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The purpose of this research was to develop and evaluate a simple model of the input adaptive 
behavior of the human operator (KO) in a pursuit tracking task in which the plant controlled 
consists of a pure gain. In such a task the HO must attempt to predict the future position of the 
input signal to overcome his inherent delay. Figure 1 is a block diagram of the pursuit tracking 
task. 

If it is assumed that the HO is approximately an optimal predictor (in the mean square sense) 
using only position and velocity information, as suggested by J. I. Elkind, then there is a simple 
method of computing the values of the model parameters in terms of the autocorrelation function 
of the input signal. Experimental evidence indicates that the ability of the HO to use velocity 
information decreases with increasing signal velocity indicating that a biased estimator of the 
velocity weighting should be used. A suitable approximation is derived which has rapid 
convergence and low variance. The model thus derived is compared to actual subjeht transfer 
functions and is found to be in close agreement. 

In addition to tracking random processes the model can adapt to and track deterministic 
signals, such as sine waves, up to approximately the frequency a t  which human operators begin 
to track precognitively. 

The optimal position weighting is shown to be a good measure of effective bandwidth and it 
also possesses the attractive property of being easily calculable using the technique presented. 

Possible application, in addition to modelling, are the use of the estimation procedure as an 
adaptive signal preprocessor to reduce operator workload and the use of the position weighting 
as an adaptive indicator of sampling rate in multiaxis tasks. 

INTRODUCTION 

Previously developed input adaptive models, 
such as those proposed by Angel and Bekey 
(ref. 1) and Fogel and Moore (ref. 2))  are imple- 
mented using a finite-state machine approach. 
However models of this form have several draw- 
backs, not the least of which is that they are 
usually cumbersome to simulate. 

Elkind (ref. 3) suggested a model for pursuit 
tracking as shown in figure 2. He then pro- 
posed that if the error signal is small, the error 
feedback loop could be neglected. If, in addition, 
it is assumed that the plant controlled is a pure 
gain the problem is reduced to a simple signal 
tracking task. This is the problem considered in 
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this report, pursuit tracking in which the plant 
controlled consists of a pure gain. 

MODEL FORM 

The transfer function of the HO must contain 
a pure lag which is caused by neuromuscular 
delay and central processing in the brain. In 
order to minimize the error due to this delay the 
HO must make a prediction of the input signal 
based on previous knowledge of the signal and 
his present observations of the signal state. 
Elkind reasoned that the predictor would be such 
as to minimize the mean square error within the 
natural limitations of the HO. Minimizing mean 
square error is used as the criterion mainly be- 
cause it is the only mathematically tractable 
function of error, and it is used as the major 

33 



34 SEVENTH CONFERENCE ON MANUAL CONTROL 

FIGURE 1.-Block diagram of pursuit tracking task. 

Y dt!  

FIGURE 2.-Elkind's (ref. 3) proposed 
pursuit tracking model. 

FIGURE 3.-Schematic of proposed 
pursuit tracking model. 

criterion of performance in many studies. If it 
happens that the signal is a sample function of a 
Gaussian random process, then the predictor that 
minimizes mean square error will also minimize 
any error criterion that is symmetrical and a 
nondecreasing function for nonnegative argu- 
ment. Since it is known that the HO can deter- 
mine position quite accurately, is also able to 
perceive and use velocity information, but is 
much less able to use higher derivative informa- 
tion, the predictor model takes the form: 

e&) = (CY+pp)e--%(t) 

in which X is the prediction interval, equal to 
subject delay. 

It is proposed, then, that if it is possible to 

construct a model in the form shown in figure 3 
in which, by observation of the input signal CY 

and p converge to the optimal predictor values, 
then such a model mill be a satisfactory repre- 
sentation of human signal tracking behavior for 
a wide range of input signals. 

It is easy to show (see appendix) that the 
optimal values of CY and p are given by 

(XI 
a=R(O> 

in which ' = d / d ~ ,  if the following conditions are 
met: 

(1) E{ei(t)j =o 
(21 ~ ( 7 )  =E(ei(t+T)ei(t) I 
(3) &(t) exists. 
If fi(0,t) is the output of the first order filter 

shown in figure 4, then it can be shown that 
fi(0,t) is an unbiased estimator of R(0). Similar 
circuits can be used to compute unbiased esti- 
mates of R(X), R'(X), R"(0) (see appendix for 
details) and these may be used to form estimates 
of the optimal position and velocity weightings: 

* R'(X,t) 
p(t) =-* 

R"(0,t) 

Experimental evidence indicates that the 
ability of the HO to use velocity information 
decreases with increasing signal velocity suggest- 
ing that a biased estimator of the velocity weight- 
ing should be used. Consider the expression for /3 

FIGURE 4.-Circuit for generating &(O,t) 
(see appendix for circuit notation). 
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but since R’(0) = O  (which follows from the fact 
that R(7) is symmetrical and that & f t )  exists), 
then 

and 

This approximation is essentially the same as 
replacing 

&(t+X) - 6 4 )  
x 

by e&). 
This approximation to the optimal velocity 

weighting is exactly the same operator as used to 
generate the optimal position weighting but 
applied to  the derivative of the input rather than 
the input itself. 

PROPERTIES OF THE ESTIMATORS 

In order to check the model and compare it 
with HO behavior tests were run with four dif- 
ferent input signals. These consisted of essentially 
white noise passed through the filter, 

with wg = 1.57, 3.14 and N =,3,4. In  order to get a 
reasonable convergence time of the model without 
excessive variance in the parameters, comparisons 
were made of the model performance as a function 
of the time constant of the filter used to compute 
the autocorrelation functions. A time constant of 
10 sec was selected as being a suitable compro- 
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mise. Table 1 gives the properties of the estima- 
tors for the four test signals. Reference 4 contains 
a study of the linear correlation of the model 
indicating that the variation in the parameters is 
sufficiently small that, compared to the HO, the 
model can be considered as linear and time 
invariant. 

PURSUIT TRACKING TESTS 

In order to validate the steady state behavior 
of the model and compare it with actual HO 
performance a pursuit tracking experiment was 
conducted. Three right-handed male subjects 
practiced tracking each of the four signals with 
Bhe data presented taken on the fourth day. This 
amounted to 15 minutes of tracking eachsignal 
per subject prior to the final data run. This was 
deemed sufficient in light of the simplicity of the 
task. A force stick was used throughout the 
experiment. 

The output of the force stick was passed 
through a 40 rad/sec first order filter to reduce 
high frequency noise in the circuit. A plant with 
such a small time constant (25 milliseconds) is 
not noticeable during tracking, the major effect 
being a small phase lag at high frequencies (8.5’ 
at 6 rad/sec). All data are plotted including this 
filter and with the model outputs also through 
the same filter for uniformity. 

The average subject data is compared with the 
model transfer function in figures 5, 6 ,  and 7 and 
also with the optimal predictor in figure 8. 

A time delay of 0.200 sec (X=(0.200 sec.) is 
used throughout for the model delay. For a 
complete circuit diagram see appendix. 

TABLE 1.-Estimator Properties for  the Four Test Signals 

S = . l  Position weighting Velocity weighting 

Mean Variance Mean Variance 
of &(t) of &(t) L 3 h  of @*@)/A of B * ( t ) / X  Signal a! 

1.57 0.989 0.988 0.012 0.97 0.95 0.014 

1.57 .983 .981 .013 .95 .89 .024 

3.14 .961 .958 .015 .94 .83 .027 

3.14 .947 .934 .018 .88 .66 .033 

4th 

3rd 

4th 

3rd 
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FIGURE 5.-Comparison of model and subject 
average transfer function: 1.57, 4th. 

FIGURE 6.-Comparison of model and subject 
average transfer function: 1.57, 3rd. 

As can be seen the model provides a very good 
fit for the subject data. The major discrepancy 
appears in the magnitude plots in the low fre- 
quency region and the discrepancy is greater for 
high frequency signals. It can also be seen that in 
no case does the subject phase lag approach 0". 
These effects are no doubt related. 

As a check on the quality of the model fit to the 
subject data, the average absolute difference in 
magnitude ratio and phase as well As the linear 
correlation between the two was computed. The 
results are presented in table 2. 

PROBABLE CAUSES OF 
SUBOPTIMAL BEHAVIOR 

Possible explanations for the suboptimal be- 
havior and the low frequency phase droop are: 

(1) The subjects are tracking in a partially 
compensatory manner. Kreifledt (ref. 5 )  was able 
to duplicate the suboptimal magnitude ratio at  
low frequencies obtained by Elkind (ref. 3) by 
including a compensatory loop in his model. 

(2) Subjects are reluctant to correct a small 

error in a low frequency portion of the signal 
fearing that a sudden reversal will cause a high 
error. 

(3) For higher frequency signals it becomes 
increasingly difficult for the subjects t o  estimate 
velocity and they therefore appear to decrease 
their dependence on velocity for prediction. The 
corresponding increase in the uncertainty of the 
position weighting is not as pronounced. 

POWER MATCH (PM) 

A commonly used index of a model performance 
is called the "power match" (ref. 6). If the dif- 
ference between model output and subject output 
is denoted as e ( t )  then the power match is defined 
to be - 

e"0 
ei2(t) 

PM=l--. 

If PM = 1 then the model is a perfect match of 
subject behavior. Table 3 presents the power 
match and the mean square error averaged over 
the three subjects for the last day of trials. 
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FIGURE 7.-Comparison of model and subject 
average transfer function: 3.14, 4th. 

FIGURE &-Comparison of model and subject 
average transfer function: 3.14, 3rd. 

TABLE 2.-Results of Computation of Magnitude Ratio, 
Phase, and Linear Correlation 

I4 1.1 Linear Linear 

Signal \ ratio lag, degree magnitude whase 
Magnitude Phase correlation correlation 

1.57 
4th 

0.023 2.2 0.982 0.926 

.024 1 .4  .978 .985 1.57 

3.14 

3.14 

3rd 

4th 

3rd 

.033 1.7 .995 .993 

.043 3.9 .982 .992 
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TABLE 3.-Power Match and 
Mean Square Error Averages 

Signal PM €-a 

1.57 0.998 0.00654 
4th 
1.57 .996 .0151 
3rd 
3.14 .995 .0275 
4th 
3.14 .989 .0720 
3rd 

Because of the low error scores, it isno surprise 
that the power match is very nearly unity for all 
signals. A visual comparison of model and subject 
error, although resulting in no quantitative mea- 
sure, nevertheless reveals significant qualitative 
similarities. Figures 9 and 10 are typical time 
histories. 

SINE WAVE TRACKING 

Although the model was constructed to follow 
signals ccnsisting of low-pass filtered white noise 
it is also useful as a model for tracking low fre- 
quency predictable signals such as sine waves. 
It is not unreasonable to assume that in sine wave 
tracking subjects change their mode of behavior 
at a frequency of 2.5 t o  3.5 rad/sec (0.4 t o  0.5 Hz) 
(ref. 7). Below this frequency subjects follow the 
signal apparently using short term prediction but 
above this frequency subjects use the regularity 
of the signal to establish a rhythmic pattern which 
they attempt to match with the input signal. One 
would expect then that the model, if valid for 
short term prediction as presented, should be 
useful for tracking such signals up to  about 
3.5 rad/sec. 

Figure 11 shows the magnitude ratio of the 
model versus input sinusoid frequency. The 
magnitude ratio is very nearly unity to 2.0 rad/ 
sec, drops to 0.95 at 3.0 rad/sec, and falls off 
rapidly at frequencies above that. This is due 
primarily to the fact that Is* is a biased estimator. 
In  fact, for sine wave tracking p*/X =a. 

Figure 12 compares model performance with 
data obtained by Magdaleno et al. (ref. 7) for 
pursuit tracking of sine waves. 

FIGURE 9.-Typical subject and model error 
time histories. Input signal is 3.14, 4th. 

MODEL TRANSIENT BEHAVIOR 

Convergence times of &(t) and j*( t )  are func- 
tions of the convergence rate, initial conditions 
and the input signal. It is almost meaningless t o  
try to express convergence times in any other 
context than of the time required to adapt from 
one signal to another. 

Figure 13 shows what occurs during the transi- 
tion 1.57,4th to 3.14,3rd and figure 14 shows the 
return. The change in signal characteristics is 
accomplished within a few milliseconds and in 
such a way that there is no discontinuity in signal 
position or velocity. 

For the transition 1.57, 4th to 3.14, 3rd the 
“time constant” (most easily seen from the 
record of f i*(t)) is about 8 sec. However, for 
the reverse transition the time constant is about 
25 see. This is because relatively more information 
about the signal is contained in a segment of a 
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FIGURE 10.-Typical subject and model error 
time histories. Input signal is 3.14, 3rd. 

FREQ. IN RAD. I SEC. 

FIGURE 11.-Model response to sine wave inputs. 
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FREQ. IN HZ. 

FIGURE 12.-Comparison of subject and model normal- 
ized output power and mean square error for sine wave 
input. 

“fast” signal than in the same time segment of a 
relatively “slow” signal. 

The model adapts very quickly to sine waves, 
as shown in figure 15, but much more slowly when 
a transition is reversed as in figure 16. 

Although it is not known how long trained 
subjects take to adapt to changes in input signal, 
it is probably less time than the model requires, 
at  least in the case of a change from a relatively 
fast signal to a relatiSely slow one. For this 
reason, the model may not be a valid representa- 
tion of human behavior during the transition 
period. 
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FIGURE 13.-Model parameter response to step 
change in input signal: 1.57, 4th to 3.14, 3rd. 

EFFECTIVE BANDWIDTHS 

Since many different forms of input signals are 
used in the study of human tracking behavior it 
is desirable to have some measure by which sig- 
nals may be compared. The most common mea- 
sure is the “equivalent” or “effective” bandwidth, 
which compares the nominal cutoff frequency of 
the input signal to that of a rectangular spectrum. 

Magdaleno and Wolkovitch (ref. 8) suggested 
that the number of axis crossings would be a 
useful measure. Elkind (ref. 9) proposed that 
effective bandwidths be computed by 

in which 

we =effective bandwidth, 
S(W) =signal spectrum. 
However, this cannot be used if the input signal 

FIGURE 14.-Model parameter response to step 
change in input signal: 3.14, 3rd to 1.57, 4th. 

is composed of the sum of sinusoids. The positive 
spectrum of this signal is made N delta functions 
located a t  ol, w2, . . . , WN.  That is, the positive 
spectrum 

# ( W )  = 6 ( W - W 1 ) + 6 ( W - U 2 ) +  * * ’ 6 ( W - W N )  

in which, for simplicity, all magnitudes are 
assumed to be unity. Thus when the magnitudes 
are all unity the effective bandwidth is 

N2 
“ N  

a e = N .  

This result can hardly be considered valid since 
the effective bandwidth is totally independent of 
the frequencies of the sine waves summed. 

This difficulty cannot be avoided by assuming 
that the summed sine waves approximate a 
continuous function because the spacing and the 
number of sine waves used are of importance. I n  
order to show this consider another measure of 

W =- 
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1.0 

0.5 

0 

FIQURE 15.-Model parameter response to step chaDge 
in input signal: 3.14, 3rd to 1.0 rad/sec sine wave, 

effective bandwidth. Since the human operator 
must predict the input signal one time delay 
ahead the relation between the signal at time t 
and at time t+h should serve as a useful measure 
of bandwidth. This number is, of course, the 
optimal position weighting defined earlier: 

R (A) 
R (0) 

0 =- 

Table 4 shows the effective bandwidths for signals 
composed of white noise filtered by 

) N = 1,2,3,4. WON 

(WO +jw> 
G(jw) = 

As can be seen the correlation technique agrees 
quite well with the other proposed measures. The 
correlation technique does not give a linear rela- 
tionship between nominal cutoff frequency and 
equivalent bandwidth as the others do. See ref. 4 
for details.) Figure 17 shows the result of attempt- 
ing to approximate a rectangular spectrum by 
summing sinusoids of equal magnitude and ran- 

> 

+ t : : : : : y . . - . : : I : : : : : : + : : :  
PFP 

A 

FIGURE lS.-Model parameter response to step change 
in input signal: 1.0 rad/sec sine wave t o  3.14, 3rd. 

TABLE 4.-Effective Bandwidths as a 
Function of Nominal Cutoff Frequency 

~~ 

Filter Axis Correlation 
order crossings Elkind X = .200 

1 1 . 7 3 ~ 0  3 . 1 4 ~ 0  2 . 4  WD 

2 1 . 7 3 ~ 0  1 . 2 5 ~ 0  1.3400 
0.90 wo 0.94 wo 

4 
3 .78 wo wo 0.73 wo 0 . 7 5 ~ 0  

dom phase. The effective bandwidth, as computed 
using the correlation technique, is plotted versus 
the number of sinusoids summed for both equal 
and logarithmic frequency spacing. The signifi- 
cant observation is that while the effective band- 
width approaches the desired level for equal 
spacing, it decreases continually for logarithmic 
spacing. This is due to the concentration of 
power a t  low frequencies and sharply points out 
the possible pitfalls of logarithmic spacing. 

The major advantage to using the correlation 
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FIGURE 17.-Effective bandwidth vs number of equal 
amplitude sinusoids summed for different spacing 
techniques. 

technique is that the calculations are easily made 
given only a time history of the input signal and it 
is possible to use the recursive estimation pro- 
cedures outlined earlier to make on-line, quantita- 
tive measurements of signal characteristics and 
changes in signal characteristics. 

SUMMARY 

For pursuit mode, signal tracking tasks in 
which the input is low pass filtered white noise 
it is postulated that the human operator behaves 
approximately as an optimal predictor attempt- 
ing to overcome his inherent time delay. Because 
humans appear to use only position and velocity 
information the predictor is of the form 

G ( j w  ) = (a + pjw ) e--xjw. 

Test results indicate that the ability to use 
velocity information decreases with increasing 
signal velocity indicating a biased estimator of 
the optimal velocity weighting should be used. 
A suitable approximation is derived which is 
equivalent to approximating velocity on the basis 
of the difference of two successive samples. 

A recursive procedure is derived for estimating 
the position and velocity weighting based on 
observations of the input signals and applied to 
an analog simulation. The model thus derived is 
shown to be a good approximation to human 
operator steady state behavior and adapts quickly 
to input signal changes. Since human operators 
may be very fast in their adaptation the model 
may not be valid during the transition period. 

The model can also be used to track determin- 
istic signals up to approximately the frequency 

at which human operators would ordinarily begin 
to track precognitively. The ability of the model 
t o  adapt to both random and deterministic signals 
appears to be a step toward a more general model 
of tracking behavior. 

The optimal position weighting was shown BO 

be a simple and convenient measure of effective 
signal bandwidth. 

Since the optimal position weighting is a mea- 
sure of effective bandwidth, it can be thought of as 
a measure of signal “coherence”. It may be possi- 
ble to use this measure, perhaps with longer delay 
times, as an indicator of the sampling rate in a 
multiaxis task. For example, if an operator is 
presented with two displays, one consisting of a 
rapidly moving target and the other consisting of 
a relatively slow moving target, and asked to  
track both he must of necessity spend more time 
observing the faster moving target. Thus an in- 
verse relationship exists between signal coherence 
and sampling time, and there is a strong likelihood 
that this relationship could be used for adaptive 
modelling of this type of system. 

The predictive portion of the model could also 
be used as a signal preprocessor relieving the 
operator of the burden of prediction and thus 
reducing his workload, especially in control of 
systems with delay significantly greater than the 
operator’s. 
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APPENDIX 

OPTIMAL PREDICTION 

Suppose z(t) is a real, stationary random 
process with zero mean whose first derivative 
exists. That is 

(1) E{z(t)+T)Z(t) 1 =Rzz( t+T&)  ‘ R z z ( 7 )  

(2) EIz(t)l =o 
d 
dt 

(3) - (x ( t ) )  exists. 

(Note: since no confusion is possible the subscript 
xx will be dropped which will greatly simplify 
notation; i.e., R(.) =Rz.(*)). Select a and@ so that 

L(t+h) =az(t)+@k(t) 

d 
dt 

-_ - 

minimizes 

2 =E(  (z(t+X) --L(t+X))2) 

2 = E {  (z(t+X)-as(t)-pk(t))2~. 

Since the process has zero mean it is possible to 
apply the orthogonality principle which states, 
roughly speaking, that in order to minimize 
mean square error the error vector must be 
orthogonal t o  the estimation vectors. Thus the 
following relationships hold true: 

E (  (z(t+X) -az(t) -pk(t))s(t) 1 = O  

E (  (z(t+X) -as(t) -pk( t ) ) i ( t )]  = O  

(A.l) 

(A.2) 

since (see ref. 10) 

E (  s(t+T)k(t) ] = -E’(?-) 

E(k(t+T)k( t )  1 = -R”(T) 

d 
1 =- 

dr 

Equations (A.l) and (A.2) can be 
pressed as 

simply ex- 

R(X) --aR(O)+pR’(O) =o 
-R’(X) -&’(”+pR’’(0) =o. 

Since R(T) is symmetric and since the derivative 
3(t) exists then 

R’(0) =O 

and the result is the simple relations 

R (A) 
R (0) 

a=----- 

FIGURE A-1.-Circuit for computing estimators 
of autocorrelation function. 
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APPENDIX 

TABLE A-1.-Sug- 
gested Coeficient 
Settings 
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FIGURE A-2.-Circuit for computing 
position and velocity weighting. 

CONTINUOUS ESTIMATION 
OF AUTOCORRELATION 

Coefficient 
device Setting 

1 .3000 
2 .loo0 
3 1.0000 
4 .3000 
5 .loo0 
6 1.0000 
7 ,3000 
8 .loo0 
9 1.0000 

10 .3000 
11 .loo0 
12 1.0000 
13 .2000 

~ { f i ( ~ , t )  1 =fi(O,O)e-*t+ije-6c E ( z ~ ( u )  jeau du 1 
E { fi (0,t) 1 = fi (o,o) e-6t +R (0) [I - ,-St] 

lim E{fi(O,t) 1 =R(O). 

In  a similar manner it is possible to find simple 
analog circuits (fig. A.1) for estimating the other 
necessary values of the autocorrelation function 
and its derivatives. (N.B. All amplifiers are 
bi-polar.) These will yield the equations given 
below: 

t+ - 

f i ( A , t )  =fi(A,0)e-6t+6e-*t x(u)z (u-A)e6u du Jb 
1 

A very simple method for estimating the auto- 
correlation function and its derivatives for an 
analog simulation is given below. 

Suppose z(t)  is asample function of a stationary 
random process. It is easy to show that the output 
of the simple analog circuit of figure 4 is given by 

fi(0,t) =a(0,0)e-at+6e-8t z2(u)e6u du. 

f i ” ( ~ , t )  =fi”(A,O)e-6f- &-*t k(u)g(u- A)e*u du 

zz(u)e6u du. fill(0,t) = &rr(0,0)e-6t- tie-6’ Jb 
These are used to form estimators of a and p by sb forming: 

/3*(t) P ( A , t )  f i ( A , t >  - 
Taking expected values 

d(t)  =- 
~ ( f i ( ~ , t )  1 =fi(o,O>e-6t+ije-*tE z2(u)e*u du . fi(0,t)  x fi”(0,t) 

Figure A.2 is a circuit diagram for computing 

Table A-1 gives suggested coefficient settings. 

rsd I 
On interchanging expectation and integration 
this becomes 

position and velocity weighting. 




