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THE CALCULATION OF THE EIGENVALUES AND
EIGENFUNCTIONS OF MATHIEU'S EQUATION

I.  INTRODUCTION

Mathieu's equation, Eq. (1), arises when the scalar Helmholtz
equation is solved in the elliptic cylinder coordinate system by
means of separation of variables.

2
(1) 1 - 22) 9—;- - z%§-+ (a +2g - 4q22) f=0
dz

Here the independent variable, z, may be related to either the angular
or the radial elliptic variable, q is related to the ellipticity of
the coordinate system, and a is the separation constant or eigenvalue
(also often refered to as the characteristic value). The solutions

of this equation have been discussed extensively in the literature,
and a summary of this literature may be found in Reference 1. The
elliptic coordinate system is also discussed in detail in Reference 2.

In the following a simple, direct method for the calculation
of the eigenvalues and eigenfunctions of this equation is developed.
The computational procedure is both rapid and accurate. This method
is quite similar to a technique presented earlier[3] for the calcu-
lation of the eigenvalues and eigenfunctions of the oblate and prolate
spheroidal wave equations.

II. THE EIGENVALUES

The r*M solution of Eq. (1) may be expanded in terms of the
trigonometric functions.

A @
(2) f(a,2) = /;(q + L [AT(a) cos (mz) + B (q) sin (mz)]

Note that the normalization of the leading expansion coefficient differs
slightly from that customarily found in the literature. If this ex-
pansion is substituted into Eq. (1) four independent sets of recursion
relations are obtained, Egs. ?3-11) ‘




Case 1:

(3) a A0 - Y2 q A, =0
2 -
(4) -VZqA + (a-2°) Ay - q A =0
2
(5) -qu_2+(a-m)Am-'q Am+2=09 m=4s 63 8:
Case 2:
2 -
(6) (a'] 'q) A'] - q A3 =0
2 —i — * 0
(7) -qA _,* (a-m") Ap-9A,=0,m=3, 5, 7,
Case 3:
2 -
2 - -
(9) -98 o+ (a-m’) B -qB_,=0,m=4,6,8,
Case 4:
(10) (a-1%4q) By - q By =0
2 - - o & o
(1) -q Bm-2 + (a-m") Bm - q Bm+2 =0, m=3,5,7,

Here both the eigenvalue, a, and the expansion coefficients, A, and
Bp, are dependent upon the order, r, of the solution; however, this
dependency has been temporarily suppressed in the notation for the
sake of simplicity. The choice of the particular set of recursion
relations to be used is dependent upon the symmetry and periodicity
of the desired solution. It is evident that the recursion relations
for even solutions will involve only the Al coefficients while the
recursion relations for odd solutions will involve only the Bl coef-
ficients. Further, if the solution has = periodicity in z then only
coefficients having even subscripts, m, will be utilized. Similarly,
if the solution has 2w periodicity in z then only coefficients having
odd subscripts, m, will be utilized. These conditions are summarized



in Table I along with a shorthand notation which will be used to denote
these cases. The integers s and t will be used to identify the
periodicity and symmetry of the desired solution as indicated in Table I.
In addition the letter D is used to denote the appropriate A or B
coefficient as shown in Table I. The subscripts have been shifted so
that Dy is the leading coefficient in each case; this permits some
simplification in subsequent programming.

PERIQDICITY
T 27
s=0 s =1
e AT # 0, m even A;#mmow
= of = A" pf = AT
= - m m m m+1
o
=
= r r
& o B # 0, meven B, # 0, m odd
S T r T r
Dm - Bn&Z Dm = Bm+1
TABLE 1

SYMMETRY AND PERIODICITY CONDITIONS

The adoption of the notation described above allows the four sets
of recursion relations to be written compactly as one statement,

(12) - 528 D7 _o(a) + (a W (a)) D'(q) - % q D,,(q) =0,

form=20, 2, 4,*-"

where

(13) Xm =v/2 ifs=0,t=0,m=0
=1 otherwise,
- 2

(18) W, = [m+s +2 t(l-s)]° + Vi




and

vm =+ q ifs=1,t=0,m=20
(15) = -q ifs=1,t=1,m=0
=0 otherwise.

The set of equations defined by Eq. (12) may be written in matrix form
as shown in Eq. (16)

(ar - wo) ~ X0 q 0 0 'TT- Bg—
- X, q (a. - W)  -Xq 0 Dy
(16) 0 - %, q (3. - Hy) =% q DZ =0
0 0 - X0 (3. - W) Dg
0 0 0
L —1 L _]

The resu1t1ng real matrix is both symmetrical and tridiagonal. If

this matrix 1s truncated to an N-by-N matrix, the bisection method[4]
may be used to determine the eigenvalues, a,, in a rapid, accurate manner.
This procedure has the distinct advantage tﬁat the speed of convergence
is known prior to computation, i.e., the uncertainty of the unknown
eigenvalue decreases by a factor of 2 upon each iteration. Test
calculations have indicated that the truncation of the matrix to a
dimension only slightly larger than the order of the largest eigenvalue
produces no significant error. The N eigenvalues determined in this
manner are denoted by a,, r =s, s +2,s + 4, +--, s + 2N-2, when
arranged in order of increasing algebraic value. The bisection pro-
cedure is initiated by noting that

‘arl S_m;x [IXm_ZI + Iwml + lxml].
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This procedure has been tested for various cases with 0.05 < q < 5.0

and rpax up to 30.

In all test cases the bisection procedure was

terminated after obta1n1ng five significant figures.

A sample set of

eigenvalues is given in Table II.

The computed eigenvalues were

found to agree with tabulated values. [1 ,5] The Tisting of the sub-
routine for the eigenvalues is given in Appendix A.

r
ORDER Hodge Abramowitz & Stegun
0 ~-0.5800066E+01 -0.580004602E+01
2 0.7449100E+01 0.744910974E+01
4 0.1709660E+02
6 0.3636098E+02
8 0.6419890E+02
10 0.1001261E+03 0.10012636922E+03
12 0.1440878E+03
14 0.1960645E+03
16 0.2560488E+03
18 0.3240378E+03
20 0.4000327E+03
22 0.4840264E+03
24 0.5760225E+03
26 0.6760208E+03
28 0.7840146E+03
TABLE II

Sample set of eigenvalues for q =

5.0, even symmetry,
and 7 periodicity.

(5 s1gn1f1cant figures)

ITI. THE EIGENFUNCTION EXPANSION COEFFICIENTS

Having obtained the eigenvalue, ay, the eigenfunction expansion
coefficient, DI, are obtained read11y by means of recurs1on Since
these coeff1c1ents reach their maximum value at r & m, the recursion is

carried out in two directions. Equation (12) is used to recur upward
until m= r,

(a, - W)
r r m r m-2 r
(17) D2 = X q Dy, - X Dpp-22

e st S ot i em— ————— = .




where

ro_ ro_

Dy = 1 and D', = 0.
Similarly, Eq. (12) is used to recur downward from m = M oax COM=Ts

(a, - W) X
(18) D = ——a— D - — D,
m-2 m m-2

N~ o230 N . aps

where Dy = 10 D = 0, and Maax 1S taken to be significantly

max > Mrax+2
larger than r. Values of myy as small as r + 5 have been used
successfully; however, this cﬁoice will depend upon q and the accuracy
desired. The set of coefficients for r > m are then normalized such
that the two sets agree for m = r in order to obtain one consistent set
of expansion coefficients.

Finally the normalization condition

(19) J 2 (2,9) dz = /2

0

is imposed. Substituting Eq. (2) into Eq. (19) yields

«©

2
20 D= = 1.
(20) mZO m

Eigenfunction expansion cocfficients obtained in this manner have
been computed for the same ranges as the eigenvalues discussed earlier
with mpax up to 40. The agreement with tabulated values in all cases
where possible was excellent. The listing of the subroutine for the
eigenfunction expansion coefficient is given in Appendix B.

The program utilizing these procedures required a total compilation
and execution time of 12 seconds on an IBM 360-75 computer for the
calculation of 60 eigenvalues and 1,260 eigenfunction expansion coef-
ficients.



IV. CONCLUSION

The eigenvalue problem associated with Mathieu's equation when
cast in matrix form was found to yield a real, symmetric, tridiagonal
matrix. Thus the highly efficient and accurate bisection method may
be used immediately to determine the eigenvalues. The eigenfunction
expansion coefficients are subsequently obtained by a standard recursive
technique. This procedure was tested and the results were compared
with previously tabulated results showing excellent agreement. No
computational difficulties were encountered.
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APPENDIX A
EIGENVALUE SUBROUTINE

The Fortran IV subroutine listed in Fig. A-1 may be used to
compute the first NMX eigenvalues, ar(q), of Mathieu's equation. The
input parameters are:

NMAX = 2*NMX
NMX = number of eigenvalues desired
Q = ellipticity
IS = integer 0 or 1 depending upon the periodicity as defined
in Table I of the text
IT = integer 0 or 1 depending upon the symmetry as defined in

Table I of the text.

The NMX computed eigenvalues are output in the one-dimensional array,
EIG.

The number of significant figures in the computed eigenvalues
is determined by the value of ACC which is defined near the beginning
of the subroutine. In the case shown approximately five significant
figures will be produced. If this accuracy is not obtained within
60 iterations the subroutine will output the error statement shown in
statement 42. The maximum number of allowed iterations may be adjusted
by altering the constant in the statement preceeding statement 41.



SUEBRULTINE MATFIGINMAXCoISeIF,EIG)
UIMENSIOUN P(S50)s [P(950)y ALPHA(S0)4BETA(S50),ELIG(50)
ACC=1.0E-05
N=NNMAX+2
NI=N+1
P(1)=1.0
I1P(1)=1
X=1
IF((ISEWU.0) ANDLUITLEG.O)) X=1.4142136
V=0
[F((IS.EG.l).ANDS(IT.EQ.0)) V
IF{{1SeEGa L) ANDL(IT.EQ.L)) V
VO 2 I=1,N
ALPHA( I )=—{2%{[-1)+]S5+2%T*(1~-[S))*¥2~-V
LETA{LI+]1)=~-X*Q
X=1
2 v=0
BEFA{N+1)=0.0
BO=ALS{ALPHA(L))+ABS{BETA(2))
DU 3 1=24N
AO=ABS(BETA(I))+ABS{ALPHA(I))+ABS(BETA(I+1))
BETA(I)=BETA(1)*BETA(])
[F(AQO-B0)343,4
4 BO=A0
3 CONTINUE
A0=-BO
500 NMX=NMAX/2
DO 20 K=1,NMX
A=A0Q
B=80
1ERR=-1]
21 11S=0
CO=(A+B) /2.
IF(C0)50,22,50
S0 ERR=(B-A)/ABS(CO)
IERR=IERR+1
IF(IERR-60)40441,41
4] WRITE(6,42)K
42 FORMAT(36HOITERATIONS EXCEEDED FOR EIGENVALUE ,13)
GG TG 700
40 [F(ERR-ACC)24,24,22
22 P{2)=ALPHA(]1)-CO
P{(1)=1.0
vG 9 [=3,NI1
ABP=ABS(P(I-1))
IF(ABP.LI.10.0) GO TO 5
P(I-2)=P(1-2)/7A8P
P{i-1)=Pli~-1)/ABP

Q
-Q

Fig. A-1. Eigenvalue subroutine.
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S P(I)={ALPHA(I=1)-CO)*P{I-1)-BETA(I-1)*P(1-2)
DO 6 [=24N1
IF(PII))1448+9

14 1P{I)=-1
G0 TO 10

g9 IP{I)=1

10 [FLIP(I)-1IP(I-1))6,11,46

11 11S=11S+1

6 CONTINUE
IF(I1S-K)L16415,415
15 A=C0
GO T0 21
16 8=C0
G0 TO 21
24 BO=CO

700 EIG(K)=-CO
20 CONTINUE
801 RETURN
END

Fig. A-1. (Contd.)

1



APPENDIX B
EXPANSION COEFFICIENT SUBROUTINE

The Fortran IV subroutine for the eigenfunction expansion
coefficients is listed in Fig. B-1. In addition to the parameters
defined in Appendix A, this subroutine requires one additional input
parameter, MAXR, which is the number of terms to be retained in the
expansion. The expansion coefficients are output in the two-
dimensional array, D(N,J), where N denotes the Nth eigenfunction and
J denotes the Jth expansion coefficient.

12



SUBROUTINE MATCOF(NMAXy Qe ISe ITyMAXRYEIGsD)
DIMENSICN EIG(50),D(20,50),DP(50)
NMX=NMAX/2
DO 1 N=L,NMX
DP{MAXR+3)=0.
DP (MAXR+2)=1.0E-30
D(Nys1)=0.
DINs2)=1.0
X=1
Y=1
IF((IS.EQe0).AND(IT.EQ.O0)} X=1l.4142136
V=0
IF ((IS.EQ.1).AND.({IT.EQ.O)) V=Q
IF ((IS.EQel)AND.(IT.EQ.1)) V=—-Q
VDO 107 LL=1sMAXR
L=LL
IF{LL.GT.N) GG TG 300
D(NsL+2)==(Y*D(NsL))/X+(EIGIN)=(2%(L—1)+[S+2*IT*(1-15))
1*%2-V)*¥D(NyL+1)/ (X*Q)
Y=X
X=1
V=0
GG 710 107
300 L=MAXR+N-LL+1
DP(L+1)=—DP(L+3)+(EIGIN)=(2%L+[S+2%IT#(1~1S))**2-V)
1*DP{L+2)/Q
107 CONTINUE
CON=D(N,N+2)/DP(N+2)
DO 118 J=NysMAXR
118 D(N,J+2)=CON*0P(J+2)
SuM=0
MRX=MAXR+2
00 301 J=2,MRX
301 SUM=SUM+D(NeJ) *%2
ALF=SQRT({SUM)
DO 302 J=2yMRX
D(NyJ-1)=D(N,yJ)/ALF
302 CONTINUE
1 CONTINUE
RETURN
ENUD

Fig. B-1. Eigenfunction expansion coefficient subroutine.
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