 1l as

p,” 2
By = (3,03 1] (:8)
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Therefore, substituting C, into equation (42) and B, into equa-
tion (47), we have

o

r=2y ) o O [he(E2) 4 Mt ] (:9)

n=1

¢, = A 5 fptp E:os E(PZ]JO(MD)@ (50)
2 -27\nt] o
Pt I:Jo(}‘np‘t)-q-| [-l e

The integral in equation (50) for C, canot be evaluated directly
but must be found graphically or numerically for each value of '/\n
A computer program to evaluate both equations (49) and (50) was written
in the Fortran 2.3 programing language and is included in Appendix A.
The Gauss gquatrature method was used to evaluate the integral in
equation (50). The computer program was utilized to determine the
difference between the gpplied back surface temperature and the tempera-
ture of the interior as a function of radius. The firgt 20 temms in
the series of equation (U49) were used.

The results of these calculations for a unit amplitude indicate
that the maximm temperature difference is 0.016° and occurs along the

axis of the dise. The temperature difference as a function of radius

for £ =0.5 and ¢ = 1.0 is shown in Figure 11. It should be noted
that the maximom tempersture difference does not occur at the same

location as the maximum thermal input.
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Figure 11.~ Temperature difference through a circular disc as a
function of radius.
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CHAPTER IV
THERMAL INFLUENCE CORFFICIENTS

.Eaxaboioid of Revolution

The distortion inflluence coefficlents relating the thermal input
and the distortion at the control points will now be determined. Several
techniques for determining these coefficients are available. One method
which has been employed for the force active optics system is the finite
element technique (Ref. 12). This technigue consists of dividing the
mirror into small interconnechted elemencs of finite size. The deforma-
tions of the mirvor are determined at the points of connection called
nodes. The method used in the present investigation is the finite
difference technique in which the governing differential equations are
solved by approximeting the derivatives by finite differences between
nodes. Either technicue may be used to determine the deflecticn
influence coefficients. Once the deflection influence coefficients
(cij in eg. (1)) have been evaluated, a flexibility matrix for the
control points can be formilated. The amplitude of the thermal inputs
necessary to correct mirror distortions can be expressed by inverting
the flexibility matrix.

The equations governing the linear behavior of thin shells of
revolution are well known and may be found in References 13 and 1k.
The basic equations will be shown here to clarify this analysis. The
mirror was considered to be Ffabricated from a homogeneous and isotropic

material and only shatic symmetrical distortions are of interest. The

3
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geometyy and coordinate system for a paraboloidal shell are shown in
Figure 12. Any point in the shell may be located by specifying its
coordinates (£,6,{). The origin and positive direction of the coordinates
are indicated on the figure. The meridional coordinate is denoted as &,
the circumferential coordinate as &, and the normal to the tangent plane

is indicated as . The neutral surface is chosen so that

fC.E at = o (51)

where the integration is through the thickness. This permits a variation
in the modulus due to temperature changes to be considered. The modulus
of the beryliium used in this analysis was considered to be constant;
therefore, the neutral surface will be the middle surface of the sghell.
The principal radii of curvature Rg and Rg are written In terms of P

and £ as

P
_{de
+ (ag)
NERS
- (dg)
ag?

These relationships can be defined nsing the usual parabolic relation-

Ry = (52)

1l

R§=

ship bebween the radial and axial coocrdinates.

0% = Lty (54)



Figure 12.- Paraboloidal surface geometry and coordinate system.

9
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Utilizing the definition for the length of a differential element

a = [do® + ay? (55)
we can obtain

ae _ 1l

T (56)

from which the radii of curvabture can be shown to be

4g2 + 2 (57)

Ry = (173;15) x (412 + 92)3/ z (58)

A shell element indicating the positive directions of the membrane
forces per uwnit length, transverse forces per unit length, and loading
per vnit area is shown in Figure 13(2), The moments per unit length
are given in Figure 13(b) and the positive directions of displacement
and rotation are shown in Figure 1%. The equilibrium equations for any

isotropic shell of revolution loaded axisymmetrically are shown below

(Ref. 15).

apN oM
E 3P 3
'Neé— R;?'Mey)q—pqg

3 {dpMg 3 Ng W
'gg-—s—— 95--9—-+§-ev +pg =0

(59)
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2

(a) Stress resultants and loads. (b) Moment resultants.

Figure 15.- Shell element with stress resultants, stress
moments, and loads applied in the positive sense.

g

Figure 14%.- Shell element with displacements and rotation
indlcabed in the positive sense.



The transverse shear forces have been eliminated by using the moment
equilibrium equations.

The displacements and rotation of the midplane surface are

yelated by
P, = = ﬁ + .1.15.
ot Rg

dug )
€ ———— + —p———
&% R
Ut op W >
BTTEER
g -

The distortions due to bending are given by

X a(bg
T
. )
£ dp
Ky & —— e
" o

-

Neglecting the effects of stresses normal to the shell and
assuming surface normals to the neutral surface remain normal after

deformation, the stress-strain relations are given by the following

equations:
0‘§ Vg h
= 6
€ + C,Kg = — + al
Og = V0O,
-0 ¢
&g + Ky = - + qT

39

(60)

(61)

(62)

(63)
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The stress-shrain relabions along with the definition of the stress and

moment resulbants

v, = [ q a = [t at
Ne=fcred§ M9=f§ced§

and the relation

fﬁEd§=o

vield the following relations:

NgnvN9+fEde§

e =
fEdC
ee:me—vmg +fFa‘I'd§
fEdé
Mg - WM, +f§EaT ag
K =
féeEdQ
Ke=Me- v +f§EmT ag

(@)

(51)

(65)
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Equetions (59) - (62) and (65) constitute a set of 11 equations relating
11 independent variables. By combining these equations, a set of three
second-order differential equations in terms of meridional and axial

displacements (up end w) and meridional moment resultant (Mg) can be
3 £

obtained.
The three second-order differential equations arelsubject ‘o

restraints applied along the boundary of the shell. The boundary

3 R +
conditions and mirror support system were discussed previous and are
' P

2

shown in Figure 5. The periphery of the shell will not Support a
]

¥

moment Mg due to the hinge. The sum of forces in the radial direction
equals zero, as do the axial displacements. The positive direction of
forces and displacements at the ou‘ter;bound;a,xy are shown inFigurel5(a).

The equations used in describing this boundary condition fa.re as follows:

M§=O ! h
W cos @ - u, sin ¢ = 0 > (65)
Q‘E sinCp+1\T§ cos @ =0

S

The central cutout portion of the mirror was unrestrained.
Therefore, no resulbtant forces or moments can be accommodabed at this
boundary. The positive direction of forces and displacements ab the
inner boundary are shown in Figure 15(b). The equations used to

describe this boundary condition are as follows:



a.

Outer boundary b. ZImner boundary

Figure 15.- Sketch illustrating the positive direction of the forces
and displacements at the boundary.

o
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Mg = 0
Ng = 0 (67)
Q =0

As noted previously, diffraction~limited operation of a telescope mirror
requives that axial distortions of the primary mirror be kept within a
tolerance limit of 2 microinches, The relation between axial distor-
tions and the disbtortions along the shell meridian and nowmal To the
shell méridian may be seen in Figure 16. ‘These distorbions are related

by the eguabtion
& =wecos 9 ~u sin@ (68)

Therefore, the axial distortion at any point is directly related by the

cocrdinates of the point and the daformation of the shell J.:neridian. One
finite difference solution for the linear behavior. of shells of r’evol;u-—

tion has been programed by Schaeffer for the q;gital computer and isﬂ :

presented in Reference 16. Using this program, a digita?l coglpl}ter will

calculate stress and moment resultants and displacements for thermal

' ¥ !
and force loading varying along the meridisn of the -shell.

Distributed Thermal Inpubs-
An analytical model of the telescope mirror was developed using
the finite diffevence solution of the shells equations from Reference 16.

Utiliging this analysis, the distortions due to the ;a.pplication of a '

unit thermal input at the control point of interest was debermined.
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Figure 16.~ Sketch showing axial shell distortion.

Thermal inputs at all other control points were zero., This is shown

below in equation foym.

— N
Bp = co1Ty + cpols + 023'33 e os eopTy
85( = C51Tl + OZJETE + 053T5 + . . . Qﬁrn'l'n > (l)

T T, + ¢ v v ¢ T

2+°n33 mn

Cno
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Assume the control point of interest is number 1. If we assign T, an

amplitude A =1 and T2JT3:"':Tn an smplitude A = 0, then

8. = i

5 = e

5. = ¢

> } (69)
Sn = Cpy

/
By applying a unit amplitude at each control point separately, each
column of coefficients may be determined.

The analytical model used in this analysis has the capabllity of
accommodating 502 control points along the shell meridian. A large
number of control points is desirable because 1t increases the accuracy
of the active optics system. However, since the flexibility matbrix
must be inverted in order %o debermine the stiffness matrix, the mumber
of stations may be limited by the inversion routine. The inversion of
large matrices is time consuming even for the best digital compubers
available. The accuracy of the inversion is limited by the behavior
of the original matrix. One way to avoid this is to allow the thermal
input to span several points in the finite difference analysis. The
midpoint of the thermal input may be selected as .theﬁ control point for
correction by the figure error sensor in the active control system.

The thermal inputs necessaxy for the correction of any given distortion
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is therefore the amplitude (A) of the same distribution used to deter-
mine the flexibility matrix.

Structures subjected to concentrated force loading have symmetri-
cal flexibility matrices. DLinear Gransformations with real symmetric
matrices deminate the study of deformations of elastic media. Therefore,
it is of inberest to examine the flexibility matrix formed by distributed
thermal inputs. Mabrices generated by concenbrated force loads are
symmetrical because of the reciprocity theorem. This theorem states
that for linear structures a force Fs acting through a displacement
caused by force Fj does the same amount of work as force Fj acting

through a displacement caunsed by force F;- This can be expressed in

equation form as
F;(cgsFs) = Fyley5Fy) (70)
and, therefore,
iy = i (T:!-)

Bince the coefficients of the flexibility matrix form a symmetrical
array, the inverse or stiffness mabtrix must also be symmetrical. ‘The'
basis of the reciprocity theorem lies in the fact that the total energy
sbtored in an elastic system is independent of the order in which the
loads are gpplied. This is also true of elastic syshems deformed by
thermal inputs. Therefore, the systems are analogous a.ndi for concen-
trated thermal loads the flexibility and stiffness mabrices are

symmetric.
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For distributed thermal inpubs, howe,:ver, the flexibility mabrix
may not be symmetric. In order to examine the flexibility matrix fox%uied
by distributed loads, we will now examine the case for a simply supported
beam. A continuous beam with concentrated loads applied along three
control points is shown in Figure 17(a). The deformation at any station

along the beam may be determined from the following equations:

) ~ - Y
81 ¢11 Cyo c15 S RERRE Cn ‘Tl
82 CZL 022 025 02l[_ o e 0211 T2
4 85 > _ C51 032 035 CBL[_ as s v 0511 < TB > (72)
ﬁn an_ Cn2 an Cn}_[_ R Cnn Tn
. W, L o, . -

If only the deformations under the loads are of interest, the equation

can be simplified to (since Tl’Tj’Tll-’ etec. = 0)

2 Cop  Cp5  Cpg||To
55 = 052 055 058 T5 (75 )
g cgs  ©g5 cgg||T8

T

The application of a distributed load of unit amplitude on the
seme beam wide enough to cover several stations is shown in Figure 17(Db).

The deformations at control points 2, 5, and 8 due to the distributed

load at stations 1, 2, and 3 are
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a. Beam with concentrated loads
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¢

4 1
[ BL r1r 11 :@rn1r v 1T Fr { I
2 4 6 8 10 12 n-2 Eg@%r

b. Beam with distributed loads

Figure 17.- Sketch illustrating elastic beam with applied loading.
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8s = c2l(K) + epoll) + CEB(K)
85 = cmp (K) + e5p(l) + e53(K) (7k)
bg = c81(K) + 082(1) + CBB(K)

where X 1is & constant less than 1. If a distribubted load of this
form is aluvays spplied, the amplitude of the distribution may be denoted

as T. If the deformations at points 2, 5, and 8 are the only control

points of ianterest; s new equation may be written as follows:

82\ ‘[cal(K) + eps(1) + epz(K)| [ ][ :]ﬂ /E;
085 ) =| [es1(®) + esp(1) + es3(x)] [ JC JK T5p(r5)
LBSJ [CSl(K) + (382(.1) + 083(1{)] [ ] [ ] \6-8}

The second column of coefficients for control point 5 due to the same

load applied at stations 4, 5, and 6 is shown in the following eguation:

F’S; ‘.[C?_-L(K) + Cea(l) + GEB(K)] [Ce!l_(K) + 025(1) + C26(K)J [ ]'7 /,52'\
{ :55> = Ec5l(K) -1—052(1) + 053(K)] E:51[_(K) + e (1) +c56(K)] E :] < 55 >
%8 [egy (K) +ega(L) +egs (k)] [ogy, () + cg5(1) +egg(K)] [ ]_‘ ?8)

(75)

The above equation indicates that the matrix of coefficients for the

distributed load is not symmecrical. For example,

ey (K) + es55(1) + e535(K) # e (K) + cp5(1) + epg(K) (76)
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becsuse even though
052 = 025 (7?)
the remgining cosfficients

cg + e53 # cgly + Cpp (76)

are not necessarily equal.



CHAPTER V
RESULTS AWD DISCUSSION

The thermal influence coefficients for the primery telescope
mirroy were determined using the computerized finite difference solution
of the elastic shells equations. Ten control points equally spaced
along the meridian of the primaxy telescope mirror were selected. The
thermal iaputs were considered to be applied by sources with controlled
temperature distributions located on the back suriace of the mirror.
The thermal gradients in the interior of the mirror were neglected
since they were shown previously to be quite smell.

The axial distortion due 1o the appiication of each symmebrical
thermal input is shown in Figure 18. These curves illustrate the dis-
tortion due to the application of a thermal input of unit amplitude at
each control point. The locabtion of each contrxol point is indicsted
on the figure. The distortions are a meximm at the inner unrestralned
boundary (except for control point 7) and decrease uniformly to zero
at the axially restrained outer boundary. Maximum distortion is
obtained by thermsl inputs located at control points 4 and 10. Tt was
noted previously that mirror distortions must be maintained to within
2 microinches in order for the telescope to operate at the diffraction
limit. The distortion created by a unit thermal input at control
point 10 is over 300 times the allowable level. The large change in
distortion bebtween control points 9 and 10 as 9pposed to the relatively

small change for points 3 end U indicates that this arrangement of

51
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a. Thermal input applied individually at control points 1 - 4,

Figure 18.~ Axial distortion due to applied thermal input.
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control points may not be an optimum selection. For a thermal active
optics control system, more control points at the outer region of the
mirror should be investigated. Therefors, an examination of a control
system based on equal anmuler areas as opposed to equal meridional
increments may be desirable.

The deflection influence coefficients were determined from the
digital data used to plot the curves shown in Figure 18. By examining
the distortion at all control points due bq a wnit thermal input at each
control point, each column of coefficients in the flexibility matrix was
determined. These coefficients are shown in Table ITI. This matrix was
inverted using the Jordan method which has been programed for the
digital computer. The Jordan method is a library subroutine known as
MATINV and is available in the Langley program library. The program
written to ubilize this subrovtine is listed in AppendixlB. The stiff-
ness matrix resulting from this inversion of the flexibility matrix is
given in Table IV. These coefficlients give the amplitude of the thermal
input necessary to correct a given set of axial distortions at the
control points. In addition to the amplitude of the thermal input, we
can also determine tﬂe accuracy of the amplitude of the thermal input
necessary for diffraction-limited operation. This accuracy is given by
the product of the minimim contribution (minimuﬁ coefficients Kﬁj) and
the maximum tolerable error. An examination of the stiffness matrix
indicates that the minimum contribution is 9.19659 X 1072, The maximum
tolerable error for diffraction-limited operation was noted previously

to be 2 microinches. Therefore, the amplitude of the thermal input must
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be controlled to less than

+D 6

A = 9.19659 X 10 ~ 1.8 x 107 °R

1

. 2 x 10

In order to illustrate the use of the thermsl active optics
system, the distortions due to an acceleration-type loading were
examined. The axial distortion due to a 0.0lg static ad¢celeration load
was determined using the computer program of Reference 16. The axial '
distortion as & function of radius for this loading is shown in
Figure 19. Also indicated on the figure is a sketch indicating the
shell loading and positive direction of the distortion (8). For this
relatively light loading, the axial distortion exceeds the tolerance
limit indicated on the figure by a factor of aboubt 25. In order %o
correct this distortion, it will be necessary to introduce a distortion
of equal magnitude and opposite sign by use of thermal inputs. The
axplitode of the corrective Tthermal distortions were determined from
the stiffness matrix of TPable IV. These amplitudes were rounded to the
nearest 0.001° R. To check the thermal inputs, the axial distortion
due to both the acceleration load and the corrective thermal inputs
were determined using the computer analysis of Reference 16. The
combined distortion is shown in Figure 20. Also indicated on the figure
is the amplitude of the thermal input for each control point. The
maximum residual distortion is well within the tolerance limit of
2 microinches. It is significant that only very low amplitude inpubs

are necessary to correct the distortions which exceed the tolerance
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Figure 19.- Axial distortion of beryllium telescope mirror due to
0.0lgeacceleration type load.
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to 0.0lg acceleration type load and corrective thermal Inputs.

Lg



1imit by such a large amount. The feasibility of a thermal active
optics system has thus been demonstrated for a cosine~type thermal

input.
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CHAPTER VI
CONCLUSIONS

A thermal active cptics technique to correct distortions in a
thin telescope mirror has been develcoped. This technique utilizes
measured distortions to determine the amplitude and location of thermal
inputs necessary for correction of surface errors.

The use of this technigque has been demonstrated analytically by
using a beryllium paraboloid. This mirror had 10 equally spaced cone
trol points actuated by symmetrical thermal inputs. The stiffness
matrix indicates that for this particular configuration the amplitude
of the thermal inputs must be controlled to within 1.8 X lO"3 degrees.
Distortions due to an acceleration-type loading were examined. These
distortions exceeded the allowable tolerance by a factor of about 25.
Even though these distortions were quite large, they were corrected
to well within the required accuracy. Axial temperature gradients
resulting from the application of the thermel inputs to the rear

surface of the mirror were shown to be quite small.
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TABLE I.- PROPERTIES OF BERYLLIUM

Property Value
Modulus of elasticity (E) 40 x 108 psi
Poisson's ratio (v) 10.08

Coefficient of thermal expension (a)

6.9 x 1076 og-1

Thermal conductivity

92 Btu/ft-hr-°R

Density

0.066 1b/in
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TABLE IT.- CALCULATED VAIUES OF THE VIEW FACTOR AND

HEAT FLUX AT BACH CONTROL POINT

Control|Radius, 0| parer [Heat £lws, Q/A

point (in. ) Fup ? (Btu/hr,in?)
1 6 0.0%3%66 |l.h229 x 1072
2 11.L 0.0%38: 11.4ok3 x 1073

16.8 0.03400 [1.4250 x 102

02,0 0.03413 |1.h257 x 10=3

27.6 0.0342k |1.ho6h x 1072

33,0 0.03433 li.h26h x 1073

38.L 0.034h0 {1.h271l x 1079
43.8 0.0344) 1.h271 x 1072

O o~ (52N RN £ W

49.2 0.034h7 14278 x 1073
10 5k, 0 0.0%u48 11.4278 x 1073




TABLE TIL.~ FLEXTBILITY MATRTX [C ]
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N L ol B L

5;39400DES00 1.B2BR00E*0] 2.425100E20) 2.723200E+01
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J:

154340009E~01 2,233000E0) 3.102000E500 3.731009E+00
E -

2:956400E091 2,105100E+01
2.876700E+01 2,095505E+01
2,768500E+01 2,0759CG0E+01
2.607200E+01 2,029000E+01
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1.625600E+01 1,4567005+0)
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S.181000E+00 6,890000E~01=6.744000E+00~]1,T6BB00E*G]

2+606000E+00 4,050000E«01~3.26C000E+00-8.747000E+00)
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TABLE IV.- STIFFNESS MATRIX [K ]
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APPENDIX A

DIGITAT, COMPUTER. PROGRAM TO GENERATE THE STEADY-STATE

TEMPERATURE DISTRIBUTION TN A CIRCULAR DISC

JOB. A0301, 1sMARVIN RHODES =~ +RD0212+114852011

RUN(S) ’ T
SETFINDF,
LGB, .

PROGRAM: MDR (INPUT» OUTPUT » TAPESZINPUT,, TAPESZOUTPUT) ™~ 7

C° THIS PROGRAN WILL GENERATE THE STEADY STATE TEHPERATURE DISTRIBUTION
C IN A DISC OF THICKNESS T
EXTERNAL FUNC
COMMON XLAM{20)s1

DIMENSION D(l)vFOFX(l)’ANSJN(400):ANSJ(#DO)’ANS(400)’F(20)
€ GENERATES 3(N) CPEFFICIENYS DESIGNATED AS F(N)
PRINT 3 . - R
3 FORMAT { # COEFE. NUMBER LAMBDA BESSELS FUNCTION COEF
1F. VALJE®)
READ 1+ AsBsN
1 FORMAT {(2F10.5+16)
DO 7 I=ls+20
10 READ Z2+XLAM(I)
2 FORMAT (E16.8)
CALL MBGAUSS (A+BsNsDsFUNCFOFXs1)
CALL BSSLS(XLAM(I)+ANSJN+0»IERR)
C=ANSUNI Y Y #ANSUN(])
Ezl 0+EXP(=XLAM(1}/25.)
F(I)==2.#0({1}/(CPE)
PRINT 49I+XLAMII}2ANSUN(L) R (]}
4 FORMAT ( 5X|i3§3XQE16.8,3X’El6 8’3X’E16 8)
7 CONTINUE .
C GENERATES TEMPERATURE AT 0 05 RADIAL INCREMENTS FOR EACH VALUE qgﬂgglg-n__ _
30 IF(EQF«+5)70+20
20 READ 15s7
15 FORMAT(Fl10,.5)
PRINT 17,2
17 FORMAT(3H Z=+F10.5¢2HXL)
PRINT 18
18 FORMAT(6X96HRADEUS912X9llHTEHPERATUREQ/)
R=0.0
40 T=1.0
DO S0 I=1+20
G=XLAM{I)#R
CALL BSSLS(GsANS+0+IER}
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60

70

HEEXP{XLAK(L) 2 (Zv23 /50 ) +EXP(~XLAMCI)#Z/50,0}
HH=F {1} #ANS(]) *H

T=T+HH

CONTINUE

PRINT BOsRsT

R=R+0.05

IF(R4LT+1.05) GO TO 40

GO YO 30

sSTOP

END

SUBROUTINE FUNC{RsFOFX)
DIMENSION FORX(1}+ANSJL400)
COMMON XLAM(Z20)+1
A=COS(6.283185307=R)
B=XLAM(I¥#R

CALL BSSLS{BsANSJ+0+IERR}
FOFX(1)=ReEARANSJI{]1)

RETURN

END
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APPENDIX B

DIGITAL COMPUTER PROGRAM TO INVERT THE FLEXTBILITY MATRIX C

TO OBTAIN THE STIFFNESS MATRIX K

JOBs1s0400s 45000, _  A0301» 1y MARVIN RHODES » RDO212y 1148,2011
RUN(S)
SETINDFe | . . i e e e e _—
AGB. ... © e e m e . e
_~NOMAPw e o ——
. . PROBRAM. MAT_ —LINPUT,OUTPUT s TARPESSINPUT+TAREGZOUTRUTY —
~C--FHIS PROGRAM WILL—INVERT-A-MATRIX-CALLED-A-BY--SUBROUTINE_MATINV.—-INRUT. _DATA-
£ 3S_NR(NUMBER_OF ROWS). FOLLOWED BY MATRIX.A.DATA READ_BY ROWS. INSUT AND_. .
.C_AUTPUT FORMAT STATEMENES (2.AND. & .)..MUSY. BE. CHANGED FOR._FACH MATRIX..
.. . DIMENSION. A(100+1007+B(10051),IPIVOY{300)sINDEX(100,2)
cmme ~ ~ RIMENSTON. DELYALI02,T (10}
- READ 1sNR - e
1 FORMAT (13)
- —_ READ 29 ((A{IsL02d=lsNR)SIZ1SNRY . . .
2 FORMAT((10FB.5)}
PRINT 3
3 FORMAT {//40Xs#0ORIGINAL MATRIX#///).
PRINT 49 ((A(IsJ)9J=1sNR)2I=19NR).
. CALL MATENV(AsNRsBs0sDETERMs IPIVOT s INDEXs1005 ISCALE)Y
——- .. PRINI %
5 FORMAT (/£40Xs# INVERSE OF MATRIX A#///)
PRINT 4s€4A{TsJ}+J=1sNR) s I=13NR)
4 FORMAT ((10E13.6+//))
. DET=10.%# (100#ISCALE) #DETERM
. PRINT 6+ DET
6 FORMAT (///®VALUE OF DETERMINATE IS #E16.8)
REAB 7+ (DELTA(I)»I=1,10)
7 FORMAT{10FB,.8)
Do 9 1=1410
T(IX=0.0
DO 8 J=1,10
8 T(I)GA(I'JDGEELTAtJ}oT(I)
PRINT10+ 3T (E)
10 FORMAT(® TEMP#,12s8x0,E1648)
9 CONTINUE
STOP
END
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