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THE CP 1LCULATION OF THE EIGENVA ,LUES AND 
EIGENFUNCTIONS OF MATHIEU'S  EQUATION 

I .  INTRODUCTION 

Mathieu's equation, Eq .  (1 ) ,  arises when the  scalar Helmholtz 
equation is solved i n  the   e l l ip t ic  cylinder coordinate system by 
means of separation o f  variables . 

Here the  independent variable, z ,  may  be related t o  either  the  angular 
or the radial el l iptic  variable,  q i s  related t o  the e l l i p t i c i ty  o f  
the coordinate system, and a i s  the separation constant o r  eigenvalue 
(also  often  refered t o  as the  characteristic  value) . The solutions 
of this equation have  been discussed  extensively i n  the  1 i terature , 
and a summary of this 1 i terature may  be found i n  Reference 1 . The 
e l l i p t i c  coordinate system is also  discussed i n  detai  1 i n  Reference 2.  

In the  following a simple, direct  method for the  calculation 
of  the eigenvalues and eigenfunctions of this equation is developed. 
The computational  procedure i s  both rapid and accurate. This method 
is quite similar t o  a  technique  presented  earlierC31 for the calcu- 
la t ion  of the  eigenvalues and eigenfunctions of the  oblate and prolate 
spheroidal wave equations . 

11. THE EIGENVALUES 

The rth sol u t ion  o f  Eq . (1 ) may  be expanded i n  terms o f  the 
t r i  gonometri c  functions . 

Note that  the  normalization of the  leading expansion coefficient  differs 
sl ightly from that  customarily found i n  the  l i terature.   If  this ex- 
pansion is  substituted i n t o  E . (1 ) four independent se t s  of recursion 
relations  are  obtained, Eqs. q3-11) 



Case 1 : 

(3) a A. - n q  A2 = 0 

(4) - J;'q A. + (a-2 ) A2 - q A4 = 0 2 

2 - q Am-2 + (a-m ) Am - q A,,,+2 = 0, m = 4, 6, 8 ,  ... 
Case 2: 

(6 1 2 (a-1 -4) A1 - q A3 = 0 

Case 3: 

(8) (a-2 ) B2 - q B4 = 0 
2 

2 - q Bm-2 + (a-m ) Bm - q Bm2 = 0, m = 4, 6, 8, . * -  

Case 4: 

Here both the  eigenvalue, a ,  and the expansion coefficients, Am and 
Bm, are dependent upon the  order, r ,  of the  solution; however, this 
dependency has been temporarily suppressed i n  the  notation  for  the 
sake  of  simplicity . The choice  of  the  particular set of recursion 
relations  to be used is dependent upon the symmetry  and peri odi ci  ty 
o f  the desired  solution. I t  is  evident  that  the  recursion  relations 
fo r  even solutions will involve  only  the % coefficients while the 
recursion  relations  for odd solutions will involve  only  the B L  coef- 
fi cients . Further, i f  the  solution has T periodicity i n  z then  only 
coefficients having even subscripts, m, will be utilized.  Similarly, 
i f  the solution has 28 periodicity i n  z then  only  coefficients having 
odd subscripts, m, wi 11 be uti l ized. These conditions  are summarized 
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i n  Table  I  along w i t h  a shorthand notation which will be used t o  denote 
these  cases. The integers s and t w i  11 be  used t o  identify  the 
periodicity and symmetry o f  the  desired  solution as indicated i n  Table I .  
In addition  the  letter D i s  used t o  denote  the  appropriate A o r  B 
coefficient as shown in Table I.  The subscripts have  been shifted so 
t h a t  Do is  the  leading  coefficient i n  each case; this permits some 
simp1 i f i  cation i n  subsequent programming . 

PERIODICITY 

ir 
s = l  s = o  

2n 

. c .  I I I 

A; + 0, m even A; # 0, m odd 
Z O  
Ll II =-e r Dr = A, r > - w  

r x  m Di = A,+l 
t; 
5 
E 

cn B; # 0, m odd B; 3 0, m even n- 
n I I  
04J 

Di = Bmt2 r Di = BMl r 
I I I I I 

TABLE I 
SYMMETRY AND PERIODICITY  CONDITIONS 

The adoption of the notation described above allows the four sets  
of recursion  relations t o  be written compactly as one statement, 

for m = 0, 2, 4 , * * *  

where 

(13) X = J z -  i f s = O , t = O , m = O  m 
= 1  otherwise 
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and 

V = + q  i f s = l , t = O , m = O  m 

= - q  i f s = l , t = l , m = O  

= o  otherwise . 

The set of  equations  defined by E q .  (12) may be written i n  matrix form 
as shown i n  Eq.  (16) 

0 - X4 q (ar  - w6)" e 

0 0 ... 

- 
D 

D, 

D 

D 
l 

- 
r 
0 

r 
2 

r 
4 

r 
6 

= o  

The r e s u l t i n g  real  matrix is both  symmetrical and tridiagonal.   If  
this matrix is truncated t o  an  N-by-N matrix, the bisection method[4] 
may be used t o  determine the eigenvalues, a , i n  a rapid,  accurate manner. 
This procedure has the distinct advantage tKat the speed  of convergence 
is known pr ior   to  computation i .e., the uncertainty  of  the unknown 
eigenvalue  decreases by a factor  of 2 upon each i teration . Test 
calculations have indicated  that  the  truncation of the  matrix t o  a 
dimension only  slightly  larger  than the order  of  the  largest  eigenvalue 
produces no significant  error.  The N eigenvalues determined i n  this 
manner are denoted by  a,, r = s, s + 2, s + 4, ... , s + 2N-2, when 
arranged i n  order of increasing a1 gebrai c value. The bisection pro- 
cedure is  in i t ia ted  by noting  that 
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This procedure has  been tested for various  cases w i t h  0.05 < q < 5 .O 
and  rmax up t o  30. In a l l  t e s t  cases  the  bisection procedure was- 
terminated a f t e r  obtaining  five  significant  figures. A sample s e t  of 
eigenvalues is given i n  Table 11. The computed eigenvalues were 
found t o  agree w i t h  tabulated values .[1,5] The 1 i sting of  the sub- 
routine for  the  eigenvalues is  gi ven i n  Appendix A. 

- 

ORDER 

0 
2 
4 
6 
8 

10 
12 
14 
16 
1-8 
20 
22 
24 
26 
28 

Hodge Abramowitz & Stegun 

-0.5800066E+01  -0.580004602E+Ol 
0.74491  00E+01  0.74491  0974E+01 
0.1709660Et02 
0.3636098Et02 
0.6419890E+02 
0.1001  261  E+03 0,1001 2636922E+03 
0.1440878E+03 
O.l960645E+03 
0.2560488E+03 
0.3240378E+03 

0.4840264Et03 
0.5760225Et03 
0.6760208E+03 
0.7840146E+03 

0.4000327E+03 

TABLE I1 
Sample set  of eigenvalues for q = 5.0, even symmetry, 

and IT periodicity.  (5  significant  figures) 

111. THE EIGENFUNCTION EXPANSION  COEFFICIENTS 

Having obtained the eigenvalue , a,, the ei genfunction  expansion 
coefficient, DL,  are  obtained  readily by  means of  recursion.  Since 
these coefficients reach their maximum value a t  r 5 m, the recursion i s  
carried out  i n  two directions. Equation (1 2) is used t o  recur upward 
u n t i l  m = r, 
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where 

DO 
= 1 and DL2 = 0. 

Similarly, E q .  (1 2) is used t o  recur downward from m = mmax t o  m = r ,  

where Dm 2 10-30, D = 0, and  %ax is taken t o  be significantly 
'L 

max  "'max+2 
larger than r. Values of %a as  small as r + 5  have  been  used 
successfully; however, this cGoice will depend upon q and the accuracy 
desired. The set  of  coefficients  for r > m are then normalized such 
tha t  the two se t s  agree for m = r i n  order t o  obtain one consistent set  
of expansion coefficients. 

Final ly the  normalization  condition 

is imposed. Substituting Eq. (2) into Eq .  (79 ) yields 

E i  genfuncti on expansion cosffi  cients  obtained i n  t h i  s manner  have 
been  computed for the same ranges  as the eigenvalues  discussed ea r l i e r  
w i t h  b a x  up t o  40. The agreement w i t h  tabu1 ated  values i n  a1 1 cases 
where possible was excellent. The l i s t i ng  of the subroutine  for  the 
eigenfunction expansion coefficient is  given i n  Appendix B. 

The program utilizing  these procedures  required a total  compilation 
and execution time of 12 seconds on an IBM 360-75  computer for the 
calculation of 60 eigenvalues and 1,260 ei genfuncti on expansion coef- 
f ic ients .  



IV. CONCLUSION 

The eigenvalue problem associated w i t h  Mathieu's  equation when 
cast i n  matrix form was found t o  yield  a  real symmetric, tr idiagonal 
matrix. Thus the highly eff ic ient  and accurate  bisection method may 
be  used imnediately t o  determine  the  eigenvalues. The eigenfunction 
expansion coefficients  are  subsequently  obtained by a standard recursive 
technique. This procedure was tested and the  results were  compared 
w i t h  previously  tabulated results showing excellent agreement. No 
computational diff icul t ies  were encountered. 
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APPENDIX A 
EIGENVALUE  SUBROUTINE 

The Fortran IV subroutine  listed i n  Fig. A-1  may  be used t o  
compute the f i r s t  NMX eigenvalues, ar(q),  o f  Mathieu's  equation. The 
i n p u t  parameters are: 

NMAX = 2*NMX 
NMX = number of eigenvalues  desi red 

Q = e l l i p t i c i ty  
IS = integer 0 or 1 depending upon the periodicity as defined 

IT = integer 0 or 1 depending upon the symmetry as  defined i n  
i n  Table I of the text 

Table I of the  text. 

The NMX computed eigenvalues  are o u t p u t  in  the one-dimensional array, 
EIG. 

The number o f  significant  figures i n  the computed eigenvalues 
i s  determined by the value o f  ACC which is  defined  near the beginning 
of the  subroutine. In the  case shown approximately five  significant 
figures will be produced. I f  this accuracy is  n o t  obtained w i t h i n  
60 iterations  the  subroutine will o u t p u t  the  error  statement shown i n  
statement 42. The maximum number of  allowed iterations may  be adjusted 
by  a1 tering  the  constant i n  the  statement  preceeding  statement 41. 

" 
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500 

2 1  

30  

41 
4 2  

40 
22 

Fi g. A-1 . E i  genval ue subroutine. 
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Fig. A-1. (Contd.) 



APPENDIX B 
EXPANSION  COEFFICIENT  SUBROUTINE 

The Fortran IV subroutine for the  eigenfunction expansion 
coefficients is  l i s ted  i n  Fig. B-1. In addition t o  the parameters 
defined i n  Appendix A, this subrouti ne requires one  addi ti onal i n p u t  
parameter, MAXR, which is  the number o f  terms t o  be retained i n  the 
expansion. The expansion coefficients  are o u t p u t  i n  the two- 
dimensional arra D(N,J), where N denotes  the Nth eigenfunction and 
J denotes the J t  i' expansion coefficient .' 

12 



LO7 

118 

30 1 

302 
1 

CONTINUE 
CUN=D(N,N+2) /UP(N+Z) 
UO 1111 JZNIMAXR 
D(N,J+2)=CON*DP(J+2) 
SUM=O 
MRX=MAXR+2 
DO 301 J=ZtMRX 

ALF=SQRT(SUM) 
SUM=SUH+D(NtJ)**2 

UO 302 J=ZtMRX 
D(NVJ-l)=D(NpJ)/ALF 
CONTINUE 
CONTINUE 
RETURN 
ENU 

Fig. B-1. Eigenfunction  expansion coefficient  subroutine. 
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