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SUMMARY

Both the conventional and reliability analyses for determining safe fatigue life

are predicated on a population having a specified (usually log normal) distribution of

life to collapse under a fatigue test load.

Under a random service load spectrum, random occurrences of load larger than

the fatigue test load may confront and cause collapse of structures which are weakened,

though not yet to the fatigue test load. These collapses are included in reliability but

excluded in conventional analysis.

The theory of risk determination by each method is given, and several reasonably

typical examples have been worked out, in which it transpires that if one excludes

collapse through exceedance of the uncracked strength, the reliability and conventional

analyses gave virtually identical probabilities of failure or survival.

INTRODUCTION

The conventional approach to safe-life estimation envisages a fatigue test which

imposes on at least one full-scale structure the equivalent fatigue damaging effect of

service loading, according to some regular pattern which restricts, however, the

largest load, regularly applied, to some fraction of the virgin strength. Life to

collapse is regarded as a statistical variable, of whose population mean the test failure

is treated as an estimator. Variability is estimated from other representative experi-

ments in which each member's strength falls to a single lower value (in different life-

times), which is accounted failure, and the probability density function of life to failure

is usually assumed log normal.

Determination of the safe life as a function of desired or acceptable probability

of failure requires merely the estimation of the desired percentile of the population,

that is, the desired percentile of the distribution of fatigue lives, measured to the point

at which each member's strength has fallen to the largest applied lo_td in the test

sequence.
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Reliability theory, applied to this problem attributes the samestrength properties
to the populationas before, including the decayof strength as fatigue crack growth occurs,
but doesnot assumethat collapse occurs wheneach member's strength has fallen to a
commonvalue. Collapse occurs rather whena member of the populationmeets a load
larger than its current strength, andthis eventwouldcorrespondto a conventionally
assessedlife for that member if the service spectrum were modified or truncated so that
all load peaks larger than the fatigue test load were reducedto that value.

The purposeof this studywas to present the theory of risk determination for each
methodandto ascertain by the working of several reasonably typical exampleswhether
the conventionalmethodsignificantly underestimatedthe failure risk through ignoring
service loads higher than the fatigue test load.

SYMBOLS

ratio of maximum fatigue test load to virgin strength or strength at critical
crack length

g ratio of crack propagationtime (from detectable to critical size) to total

life H

H population life in hours; a log normal random variable

population geometric mean life in hours

1 crack length

/cr "critical" crack length at which strength U has fallen to bU o

ld crack length detectable with certainty

frequency of occurrence, per hour, of applied load >V

n number of load cycles applied

p(U) probability density function of strength for population

p(V) probability density function for applied load V for some arbitrary time

interval
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P(t) probability of collapse before time t

P(n) probability of collapse before nth applied load

Pc

6P c

r(t)

probability of collapse in arbitrary time interval

probability of collapse in arbitrary time interval of small element of popula-

tion characterised by its value of H

risk or risk rate or risk of failure at time t of survivors at time t

r(n)

R(t)

a(n)

risk or rate of failure at the nth applied load of survivors of (n-1)th load

reliability at time t or probability of survival to time t

reliability at nth applied load or probability of survival from first to (n-1)th

load

t time, hours

Tb

U

safe inspection period for probability of failure

strength

p = p percent of gH

U o virgin strength

V applied load

standard deviation of log H

strength decay function of crack size

crack propagation (time function)

STATISTICAL MODEL AND SAFE-LIFE ANALYSES

The statistical model used herein is the one used in references 1 and 2, as shown

in figure 1 in both normal and logarithmic coordinates, and has the following features:
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(1) Thepopulation life H is log normally distributed with geometric mean
andvariance a2, H being the hours in which the strength U is reducedfrom Uo to
bUo which corresponds to the largest load in the test spectrum.

(2) Crack propagation in each member is scaled to the member's potential life to

failure H under the specified test history and follows the expression

lcr

(3) Strength is related to crack size; thus,

and the condition (1) gives 4(1) = b.

(4) Whereas crack propagation is governed by condition (2), failure is governed by

the frequency of occurrence r_(V) per hour, of service loads exceeding V, or in non-

dimensional terms, the frequency _(V/Uo) of service loads greater than V/U o.

In conventional analysis, a safe life for a probability of failure p is merely the

p percentile of the variable H. Insofar as H is the time at which U falls to Uo,

it is independent of the shape of the crack propagation curve and is only dependent on the

time H at which l =lcr.

The calculation of failure by the reliability approach requires the following defini-

tions (refs. 4 and 5):

P(t) probability of fracture before time t

R(t) reliability at time t or probability of survival to time t

1 ae(t)
r(t) risk or rate of failure at time t of survivors to time t, R(t) dt

and the expression

-_0 r(t)dt
R(t) = e

Or, alternatively, the probability of failure before a given time, the reliability and the

risk (hazard rate or force of mortality) may be expressed as a function of number of

cycles

(1)

n, as P(n), R(n), and r(n). In this case r(n) dn is the probability of failure
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in dn cycles of members surviving at n cycles, so that (with dn = I), r(n) is the

probability of failure per cycle of members which survive to the nth cycle.

If the probability density functions of strength and of load occurring in some arbi-

trary time are p(U) and p(V), respectively, as shown in the following diagram,

Probabitity

density
p(u)

Strength U

Apptied toad V

then the probability of collapse in this arbitrary time is the probability that a load V

falls on a structure of strength U less than V. For a load lying between V and

V + dV, occurring with probability p(V) dV, its contribution to the probability of collapse

is

U=V(-_

p(V) dV _ p(U) dU (2)
"JU---9

and the total probability of collapse is

_VT=_ _U T=VPc = p(V) p(U) dU dV
=0 =0

(3)

Or, alternately, if there is considered an element of the population of structures lying

between U and U + dU, the probability of a structure having a strength in this interval

being p(U) dU, its contribution to the probability of collapse is

(-_

p(U) dU _V_=U p(V) dV (4)

so that the total probability of collapse is also

_ _V T-'- OO
Pc --- p(U) p(V) (IV dU

---0 =U
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In the exampleof concern, in which strength U is distributed as a function of H and
also decreaseswith time, the calculation is most readily madeby taking small elements
p(H) dH of the populationcharacterised by their values of H and using equation(4) to
find the contribution to the probability of failure by eachelement; that is,

V_oo

_V p(V) dV5P c = p(H) dH =U

: p(u) EPrCV> U)]

It will be noted that U is a function of time U(t) = Uo_(_P(t/H)) so that

5P c = p(H) dH [Pr(V > U(t))_

from equation (1), r(t) being the risk function for this element,

6P c : p(H) dH - e-

where r_(V > U(t)) is the frequency per hour with which the applied load exceeds the

element's strength U(t).

The total probability of collapse is

H=oo - m(V

Pc = _ p(H) - e
•1H=0 >U(t))d1 dR

which is identical, allowing for a difference in notation, with the expression

P(t) = _F(U):ll

_F(U)=0 [1 -

of reference 2 (p. 29).

e dF(U)

(6)

(7)

(8)
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INSPECTION INTERVAL ANALYSIS

Safety may be achieved in an inspectable structure ifthe critical crack length /cr,

at which strength falls to a selected unsafe value, is larger than the crack length detect-

able with certainty Id. The time remaining in which a crack propagates from Id to

/cr (and strength to U = bUo) is some fraction of the life H, say gH, and with this

model g is a constant for all members of the population. Thus gH is log normally

distributed with median gH and variance _2.

In conventional analysis, the critical length /cr is the same for all members of

the population, and the unsafe value of strength is equated to bUo, the highest load in the

fatigue test programme. A safe operating period after inspection T b for a probability

of failure p in the interval is the p percentile of the variable crack propagation

time gH, since it can readily be seen that only p percent of cracks can propagate from

Id to /cr in a time less than T b. This result assumes that all structures are cracked

to just below Id at the inspection date, and it is seen to be independent of the shape of

the crack propagation curve for cracks smaller than Id.

In reliability analysis, structures may be considered to be cracked to just below Id

at the beginning of the propagation time but to reach a failure state governed by load

exceeding strength. Where the safe lives, as calculated by reliability and conventional

methods, coincide it is concluded that this will imply a coincidence of the values of safe

inspection intervals.

APPLICATION OF THE THEORY TO TYPICAL EXAMPLES

Example A(1) represents a military aircraft situation where the structures are sub-

jected to the manoeuvre load spectrum (curve A of fig. 2) in which limit load is exceeded

once per 100 hours, crack size l/lcr is a power function of t/H, the decay of strength

with crack size conforms to the laws of fracture mechanics, and the standard deviation

is 0.167.

Example A(2) represents the same situation as example A(1) except that the stan-

dard deviation _ is 0.167Vr2.

Example B(1) represents a civil aircraft situation where the structures are sub-

jected to the gust spectrum (curve B of fig. 2) in which three-fourths of limit load is

exceeded once in 5000 hours, crack propagation follows figure 28 of reference 3, the

decay of strength is a linear function of crack length, and the standard deviation is 0.17.

Example B(2) represents the same situation as example B(1) except that (perhaps

unrealistically) crack growth is assumed linear from zero time up to failure.
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Constants used in the various calculations are listed in table I, and the results of

the calculations are shown in figure 3 where probability of failure or survival is plotted

against life in hours. Calculations for the conventional analysis have been made with the

same computer programme by truncating the load spectra at bU o.

DISCUSSION OF RESULTS OF THE ANALYSIS

Examination of figure 3 shows that for the Civil example B(1) both methods of

analysis gave virtually identical results within the computed range from p = 0.001 to

p = 0.999. In the computations the distribution of H was divided into its 0.1 percentile.

If results are desired for p < 0.001 these can readily be obtained by computing with

smaller elements of the distribution of H. For example A(1), both methods gave virtu-

ally identical probabilities of failure for lifetimes longer than 3000 hours, but for shorter

lifetimes the reliability method gave higher probabilities than the conventional method.

It is appreciated that the reliability method of analysis included, whereas the conventional

method excluded, the risk of failure from loads exceeding the virgin strength (whether of

uncracked structure or of cracked but yet unweakened structure).

The probability of such overload failures can readily be derived from the frequency

of exceedance of Uo for example A, namely once per million hours. This probability of

overload failures is plotted as a dashed line in figure 3; the reliability calculation closely

approximates this curve at low probabilities of failure.

The result for example A(2) is similar to that for example A(1), except that, because

of the larger scatter, the reliability calculation assessed a given probability to have been

reached in a slightly shorter lifetime; for example, a probability of failure of 0.002 was

reached in 1500 hours by reliability analysis and in 1750 hours by conventional analysis

with the corresponding scatter factors being 5_ and 4_, respectively. Again, at a prob-

ability of failure of 0.001, the major contribution was overload failure through loads

greater than the virgin strength.

Reliability analysis provides a rigorous method for validating the conventional

methods of safe life and inspection interval analyses which are based upon a seemingly

arbitrary choice of the value of unsafe strength, this choice having been made by choosing

what is to be the highest load in the fatigue test programme on the representative struc-

ture to estimate mean life. The conventional analysis is vastly less time consuming than

the reliability analysis, since it involves a simple slide-rule calculation rather than a

complex digital computer programme run.

Examples A(1), A(2), and B(1) were constructed to represent closely conditions

existing in military and civil aircraft situations. For the most part the reliability analy-

sis validates the simpler conventional analysis. For the military type of spectrum and at
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short lives, the probability of failure is dominatedby loads exceedingthe uncracked
strength; whenthese are addedto the conventionalanalysis, the result agrees closely
with the reliability methods.

Example B(2) represents anartificial extreme exampleof a structure assumedto
havelinearly decayingstrength from zero time up to failure. Nevertheless, here again,
at probabilities of failure less than20 percent, the corresponding lifetimes were virtually
identical with those for a more usual strength-decay curve, or, indeed,for the step-
function strength decaycurve which is implicit in the conventionalanalysis.

The examplesthat havebeendiscussedhavenot consideredthe caseof a long
period of detectablecrack propagationduring which the strength doesnot decaybelow
virgin strength. Here inspection will not prevent failures from exceedanceof the virgin
strength, but will weedout cracked structures before they becomeweakened.

CONC LUSIONS

For a range of conditions which are typicalof military and civilaircraft structures

and load histories,reliabilityanalysis validates the much simpler conventional methods

of safe lifeand inspection interval analysis.

The reliabilitymethod, ipso facto,includes the probabilityof failurethrough loads

exceeding the virgin strength - a factor which is inevitableby any fatigueanalysis,

inspection schedule, or safe-lifedetermination.

Where there is a long detectable crack propagation time without diminution of the

structural strength, inspection willweed out cracked structures before they become

weakened but willnot prevent failures from loads exceeding the virgin strength.
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TABLE I

CONSTANTSUSEDIN EXAMPLES A(1) ANDA(2} (MILITARY) AND

EXAMPLES B(1) ANDB(2) (CIVIL) SAFE-LIFE ANALYSIS

Example A Example B
Constantin calculation (military aircraft) (civil aircraft)

= Median population life 8000 hours 25 000 hours

cr = Standard deviation 0.167 for A(1) 0.17

0.167_/'2 for A(2)

bU o = Highest test load 0.67U o 0.5U o

1/l cr = _(h/H) (t/H) 9"0

1 for 1/lcr <0.44

0.67/_cr// for l/lcr>0.44

1 for t/l-I<0.91

0.67(H/t) 4-5 for t/H>0.91

106 - 12V/U o

B(1):

0 for t/H<0.6

t/H-0.6 for 0.6<t/H<0.97

-20+21t/H for t/H>0.97

B(2):

l/lcr =t/H

1 - 1/2lcr

B(1):

0for t/H<0.6

1.3 - 0.5t/H for

11- 10.5t/H for

B(2):

1 - 0.5t/n

104.3 _ 15V/U o

0.6 <t/H <0.97

t/H > 0.97
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Figure ].- Crack growth and failure distribution model.
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