A COMPARISON OF THE CAPABILITIES OF
THREE FINITE ELEMENT PROGRAMS

By

David D. Loendorf
Langley Directorate,U.S. Army Air Mobility
Research and Development Laboratory

SUMMARY

Three finite element programs are compared to assess their capabilities
as an analysis tool in a structural design process. Because of the need for
repetitive analyses as an integral part of a design loop, a candidate program
must be capable of handling large problems, operate efficiently and be
readily adaptable for use in computer aided design. The three programs
considered in the study, ELAS, SNAP, and NASTRAN, range from a relatively
small finite element program limited to static structural analysis (ELAS) to
a large complex general analysis system (NASTRAN). Results are given in the
paper for comparative speeds and computer resources required for each program
in the analysis of sample fuselage problems representative of practical air-
craft design. '

INTRODUCTION

During the past decade, numerous finite element programs have been
developed and are available for public use. They range in size from small
programs restricted to two-dimensional static analysis to large systems
capable of handling virtually any type of three-dimensional structure
subjected to static, dynamic,or thermal loads. Most of the finite element
programs in current use were initially developed to analyze a prescribed
structural design to determine, for example, if stress levels are within
allowable limits. More recently, however, researchers have attempted to
incorporate these finite element programs as an integral part of an automated
design process. In design applications, many cycles are often required to
obtain a converged design, and the efficiency of the automated design procedure
is strongly dependent on the efficiency of the analysis tool.

It is the purpose of this paper to present selected analysis results
obtained with three finite element programs in current use and discuss some
of their assets and liabilities when considering their inclusion as the
analysis phase of an automated structural design program.

277

17

ANALYSIS REQUIREMENTS FOR AUTOMATED STRUCTURAL DESIGN

The analysis program is the backbone of any automated structural design
procedure and, hence, must efficiently handle the repetitive computation of
stresses and deflections following each structural modification. A very
simplified schematic of a structural design process is shown in figure 1. It
has been the author's experience with the development of the fuselage design
program FADES, reference 1, that the analysis program is executed approximately
11 times to obtain one design and that this accounts for more than 75 percent
of the total CPU time required for the design. In an effort to decrease
computer cost, the finite element analysis program must be evaluated carefully
to determine what design oriented finite element capabilities are needed.

Since it is important that the actual structure be closely approximated, many
diverse finite elements are required. At the same time, analytical results
should be obtained with minimum computer costs. However, one should not look
at efficiency alone, but must also consider program capabilities and interface
problems associated with integrating the finite element program into the design
algorithm. These general requirements lead to specific requirements for a
structural analysis program in the following areas:

1. Efficiency _
a. Core requirements
b. Execution time
c. Bandwidth minimization or sparse matrix techniques

2. Generality
a. Static, dynamic, buckling, etc., capabilities
b. Large problem capability
¢. Checkpoint/restart capability
d. Large library of elements
e. Plot capability

3. Interfaceability
a. Standardized input
b. User determined, file oriented output
c. Complete, concise, and accurate documentation
d. Machine independence
e. Continued maintenance

To the author's knowledge, no finite element programs currently available
are specifically tailored to efficiently meet all of the above design oriented
capabilities; thus, one must consider suitable alternatives among existing
programs. Three programs were considered in this study ranging from moderate
to broad in capability. The programs are ELAS, reference 2, a relatively small
finite element program limited to static structural analysis and presently used
in the FADES program; SNAP, reference 3, a proprietary static analysis finite
element program efficient for large structures; and NASTRAN, reference 4,

NASA's general purpose structural analysis program. (Some of the more important
capabilities are listed in Table I).

278

RESULTS AND DISCUSSION

A structural configuration representative of an aircraft fuselage section
was used in the studies to compare the three programs., A model of the configu-
ration is set up so that the number of rings, stringers, and floor members
was easily changed through a model generating program which prepared input to
all three programs (see figure 2 for two sample configurations). This pro-
cedure facilitated running identical problems with the three programs with a
minimum of intermediate effort. Ring elements and transverse floor elements
were modeled using a typical beam formulation (combined bending and extension).
Stringer elements and longitudinal floor elements were modeled by a rod
formulation (extensional properties only). Skin sections were modeled using
the constant strain membrane plate element in NASTRAN and ELAS, and the Pian
hybrid membrane in. SNAP. A comparison of the membrane formulations may be
found in references 5 and 6. The loading in all cases was a self-equilibra-
ting compressive force applied to each of the grid points of the end rings.
Problem size ranged from 90 grid points, 360 D.O.F., and 267 elements to
1530 grid points, 6102 D.0.F., and 4415 elements.

All results were obtained using the CDC 6000 series computers at the
Langley Research Center. ELAS was run using version 75, SNAP using version
J, and NASTRAN using level 15.1.1, a pre-release form of level 15. Displace-
ments for the SNAP results tended to be about 5 percent larger than for
NASTRAN or ELAS and the difference is attributed to the relatively flexible
hybrid element contained in SNAP. The stresses obtained for all programs
agreed to within 1 percent for all cases.

The effect of problem size on core requirements for the three programs
is shown in figure 3. The steep slope of the ELAS curve is due to the fact
that ELAS requires the complete stiffness matrix in-core during execution.
Both SNAP and NASTRAN are not limited by this requirement and, therefore,
can handle fairly large problems in a minimum of core; the SNAP core require-
ment is the lesser of the two.

Total execution times for a number of configuration sizes are shown in
figure 4 for SNAP and NASTRAN. ELAS times are not included because of
problem size; however, for smaller problems, ELAS and NASTRAN execution
times are similar. The top three curves indicate NASTRAN execution times
increase with increasing problem size. These also show that time increases
with increasing number of grid points per ring. The bottom three curves
show run times for SNAP and indicate that on the contrary, execution times
for SNAP decrease slightly with increase in grid points per ring.

For NASTRAN, the effect of grid points per ring on decomposition times is
shown in figure 5. The sharp increase in decomposition time shows that if
NASTRAN is to be efficient, the analyst must be able to minimize the problem
bandwidth, preferably by the use of an automatic bandwidth minimization
scheme such as BANDIT (reference 7).

279

The effect on solution times of using BANDIT to generate SEQGP cards for
NASTRAN is shown in figure 6. The curve labeled NASTRAN 15.1.1 shows results
for problem solutions without any resequencing. The curve labeled NASTRAN/
BANDIT shows execution times of NASTRAN plus the execution times required by
BANDIT which are shown in the curve marked BANDIT. These results show the
benefits resulting from improved grid point sequencing. Also shown on the
figure are execution times for SNAP which indicate that problem solution
times are less than the times required to resequence grid points for NASTRAN,
when SNAP is run with a good grid point elimination sequence. However, one
must input the reduction sequence for SNAP as there are no available algorithms
capable of doing this for the analyst.

The results discussed thus far have been restricted to computer time and
storage. A more realistic comparison is to put computer resources on a cost
basis. While computer cost algorithms vary among computing centers, any
reasonable algorithm provides a basis for comparison. Cost presented herein
was calculated by the cost algorithm currently used at the NASA Langley
Research Center which takes into account operating systems calls (0/S calls),
CPU time, and CORE.

A comparison of SNAP and NASTRAN computer requirements for a large
problem consisting of 1530 grid points, 4415 elements, and 6106 D.0.F. is
shown in figure 7. Both SNAP and NASTRAN were run in 160 000 octal core
locations. As shown in the figure, NASTRAN requirements exceeded those for
SNAP in all categories. In particular, the ratio of total time is about 5.3:1
while cost is approximately 4.5:1, These figures do not reflect the fact that
BANDIT was run for NASTRAN to resequence the grid points in an effort to
minimize NASTRAN costs, as SNAP was running under an optimum reduction sequence.

The above discussion focuses on the efficiency of the solution process.
However, one must not exclude the other points made earlier (2. a-e; 3. a-e,
p. 278), as they, too, must be considered in overall efficiency considerations.
For example, if a design program is built around an efficient static analysis
program, no capability will exist for mode shapes and frequencies. Thus,
program generality may be as important as efficiency considerations. For such
a case, NASTRAN is the only program of the three that has a broad range of
analysis capability. The SNAP program has a free vibration counterpart, but
at present, it is a separate program and requires regeneration of input.

User conveniences are also important if the analysis program is to be
easily interfaced with a design algorithm. All of the programs have well
documented, standardized input for which an input generating program may be
developed to help reduce errors in input. All three programs also have some
form of internal data checking with diagnostic error printout. However, only
one of the programs, SNAP, allows the user to define desired output and on
which files it should be placed. This is very desirable from the standpoint
of automated design if different elements are designed at different times.
Current theoretical documentation is adequate for NASTRAN only. NASTRAN and
ELAS are operational on three machines, CDC, UNIVAC, and IBM, while SNAP is
operational on CDC and UNIVAC. NASTRAN is being maintained under contract by

280

the NASTRAN System Management Office at Langley Research Center; SNAP is
maintained by its developer; and ELAS is being updated by its author at Duke
University.

CONCLUDING REMARKS

Three finite element programs were studied to determine their feasibility
as the analysis tool in automated structural design. Due to problem size
limitations, ELAS does not appear to be suitable for this purpose. The present
speed of SNAP makes it desirable in a design environment where many repetitive
analyses are required. However, the generality of NASTRAN may overshadow the
fact it is less efficient than SNAP. Thus, one must weigh all present and
future requirements before deciding on which program to choose. It should be
clear, however, that bandwidth can have a significant effect on computer costs
and perhaps NASTRAN should be extended to include a band optimization scheme,
or the decomposition procedure should be improved. It is very likely that a
complex design system could provide the option of using either SNAP or NASTRAN
until NASTRAN is extended to provide the speed offered by SNAP.

REFERENCES

1. Sobieszczanski, J. E., and Loendorf, D. D.: A Mixed Optimization Method
for Automated Design of Fuselage Structures. Presented at the 13th
AIAA/ASME/SAE Structures, Structural Dynamics and Materials Conference,
San Antonio, Texas, April 1972,

2. Utku, Senol: ELAS--A General Purpose Digital Computer Program for the
Linear Equilibrium Problems of Structures. Structural Mechanics
Series No. 11, School of Engineering, Duke University.

3. Whetstone, W. D.: Computer Analysis of Large Linear Frames. J. Str.
Div., ASCE, STI11, Nov. 1969.

4. Butler, Thomas G., and Michel, Douglas: NASTRAN--A Summary of the
Functions and Capabilities of the NASA Structural Analysis Computer
System. NASA SP-260, 1971.

5. Whetstone, W. D., and Yen, C. L.: Comparison of Membrane Finite Element
Formulations. Lockheed Missiles and Space Company Report #HREC
6-81-70-3, LMSC/HREC D162553, Huntsville, Alabama.

6. MacNeal, Richard H.: NASTRAN Theoretical Manual. Ed. NASA SpP-221.

7. Everstine, Gordon C.: The BANDIT Computer Program for the Reduction of
Matrix Bandwidth for NASTRAN. NSRDC Report #3821, March 1972.

281

cgc

10.
11.
12.
13.
14.
15.
16.

17.

CAPABILITIES OF THREE FINITE ELEMENT PROGRAMS

CAPABILITY
Complete Stiffness Matrix In-core
Sparse Matrix Techniques
Good Documentation
Static Solution
Dynamic Solution for Transient Loadings
Eigenvalue/Frequency Solution
Buckling
Cholesky Decomp.
Symmetric Gaussian Elimination
Autbmatic Bandwidth Minimization
Plot Capability {Undeformed § Deformed)
Réstart/Checkpoint
Large Family of Users
Multiple Loadings
User Determined Output
Interface Capabilities Good

Many Element Types

Input/Output only

Specific files may be designated

N N = O

BANDIT is available for external re-sequencing

ELAS SNAP

X

X
x° x0
X X

X
X

X
X

X

X
X

X

2
X
X x>

Pian hybrid formulation for plate membrane and bending formulations

NASTRAN

b T -

Analysis

DESIGN PROCESS

Re-design

Figure 1. - Simplified schematic of the design process.

283

752 Elements

1098 D.O.F.

276 Nodes

4415 Elements

6114 D.O.F.
- General Configurations.

1530 Nodes

Figure 2.

284

500

400 |-
=
(&)
S 300 - ELAS
g
S
‘g 200
5 NASTRAN 15.1.1
(&) o le) O O O
100 - 5\/ A A 'A% B
SNAP
0 L 1] !]]]]
100 200 300 400
Nodes
Figure 3. - Core requirements for various problem sizes.
500 _
Nodes
Per
400 L Ring
a-20
S o-28
a 300 | 0-36
= NASTRAN 15.1.1
L
<5
E
f—
5 200 L
2
100 |
SNAP
0 : W"O |
0 100 200 300

Figure 4. - Total CPU

Nodes

time for various numbers of circumferential nodes.

285

100

80 |
E
2 -
S
- 60|
E
‘— o
S NASTRAN
'g_ao ~
£
S n
a
20 |
0 I A 1 1] 1 1
0 15 30 45
Nodes Per Ring
Figure 5. - Effect of nodes ver ring on decomposition time.

(Total nodes held constant)

1000
800
NASTRAN 15.1.1
3
2600
=
e |
[<}]
E
= w
E -
NASTRAN/BANDIT
200 |-
— BANDIT
0 g =7 |SNAP |
100 200 300 400
Nodes

Figure 6. - Effect of BANDIT on NASTRAN 15.1.1 execution time.
(52 nodes per ring)

286

200

Core (K8)

— &
3
w
S
NS
2000 |-
B
3 I
£
= 1000 |-
o
B N
Z2l

N S

Figure 7. - Comparison of SNAP and NASTRAN computer requirements.

40

20

0

0

N

S

N - NASTRAN 15.1.1

S - SNAP

Relative Cost

800

400

0

g 1200
Y
E
orme
£ 600
S
a
0

1

N

S

(1530 grid points, 6102 D.0O.F., 4415 elements)

287

