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SUMMARY

Although full-scale fatigue testing is now widely adopted in modern aircraft

design practice, the current fatigue-life assessment procedures do not utilise all of

the test data that is obtained, and they only partly take account of the probability of

failure of the structure during the period in which it is being progressively weakened

by the fatigue crack.

The present paper is concerned with the application of reliability theory to pre-

dict, from structural fatigue test data, the risk of failure of a structure under service

conditions because its load-carrying capability is progressively reduced by the exten-

sion of a fatigue crack.

The procedure is applicable to both safe-life and fail-safe structures and, for a

prescribed safety level, it will enable an inspection procedure to be planned or, if

inspection is not feasible, it will evaluate the life to replacement.

The theory has been further developed to cope with the case of structures with

initial cracks, such as can occur in modern high-strength materials which are suscep-

tible to the formation of small flaws during the production process.

The method has been applied to a structure of high-strength steel and the results

are compared with those obtained by the current life estimation procedures. This has

shown that the conventional methods can be unconservative in certain cases, depending

on the characteristics of the structure and the design operating conditions.

The suitability of the probabilistic approach to the interpretation of the results

from full-scale fatigue testing of aircraft structures is discussed and the assumptions

involved are examined.

_TRODUCTION

In recent years the development of high-performance aircraft using new high-

strength materials and more refined methods of stress analysis to satisfy the ultimate

strength requirement has led to the fatigue performance of aircraft structures becoming

a progressively more important factor.
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Basic studies of the fatigue behaviour of completestructures, suchas those
described in references 1 and2, have shownthat a full-scale fatigue test of the structure
under representative loading conditions is essential to identify the fatigue critical areas
and accurately represent the complex stress conditions under fatigue loading.

Although full-scale fatigue testing is nowwidely adoptedin aircraft designpractice,
this usually consists of applyingto a single test specimena loading sequencerepresenting
the service load history.

Completefailure under the test load sequenceor the appearanceof a crack of a
particular length is definedas failure and the results are appliedto determine a life under
the service loading conditions.

However,such anarbitrary criterion of failure does not consider the increasing
risk of static failure to which the structure is subjectedas it is progressively weakened
by the growing fatigue crack. The actual risk of failure couldtherefore differ consider-
ably from that obtainedby the currently used methods of life estimation.

Furthermore the difficulty of detectingvery small cracks with current techniques,
together with the susceptibility of the modernhigh-strength materials to the formation of
flaws in production, may result in someprobability of cracks existing in airframes prior
to entering service.

This paper is concernedwith applying reliability analysis to calculate the probability
of survival as a function of life from the results of the full-scale fatigue test, including the
caseof structures which may be initially cracked.

NOMENCLATURE

Footnotes for the nomenclature are found at the end of the list.

a

aF

a o

aD

crack length (this may refer to crack length at surface, crack depth, or

some other specified dimension of crack front)

crack length for complete collapse under mean load (or crack length at

which slope of crack propagation curve becomes infinite)

length of the largest crack that will not be detected during production

process

length of largest crack that will not be detected during in-service

inspections

276



a c

Ft(tl)

hl

lo,lD, lc

lN,ln

L(n)

LF(n),Lsin),

LI(n), L I-in),

LsL in), Ls, _ in)

Lsih)

N

Ni

H

h

Nl

length of initial crack in any structure which is cracked at beginning of

its service life

probability of variate t exceeding some particular value t 1

period of operation ior service life) to extend a crack to length 1 in

structure which contained initial crack of length lc, hl = nl - n c

relative crack length a/a F (l is dimensionless and has same value

whether "a" refers to crack length at surface or to crack depth)

relative crack lengths corresponding to a o,

median values of distributions of l at life

aD, ac, respectively

N and relative life n

probability of survival to life n (also called the survivorship function)

survivorship functions at relative life

tions, rF(n), rs(n), rI(n) , ri*(n) ,

respectively

n, corresponding to risk func-

rsL(n), and rs,_(n) ,

survivorship function at relative service life h corresponding to risk

function rsih) for structures with initial crack

life of structure expressed as number of load applications or hours of

operation

life to first formation of fatigue crack (also called life to inital failure)

service life of structure which was initially cracked expressed as num-

ber of load applications or hours of operation

relative service life of structure which was initially cracked, H/N i

life to produce crack length l in any structure

median of the distribution of Ni

relative life, N/N i
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nl relative life to crack length l for any structure

n/_z
life of structure which has life

length l

z times median life at same crack

nF

no,nD,n c

n/,nF,no,nD,nc

ns

NL

nI(1),nI(2),nI(m)

relative life to complete collapse of structure under mean load

relative lives to produce crack lengths of lo, lD, and lc, respectively

medians of distributions of nl, nF, no, nD, and nc, respectively

relative life corresponding to particular life N s

estimated mean fatigue life obtained from structural fatigue test

relative lives to 1st, 2d, and ruth inspections carried out to detect

fatigue cracks

PR' _ R

t Px(Xl)

_[Px (Xl)

P(N)

probability density function of residual strength R with mean

value gR

probability density function of variate x at particular value x 1

probability distribution of variate x at particular value Xl,

: Pr(x _'-x0

probability of failure up to life N

R(/) static strength of structure containing fatigue crack of relative length l

r(N) probability of failure in remaining fleet at Nth load application or risk

of failure at life N

r(n) risk of failure at relative life n for unit change in z

r(h) risk of failure after period of operation h in population of structures

which contain initial cracks for unit change in z
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r<hs{Zo)

I p(Zc))

rs(ns)

rs, tz(ns)

rF(ns)

risk of failure after a period of operation h s in population of struc-

tures all of which contain initial crack of length l o

risk of failure after period of operation h s in population of structures

all of which contain initial cracks with probability distribution of

initial crack lengths given by P(lc)

risk of static fracture due to fatigue at particular life ns, defined as

failure at life n s from fatigue crack in structure which is still able

to sustain applied service load exceeding mean load

risk of static fracture due to fatigue at life ns, assuming no variability

in residual static strength of structures all containing cracks of given

length

risk of fatigue fracture at life ns, defined as failure at life n s due to

fatigue crack reaching such extent that structure is unable to sustain

mean load

rFT(ns) the total risk of fatigue failure at life ns, rFT(ns) = rs(ns) + rF(ns )

rsL(n)

_rI(ns;/D, nI)

ri* (ns;/D, ni)

_ri*(ns;/D, ns)

risk of failure at life n as calculated by conventional safe-life

procedure

risk of fatigue failure at life n s in population of structures which have

all been previously inspected at life n I with inspection procedure

which detects crack lengths greater than l D

risk of fatigue failure at life n s

are detected by inspection at

returned to service

when cracks of length exceeding l D

n I and are then repaired and structures

risk of fatigue failure at life n s with continuous inspection procedure

by which cracks with length exceeding l D are detected and are then

repaired and structures returned to service
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*ri*(hs Ip(Zc);ZD,hs)

ri*(ns;/D,rmax)

* ri*(h s [ P(/c);/D,rmax)

* rD*(nI(m);/D,nI(m- 1))

rD*(hI(m) [ P(lc);lD,hI(m-1))

risk of fatigue failure after period of operation h s in

population of structures all initially cracked with dis-

tribution of initial crack lengths given by P(/c) and

continuously inspected to detect crack lengths

exceeding /D; after cracks are detected they are

repaired and structures returned to service

risk of fatigue failure at life n s with inspection proce-

dure detecting crack lengths greater than l D at

inspection intervals designed to limit risk below some

specified value rmax; after cracks are detected they

are repaired and structures returned to service

risk of fatigue failure after period of operation h s in

population of structures all initially cracked with dis-

tribution of initial crack lengths given by P(/c) and

inspected to detect crack lengths exceeding lD at

inspection intervals designed to limit risk below some

specified value rmax; after cracks are detected they

are repaired and structures returned to service

probability of detecting cracks by inspection at life

ni(m) in population of structures previously

inspected at ni(m_l) with an inspection procedure

detecting crack lengths exceeding /D; after cracks

are detected they are repaired and structures

returned to service

probability of detecting cracks by inspection after period

of operation hi(m) in population of structures all

initially cracked with distribution of initial crack

lengths given by P(lc) and previously inspected at

hi(m_l) to detect crack lengths exceeding /D; after

cracks are detected they are repaired and structures

returned to service

S applied service load

Sult ultimate design load
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Sm mean load on structure

U gust velocity

Y relative service load, S/SUlt

general symbols for mean and variance of population; used with suffix

to denote variate

ILo

 R(Z)

 R(Z)

_o

x(Z)

mean strength (failing load) of uncracked structures

mean strength of structures containing cracks of length l

median crack propagation curve for population of structures,

mean residual strength expressed nondimensionally as function of crack

_R(/)
length l, - _b(1)

_o

relative strength of any structure containing crack length

x(t) =
_R (/)

l,

comparative life or life factor of structure with life to crack length

Nl,z n/,z

of z times median life to same crack length, z = _l--_- or nl

?Where no confusion can arise subscript for variate may be omitted.

_Actual dimension of detectable crack a D may be specified instead of relative

crack length l D.
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INTERPRETATION OF FATIGUE TEST RESULTS

vided

With the present practice of fatigue certification by full-scale testing, the data pro-

by the test specimen representing the median structure of the population includes

(1) Location of the fatigue critical areas

(2) The median crack propagation curve

(3) The life to final failure under the test load sequence

(4) Residual strength data from static failure of the cracked specimen under the test

load sequence, which include the failing load and the extent of fatigue cracking

CURRENT APPROACHES TO SAFETY IN FATIGUE

The current practice is to obtain from these results a mean fatigue life N L

corresponding to failure at some arbitrarily selected point on the crack propagation

curve.

For a safe-life structure, N L may be the life at which the specimen broke in the

fatigue test or the life at which it would be estimated to fail under some specified load

such as limit load. For a fail-safe structure, N L is often taken to be the test life at

which the fatigue failure became readily detectable by the inspection procedures that

would be used in service.

In order to allow for variability in fatigue performance for either structure, the

estimated mean life N L is divided by a scatter factor to obtain a safe operating period

for replacement or inspection of the structure. The scatter factor is obtained by using an

assumed probability distribution of fatigue life with an acceptable probability of failure.

DIFFICULTY WITH CURRENT METHODS

The difficulty with the previously discussed procedure is that although the safe life

to replacement or inspection is based on failure at a given point on the crack growth

curve, there is, in service, an increasing risk of failure as the fatigue crack extends and

the structure may fail at any stage of the crack propagation.

This difficulty is well illustrated by the measurement of the collapse load of Mustang

wings that were fatigue tested to destruction under a random load sequence (ref. 1). In

figure 29 of reference 1, the relative frequency distribution is presented for the load at

failure as determined by experiment. For the twelve structures tested the results indicate

a wide range in the failing load from 30 percent to 60 percent of the ultimate load of the

virgin structure. This means that for a given life the safety level in service may be sig-

nificantly different from that indicated by the fatigue test result.
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Clearly the effect will depend on the shape of the crack growth curve and on the

service load spectrum; however to investigate the question further an example of an

ultrahigh-strength steel welded structure has been taken. The crack propagation and

residual strength curves of this structure are shown in figure 1 and indicate a reasonably

typical safe-life construction in that once a fatigue crack has developed there is a very

marked reduction in strength which leads rapidly to failure.

The probability of survival has been calculated for this structure by the conventional

method, taking two rather extreme cases for the definition of failure as follows:

(1) Failure occurs at the limit load. This is a relatively high value of the load,

being near the upper limit of loads at which failure would be expected in service.

NL : NsL-

(2) Failure occurs at the mean load. This is the lowest load at which service

failure can occur and it will give a lower limit to the definition of failing load. blL = NF.

The probabilities of survival cor.responding to definitions (1) and (2), LsL and

LF, have been evaluated for the two load spectra shown in figure 2 by a log normal dis-

tribution of fatigue life.

If Nl is the fatigue life to any crack length l and _1l is the median value, then

Nl
Z =--

Nz

has a logarithmic normal distribution and

pz(Z) dz
LF(N ) = _l F

(1)

oo

_N/ pz(Z) dzLsL(N) = _sL
(2)

The results are plotted for the manoeuvre load spectrum and the gust load spectrum

in figures 3 and 4, respectively. For both spectra, L F is considerably more than LsL;

this indicates that the point on the crack growth curve at which failure is defined will

have a significant effect on the safety level.

RELIABILITY ANALYSIS OF FATIGUE FAILURE

Consider a more representative model of the fatigue process in which a structure

progressively weakened by the fatigue crack may be broken by a service load at any stage
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of the crack propagation. The structure may survive this risk and continue in service

until the fatigue crack has reached the stage where the crack propagation curve is rising

practically vertical. The residual strength of the structure then drops rapidly until it

reaches the mean load when failure must ensue. This is essentially a case where failure

occurs by the fatigue process alone and in this paper the failure is termed "fatigue

fracture."

The risk of failure in this mode has been considered in the section "Interpretation

of Fatigue Test Results" where the probability of survival LF(N ) at the life N has

been derived in equation (1) as

oo

LF(N ) = _N/N F pz(Z) dz

and the corresponding risk of failure is readily obtained as

¢3>rf(N) =

_N/_ F pz(Z) dz

In addition to the risk due to fatigue fracture, there is the risk of failure due to

chance occurrence of a service load on a structure weakened by fatigue cracking although

the structure is still able to maintain the steady load. Current methods fail to take full

account of this risk which is called herein the "risk of static fracture due to fatigue" and

denoted as rs(N).

The total probability of fatigue failure at N is therefore given by

rFT(N) = rs(N ) + rF(N) (4)

If it is desired to indicate a specified value of the service life, N s may be used rather

than N; therefore, an alternative form of equation (4) is

rFT(Ns) = rs(Ns) + rF(Ns)

RELIABILITY ANALYSIS WITH VARIABILITY IN FATIGUE STRENGTH

First consider the risk of static fracture due to fatigue in the simplified case where

there is no variability in static strength but a characteristic distribution of fatigue life at
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any given crack length. Next consider the probability of failure in the fleet at the Nth
load cycle (i.e., the risk of failure at life N) of structures all containing cracks of the
samecrack length a which may be expressednondimensionally in terms of the crack
length aF at which the structure would fail under the meanload; that is, l = a/a F.

Let S N denote the Nth service load and It(l) the residual strength of structures

with crack length l. R(/) is a decreasing function of l and may be expressed non-

dimensionally in terms of the ultimate strength go of an uncracked structure as

a__ _-
go

Hence

C5)

Pr fFailure at life
N I crack length

II P F(N//)>

Pr(SN = R(/)_

Pr (SN > _o¢(/_

(6)

where Fs(s ) is the probability of exceeding any service load s. The total probability

of failure in the fleet at life N (i.e., the risk of failure at N) is then obtained by

summing over all crack lengths from 1 = 0 to 1 = 1

1

rs'g(N) = _0 PF(N//) p(/) d/

1

--_0 Fs ("°*[Z])P(Z) (7)

where rs,/_(N) denotes the risk of static fracture at the life N assuming that there is

no variability in the static strength at a given crack length.

The probability density function p(/) of the crack length l at any given life N

is not known but this difficulty is overcome by transposing the variate from crack length

at a given life to life at a given crack length. This is done by using the model of the

fatigue process shown in figure 5 in which it is assumed that for any structure the life N l

bears a constant ratio z to the median life bl I at the same crack length l,

N l = zN l
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or by expressing life nondimensionally in terms of the median life to initial failure

NZ = Z_g:-=n l
N i

(8)

where z is constant for any structure and is called the life factor. By considering the

shaded element in figure 5 it can be seen that structures with crack lengths between l

and l+dl at N have initial lives between n i and n i+dn i. Hence

p(l) d/= P(ni)dn i

= p(z) dz

ni
since z = :--. This expression neglects the effect on the probability density function of

ni
n i of the very few structures that have failed between ni and n s.

If the equation of the median crack propagation curve

= =

is used, equation (7) can now be transformed by changing the variable of crack length

to one of fatigue life represented by the life factor z. Taking z = n at l = 0 and
n

z ==-- at l= 1, equation (7) can now be written as
n F

rs,/_ (n) = _nn/_F FS (tto (b(g[n])_ P(Z) dz

(9)

(lO)

RELIABILITY ANALYSIS WITH VARIABILITY IN FATIGUE STRENGTH

AND STATIC STRENGTH

In the preceding section it was assumed that there was no variability in the residual

strength property, whereas, in general, at any crack length l, the residual strength R(/)

will have a probability distribution about a mean value /_R(/). If the dimensionless

variate x(l) = R(/) is assumed to have a characteristic distribution which applies for
/_R(Z)

allvalues of crack length,then

R(/) = ttR(/) x(/)
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and tZR(l ) can be expressed as a decreasing function of l from equation (5) as

R(t) = x(t)

This is analogous to equation (6), and integrating over all crack lengths gives as before

rs(nlx(Z)) = Fs dz

To obtain the total risk of static fracture at n, integrate over all values of

0 to _ to get

x(/) from

(n)

rs(n) = nFFs /_o¢ p(z)p(x) dz dx
(12)

This equation is the general expression for the risk of static fracture by fatigue at

life n. As stated earlier an alternative expression using n s instead of n may be

adopted where the risk at a specified value n s of the service life is desired. This

expression is

rs(ns) = ffF

PROBABILITY DISTRIBUTION OF THE LOAD AT FAILURE

It is of interest to consider the probability distribution of the load at failure since

this indicates how the risk of failure is being affected by the changing residual strength of

aircraft in the fleet.

The condition for investigation is the probability that at a given life n s structures

will fail with a residual strength less than some specified value R o.

or

Requiring

R =<Ro

R Ro
x_-__= < __

_R b_R
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then substituting

or

_a = %¢(0

a o
x_<__

_o_(Z)

where

and transposing the variate from crack length l to the life factor z give

X o
x <

From equation (11)

Pr (Static fracture at n s with the collapse load <_-Ro_

ns _x:XO/_ (g[_-_s]7 _ <gnI_])_
= Snarl F _ Fs _oV p(x) p(z)

where

dxdz (13)

Since the total probability of static fracture due to fatigue at n s is given by

rs(ns) , the required probability distribution for the load at failure at a specified life

is as follows:

ns
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Pr
Failing load-/_oXo at life nst

Jns//_ F _0 rs(ns)

(14)

APPLICATION OF THE METHOD

To illustrate the method of reliability analysis and to compare the results according

to the various risk functions in equations (2), (1), (10), and (12), the risk of failure has

been calculated for a nonredundant high-strength steel structure. Sample test data for

the structure are shown in figure 1.

The crack propagation curve has been determined from the results of a representa-

tive full-scale fatigue test in which fractographic examination of the fracture surface of

the critical failures has been used to determine the crack dimensions at various stages

of the test life. Although the curve in figure 1 is based on the crack length at the surface
a

of the material, use of the nondimensional relative crack length l = _FF enables it to

represent also the crack depth or any other leading dimension of the crack front.

_R
The residual strength curve _ = _b(1) has been estimated from the relationship

bto

1 = A based on fracture mechanics theory, where A is a constant depending pri-

marily on the fracture toughness of the material and the shape of the crack front.

The variability in residual strength about the mean value _R was assumed to

follow the three parameter Weibull distribution, and with representative data on small

steel specimens (ref. 3), the following expression was obtained for the probability distri-
R

bution of the relative residual strength x = D:
bLR

x) -Px(X) = Pr (R...n --- = 1 - exp

The crack length at failure under limit load, according to the relevant fatigue test

data used, is approximately 0.08 in., giving a crack depth of 0.04 in. for a semicircular

crack.

The distribution of fatigue life about the median value was assumed to be log normal

with variance m_-gN of 0.02.
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Two service load spectra were assumed as shown in figure 2. Spectrum I is a

spectrum of manoeuvre load derived from data on U.S. jet fighter operations in refer-

ence 4. A median life to initial failure of 2000 hours was assumed to correspond to the

fatigue test result, and an ultimate load factor of 10 was assumed, which gives a mean

load of 10 percent of the design ultimate.

Spectrum II was based on thunderstorm gust load data from reference 5 giving the

probability of exceeding a gust load U as Fu(U) = e -0"197U. Expressing load non-

dimensionally as

S
y_-m

SUIt

where S is the load due to a gust velocity U and SUI t is the load corresponding to

the ultimate design gust velocity of 99 fps with the mean load of the aircraft assumed to

be 20 percent of the design ultimate, gives the following equation for the gust load

spectrum:

Fs(Y ) = e-24.4(Y-0.2)

A life to initial failure of 20 000 hours was assumed as typical of this type of spectrum.

The four different risk functions of equations (1), (2), (10), and (12) have been

evaluated by using numerical analysis techniques (ref. 6) for both spectra I and II. The

corresponding probabilities of survival to life n have been calculated from the relation-

- _' r (t) dt
ship L(n) = e -v and are plotted for spectrum I and spectrum II in figures 3 and 4,

respectively.

These results show that conventional safe-life estimates as represented by LsL

(LsL corresponds to static fracture of a fatigue cracked structure under limit load and

is in accordance with current life estimation procedures) can be inaccurate since they

fail to take proper account of the risk of static fracture of the structure weakened by the

growing fatigue crack.

Comparison of L s and Ls, g indicates that the variability in residual strength

has a significant effect on the probability of survival (or failure). The probability of

survival L F refers to failure due to the fatigue fracture extending to the stage where the

structure is not able to sustain the steady mean load. The risk from this type of failure is

often small but as mentioned previously it must be included in the total risk.
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RISK OF FAILURE IN STRUCTURES INITIALLY CRACKED

With the high-strength materials of low ductilitynow being introduced intoaircraft

construction there is a difficultyof detectingvery small cracks with current nondestruc-

tive inspection (NDI) techniques. This factor together with the susceptibilityof these

high-strength materials to the formation of flaws in the production process may result in

a probabilityof cracks existing in a number of aircraft structures before they go into

service.

STRUCTURES WITH INITIAL CRACKS OF CONSTANT LENGTH

In the most adverse case, all structures are assumed to be cracked in the fatigue

critical areas to a relative crack length l o which corresponds to the maximum length of

crack that will escape detection. According to this assumption all structures start their

service life with a crack of length l o present.

In the model of the fatigue process illustrated in figure 5, all the crack propagation

curves can be regarded as radiating from a single point or pole P. H all structures are

initially cracked to the same length lo, this corresponds to shifting the pole to the

point P' with coordinates (ffo,/o) as shown in figure 6. Each structure now starts its

service life h at the life n o which would have produced a fatigue crack of length l o

in this particular structure. This infers that the initial crack or defect induces the same

stress field as a fatigue crack of the same dimensions in the area being considered. It

may be regarded as a fair assumption since under repeated loading the defect will rapidly

initiate a fatigue crack which can be expected to give rise to a similar stress field as that

which would result if the crack had been produced by fatigue alone.

Referring to figure 6 shows that for any structure which has a life factor z = nl/_l,

the service life hl to any crack length l is given by

hl =n I - no =zff/ - zff o =z(ff/- fro)

For the median values,

hZ -

Hence

hz = z (Is)
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Therefore, the samemodelof the crack propagationprocess applies as for structures

without initial cracks exceptthat the origin is shifted to (_o,lo), the service life is given
by hs = (n s - no) = z(ff s - rio) = zh s, and the equation of the median crack propagation

curve is transformed to

The risk of failure is therefore obtained in the same way as for structures initially

uncracked, and by integrating over crack lengths from l = 1o to 1 = 1, the following

equation is obtained from equation (7):

rs,#(nllo)=_l Fs I_to_b (p(l) d/
O

(17)

Hence if the variable is changed from one of crack length to one of fatigue life at a

given crack length as represented by the life factor z, the following equation is obtained

from equations (17) and (16):

,"=,,.,.,:==I'.o:>- ,':,-.>iF_io) Is o_b + fro
(18)

where rs,_t(hs I lo) denotes the risk of failure at a particular operating life h s of

structures having initial cracks of length l o and having no variability in residual

strength.

The corresponding expression when there is a probability distribution of residual

strength x given by p(x) can be derived from equation (18) as

..,=s,,o,-SoS - o I)hs/( F-no) + p(z)p(x)
(19)

where rs(hs I lo) denotes the risk of failure at service life h s for structures which

are all cracked to a length 1o at the start of their service life.

The risk of failure by fatigue fracture for this case follows from the expression

given in equation (3) and is
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rF(hs ]/o) =

The corresponding probabilities of survival can then be calculated as before.

STRUCTURES WITH INITIAL CRACKS OF VARIOUS LENGTHS

(20)

In the general case the population of structures will contain cracks ranging from

zero length up to the detectable length l o and it can be assumed that there is a proba-

bility of a structure containing a crack of length l c between 0 and l o as given by

the probability density function PC/c}.

Consider the fraction of the population PC/c) d/c which has initial crack lengths

between l c and l c + d/c. The probability of failure at h s for these structures is

given by r(hs [ lc) according to equation (19). Their contribution to the total risk of

failure in the population at service life h s is therefore,

Ar = r(h s [ /c) PC/c) d/c (21)

Since h s is the same for all structures whatever their initial crack length lc, the

total risk of failure for all structures at service life h s may be calculated by integrating

equation (21) over all values of initial crack length from l c = 0 to l c = l o. Then

rs(hs ] P(tc)) = c--z°rChs tZc)P(Zc)
lc=0

(22)

As was done in the derivation of rs(h s [ lo) in equation (19), the variable of initial

crack length l c is expressed as the corresponding life _c on the median crack propa-

gation curve, with lc = g(nc) and

p{Zc) =p( c)

Then, since nc = fii when l c = 0 and nc =fro when l c = lo, the following equa-

tion is obtained from equation (22) by substituting r(h s [ lc) from equation (19):

rsChs [P(/c}) = _nc=no f::=oo
"J_c=_i =0 fiF-fic) Fs _o_ + tic p(z) p(x)P(nc) dx dz dfic

(23)
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Similarly the risk of fatigue fracture canbe derived from equation(20)as

(24)

PROBABILITY DISTRIBUTION OF THE FAILING LOAD

The probability distribution of the failing load can be determined for the case of

structures with initial cracks by a simple extension of the method developed in the sec-

tion "Probability Distribution of the Load at Failure."

If one is interested in structures with residual strength R less than some speci-

fied value Ro, then as in the aforementioned section this corresponds to structures with

x =< = (25)RiCo) o

Consider structures with initial cracks of length l c corresponding to a life of

on the median crack propagation curve. Now from equation (16)

"<=°<,>=
P"o

Hence substituting this equality into equation (25) gives the following equation:

1_c

x _-_5 x° (26)

qbIg (_" + _c)]

l c it follows from equation (19) that
R
7o less than some given fraction x o

Thus, for structures with initial cracks of length

the probability of failure with residual strength

of the virgin strength is given by

pCz)dxdz (27)

The total risk of static fracture due to fatigue at h s is given by rs(h s I /c) and

therefore it follows that
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Pr
Failing load _-<goXo at life hs)

oo
dxdz

(28)

Where the population of structures have initial cracks with a probability distribution of

crack length represented by P(/c) it follows from equation (23) that the probability of

failure with relative strength R/iz R less than x o is given by an analogous expression

to equation (27) as follows

rs s R<Xo_o _ z
(29)

If equation (29) is divided by rs(h s I P(lc)), the total risk of static fracture due to

fatigue at hs, the probability that R -<XotZo at h s is obtained as follows:

dx dz d_ c

(30)

APPLICATION

The foregoing theory has been applied to calculate the risk of failure for the

ultrahigh-strength steel structures considered previously for which the crack propagation

and residual strength curves are shown in figure 1. The load spectrum used in the calcu-

lations was the manoeuvre load spectrum shown in figure 2 as spectrum I.

For the case of structures all initially cracked to the same extent, the relative

crack length l o has been taken as 0.075 from a consideration of the crack detection

capability of the NDI techniques used in production.

For the case where it is assumed that there is a continuous probability distribution

of initial crack size, an exponential distribution of initial crack length l c has been

adopted with the probability density function

P(lc) = 26"2e-20"6/c (0 < l c =<0.075) (31)
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The exponential distribution has been adopted since it follows from the physically

realistic assumption that the occurrence of a defect in a small element of the material

follows a uniform probability law over the whole volume.

The detectable crack length l D for in-service inspections has been taken as 0.15.

As stated in the section "Structures With Initial Cracks of Constant Length," the

theory assumes that the initial defect produces the same stress field as a fatigue crack

the same size as the defect. In applying fracture mechanics theory to deduce crack

propagation and residual strength characteristics, the depth of the crack is the important

parameter; whereas for crack detection, the length of the crack exposed at the surface is

the controlling factor. However, with the nondimensional relative crack length

l = _ (32)
a F

it is immaterial whether crack length or crack depth is taken since both yield the same

value of l, provided the shape of the crack front does not change markedly as the crack

propagates.

In establishing the detectable relative crack lengths 1o and lD, it has been

assumed that the crack length exposed at the surface which will be detected by the best

available methods is 0.02 inch for production-line conditions and 0.04 inch for in-service

inspections. Assuming a semicircular crack front, which is often characteristic of

cracks originating at a surface, gives corresponding crack depths of 0.01 and

0.02 inch.

A value of a F of 0.132 inch was obtained from typical crack propagation data by

determining the crack depth at which the crack propagation curve becomes vertical since

this is virtually equivalent to failure at mean load. The relative crack lengths l o and

1D given previously were thus obtained from equation (32).

With these input data, the risk functions rs*(h t 0.01") and rs*(h I P(lc)) for the

two cases of constant initial crack depth of 0.075 and an exponential distribution of initial

crack depths have been evaluated from equations (19) and (23) and are plotted in figures 7

and 9, respectively. The corresponding survivorship functions are plotted in figures 8

and 10. The probability distribution of the failing load at various service lives h s has

been calculated from equation (28) and the results are presented in figure 11.

It is apparent that the presence of initial cracks greatly increases the risk of failure

at a given life. Also the risk of failure at the beginning of the service life is finite in this

case as distinct from the case where all structures are without cracks initially. This

arises because with all structures cracked initially every member of the fleet is exposed

to the risk of static fracture from the outset.
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SAFETY BY INSPECTION

As inspection techniques become more highly developed, increasing applications

are likely to be found in monitoring structural safety. However, inspections of a complex

aircraft structure are both time consuming and costly, and the efficient planning of

inspection intervals is becoming an essential requirement. The reliability approach by

calculating the risk of failure as a function of life enables the effect of any inspection pro-

cedure to be investigated and suitable inspection intervals to be planned.

CONTINUOUS INSPECTION

The optimum effect of inspection is, of course, obtained when every structure is

inspected continuously. As soon as cracks reach the detectable length ID, remedial

action is taken and therefore the risk of fatigue fracture is eliminated.

The risk of failure is then equal to the risk of static fracture by fatigue which is

determined by calculating the probability of failure for structures with crack lengths

between 1 =0 and 1 =l D.

If structures are repaired and replaced when cracks are detected, there is no

reduction in size of the fleet and the risk of failure at any life ns is obtained by inte-

ns
grating in equation (12) between the limits z = _-- to z = ns since this corresponds to

nD

integrating over crack lengths between 0 and lD. (See fig. 5.)

Hence the risk of failure for "continuous inspection with replacement" is given by

= Fs Uo¢ p(x) p(z) dx dz
rI*(ns;/D'ns) ffD

(33)

The corresponding result for structures which are initially cracked is found in a

similar manner from equation (20); that is,

rI*(hs 'P(lc);lD'hs): _'nc=n° _0 _hs/(g
Fs Uo _b + fie p(z) p(x)P(ffe) dz dx d_c (34)

onc =fii D" nc)

When cracked structures are not repaired but are taken out of service after detec-

tion, there is a continual depletion of the population since at life n s all structures which

have a life less than n s at crack length l D are eliminated by inspection; that is, the

distribution of fatigue life p(z) is truncated at z =-_ and hence the proportion of the

fn:/population remaining at life n s is given by nD p(z) dz.
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Therefore, for "inspection without replacement" the risk of failure at n s (which

is the probability of failure in the fleet remaining at ns) is derived from equation (33) as

ri*(ns;lD, ns)
rI(ns;lD, ns) = ¢o (35)

_n p(z) dz
s/_D

In a similar way the risk of failure for inspection without replacement in a population of

structures which are initially cracked follows from equation (34) as

rI(hs I P(/c);/D,hs)=
rI*(hs I P(/c);/D,hs)

(36)

INSPECTION FOR LIMITED RISK

In practice, it is usually not economic or even feasible to inspect structures con-

tinuously but inspection is carried out at predetermined intervals. A method is proposed

for the efficient planning of inspection intervals in which, when the risk of static fracture

by fatigue reaches a prescribed upper limit, an inspection is carried out. The risk of

failure is reduced at this stage to the same value as the risk of failure with continuous

inspection, but it rises as the life continues until it again reaches the prescribed risk

limit when a second inspection is carried out.

Repeated application of this process ensures that each inspection is equally effective

in maintaining the risk of failure below a prescribed upper limit. The application of the

procedure is shown in a subsequent section, and the expression for the risk function is

presented in the appendix.

CRACK DETECTION RATE

It is important to determine the probability of cracks being detected at each inspec-

tion since this gives the fraction of the fleet that can be expected to require repair and

modification before continuing in service.

Reference to the model of the fatigue process in figure 5 shows that in the first

inspection at life ni(1) all structures with crack lengths between l = l D and l = 1 are

eliminated. These correspond to structures which have values of z between z = hI(l)
'D
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and z = hI(l)~ . Hence the fraction of the population in which cracks are expected to be
n F

revealed at the first inspection is given by

rD*(ni(1);lD) = C nI(1)/_D
°nI(1)/ffF p(z) dz

(37)

Or in general for the mth inspection, the probability of cracks being detected in a struc-

ture is given by

* = "nI(m)/ Dp(z),u
rD (nI(m);/D,nI(m-1)) Jni(m_I)/ D

(38)

where rD*(ni(m);/D, nI(m_l) ) denote@ the probability of finding cracks at the mth

inspection at life mi(m) following the previous inspection at life ni(m_l). It is

assumed that cracks with a length greater than l D will be detected and that structures

in which cracks have been detected will be repaired and returned to service.

For structures with initial crack lengths l = 1o it can be seen by reference to

figure 6 that the probability of detecting cracks is

rD*(hi(m) [ lo;lD,hi(m_l) ) = JhI(m-1)/(_D-_°) p(z) dz (39)

where, with a similar notation as for equation (38), rD*(hi(m) ] lo;lD, hi(m_l)) denotes
the probability of detection at the mth inspection after a period of operation in service of

hi(m) , following a previous inspection at hi(m_1). It is again assumed that all cracks

with a length exceeding l D will be detected and ffD and fro denote the lives on the

median crack propagation curve corresponding to crack lengths of l D and l o.

If the population of structures has a continuous distribution P(lc) of initial crack

lengths between /c = 0 and l c =/o the probability of detection can be derived from

equation (39) by integrating over the initial crack lengths from l c = 0 to l c = lo,

rD*Ihi(m) [ p(Zc);/D, hi(m_l) ) = _0 ° ffhhI(m)/(_D-_cl p(z)P(/c)dz d/c

or
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I : °

expressing l c in terms of the corresponding life Ec according to the median crack

propagation curve, and integrating with _c =ni at l c =0 and Ec =E o at l c =l o.

(40)

APPLICATION

The foregoing theory has been applied to demonstrate the effect of planned inspec-

tion procedures for the case of a high-strength steel structure under a manoeuvre load

spectrum (spectrum I in fig. 2) which has been considered previously.

The risk function for fatigue failure with continuous inspection has been calculated

by using numerical analysis procedures (ref. 6) for the three cases of structures without

initial cracks, structures with initial cracks of constant length lo, and structures with a

distribution of initial crack sizes given by the probability density function P(/c). The

risk functions for periodic inspection with limited risk have been calculated for the same

three cases. The results have been plotted in figures 12, 7, and 9, respectively, and the

corresponding survivorship functions are shown in figures 13, 8, and 10. The inspection

intervals for inspection with limited risk for each of the three cases are shown in table I

together with the expected detection rate at each inspection which has been calculated

according to the procedure developed in the preceding section.

With periodic inspection, the risk function returns to the continuous inspection curve

at each inspection. The continuous inspection curve therefore has a basic significance

since it indicates the maximum extent to which the risk of failure can be reduced by

inspection.

DISCUSSION OF RESULTS

Consider the results of applying the foregoing theory to the case of the high-strength

steel structure described previously with particular reference to the suitability of the fail-

safe and safe-life procedures.

RISK OF FATIGUE FAILURE

Reference to the risk functions rsL and r F in figure 14 illustrates the difficulty

with the conventional approach. As the life extends, the difference in these two risks

becomes considerable, although as was stated in the section "Interpretation of Fatigue
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Test Results" they merely represent two rather extreme conditions in the application of

the conventional safe-life approach.

In fact, the risks rsL and r F differ only in the point on the crack growth curve

at which failure is taken to occur. This difference introduces a problem in the interpre-

tation of the fatigue test result since the structure under a representative test load

sequence may well fail at a rather different stage of the crack propagation curve as com-

pared with the structures that happen to fail at a relatively short fatigue life in service.

This can be seen by reference to the curves of the probability distribution of the

failing load in figure 15. These show that at lives typical of service operation (n = 1.0

to 1.25), the expected value of the failing load, for the few structures that fail, is rela-

tively high, being above the limit load, whereas at longer lives the expected value of the

failing load is considerably reduced. Therefore the fatigue test specimen, representing

the average structure, is likely to fail at loads considerably below those at which service

failures will occur.

The basic difficulty is that neither rsL nor r F represents the true situation in

that they do not take account of the fact that there is some probability of failure at all

points along the crack propagation curve as the fatigue crack extends. This effect (the

risk of static fracture) is taken account of by Ls,_(n ) which, as can be seen in figures 3

and 4, gives an increased probability of failure for the example taken.

Another effect of considerable importance in considering static fracture due to

fatigue is the variability in residual static strength of cracked structures since this may

have a significant effect on the probability of failure (or survival) depending on the sever-

ity of the loading spectrum. This is shown by the comparison between Ls,_ and L s

for the two load spectra as shown in figures 3 and 4. The probability of survival L s

calculates the increasing risk of failure as the fatigue crack extends in the same way as

Ls,/_ but italso includes the effectof the variabilityin residual staticstrength.

The probabilityof survival L s can be applied with equal validityto calculatethe

probabilityof survival for structures with initialcracks as outlined in the section "Risk

of Failure in Structures InitiallyCracked." This has been done for example of the high-

strength steel structure taken previously and the results for two cases of initialcracking

are shown in figures 8 and 10 where itwillbe noted that,for an equivalent probabilityof

survival,the fatiguelifeis greatly reduced by the presence of initialcracks. The short-

comings of the conventional methods of lifecalculationare more marked in this case,

since for all structures the whole of the service lifeinvolves the propagation of a fatigue

crack with continual exposure to the progressively increasing risk of staticfracture due

to fatigue.
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PROBABILITY DISTRIBUTION OF THE FAILING LOAD

Curves showing the probability distribution of the collapse load for static fracture

by fatigue for the high-tensile steel structure are shown at a series of lives in figure 15.

In the early stages of the life when only small cracks are present the majority of the

structures that fail do so from occurrence of a high load in excess of the design limit

load. At longer lives, however, when a large percentage of the fleet has developed more

extensive fatigue cracks, failure tends to take place by the occurrence of the much more

frequent lower loads. The curves for the probability distribution of the failing load have

a well defined "knee" which marks the transition from failures of structures with low

static strength properties (according to the Weibull distribution of relative strength which

has a lower limit at x = 0.82) to structures with low fatigue strength and hence larger

crack lengths at any given life.

With the corresponding curves in figure 11, for all structures with initial cracks of

a 0.010-inch depth, this knee does not occur. In this case, at any particular life, all

structures have substantial cracks and the extent of these is largely independent of the

fatigue strength so that the probability distribution of static strength is the controlling

factor for all values of failing load.

THE EFFECT OF INSPECTION

The effect of inspection on the risk of failure and probability of survival for initially

uncracked structures is shown in figures 12 and 13. Although it is not usually a feasible

procedure in practice, continuous inspection has an important basic significance which

warrants some consideration here.

The risk function for continuous inspection slowly approaches an upper limiting

value when there is no repair and replacement of structures in which cracks are detected

("inspection without replacement"). This situation arises because as the initial cracks

are propagated by fatigue to the detectable length these structures are eliminated by

inspection and a stage is therefore reached where the increase in risk due to the extension

of fatigue cracks is offset by the continual removal from service of structures with

detectable cracks and high risk of failure.

In the more practical case where structures are repaired and returned to service

after detection of cracks ("inspection with replacement") the risk function goes through a

maximum value and then eventually approaches zero. The explanation of this behaviour

appears to be that, as fatigue cracks extend, the number of cracked structures replaced by

sound structures increases until a stage is reached where this counteracts and then
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outweighs the increasing risk of static fracture by fatigue in the dwindling members of

the original fleet.

With this model therefore the original fleet is eventually replaced by new struc-

tures which are taken to be free of any fatigue weakness and the risk of fatigue failure

decreases to zero. If the service life were to be prolonged to this stage, however, other

areas of the structure would become fatigue critical and their risk of failure would have

to be considered.

In practice, cracked structures or components are often replaced by new members

from the same population as the structures or components in the original fleet. This

model of the fatigue process ("inspection with renewal") would show a behaviour inter-

mediate between the two procedures considered above.

The risk functions for continuous inspection of structures with initial cracks are

presented in figures 7 and 9 and these show a similar behaviour to that found with initially

uncracked structures although for the case of a continuous distribution of initial crack

size in figure 9 the peak of the "inspection with replacement" curve is much flatter

because of the wider range of crack sizes that results.

Turning now to the practical case of periodic inspections designed to limit the risk

of failure below a specified value rmax, it can be seen from figures 12, 7, and 9 that in

all cases the risk of failure fluctuates between the risk for continuous inspection and the

specified maximum value rma x.

For inspection with replacement it can be seen that because of the peak in the curve

for the risk function with continuous inspection, the inspection intervals for limited risk

at first decrease with each inspection and then increase.

This effect is clearly shown for the three cases considered by the inspection inter-

vals given in table I which also lists the expected fraction of the fleet in which cracks will

be detected at each inspection.

The curves showing the corresponding survivorship functions for inspection with

limited risk are shown in figures 13, 8, and 10, and it is apparent that inspection for

limited risk can give a comparable performance to the ideal case of continuous inspection.

At the cost of decreasing the inspection intervals, the probability of survival can be

increased by reducing the maximum allowable risk rmax, although this must always

exceed the maximum risk for continuous inspection for the inspection procedure with

limited risk to be possible.
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AP P LIC AT ION

The reliability approach to structural design has received increasing attention in

recent years and it is proposed here that the safety against fatigue of aircraft structures

is one of the most important and promising fields of application.

DEVELOPMENT OF THE RELIABILITY APPROACH TO FATIGUE

Early work on the probabilistic approach to fatigue of aircraft structures was

mainly concerned with efforts to establish the fail-safe philosophy on a more quantitative

basis by considering the probability of failure of the structure during the crack propaga-

tion stage.

One of the first papers on this subject was concerned with the fail-safe operation of

transport aircraft (ref. 7), and a similar approach was used subsequently (refs. 8 and 9)

in efforts to develop a proposal for ensuring the airworthiness of fail-safe structures.

In references 10 and 11 reliability analysis was applied to derive the probability of

failure for a fail-safe structure by using a sophisticated model to represent the effect of

multiple redundancies in the structure.

Probably influenced by the successful application of reliability techniques to

electronic systems, the reliability approach to structural safety in general received

increasing attention and several papers dealing with the basic development of the phi-

losophy (refs. 12 to 15) also dealt at some length with its application to the fatigue of

structures.

The reliability approach to structural design has received increasing attention more

recently and papers (some relating to the aspect of fatigue) have been represented at a

number of International Conferences (refs. 16 to 24).

However, a major difficulty in applying reliability theory to the fatigue of struc-

tures is the extensive amount of data required since this is not normally available. The

present paper seeks to overcome this difficulty by presenting an approach which allows

representative data to be used in conjunction with the full utilisation of the information

which can be obtained from the full-scale tests now widely adopted in aircraft design

practice.

RELIABILITY ANALYSIS WITH FULL-SCALE TESTING

The method proposed in this paper calculates the probability of failure of a structure

at each stage of the life with data obtained from full-scale tests on the actual structure in

conjunction with other representative data. It therefore estimates the risk of failure in
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the fleet, and hencethe probability of failure (or survival) up to any required life, taking
accountof the flight loads to be encountered,the progressive reduction in strength dueto
the growing fatigue crack, andthe variability in static and fatigue strength.

The inspection or replacement of structures in service canthen be plannedto
achievea prescribed safety level using basic data from the fatigue test without requiring
any arbitrary decision as to the crack length that constitutes failure or as to whether a
structure is "fail safe" or not.

Application of the Method

With the risk function having beencalculated, the life nI to reach the allowable
risk rmax(ni) is determined as the life for inspection or replacement.

From the physical nature of the failure as revealed by the fatigue test andthe risk
function for continuousinspection with the detectablecrack length, a judgementcanbe
madewhether to rely on inspection or on replacement.

If replacement is decidedon all structures are replaced at nI andthe process can
be repeatedwith the constant inspection interval nI until the probability of survival has
beenreducedto the minimum allowable value.

If inspection is adopted the inspection intervals are calculated as described in the

section "Inspection for Limited Risk" and the process is continued up to the life n s at

which the probability of survival has been reduced to the minimum allowable value. The

fraction of defective structures that can be expected to be revealed at each inspection

can be calculated from equation (39). Also the probability distribution of the failing load

can be calculated and used to estimate the average value of the failing load at the life for

any inspection, from which an indication of the average crack length can be obtained.

It is clear from figures 13 and 10 that the safe operating life can be greatly extended

by this type of inspection procedure and therefore as the service life continues other

fatigue-prone areas of the structure revealed in the fatigue test may need to be included

in the analysis in the same way.

Basic Assumptions

The following basic assumptions are involved:

(a) The service load S is independent of the failing load of the structure R. This

assumption infers that any increase in flexibility of the structure as a fatigue crack

extends does not affect its response to the applied loads.

(b) There is no correlation between the residual strength of a cracked structure and

its fatigue strength. This is supported by the fact that in a complex structure static
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ultimate load failure usually occurs in a different area and by a different mechanism to

fatigue failure.

(c) The relative residual strength x = R(l----! of structures cracked to some crack

length l has a characteristic probabilitydistributionwhich applies for any value of I.

For the monolithic structure considered in the section on page 289, the fracture mechan-

ics relationship R(1) = KI_ / is assumed to apply. Itcan be shown from this that R(/)

has the same probabilitydistributionas the fracture toughness K and itis therefore

the same for all crack lengths.

(d) The distribution of fatigue life NI, z at a given crack length l has a log

normal distribution. The log normal distribution is often used in making safe-life esti-

mates and it has been supported as a good approximation by comprehensive surveys of

fatigue test data (refs. 25 and 26).

(e) At all points on the crack propagation curve of any structure, the fatigue life

bears a constant ratio to the median life Nl at the same crack length _z _- z.Nl,z

It can be shown that this follows from the properties of the log normal distribution of

fatigue life assumed in assumption (d).

(f) As structures fail by fatigue and are thus eliminated from the population there

is no change in shape of the probability density functions of fatigue life z, relative

strength x, or initial crack length l c. In practice some distortion of these functions

will occur but for the small probabilities of failure considered it is regarded as a reason-

able assumption.

Input Data

The following data are required:

(a) The service load spectrum Fs(s) which can usually be estimated from the

considerable body of flight load data available.

(b) The mean value of the ultimate failing load /_o

from the results of static strength tests on the structure.

(c) The probability distribution of relative strength

which can usually be obtained

x = R(/) which must be esti-
P,R(/)

mated from representative data (as was done for the case of the high-strength steel

structure by using data from high-tensile steel specimens) and the results from compo-

nent testingduring the design stage.
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(d) The median crack propagation curve for the structure _n = g(nz};itis proposed

to rely on the crack propagation curve obtained in the full-scalefatiguetestof the

structure.

CONC LUDING REMARKS

From a reliability analysis of the fatigue failure in aircraft structures under ser-

vice loading conditions it is concluded that the current procedures for obtaining safety

are not entirely adequate. These methods do not take full account of the probability of

failure of the structure during the period in which it is being progressively weakened by

the growing fatigue crack and they are therefore subject to inaccuracies which may be

significant depending on the structural design parameters and the service conditions.

It is also concluded that a reliability approach to the safety in fatigue of aircraft

structures must be considered, using the results available from the structural tests and

design analysis in conjunction with other representative data.

Such an approach is quite feasible although an extensive body of data and a number

of assumptions are involved which warrant some development and testing of the procedure

in practice.

However, the reliability approach has major potential advantages by enabling the

safety of both safe-life and fail-safe structures to be determined on a quantitative basis,

including the planning of efficient inspection procedures and allowance for the possibility

of initial flaws in the material where appropriate.
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APPEND_

TABULATION OF RISKS OF FAILURE AND

PROBABILITY OF CRACK DETECTION

For simplicity the risk functions in the body of the paper have been expressed in

terms of the dimensionless variate z and they have been compared on a common basis

in the various figures using the dimensionless variate Ns/_ i. However, in this appendix

they are expressed in a form more suitable for practical application, the risk of failure

per hour using the relation:

r(Ns) dN s = r(z) dz

r(Ns) = r(z) dz
dN s

where N s is the service life in hours.

If the risk of failure were to be required in units other than hours - such as load

applications, for example - the dimensional variable N s (or for cracked structures Hs)

would have to be expressed in those units.

The footnotes for this appendix are included at the end of the appendix.

STRUCTURES WITH NO INITIAL CRACKS

No Inspection

Risk with safe-life analysis.- Risk of failure per hour at

estimated mean life NL determined from a fatigue test as the life to some crack

length L at which failure occurred, is given by

rL(Ns) =

pz(z)
s/ L

N s hours, based on an

(A1)

where NL is the estimated mean life to the crack length L expressed in hours.

Risk of fatigue fracture a._ Risk of failure per hour by fatigue fracture at a life of

N s hours can be given by
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rF(Ns) = oO

pz(Z)dz
s/nF

(m)

where NF is the median of the life in hours to complete collapse under the mean load.

Risk of static fracture due to fatigue.- Risk of failure per hour by static fracture

due to fatigue at a life of N s hours is given by

_x:=_¢ z=ns Ix IgI_---_sl)}= Fs #o_b p(z)p(x) dz dx
rs(Ns) =0 3Z=ns/E F

where Fs(S) denotes here the probabilityof exceeding a service load

operationb.

Probability distributionof the failingload.-

s per hour of

(A3)

Pr At life N s hours that the loads causing_

static fracture due to fatigue _-<goXo j

Fsx o0( I l)
=_z=n s S:: o_ (g[__ss]} _ _ p(z)

X=ns/E F - rs(Ns)

dxdz

(A4)

where rs(Ns) is given by equation (A3), and Fs(s ) is taken as the probability of

exceeding a service load s per hour of operationb.

Periodic Inspection at NI(1),NI(2),.. .,Ni(m) Hours

Risk of fatiguefracture with replacement c d_ Risk of failureper hour by fatigue

fracture at a lifeof N s hours with structures repaired and returned to service after

cracks have been detected is given by

rF*(Ns;ID'NI(m)) NF
=_--- Pz

= 0 (Otherwise)
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where NF is the medianof the life in hours to complete collapse of structures under

the mean load.

Note: For continuous inspection the risk of fatigue fracture is zero in this case.

Risk of static fracture due to fatigue with replacement c._ Risk of failure per hour

by static fracture due to fatigue at a life of Ns hours with structures repaired and

returned to service after cracks have been detected is given by

z=ns S:I {x (gn[_]_= Fs go¢ p(x) p(z) dx dz
rI*(Ns;/D'NI(m)) _z=ni(m)/_D

(A5)

where Fs(S ) denotes here the probability of exceeding a service load s per hour of

operation b

Note: For continuous inspection substitute N s for Ni(m) and n s for ni(m).

Probability of detectingcracked structures with replacement c._ Probability of

detection at the mth inspection with structures repaired and returned to service after

cracks have been detected is given by

nI(m)/nD
rD*(NI(m) ;/D'NI(m- 1)) = ni(m_ 1)/riD

= cnI(m)/_D

JnI(m-1)/nD

Since it follows that where an inspection procedure is feasible, the probability of fatigue

fracture is relatively insignificant compared to the probability of crack detection.

Note: For continuous inspection the probability of detection per hour at any life

Ns hours is given by

rD*(Ns;ID'Ns) ; _D Pz

p(z)
dz- Pr _atigue fracture between Ni(m_l) and Ni(m) )

p(z) dz

where _1D is the median of the life in hours to the detectable crack length l D.
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Probability distribution of the failin_ load with replacement.-

_At life of N s hours following mth inspection, the loads)Pr(. causing static fracture due to fatigue -< _oXo

_z=nICm)/nD rI*(Ns;/D,NI(m))

(A6)

where ri*(Ns;lD,Ni(m) ) is given by equation (A5), and Fs(S ) is taken as the proba-

bility of exceeding a service load s per hour of operation b

Note: For continuous inspection substitute N s for NI(m) and n s for ni(m).

STRUCTURES WITH INITIAL CRACKS (PROBABILITY DENSITY

OF CRACK LENGTHS P(/c))

No Inspection

Risk of fatiguefracturea.- Risk of failureper hour by fatigue fracture at a service

lifeof Hs hours is given by

"_ffc=1_nc=n° 1NF- _nhS cTM)NcPZ ]_-ff P(nc) dnc

rF(Hs I P(/c)) = (AT)

 nc-- o
"_ffc=l ffF-ffc

where blF is the median of the life in hours to complete collapse of initially uncracked

structures under the mean load, and _c is the median of the life in hours to produce a

crack of length l c for initially uncracked structures.

Risk of static fracture due to fatigue.- Risk of failure per hour by static fracture

due to fatigue after a service life of H s hours is given by

(A8)

where Fs(S) denotes here the probability of exceeding a service load s per hour of

operation b.
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Probability distributionof the failingIoad.-

pr;At service life H s hours that the loads causing_

\ static fracture due to fatigue =< _oXo J

~ ~ hs ~

_nc=no ("z=°° _x--Xo/dP(g_-_+ncl) Fs(x.o0(g >

-'_c=:Jz=hs/(_-_)_x=o

rs(HsIp(_))

wherers(I-,s[p(tc))isgivenbyequation(:8),and
exceeding a service load s per hour of operationb.

+ Ec_ } p(x)p(z)p(Ec)dx dz dE c

Fs(s ) is taken as the probability of

Periodic Inspection at HI(1),HI(2),.. .,Hi(m) Hours

Risk of fatiguefracture with replacement e d._ Risk of failureper hour by fatigue

fracture after a service lifeof H s hours with structures repaired and returned to

service after cracks have been detected is given by

r F*(Hs [ P(/c);/D,HI(m))= JEe=l_nc=(hsED-hI(m)nF)/(hs-hI(m))_Pz(_P(%)dgc (Hs > HI(m) nF-11nD- l/

(A9)

= 0 (Otherwise)

is the median of the life in hours to complete collapse of uncracked structureswhere _F

under the mean load, and _:c is the median of the life in hours to produce a crack of

length l c for initially uncracked structures.

Risk of static fracture due to fatigue with replacement e._ Risk of failure per hour

by static fracture due to fatigue after a service life of H s hours with structures repaired

and returned to service after cracks have been detected is given by

rI*(Hs' P(lc);lD'HI(m))= s_n_-:_ 0 _x=O _z=hi(m)/(nD-:c) Fs _°_bQg> + n P(z)P(x)p(nc) dz dx d_
(AIO)

where Fs(s) denotes here the probability of exceeding a service load s per hour of

operation b.

Note: For continuous inspection substitute H s for Hi(m) and h s for hi(m).

Probability of detecting cracked structures with replacement e._ Probability of

detecting cracked structures at the ruth inspection with structures repaired and returned

to service after cracks have been detected is given by
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snc:no _ (Fatigue fracture betwee 4
rD*(Hi(m) /P(_c)iZn'tt_(m-i))= _c=l ,--h:(m-1)/(_D-_c) r_. Hi(m_i) and Hi(m) J

: s

Since it follows that when an inspection procedure is feasible the probability of fatigue

fracture is relatively insignificant compared to the probability of crack detection.

Note: For continuous inspection the probability of detection per hour at any ser-

vice life

where

of

H s is given by

rD*(Hs I P(lc);/D,Hs) = _ nc:n° I_
_c=: ND Nc Pz D - _

BID and Nc are the median values of the lives in hours to produce crack lengths

l D and lc, respectively, in initially uncracked structures.

Probability distribution of the failing load with replacement.-

pr(At a service life H s hours following the mth inspection "_
L that the loads causing static fracture due to fatigue -<_oXoJ

c:;= c + dEc
_c=l-_=,,I(m)/(ED nc)Jx=0

=

rI*(Hs I P(/c);ID,HI(m))

where ri*(H s I P(/c);/D'HI(m)) is given by equation (A10), and Fs(S)
probability of exceeding a service load s per hour of operationb.

is taken as the

aThe term in the denominator of this expression is a normalising factor resulting from the truncation

of the z distribution by the removal from the population of the structures that fail by fatigue fracture.
However, it is very close to unity for the probabilities of survival that are acceptable in practice.

bin the body of the paper where rs(ns) has been compared with other risk functions using the dimen-

sionless variate Ns/Ni, Fs(s) has been taken as the probability of exceeding a service load s in a time

interval N i.

cWhen there is no replacement of those structures in the fleet in which cracks have been detected,
the corresponding probabilities and risk functions are obtained by dividing by the normalising factor

fni(m)/EDp(z ) dz. For continuous inspection, hi(m) is replaced by n s.

dWhen an inspection procedure is applied, the effect on the risk function resulting from truncation of
the z distribution, by elimination of structures that fail by fatigue fracture, is so small that it has been

neglected here.

eWhen there is no replacement of those structures in the fleet in which cracks have been detected
the corresponding probabilities and risk functions are obtained by dividing by the factor

f_c=no z=
fz:hI(m)l(_D-_c]._,p(z)p(_)_ _cc=1

For continuous inspection hi(m) is replaced by h s.
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Figure 7.- Risk function for structures with initial crack depth % = 0.01 in. for various inspection pr_edures.
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