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Computer Software Management

and Information Center

The documentation and program developed for the advanced structural

geometry studies will be made available to the public through COSMIC.

COSMIC (Computer Software Management and Information Center) was

established early in 1966 at the University of Georgia to collect and

disseminate to the public computer software developed by government

agencies Since that time thousands of computer programs in all areas

of aerospace engineering, mathematics_ business, and industry., have been

distributed to requesters throughout the United States.

The Technology Utilization Division of NASA, designed to enlarge the

return on the public investment in aeronautical and space activities,

was the first government agency to participate formally. In July

1968 the Atomic Energy Commission and in November 1968 the Department

of Defense joined in the COSMIC endeavor. With the addition of these

two major agencies, the original concept of making tax-paid develop-

ments available to the public was expanded to make COSMIC a transfer

point between and within government agencies as well.

Requests for documentation or information concerning this program

should be directed to:
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The University of Georgia

Barrow Hall.

Athens_ Georgia 30601

REF: HqN-10677
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2.1 INTRODUCTION

An important area of research in structural design

concepts for future aerospace applications is that of

expandable structures. There are distinct and obvious

advantages in the capability of developing a structural

configuration that may be packaged in a small container

for launch, and expanded to a predetermined size and

shape. This section of the report shall propose a new

and unique concept of a structural system capable of being

packaged in a small compact area, and when desired, be

deployed into a final, larger structural system.

A very broad meaning is implied in the term "expand-

able structure". It includes any structure that geometri-

cally transforms: unidirectionally or omnidirectionally.

In the area of aerospace applications generally three

classifications of expandable structures are given:*

Inflated, pressure-stablized structures:

Inflated, rigidized structures:

Mechanically expanded, framework-stabilized

structures.

Attention herein will be qiven to the mechanically

expanded, framework-stabilized structures.

*Aerospace Expandable Structures I.
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The mechanically expanded or

up of rigid components compacted

upon signal, rearrange themselves

surface area and enclosed volume.

rigid system "is made

into a small packaqe which,

to provide for greater

"* Five basic concepts have

rigid expandable structures:

in regards to application

been considered as applicable to

(one is relatively new and little

has been done.**)

I. Telescoping Concept Fiqure 2.1

2. Folding Concept Figure 2.2

3. Fan Concept Figure 2.3

4. Umbrella Concept Fiqure 2.4

5. Variable Geometry Concept Figure 2,5

A sixth concept, "The Geometric Transformation Concept"

is proposed as an expandable system and is reported herein.

The geometrical transformation concept is divided into two

types; the tessellation transformation concept a two-space

expansion; and the polyhedral transformation concept a three-

space expansion. Figure 2.6.

*Wright, F. N. 1

**Lebovits, M. et al ; 1
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I

1 Telescoping Concept:

Figure 2.1

The telescoping mechanism consist of a series of rigid

components that translate on a common axis sliding in and
out of each other, thus permitting unidirectional expansion

in packing.

2 Folding Concept:

Figure 2.2

The folding mechanisms consist of a series of rigid
bars and/or panels which are hinged together at the ends or
sides. They are expanded by a rotation about an axis.

II-4



3 Fan Concept:

Figure 2.3

The fan concept entails rotation of rigid components
in common planes about a central point.

I I

4 Umbrella Concept:

Figure 2.4

The umbrella concept utilizes rigid component rotation

in mutually perpendicular planes about a common point.

II- 5
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5 Variable Geometry Concept:

Figure 2.5

The variable geometry concept utilizes frame arches and

a base ring. The arches are attached about the base ring

and by means of hinging and actuating, the arches can be ro-

tated to assume the desired configuration. The arches lie

in one plane in the compressed state; in the deployed state
they are rotated to assume a three-dimensional structural
framework.

Tessellation Transformation:

Polyhedral Transformation:

6 Peometric Transformation Concept

Figure 2.6
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2.2 TESSELLATION TRANSFORMATION CONCEPT

Crystallographers have long concerned themselves with

the study of orderliness occurring in natural crystal struc-

tures. One such area is that of "displacive transformation".*

Figure 2.7 illustrates this kind of transformation.

Displacive Transformation

Figure 2.7

It is possible in some cases to effect a trans-
formation of the second coordination without
having to disrupt the first coordination bond.
Thus atoms of one structure may be displaced in
such a way as to maintain the same nearest-
neighbor relationships while the structure is dis-
torted into a different secondary coordination.
Such transformations may therefore be called
displacive or distortional transformations. This
transformation is especially easy, and indeed
quite common, in open structures having at least
one low coordination. These structures can be
regarded as space networks, and the transformation
involves a systematic distribution of the net by
bending or straiqhtening the primary bonds with-
out disruptinq the linkage of the net.**

* Buerger 1.

** Veroma and Krishna 1.
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This section of the report shall discuss the expansion

of tessellation forms by means of a transformation similar

to the displacive transformation. The discussion shall be

limited to the regular and semi-regular tessellation forms,

however, by no means is the concept of expansion limited

to these forms as shall be illustrated later in the report.

A plane or regular tessellation is an infinite set of

polygons fitting together to cover the whole plane just

once, so that every side of each polygon belongs to one

other polygon. It is thus a map with infinitely many

faces.* Table 2.1 gives the rules for regular tessellation

of which there are only three. Figure 2.8.

The symbols used to describe the tessellation forms

(regular and semi-regular) use the modified "Schl_fli symbol"

which may be read as per example ** 44• means there are

four squares at each vertex; 34.6 means four triangles

and one hexagon at each vertex. Table 2.2.

Table 2.1

Rules For Regular Tessellations

A regular tessellation must contain only one
kind of plane polygon, that is equilateral,
equiangular, and rectilinear.

Every side of each polygon must belong also
to one other polygon with every vertex of
each polygon belonging also to one other
polygon vertex•

*Coxeter, H. S. M. I.

**Cundy and Rollett I.
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Each tessellation is an infinite set of polygons
fitted together to cover the whole plane just once
so that a straight line drawn at random on the
tessellation will pass the boundaries of any
polygon no more than twice.

<

3 6 4 4

Regular Tessellations

Figure 2.8

Table 2.2

Notations of the Regular &
Semi-Regular Tessellations

6 3

Notation
(Schl_fli
Symbol )

No. of
polygons
around
each
vertex

Type of Polygon in
Tessellation and No. of
each type face around vertex

3 4 6 8 12

3 6

44

63

33.42

32.4.4.4

_ _

- 4 -

- - 3

3 2 -

3 2 -
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A semi-regular tessellation is a set of regular

polygons of two or more kinds so arranged that every vertex

is congruent to every other vertex. Table 2.3 gives the

rules for the semi-regular tessellation forms of which

• , 34there are eight. Figure 2 9 Two of these .6 and

2
3 .4.3.4 has two forms which are enantiomorphic; all the

others are symmetrical.

Table 2.3

Rules for the Semi-Regular Tessellations

A semi-regular tessellation must contain
only plane polygons; more than one kind
may be employed in a single map.

They must also be equilateral, equiangular,
and rectilinear•

There must be the same number and kind of
polygons joined in the same order (or its
enantiomorphic) at each of the vertices
of the map with every side of each polyaon
belonging also to one other polygon.

Each tessellation is an infinite set of
polygons fitted together to cover the
whole plane just once so that a straight line
drawn at random on the tessellation will pass
the boundaries of any polygon no more than
twice.

II

IIII

IIII
3 3" 4 2

Semi-Regular Tessal lations
Figure 2.9
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34.6

3.4.6.4

f

/

_<

I

/

I

4
3 .6

4.6.12

XXxX>

/

3.6.3.6

3.12 2

4.82 32 .4.3.4 32.4.3.4

Semi-Regular Tessellations

Figure 2,9 (cont)
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Each of these tessellations are involved in trans-

formations similar to the displacive transformation.* The

basic geometric expansion incorporates the use of two

primitive transformations in a simultaneous operation:

Translation (in a certain direction, through a certain

distance) and rotation (about a certain axis, through

a certain anqle.** FiQure 2.10

Rotation

,q-- d

:5 i,.m m B

I

I
I
I
I
I
I
I..

.__ __P_'
I
I
I
I
I
I

_.if

Translation

Rotation & Translation

Figure 2.10

There are three basic types o, transformations of

this nature that may be accomplished with the tessella-

tion nets: face rotation-translation transformation;

element rotation-translation transformation; vertice

rotation-translation transformation. Figure 2.11.

*There are many other tessellation forms of a higher
order than the regular and semi-regular forms that will
undergo this type of transformation.

*_edenov and Parkhomenko: 1
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4 4 324.3.4 44

>

>

>

44 32.4.3.4 44 4..82

44

w

"2 "4
4.6.6

The Three Geometric Transformations

of Regular Tessellation Forms

Figure 2.11
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2.3 Transformations of Tessellations

Each of the three forms of the transformations may

go through a rotation of 360° in which the tessellation

form cycles from a closed state to an open state to an

infold state and back to a closed state. Figure 2.12.

360° Transformation of a
36 Tessellation

Figure 2.12

II-19
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360 o Transformation of a
36 Tessellation

Figure 2.12 (cont.)
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All of the regular and semi-regular tessellation forms

and many higher forms have been studied. However, only

the regular forms shall be presented here. The following

illustrations show the transformation of the three regular

tessellation nets using the three methods of expansion.

Note the duality existing in the various stages of the trans-

formation. This duality may act as space fillers during

various stages of the transformation. Table 2.4, Figure 2.13.

Table 2.4

Transformation Stages

Closed State Intermediate State Open State

l 44 32"4"3"4 4.4

2 44 32"4"3"4 44 4"82

3 44 4"62"64 4"62"64

4 36 36 3.6.3.6

5 36 34"6 3"122

6 36 36 36 36 "3"4"32"4

7 6 3 3.6.3.6

8 6 3 34"6 63

9 63 36"6"34 63
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Face Transformation

Edge Transformation

Vertex Transformation

Transformation of Tessellations

Figure 2.13
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Face Transformation

X
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Edge Transformation

J _A>

Vertex Trans

Transformation of

Figure 2.13

<

>
;ormation

Tessellations

(cont.)
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i !X-- X

X

X
X

XX>
X >

Face

<

Trans fo rmati on

__/

Edge Transformation

Vertex Transformation

Transformation of Tessellations

Figure 2.13 (cont.)

11-20



2.4 TRANSFORMATIONS OF POLYHEDRAL NETS

The transformation of polyhedral nets correlates

with the investigation of the transformation of polyhedra.*

In the investigation centered around the polyhedra, a

screw axis transformation existed relating to a three

dimensional space, (where there are three directions,

x, y, and z.) In the investigation of the polyhedral

nets only two dimensions exist (two directions x and y).

The polyhedral nets illustrated here are the regular and

quasi-regular polyhedral nets. (A net: similar to a

tessellation representing the polyhedral faces projected

upon a single plane retaining the true size and shape of

each face and sharing an edge with an adjacent face.)

See Figure 2.14

3 3 3 4 4 3 3 5

Regular and Ouasi-Regular Polyhedral Nets

Figure 2.14

*The transformation of Polyhedra is discussed later
in this part of the report.
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5 3

(3 5) 2

Regular and Ouasi-Regular Polyhedral Nets

Figure 2.14 (cont)

The polyhedral nets are not necessarily tessellations,

however, they will transform in a s4milar manner. The

net transformations are ordered in a direct relationship

to the polyhedral transformations. Table 2.5 and Figure

2.15 illustrate the transformations using the face-rota-

tion translation transformation of the regular polyhedral

nets. Also illustrated are the intermediate forms created

from the transformations which, in many cases, are the

semi-regular polyhedral nets.
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Tetrahedron

Octahedron

Hexahedron

Icosahedron

Dodecahedron

Table 2.5

Face Transformations of Polyhedra

Icosahedron

Octahedron

Hexoctahedron

Hexoctahedron

• Icosadodecahedron

Icosadodecahedron

Tetrahedron

Octahedron

Hexahedron

Icosahedron

Dodecahedron

Hexoctahedron

Icosadodecahedron

Schl_fli
F Symbol 3 4 5

4 3 3 4 - -

8 34 8 - -

6 4 3 - 6 -

20 3 s 20 - -

12 53 - - 12

14 (3.4) 2 8 6 -

32 (3,5) 2 20 - 12

zi-23



L
v

Face Transformation

Figure 2.15
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Table 2.6 and Figure 2.16 illustrate the transformations

using the edge rotation-translation transformation of the

regular polyhedral nets. Also illustrated are the inter-

mediate forms created from the transformations which again,

in many cases, form the semi-regular polyhedral nets.

Table 2.6

Edge Transformations of Polyhedral Nets

Tetrahedron

Octahedron

Hexahedron

Icosahedron

Dodecahedron

:- Icosahedron

. Snub

Snub

- Snub

> Snub

Truncated

Hexahedron _ Truncated

Hexahedron ------Truncated

Dodecahedron----Truncated

Dodecahedron----Truncated

Tetrahedron

Hexahedron

Octahedron

Dodecahedron

Icosahedron

Vertices Faces _ 3 4 5

Tetrahedron 4

Octahedron 6

Hexahedron 8

Icosahedron 12

Dodecahedron 20

Hexoctahedron 12

Icosadodecahedron 30

33 4 6 4 - -

34 8 12 8 -

43 6 12 - 6 -

3 s 20 30 20 _ -

53 12 30 - - 12

(3.4) 2 14 24 8 6 -

(3.5) 2 32 60 20 12

IT-29



Table 2.6 (cont.)

Snub

Snub

Truncated

Truncated

Truncated

Truncated

Truncated

Vertices
Hexahedron 24 34.4

Dodecahedron 60 34,5

Tetrahedron 12 3.62

Hexahedron 24 3.82

Octahedron 24 4.62

Dodecahedron 60 3.102

Icosahedron 60 5.6 _

Face Edges 3 4 5 6 8 I0
38 60 32 - - 6 - -

9 2 1 50 80 - 1 2 - - -

8 18 4 - 4 - -

14 36 8 - - - 6 -

14 36 - 6 - 8 - -

32 90 20 .... 12

32 90 - - 1 2 - 20 -
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Edge Transformation of Polyhedral Nets

Figure 2.16
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Edge Transformation of Polyhedral Nets

Figure 2.16 (cont.)
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2.5 Computer Model of

Tessellation Transformation

The computer program and plot routine was written

for the IBM 7040/7044 computer, utilizing FORTRAN IV
6 4 8

language. The program may be used for a 3 , 4 , or 6

tessellation depending upon the input data. The program

only considers a face rotation-translation transformation

with the output in the form of time duration maps based

on a constant rate of rotation.

Example of input data is given in Table 2.7. The

examples of output maps are oriented with a common vertex

as the center (0,0) around which the rotation and trans-

lation is taken. Figures 2.17-2.22.

Table 2.7

Sample Data Input Cards For TESTSH

Format Columns

13 1 -3

13 4-6

13 7-9

II I0

FIO.O 11-20

A6 21-26

Description

Minimum tessellation angle
in degrees.

Maximum tessellation angle
in degrees.

Increment from minimum
to maximum.

No. of runs in tessellation
(max. to be 3)

Length of members
(assumed 1 in)

if Move, ,, ,is placed here,
every angle will be plotted
separately

T_!-29



Table 2.7 (cont.)

Sample Input for 36

Format Co I umns Description

A6

3X

FIO.O

13

13

27-32

33-35

36 -45

46 -48

49-51

Type of tessellation
(TRI _ ,,_ -tri angle
SQUA_, , Square, HEX :_-
hexagon)

Blank

Rotation of axis clock-
wise (in degrees)

Type of Plot (l-polygon,
2-path or vertex, 3-
diagonal of polygon,
square only)

Blank

Zz-3o



6
3 -0-60 3 1

Figure 2.17

The time duration map illustrated is from a closed
position to an6open position 0°-60 ° at a 3 ° rotation interval
of a one row 3 tessellation.

3 _ - 60-120 ° 3 1

Figure 2.17 (cont.)

This continuation of the previous map illustrates
the next phase of the cycle where Pl is in the open position
at 60 ° and returns to the closed position at 120 ° with a
3 ° rotation interval of a one row 3 tessellation
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6
3 120-150 3 1

Figure 2.17 (cont.)

This continuation of the previous map illustrates
the next position of the cycle where Pl is in the closed
position at 120 ° and is at the IN p_sition at 150 ° with a
3 ° rotation interval of a one row 3 tessellation.

6
3 1 50-180 3 1

Figure 2.17 (cont.)

The final continuation of the transformation
illustrates the next position of the cycle where P1 is
in the IN position of 150 ° and is at the closed position
at 180 ° with a 3° rotation interval of a one row 3 b tessellation.
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The remaining positions of the total 360 o cycle is

illustrated through a rotation of the 0-1800 position of

the cycle about the AB axis shown in Figu,re 2.18.

z

B

l

X

/
X

y

A

/

36 0-360 5 1

Figure 2.18

The path PI takes during a 360 o transformation is
illustrated through its entire cycle, Any given vertex
will take the form of an ellipse; under special conditions
the ellipse may take the form of a circle or a straight line.
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4 4 O-45 3 1

Figure 2.19

The time duration map illustrated is from a closed
position to an open position 0o-45 ° at 3° rotation in-
tervals of a one row 4_ tessellation.

4
4 45-90 3 1

Figure 2.19 (cont.)

This continuation of the previous map illustrates the
next phase of the cycle where Pz is in the open position at
45 ° and returns to a closed position at 90 ° with a 3 °
rotation interval of a one row 44 tessellation.
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i_ ' ! _ !

44 90-135 3 1

Figure 2.19 (cont.)

This combination of the previous map illustrates the
next portion of the cycle where PI is in the closed position
at 90 ° and is in the IN position at 135 ° with a 3 ° rotation
interval of a one row 44 tessellation.

4 4 135-180 3 1

Figure 2.19 (cont.)

'illi,!,,.'!;i"j

'i,"i/!//, '

_z?,tm4___

!,,'.>i:.7;:....i:.:1:
., , . ,, ,

i
i

_ z\#\i ,a

", - \ ' \\ '1"," \' \\!il

_///'////T i /ill

_/,i / / !./ ! i / ',_i_

The final continuation of the transformation illustrates
the next portion of the cycle where B is in the IN position
at 135 ° and is at the closed position at 180 ° with a 3 °
rotation interval of a one row 4 4 tessellation.
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The remaining portions of the total 360 o cycle is

i11ustrated through a rotation of the 0-180 o portion of

the cycle about the axis AB shown in Figure 2.20.

f

44 0-360 5 1

Figure 2.20

The path P takes during a 360o transformation is
illustrated through its entire cycle. Any given vertex
will take the form of an ellipse, under special conditions
the ellipse may take the form of a circle or a straight line.

II-36



3
6 0-30 3 2

Figure 2.21

The time duration map illustrated is from a closed
position to an open position 0-30 at 3 ° rotation intervals
with Pl on a hexagon in the second row of a 6 v tessellation.

3
6 30-60 3 2

Figure 2.21 (cont.)

This continuation of the previous map illustrates the
next phase of the cycle where P1 is in the open position at
30 ° and returns to a closed position at 60 ° with a 3 ° rotation
interval of a two row 63 tessellation.
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63 60-90 3 2

Figure 2.21 (cont.)

This continuation of the previous map illustrates an
intermediate position of the cycle from 600-90 ° • The

rotation interval is 3° with a 6 tessellation of 2 rows.

\ \•\\

3
6 90-120 3 2

Figure 2.21 (cont.)

This continuation of the previous map illustrates

the IN position of the transformation of P13when it reaches
120 °, The rotation interval is 3° with a 6 tessellation

of 2 rows.
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p,

3

6 1 20-I 50 3 2

Figure 2.21 (cont.)

This continuation of the previous map illustrates
an intermediate position of the transformation of Pl at
a rotation of 150 ° . The rotation interval is 3 ° with a

3
6 tessellation of 2 rows.

i

6 3 150-180 3 2

Figure 2.21 (cont.)

This final continuation of the transformation illustrates

the closed position of P1 at a r_tation of 180 ° The
rotation interval is 3 ° with a 6 tessellation of 2 rows.
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2.6 Polyhedral Transformation Concept

The concept of polyhedral transformation can be

said to have begun with R. Buckminister Fuller's discussion

of his Energetic-Synergetic Geometry.* If spheres are closely

packed around a central sphere a polyhedron bounded by

fourteen faces is formed. This polyhedron consists of six

squares and eight triangles; Fuller describes this'polyhedron

as a Vector Equilibrium.

The polyhedron, commonly known as the Hexoctahedron or

Cuboctahedron, is literally an equilibrium of vectors. The

value of its radial vectors is exactly the same as that of

its circumferential vectors.** The length of the distance

from any of the polyhedron's center to its vertices is equal

to the length of any of its elements. For this reason an

equilibrium exists where the lines of force radiate from its

center, and bind inward around its periphery.

Fuller indicated that the removal of the center sphere

would cause a significant change in the close packing of

spheres, a 20-sided polyhedron would result-- an icosahedron.

This change suggested that a Vector Equilibrium could be

transformed into an icosahedron and vice versa. The same

number of surface-defining spheres exist between the two

polyhedra and they both have 12 vertices. Each has sym-

metrical similarities. A family of relationships which is

*Fuller, R. B., 1

**Marks, R. W., 1
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capable of cycling through a sequence of phases existed

which Fuller called "Regenerative" This sequence of phases

can be visually illustrated with the construction of the

"Jitterbug" The sequence starts with the Vector Equili-

brium and when released it compresses symmetrically into an

icosahedron and then into an octahedron. Figure 2.23.

The Vector Equilibrium
Phase

The Vector Equilibrium
is constructed with
circumferential vectors
only and with flexible
joints.

The Icosahedron Phase

As the top triangle is
lowered toward the
opposite triangles,
rotation moves the
vertices into the Icosa-
hedron phase. NOTE:
That each of the pairs
of opposite triangles,
although in motion,
maintain an axial
relationship.

The Octahedron Phase

The completion of the
cycling results in the
phase of an Octahedron,

Figure 2.23
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Investigation of the "Regenerative" principal coupled

with investigation of the various convex polyhdron*, lead

to the concept of polyhedral expansion by rotation-trans-

lation methods.** This concept of polyhedral transformation

incorporates the use of the familiar regular and semi-regular

polyhedron.*** It introduces a new dimension to the old

"classical" concepts of polyhedra transformation (Figure

2.24) by introducing a new concept of Rotation-Translations

Transformation of polyhedra.

Hexahedron-Tetrahedron Tetrahedron-Octahedron

Figure 2.24

*A convex polyhedron is a polyhedron which has no entrant
edges.

**An interview held with R. Buckminister Fuller on May
3, 1965.

*** Stuart P. 1
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Octahedron-lcosahedron

Icosahedron-Dodecahedron

Figure 2.24 (cont)

Classical Transformation of Platonic Solids

The Hexahedron is converted into a Tetrahedron by an alter-

nate removal of vertices. The Tetrahedron is converted into an

Octahedron by truncation of its vertices. The Octahedron is

transformed into the Icosahedron by a somewhat more complex,

truncation, and similarly the Icosahedron is converted into the

Dodecahedron. A prior knowledge of the forms is necessary

before the complete series of transformation may be accomplished.
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In contrast to the "classical" method of transformation of

polyhedra this new concept maintains dimensionality during

transformation and generates a polyhedral form without re-

course to any special knowledge other than the rules of

transformation described in Table 2.8.

This concept of Rotation-Translation Transformation is

characteristic of all regular and semi-regular polyhedra

(Table 2.9). By allowing each surface to rotate about its

axis, translate along its axis, and maintain connection with

one of its paired vertices; the surfaces enclosing the poly-

hedron will transform into another polyhedral form.*

*Stuart D., 1
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Table 2.8

DEFINING RULES FOR REGULAR AND SEMI-REGULAR POLYHEDRA*

I. A Regular Polyhedron must enclose a volume of space with

a surface composed of only one kind of plane polygon.

2. These plane polygons must be equilateral, equiangular,

and rectilinear.

3. The polygons must mutually join at their edges and ver-

tices so as to completely fill a single imaginery spheri-

cal surface passing through the joined vertices.

4. In a similar fashion, a Semi-regular Polyhedron must be

totally composed of plane polygons as defined in rule 2,

but now, more than one kind of polyqon may be used in a

single polyhedron.

5. There must be the same numbers and kinds of polygons,

joined in the same order (or its enantiomorph) at each

of the vertices of the polyhedral surface.

6. For Regular and Semi-regular Polyhedra, the corner angles

which join at a single vertex must total in aggregate,

less than 360 ° .

7. The plane of any polygon, if extended,must not pass

through the interior volume of the polyhedron. And, a

plane passed through the polyhedron at random will always

have a single closed polygon at its line of intersection

with the polyhedral surface.

*Stuart I., p. 5.
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REGULAR

Table 2.9

CHARACTERISTICSOF THE
ANDSEMI-REGULARPOLYHEDRA

Name

t--

"T-

4-}

%

r=-

i,i

e.-- f,_
0 c- c,- c.,,-
_ o o 0

..-s e- X _ rj

oo ID_ -r" E) rm

Designation

Schl_fli Symbol*

i, i,i

or--

Tetrahedron 4 - - -

Hexahedron - 6 - -

Octahedron 8 - - -

Dodecahedron - - 12 -

Icosahedron 20 - - -

Truncated
Tetrahedron 4 - - 4

Hexoctahedron 8 6 - -

Truncated
Hexahedron 8 - - -

Truncated
Octahedron - 6 - 8

Small rhomicu-
boctahedron 8 18 - -

Great rhomicu-
boctahedron - 12 - 8

Snub Hexa-
hedron 32 6 - -

Icosadodeca-
hedron 20 - 12 -

3

- 3

_ 43

_ 53
5

- 3

3

(3

•

4

4

3

(3

2
6

4)

2

8

2

6

3

4

4

5)

4 6 4

612 8

812 6

12 30 20

20 30 12

818

14 24

14 36

14 36

26 48

26 72

38 60

32 60

12

12

24

24

24

48

24

3O
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Table 2.9 (cont.)

CHARACTERISTICS OF THE
REGULAR AND SEMI-REGULAR POLYHEDRA

Name

(--

.r--

%
_P

r--

i,i

0 c- _ c-

Of) r_ -r- 0 r-_

Desiqnation

Schl A'fl i Symbol*

(IJ

LJ-

u_

-0
l,i

(IJ
C_

.r-

Truncated
dodecahedron 20

Truncated
Icosahedron

Small rhomicosi-
dodecahedron 20

Great rhomicosi-
dodecahedron

Snub dodeca-
hedron 80

-12

30 12

20 20

30 - 20 20 1 2

-12

2
12 3 I0

2
5 6

3 4 5 4

32 90 60

32 90 60

62

4 6 I0 62

,4
3 5 92

120

180

150

6O

120

6O

*Kravitz I., p. I19.
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Each of these polyhedra are involved in transformations

similar to that of the "Jitterbug" transformation. The basic

transformation incorporates the use of the same two primitive

transformations discussed in the section on tessellations:

Translation (in a certain direction, through a certain distance)

and, Rotation (about a certain axis, through a certain angle).

Crystallographers refer to this transformation as the screw

axis transformation. There are again three basic types of

transformation that may be accomplished with the polyhedral

forms: By face rotation-translation transformation, element

rotation-translation transformation, and vertice rotation-

translation transformation. Figure 2.25

Rotation Translation

Rotati on-Trans I ati on

Figure 2.25

Geometric Transformations
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Face Rotation Translation Transformation

Element Rotation Translation Transformation

Figure 2.25 (cont.)

Geometric Transformations
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Vertice Rotation-Translation Transformation

Figure 2.25 (cont.)

Geometric Transformations
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2.7 Mathematical Model For Polyhedral Transformation

This portion of the investigation was restricted to an

investigation of those convex polyhedra shown in Tables

2.ZOa _md 2.ZOb and Figure 2.26. Figure 2.26 illustrate the

various polyhedra; the numbers shown in parentheses are the

coordinates of the vertex indicated by the arrow.

The transformations were limited to the expansion

by center of face rotation-translation method.

It was further assumed that each face was able to

move independently during the transformation. In other

words, vertices of two or more faces need not be joined

together during the transformation.

A unit edge was assumed for all figures.
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Table 2.10a

Transformation of Polyhedra I

Platonic and Archimedean Forms

Tetrahedron

3 3

Octahedron

34

Cube

4 3

Cuboctahedron

(3.4) 2

Smal 1 -rhombi cuboctahedron

3.4 3

Dodecahedron

5 3

Icosahedron

3 5

Icosi dodecahedron

(3.5) 2

1
Smal 1 -rhombi cosi dodecahedron

3.4.5.4
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Table 2.10b

Transformation of Polyhedra

Archimedean Dual Forms

Triakis Tetrahedron

V.3.6 2

Rhombic Dodecahedron

V.(3.4) 2

II

Tetrakis Hexahedron----- _Triakis Octahedron

V.4.6 2 V.3.8 2

Trapezoidal Icositetrahedron

V.3.4 3

Pentakis Dodecahedron---,- _--Triakis Icosahedron

V.5.6 2 V.3.10 2

Trapezoidal Hexecontrahedron

V.3.4.5.4
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(l

Y

12<F2 -, I12_, I12J-2)

Tetrahedron

(I/2, I/2, I/2)

Cube

Figure 2.26
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11 d-_)

0ctahedron

(0, I/V_,

Cuboctahedron

Figure 2.26 (cont)
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1 + _12)

(Small) Rhombicuboctahedron

Figure 2,26 (cont)
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Z

b

(0, I/2, T2/2)

X

Dodecahedron

I

(I/2, o, T/2)

Icosahedron

Figure 2.26 (cont)
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O, 0,._)

Icosidodecahedron

Figure 2.26 (cont)
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2

112, 1/2, 5T 16)
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I

I
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\
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I

I

I
/

I

\
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I

I
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I

I

I
\ I
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\ /

I /
I

/
!

/
!

(small) Rhombi cos idodecahedron

Figure 2,26 (cont)
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Preliminary investigation of the various polyhedra

resulted in the formulation of two theories which seemed

to offer possibilities for the prediction of polyhedral

transformations in general.

The first theory was suggested by the nature of

the transformations themselves. As has been previously

stated, the transformations consist of a rotation and a

translation of each polyhedral face. If the amount of

rotation and the amount of translation of each of the

faces could be determined for the polyhedra shown in Table

2.9, these results might suggest a pattern which could be

used for the transformation of other polyhedra.

The second theory resulted from the fact that the

vertices of the polyhedra seemed to move along the surface

of an imaginary right circular cylinder which could be

projected from each of the faces of the polyhedron. By

inspection of the polyhedra which had already been trans-

formed, it was decided that the transformation was complete

when adjacent cylinders no longer intersected. The deter-

mination of the coordinates of the point at which the cylinders

no longer intersect would suggest a method which could be used

to predict the transformation of any of the polyhedra; the

coordinates of this end point of the intersection of the

cylinders would determine the vertices of the figure formed

by the transformation.
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The calculations were directed at determining re-

lationships among the sides, vertices, faces, edges, and

centers of the polyhedra. This resulted in the establish-

ment of relationships which are shown in Tables 2.11 and 2.12.

Table III shows the relationship between the center

angles* and the dihedral angles of the polyhedra; in all

cases, the center angles are simply the supplement of the

dihedral angles. Table 2.11 also shows the relationship

between the transformation angles**of the original polyhedron

and the dihedral angles of the new figure. The transformation

angles were calculated by using the formula for determining

the angle between two lines. Table 2.11 shows that the

sum of the transformation angles of the figures which are

paired together to form a new figure (the pairs are shown by

the brackets in Table 2.11)arerelated to the dihedral angle

of the new figure. (For the transformation of the tetra-

hedron, cube, and octahedron, the sum of the transformation

angles equals the dihedral angle of the new figure; for the

dodecahedron and the icosahedron, the sum is equal to the

dihedral angle minus ninety degrees.)

Table 2.12 shows the number of faces, edges, vertices,

*Center angles are those angles formed by adjacent axis
lines from the center of the figure to the center of the faces.

**Transformation angles are those angles formed by the
line from the center to a vertex of the original figure and
the line from the center to a corresponding vertex of the
new figure.
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and the number of faces meeting at each vertex; these appear

to be related. In particular, the number of edges of the

new figure is equal to twice the number of edges of the

original figure.

According to R. Buckminister Fuller,* the number of

sides of the face that is formed by the transformation will

be equal to the number of faces meeting at each vertex of

the original figure. This assumption was used to determine

the types of faces that would be formed by the transformations;

they are shown in the last column of Table 2.12. The trans-

formations of the cuboctahedron and the icosidodecahedron

were predicted by using this assumption and the one given

in the paragraph above.

It was also noticed during this phase of the investi-

gation that if the faces which form the dihedral angle of

the original figure are of the same type, then the angle

formed by joining the vertices of the new figure will be

equal to the dihedral angle of the original figure.

It was then decided to determine whether there were

any relationships amonq the figures in regard to the angles

through which the faces rotate and the distances through

which they translate during the transformations. Table 2.13

shows the transformation of the coordinates of one vertex

of the oriqinal figure into the corresponding vertex of the

*Fuller, R. B., I., p. 42.
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Table 2.11

Angle Relationships

Figure Dihedral Center Transformation Sum
Angle Anqle Angle

Dihedral Angle
of New Figure

Tetrahedron 70o32 ' 109028' 54°44' * 109°28'

Cube 90 ° 90° 90°
125016 '

Octahedron 109028 ' 70°32' 35°16'

109028 '

125016 '

I-I
!

CO

Dodecahedron 116°34 ' 63°26' 20°55'

Icosahedron 138011 ' 41°49' 31°42

52o37 ' 142o37 '

*lwo tetrahedra transformed together form the octahedron.



Table 2.12

Face-Edge-Vertex Relationships

Figure Faces Edges Vertices Number of
Faces at Each
Vertex

New Figure
Required
Number of Edges
and Types of Faces

a
a
I

0

Tetrahedron 4 6 4

Cube 6 12 8

Octahedron 8 12 6

Cuboctahedron 14 24 12

S, Rhombicuboctahedron 26 48 24

12 triangular

24 triangular

24 square

48 square

96 square

Dodecahedron 12 30 20

Icosahedron 20 30 12

Icosidodecahedron 32 60 30

S, Rhombicosidodecahedron 62 120 60

3

5

4

4

60 triangular

60 pentagonal

120 square

240 square



new figure. Because of the symmetry of the polyhedra, it

was only necessary to determine the amount of rotation and

the amount of translation for one face of each polyhedron,

except in those cases where the polyhedra have several types

of faces. For these, it was necessary to determine the

amount of rotation and translation for each type of face.

By studying models which had been constructed and by

using the relationship for the angle between two lines, the

angles of rotation for each figure were determined. The

results are shown in Table 2.14. The relationship may be

stated by the following formula:

angle of rotation = 180/n,

where "n" equals the number 2.1
of sides of the face.

The distances through which the faces translate

were then calculated for each figure, and the results are

shown in Table 2.15. At this time, simple hand analysis

would seem to indicate that there is no empirical relationship

among the figures in regard to the amount of translation of

the faces. Since it was necesary to be able to specify both

the amount of rotation and the amount of translation, the

rotation translation theory appeared to be of little use in

solving the problem.

It was then decided to investigate the second theory.

Figure 2_27a shows cylinders projected onto two adjacent faces

of an octahedron, The point X' indicates the position of a

vertex of the new figure.
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Table 2.13

Vertex Transformations *

Tetrahedron + Octahedron

(I/2v_2, I/2_, I/2v r_) ÷ (0, O, I/_)**

Cube ÷ Cuboctahedron

(I12, I12, I12)÷ (0, lld_, llvr2)

Octahedron ÷ Cuboctahedron

(0, O, lld2) ÷ (0, 11v_, llv_)

Cuboctahedron ÷ Small rhombicuboctahedron

(0, I//2, I//2) ÷ (I/2, I/2, I+7-2/2)

Dodecahedron + Icosidodecahedron
2 2

(0, ll2,m 12) ÷ (0, 0,_)

Icosahedron ÷ Icosidodecahedron

(I12, O, TI2) ÷ (0, O, T)

Icosidodecahedron ÷ Small rhombicosidodecahedron

2

(0, O, _) ( I/2, I/2, 5m /6)

*These figures are the coordinates of one of the
vertices of the original figure and the corresponding

vertex of the new figure.
2

**m = (l+vF5)/2; m = • + 1
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Amount
Faces

Table 2.14

of Rotation of the
of the Polyhedra

Figure Angle of Rotation

Tetrahedron

Cube

Octahedron

Cuboctahedron (triangular face)
(square face)

60 °

45 °

60 °

60 °
45 °

Dodecahedron

Icosahedron

Icosidodecahedron (triangular face)
(pentagonal face)

36 °

60 °

60 °
36 °
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Table 2.15

Amount of Translation of the
Faces of the Polyhedra

Figure Distance from Center
to Center of Face

Before After

Translation
Distance
Faced Moved
From Center

Tetrahedron

Cube

Octahedron

Cuboctahedron *

Dodecahedron

Icosahedron

1/2/6-

I/2

I//g

I/v'_

2/3

s/2 i/4
T 12(5

2

T 12V_"

!cosidodecahedron *
2

T

llvr_-

1/v'£-

2/3

11/-_-+l12

(II+6/2)/l 2

2 2

T -(l .76)
2

2

-_//T

I12/6-

I!,/-_/-I/2

llV'6

I/2

(II+6/2)
12

2

2

/2v_-

4 3

-(l .76) 2 /25_ -9(I .7D) B

3

2 6

J25 4-6 ,/25="-6- 2
6 6 ?-_

*The second line of figures refer to

(2 2) s/2
**_= T -(1.76) -_

2
2(51/4 )

***B = 5T -9(1.76) - ____ .76)
6

the triangular faces.
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Two cylinders intersect in the manner shown in Figure

2.2Tb The arc XX' represents the curve of intersection;

point X represents a vertex of the original figure and point

X' represents the point along the curve which is a maximum

distance from the center of the polyhedron. This point is one

of the vertices of the figure formed by the transformation.

In order to determine this point it was necessary to specify

the equations of the adjacent cylinders as shown in Figure

2.2Tb and the equation of a plane.

Each of the vertices of the figure formed by the trans-

formation lies in a plane which passes through the center of

the original polyhedron and the axes of its adjacent faces.

Each of these vertices can be determined by finding the point

of intersection of the plane and the cylinders. The intersec-

tion of the plane and the cylinders. The intersection can

be found by solving the set of simultaneous equations con_

sisting of the two equations of the adjacent cylinders

and the equation of the plane.

The general equation used for the cylinders was the

following: r = ax + by + cz + dxy + exz + fyz, where

"r" is the radius of the cylinder and "a", "b", and "c"

are constants which have the following values:

2 2 2 2

a=m +n b=l +n c =I
2 2 2 2 2 2

1 +m +n 1 +m +n 1

d = -21m e = -21n
2 2 2 2 2

1 +m +n 1 +m + n

2 2
+ m

2 2 2
+ m + n

f : -2ran

2
1 + m

2 2
+ n

2.2

"P'T



x

Figure 2,2"Co
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and where "I", "m", and "n" are the direction numbers of the

line which joins the center of the polyhedron and the center

of the face of the polyhedron.

The general equation used for the planes was derived

form the general form of the equation of a plane passing

through the origin: ax + by + cz = O, where "a" "b", , and
2.3

"c" are direction numbers of the normal to the plane.

In order to use the above equations, it is necessary

to specify the coordinates of the vertices o, _,le original

figure and the number of edges of the original figure. Table

2.16 shows that the number of vertices of the new figure can

be determined by specifying the number of edges of the ori-

ginal figure; they are equal. This number indicates the

number of sets of simultaneous equations which must be solved

in order to specify all of the vertices of the new figure.

If the vertices of a polyhedron are known, the equations

of the adjacent cylinders and the eauation of the plane can

be determined by using the above general equations. The

solution of this set of equations yields two vertices of

the new figure. This process must be repeated until all

combinations of pairs of adjacent cylinders are used.

Shown below is the complete transformation for the

tetrahedron :

Vertices of the tetrahedron:

(I12/2, I12d-2, II/2) (I12d_, -I12d2, -I12d2)

(-I12d2, I12d2, -I12d-2) (-I12d2, -I12d-2, -I12d2)
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Relationship
Figure and

Table 2.16

among the Edges
the Vertices of

Original Figure

Tetrahedron

Cube

Octahedron

Cuboctahedron

of the Original
the New Figure

Number of Edges

6

12

12

24

New Figure Number

Octahedron 6

Cuboctahedron 12

Cuboctahedron 12

Small-rhombicuboctahedron 24

of Vertices

Dodecahedron

Icosahedron

Icosidodecahedron

30

3O

60

Icosidodecahedron 30

Icosidodecahedron 30

Small-rhombicosidodeca- 60
hedron
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2 2 2
3.) x +y + z 2.4

2 2 2

x +y + z 2.7

2.10

+ xy + xz - xy = I/2

= xy - xz - yz = I/2

y = z

(-ll/T, 0, 0)

(0, -ll/_, -II/_
2 2

4.) X 2 + y + z - xy + xz + yz = I/2 2.6

2 2 2
x + y + z -xy - xz - yz = I/2 2.7

x : y 2.13

(0, 0, -II/2)

(-II/T, -II/_, 0)

2 2 2
x + y + z + xy - xz + yz = I/2 2.4

2 2 2
x + y + z xy - xz - yz = I/2 2.7

x = z 2.12

(0, -II/2, 0)

(-11/T, o, -II/2)

x 2 + y2 + z 2 + xy - xz + yz = I/2 2.5

2 2 2
x + y + z - xy + xz + yz = I/2 2.6

y = -z 2,1 1

(-II/_, o, o)

(0, -II/_, ll/_)

5.)

6.)

(II/_-, o, o)

(0, ll/E, II/_)

(0, o, II/E)

(II/_, ll/_, o)

(0, II/_, o)

(II/T, o, II/2_

(II/_, o, o)

(0, ll/_, -ll/T)

The solutions of these sets are shown in the parentheses;

it should be observed that each set yields four solutions (two

of which are the coordinates of the vertices of the new

figure and two which are not). It should also be noticed

that the solutions for the last three sets of equations are

duplicates of the first three. If the equations are selected

with regard to the symmetry of the fiqure, it will be

necessary to use only half the number of sets of equations

_T n r_n



as is indicated in Table 2.16. Because of the symmetry of

the figures, the solutions will always be duplicated.

At this point, a decision must be made as to which

solutions are valid ones for the transformations. In the

case of the regular polyhedra, this can be done by specifying

another condition which the points must satisfy. For the

regular polyhedra, each vertex of the new figure will lie in

a plane which passes through the center of the figure and the

edge between the adjacent faces under consideration. If the

equation of this plane is added to the set of equations, two

of the solutions (for the tetrahedron--those above which are

underlined) will be eliminated and the other two will be

vertices of the new figure. For example, the equation of this

plane for the cylinder pair (1,2) above is x = y. Adding

this equation to the set of equations (number I) for the

tetrahedron eliminates the underlined solutions.

For the semi-regular polyhedra, such as the cubocta-

hedron, the selection of the proper solutions for specifying

the vertices of the new figure must be made on the basis of

the physical restrictions of the figure.

In all cases, the solution of each set of equations

will yield four points of intersection (which will be in

pairs because of the symmetry of the polyhedra); it will be

necessary to analyze these groups of pairs in order to determine

which fits the physical restrictions of the figures. For

example, the transformation of the cuboctahedron yields 96

I!-I02



solutions, half of which are identical to the other half;

they are of two forms: (I/2, I/2, I+J2-/2) and (I/2, I/2,

I-_/2), where the order and signs of the numbers can be

interchanged. Simple inspection of these solutions reveals

that those of the second type could not specify the vertices

of the new figure. (The figure would be smaller than the

cuboctahedron).

It should be pointed out that this method is suitable

only for those convex polyhedra whose faces are equilateral

and equiangular. If the faces are not of this type, the

cylinders would assume a different form; ie., they would not

be right circular cylinders.

Since the purpose of this research was to find a theoreti-

cal concept for the transformation of polyhedra,* it was

deemed advisable to try the method on a figure which had not

been previously transformed. This was done for the truncated

cube shown in Figure 2.28. Shown below are the calculations

for this transformation. Because of the symmetry of the

truncated cube, it is necessary to specify only seven equations

for the projecting cylinders (three for the octagonal faces

and four for the triangular faces). Inspection of Figure 2.28

shows that if a plane of symmetry was drawn through the

polyhedron (parallel to and passing through the z-axis), the

polyhedron reflects itself about the plane. Because of th_s

*This was done by transforming those in Table 2.9.
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Application of these equations results in fifteen

sets* of simultaneous equations which must be solved in

order to specify the complete transformation. Two examples

of these sets and their solutions are given below.
2

I.) x 2 + y = 1.69

2 2
x + z = 1.69

x= 0

(0, 1.3, 1.3)

(0, 1.3, -1.3)

2 2
2.) x + y = 1.69

2 2 2
x +y + z

(0, -1 .3, -1.3)

(0,-l.3, 1.3)

- xy - xz -yz = I/2

x : y

(.92, .92, 1.6) (-.92,-.92, 1.6)

The figures in the parentheses are the coordinates

of the points which represent vertices of the new figure.

For set number one, all four of the solutions represent

vertices of the new figure.* For set number two, the two

points shown are the ones which represent the vertices.

Because the truncated cube has 36 edges, the complete

solution of all sets of equations results in 36 points which

represent vertices of the new figure. Twelve of the points

*The truncated cube has 36 edges, but because of the
symmetry of the figure only 18 sets of equations are needed.
Since each octagonal face is perpendicular to one of the
coordinate axes, all four of these solutions are valid ver-
tices. For this reason, only 15 sets of equations are needed.
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are of the form: (1.3, 1.3, 0); the other twenty-four are

of the form: (.92, .92, 1.6). The differences in the points

result from changing the order and the signs of the coordi-

nates. Figure 2.29 illustrates the polyhedron that is

formed by the transformation of the truncated cube. It

should be pointed out that analysis of the vertices of the

figure that is formed indicates that the surface of the

octagonal faces must undergo a distortion.

Z

Figure 2.29

11-107



0

q-
0

c-
O

"5

E
s-
o

4-

b.- /,,

/
/

I

/
Y

0

OJ

Ob

LI..

CO
0

I
I-4
P-I



The ellipse takes the form:

2 2 2b2b2x 2 + c y = c

where: b = I/2 minor axis of the ellipse
(the radius of the cylinder)

c = I/2 major axis of the ellipse

and c = b
2 COS

where: _ = I/2 dihedral <)_ of the original
polyhedron

Axis of the / I b

cy I i nder____._ _

oK °

a = I/2 the extent of translation

The ellipse angle may be described as:

B = 180 ° (90 ° + _)
B : 90 ° -

or sin _ = b
C

2,12

2.13
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All of the regular and semi-regular polyhedral forms

and many higher forms have been studied. The following

illustration show the transformation of the five reqular

forms using two methods of expansion.

formation and the edge transformation.

2.18, Fiqures 2.31 and 2.32.

The face trans-

Tables 2.17 and

ii-ii0



Table 2.17

Face Transformations
Platonic Polyhedra

of

TETRAHEDRON
OCTAHEDRON
HEXAHEDRON
ICOSAHEDRON
DODECAHEDRON

ICOSAHEDRON
OCTAH

=- HEXOC
HEXOC

=-ICOSA
P- I COSA

EDRON
TAHEDRON
TAHEDRON
DODECAHEDRON
DODECAHEDRON

VERTICES FACES EDGES A []

TETRAHEDRON
OCTAHEDRON
HEXAHEDRON
ICOSAHEDRON
DODECAHEDRON
HEXAHEDRON
ICOSADODECAHEDRON

4 4 6 4
6 8 12 8
8 6 12 -

12 20 30 20
20 12 30 -
12 14 24 8
30 32 60 20

©

6 -

- |2
6 -

12

TETRAHEDRON
OCTAHEDRON
HEXAHEDRON
ICOSAHEDRON
DODECAHEDRON

FACES
EXISTING

/1-4-----_- OCTAHEDRON
/1-8_ HEXOCTAHEDRON
D-6 _ HEXOCTAHEDRON
/1-20-----D-ICOSADODECAHEDRON
O-12_ICOSADODECAHEDRON

FACES

Existing Void
z_-4 _ /1-4

o-6 6

z_-20--_ 0-I 2
0-12 __ /I-20

m-r -I_]_..L --;± •
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Figure 2.31
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I
I

I
I

Hexahedron Hexoctahedron

Icosahedron _ Icosadodecahedorn

Figure 2.31 (continued)
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@
Dodecahedron _Icosadodecahedron

Figure 2.31 (continued)
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Table 2.18

Edge Transformation of Regular Polyhedra

Tetrahedron
Cube
Octahedron
Icosahedron
Dodecahedron

_,Icosahedron _Trunca
Snub Cube _ Trunca
Snub Cube _,Trunca

---Snub Dodecahedron-----Trunca
Snub Dodecahedron_Trunca

Vertices Faces Edges 3

Tetrahedron 4
Octahedron 6
Hexahedron 8
Icosahedron 12
Dodecahedron 20
Snub Cube 20
Snub Dodecahedron 60
Truncated Tetrahedron 12
Truncated Octahedron 24
Truncated Cube 24
Truncated Dodecahedron 60
Truncated Icosahedron 60

ted Tetrahedron
ted Octahedron
ted Cube
ted Dodecahedron
ted Icosahedron

4 5 6 8 I0

4 6 4 ....
8 12 8 ....
6 12 - 6 - - -

20 30 20 ....
12 3O - 12 - -
38 60 32 6 ....
92 1 50 80 - 1 2 - - -

8 18 4 - - 4 -
14 36 - 6 - 8 -
14 36 8 - - - 6 -
32 90 20 - - 1 2
32 90 - 12 20 20 -

I

/" f "_

l !

I IJ

Tetrahedron Truncated Tetrahedron

Figure 2.32
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Octahedron _ Truncated Cube

Figure 2.32 (cont)
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I
Icosahedron = Truncated Dodecahedron

@

@
Dodecahedron Truncated Icosahedron

Figure 2.32 (cont)
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The investigation of the Geomertic Transformation

concept for expanding _essellation and polyhedral forms is

still in its infancy. Many possibilities exist in the realm

of investigation and many answers must be sought. There are

several methods of transforming polyhedra in closest packing

which has yet to be completely documented. The concept of

regeneration needs to be thoroughly investigated. Many

possibilities under present investigation are the warping of a

tessellation transformation into modular space frame c_nfigura-

tions of several shapes.

It should be pointed out that in the concept of poly-

hedral transformation by vertice rotation-translation, the

figure in its expanded state does not yield regular forms.

This tends to indicate new areas for investigations,

perhaps in the realm of Star Polytopes. The in-fold state of

both tessellations and polyhedra suggest study of the rela-

tionship of the Star Polygons and Star Polytopes.

Finally, the Geometric Transformation concept tends to

indicate a comprehensively ordered system which may lead to a

better understanding of the many areas related to the study of

tessellation and polyhedral forms.
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THE COMPUTER PROGRAM DESCRIBED ON

PAGES II-ll9 to II-132

IS AVAILABLE FROM COSMIC





2.10 Other Geometric Transformation Concepts

The geomertic transformation Concept has shown signi-

ficance as an expandable structural configuration and has

lent to research in polyhedral cycling. It was noted in

filling the void areas created during the transformation

that if an appropriate number of faces are used instead

of a single face to fill the void, a cycling effect took

place. The faces to be used need to have the same length

of element as the existing surfaces. They also need to be

equal in number to the existing exposed sides. (i.e. the

octahedron transforms into the hexoctahedron leaving square

void areas. Instead of filling the voids with square sur-

faces, they are filled with four triangles that match the

existing surfaces. The result is the original transformation

axis is retained and the cycling can be repeated) Figure 2.34.

It is conceivable that through locking and retransforming,

the cycling could take place as many times as physically

or mechanically possible.

II-133



•.,%,=%,,_C£_,b> _"

Octahedron

Octahedron

Figure 2.34
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Another such area of investigation includes the use

of the tessellation net transformations, where after trans-

formation the tessellation is warped or moved out of place

into a curved or warped plan allowing for surface covering

of space forms. Figure 2.35

\
\

!

!

I

I
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By applying the tension and tensegrity concepts, the

transformation concept has lead to investigations of space

frame structures for possible space applications. Figure

2.36 illustrates a configuration where the elements of

a space frame (closed packed hexagons) undergo the geometric

transformation and expand from a bundle composed of the

elements into a space #rame configuration. The uniqueness of

this structure is that it may take on any Hesirable shape.

Transformation Using Tension

Figure 2.36

A transformation may be done to the polyhedron in a

close packed configuration where the unit cell does not

transform itself. The unit cell undergoes a transformation

with its adjacent cell by one of the three transformations

(unit cell transformation, unit edge transformation, or

unit vertex transformation.) Figure 2.37 illustrates a

unit cell transformation.
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Figure 2.37
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A similar transformation with close packed polyhedron

may also be done when each cell transforms by the geometric

transformation concepts discussed earlier. The close packed

units transform however, faces are shared with adjacent

polyhedra thus creating new unit cells in a close packed

state. Figure 2.38 illustrates the face transformation

concept of this type.

Figure 2.38
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