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APPLICATION OF VARIOUS ELASTIC THIN SHELL THEORIES
TO BLOOD FLOW PROBLEMS*

J. A. Bailiet

Stanford University, Stanford,' California \.

Numerous theories for the analysis of thin-walled shells have been developed

primarily for the solution of stress and stability problems that arise in the domain

of solid mechanics. In this paper some of the existing theories are reviewed to as-

certain their influence on the computation of phase velocities in fluid filled cylin-

ders representing certain aspects of the behavior of arteries and veins in vivo.

For physiologically meaningful parameters, including moderately large in plane pre-

strain that occurs in mammals, the results suggest that with one exception, the

small differences in the formulations exercise little influence on the phase velocities.

However, it is demonstrated that inclusion of the forces induced by the rotation of

the hydrostatic pressure is essential or significantly erroneous torsional wave speeds

result. The relevant term is often ignored in the literature since it is of no impor-

tance in many applications. Also the introduction of moderate implane prestrains

that are present in living mammals is shown to lead to nonselfadjoint differential

equations of motion, whose biorthogonal eigenvectors differ slightly from each other.

While of theoretical interest this extension to the shell theories usually used in the

solution of solid mechanics shell problems is not particularly important for the bio-

medical applications considered.

*This work constitutes a part of a Ph. D. dissertation at Stanford University andl
supported by NASA Grant NGL 05-020-223.
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INTRODUCTION

In many situations involving the dynamic behavior of blood vessels it is essen-
\

tial to account for the significant prestresses to whtch the vessels are subjected.

Also, it is clearly established that the constitutive law of any tissue is very com-

plex e. g., Fung [1]. In addition, King and Lawton [2], Anliker et ale [3], Rockwell

et aI. [4] have demonstrated that the elastic response of the vessel to the natural

cardiac pulse can be significantly nonlinear. However, for a number of investigations

such as those devoted to determination of the wall material properties, we are pri-

marily concerned with the behavior of the vessel as it responds in a small neighbor-

hood of a quasi-static prestressed state. In the experiments the wall material pro-

perties are deduced by measuring the amplitude and phase differences for mechan-

ically induced high frequency waves propagating down the vessel, as described in [3],

for example. For such cases the perturbation strains of interest are small and it is

reasonable, at least as a first approximation, to treat the vessel wall material as

perfectly elastic and consider the prestressed state as given. Once this is done the

equations of elastic shell theory become applicable to blood vessels.

In reviewing the well-known literature on prestressed shells, e.g. [5] to [14], it

is immediately obvious , as in many other fields of shell analysis, that the equations

used by the various authors do not agree in all respects." It is appropriate to study

whether such differences have any significant influence on the phase velocities in

simplified models of veins and arteries. Another subject of considerable interest is

the fact that unlike metal structures, the inplane strains induced by the prestress in

the primary arteries are not small compared to unity. Furthermore Biot showed in

[14] and reviewed in his book [15] the fact that the stress-strain law for the

incremental deformations , relative to the prestress state is , in rectangular cartesian

coordinates, non-symmetric, for prestress states which are not hydrostatic. The

same conclusion is reached by PflUger [16]. Therefore it is desirable to review the



cylindrical elastic shell equations for linearized perturbations about a given pre-

stessed state, in an attempt to illustrate some of the questions raised. Since many

of the points to be made can be illustrated using cylinders of circular cross section

we shall take advantage of the algebraic simplicity of having the second Lame' co-

efficient equal to the constant radius of the shell, in certain investigations while

retaining general cross sections in others.

Bolotin's Dynamic Stability Equations for a Circular Cylinder

Since the dynamic stability of shells has been a research topic of considerable

interest over the past decade and is likely to remain so for many years, it is tempting

to utilize the equations presented in a well known text, namely [8J in which Bolotin

considers the dynamic stability of circular cylinders and gives the differential equa-

tions describing small perturbations about a prestressed state:

(1)

in which, after correcting some typographical errors we have:
\ ... _. - .

L11

(32 (l-v) (32
=2+

2R
2 at}(3x

(l+V) (32 + (N~ - N¢) a2
L12 = L21 = 2R ~ R ~

L
13

v a (N~ - N¢) ~
= - Ii dX - R ax
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and X, Y and Z are the applied midsurface loads per unit area. One of the

most interesting aspects of these operators is that. L
13

is not the adjoint of L31

except when N~ = N~ in which case the only prestress term appears in operator

L 33 •

Reviewing Bolotin's derivation we see that it is based on the determination of

certain "reduced (membrane) loads". These are obtained by writing the linear mem­

brane equations in terms of the Lame coefficients and then replacing these by their

values in the deformed state to obtain a set of geometrically non-linear (large dis-

placement) membrane equations. This technique does not produce the same large

displacement membrane equations as those described by most other authors. Also,

Bolotin's equations exhibit non-self adjointness in one of the operator pairs even

though his theory is based on the assumption of small strains. It is '\\Tell known

that all linear differential equations derivable from a variational principle must be

self adjoint. Hence, his equations for the incremental reduced loads should be

scrutinized. The basic idea of using the large deflection membrane equations to

obtain the membrane prestress terms is valid, but obtaining these equations by re-

placing, in the linear equations, A by A(l + .t
11

) and B by B(l + .t
22

) is

not wholly satisfactory as we shall now demonstrate.

If we restrict ourselves to N~ = 0 for this purpose, Washizu's [7] membrane

equations for cylinders with A = 1 and R-1 = 0, can be written as:a

3



1 d d N13 £32
B dt3 (N13(l + £22)) + en (Na £21) - R

13
+Y = 0

d . 1 d N13(b (Na £31) + B dt3 (N13 £32) + R
13

(1 + £22) +z :-= 0

. where the t.. are the linear strains and rotations, namely
IJ

(2)

£12 = (liB) du/d~;

£31 = 0013 = dwlen

The technique for obtaining .the equations for the incremental or "reduced" forces

due to the prestress (labelled by some authors as variational equations) is to

express each dependent variable as the sum of the value corresponding to the

zeroth (basic membrane) state plus a small perturbation. Then we make use of

the fact that the shell is in equilibrium in the zeroth state and retain dnly those terms

that are of the first power in the perturbation quantities. To simplify the algebra

without deleting anything significant for our demonstration, let us restrict our­

selves to cylinders in which B = R8' N~8 = 0 and the membrane prestress result­

ants, NO and NO are constants. Then we have
a B

o .

These equations are self adjoint in contrast to those given by Bolotin.

4



While this review of Bolotin's equations may be on interest, it does not help

explain the differences in the equations presented by other authors, some of

whom have been mentioned previously. Many have used the principles of virtual

work or minimum potential energy, but the results depend on the strain displace-

ment relations utilized. For theories applicable primarily to metal shells, the

neglect of the nonlinear terms involving the inplane displacements in these relations,

which are not valid in general, has been proven permissible in numerous appli-

cations. However, we shall retain these terms to study their effects in the case

of blood vessels and present Washizu's theory [7] for a cylinder of general cross

section.

Equations for Cylindrical Shells Under Initial Stress when the
Strains are Small Compared to Unity

Let us now restrict our attention to those sets of equations in which the strains

are considered small compared to unity, while retaining all terms involving the

prestress resultants, but relax the assumption that the cross section is circular.

Once this particular small strain assumption is invoked, Washizu's equations can

be utilized directly and the matrix of differential operators for a membrane pre­

stress state in which the axial and circumferential stress are constant and the

inplane shear stress in zero, become

.' .--.;~ ..

o
·i (l-v) d (.! d) 0 ,l N~ d 1 d

Lll = ?xi + 2B ~ B dt3 + Na ?xi + If dt3 (13 di3)

(l+v) d2

= 2B a:xd~

(4)
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(4)

As we would expect, the prestress terms are the same as those in (3). The

operators L
23

and L32 differ by more than the sign, but recalling the definition

of a self adjoint differential operator it can be shown that they are the adjoints of

each other. For two dimensional systems, the adjoint operator of o{a(~,8)

u(~, B)}/o~, where a(~,8) is a coefficient of the indepengent variables only, is

by definition (-1) a(~,f3) ou(~,P)/~ and similarly for higher order derivatives.

We note that since the cylinders of concern here are developable surfaces it is

always possible to choose coordinates such that both Lame' parameters are unity,

i. e., we can replace BdB by ds wherever convenient. This is particularly

advantageous when demonstrating that the operators are self adjoint. For a cir-

cular cross section, the operators of (4) can be easily simplified by putting

a = x, 8=f> and R B= B = R.

·6



The prestress terms in these operators are then precisely those obtained by

Aremenekas and Herrmann [17]. However, when the circumferential prestress

is due to hydrostatic pressure, these authors show that certain prestress terms

are cancelled by force components that arise from the rotation of the applied

pressure. This fact is particularly important as we shall demonstrate later, but

is not always mentioned in the literature.

It is of interest to note that Fliigge's equations, as used by Anliker and

Maxwell [18] are identical with those of Herrmann and Armenakas [8] and the

succeeding papers bas,ed on this work; if the same assumption is made concern-

ing the application of the prestresses. In [18] the authors consider that after

the axial prestress is applied, axial expansion of the cylinder is prevented while

the cylinder is pressurized. This yields an axial prestress resultant of

NO + VN~, rather than NO if the shell is not restrained. We allow the ves-
x ~ x

sel to be unrestrained. In our notation the corresponding self adjoint operators

,for the theories based on FlUgge [5] and Herrmann-Armenakas [8] are

_. -. I

2 .
(l+v) 0

L12 :: L21 = 2R dxai>

L = _ L :: ~ ,,0 _ d
2

{ 0
3

_
31 . 13. R oX R ox3
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The differences btween (4) and (5) arise from two different causes. Firstly in (5)

the equilibrium equations in terms of the stress resultants, the last terms in the

operators L13 and L
31

do not occur in Washizu's derivation. However they

have -N¢ (v + ow/o¢)/R2 in the second equation and -N~(W + ov/o¢)/R
2

in

the third that do not appear in (5). These discrepancies will be shown later to be

caused by neglect of the changes of the hydrostatic pressure force component

that occurs when the shell undergoes perturbation rotations and midsurface strains.

Secondly the other differences that do not involve the prestress terms are due to

FlUgge [5] and Herrmann-Armenakas [8] using, for the definitions of the stress

resultants expressions such as

h/2
Nx = J a (1 + !) dz

-h/2 x R

while in essentially all other works, z/R is neglected compared to unity in the

expressions for the stress resultants. These terms are recognizable in (5) as

those containing d2 in all operators except L
23

, L32 , and L
33

•

In spite of the efforts of many investigators for decades, it is only recently that

a .generally accepted "correct" set of equations based on the Kirchoff-Love hypothesis

which describe the bellavior of prestressed thin shells. For many investigations, the

assumption of inplane displacements that are small relative to that in the transverse

direction has frequently been invoked to remove certain nonlinear terms in u and v

from the strain displacement relations. While controversy over the linear formula-

tion has been very pronounced until recently, there is as yet apparently no com-

plete agreement on the equation s that should be used in the general nonlinear problem.

There is no intent here to devise a new approach to the overall problem but rather to

review existing knowledge to explain certain facets of the behavior of prestressed

cylindrical shells of general cross section as applied to certain problems in bio-

8



mechanics while retaining the assumption of small strains. As an example let

us consider the equations of Sanders [10], which allow for the rotation of the

shell element about the normal to the middle surface. With this degree of com-

plexity we have, for the strain-displacement relations

(6)

The terms underlined by dashes represent the influence of rotation about the nor-

mal to the middle surface. In many types of problems it is justifiable to state

that the rotation normal to the middle surface is markedly smaller than the two

rotations about a,xes in the plane of the middle surface. When this assumption is

justified and the underlined terms are removed from (6) we have the strain dis-

placement relations which are frequently used in investigations of shell behavior

including stability. It is worth pointing out that nonlinear terms have been retained

only in the direct strains, leaving the curvatures as linear in the displacements; a

result of the "moderate rotations" assumption. Sanders [10] shows that retaining

all terms in (6) yields the following differential operators in the displacement equa-

o
tions of equilibrium for a circular cross section when Nx¢> = 0 and the other two

prestress resultants are constants:

9



?l (l-v)
(1

d
2

)
"(} (No + NO) cl

L11
x ¢

=2 +
,2R

2 +"4 -+
~R2 'Orf}'Ol}ox \------------- \

(l+v) '02 2 '02 (No + NO) 2
L12 = L21 = 3(1-v)d x ¢ '0

2R ~ 8R d"Xd"P -
---g~-----~

v '0 2 '03
L

31
(l-v) d

= - L 13 = R dX +
2R

2 'Ox'O¢2

(1+d
2

) '02 2 2 NO (No +' NO)
'02

L22
+ (l-v) (1 + 9d ) ~ r/J x ¢

=
'O¢2

- - +
'Ox

2
R

2 . 2 4 Ox2 R
2 2

-------------

d
2 '03 2 '03 °

L
32

1. '0 (3-v)d N¢ '0
= - L23 = 2' ~ - R2 0¢3- 2

ox
2

'O¢ + R2 ~
R

, °
L

33
= _d~2V2 V2 1 ° 0

2
~ 0

2

- R2 +N -+ -
X ox2 R2 0¢2

These operators are self adjoint and differ quite considerably from (4) as we

would expect since certain large inplane displacements are neglected in (7).

Thin Circular Cylindrical Shell Analyses Allowing For
Membrane Strains that are Nonlinear in the Inplane Displacements

In studying most of the contributions mentioned that are based on the small -

strain assumption, it is soon demonstrated that the displacement equilibrium

equations are self adjoint and thus, for the thin circular cylinder can be written

in symmetric form. Since self adjointness is evidenced by symmetry of the

differential operators in cartesian coordinates we have reason to be curious

about this apparent conflict with Biot's [5] and PflUger's [16] demonstrations

that the equations of elasticity for incremental deformations are non-symmetric

in cartesian coordinates. The clue to this paradox comes from the fact that the

10



majority of authors concerned primarily with the applications of shell theory,

neglect, in the strain displacement relations, all non-linear terms involving the

tangential displacements u and v. This enables the stress function to Q.e intro­

duced into the equations in a simple manner and means that they assume small

strains and rotations, from the start. Self adjointness of differential operators,

at least as usually defined [see e. g. Morse and Feshbach [19] has meaning only

for linear equations. Hence when the potential energy contains displacement

terms to powers higher than the second, whether the final equations from which

the eigenmatrix is formed are self adjoint or not, depends on the assumptions

made to linearize the Euler equations of the variational method. To illustrate the

situation let us consider two contributions directly usable for numerical studies

and which retain the nonlinear terms in u and v, namely Washizu [7] and

Herrmann-Armenakas [8] whose strain displacement relations for a circular

cylinder are

1 (Ov 1 {~u 2 dv 2 dw 2}€¢ = R dP - w) + 2R2 ,Cap) + (di) - w) + (v + d;5)

1 ~u ~v 1 { ~u ~u ~v Ov dw ." dw }
€x¢ = R~ + di + R ax ~ + dX (~ - w) + dX (v + dP)

(8)

(

2
low ~v

Kx¢ = R didfj + i)

Inserting (8) into the expression for the strain energy, neglecting z /R rel-

ative to unity and utilizing the calculus of variations in the time honored manner,

we obtain the large displacement equilibrium equations which were derived by

Washizu using the theorem of virtual displacements. They are

11



a ]; ~ au} 1 a {N¢ dU }dX "f'x(l +e x ) +. R. ~ + R~ R ~ + Nx¢(l + .ex) + x \ 0

~ -& {N¢(l + t¢) + Nx¢ ~} + i {Nx ~ + Nx¢(l + t¢)}

in which we have used the linearized strain displacement relations

w) ; ill =! (~ + v) j
x R op

These equilibrium equations consist of terms of two types, namely stress resultants

and their derivatives plus stress resultants times midsurface rotations, which

constitute the equations usually found in shell analysis which invoke the "small strain"

assumption. The second type of terms are those consisting of stress resultants

times midsurface strains. These latter terms result from a variational formulation

only when the nonlinear t~rms in the inplane displacements are retained in the strain-

displacement relations. When equation (4) is particularized for a circular cross

section and we introduce into (9) the assumption that the strains are small compared

to unity, the resulting equations are identical.

The complexity of the equations describing the motions relative to the prestressed

state, depend, to a large measure on the prestressed state. A simple situation, of

frequent interest, particularly in the field of biomechanics is when uniform axial

12



stretch and internal pressure constitute the prestressed state. When solving the

linear membrane equations for this loading, we obtain for a circu lar cross section

N~ and N~ as constants a~d N~ vanishes. For' non-circular shells the pre­

stress solution is much more involved. If we now assume an isotropic shell in

which the Young's modulus is independent of the prestressed state the perturbation

equations derived from (9) assume a relatively elegant form. To obtain them, we

use the standard technique of inserting N = NO + N' , eulex = eu0 lox + eu'lexx x x

etc., extracting all terms involving only the zeroth state and assuming that the

primed quantities are all small enough for their products to be negligible.

Now we may write the equations for perturbations about a prestressed state de-

fined by the constant strains in differential operator form as

u X

[Lij ] v + Y = 0

W Z

where

2 '

+'e o + v.e0} '(lL11 = (1 + 2.e° + v.e0 ) .-£... + .l:. {(l-V) (1 + .eo)x ¢ dX2 R2 ... 2 x ¢ x d'/?

(l+v) 2
L12 = (1 + £0) d

2R x dXaP

L (1 + 11°) ~ .2-13 = - XJ x R dx

(10)
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1 0 0 0 2{1 03 '.\3~L23 = - R2 (1 + 3t ¢ + 2v t ) "S?: + d - -- + (2-v) 2°
~ up , R2 0¢3 OX ()

\

(1 + 2t¢ + vt~)

. R2

It is clear that these operators are self adjoint for large strains only when

.t~ = .t~, i. e., when the prestress state is hydrostatic, substantiating completely

Biot's and PflUger's conclusion. The usual manner in which the influence of the

prestressed state is illustrated [see for example Biot [15J and Pfluger [16.]J is to

show that the non-symmetry in Cartesian coordinates occurs in the stress strain

relations and the degree of asymmetry is of the order of the initial stress as

divided by the elastic modulus. In our derivation the classic symmetric stress
degree of

strain law was assumed and the/non-self adjointness was also shown to be of

the order of the initial strain. In virtually all metallic structures the initial

membrane strains are indeed small compared to unity and the operators in (10)

can be simplified to those resulting from (4) and (9). However, in blood flow

problems they can be as high or higher than 0.6 and neglecting them is less justi-

fied. Throughout our discussion it must be borne to mind that while an elastic

stress strain law is reasona ble for the perturbation stresses in the blood vessel,

but it is not valid for the prestressed state. The determination of the actual pre-

stressed state in blood vessels is extremely difficult compared with virtually all

14



metal structures experiments •. Another word of warning is relevant at this time.

The shell equations we are utilizing are not valid for arbitrarily large strains

and rotations. A completely general analysis is beyond our scope.
\

'.

The equations we have discussed are considered typical of the literature

and to see how significant some of the differences are, let us turn to the

numerical evaluation of the phase velocities.

To study the importance of the assumptions made in the shell theories that

have been discussed in relation to certain biomechanics problems, it is of inter­

est to compute the phase velocity as a function of frequency and prestress levels.

The displacement relations for axially propagating waves in a cylinder of cir­

cular cross section were substituted into the equations of motion and the result­

ing eigenvalue problem solved for specified wave numbers. The form of the

displacement relations was

u(x, ¢, t) =A Cos kx Cos s¢ Sin crt

v(x, ¢, t) = B Sin kx Sin s¢ Sin crt

w(x, ¢, t) = C Sin kx Cos 8¢ Sin crt

(11)

These were inserted into (7) for Sanders" [10] theory and (10) for Washizu's [7]

theory and into (5) for the Anliker-Maxwell [18] utilization of FlUgge's [5] theory

and Herrmann-Armenakas' [8] theory. The computations were also accomplished

using Budiansky's theory [13]. The substitution of (11) into (5) and (7) leads to a

symmetric matrix because of the self adjointness of the operators, but that

derived from (10) naturally remains nonsymmetric.

Numerical Results and Discussion

A digital program was written using a readily available non-self-adjoint eigen­

value routine to extract the modes and frequencies for prescribed shell-fluid parameters

and wave number. After using the results presented by Anliker and Maxwell [18] to

15



check the accuracy, the nondimensional wave speeds were found as functions of

the nondimensional frequency for the theories mentioned previously. The results

are shown in Figs. 1 an~spondtoaoXiSymmetric waves. The former
~ ~N~J

shows the influence of axial stretch, w. i e the laJter illustrates how the wave
cv.) N .

speeds vary as a function of transmura pr ssur. Data for the s = 2 waves

did not show any differences from the results of [17] that could be considered

significant for physiological applications and therefore have not been illustrated.

For axisymmetric waves and N~ = 0, the predictions based on Sanders [10]

Budiansky [13] and Herrmann-Shaw [20] and our equation (5) agree very closely

with each other for the pressure and axial waves. The apparent lack of agreement

with [18J is solely due to the previously discussed different assumption concerning

the prestress application. However, for nonzero circumferential prestress there

are some significant variations among the results. They are most easily discussed

by considering the uncoupled torsion waves separately from the pressure and

axial waves, whose equations are coupled.

Torsion Waves

A somewhat surprising result is that unlike other shell equations, those of

Sanders [10] and Washizu [7] plus a number of other authors predict a cut-off

frequency for the type II or torsion waves whenever the shell is subjected to

transmural pressures (see Fig. 2). The cause for this can be seen by noting

that the equation for axisymmetric torsion waves is.

since for s = 0, L12 = L21 = L32 = L23 = 0 and the equilibrium equation

for the circumferential direction becomes uncoupled from the other two. For the

Anliker-Maxwell utilization of FlUgge's theory we have the characteristic equation

16



p
2

c (5:.)2= k

( ) (1+3d2) + NO
"[ l-v 2 x

=

+ v

in which the term v N~ vanishes when we use (5). According to this equation

the torsion waves are. nondispersive and have no cut-off frequency below which

they do not propagate. This is in contradiction with the other two theories men-

tioned. For example, from (10) we have according to Washizu's theory

\ ~'. .

while Sanders' theory yields
~ -_.. -

(1+9d2/4) (No + N°)

[(l-V) x 2 @] NO
2 (5:.)2

2 + ¢
C +,-= 2k P 'pk

In both of these cases it is the last term (N~ / p k2) that introduces both the

dispersion and the cut-off frequency for non-zero transmural pressure. As the

wave number approaches zero, so does the frequency and the wave speed becomes

very large as the frequency approaches zero, and we obtain the cut-off frequency.

The existence of the cut-off frequencies is also demonstrated by noting that for

finite values of (J, k can be zero. In fact, the above equations show that

2 NO / f b Th f (J = (N~ /p)1/2 is the cut-off(J = £) p or zero wave num ere ere ore 1J

frequency below which waves do not propagate.

This behavior for the rotationally symmetric torsion waves is so completely

contrary to all experimental evidence that it cannot be glossed over. An ex-

planation for the case of shells subjected to hydrostatic pressures is given by

17



Herrmann and Shaw [20] which uses the equations derived in [8]. It is shown that

the erroneous cut-off frequency arises when certain terms are omitted in the

derivation of the equations by neglecting the change in the direction of the hydro­

static pressure force induced by the perturbation rotations. If we retain these

terms and use equation (16) of [20], the equilibrium condition for the rotationally

symmetric torsion mode and for pressures acting on the shell midsurface is

(12)

o 2where !::, F fb = Nfb v/R , is the change of the circumferential force component

arising from the displacement. By taking the pressure to act on the shell mid­

surface the moment components Lmfb and lnn
z

' discussed in [17], [18] and [20],

are identically zero. If we substitute the above expression for !::,Ffb in (12) it

becomes

(13)

The questionable terms (which arise from the treatment <i the applied loading, not

the description of shell behavior) in Washizu's and Sanders' plus certain other theories

have been cancelled out by AF~ and the torsion waves are now also nondispersive. This

demonstrates the difficulties that can arise when the displacements and rotations of a

prestressed system are being neglected while the stress resultants are retained. For

many metal shell analyses except those involving torsional wave propagation this

approximation may well be entirely satisfactory. In the case of blood vessels however,

the displacements and rotations are generally much larger than in metal structures and

must be properly accounted for. For a circular cylindrical sffill, this is accomplished by

using either the equations of Budiansky [13] or those of Herrmann-Armenakas [8] and

18



Herrmann-Shaw [20], which reduce to those of FlUgge [5]. Hence the results

given by Anliker and Maxwell [18] are indeed correct.

However, if we accept the reasoning of Armenakas and Herrmann [17]

which is also employed in the subsequent papers, e. g. [20]. torsion waves

retain their cut-off frequency in the case of constant directional pressure since

/). FfD is zero in this situation. This produces a result which we also find to be

at variance with our intuition.

Consider an infinitely long shell whose internal pressure does not change

direction and which is undergoing rotationally symmetric torsional oscillations.

The rotation about the tangential base vector, namely ONI(j{ does indeed

vanish. Therefore, 6F is zero. However, the other component of rotationx

of the normal to midsurface is viR, and therefore. not zero and /).FfD is

again equal to N~v/R. Thus the extraneous term causing the cut-off frequency

is always cancelled out. This small modification is of little physical significa~ce

since the fluid pressure is hydrostatic in virtually all cases of practical interest.

Another item of interest in connection with the torsion modes is that the

results of Anliker and Maxwell [18] do not exhibit the same dependence on axial

prestress as do similar theories illustrated in Fig. 2. This discrepancy has

been explained by noting the different methods in which the prestress is applied.

In our applications, we did not restrict the axial motion and hence applying the

pressure does not contribute to the axial prestress. It should be mentioned

that this latter assumption affects the torsional phase velocities. However, it

is not necessarily representative of blood vessels under "in vivo" conditions

since they are anchored by branches and connective tissue and therefore do

not change their length with pressure.

Pressure and Axial Waves

The contributions to the equilibrium equations of the terms involving the

applied pressure times the perturbation rotations and strains are accounted for
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by Budiansky [13]. The two inplane equilibrium equations contain the rotations

times the hydrostatic pressure while in the normal equation the pressure is
\

multiplied by the sum of the inplane strains. A situation entirely analogous to

the one involving the behavior of the torsion waves, occurs in the third

equilibrium equation. The variation of the strain energy yields a term which is

cancelled by the pw/R element in the expression accounting for the hydro-

static pressure•. The neglect of this pressure term is the cause of the behavior

of Washizu 's equations and all others which make the same approximation.

Thus Sanders' [10] theory predicts phase velocities that are independent of

internal pressurization for types I (pressure) and III (axial) waves by properly

accounting for the change in direction fo the pressure. This is also true in the

theories of Budiansky [13] and Herrmann-Shaw [20] in addition to our form of

FlUgge's theory in (5). The only reason for the dependence on internal pressure

of phase velocities for the rotationally symmetric modes in Anliker and

Maxwell is due to the method in which the prestressed are applied.

Also illustrated in Fig. 1 isthe consistent nondispersive character of the

type III (axial) waves. Only Sanders' theory predicts axial phase velocities

independent of axial stretch while the other theories applied, in particular

Washizu's, show a strong influence of axial stretch. The reason for this is to

be found in the absence of the (ClU/ClX)2 term in the expression for the axial strain

and its influence on the operator L
11

• For rotationally symmetric waves, the

L
U

coefficient in the frequency determinant for Sanders' theory is simply k2

while in the other two theories it is k2 times a function of the axial stretch

which accounts for the noted dependence.

Another interesting result ·of the method of application of the prestress

comes to light when we note that in (5), all the phase velocities are virtually

independent of internal pressurization. This disagrees with Anliker and Maxwell
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only because of the previously mentioned application of the prestress, which re-

sults in terms involving Poisson's ratio times the circumferential prestress
. . \

resultants. In our application of FlUgge's theory, all three types of waves are

independent of pressurization within dra wing. accuracy of the curves shown in

Fig. 2.

Consideration of Non-Self-Adjointness of
Washizu's Equations

Attention has been drawn to the fact that the "moderate strain" from of

Washizu's accounting for nonlinear inplane displacements, as discussed, yields

displacement equilibrium equations which are non-self-adjoint and thus we

know from well established theory [e. g. [18]] that the eigenvalues of the basic

system and its adjoint are identical, but that the eigenvectors of the two systems

are different and form a biorthogonal set. The adjoints of the operators in (12)

are easily found by replacing .t~ by .t~ and vice versa in the off-diagonal

terms. The modal amplitude coefficients were indeed slightly differe~t and we

provide the following table as typical results.

TABLE I

TYPICAL MODAL COEFFICIENTS FOR THE ANLIKER-MAXWELL
o 0WASHIZU THEORY FOR Nx = 0.4, N~ =0 AND k = 5.0

Wave Shell Theory'Modal Displacement

Type
Washizu [7]

Anliker-Maxwell [18]
Washizu [7]
Basic System Adjoint System

Axial Torsion Radial Axial Torsion Radial Axial Torsion Radial

I -0.044 0 1.0 -0.0469 0 1.0 -0.0335 0 1.0

II 0 LO 0 0 LO 0 0 LO 0

III LO 0 0.044 1.0 0 0.0335 LO 0 0.0469
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For this demonstration all coefficients less than 10-5 in absolute value have

been replaced by zeros in Table I.

These results illustrate the theory by showing that for the self adjoint oper­

ators of [18], the modes are orthogonal, while those of Washizu [7] for both the

basic and adjoint equations are not orthogonal, but they are biorthogonal. How­

ever, the fact that the modes predicted by [7] are not quite orthogonal is of

negligible importance in the study of high frequency waves induced mechanically

in the cardiovascular system.
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CONCLUSIONS

The phase velocities predicted by the small strain theories of Herrmann and

Shaw [20], Budiansky [13], and our application of FlUgge's [5] theory are' ,considered

to be correct. Our results are nothing more than those of Anliker and Maxwell [18]

with a different assumption concerning the application of the prestresses. All three

wave speeds are essentially independent of internal hydrostatic pressure if the

cylinder walls are not axially constrained.

It is demonstrated that the neglect of the force component induced by the per­

turbation rotation of the applied pressure leads to the prediction of a cut-off

frequency below which no torsion waves are propagated for non-zero transmural

pressure. The importance of including these contributions to the equilibrium,

which are frequently neglected, accounts for the correctness of the theories. For

future studies of this type on shells of general geometry, those of Budiansky [13]

are recommended.

The nonself adjointness of the moderate membrane strain theory of Washizu [7]

isshown to occur due to the inclusion of nonlinear inplane displacements in the strain

displacement relations. The modes obtained from the resulting eigenmatrix are

very similar to those of the adjoint eigenmatrix. Thus, the nonselfadjointness

character of the equations is of negligible importance for the physiological problems

of wave propagation in the arterial and venous systems.
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A, B

E

NOTATION

,/
Lame parameters

Nondimensional phase velocity

Normalizing phase velocity

Normalizing Young's modulus

Linear midsurface strains.

\ ,

L ..
IJ

1- .•
IJ

- 2--
NO!, NB, Nap = NO!(l-V ) Eh, etc.

Nondimensional shell wall thickness

Nondimensional wave number

Differential operators

Midsurface strains and rotations

Nondimensional moment resultants

Nondimensional force resultants

Nondimensional radii of curvature
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u, v, w = u IRo' etc.

x,¢

X, Y, Z = X(l-J)/Eh, etc.

~,B

--2 - - - 2
0'0 =E/pRO(l-v)

Normalizing geometric dimension

\
Nondimensional midsurface displacements
in the axial, tangential and normal directions

Axial and circumferential coordinates of a
general cylinder

Nondimensional applied force resultants

Axial and circumferential coordinates of
a general cylinder

Nonlinear midsurface strains

Curvatures

Nondimensional wave length

Nondimensional density

Normalizing frequency

Rotations
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superscripts

o

Denotes a dimensional quantity

Denotes a prestress quantity
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