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FATIGUE OF COMPOSITES*

By Michael J. Salkind

Sikorsky Aircraft Division, United Aircraft Corporation, United States

INTRODUCTION

During the past decade, the extensive development activity in composite struc-

tures has indicated the promise of substantial improvements in the performance of

aerospace systems. This experience, however, has shown that composite materials

are substantially different from our former materials of construction, and new con-

cepts in analysis, design, fabrication, quality assurance, and even systems manage-

ment will be necessary.

A major difference between composites and metals exists in their respective

behavior in a fatigue environment. Whereas metals usually fail by crack initiation

and growth in a manner which has come to be predictable through fracture mechanics

analysis, composites exhibit several modes of damage including delamination, matrix

crazing, fiber failure, void growth, matrix cracking, and composite cracking. A par-

ticular structure may exhibit any or all these damage modes, and it is difficult to pre-

dict, a priori, which mode will dominate and cause failure. The selection of fiber and

matrix can produce predictable fiber or matrix-dominated failure in simple unidirec-

tional specimens. (See refs. 1 to 4.) In real structures, however, the complex multi-

directional loadings and complex reaction of nonsimple laminates precludes easy

prediction of failure modes. Also, joints and attachments in composite structures

generally result in failure modes which are peculiar to a particular design.

A characteristic of composite materials which differs substantially from metals

is the relative difference between low- and high-cycle fatigue behavior. Whereas most

metals behave according to the so-called Coffin-Manson relationship (refs. 5 to 7) in

low-cycle fatigue, composites have been shown to be more sensitive to strain range

(ref. 4). This sensitivity results in the high-cycle fatigue strength of composites

being high with respect to static- and low-cycle fatigue strength. Many structures

designed for fatigue experience a spectrum of high as well as low stresses, and

whereas the more numerous low stresses may be the critical design factor for a

metal structure, the same structure made from a composite material may well be

critical in low-cycle fatigue.

A problem arises in the design of composite structures for fatigue loading

because of the lack of an adequate d.efinition of failure. A large part of the fatigue

*Also published in ASTM STP 497.
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data in the literature is basedontime to fracture. For high-cycle fatigue, metals are
generally structurally adequateto the point of crack initiation (andto someextent beyond
that), which is usually a large part of the time to fracture. Although it is preferable to
use fatigue databasedoncrack initiation, the error introduced by designingmetal struc-
tures using fatigue databasedon fracture is usually not significant. Using suchan
approximation for composites, however, could lead to disastrous results. Composites
generally begin to exhibit changesin properties very early in the total life to fracture.
Suchchangesin elastic properties could lead to structural failure long before the struc-
ture is in dangerof fracturing. Rotatingairfoils suchas helicopter rotor bladesor gas
turbine blades are subject to aeroelastic instabilities if the fundamentalfrequency shifts
becauseof early fatigue damagethat causesstiffness changes. A composite spring whose
spring constant changesbeyondan acceptablevalue wouldbe consideredfailed even
thoughit was in no dangerof fracturing. The samecompositeusedfor a tension cable
application for which stiffness is not critical might have an acceptablefatigue life to fail-
ure several orders of magnitudehigher than the stiffness critical spring under the same
loading conditions. A further complication to this problem is the fact that composites
are anisotropic, andfor anynumber of cycles, the changein stiffness in onedirection
may be unrelated to the changein stiffness in a seconddirection.

The requirement for an adequatefailure criterion, coupledwith the challengeof
providing adequatedamagedetection schemesfor multiple damagemodes, clearly indi-
cates the requirement for a new approachto the designof fatigue-critical composite
structures. This paper includes a review of the fatigue behavior of compositematerials
and structures anda proposedapproachfor designof fatigue-critical components.

FATIGUE OF COMPOSITEMATERIALS

A large bodyof small specimenfatigue datahasbeengeneratedover the past
10years. These dataare primarily for unidirectional laminates and, as mentionedpre-
viously, are baseduponfracture as the definition of failure. Hence, muchof it is of
limited value for use in design. A survey of pertinent observations is included in this
section.

Fiber-Reinforced Polymers

The most widely used class of composite materials, glass-fiber-reinforced poly-
mers, hasbeenthe subject of extensive fatigue testing (refs. 8 to 23). Although the data
in references 8 to 23are baseduponfracture as the failure criterion, they give us an

indication of the effect of significant variables, such as resin composition and content

and fiber composition and orientation on fatigue. Boiler (ref. 11) has evaluated a variety
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of matrix systems andfound epoxidesto besuperior in fatigue. His data, seenin fig-
ure 1, is more than 15years old, andimproved surface treatments andprocessing have
since beendeveloped;however, the relative ranking remains unchanged(ref. 19). As
seenin figure 2, varying the resin contentbetween20and 37percent has a negligible effect
on fatigue behavior for _5° glass-fiber composites. The effect of fiber orientation is
rather complex. Althoughthe tensile strength of unidirectional composites is a maximum
at 0° to the fibers (ref. 24), in fatigue the unidirectional construction is not optimum, as
canbe seenin figure 3. The best explanation for this phenomenon is the fact that unidi-

rectional material is subject to splitting and rapid crack propagation in the matrix parallel

to the fibers. Fatigue data for +5 ° , 67% 0o/33% 90 ° , and Style 181 satin weave (0o/90 ° )

are compared in figure 4. In general, nonwoven materials are superior to woven mate-

rials in fatigue. Note also the low notch sensitivity of these materials. A comparison

of the behavior of S-glass and E-glass composites (ref. 15) is seen in figure 5. The

higher modulus S-glass is consistently stronger in fatigue than E-glass. The effect of

mean stress is seen in figure 6 for tension-compression and tension-tension behavior.

There have also been some measurements of the compression-compression fatigue

behavior in low-cycle fatigue (ref. 20). These data indicate that the effect of mean stress

is similar to that for metals, that is, the Goodman diagram is approximately linear.

In recent years, the realization that fracture was not an adequate design criterion

for failure has led to studies of failure mechanisms in fatigue which provide a foundation

for design. Broutman (ref. 25) studied the mechanisms of failure in glass-fiber-

reinforced polymers subjected to fatigue loading. He noted cracks originating at fiber-

matrix debonds propagating through the matrix and being deflected by fibers. Recent

studies (refs. 26 to 30) have quantitatively described the changes in elastic and strength

properties associated with this type of damage. Smith and Owen (ref. 26) evaluated eleven

different composite systems with modulus values ranging from 0.5 × 106 to 6.5 × 106 psi

and found that the initial damage debonding occurred at 0.3% strain as seen in figure 7.

Thus, the limiting factor in fatigue is not the fiber but the interface or the matrix. As

described in the following section, studies with metal matrix composites confirm this

behavior. The data seen in figure 8 for chopped-strand mat-reinforced polyester lami-

nates confirm that initial damage occurs at stresses well below those required for frac-

ture. The effect of such damage on structural capability will determine whether the part

has failed. Based on the observation of a critical strain, Smith and Owen postulated a

critical maximum stress independent of mean stress for any material. As seen in fig-

ure 9, this postulation was found to be incorrect (ref. 26).

Cessna et al. (ref. 27) performed constant-deflection flexural fatigue tests on glass-

reinforced polypropylene and monitored the load decay (proportional to modulus decay)

with cycles as seen in figure 10. They also monitored the temperature rise, as seen in
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figure 10, due to viscoelastic energy dissipation, which is common for polymeric com-

posites. (See refs. 31 to 37.) In addition to indicating progressive fatigue damage, the

temperature rise also contributes to weakening the material and shortening its fatigue

life. As seen in figure 11, by cooling their specimens to maintain isothermal conditions,

Cessna et al. (ref. 27) were able to extend both the cycles to onset of stiffness change and

the fracture life by an order of magnitude.

Broutman and Sahu (ref. 28) have related the changes in residual tensile strength

and modulus to the development of cracks in 0o/90 ° crossplied material as seen in fig-

ure 12. Although the decrease in residual strength and primary modulus is expected

because of the increasing crack density, the initial increase in secondary modulus

remains unexplained. A quantitative relationship between modulus change and crack den-

sity (fig. 13) has been developed on the same material. Fujii and Mizukawa (ref. 30) have

also determined the change in elastic and strength properties with cycling for laminates

consisting of several combinations of roving cloth, chopped mat, and woven cloth.

The higher modulus composite materials, graphite and boron, have exhibited higher

fatigue strengths than glass-reinforced polymers, as seen in figure 14 (refs. 15, 38

to 41). This difference is primarily attributed to the higher modulus resulting in less

strain in the matrix and interface at the same cyclic stress level. The phenomenon of

low fatigue strength at zero mean stress for the high modulus composites as seen in fig-

ure 14 was first noted for boron-reinforced aluminum. It is thought to be the result of

low transverse strength of unidirectional composites resulting in splitting under cyclic

compressive loads. This behavior severely limits the use of unidirectional composites

as discussed above.

A major variable which can affect the data obtained in a composite fatigue test is

the specimen geometry. This variable is very much a function of the particular laminate

orientation being tested, as interlaminar shear can be a primary controlling factor

(refs. 42 and 43). Although this problem is negligible for a unidirectional material, it

becomes a major factor in fatigue testing of _45 ° laminates. Figure 15 compares the

axial tension-tension fatigue behavior (based on fracture) for +45 ° 1002 E-glass compos-

ites for three different specinlen configurations (ref. 43). The straight-sided specimen

is flat, and each fiber terminates at the edge, thus, high interlaminar shear stresses are

created. The x-type specimen has all fibers continuous from grip to grip; thus, inter-

laminar shear stresses at the edge are precluded. The latter type has the disadvantage

of having a vanishingly small gage length and very uniformly loaded fibers, which are not

representative of the types of loading experienced in most structures; thus, the resultant

data are considered to be too optimistic for design. The tubular specimen has a uni-

formly loaded gage section and no fiber edges; thus, interlaminar shear is precluded. It

is felt that such a specimen comes closest to yielding representative material properties
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for design. Edges are usually handled as a separate factor in design. Although the dif-

ference between the straight-sided and tubular specimens is only 5% for glass, it is

approximately 50% for boron, as can be seen in figure 16. The reason for this effect is

that the interlaminar shear stresses are higher for high modulus materials.

Fiber-Reinforced Metals

Although fiber-reinforced metals considerably lag reinforced polymers in terms of

development and usage, some of the earliest and best fundamental studies of fatigue have

been accomplished with metal matrix composites. Forsyth, George, and Ryder (ref. 1)

demonstrated that the inclusion of steel wires in an aluminum-alloy sheet reduces the

rate of crack propagation substantially (fig. 17), although the improvement in total fatigue

life to fracture is small (fig. 18). Baker and Cratchley (refs. 2, 44 to 48) performed

extensive studies of the fatigue behavior of silica- and steel-fiber-reinforced aluminum

alloys. Although silica-reinforced aluminum did not show promise as a fatigue-resistant

material, Baker and Cratchley made important observations concerning failure modes

and anelastic behavior. They identified the crack-diverting capability of strong fibers

(ref. 2) and made important observations concerning the stress-strain behavior and

damping capability of composites as seen in figure 19 (ref. 44). In addition, Baker quan-

titatively defined the effect of fiber length on fatigue behavior (ref. 46) and evaluated the

effects of fiber fatigue behavior and the interface (ref. 47).

Extensive studies have been made of the fatigue behavior of composites made by

unidirectional solidification of eutectic alloys (refs. 4, 49 to 52). Because these com-

posites have very regularly distributed fibers and well-bonded interfaces, they serve as

excellent systems for studying the mechanical behavior of composites without the variable

fabrication effects common to other composites. The A1-A13Ni (10% reinforcing A13Ni

whiskers) and the A1-CuA12 (50% reinforcing CuA12 platelets) composite materials

exhibit markedly different fatigue behavior as seen in figure 20. A comparison of the

stress-strain behavior of the two materials showing fatigue failure at the same stress

amplitude (ref. 49) reveals that A1-CuA12 appears to work-harden more rapidly with

narrower hysteresis loops than A1-A13Ni. It can be speculated that the wide CuAI 2

platelets are more effective at blocking plastic flow than the A13Ni whiskers (which have

a spacing at least an order of magnitude too large for optimum dispersion hardening). In

addition, the greater volume fraction of CuA12 is more effective at blocking plastic flow

in the matrix. If matrix strain is the controlling factor, then the behavior seen in fig-

ure 20 would be an expected consequence of the difference in stress-strain behavior.

The fatigue behavior of metals has been found to obey a simple empirical relation-

ship (refs. 5 to 7, 53 and 54)
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where

G NyAeT = MNZ + _"
Plastic Elastic

(1)

total cyclic strain range

elastic modulus

N number of cycles to failure

M, G, z, 7 material constants

This relationship is depicted schematically in figure 21, and it is seen that the plastic

component (first term of eq. (1)) dominates at low cycles (high strain amplitudes), and

the elastic component dominates at high cycles. Although most metals exhibit values of

z of -0.5 to -0.6 (refs. 53 and 54), A13Ni whisker-reinforced aluminum exhibits much

lower values as seen in figure 22. It has been proposed (ref. 4) that the low-cycle fatigue

behavior is not governed entirely by the plastic behavior of the aluminum (z = -0.5) but

also by the elastic behavior of the A13Ni (7 < -0.1). This type of behavior would be

expected for most composites having fibers which behave elastically in the stress range

of use (glass, boron, graphite, highly cold-worked steel) and accounts for the relatively

flat S-N (that is, stress S - number of cycles to failure N) curves discussed in the

Introduction.

As seen in figure 23, the flexural fatigue behavior of A1-A13Ni is substantially

higher than that for the matrix alone. The mode of failure is matrix cracking, the fibers

serving to reduce matrix strain. Testing in a protective atmosphere such as argon

results in higher fatigue strength as seen in figure 24, which further verifies the fact that

failure is matrix dominated. Although the aluminum is susceptible to attack by moisture

in the atmosphere, the A13Ni whiskers are not.

The fatigue behavior of boron-reinforced aluminum has been extensively studied

(refs. 55 to 59). The very high modulus of the reinforcing fiber keeps the matrix strain

low for any given stress level. This factor, coupled with the excellent fatigue resistance

of boron fiber itself (ref. 60), provides extremely good fatigue resistance as seen in fig-

ure 25. The data by Young and Carlson (ref. 56) is particularly valuable as it records

changes in deflection for torsion, tension, and combined-load fatigue testing.

Gates and Wood (ref. 61) performed detailed studies of the microstructural changes

which accompanied the torsional fatigue testing of copper reinforced circumferentiaily by
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tungsten or molybdenum wire. They noted thatwork hardening followed by crack initia-

tion occurred in the matrix between fibers.

FATIGUE OF COMPOSITE STRUCTURES

In order to define a design base for structures, it is necessary to determine the

full-scale fatigue behavior of composite materials to identify the effects of size, manu-

facturing variation, and combined loads. A limited amount of experience now exists with

full-scale components (refs. 62 and 63); however, much of it relates to specific geome-

tries and constructions and few generalizations may be drawn. Two things which are

clear from this experience is the fact that composite structures are very fatigue resis-

tant in aerospace applications relative to metal structures, and joints and attachments

remain a major design problem, especially in fatigue.

The most substantial body of structural fatigue data exists for helicopter rotor

blades(refs. 62 and 63). Jarosch and Stepan (ref. 62) have done fatigue testing of root

end and outboard sections of the BO-105 fiberglass/epoxy rotor blade. The blade con-

struction, seen in figure 26, consists of a C-spar of unidirectional E-glass-reinforced

epoxy wound around a pin fitting at the root end, a skin of woven-glass cloth/epoxy

oriented at +45 °, and a foam core. Measured values of the spar and skin elastic modulus

in the spanwise direction were 6.0 × 106 and 2.6 x 106 psi, respectively. The root end

was fatigue tested, as seen in figure 27, with equal flapping and lagging loads of

1900 + 2600 ft-lb and a steady centrifugal load of 24 000 lb. Fatigue lives varied to

13 × 106 cycles. Failure generally occurred in the unidirectional roving at the root-end

pin attachment and was accompanied by considerable heating due to interlaminar friction.

Readily visible delamination and gradual changes in stiffness and damping also occurred.

Outboard specimens were tested in flapping resonance at a fatigue strain level of +0.8_

which is ten times the maximum strain in flight. Typical fatigue lives were more than

106 cycles_ and failure was preceded by obvious visible delaminations and accompanying

changes in damping and stiffness.

Fatigue tests of boron/epoxy and glass/epoxy CH-47 rotor blades (ref. 63) have

also indicated excellent fatigue resistance although failures occurred in the metal root-

end fitting. Similarly, fatigue testing of the boron/epoxy F-111 horizontal tail resulted

in failure associated with the attachment of the composite to the titanium root end.

Spectrum testing of components of a boron/epoxy wing box has shown excellent fatigue

resistance, as has sonic fatigue testing of a boron/epoxy C-SA slat component. Both of

these items have exhibited failure in fittings of composite bonded to metal.
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COMPOSITEFATIGUE DESIGNCONSIDERATIONS

A successful design procedure for composite materials in fatigue applications will
not be a simple extrapolation of procedures usedfor metals. Metal parts exhibit cracks
whenthey begin to fail in fatigue, andthe cracks generally propagatein a predictable
manner to failure. Thus, the metal part may be inspectedat specific intervals and
removed from service prior to failure. Composites,on the other hand, donot fail in the
samemanner.

The difference betweenfatigue behavior of a compositeandthat of a metal structure
is depicted schematically in figure 28. The primary modeof damagein a metal struc-
ture is cracking. Cracks propagatein a relatively well definedmannerwith respect to
the applied stress, and the critical crack size and rate of crack propagationcan be related
to specimendata through analytical fracture mechanics. In this discussion, the critical
damagesize is definedas that amountof damageat which the compositewill be no longer
structurally adequate. In general, the crack initiation time (definedas the time to detec-
able cracking (inspection threshold)) occupiesa large part of the fatigue life of a metal
part (ref. 64). It shouldbe notedthat all structures have some initial damagein the form
of microcracks, surface imperfections, inclusions, and other stress risers andthat much
of the so-called crack initiation time involves propagationof this damageto detectable
size. With composite structures there is no single damagemodewhich dominates.
Matrix cracking, delamination, debonding,voids, fiber fracture, andcomposite cracking
canall occur separately andin combination, andthe predominanceof oneor more is
highly dependenton the laminate orientations and loading conditions. In addition, the
uniquejoints and attachmentsusedfor composite structures often introduce modesof
failure different from those typified by the laminate itself.

The composite damagepropagatesin a less regular manner anddamagemodescan
change. (Seefig. 28.) Present experiencewith composites, althoughlimited, indicates
that the rate of damagepropagation in compositesdoesnot exhibit the two distinct regions
of initiation and propagation. Although, as mentionedpreviously, the crack initiation
range in metals is actually propagation, there is a significant quantitative difference in
rate. This quantitative difference appears to be less apparentwith composites. This
observation is very subjective andapparently dependentuponthe observer's definition of
initiation.Some investigators have observed matrix crazing and other indicationsearly

in their tests but have reported short-time rapid propagation because they define the

latterbased upon their experience with metals as crack propagation. Indeed, composite

cracking may occupy only a small part of the fatigue lifeat the very end, but we can cer-

tainlymake use of allthe earlier indicationswhich are prevalent.
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It is expectedthat compositematerials will bemore damagetolerant thanmetals.
Again, this expectation is baseduponlimited experience andwill dependuponthe lami-
nate orientation (unidirectional compositesare subject to splitting) andloading conditions,
but, in general, it can beargued that eachfiber is a separate load pathandthat a com-
posite is therefore highly redundant. Our present analytical fracture mechanics tool
must be supplementedfor usewith composites before we have a better understandingof
this behavior. Several investigators have indicated that, in general, compositesexhibit
goodfracture toughness(refs. 65 to 67) and,unlike metals, increase fracture toughness
with increasing strength. It is thus reasonable to predict the critical damagesize in
composites to be greater than that for metals (fig. 28), althoughthe multiple failure modes
make this value a bandfor composites. Similarly, the inspection threshold is depicted
as a bandin figure 28 becausethere are multiple failure modes andmultiple inspection
methods.

The problem then is to determine the critical mode or modesof failure anddevelop
detection schemesin order to insure fail safety in critical components. Onesuchpro-
cedure involves the determination of changesin the static or dynamic stiffness properties
of the component. A changein the resonant frequency or dampingbehavior of a part is
an indication of damage. Failure criteria canbe developedfrom data suchas those seen
in figures 10to 12as substantial changesoccur early enoughin the fatigue life to allow
safe detection andremoval from service. This characteristic may provide excellent fail
safety for rotor blades in that the aeroelastic behavior may degradenoticeably long
before the part has sustaineddamageof critical size. Other detection schemessuchas
temperature rise measurements (fig. 10),embeddedconductingwires, radiography,
sonics, ultrasonics, holography, infrared inspection, dye penetrant, andvisual inspection
will probably be used separatelyor in conjunctionwith dynamic measurements.

As mentionedearlier, a major consideration for developinga valid designmethod-
ology is a definition of failure. A problem exists however, in that a single failure crite-
rion may be inadequatefor all applications. This situation is seen schematically in fig-
ure 29. The example considers two structures, a spring and a tension cable, and two

candidate materials, a metal and a composite, for each application. The failure criterion

for the spring is a specified loss in stiffness, whereas that for the cable is fracture.

Since metal structures exhibit little change in stiffness until cracking is extensive, the

metal spring and metal cable have approximately the same life, and a single criterion

based on fracture is probably adequate for design. The composite material spring would

lose sufficient stiffness to be considered failed at only a fraction of its fracture life,

whereas, the tension cable made of the same material and subject to the same loading

would have a much greater useful life. In order to provide for such design considerations,

it will be desirable to record fatigue data as depicted schematically in figure 30.
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CONCLUDINGREMARKS

Compositematerials appearto offer excellent resistance to fatigue loading and,
as such,will likely find use in dynamic components. A secondfactor which makescom-
posites attractive for these applications is the opportunity for tailoring of the stiffness
in different directions, thus the designer is given the capability of tuning dynamic com-
ponents. As compositesfind wider application, it will be necessaryto provide more
precise definitions of failure andto couplethese definitions with proper damagedetection
schemes. New, sophisticated damagedetection methodswill probably not be necessary;
however, becauseof the multiple damagemodespossible, it will be necessary to utilize
multiple detection schemes. The apparenthigh damagetolerance of compositeswill
allow somewhatrelaxed inspection requirements andwill provide for improved repair-
ability procedures. At this writing, the cost of high moduluscomposites is still high and
must be further reduced to allow wider usage.
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Figure 1.- Effect of matrix material on fatigue of glass fabric composites(from ref. 18).
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