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SUMMARY

This paper describes the implementation of an improved quadrilateral
membrane element in NASTRAN, Descriptions of the geometrical and kinematic
properties of the element are included slong with development of the matrices
end vectors which characterize the element. The necessity for considering
small deviations from pleneness of the element 1s discussed and the approach
taken to account for these deviations for the new element is described. The
improved accuracy available from the element over the existing quadrilateral
membrane is indicated by a sample calculation for which an analytical solution
is available from beam theory. For the same finite element ideslization, the
errors in maximum displacement and stress were significantly reduced by the

use of the new element,
INTRQDUCTION

One of the more fregquently used elements in the NASTRAN library is the
quadrilsteral membrane element (CQDMEM). This element is used to represent
portions of structures for which membrane sasction constitutes the predominant
contribution to the strain energy. An example of one such applicetion is to
the skin of sircraft wings. In addition, the quadrilateral membrane element
is also used in conjunction with the quadrilateral bending element (CQDPLT) to
form the membrane-bending elements CQUADL and CQUADZ2 needed to represent more
general deformation behavior.

The quadrilsteral membrane element currently aveileble in NASTRAN
is composed of overlapping constent strain triangles as described in reference
1. It has been reported that the CQDMEM element does not accurately represent

problems involving high stress gradients, suggesting that the current element

315




needs improvement. The reason for this difficulty is generally attributed to
the constant strain field provided by this element (ref. 2). Several improved
quadrilateral membrane elements have been developed which have linear strain
fields (e.g. refs. 3 and 4) and these elements should provide improved results
in membrane element applications. The implementation of an improved quadri-
latersal membrane element in NASTRAN was undertaken as an in-house project to
improve the element library by attempting to overcome the noted shortcomings.
The element chosen for implementation is the linear strain isoparametric
quadrilastersl membrane element described in references 3 and 4, The reasons
for this choice are:
(1) The element is conforming, i.e. the displacements of adjoining
elements are matched along their entire interface. As a result,
the strain energy is an upper bound to the corresponding exact
energy.
(2) The stresses and strains vary within the element thus providing
improved accuracy over the existing element.
(3) The element is well-documented.
The purposes of the present report asre to present a description of the
element being implemented and to demonstrate the increased accuracy available
through the new element by comperison with the existing quadrilateral element

and an analytical solution.

SYMBOLS
[A] matrix relating strains end displacements
[B] transformation metrix relating displacements in mean plane

to those at actual grid points

[c¢] matrix which relates rotations of the mean plane to displacements
of mean plane

[E] matrix relating displacements in element coordinate system

to those in basic ccordinate system

ex’ey’exy membrane strains
{fa} vector of forces at actual grid points in element coordinate
system
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{fe} vector of forces in meen plane

{Ge] matrix relsting stresses gnd strains

H distance from actual grid point to the mean plane

h thickness of membrane

J Jacobian of transformation from x-y coordinates to &-n
coordinates

(K] stiffness matrix referred to global coordinate system

[Kd] differential stiffness matrix referred to global coordinate
system

[Kee] stiffness matrix in element coordinate system

[ng] differential stiffness matrix in element coordinate system

{pr} thermal load vector referred to global coordinate system

{Pe} thermal load vector in element coordinste system

{s] matrix relating element stresses to global displacements

[Se] matrix releting element stresses to element displacements

{s.} vector relating element temperature to element stress

[T] basic to global coordinate transformetion matrix

to reference or stress-free temperature of the element

t temperature of the element ebove the reference or stress-free
temperature

U, VW displecements in x~, y-, and z-directions, respectively

u,v,w displacements in X-, Y-, and Z-directions, respectively, see
table I

{ua} vector of displacements at actual grid point in element
coordingte system

{ue} vector of displacements in mean plane

X,Y,Z cartesian coordinates used in table I

XY o2 element cartesian coordinste directions, see figure 1

n,& element parametric coordinates, see figure 1

wx’wy’wz rotations of the mean plane element gbout x,y and 2z ‘axes,
respectively

Subscripts:

1, 2, 3, 4 refer to grid points 1, 2, 3 and 4 respectively, of the element
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A subscript preceded by e comma indicates partial differentiation with

respect to the subscript.
DESCRIPTICON OF THE ELEMENT

In this section of the paper, descriptions of the geometry and kinemstic
behavior of the isoparametric element (figure 1) will be given. The element,
since it is defined by four points, need not be plenar; however the development
of the necessary matrices is carried out for a flat element, The treatment of
the case for which the four points are not coplanar will be discussed in a
later section of the paper. The element parametric coodinates & and n
shown in figure 1 vary linesrly between zero_and one with the extreme values
occurring on the sides of the quadrilateral. Further, lines of constant £
and mn are streight as indiceted in the figure. A set of element cartesian
coordinates x, y, z is defined as follows: the x-axis is along the line
connecting the first two grid points; the y-axis is perpendicular to the
x-axis and lies in the plane of the element; and the z-axis is normal to the
plane and forms a right handed system with the x~ and y-axes. Displacenent
components in x, y, and 2z directions are denoted by wu, v, and w,
respectively. As given in reference 3, the displacement field is assumed to

have the following form:

u(€,n) = (1 - €)(1 - n) u, + £(1 - n) u, + Emug + (1 -8) nu,

(1)

v(E,n) = (1 -&E)L -n) vy +EQ -n) v, +Evy + (1 -8) W,
vhere the subscript on & displacement component denotes the grid point value
of the component,

It may be observed that on lines of constant &, u and v vary linearly
with n and on lines of constent n, u and v <vary linearly with £. In
particular u and v vary linearly on each'edge between grid points and s
a result the displacements of adjacent eleménts are matched all along their
common edges. The element is therefore of the "conforming" type which

guarantees that the element will converge as an upper bound on the straein energy.
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The required membrane strains are related to the displacements u and v

by the femiliar relations

ey T Uy, e _=v, e =u,

x + v, (2)

where the comma indicaetes partial differentiation. Since the displacements
are expressed in terms of & and 7, the operations in equations (2) cannot
be carried out without knowing the relationships between the (x,y) coordinstes

and the (£,n) coordinates. These relations are given in reference 3 as

x=(1-8)1-n)x +E&@L-n)x,+Enxg+ (1-8)nx,
(3)
y=@-8)Q-n)y +&L-n)y, +Eny; + (1 ~8&)ny,

By use of familiar relations involving partial derivatives, the operations

indicated in equations (2) may be performed. Thus, for example,

u’x = uag gax + u’n nnx (4)
where
1
Elx =%y’n ngx'—"‘ﬁ-'yﬁg (5)
and
X:g x’n
J = (6)
ylg ytn

It is noted in passing thet equations (1) which relate displacements within
the element to its grid point values or "parameters" are identical in form
to equations (3) for coordinates x and y. Thus the term "isoparametric"
is applied to characterize the element.

For the gpecial case of a rectangle it can be shown that the x and §
directions are identical as are the y and n directions. In this case e,
is linear with respect to y and constant with respect to x, whereas e

is linear with respect to x and constant with respect to y. The shear
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strain varies linearly with respect to both x and y. In contrast to the
strains, all three stress components vary linearly in both the x and ¥y
directions. This is & direct consequence of the constitutive equations., For
nonrectanguler shapes the behavior of the stress and strain components is

more complicated and is not easily characterized.
IMPLEMENTATION OF THE ELEMENT

The addition of an elemeht to NASTRAN requires the derivation of a set
of characteristic matrices and vectors as described in reference (1) and those

necessary for the new element are:

gtiffness matrix,'[Kee]

lumped mass matrix, [Mee]

thermal load vector, {Pe}

stress recovery matrices, [Se] and {St}

differential stiffness matrix, [Kie}

The development of these matrices 1s presented in this section slong with a
description of the procedure used when the four grid points defining the
element are not coplanar. Finally, this section contains an outline of the
matrix transformations required so that the new element will be compatible
with others in NASTRAN.

Stiffness Matrix

Using equations (1) through (5) results in the following relation between

streins and grid point displacements
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e \= [A] v, = [A] {ue} (17

M

vhere the elements of the 3x8 matrix [A] are functions of & and n. The

stress-strain relation is given by

X x x

9y 3= [Ge] & )" [Ge] & t (8)
e

Xy xy Xy

where the 3x3 matrix [Ge] represents most generally a completely anisotropic
meteriael. The terms O s ay and aky gre thermsal expension coefficients
and t is the average temperature of the element sbove the stress-free

temperature, given by
T=f(b, +6,+t, +%) -t (9)
Bt 27 3T M T %
The strain energy, V, (apart from thermal effects) is
_bh 2 A 4T 4T
V=3l Ly e} AT J[Al{u } J 4 an (10)

end from this expression, the stiffness matrix can be identified as

1 T
[k ] =n Sy [z (A1706,1(A] 7 af an (11)
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The required integration is performed numerically by the use of Gaussian
quadrature using e Uxl grid. For a discussion of Gaussian quadrature as used

for isoparametric elements, see references 3 and L.

Lumped Mass Matrix

The mass matrix developed for the isoparametric element is a lumped mass
metrix since coupled mass matrices for membrene elements generally result in
overly stiff representations in dynamic problems (see ref. 1 p. 5.5-5). One
method of lumping is to assign one quarter of the mass of the element to each
of the four grid points. However, this method usually does not preserve
the location of the center of mass of the element. Accordingly, the method
used to generate the mass matrix for the new element is that presently used
in NASTRAN for the existing quadrilateral membrane element. This later method

is baged on an sveraging procedure which always preserves the center of mass.

Thermal Losd Vector

For the purpose of developing the thermal load vector, the contribution
to the potential energy, U, of the element temperature sbove some stress-free

value 1s written as

o Qo
X X
1 -
U=nh f% fo cy uy t J d€ dn (12)
o) o
Xy Xy

Using equations (7) and (8) in equation (12) and discarding en irrelevant

constant term not inveolved in the solution, results in

Q
X

.1 T T -
U=ht, [, {ue} (a1 [e,] o, \EJ dg dn (13)
aky
and the thermal load vector is then recognized as
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o]

x
B} =n sy fo " Tagan (o] (o \ % (1)
%xy
Stress Recovery Matrices
Expressions for the element stress components ci, o&, and Oxy at any

point written in terms of displacements measured in the element cartesian

coordinate system are obtained by combining equations (7) and (8) to give

9]
oz = [s MHu} - 5,1 % (15)
O
where
"
[8.] = [ ][A] and {8} = [G,] o (16)
Oy

Although the stress components may very within the element, they asre computed
only at the intersection of the element diagonals for the purpose of stress
output. Once the stress components are obtained, they are used to compute the

principal stresses and directions by sappropriaste formulss given in reference 5.

Differential Stiffness Matrix

The differentisl stiffness matrix, which is used in NASTRAN primerily
for lineasr buckling anslyses, is developed by a consideration of the work
done by stress components Oy s Uy’ and ny during small rotations W s
wy, and w, sbout the three element cartesien axes, The expression for the

work done is tsken from reference 1 (section 7.1, equation (16)) given as
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w w
p'd x
_ hapa a
W—-2f0 fo Wy [wa] by J 4§ an (17)
w, w,
where
—
gy "cxy 0
d 4 _
[Ku)w] =%y % 0 (18)
0 0 o _+0
x y_|

w, = w,y wy = =W
(19)
w = l-(v -u, )
z 2 ’x ’y
In order to evaluste W, and wy’ the behavior of w in the element is
required, and for this purpose w 1is assumed to have the same parametric
variation as u and v, thus ‘
w=(1~&)(1~-n) L E(1 - n)w, + Envy + (1~ &) nw, (20)
Combining equations (1), (19), and (20) results in
W
X
wy = [Clu} (21)
“2

where the elements of the 3x8 matrix [C] are functions of & end 1.

Substituting equation (21) into equation (17) gives
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. _haa T rqT (o d
W=-=f0J fu " [c] {wa][c]{ue} J 4% dn (22)
and the differential stiffness matrix is recognized as
[ N R, |
(2.1 = n sy rg [e1” (&5 1(¢] 7 ag an (23)

The integration is performed by use of Gaussian quadrature using a bxh grid.

The values of Ogs O and Ox at each of the sixteen quadrature points are

y Y
obtained from equation (15) for appropriste values of & and 1.

Use of the Mean Plane

As mentioned previously, the matrices and vectors associated with the new
quadrilateral membrane element were derived for a planar element, If the four
grid points are not coplaner they are projected onto a so-called mean plane
which is defined in the following manner (see figure 2)., Two skewed lines
whose end points are grid points 1 and 3 and grid points 2 and 4, respectively,
are defined to be the disgonals of the element. The mean plane is defined
so that it passes through the midpoint of the perpendicular connector of the
two diasgonals and parallel to them (see ref. 5 p. 4.87-105.). As shown in
figure 2, if the length of the perpendicular connector is 2H, then the user
defined grid points are alternatively H wunits above and below the mean plane
as one progressively moves ground the element. Once the actuel grid points
are projected onto a mean plane, a planar element is defined and the previously
derived matrices sre gpplicable,

The authors would like to emphasize that the use of the mean plane concept
does not finally resolve the question of how to deal with & quadrilateral
element whose grid points are not coplansr and that further research on
this subject is warranted. One alternative to the mean plgne is to
assume the element to be planar with the plane defined by three of the grid
points. This alternative was found to be undesirsble for the new element
because numerical results were sensitive to the grid point numbering sequence
in a single element. This numerical experiment to determine this sensitivity

is described in the Appendix,
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Transformation of Matrices and Vectors
to0 Globsl Coordinates

Up to this point the characteristic matrices and vectors for the element
have been derived in terms of displacements in the element cartesian
coordinate system. In order that the new element be compatible with other
elements in NASTRAN, it is necessary to transform the matrices and vectors
so that they are expressed in the globsl coordinate gystem. This procedure
involves three transformations:

(1) transformstion from displacements in the mean plane in the element
cartesian system to the displacements at the user-defined grid points
in the element cartesian system

(2) transformation from displacements in the element coordinate system to
displacements in the NASTRAN basic coordinate system

(3) transformation from the NASTRAN basic coordinete system to the NASTRAN
global coordinate‘system.

The first transformation is based on replacing the set of forces in the
mean plane {fe} by a statically equivalent set at'the uger defined grid points
{fa}' The first set consists of forces in the x and ¥y directions only,
whereas the second set consists of forces in the x, y, and 2z directions.

This statement of static equivalence can be written as

{fa} = [B]{fe} (2k)
~ o
fx;w fxl
fyl fyl
f f
where z1 x2
{fa} =|f, $emd £} = fy2 (25)
. Ve o
x3
. fy3
* th
szu Ty

~
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The matrix [B] depends on the geometry of the element and H which is a
measure of the nonplaneness of the element. This same matrix is used to

transform displacements, thus
{u} = (81" {u} (26)
e 8

The second and third transformations are required of gll elements in NASTRAN
and are discussed fully in reference 1, In terms of the notation of reference
1 the transformation matrix from element coordinates to NASTRAN basic
coordinates is dencted by a 12x12 matrix [E], and the transformetion matrix
from NASTRAN basic coordinates to NASTRAN globael coordinates is denoted by a
12x12 matrix [T]. The relation between element and global displacements may
finally be written asg

T T
fug} = (81" [E]” (7] {u} (27)
A1l that is now required to express the matrices and vectors in the global
coordinate system is to substitute equation (27) into equations (10), (13),

(15), and (22). The results are summarized below

Stiffness matrix:

(] = (13" [E1[BIIx__)(B)" [E]" [7) (28)
Thermal load vector:
{p} = (7717 [E](BI{P ) (29)
Stress recovery metrix:
[s] = [s (81" [E]" [T] (30)
Differential stiffness matrix:
(k% = (017 (eire1ed 101° ()" (1] (31)
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PRELIMINARY RESULTS

At the time of writing, the element is in the early stage of being veri-
fied. A stand-alone program has been written for the purpose of testing the
element in a NASTRAN-like environment., The first available test case for this
element is a cantilever beam modeled by 16 equal elements as shown in figure 3.
Displacements and stresses were computed using the existing CQDMEM element and
the new isoparametric element based on the same finite element ideslization.
The finite element results are then compared to an analytical solution based
on elementary beam theory. In figure 3 the anslytical solution for displace-~
ments is indicated by the solid line and the finite element results by dasghed
lines. The new element is seen to be & significant improvement over the CQDMEM
element. When comparison is made with thevanalytical solution, the largest
error exhibited by CQDMEM is 50% whereas the corresponding error for the new
element is 9%. The comparison of stresses is presented in figure &4 where
the results have been normslized to the maximum stress predicted by elementary
beam theory. Although the finite element stresses were computéd at a single
point in each element, these stresses are presented as continuous curves.
Agein the exact solution is shown by the solid line and the finite element
results by dashed lines. The results indiéate g8 significant improvement in
accuracy by using the new element. The maximum error in stress using the
CQDMEM element is about 49% whereas that for the improved element is 147,

CONCLUDING REMARKS

An isoparsmetric gquadrilateral membrane element which is being
implemented in NASTRAN by the NASTRAN Systems Management Office is described.
Included are descriptions of the basic geometry and deformation characteristics
of the element, ag well as an outline of the derivation of each of the required
matrices and vectors for the element. Derivations of the stiffness matrix,
thermal load vector, stress recovery matrices, and differential stiffness
matrices are given, A discussion of the need for some method of saccounting
for deviastions from planeness is included along with e description of the

method used for this purpose in the new element. Finally, a sample
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calculation is carried out in which the displacements and stresses in a
cantilever beam are computed by the new element and by the existing quadri-
letersl membrane (CQDMEM) and compared with an analytical solution from besam
theory. The significant increase in accuracy obtainable with the new element

is demonstrated by the calculation.
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APPENDIX

SENSITIVITY OF MEMBRANE RESULTS TO
ELEMENT GRID POINT NUMBERING SEQUENCE

A numericel experiment suggested by Dr. Raphael Haftka, currently a
National Research Council postdoctoral Fellow at the Langley Research Center,
is performed on the structure sketched at the top of table I, The top
member is non-plansr and the vertical member is planar. Both members were
represented by the new quadrilatersl membrane element essumed to be planar
with the plane of each element being defined by three of its grid points.
Displacements under two loading conditions were computed by means of g
stand-alone program. In the calculations, the grid point sequence for the
top member was varied as shown in table I, and the effects of these varia-
tions are shown in table II. Examination of table IT (a) shows that for &
load gpplied in the X-direction, the displacements both in the X-Y plane and
normal to it are sensitive to the grid point numbering. For example, there
is a 12% difference among the displacements in the Y-direction as well as
emong the displacements in the Z-direction at grid point 3. For the case of
loads in the Z-direction there is a difference among the displacements in
the Y-direction of L46%. The consequences of these percentage errors are
tempered by the observaetion thet the large errors noted always occurred in
displacement components which were not in the direction of the applied load.
By contrast the maximum difference was 1.5% for a displacement in the
X~direction at grid point 2 in the first loading condition. Although the
difference for displacements in the direction of the load is small, it is
felt that the existence of a situation where different answers can be
obtained with the same finite element model by merely changing the grid

point numbering sequence for individusl elements should be avoided.
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TABLE 1.~ STRUCTURE .USED TO DETERMINE -EFFECT .OF -NONPLANENESS

Young?s Modulus

Poisson?s ratio =

Z,W
Y,v 4 % 3
1
X, 0 iy 2 thickness
6
5
L3
. (2) Gridpoint Locations
{all coordinates given in centimeters)
(Gridpoint X Y Z
1 1280.45 480.44 9.38
2 1367.30 480,44 7.36
3 1391.87 536.68 5.52
4 1305.G1 | 536.68 5.78
5 1367.30 480.44 -87.00
6 1391.87 536.68 -87.00
(b) Loading
Loading condition 1 FXZ = FX3 = 1IN
Loading condition 2 FZ2 = FZ3 = 1IN
(¢) Grid Numbering Sequence for Top Element
Case 1st Point | 2nd Point | 3rd Point | 4th Point
I 1 2 3 4
I 2 3 4 1
111 3 4 1 2
v 4 1 2 3

. 0374

125 GN/m?
.3
cm



Table II.- Effect of Grid Point Numbering on Displacement of

8 Warped Quadrilsteral.

(A1l Displacements are in cm.)

Displacement due to loads in X-direction
Grid point - 6] — 6| 6| — 6] 6]~ 6
Sequence (table I) u2 x 10 v_2 x 10 w2 x 10 u3 x 10 v3 x 10 w3 x 10
I 5.46 1.59 1.46 6.85 .498 -1.07
1T 5.49 1.57 1.48 6.8k .526 -1.08-
ITI 5.4 1.56 1.35 6.86 .511 -1.20
v 5.41 1.57 1.33 6.88 470 -1.19
(b) Displacements due to loads in Z-direction
Grid point - 61— 6|— 6= 6|~ 6| 6
Sequence u2 x 10 v2 x 10 w2 x 10 u3 x 10 v3 x 10 w3 x 10
I 485 .535 6.41 ~.095 -.298 6.05
II .506 . 365 6.33 -.099 - bkt 6.12
I1T <377 21 6.33 -.223 ~.392 6.12
v .35k .591 6.41 -.217 -.2Lk6 6.05
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Figure 2. — Mean plane for guadrilateral membrane element. (Actual grid
points are indicated by unprimed numbers and projection of
grid points onto mean plane are indicated by primed numbers.)
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Figure 3.- Deflection of cantilever beam idealized by quadrilateral
membrane elements.
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Figure 4. - Longitudinal stress at distance c¢/2 above neutral axis in canbilever
beam idealized by quadrilateral membrane elements.



