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SUMMARY 

The computer run time required for a buckling analysis using NASTRAN is consid- 
erably greater than for a linear static analysis of the same structure. For this reason it 
is very important to obtain an optimal model size for the structure being analyzed, such 
that the model is neither so large as to increase running time unnecessarily, nor so small 
as to hinder accuracy. This paper studies the problem of critical load accuracy versus 
model complexity for a thin walled cylinder, using both Level 1 2  and Level 15 NASTRAN 
releases. 

INTRODUCTION 

Buckling is generally the failure mode for thin-walled shells carrying axially com- 
pressive loads and NASTRAN has the capability of solving for the critical load of such 
problems. The problem which initially stimulated interest in this study was the buckling 
analysis of a thin,walled cone to be used on a NASA spacecraft. NASTRAN analysis yielded 
a wide range of answers by varying the finite element model used. No analytical solutions 
could be found for buckling of a cone which could be used to verify the NASTRAN results. 
Therefore the buckling analysis of a thin-walled cylinder of approximately the same dimen- 
sions as the Sone was performed to determine the model complexity needed to obtain good 
agreement between NASTRAN and analytical solutions. The cylinder analyzed is 78.12 cm 
in diameter by 55.88 cm long with a wall thickness of 0.102 cm. 

There have been complaints about the crudeness of the NASTRAN plats element for 
buckling analysis. (See, for example, ref. 1.) The majority of the runs made for this 
study used NASTRAN Level 12.1.2 on the IBM 360/95 computer at the Goddard Space Flight 
Center. These results a re  compared to Level 15.1.0 which includes a greatly improved 
plate element for buckling. This improvement was obtained by including an improved al- 
gorithm for the bending effects, whereas Level 12 analysis relied primarily on membrane 
contributions. A procedure was formulated to measure the effect of this improved plate 
element, as well as verify the advertised decrease in running time for Level 15. 
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stiffness matrix 

differential stiffness matrix 

eigenvalue 

eigenvector 

critical stress 
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cylinder wall thickness 
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cylinder length 

cylinder radius 

critical load 

applied axial compressive load 

angle subtended by one element 

NASTRAN MODEL AND THEORY 

The bulk data required for a NASTRAN buckling analysis (Rigid Format 5 )  is identical 
to that required for a static analysis, with the addition of an EIGB card similar to the 
EIGR card used for normal mode analysis. The steps NASTRAN uses for solving the 
buckling problem as presented in ref. 2 are: 

1. Solve the linear statics problem ignoring differential stiffness and calculate the 
internal element forces. 

2. U s e  the element forces to obtain the differential stiffness matrix. 



3. Find the eigenvalues and eigenvectors from the matrix equation: 

= o  

where the eigenvalue (A) is the factor by which the arbitrary applied load is multi- 
plied to obtain the critical load and the eigenvector (u) represents the buckling 
mode shape. 

Plate elements were used to model the cylinder. The AXIS data generating program 
was used to generate the NASTRAN data deck. (See ref. 4.) This program generates the 
GRID, CQUADB and PQUADB cards for a shell of revolution. The grid points are se- 
quenced along circumferential rows to obtain the minimum band width and no active 
columns. 

The critical load of the cylinder was obtained for various model sizes. All of these 
models were only portions of the complete cylinder, thus yielding only axisymmetric buck- 
ling modes. The effect of the rest of the cylinder is simulated by constraining to zero 
certain degrees of freedom along the edge of the model as described in ref. 3. These 
degrees of freedom are tangential translation, longitudinal rotation and radial rotation. 
(Degrees of freedom 2, 4, and 6 in Figure 1.) 

ANALYTICAL SOLUTION 

The analytical critical stress of a thin walled cylindrical shell under an axial com- 
pressive load is given in ref. 5 as 

12(1 - 112) 
Ucr = 

The number of half sine waves the cylinder buckles in is given by m in the above equation. 
Only the number of half sine waves which produces a minimum u,, is of interest, the 
others being fictitious numbers the cylinder will never see. This minimum occurs when 

Assuming the cylinder being andlyzed is made of aluminum yields: 

m EZ 16 

u,, = 1.0859 x lo8 newton/meter2 

P,, = 2.7076 x lo5 newtons 
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This critical load (PcR) was applied as a static 1 ent model so 
e value of the that the eigenvalues would approach unity as the acc 

force (F) applied to each grid point (See Figure 1) is calculated from 

F = L(L)Pcr 2 360 (4) 

MODEL VARIABLES AND RESULTS 

The model parameters which were varied are: the number of longitudinal elements, 
the number of circumferential elements, the length of the cylinder, the end fixity of the 
cylinder and the type of finite elements used. The eigenvalue (1) for each model was ob- 
tained by using NASI'RAN. 

Longitudinal Elements 

The accuracy of the solution is a function of the number of longitudinal elements, be- 
cause the more elements per half sine wave the closer the actual buckling mode can be 
approximated. The purpose here is to perform a systematic variation of model com- 
plexity to obtain a curve of accuracy as  a function of model complexity. Models contain- 
ing 20, 40, 60, 80 and 120 longitudinal elements were analyzed. A l l  these models were 
one element wide. Figure 2 plots the eigenvalue of each buckling mode for the various 
models as a fuuction of the number of half sine waves. The analytical solution from 
equation (2) is also plotted. As was stated before, the only points on these curves which 
have real meaning are the minimum points. These minima are plotted to obtain thecurve 
of primary interest (Figure 3). The number of elements per half sine wave required to 
obtain a given accuracy can be read directly from the graph. Also, the increased ac- 
curacy obtained from Level 15 can be seen. 

Circumferential Elements 

A model more than one finite element wide, as has been used in ref. 1, does not 
necessarily increase the accuracy of the critical load obtained, because we are  dealing 
with an axisymetric phenomenon. To study this area va.rious models of one, two and 
four circumferential elements were investigated. Table 1 clearly shows that the accuracy 
is not a function of the number of circumferential elements, but only a function of the 
n s e r  of 1ongituiiina.l elements. 

Length 

Equations (1) and (2) show that the critical stress, and therefore the critical load, is 
not a function of length. Table 2 shows how this parameter was varied in  the NASTRAN 
model. The length of the 80celement, single-row model was cut in half and then in half 
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again, keeping the same element size. The theoretical solution was verified - the crit- 
ical load is independent of length. This allows one to decrease the grees of freedom of 
the axisymmetric model and still obtain the same accuracy a s  a full length model. 

Experimental solutions show that the critical load is independent of end fixity for 
long cylinders. (See ref, 6 . )  Ideally, failure of a pinned-pinned cylinder will occur si- 
multaneously a t  each half sine wave along the length, but for a fixed-flxed cylinder the 
failure will occur near the center where the amplitude of the half sine wave is the same 
as that for a pinned-pinned condition as shown in Figure 4. 

Table 3 shows the results of varying the end fixity of the NASTRAN model. The var- 
iation in critical load is less than one percent. This fact relieves the ana3yst of the bur- 
den of accurately approximating the actual end conditions of a thin-walled cylinder expe- 
riencing buckling. 

Type of Finite Elements 

The use of triangular plates instead of quadrilateral plates will double the number of 
finite elements while keeping the degrees of freedom and the bandwidth, and therefore the 
decomposition time, constant. In the problem being studied this was done by dividing 
diagonally the quadrilateral plates, as shown in Figure 5. This substitution increased the 
accuracy of the solution as shown in Table 4. In the case being studied quadrilateral plates 
were more convenient, however, because the AXIS program generates quadrilateral plate 
elements. 

LEVELS O F  NASTRAN 

As was shown earlier in Figure 1,the improved plate element of Level 15 offers a 
great improvement in the accuracy of the critical loads obtained using Rigid Format 5. 
This allows the user to decrease the model size and still obtain the same accuracy as 
Level 12. Another great improvement in Level 15 is the decrease in running time for 
buckling problems. Running time for a fiaite-element model with a given bandwidth and 
number of degrees of freedom is reduced by a factor between 3 and 4, as shown in Table 
5. 

CONCLUDING REMARKS 

Many things can be done to reduce the computer time required to do a NASTRAN 
buckling analysis of a thin-walled cylinder. The optimal number of elements per half sine 
wa,ve can be obtained from the graph of accuracy versus number of elements. For 
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&symmetric buckling no increase in accuracy is obtained by increasing the number of 
rows of elements modeled. The critical load was found to be independent of length, al- 
lowing a reduction in model size. The use of triangular plate elements is recommended 
for improved accuracy, unless a data-generating program that producsa quadrilateral 
plate elements is being used. Finally, Level 15 offers an increase in accuracy and a de- 
crease in running time over the previous Level 12 NASTRAN. 

Although this paper dealt with a thin-walled cylinder, which is easily solved by ana- 
lytical methods, the conclusions reached me applicable to other problems which are more 
difficult to solve analytically. These problems include stiffened cylinders, thin-walled 
cones and cylinders wi€h variable wall thickness. 
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No. of 
Axial 

Elements 

20 

40 

60 

80 

No. of Circumferential Elements 

1 2 4 

2.013 2.013 2.013 

1.252 1.252 1.252 

1,112 1.113 - 

1.062 - - 

Table 3: Variation in End Fixity (60 Element Model) 

Length, No. of 
(cm) Elements 

55.88 80 

27.94 40 

13.97 20 

Lower End 
Fixity 

Free 

Pinned 

Pinned 

Fixed 

Fixed 

Fixed 

P c r  2 

(kilonewto n) 

287.5 

287.5 

287.5 

Upper End 
Fixity 

Free 

Free 

Pinned 

Free 

Pinned 

Fixed 
I 
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P c r  ’ 
kilonewton 

303.0 

301.3 

301.1 

303.1 

301.4 

303.2 



Table 4: h vs Type of Elements 

No. of 
Elements 

20 

40 

60 

80 

.N.ASTRAN Crit ical  Load 
Theoretical Crit ical  Load A =  

CPU Time, sec 

Level 12 Level 15 
Ratio 

132 35 3.8 

250 70 3.6 

430 124 3.5 

556 178 3.1 
F 

Table 5: CPU Time vs Level (IBM 360-95) 
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Figure 1.- Thin-walled cylinder. 
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II 
x 

NO. OF HALF SINE WAVES (m) 

re 2.- Variation of X with number of half-sine waves. 
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PINNED -PINNED FIXED - FIXED 

Figure 4.- Buckling mode shapes (60 element cylinder). 
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QUADRILATERAL TRIANGULAR 
ELEMENT MODEL ELEMENT MODEL 

Figure 5 . -  Finite-element model. 


