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AN ANALYSIS OF THE EXPECTED ECCENTRICITY PERTURBATIONS

FOR THE SECOND RADIO ASTRONOMY EXPLORER (RAE B)

James P. Murphy

The second spacecraft in the Radio Astronomy Explorer series, RAE B,

is to be placed in a nearly circular lunar orbit. The orbit is to remain
circular, with an eccentricity constraint of less than 0.005 for a period of a

year or more, if possible. This constraint is made because of factors

concerning the dynamical stability of this gravity gradient spacecraft and

the economical reduction of the experimental data. Other constraints upon

the orbit are the result of sunlight conditions and the precession of the

orbital plane. Thus, original plans called for a circular orbit about 1100 m

above the lunar surface with a selenographic inclination between 120 and

130 deg and an initial longitude for the ascending node of 282 deg. The

initial values of the argument of perilune and the eccentricity were arbitrary

so long as the latter was less than 0.005.

Past experience with the Lunar Orbiter and Apollo missions has shown

that eccentricity perturbations have been quite severe. The Apollo orbits

were close, circular, and nearly equatorial; the Lunar Orbiter spacecraft flew

more distant elliptical orbits with either low or nearly polar inclinations.

The RAE B orbit is to be circular, as in the Apollo missions, but more

distant, as in the lunar Orbiter missions, and with a moderate inclination

unlike either of these two previous missions. Nevertheless, eccentricity

histories for these missions can be useful in planning for RAE B. One such

history is presented in Figure 1. The dots in this figure are the actual

elements determined from the tracking data. The solid line represents a

numerical integration that used the current operational Apollo field, the L1

model. Two points can be made: First, the eccentricity perturbations are
large relative to the RAE B eccentricity constraint, and second, the L1

model predicts this eccentricity variation quite well. It should be mentioned
at this point that the results presented in this study were obtained by the

use of eight different lunar gravity models developed at the Jet Propulsion
Laboratory, the Langley Research Center, and GSFC. The main results of

this study are essentially independent of the gravity field chosen. All the
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resultsaredocumentedin aGSFCreport,butbecauseoftimelimitations
wewillconcentrateontheresultsobtainedfromtheL1model.

Eccentricityperturbations for RAE B are of two types: The first type

has a monthly period, while the second type has a period of the order of

many years and hence appears to be linear during the course of a year. An

analytical development of these perturbations follows.

The monthly eccentricity variation is

3 n C3,1 sin 2 i(1 + 3 cos i) - 4(1 + cos i cos (6o + _2)fie- 16 n

- [5 sin 2 i(1-3 cos/)-4(1- cos i)] cos (co- I2)}

It can be seen that the amplitude is a function only of the semimajor axis

and inclination of the orbit and of certain physical parameters such as the

rotation rate, mean radius, and gravity coefficients of the Moon. If one

evaluates this amplitude for various orbits within the RAE B nominal range

and for various lunar models, it will be observed that this amplitude hardly

changes. For instance, if a = 2838 km, and i_ 120 deg then from the L1
model,

6e = .00185 cos co cos I2 _ .00185 cos _2.

It should be noted that this would result in a peak-to-trough variation of

0.0037. In other words, 74 percent of the eccentricity constraint would be

reached in a month or less. Therefore, any appreciable long term

perturbation would be most unwelcome. Unfortunately, for any value of

the inclination in the originally proposed range and for any of eight lunar

gravity models tested, the envelope of the eccentricity variation had a very

substantial positive slope. After tabulating the results of some parametric

inclinations studies and after performing an analysis of the perturbation

equations in analytical form, we discovered that the positive slope would

vanish for an inclination of 116.565 deg, just a few degrees under the

nominal inclination range. This value is that of the so-called retrograde

"critical inclination", which was given much attention in the literature
during the early stages of the development of artificial satellite theories. As

an approximation, one may write for the long-term perturbations:

=-A cos

_o = (A/e) sin w,
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where

3
A = 8 \a/ nC3,0 sin i(1 - 5 cos2i).

When these equations are solved, the results are

e sin to = e 0 sin w 0

e cos to = e 0 cos w 0 - At.

It can be deduced from these equations that, regardless of the sign of

C3,0, the eccentricity will grow linearly in time so long as A is nonzero.

However, A vanishes at the recommended inclination of 116.565 deg. The

results of this analytical treatment were confirmed by numerical integration

of an RAE B orbit. One set of integrations is shown in Figure 2. After

considering all the results of a lowering of the value of the nominal

inclination, the RAE project accepted the recommendation for a new

nominal inclination.
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Figure l--Eccentricity versus time for Lunar Orbiter 5 (arc 4).
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Figure 2-Eccentricity versus time for RAE B.


