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METEOR RESEARCH PROGRAM 

FINAL REPORT 

1. EXECUTIVE SUMMARY 

The smallest bodies in the solar system - the meteoroids - are bodies whose 

study is important, at one extreme, for practical engineering of artificial satellites 
and, at the other extreme, for clarification of the birth of the solar system. 

At present, observations of the meteor process in the earth’s atmosphere provide 

j-brobably the best of the very few sources of data to determine the nature of these small 

bodies and their interrelationships in the solar system. These facts have motivated 

the Smithsonian Astrophysical Observatory (SAO) to conduct a comprehensive program 

of meteor research, of which the effort reported here was a major component for 

several years. 

To assist the reader in following the webs of our results, we provide here a 

framework statement of three problems together with brief comments on advances 

made during the course of this research. Specific topics are amplified at the end of 

this summary (Section 1.2) and treated in detail in the body of the report (Sections 2 

lo 13). 

1. 1 The Problems --.-__ 

1. 1.1 Generic relationships among comets, asteroids, meteorites, and meteoroids 

A paramount question in solar-system astronomy revolves around the problem 

of the parent bodies of meteorites. Asteroids, comets, and Apollo asteroids have been 
or are candidate parent bodies. In many ways, meteorites are the most special small 
bodies of the solar system. Our detailed knowledge of them is surpassed only, possi- 
bly, by our knowledge of the earth and the moon. Paradoxically, we have sufficient 



information on their recent histories in space to exclude - or at least make unlikely - 

all known objects as their parent bodies. 

,Most meteoroids are unquestionably generated by comets, as demonstrated by the 

comparison of shower meteor orbits with specific comet orbits. If meteorites are 

also derived from comets, our knowledge of the physical structure of meteorites can 

assist in understanding the meteor phenomena. But if meteorites are from another 

source, the burden of investigating the details of the nonvolatile substance in comets 

rests with meteor observations. Comets are thought to be the most primordial mate- 

rial in the solar system and consequently have eventual importance in establishing 

boundary conditions on its origin. We also note here, for future reference, that 

carbonaceous chondrites are recognized as the most primordial type of meteorite. 

Apollo asteroids are thought by some to be stray, but true, asteroids and by 

others to be “dead” comet nuclei. It is possible that both classes are included in the 

Apollo group. The known Apollos probably do not produce meteorites, although 

undiscovered members of the group may. 

We see then that small bodies of the solar system present a complex problem in 

genealogy. The answers are inherently of great interest to astronomy and important 

in the planning of comet and asteroid missions. 

While much of this problem lies outside the area of research reported here, 

some of our results are pertinent. 

A. We have discovered in our radar meteor data some weak meteor showers 

that appear to be associated with Apollo asteroids (Section 1.2.3.2). Thus, 

at least some of these objects bear the mark of a comet. 

B. A number of previously suspected meteor showers have been verified and 

numerous new showers detected in the radar data. Unlike photographic 

showers, very few of these new showers can be associated with known 
comets; this presents a fruitful subject for dynamical studies (Section 1.2.3.1). 

2 



C. 

D. 

The similarity of orbits defines a meteor stream, but the spread of orbits 

within a stream tells much about the ejection process and other properties 

of comets. The distribution of orbits in radar streams has been investigated 

(Section 1.2.3.1). 

A reanalysis of optical meteor results has shown that comets are comprised 

of at least two distinct hinds of material and, more importantly, that for the 

most part, individual comets do not provide both types to their meteor 

stream (Section 1.2.4.2). It is probable that the two samples represent the 
interior core and exterior shell of the original comet. A tentative identifica- 

tion of the core material with carbonaceous chondrites has been made. 

1. 1.2 Meteor physics 

Our primary reason for investigating the interaction of meteoroids with the 
atmosphere is to enable us to use the information in the raw data when solving the 

other problems herein discussed; this is to say that the physics is not an end in 

itself. Nevertheless, a number of physical processes and parameters were so poorly 
understood or recognized that a considerable fraction of our effort has been devoted 

to these areas. 

An important case in point is the determination of meteoroid masses. Optical 
observation alone suggests an approximate form of the proportionality between mass 

and the observable luminosity and velocity. If, in addition, enough were known about 
the structure, composition, and ablation characteristics of the meteoroid, the optical 

mass proportionality could be written as a reasonably accurate equality. It follows 

from the discussion in Section-l. 1.1 that the structure and composition of meteoroids 

are not known with certainty and that a prejudgment of these quantities immediately 
eliminates the possibility of determining the nature of cometary material. It was 
therefore important to obtain external information on the mass-luminosity relation. 

With this accomplished, we can then reverse the process and proceed with the more 

difficult, but far more interesting, problem of determining the nature of cometary 
material. 

3 
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_-__ - lem occurs for radar meteors. The mass of a meteoroid is, in 

principle, determined by the number of electrons it produces. In this case, both 

the form of the relationship and the proportionality constant were in question. 

Finally, radar observations have been beset by a number of real and mythical 
physical biases that have hampered interpretation of results. Various theories dis- 
agreed on the importance of certain biases, and it proved necessary to find the correct 

answers within the data themselves. 

We will report very significant advances in all these areas. 

A. Observations and analyses of artificial meteors launched by NASA at 

Wallops Island, Virginia, have provided the first firm point for the mass- 

luminosity relationship (Section 1.2.4.1). 

B. This luminosity standard has been transferred to radar meteors by a long 

series of observations made of the same meteors by both radar and a fast 

image-orthicon system (Section 1.2.5). Some information on the dependence 
of ionization on meteor velocity was also obtained from the same observations. 

We have corrected the (old) provisional masses of radar meteors upward by 
more than an order of magnitude. 

C. We have observed that low-altitude meteors suffer from electron-ion recom- 

bination and have identified the probable mechanism through which this 

recombination occurs (Section 1.2.2. 1). We also conclude that our high- 
power radar observations are the only existing set for which this particular 
bias can be corrected. 

I). Radar techniques are far more sensitive than optical in the detection of the 

onset of fragmentation in meteoroids. We have observed fragmentation in 
most of the radar meteors and thus confirm the important but often questioned 

similar result obtained optically (Section 1.2.2.2). The multiple source 

generated by a meteor after it has fragmented is a poor radar target for our 

observing techniques. Thus we realize the existence of a new selection effect 
but cannot yet specify its importance. 

5 



E. A radar echo can be severely attenuated if the meteor ion column has a width 
comparable to or larger than l/n times the radar wavelength. It had been 

proposed that this critical dimension is reached very rapidly for high- 

altitude (and therefore high-velocity) meteors and that radars would be 

severely biased against such objects. Our observations show that these 

pessimistic views are in error (Section 1.2.2.3). 

F. The quantum mechanics of collisions among meteoric and atmospheric atoms 

and molecules was virgin ground. We made a start on the necessary theoret- 

ical developments, for eventual benefit in meteor and other research 

(Section 1.2.2.4). 

G. Unobserved winds in the meteor layer would introduce errors in our orbits. 

With a phase-coherent radar (Section 1.2. 1. l), we avoid these errors 

(Section 1.2.2.5). Further, we can properly attribute apparent inconsis- 

tencies in atmospheric diffusion to wind. 

1.1.3 Meteoroid hazard and the spatial distribution of meteoroid material 

The practical problem of the meteoroid hazard to spacecraft and many other 

problems of meteor astronomy require for their solutions an identical set of basic 

data. Our radar meteor-observing program was designed to obtain meteor data for 

those objects too small to be detected by optical techniques and too large - and thus 

too infrequent - to be recorded by direct measurements made in space. 

Number distributions of meteoroid masses and velocities as a function of position 

in the solar system are needed for a complete answer to any of the problems. Our 

new observations, together with the advances in analysis described in Section 1.2, 

provide a quantitative and qualitative increase in the information needed to define 

those distributions. 

A. We have constructed the most sophisticated and highest power meteor radar 

system in existence. Complete calibration of both receivers and transmitter 

is among its unique features (Section 1.2. 1. 1). 

6 



B. The system gathered a large body of reliable and homogeneous data. During 
the period October 1968 to December 1969 (our so-called synoptic year of 
observations) (Section 1.2.1.2), nearly 20,000 meteors were observed for 
which the data have been reduced for velocities, decelerations, ion densities, 

heliocentric orbits, and atmospheric winds and, diffusion rates. An equal 

number of earlier (less accurate) reduced meteors and a larger number of 
unreduced meteors are at hand, together with extensive rate data. 

C. The complete analysis of these and earlier data has commenced. Provisional 
values of the mass-number distribution have been prepared and are currently 
being updated to include the new data on the mass-ionization relationship 

obtained through the optical and radar observations. Stream meteors have 

been distinguished from sporadic meteors in the earlier data (Section 1.2.3. l), 

and the process will be quickly extended to the synoptic year. The final 
spatial distributions are being determined and studied under a current NASA 

contract (NAS l- 11204). 

1.2 Summary of Results 

1.2.1 The meteor radar 

1.2. 1. 1 The equipment. Meteor observations typically have been limited by 
available technology; i. e., most of what could be done within the state of the art and 

LL reasonable budget has been done. The eight-station meteor radar system at Havana, 

Illinois, is the best example of that generalization. Based on principles developed 
~11 Jodrell Bank, England, all aspects of the radar system were extended in order to 

get t.he best possible radar meteor observations. The system was expanded to eight 
Y l.a.tions, rather than the necessary minimum of three, enabling documentation of all 
phases of the interaction of single meteoroids with the atmosphere. This proved 
most valuable to our understanding of the physics of these interactions. In order to 

be able to observe radar meteors fainter than previously observed, we used a powerful 
tl*snsmitter, high-gain antennas, and sensitive receivers. From observation of faint 
meteors, we were able to collect a large observational sample for space-distribution 
studies, to probe a previously unobserved range of meteor masses, and to make a 

meaningful comparison of our results with the zodiacal light and space observation of 
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I i+e meteoroid flux. For full use of the observed radar echo amplitudes, the system 

.,ras carefully calibrated throughout, enabling important discoveries in meteor physics 
to be made. So that errors caused by atmospheric winds could be corrected, the 

‘:;~~stcrn was adapted to measure echo phase as well as echo amplitude. Numerous 

~;ther improvements in techniques were made. 

Last but not least, the eight-station radar system was used to collect a large, 
reliable homogeneous body of data. 

1.2.1.2 The basic data. Between 1963 and 1966 the Havana radar system was 

i.ip,clated and extended from six to eight stations. New receivers to detect both the 
phase and the amplitude of incoming meteor echoes gave the means for accurate height 
determinations and corrections of errors due to winds at meteor altitudes. The 
:~utennas were improved and their gain patterns measured. Finally, with the system 

in its historically best condition, it was operated from October 1968 to December 1969 
c:il a regular schedule. We have called this the synoptic year, a 1-yr period of 

r,!iiable high-quality homogeneous operation, designed to yield the best (and largest) 

ample of meteor data in existence. One year of observation is a natural period to 

jilclude the earth’s entire orbit and annual variations in the atmosphere. On comple- 

Con of the reductions at NASA/Langley, the synoptic-year sample contained roughly 

20,000 meteors. 

Overall statistics of the synoptic-year sample are given in Section 7. 

‘l’he synoptic-year data will be useful for many years to come for virtually every 
;,, *oblem in meteor physics and astronomy. Particular applications in the coming 
.ji(:ar include assessment of observing biases (also by use of simultaneous radar- 

optical observations) and of space-density and stream distributions in interplanetary 

space. 

For studies of meteor streams, it will be advantageous to combine the synoptic- 
year data with earlier Havana observations. Over 19,000 pre-1966 meteors are 
completely reduced, and at least as many post-1966 meteor observations can be 
reduced now that the synoptic year has been completed. 



Complementary to accurate observations of individual meteors are observations 

of meteor hourly rates (Section 9). These yield the number distribution of echo 

amplitudes unaffected by recording biases, which is necessary for finding the distribu- 

tion of meteoroid masses. 

1.2.2 Physical processes and biases in radar meteors 

1.2.2.1 Recombination. We have observed electron-ion recombination in many 

of our meteors. When the initial space density of electrons is high, as in relatively 

bright low meteors, recombination rapidly reduces the electron density and thus 

attenuates the radar. echo. 

In a single meteor, the observable effects of recombination are unusually large 

oscillations in the early part of the Fresnel pattern and, in some cases, rates of 

amplitude decay that are much higher than the normal decays caused by electron 

diffusion. In our large sample of meteors, recombination is also observable in an 

apparent scarcity of comparatively bright meteors in the lower part of the observed 

height range, although there are numerous faint low meteors. 

Dissociative recombination of ionized atmospheric molecules Ni and 0: is the 

only atomic process consistent with our observations. We infer that these molecules 

are ionized in the initial formation of the ionized column or that there is rapid charge 

exchange. Photographic meteor spectra primarily show atomic radiation, with 

occasional neutral molecular (N2) bands. Consequently, observation of ionized 

molecules may provide an important clue to the detailed atomic and molecular proc- 

esses in meteors, which are now virtually unknown. 

Recombination eliminated almost all slow meteors from earlier radar surveys, 

so their velocity and orbit statistics suffer from severe bias. Because the Havana 

observations reach fainter meteors, they include numerous slow meteors. Conse- 

quently, the Havana observations are less biased than others and constitute the only 

set of observations that can be corrected for this bias. 

10 



Unsuspected recombination invalidates virtually all determinations of meteor 

ionizing efficiency derived from combined radar optical observations made before the 
Havana-Side11 observations, in particular, all comparisons at lower meteor velocities. 

1.2.2.2 Fragmentation. We have observed fragmentation in the majority of our 

meteors and infer that fragmentation probably occurred unobserved in many others. 

Spatial separation of the meteor fragments in flight has two effects on the radar 

echo: 1) separation along the trajectory damps out the later oscillations in the 

Fresnel patterns, and 2) separation normal to the trajectory severely attenuates the 
whole radar echo. We have observed 1) in a large proportion of our meteors, and we 

believe that 2) explains why our observed ionization curves are significantly shorter, 

on the average, than our meteor light curves. This is confirmed by some simultaneous 

radar-optical observations, where the radar echo ends several kilometers before the 

luminosity does. 

The occurrence of fragmentation shows that most small radar meteors, like 

most larger photographic and visual meteors, have comparatively low strength. Thus 
they are not similar to meteorites, except perhaps to carbonaceous chondrites. This 
light and fragile structure has been plausibly associated with a cometary origin. 

There must be an appreciable selection effect against radar observations of 

fragmenting meteors, but its real importance remains to be discovered. 

1.2.2.3 Initial radius of the ionized column. The immediate spread of newly 
ionized electrons away from a meteoroid before they are slowed to thermal velocities 

is not simple to calculate, and widely differing values have been published. However, 

if the initial radius of the column is comparable to or larger than l/271. times the radar 

wavelength, the radar echo is severely attenuated. Since the initial radius must be 
approximately proportional to the atmospheric mean free path, the initial-radius 

phenomenon sets an observational ceiling on the heights of meteors that can be 

observed with a radar of given wavelength. 

11 



Our observations of meteor heights show that Manning’s (1958) value for the initial 

radius is much more nearly right than apik’s (1958) larger value, at least for our 

range of observed magnitudes. The observational ceiling due to the initial radius 

approximately coincides with that due to electron diffusion in the atmosphere and 

does not conceal a large fraction of the meteoric influx. 

We will be able to make reliable and undramatic corrections to our statistics for 

the initial radius. Nonetheless, the importance of knowing the initial radius can be 

seen in some Russian orbital distributions (Kascheev, Lebedinets, and Lagutin, 1967) 

computed from observations using a radar similar in wavelength to ours. Believing 

that the initial radius was comparatively large and making the appropriate corrections 

to their statistics, they inferred that radar meteor orbits contain a large fraction in 

retrograde motion, with larger average eccentricities and inclinations than any other 

set of bodies in the solar system. Of course, this is contrary to every other meteor 

study. 

1.2.2.4 Ionizing efficiency: a theoretical approach. No detailed description 

exists of the interaction, on the molecular scale, between a meteoroid and the 

atmosphere, and none can be constructed until we have much more information in at 

least one of two areas (probably both). The first area is the composition, density, 

and structure of the meteoroid, on all scales down to the atomic. The second area 

is the response of atoms and molecules to collisions in the energy range from a few 

el,ectron volts to a few hundred. Interpretation of radar observations is much more 

hampered than optical observations by the general ignorance in this second area. 

Large electronic computers and theoretical advances had brought the quantum- 

mechanical study of meteoric atoms at meteoric energies within reach by 1968. We 

grasped this opportunity. 

The quantum-mechanical study of collision processes at meteoric energies is 

necessarily a long-term effort (several years) because the usual approximations are 

applicable only to much higher or much lower energies. It is necessary first to 
elaborate each possible approximate model and then to test and apply it to a long 

succession of more complex particles and interactions. 
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M. R. Flannery and H. Levy II, with the guidance of A. Dalgarno, made a vigorous 

beginning on the theory (Section 12), but shortage of funds prevented continuation. 
Their work cannot help but prove valuable for eventual advances in this area. 

1.2.2.5 Atmosphe& winds. Winds at meteor heights, and more particularly 

shears between winds at different heights, have degraded radar meteor observations 

that did not take proper account of them. Distortion of the ionized column by unknown 
winds introduced radiant errors of a few degrees and anomalies in apparent atmos- 

pheric diffusion. The consequent errors in meteor orbits exceeded all other errors, 
and the diffusion errors caused much misunderstanding. 

Coherent phase was introduced throughout the Havana radar system in 1963 to 
1966 in order to measure winds and correct for them. Thus we have been. able to 

eliminate wind errors in our 1966 to 1970 radiants and orbits and to assess diffusion 

data in valid fashion. We also possess many wind observations of potential value. 

1.2.3 Meteor streams and the spatial distribution of meteoric material 

1.2.3.1 Meteor-stream structure. The large sample of reliable meteor orbits 

observed in Havana is the best material in existence for studies of the structure of 

stream orbits. Thus far, we have used Havana orbits observed before the synoptic 
year for this work. Z. Sekanina, using the D-criterion previously found valuable for 
stream studies, has shown that a stream-orbit distribution can be well fitted by a 

Maxwellian distribution of orbital elements superposed on a uniform background of 
nonstream orbits. The probability that observed clusters of similar orbits are not 

just random groupings is readily determined. 

The spread in orbital elements within a stream is found to be positively corre- 

lated with the age of the stream; older streams are less compact. 

The statistical model of meteor streams makes it possible to estimate the 
stream-to-sporadic space-density ratio of meteors. We find that the density in 
meteor streams is l/2 to 2 l/2 orders of magnitude higher than that in the surrounding 

background; the hazards for a spaceship passing through a meteor stream would be 
correspondingly higher. 
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The largest radar stream search yet conducted has revealed 72 streams, in addi- 

tion to the major optical streams. There is a strong tendency for these streams to 

cluster among themselves, but few are associated with known comets. There can be 

no doubt that these new facts will be highly important in understanding meteor evolu- 

tion. 

1.2.3.2 Apollo asteroid streams. Streams were discovered moving in orbits 

similar to those of the minor planets Icarus, Adonis, Hermes, and Apollo. The 

associations are statistically very significant, but practical proof requires analysis 

of more observations. Preliminary studies suggest that the association between a 

stream and Adonis is the most likely. 

The logical difficulty of perturbing these asteroids from the main asteroid belt 

to their present orbits had already led to the hypothesis that earth-crossing asteroids 

were remnants of comets. Sekanina’s surprising discovery of associated streams 

thus gives strong support to the comet-remnant hypothesis, in view of the difficulty 

of generating a meteor stream from a purely solid body. 

1.2.3.3 Space density of meteoroids. The space-density distribution of small 

meteoroids has been computed from radar meteor orbits observed at Havana, with 

corrections applied for observational selection and for orbits that do not intersect 

the earth. We expect that our newly revised ionizing efficiency will refine the 

following results without qualitative changes. Within the limits 0. 1 to 10 a. u., the 

space density decreases monotonically outward from the sun. The distribution in 

heliocentric latitude has a very broad maximum centered on the ecliptic and a deep 

minimum over the ecliptic poles. There is no evidence for any substantial enhance- 

ment of density in the asteroid belt. 

The meteor orbital distribution is generally similar to that of short-period 

comets. Eccentricities and inclinations are significantly higher than for the main- 

belt asteroids, apparently precluding an asteroidal origin for at least the majority of 

meteors. An origin in short-period or long-period comets is quite consistent with 

observations, since perturbations by Jupiter would transform long-period meteor 
orbits to short-period, just as they would for comet orbits. The radial gradient of 
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meteor space density shows that most meteors do not survive to spiral into the sun 

under the Poynting-Robertson effect; doubtless they are destroyed by collisions with 

the small particles seen in the zodiacal light. 

1.2.4 Optical observation 

1.2.4.1 Luminous efficiency. The luminous efficiency of a meteor is the effec- 

tive fraction of its kinetic energy used in producing observable luminosity in a 

specified spectral bandpass. Luminous efficiency has been measured in the labora- 

tory, in upper atmosphere flights of artificial meteors, from photography of a very 

few unfragmenting natural meteors whose masses can be deduced from their aerody- 
namic deceleration, and recently from the photographed fall of the Lost City 

Meteorite. 

Observations of the last few of a series of artificial meteors launched from 
Wallops Island were made under this NASA contract (Ayers, McCrosky, and Shao, 
1970). Although these were difficult observations and of limited precision, they 

alone yielded realistic measures of the luminous efficiency of well-known objects in 

the real atmosphere. In practice, artificial-meteor observations have been the 

indispensable standard, used to show that other measures of luminous efficiency had 

taken all factors into account and could be used to deduce meteor masses from 

luminosity. 

1.2.4.2 Discrete levels of beginning heights of meteors in streams. Ceplecha 
(1968) found that observed beginning heights of photographic meteors clustered to 

three discrete levels spaced at intervals about 5 km in height. Each level depends on 

meteor velocity in the same way and is higher for‘faster meteors. These levels 
correspond to differences in meteoroid density. The highest density meteors, 
Class A, are clustered near the lowest beginning height, and the lowest density 

meteors, Class C, are clustered at the highest beginning height. Class B meteors 

cluster to an intermediate maximum in beginning height and are intermediate in 
density. Class A meteors, however, exhibit more fragmentation than do those of 
Class C. 

15 



Cook (1970) showed that the beginning heights of meteors of a given stream 

cluster about one or another of the Ceplecha levels, or sometimes about levels A and 

C with a gap at B. No Class B stream is associated with an observed comet. Cook 

interprets this clustering in terms of Whipple and Stefanik’s (1966) model of an icy 

conglomerate comet nucleus with radioactive heating and redistribution of ices: 

Class A meteors originate in the core of a nucleus, and Class C meteors, in the 

outer layers after the ices have evaporated. Some ices were redistributed to Class A 

meteors in the core. Class B meteors originate in the cores of comets too small to 

have redistributed ice. 

Thus, the discrete levels of beginning height are an exceptionally promising clue 

to the detailed origin of meteors. 

1.2.5 Simultaneous radar-optical observations 

In 1967, a borrowed Navy image-orthicon system was installed at Sidell, Illinois, 

188 km east of the Havana radar system, to observe some of the same meteors that 

were observed in Havana. This site was chosen to maximize the rate of simultaneous 

observations (SIMOBS) by both systems. A SEC Vidicon was also used in Side11 during 

September, November, and December 1970. Approximately 95 meteors were ade- 

quately observed by both the radar and the optical systems from February 1969 to 

December 1970. We have fully reduced the first 29 of these. We plan next to reduce 

22 more from the nights of November 6-7 and December l-2, which promise to con- 

tain the bulk of the information from the remaining observa.tions. 

Simultaneous observations were instituted to answer the pressing need to know 

the ionizing efficiency, so that we could determine the masses of the Havana radar 

meteors. The first few SIMOBS yielded a realistic approximate value for the ionizing 

efficiency, averaging one-tenth the previously accepted value, and an indication of 

the velocity dependence of ionizing efficiency. 

We also expect to observe other physical effects by means of simultaneous 

observations. We have confirmed the great importance of recombination and frag- 

mentation to the interpretation of radar echoes; analysis of all the simultaneous 

observations may bring forth other such effects. 

16 



1.3 References 

Ayers, W. G., McCrosky, R. E., and Shao, C.-Y. (1970). Photographic observa- 

tions of 10 artificial meteors. Smithsonian Astrophys. Obs. Spec. Rep. No. 317, 

40 PP. 
Ceplecha, Z. (1968). Discrete levels of meteor beginning height. Smithsonian 

Astrophys. Obs. Spec. Rep. No. 279, 54 pp. 

Cook, A. F. (1970). Discrete levels of beginning height of meteors in streams. 

Smithsonian Astrophys. Obs. Spec. Rep. No. 324, 22 pp. ; also in Smithsonian 

Contr. Astrophys., in press. 

Kascheev, B. L., Lebedinets, V. N., and Lagutin, M. F. (1967). Meteoric 

phenomena in the earth’s atmosphere. Results of Researches on International 

Geophysical Projects, Investigations of Meteors, no. 2, Nauka, Moscow, 260 pp. 

Manning, L. A. (1958). The initial radius of meteoric ionization trails. Journ. 

Geophys. Res., vol. 63, pp. 181-196. 
Gpik, E. J. (1958). Physics of Meteor Flight in the Atmosphere. Interscience 

Publ., New York, 174 pp. 

Whipple, F. L., and Stefanik, R. P. (1966). On the physics and splitting of 

cometary nuclei. Me?m. Sot. Roy. Sci. Liege, s&r. 5, tome XII, pp. 32-52. 

17 





2. DESCRIPTION OF EIGHT-STATION RADAR NEAR HAVANA, ILLINOIS 

Richard B. Southworth 

2.1 General 

The concept of a triangular array of three radar stations to determine the trajec- 

tories of radar meteors is due to T. R. Kaiser (see Hawkins, 1964, p. 44); Gill and 

Davies (1956) constructed such a system at Jodrell Bank, England. The Harvard 
Radio Meteor Project six-station system at Havana, Illinois, developed by Hawkins 

(1963) was a considerable enlargement and elaboration of the Jodrell Bank system. In 

particular, the Havana system incorporated high-gain antennas and a powerful trans- 
mitter in order to reach much fainter meteors, down to at least radar magnitude +12. 

The eight-station system at Havana was the result of a further considerable 
enlargement and elaboration of the six-station network. The two additional stations 

were sited primarily for wind measures, but they also served to increase the accuracy 

of measurement. The most important change was the transformation to a phase- 
coherent system, permitting measurement of atmospheric winds, and thereby permit- 
ting correction of wind effects in the data. The conversion to phase coherence 

necessitated new receivers and much added equipment. Other important changes 

included digital-recording equipment, transmitter and receiver calibration units, and 
subcarriers in the microwave links between the stations. 

A detailed system description is available (Deegan, Fitzpatrick, Forti, Grossi, 
Schaffner, and Southworth, 1970). We give only a general description here. The 

antenna-gain patterns are described in Section 4. 

2.2 Station Locations 

Figure 2-l. shows the general layout of the system, and Table 2-l gives accurate 
station locations. Station 3 is the transmitting station, at the former Long Branch 
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Figure 2-l. Network layout. Dashed lines represent microwave links. Arrows repre- 
sent antenna axes: azimuth 113” East of North at sites 1 to 6, 139” at site 
7, and 94” at site 8. 
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field station of the National Bureau of Standards (it now belongs to the National Oceanic 
and Atmospheric Administration) near Havana, Illinois. All other stations are linked 
to station 3 by two-way microwave equipment, and all stations including station 3 have 

receivers. Stations 1 to 6 have double trough-guide antennas with 22-db gain, while 
stations 7 and 8 have 13-element Yagi antennas with 14-db gain. Most meteors are 

observed at slant ranges of about 150 to 250 km, between azimuths of about 90” and 
135” from station 3. 

Table 2-l. Station coordinates. 

Station 
number Latitude Longitude 

Bearing 
East of North 

from site 3 

Distance 
from site 3 

N-4 

40" 19’34” 90"15'22" 300"44'53" 23.14 

40 17 36 90 08 08 310 08 57 12.64 

40 13 11 90 01 19 
40 18 44 89 57 46 26 09 16 11.43 

40 094-i 89 5432 123 11 36 11.53 
40 09 23 89 4545 107 34 17 23.19 

40 2502 89 31 44 62 1420 47.29 
39 5436 90 00 51 178 53 03 34.42 

2.3 Principle of System Design 

A meteoroid in its passage through the atmosphere leaves a column of ions and 

electrons; our radar detects only the electrons. A simplified picture of the scatter- 
ing phenomenon can be obtained by considering that a radiowave at VHF (as in our 
case) incident on the column is scattered by individual free electrons, each of which 

oscillates as if no other were present (underdense trail condition). The “specular 
reflection point” (for a station or pair of stations) is the point on the trail at minimum 
distance from the station, or minimum sum of distances from the pair of stations. 
Echoes from electrons near the specular reflection point arrive in phase and are 

observed; echoes from points distant from the specular reflection point arrive out of 
phase and cancel each other. 
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Of the whole trail, the effective length that contributes to the scattering is the 

first Fresnel zone around the specular reflection point, half of which equals 

d-7 R A 2 k 1 km when the receiver and transmitter are at the same station. (R. is the 

distance of the trail from the radar station, and X the wavelength.) When the receiver 

and transmitter are not at the same station, this zone has a more complicated expres- 

sion. Different pairs of stations receive scattered signals from different parts of the 

trail. 

Upper atmospheric winds displace the effective specular reflection points and 

physical processes alter the amplitude of received echoes, but both effects are almost 

always of second order in determining the position of a trail. They are measured and 

used to correct the reduction. 

We use the motion of the meteoroid that forms the meteor trail (the “target”) to 

find the position of the trail. As the trail is extended past a specular reflection point, 

the addition of electrons that are alternately in and out of phase with the main echo 

from the principal Fresnel zone generates a characteristic “Fresnel” pattern in the 

received signal. From the spacing in time of the oscillations in this pattern and the 

length of the principal Fresnel zone, we find the velocity of the meteoroid (McKinley, 

1961; Southworth, 1962). From that velocity and the spacing in time between the 

Fresnel patterns observed at different stations, we find the distances between specular 

reflection points. Two such distances, corresponding to noncolinear pairs of stations, 

determine the direction of motion of the meteoroid; additional distances may strengthen 

the determination. 

From these data, we can further determine that the specular reflection point from 

the main site lies in a plane normal to the direction of motion of the meteoroid, at an 

observed range from the main site. The meteor trail lies on a cylinder normal to that 

plane. Measures of differential range from our closely spaced sites are, in general, 

not sufficiently accurate to fix the location of the meteor trail on the cylinder; but this 

location is determined by an interferometric measure at station 3 by using the two 

halves of the double trough guide as separate antennas for reception. 

The intent of the six-station (and later the eight-station) system was to observe 

a large sample of radio meteors as well as possible. Kaiser pointed out that three 
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stations would be sufficient to establish the meteor’s trajectory, but three points do 

not determine the ionization curve or the run of other physical parameters so com- 
pletely as we need to know them. Six or eight stations would yield useful ionization 

curves, as well as a larger number of meteors, greater accuracy, and greater 
reliability. Five of the six original stations were placed approximately along a straight 
line, spaced to observe at intervals over most of the length of some of the longest 
meteor trails expected. We found that meteor trails are notably shorter than expected - 

a very important result that would not have been discovered with only three stations. 
Six observations were obtained on a single meteor trail only when the trail was oriented 

to have the observed points at less than maximum spacing. 

2.4 System Connections 

Figure 2-2 is a simplified block diagram of the eight-station electronic equipment. 
A frequency generator embodying a master oscillator supplied coherent phase to the 
transmitter and all receivers. Phase was communicated to the distant stations by a 

2.5-kHz reference tone, initially via telephone lines and later via microwave links. 
At each distant site, a servoloop kept slave oscillators in phase. 

2.5 Transmitter 

The Continental PO-830 transmitter was built for the National Bureau of 

Standards, intended as part of the prototype for the Jicnmarca radar. The operating 
frequency was 40.92 MHz. We operated it at 738 pulses set -1 , with pulses 6 psec long 
at half-power. The maximum peak power available was 4 Mw, but it was usually 
operated at 2 Mw. The twin transmitter outputs were connected to the double-trough 
antenna by TR-ATR networks, enabling the station 3 receiver to use the same 
antenna between transmitter pulses. 

2.6 Receivers 

Each distant station had a single-channel phase-sensitive receiver with three 

outputs, proportional, respectively, to the logarithm of received amplitude and to the 

linear amplitude multiplied by the sine and cosine of the phase of the signal relative 
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to the system phase. These outputs were multiplexed and returned to station 3 via 

the microwaves. Receiver noise was negligible compared to galactic noise; the band- 

pass was 230 kHz. 

At station 3, a similar two-channel receiver with six outputs was connected to the 

two antenna troughs via the TR-ATR networks. 

2.7 Logics 

Observation of faint meteors necessitated elimination of as much noise and inter- 

ference as possible; this included recording only one echo at any time when two or 

more echoes were present. Furthermore, we could not afford to record on tape and 

film when no echo was present. The meteor-recognition logics, designed by Dr. 

M. R. Schaffner, maintained representations of all echoes at each station as digital 

words in a delay line. Meteors were recognized as echoes that repeated at the pulse 

frequency to at least a threshold amplitude for eight (normally) pulses, or for 8 + x 

with x repetitions below threshold. A newly appearing meteor was eligible for record- 

ing if another was not already being recorded. Any echo enduring more than 0.75 set 

was ineligible for continued recording; these included overdense meteors and airplanes. 

All noise and interference more than a few tens of microseconds (i. e., more than a 

few kilometers in range) from eligible echoes were gated out from the recording. 

A separate logic for each station was located at station 3, the station 3 logic using 

the outputs of one channel of the receiver there. All logics communicated to a central 

unit, which triggered the recording equipment whenever the recording was stopped and 

a new meteor.echo was recognized at any station (except usually not for new echoes at 

station 7 or 8). 

2.8 Range Measurement 

The slant range to the meteor was measured by the propagation time to and from 

the ionized column. In the six-station system, range was measured only from 

station 3. The ambiguity of multiples of 200 km (corresponding to the ambiguity of 

pulse intervals in the propagation time) was resolved by doubling every fifth transmitted 
pulse. However, the doubled pulse caused difficulties with the transmitter. 
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In the eight-station system, the ambiguity was resolved by delaying every fifth 

pulse after each recording was triggered, for the duration of the recording. The 

central logic unit communicated the pulse delays to the transmitter and sent range 

measures to the recording equipment (in digital form to the tape recorder). The loop 

propagation time was measured every five pulses for each station in turn that newly 

recognized an echo. 

2.9 Recording 

Meteors were recorded in parallel on film and magnetic tape. The 70-mm film 

recording was used for field inspection and for selecting records for computer analysis. 

Eighteen cathode-ray tubes presented analog representations of nine sets of phase data, 

eight sets of logarithmic amplitude data, and one set of range data at each pulse. Sine 

and cosine of phase from each station except station 3 were multiplexed on one tube; 

station 3 phases were multiplexed on two. The amplitude from the south trough 

channel at station 3 was not recorded on either film or tape. A digital clock illumi- 

nated by a strobe identified each record frame. 

Half-inch computer-readable magnetic tape recording was used for all detailed 

analysis. Eighteen channels recorded essentially the same information as the film, 

except that the sine and cosine phase signals were recorded alternately. All quantities 

except range were digitized to 8-bit accuracy; the range gave the propagation time in 

units of 0.25 psec and the station identification. Time was recorded at the end of 

each meteor record. 

Additional recording equipment is described in Sections 9 and 10. 

2.10 Calibrators 

The transmitted pulse powers were measured with the aid of calibrated probes 

in the TR-ATR networks. Received power was calibrated by signal generators at 

each station, controlled by tones transmitted over the microwaves. Signals were 

inserted into the receivers through stepping attenuators that covered the dynamic 

range of the system. Calibrator signaIs were recorded in the same’ way as meteors 

and applied in the computer reductions. 
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Richard E. McCrosky and J. T. Williams 

In 1967, we acquired on temporary loan from the Naval Research Laboratory (NRL) 
an image-orthicon system to observe artificial meteors at Wallops Island. At about 

the same time, we initiated a study of the feasibility of obtaining simultaneous radar 
and optical observations (SIMOBS) of the same meteor using the Havana radar and the 
NRL image orthicon or some similar device. The SIMOBS program was the result 

of the great interest in relating the newly acquired information on the luminous effi- 
ciency of optical meteors derived from the artificial-meteor experiments to the 
relatively unknown ionizing efficiency. The results of the study and our experience 

at Wallops Island (see Meteor Research Program Semiannual Technical Report No. 4, 

1968) suggested that SIMOBS were possible, although perhaps difficult. 

In fact, the initial study ‘somewhat underestimated the difficulty of the observations, 
partly because the television equipment could not be operated at peak sensitivity when 
photometry was required and partly because of a secular decrease in the sensitivity 

associated with aging of the image-orthicon tube. Nevertheless, the program has been 
most successful. Corrections of about a factor of 16 in previous estimates of the ioniz- 
ing efficiency are indicated. The observations and analysis leading to this result are 
given in Sections 6 and 8. Here, we describe the original image-orthicon equipment, 

adaptations made to enhance its usefulness for meteor observations, the specialized 
calibration and photometric procedures developed for our purposes, and finally, some 
brief comments on our experience with a second observing system, the Secondary 
Electron Conduction (SEC) Vidicon. 

Figure 3-1 shows a flow chart of the system. 

3.1 Equipment and Modifications 

A U.S. Navy shipboard image-orthicon system, AN/SXQ-3, was originally modi- 
fied by G. T. Hicks and G . G . Barton of NRL to accept a 105-mm focal length, f/O. 7 5 
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Figure 3-1. Image-orthicon observing and data-reduction system. 
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lens for night-sky observations. The system consists of 1) an image-orthicon camera 

equipped with a GE 7967 image-orthicon tube and fitted with the 12.5-cm objective, 
2) a motor-driven altitude-azimuth pedestal on which the camera is mounted, 3) a 

camera control console with video amplifiers and a monitoring kinescope; and 4) a 
remote 14-inch kinescope suitable for photographic recording. The normal video 

format of the SXQ is 30 interlaced 875-line frames per second with separate vertical 

and horizontal drive signals. To facilitate magnetic tape recording of the video for 

our purposes, vertical and horizontal sync pulses were generated from the drive signals. 
We added these pulses to the video through a separate distribution amplifier. This 
modification made practical the use of an inexpensive helical-scan video tape recorder 

(Ampex VR-7500) for routine recording of observations. The recorders were slightly 

changed to improve the playback quality of the 875~line video by increasing the tape 
speed by 4%. 

In order to preserve a nearly constant sensitivity independent of sky conditions, 
much of the automatic gain-control (AGC) circuitry was eliminated or bypassed. These 

modifications permitted a less frequent calibration of the sensitivity of the system. 

We also modified the camera beam-current control to expand the adjustment in the 

very low light-level region. This enabled the image erasing beam to be carefully 
adjusted to erase the image-orthicon target charge slightly more slowly than the rate 

of deposit for images within the useful dynamic range. The resulting “image lag” not 
only was tolerated but in fact became a useful part of the scheme for the photometry 
of slower moving images. 

In order to ensure consistent short-term performance and repeatable month-to- 
month operation of the image orthicon, a monitoring scheme was devised for the image- 

orthicon electronics. A lo-MHz bandpass oscilloscope sampled and displayed the video 
(at the horizontal rate) early in the control electronics where the video balance., :hori- 
zontal shading, and reladive background-signal level are set. Monitoring at this point 
was beneficial in minimizing across-field gain variations horizontally and in controlling 

the video preamplifiers (the AGC circuitry had been disabled). A second oscilloscope 
display at the vertical scan rate was alternated between the amplified video (after 
blanking) out of the control unit and the composite video/sync at the video tape 
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recorders. The video/sync displays, 60 fields per second, unmasked subtle changes 

in the target-scanning beam current, background noise level, and vertical shading. 

There is no specific vertical-shading control in the SXQ system; however, variations 

in gain across the field vertically were minimized when the beam current and gain 

parameters were properly adjusted for dark sky conditions. 

Generally, the electronic gain of the system proved to be fairly stable. However, 

the beam current was subject to subtle variations over a period of 1 to 3 hr. Con- 

sequently, the beam-current adjustment became the primary control for the camera 

video, leaving the gain controls for the entire camera-control unit-recorder system 

reasonably constant for the last 18 months (July 1969 through December 1970) of 

simultaneous observations. 

3.2 Observing Techniques -- 

Radar meteors are observed when the meteor is at a minimum range, i. e., when 

the meteor is 90” from the radiant and moving with maximum angular velocity. 

Optical detection systems are most sensitive for meteors near the radiant when the 

writing speed at the focal plane is at minimum. An optical observing site was 
established near Side& Illinois (Long. 87O51.2 W, Lat. 39O56.6 N). From this site, 

an optical system directed at elevation 49” and azimuth 263” has a maximum probability 

of obser;ing objects in the meteor region at about 90-km altitude that are also observ- 

:rhle by the Havana radar (see Figure 3-2). 

When operated in full sensitivity, the radar observes meteors at about 100 times 

the inlage-orthicon rate. This mismatch has two deleterious consequences. First, 

the problem of selecting those meteors that are true SIMOBS is difficult since, almost 

;lssureclly, some radar object will be under observation whenever the image orthicon 

records a meteor. Second, since the radar logic constrains the system to observing 

one meteor at a time, the radar data-recording system is quite likely to have been 

pre-empted by a faint, uninteresting meteor that occurred shortly before the brighter 

object was observed optically. Consequently, the radar receivers were attenuated at 

their iuput by 13 to 25 db when SIMOBS were being attempted. To further ease the 

arduous task of selecting possible SIMOBS, the audio channel of the video tape recol,ded 

a 1000-Hz signal transmitted by an auxiliary transmitter at Havana whenever the radar 

t1ai.a system began ‘a record of a new meteor. 
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Observations were generally made during moonless skies and between 11 p.m. 

CST and morning twilight. Observing was usually curtailed when atmospheric extinction 

was variable or exceeded about 1 mag. Well-regulated line power and a I-hr warmup 

ensured stability.’ The output was observed visually on a live monitor and recorded on 

tape: About 75% of the meteors were discovered on the live monitor, and the remain- 

ing during subsequent playbacks of the tape. Possible SIMOBS and calibration tests 

were copied repeatedly on data tape for future use. 

3.3 Calibration -.- 

A two-step calibration procedure was followed. A pinhole light source was set 

up in the loft of a nearby barn. Direct current for the source was supplied from and 

monitored at the image-orthicon site. The source could be attenuated remotely from 

the site by sequential advancement of a neutral-density step wedge located between 

the source and the pinhole. A total of 10 steps of 0.5-mag attenuation per step were 

available. These calibration observations were made with the camera slewing in 

altitude. Slew rates of 1” to 15” set -1 were used. These rates bracket the angular 

rates of most SIMOBS meteors, and the fundamental calibration was thus performed 

on a moving source comparable to a meteor. 

The second calibration step was used to define an absolute scale, in terms of 

stellar magnitude, for the relative response determined for the artificial light source. 

Stars of known brightness were recorded while the image orthicon was slewed. In 

general, unreddened A0 stars in or near the observing field were chosen, but on 

some occasions stars of spectral class as early as B8 or as late as A3 (and rarely 

as late as A5) were used. 

In summary, the first calibration step determined what in photography is called 

the characteristic curve, and the second supplied the zero point for this curve in 

terms usually employed to define meteor luminosity. This last procedure simultaneously 

accounted for changes in the image-orthicon system sensitivity and for variations in 

sky conditions. 
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3.4 Photometric Reductions 

Photometry of meteors observed by photographic techniques presents problems 

not often encountered in astronomy or, indeed, in most areas of any science. The 
obvious (but seldom noted) fact that we can observe our objects only once immediately 

places stringent signal-to-noise restrictions on the data. The unexpected nature 

of the meteor event may introduce problems of dynamic range. Both problems are 
more serious in television techniques: System noise is much higher than for photo- 

graphic emulsions, and the dynamic range is lower. 

We considered two general techniques for our photometry. The first was to 
photograph the image-orthicon outputs - both meteor and calibration - and proceed in 
the manner familiar to us from our photographic work. There, we compare by eye 

the meteor and standard source images. We rejected this approach, however, because 
kinescope techniques are incapable of recording the fainter images. 

The second approach was to deal directly with the electrical signal, generated 
from the video tape, which contains the maximum amount of undistorted information. 
However, observing the signal from each pixel on the meteor trail is not sufficient. 

It is necessary also to subtract the average signal of that pixel at a time before or 
>.fter the meteor appears, i. e., to detect and account for that part of the signal that 
is due to night sky, stars, or- system noise. Furthermore, an image orthicon does 
not read out its entire signal in a single frame. Since, as we learned, the integrated 
signal is a better and more useful measure than the peak signal is, the problem of 
interpreting the electrical signal is increased. Finally, expensive instrumentation is 

required to isolate the signal that forms a specific picture element. 

We bypassed most of these problems by physically isolating the pixels of interest 
on a television monitor and generating a new electrical analog signal with a phototube 
observing the isolated region. It might appear that this technique suffers seriously 
by introducing nonlinearities of the phosphor of the monitor and indeterminate effects 
produced by the phosphor decay. In fact, none of the effects is important so long as 
our calibration data are treated by the same system of analysis as the meteor data. 

In a sense, we bring both the meteor and the calibration into the laboratory and observe 

them photoelectrically at our leisure. 
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In practice, all but a small aperture of the monitor screen-that part through 

which the meteor or calibration source will pass - is covered. The phototube records 
the luminosity of this area. The phototube output is registered on a chart recorder 

or displayed on a cathode-ray oscilloscope (CRO) and photographed. The integrated 

intensity of the meteor pulse above the background is taken to be proportional to the 

original intensity of the source or meteor for the time interval required to pass through 

the aperture. It is the integrated intensity, rather than the peak intensity, that is 

pertinent since an image orthicon, and particularly one adjusted for high sensitivity, 

reads out the signal much more slowly than the signal is impressed on the target. We 

also demonstrated that the integrated intensity divided by the time the source was in 

the aperture was nearly independent of the angular velocity of the source, or, in terms 

used in photography, this system obeys the reciprocity law. (This happy circumstance 

could hardly have been anticipated since the entire photometric system contains a num- 

ber of nonlinear components. ) Therefore, the instantaneous intensity can be determined 

once the angular velocity of the meteor is known. No second-order corrections are 

required when the meteor and calibration source are of different angular velocities. 

Photometry is performed on as many independent points on the meteor trail as is 

necessary to define the light curve. For each point observed on the trail, a second pen 

of the recorder or a second CR0 records the audio channel of the tape. Time correla- 

tion with the radar data is determined from the time difference between the meteor 

pulse and the onset of the lOOO-Hz signal, as shown pictorially in Figure 3-1. 

3.5 SEC Vidicon 

During three observing periods, September, November, and December 1970, a 

SEC Vidicon system operated by NASA/Huntsville was used at the Side11 site as a 

companion to the image orthicon. The SEC is notably superior to the image orthicon 

for faint objects in that almost the entire target charge is read out by a single pass of 

the scanning beam. Both fainter meteors and higher velocity meteors can be observed 

with a much improved signal-to-noise ratio. A total of 30 probable SIMOBS were 
observed with the SEC. Reduction of these recent data has been postponed until the 

completion of the best image-orthicon SIMOBS, since we were hesitant to undertake 

the development of a new photometric procedure during the last months of our contract. 

Very recent and preliminary results indicate that our basic photometric techniques will 

be applicable to the SEC data. 
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4. ANTENNA CALIBRATION AT HAVANA 

Zdenek Sekanina and Richard B. Southworth 

4. 1 Introduction 

Careful calibration of the entire Havana radar system was at least as important 

to the value of its observations as the size or sensitivity of the system. Measurement 
of the antenna-gain patterns was an important but laborious part of this calibration. 

We aimed for an accuracy of 0.2 db within the main lobe of the antenna, in order to 
have ionization curves comparable in accuracy to photographic (or image-orthicon) 

light curves. Consultants (Chu Associates, Harvard, Massachusetts) recommended 
an air-borne measuring program on the actual antennas to replace the existing meas- 

ures made on the designer’s scale model. 

4.2 Measurements 

The primary measurements of the antenna pattern were performed under the 

direction of Dr. C. S. Nilsson in the spring of 1968. A lignt airplane, flying more 

than 1 km from the antenna, so as to be in its far field, towed a battery-powered 

transmitter and a quarter-wave dipole on a long rope. On half the flights, the dipole 

was kept approximately horizontal by a further length of rope and a drogue (a light 

wood and canvas cone with high air resistance). On the other flights, the dipole was 

held partly vertical by a further length of rope and a heavy weight with little air resist- 

ante. The airplane made a slowly ascending spiral about 1 mi in radius around the 

antenna up to a height over 1 mi, and then spiraled in at that height. Successive turns 

were spaced 2” to 3” as seen from the radar station. The towed transmitter emitted a 

continuous signal at the radar frequency, which was received through the antennas 
under test. A radar tracking system lent by NASA/Langley and operated by NASA 
personnel tracked a small microwave transmitter carried on the airplane. 
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Antenna measures were made at sites 3 and 4 of the Havana system. The north and 

south troughs were measured both separately and together at both sites, because 

separate troughs were regularly used for reception at site 3 and because a theoretical 

combination of the troughs could be compared with the measured combination for a 

check. In addition, a vertical half-wave dipole and a horizontal half-wave dipole 

mounted above a ground plane were measured at site 3 for a control on the flying 

transmitter, and a horizontal dipole and the Yagi from site 7 were measured at site 4. 

Meteor radar receivers from the Havana and Wallops systems were connected to 

the antennas and fed chart recorders. Calibration signals were supplied to the 

receivers from signal generators and step attenuators. Time signals from the radar 

tracking system and visual observers were also placed on the chart records. Selected 

charts were later read in Cambridge on film-viewing equipment that converts cursor 

settings to punched cards. The reduction of these primary measurements is discussed 

below. 

An additional set of measurements of the antenna was obtained to evaluate the 

importance of the circular component of the polarization of the trough antenna gains, 

since purely linear polarization was not to be expected except in the axial azimuth. 

Any appreciable circular component relative to the linear component of polarization 

causes a large change in the radar system’s response to a meteor. Measures with the 

flying dipole antenna could not reveal circular polarization. 

To measure both linear and circular polarization, a special flying antenna, shown 

in Figure 4-1, was towed behind a heliocopter. Two half-wave dipoles intersecting at 

their centers were driven 90” out of phase by a battery-powered transmitter. A rope 

from the helicopter to a weight at one end of the thicker dipole supported the system; 

fins at the other end of the thicker dipole kept it approximately horizontal in flight. 

The fins were canted to spin the cross about the thicker dipole at approximately 1 
-1 revolution set . Thus the cross radiated alternately right- and left-circularly 

polarized signals when the thinner dipole was normal to the line of sight, and horizontal 

linearly polarized signals when the thinner dipole was projected onto the thicker dipole. 

Two sun sensors viewing the sky through slits in the thicker dipole were connected to 
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relays that attentuated the transmitter when the sensors viewed the sun. The slits 

were oriented so that the interval between attenuations indicated the angle between the 

thicker dipole and the direction to the sun. 

The helicopter flew in a slowly ascending spiral approximately 1 km in radius about 

the station to a height of about 2 km; then it covered the top of the pattern by straight 

horizontal flights back and forth. The helicopter was tracked by the NASA/Langley 

radar, and the signals were received and recorded, essentially as with the single- 

dipole source towed by the airplane. 

The combination of signals from the rotating crossed dipoles permits complete 

determination of the gain and polarization of the antenna under test. Figure 4-2 shows 

the results .of an approximate reduction for the combined troughs at site 3. The ratio 

of the amplitude of the circular component to that of the linear component does not 

reach a factor of 0.3 in any part of the main lobe or the two principal side lobes. This 

amount of circular polarization has a negligible effect on meteor observations. Con- 

sequently, an exact reduction of the crossed-dipole measures was not completed, since 

the single-dipole reductions were much less time consuming. s 

The crossed-dipole reductions, and later the single-dipole reductions, showed that 

the gain patterns of the actual antennas were quite similar at sites 3 and 4, but signi- 

ficantly different from the designer’s scale model. In particular, the centers of the 

main lobes were 3” lower than the model, and the side lobes were 6 db stronger. 

4.3 Reduction of the Antenna-Pattern Measures 

The remainder of this discussion concerns the reduction of the measures made 

using a dipole towed behind an airplane. A fuller report on the reduction is available 

on request from Z. Sekanina. 

Obtained from this experiment were the positions of the aircraft at all-second 

intervals, details on the towed equipment, and the power of the signal from the flight 

antenna recorded by various units of the tested radar. 

The net gain in power of the tested radar is given as the ratio between the 

recorded and the “expected” powers of the flight antenna at the location of the tested 
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units of the ground radar. The expected power of the flight antenna is the power that 

would be received by the radar if the radar antenna were isotropic and unpolarized; 

it can be calculated if the geometrical and aerodynamic conditions of the flight are 

h-noun. 

4.3.1 Speed of the aircraft 

The speed of the aircraft relative to the ground has been computed from the air- 

craft’s positions. Its speed relative to air, an essential quantity for determining the 

antenna’s position, has been determined from the speed of the wind and that of the air- 

craft relative to the ground. The wind speed could not be computed for any particular 

time; however, since the pilot had been instructed to keep the air speed constant in 

magnitude, it was possible to calculate at least a smoothed effect of wind on the air- 

craft’s speed. 

4.3.2 Aerodynamics of the towing line 

Three forces are considered to act upon the line and equipment towed by the 

aircraft: 

A. The drag force of the air. 

B. The gravity. 

C. The centrifugal force due to the curvature of the aircraft’s trajectory. 

The flights were performed in two modes - “horizontal” and “vertical. ” The 

aerodynamic properties of each were determined basically by a piece of equipment, 

fixed at the very end of the line, of extreme aerodynamic characteristics in terms 

of the drag-to-weight ratio. The weight was very small compared to the drag for the 

horizontal mode (drogue), while the drag was very small compared to the weight for 

the vertical mode (bomb). 

The shape of the line carrying the equipment has been determined by numerical 

integration of the effects of all three forces along the line. The computed vertical 

profile of the line for zero centrifugal acceleration and an aircraft-to-air speed of 
220 km hr’l ’ is plotted in Figure 4-3. Inspection of photographs taken from an 

ancillary aircraft proved that the computed profiles approximated the observed ones 

quite well. Thus, the position of the flight antenna relative to the aircraft and the 

orientation of the antenna’s axis were fairly confidently established at any time. 
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4.3.3 Power and power gain 

Since the flight antenna can be mathematically taken as a thin dipole linearly 

polarized, the expected power of signals from it at the ground radar is fully described 

by the antenna’s length, its working wavelength, the distance from the ground radar, 

the angle between the direction of the flight-antenna axis and that toward the radar, 

and the polarization angle. The aerodynamic analysis described leaves only the polari- 

zation ambiguity unresolved; this can, however, be removed by combining data from 
the vertical-mode flight with data from two horizontal-mode flights, carried out in 

clockwise and counterclockwise senses, respectively (see Figure 4-4). Since the 

power gain is given by comparing the recorded power with the expected one, the deter- 

mination of the power-gain pattern is a m’atter of routine calculations once the polari- 

zation ambiguity is resolved. 

4.3.4 Presentation of the results 

The power-gain pattern has been determined for the north, south, and joint troughs 

of sites 3 and 4. as well as for superposed separate troughs of the two sites. The 

results are available in diagram form for general information (see Figures 4-5a to 

4-5h) and on computer printout for detailed analysis; they are also stored on SAO 

tapes. The printout, much too bulky to be reproduced here, is available upon request. 

The following table lists the SAO tape numbers for the results stored on tapes: 

SAO Tape Number 

Site 3 

South 

North 

Joint 

Superposition 
(South and North) 

7 139 7 188 

7 140 7189 

7141 7195 

7 167 7252 
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The information is coded in binary and consists of the following: 

4. For south, north, and joint troughs: 
1. azimuth, east of north (degrees) 
2. altitude above the horizon (degrees) 

3. power gain (db) 

4. probable error of the gain (db) 

5. position angle of the polarization plane (degrees) 
6. probable error of the angle (degrees) 
7. ambiguity solution (integer; see Figure 4-4). 

B. For the trough superposition: 
1. azimuth, east of north (degrties) 
2. altitude above the horizon (degrees) 
3. power gain (db) 

4. probable error of the gain (db) 
5. position angle of the polarization plane of the south trough (degrees) 

6. ambiguity solution (integer) for the south trough 

7. position angle of the polarization plane of the north trough (degrees) 

8. ambiguity solution (integer) for the north trough. 

Both types of data are sorted first by the azimuth (1” 5 steps decreasing from 360” 

to 0” inclusive) and then by the altitude (1” steps increasing). 
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ZENITH 

111-131 

’ FLIGHT ANTENNA 

\ 

Figure 4-4. Voltage gain vs. polarization. The polarization plane can conveniently 
be characterized by a position angle X . If the voltage gain g is known 
for two different position angles X1 an 3 X2, the gain at X0 can be deter- 
mined from the figure. In practice, however, such a solution is ambig- 
uous, because X1 and X2 are ambiguous (first or third quadrant; second 
or fourth quadrant). To solve the ambiguity, the voltage gain must be 
available in more than two directions. The best fit of all such least- 
squares solutions is then taken as the correct solution. We have used 
three different flight modes, so there are four possible solutions (taking 
X0 in the first or second quadrant only): 

Flight Mode 

Ambiquity 
solution 

1 

2 

3 

4 

Horizontal Horizontal 
counterclockwise clockwise Vertical 

0” <X < 180” 0” < X < 180” 0” <X < 180” 

0” < X < 180” 0” < X < 180” 180” < X < 360” 

0” <X < 180” 180” < X < 360” 0” < X < 180” 

0” <X < 180” 180” < X < 360” 180” < X < 360” 
___ --. . -...- ~--- ---. 
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NORTH TROUGH, SITE 3 
a) 

I I I I I I I I I I I I I 
0” 120” 240’ 360’ 

AZIMUTH 

90” 

I 

SOUTH TROUGH, SITE 3 
b) 

I I I I I I I I I I I I 
00 120” 240’= 360’ 

AZIMUTH 

Figure 4-5. Antenna patterns. The power gain is expressed on a scale of 1 to 9, 
with a step +1 indicating an increase of 4 db (= 1 mag) in the gain. 
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Figure 4-5. (Continued) 
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Figure 4-5. (Continued) 
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JOINT TROUGH, SITE 4 
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Figure 4-5. (Continued) 
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5. ANALYSIS PROCEDURE FOR RADAR OBSERVATIONS 

Richard B. Southworth 

5.1 Theoretical Model of Radar Information 

The radar echo received from the ionized column left behind a moving meteoroid 

is, for practical purposes, entirely scattered back to the observer by free electrons 
in the column, since scattering by free ions or the solid surface is negligible. Kaiser 

(1955), among others, has discussed the echo from a meteor; some additional features 
are described by Southworth (1962a). The amplitude and phase of the observable echo 

are the integrated vector sum of the echoes from individual elements of the column. 
In an “underdense” column, such as are mostly observed by the Radio Meteor Project, 

we can consider separate electrons as these elements. In a denser column, it is 
necessary either to consider secondary scattering by nearby electrons of radar waves 

already once scattered by other electrons or else to use some approximation involving 

continuous media. Nonetheless, the assumption that the column is underdense yields 
reasonable approximations to the meteoroid’s speed and trajectory, although not to 

its size. 

For underdense meteors, it is correct and convenient to divide the column into 

independent elements distributed along the column and to consider each element as 
located exactly on the column axis. The effective number of electrons in each ele- 

ment will then be variable; in an underdense column, the effective number decreases 
exponentially with time because the electrons diffuse away from the axis, so that 

echoes from electrons on different sides of the column become out of phase with each 
other and interfere. A complication for a few of the brighter underdense meteors is 

a resonant scattering effect dependent on the polarization of the incident wave and the 
orientation of the column (Kaiser, 1955). In a resonant column, the effective number 

may first increase and then decrease, and some phase shifts may be superposed, both 
depending on the polarization. Fortunately, whenever this phase shift is large, it 
takes a form that cannot arise from winds of the type considered below, so we are 

able to reject it automatically in the reduction process. 
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The phase of the radar echo from each element of the column, with respect to the 

phase of the transmitted wave, is determined by the distance from the radar station 

to the element (neglecting effects of resonance or of overdense trails). Consider first 

the case where the radar transmitter and receiver are at the same point; separate 

transmitter and receivers will be treated later. 

Let the trajectory of the meteor be the x axis, and let the radar station lie on the 

negative y axis at a distance R, so that R is the minimum distance from the station to 

the meteor trajectory. The distance D from any point (x, y). to the radar station is 

(5- 1) 

For the small values of y and moderate values of x to be used here, it will always be 

sufficient to limit equation (5-l) to three terms. The phase (now taken with respect 

to an element at the origin of coordinates and differing only by a constant from the 

phase with respect to the transmitted wave) is 

(5-2) 

Atmospheric, winds will have negligible effect on the meteoroid but will carry the 

ionized-column away from the meteor trajectory. Only the component of the wind 

along the y axis (i. a., along the radar beam) need be considered. We will assume 

that the radial component of the wind depends li&arly on x within the part of the 

ionized column that reflects radar waves to any one receiving station. This assumption 

is necessary because it will not usually be possible to derive sufficient information 

from the received echo td specify any more complicated wind field. In particular, we 

do not resolve wind variations within the principal Fresnel zone, roughly 1 km long. 

Ultimate justification for the assumption must come from our results, but the observed 

absence of turbulence at the heights where we measure (Layzer and Bedinger, 1969) 

supports our use of it. Accordingly, let the radial wind speed be of the form 

S; = a(x-xw)m set-l , (5-S) 
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so that 2 represents the wind shear (m set -1 -1 m , or radian set-1) and xw represents 
a point (perhaps extrapolated) on the trajectory where there is no radial wind. Let 
time t be measured from the moment the meteoroid passes the origin; then the coor- 

dinates of the meteoroid are (Vt, 0), where V is its velocity. 

The y coordinate of any element of the column can then be found from its radial 

speed and the interval T since it was generated by the meteoroid: 

y = ;jrr 

= a(x-x,)(t - $) 

= - 5 [x2 - (% + Vt)x + xw vt1 . (5-4) 

Equation (5-4) shows that the ionized column takes a time-dependent parabolic form. 

The phase of the echo from an element at x is found by substituting equation (5-4) 

into equation (5-2): 

(which corrects equation (17) of Southworth, 1962a). It is convenient to define a 
parameter a that represents the importance of the wind shear (discussed further below) 

as 

and to rewrite equation (5-5) as 

21T 
K ) 

2 
-rRa 1f2a (Xw+Vt) +2XwVt 1 . 

(5-6) 

(5-7) 
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The second line of equation (5-7) is independent of x and therefore applies directly 

to the phase of the integrated radar echo (from all the elements at all values of x). 

Remarkably, the first line of equation (5-7) is the phase that would be observed if the 

station were in fact at a different distance from the meteor and moving, with coor- 

dinates 

II R -- 1-k ’ -(fia) (++W * 1 (5-8) 

Thus, the amplitudes (which are determined by the first line of equation (5-7)) have 

the form of the Fresnel pattern of a meteor of velocity V’ that crosses the specular 

reflection point at a time 6t after the real meteor does, where 

V’= V(l-a)(l-2u) -l/2 
, 

(5- 10) 

Measuring time t’ from the apparent crossing of the specular reflection point, we have 

aX 

t’= t-&Y= t + (& . (5-11) 

The second line of equation (5-7) represents a variation in phase superposed on 

the normal Fresnel variation and is the observable phase variation due to wind. 

Denoting this observable wind phase by a., we have, in terms of V’ and t’, 

V’t’ + constant . (5-12) 

Observation of the Fresnel pattern in amplitude yields V’ and t’ (i. e., the origin of 

t’ in the system used for observing time). The quantities R and X are already known; 

thus, observation of the phase yields the coefficients 

\ - - 



2 
( > i% and W (5-13) 

These furnish the necessary factors for correcting the apparent velocity and time of 
passing the specular reflection point, since 

4 = [1 - (+-)2l’2 V 

and 

tit= -(&) & . 

(5-14) 

(5-15) 

The actual geometry of the ionized column is quite different from the geometry 
that would be deduced directly from the apparent Fresnel pattern or from the geometry 
when there is no wind shear. The curvature of the ionized column is 2a times the 
curvature of the radar wavefront. To have only a single point of tangency (specular 
reflection point) between the wavefront and the column, we must have 

2a<l . (5-16) 

Other cases will give very anomalous Fresnel patterns, which can easily be rejected. 
Previous observations of winds at meteor heights show that the most probable value 

of a is of the order of kO.1 but that occasional meteors may not satisfy inequality 

(5-16). 

The actual point of tangency between the radar wavefront and the ionized column 
(produced if necessary) is at 

(5-17) 
x; yo= (a-l)F -a%$ , 
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which describes a parabola concave toward the station. The negative coefficient of 

t2 in the first term of equation (5-12) is the result of this parabola. 

When the Fresnel oscillations are empirically smoothed out, the remaining phase 

Q and amplitude A variations refer to the principal Fresnel zone centered on the 

moving point (x0, y,) . Irregularities in the ion column within the length of the principal 

Fresnel zone are averaged out; its length is 

F= -.% J l-2a ’ (5-18) 

which is of the order of 1 km. 

Observations of the wind phase at a station yield the value of the wind at one point, 

as well as two possibilities for the derivative of the wind, as follows. The observed 

coefficients of t and t2 in equation (5-12) give the values of 

from which either 

(5-19) 

(5-20a) 

or 

VG 
a= - R(l-G) ’ 

H x =-- . 
W G (5-20b) 

The value of the wind at one point 

(5-2 1) 
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is common to both equations (5-20a) and (5-20b). This is the point where the moving 

meteor crosses the point of tangency between the radar wavefront and the ionized 

column; i . e . . , it is the actual specular reflection point. 

The derivative 2 of the wind is primarily useful for interpolation between the points 

observed by different stations. When the ambiguity between equations (5-20a) and 
(5-20b) is significant - that is, when 1~1 is appreciable - we can usually resolve it 

by selecting the derivative that makes a better fit to neighboring measures. 

The case where the transmitter and the receiver are at different sites is very 
similar to that where they are at the same site, particularly for the meteors observed 

on this project. The essential difference is that the wind component observed is the 

component along the direction bisecting the angle between the directions from the two 

stations to the specular reflection point. Stations 1 to 6 and their antenna beams are 

so arranged that the distance along an observable meteor track between the feet of 

perpendiculars dropped from station 3 (the transmitter) and any other station camiot 

generally exceed 15 km. The specular reflection point is roughly halfway between 

these perpendiculars. Since echoes at station 7 or 8 will be analyzed only when they 

are reflected from parts of the meteor track observed at other stations, perpendiculars 
from station 7 or 8 will also be within 15 km of the perpendicular from station 3. 

In these circumstances, equation (5-2) and all subsequent developments remain valid 
with three substitutions: 1) the origin of x and + is shifted to the new specular reflec- 

tion point; 2j the perpendicular distance R from the station to the track is replaced 

by the harmonic mean of either the perpendicular distances from the two stations or 
the distances of the stations’from the specular reflection point; and 3) the wind’dis- 

placement y is replaced by y cos (q/2), where Z/ is the angle between the directions 

from the stations to the specular reflection point. 

5.2 Geometrical Reduction 

This section outlines the principles and procedure for finding a meteor’s position 

and vector velocity from observed data. 
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The amplitude and phase of the Fresnel pattern generated by a meteor of constant 

magnitude, without diffusion, can be expressed in terms of the Fresnel integrals of 

classical analysis (e.g., McKinley, 1961); but numerical integrations are necessary 

to.predict the effects of diffusion or varying magnitude (Loewenthal, 1956; Southworth, 

1962a). When, as with our stations, the “range” (distance to the meteor trail) is much 

larger than the distance between the transmitting and the receiving stations, it is con- 

venient and entirely adequate to use the concept of an “effective station. It This is the 

position that would receive the same signal by direct back scatter as the actual 

receiving station receives by forward scatter at a small angle; it is located on the 

bisector of the angle between lines joining the specular reflection point with the trans- 

mitting and the receiving stations, and its range R from the meteor is the harmonic 

mean of the transmitting and receiving ranges. The position and speed of the meteor 

are deduced primarily from the times of maxima and minima (collectively, “extrema”) 

of the Fresnel pattern; diffusion, radar magnitude, and other physical quantities are 

deduced primarily from the amplitudes of the extrema. The times of the extrema are 

the times when the meteoroid is at known multiples of the length F (equation (5-18)) 

of the “principal Fresnel zone” from the specular reflection point. From the numerical 

integrations cited above, we find that the “known multiples” depend on apparent diffusion, 

but not much on other likely events. Diffusion shifts maxima earlier and minima later 

than in a pattern without diffusion. However, the time of the first maximum also 

depends on the slope of the ionization curve (Southworth, 1962a, Table 3). From the 

integrations, an empirical expression for the distance x 1, from the specular reflection 

point to the point corresponding to the first maximum of the Fresnel pattern, is 

Ff0.861 - 1.535C + 2. 75C2 - 3. OC3 + (CS/fi)] 
4-z 9 (5-22) 

where S is the slope of the ionization curve in magnitudes per length F, and C is 

Loewenthal’s “decay constant”: 

(5-23) 
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Here, D is the diffusion constant, V is the meteor’s velocity, TF is the time for the 
meteor to cross the principal Fresnel zone, and TD is the time for the voltage ampli- 

tude of the signal to decay by a factor e under diffusion. Equation (5-22) replaces the 
approximation given in Southworth (1962a), which was vulnerable to distortion of 
amplitudes by fragmentation of the meteoroid. 

Unpublished continuations of the developments in Southworth (1962a) show that the 

amplitudes of the Fresnel patterns may be quite accurately analyzed by smoothing out 

the oscillations and then regarding first the smoothed curve as denoting the decaying 

amplitude from the principal Fresnel zone and second the oscillations from the 
smoothed curve as denoting the amplitudes of the later Fresnel zones as each is 

formed. Such an analysis yields C, S, and the radar magnitude at the specular reflec- 

tion points and at the extrema. It also yields the phase corrections necessary for 

wind measurements in the Fresnel pattern. 

The “radiant1 (named for the point in the sky from which visual shower meteors 

appear to radiate) is the direction opposite to the direction of motion of a meteor and 
is the common way to denote the direction of motion. Evidence for the radiant is 

found in the time intervals between crossings of different specular reflection points, 
seen as time intervals between beginnings of Fresnel patterns. The distance traveled 

by the meteoroid in a given time interval is known from the velocity (found from the 
spacing of Fresnel oscillations). This distance is the projection of the distance between 
the corresponding effective stations onto the meteor trajectory. Given at least two 
such projections from noncolinear interstation distances, the radiant is determined. 

In the computation, we solve initially for two horizontal direction cosines of the radiant. 

We then infer the vertical direction cosine from the other two, since there is essen- 
tially no vertical distance between the stations. Nearly horizontal trajectories do not 
yield good radiants and are rejected. 

The position in space of the specular reflection point from station 3 (the transmit- 

ting station) is determined from the radiant, the range (directly measured), and the 

difference in phase between the signals received at the two halves of the antenna at 
station 3. The difference in phase determines the angle between the direction from 
one-half of the antenna to the other and the direction to the meteor. There is an 
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ambiguity between two or three possible values of the angle, which can nearly always 

be resolved by requiring the meteor to be in the antenna beam and at a plausible height; 

any doubtful cases are discarded. 

The reduction procedure begins by treating the range observations, i. e., the 

observed time intervals between the transmission of a pulse and its return to station 3 

via the meteor, or via the meteor and another station. Discrepant values are dis- 

carded, and one average loop range is formed for each station with range measures. 

The observed (amplitude) Fresnel patterns are measured by a specially devised 

semiempirical pattern-recognition program. This finds the time and amplitude of 

each extremum, thus giving the same data we previously read from analog film records. 

The program uses the spacing of extrema found at one station to predict the spacing at 

others. If it fails in an attempt to measure the pattern at any station, it will try again 

when it gets a better prediction from some other station. The oscillations from a 

smoothed curve are found for each pattern. 

The wind phase @ is next measured at each station for which an amplitude pattern 

was measured. The recorded phase data are an analog representation of 

s = amplitude X sin (phase) at odd pulses and c = amplitude X cos (phase) at even pulses. 

(These are the outputs of the phase detectors.) Initially, the missing alternate values 

are interpolated. For a first approximation to the phase variation, the phases are 

found at the Fresnel maxima, multiples of 2~r being added where necessary for con- 

tinuity , These are then fitted with an expression of the form 

+=EO+E1p+E2p2 , _ (5-24) 

where p is the pulse number (measuring time). Next, the phase at each observed 

pulse after the first maximum is corrected for the oscillating part of the Fresnel 

pattern by subtracting a rotating vector 

S = 
corr s-C~S~~(+~+EO+EIP+E~~~) 

C = 
corr c-cFcos (+F+EO+E1~+E2~2) 

S 
tan $corr = F . 

corr 

(5-25) 
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Here, CF is the amplitude of the oscillating part, interpolated between extrema, and 
+F is the phase of the oscillating part, defined to be 0 at the first extremum, TT at the 

second, 2rr at the third, etc., also interpolated. The corrected phases are fitted with 

equation (5-24), and the process is then iterated once more. If E2 is inadequately 

determined or significantly positive, it is rejected, and 

ch = E. + E1p 

is fitted instead. 

The amplitude Fresnel pattern is next analyzed at each station by using a pro- 
visional value of the range. This yields velocities and times at specular reflection 

points, for the geometric reduction proper, as well as various physical data such as 
diffusion. 

The geometric reduction proper (determining the position and velocity) follows 

next; it proceeds by iteration. First, the effective station positions are estimated. 

Next, the velocities and times at specular reflection points are corrected by using 

equations (5-14) and (5-15). Then, the velocities V and times t are fitted to an 

expression of the form 

V=B+CKexp(Ft) . (5-27) 

Whipple and Jacchia (1957) have shown that this form is suitable for the analysis of 

photographic (Super-Schmidt) meteors. Since it does not yet appear practical to 

attempt to evaluate i( from individual radar meteors, we use a value characteristic 
of faint photographic meteors - namely, 5/4 the value expected for unfragmenting 

meteoroids in an exponential atmosphere. Accordingly, 

E= 1.25v cos Z 
5.3 R ’ 

where v is the mean observed velocity, ZR is the zenith distance of the radiant, and 
the atmospheric scale height is taken to be 5.3 km. We do not impute great accuracy 
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to equation (5-27), but consider that it is a more reasonable bridging formula than most 

others, especially polynomials. The distances between specular reflection points are 

now found by integrating equation (5-27), and the radiant is fitted to these and the effec- 

tive stations. Finally, the specular reflection point from station 3 is found by fitting the 

position of the whole trail (not varying the radiant) to the difference of phase at station 3 

and to all observed ranges. 

Successive iterations begin by computing the effective stations using the newly 

computed position of the trail and continue by correcting velocities for the difference 

between the original provisional ranges and the latest values. The iteration is carried 

to convergence (or failure). 

Throughout the reduction, it is general practice to “fit” by least squares and to 

carry an estimate of the uncertainty of nearly every quantity deduced. This estimate 

is kept as realistic as possible and usually depends on both the internal scatter in a 

. least-squares fit and the previously estimated uncertainties of the data fitted. In case 

of doubt, we try not to underestimate the errors. 

5.3 Orbit 

The meteor’s preatmospheric velocity V,, radiant, and date of observation fully 

determine its orbit before it strikes the earth. We estimate the difference between 

V, and the observed velocity V by using the simplified meteor theory (McKinley, 1961) 

and the observed deceleration V at the maximum of the observed portion of the ioniza- 

tion curve. The theoretical deceleration at the point of maximum ionization is 

(McKinley, 1961, equation (7-20)) 

. 3 cos ZR 

‘(max)=- 2oH , (5-29) 

where H is the atmospheric scale height, and CJ is a constant characteristic of meteor 

material. We use H = 5.3 km, and loglo U = -11.8 (cgs) as an effective value esti- 

mated from the meteors themselves (Southworth, 1962b). We can combine McKinley’s 

equations (7-l), (7-16), (7-19), and (7-28) to show that 
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v2 =v2+6 00 51n l+ -ir [ 1 . 2V 
W-0 

(5-30) 

In effect, we use V to determine where in the ionization curve V is measured and do 

not assume that the entire ionization curve is observed. However, when V is not well 

determined, we substitute an empirical mean value from. 

9 -=- . 
’ (max) 

(5-3 1) 

where V is in km set -1 , which was derived by averaging well-determined values of V. 
Equation (5-31) is consistent with a hypothesis that we fail to observe the early parts 
of the ionization curves of fast meteors,. presumably 

later parts of the ionization curves of slow meteors, 

tion and fragmentation. 

because of diffusion, and the 

presumably because of recombina- 

Having found V, from equations (5-29) and (5-30), iKe compute the orbit by standard 
methods (Whipple and Jacchia, 1957). 

5 .‘4 Physical Quantities 

Apparent diffusion rates are computed for every reflection point on every meteor 

from the decay of the Fresnel amplitudes. These are also combined into an atmospheric 
scale height and a “diffusion height. I1 The diffusion height is the meteor’s height above 
sea level as found by fitting the observed diffusions to Greenhow and Neufeld’s (1955) 

relation 

log10 D= 0.068 h- 1.67 , (5-32) 

where D is diffusion (cm2 see-‘) and h is height (km). 

The ionization curve is plotted for each meteor, giving the radar magnitude as a 
function of time and of height above sea level. A magnitude is computed from the 
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amplitude of the smoothed Fresnel curve at each station and also from the amplitude 

of each extremum except the first and last. 

The mass of the meteor is computed by fitting a parabola to the observed points 

of the ionization curve and applying Verniani and Hawkins, (1964) value of the ionizing 

probability S: 

p= 1x 10’8v4 . (5-33) 

Care is taken not to let the fitted parabola include large amounts of hypothetical 

unobserved ionization; as a result, the masses are doubtlessly systematically a little 

small. However, revisions for recombination, and for reevaluation of p, have yet to 

be included. 

The characteristic constant (T is evaluated from the basic “mass equation,’ 

(Hawkins and Southworth, 1958, equation (5)): 

ti -=--ov+ , m (5-34) 

where m is the mass. A formal estimate of the meteoroid density, assuming that the . 
meteoroid is a homogeneous sphere, is also computed from the observed deceleration, 

velocity, atmospheric density, and computed mass. 

5.5 Computing Procedure 

5.5.1 Introduction 

As described in Section 2, the radar network records meteor echoes on film in 

analog form and on magnetic tape in digital form suitable for further processing by 

a digital computer. 

A computer program (called MANAGE) to reduce meteor echoes has been written, 

debugged, and tested. This program can read the data and complete the final reduction 
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without intervention. Often, however, it is more convenient and reliable to divide the 
reduction into several partial steps that can be separately supervised in the event of 

inaccurate recorded data. 

The reduction process can be divided into four steps: 1) a visual search of the 
films for meteor echoes that are likely to give results (although the program rejects 

unsuitable echoes, this preliminary search saves considerable computer time); 2) 
reading and analyzing the calibration data; 3) reduction of Fresnel (diffraction) patterns 

and phase data; and 4) final reduction of the meteor data. 

5.5.2 Calibration data 

Each receiving station has its own calibrator, and calibrations are usually recorded 
every hour. Precisely controlled signal generators insert pulsed signals, at the sys- 
tem pulse-repetition rate, through precision attenuators into the receivers. One 

digitizer and film record is made at each of 11 attenuator steps (5 db step-‘) when a 

central control unit advances the attenuators and starts the signal generators at all 
sites. Both phase and amplitude data are recorded simultaneously, so that both are 

calibrated over their full dynamic ranges, about 60 db for amplitude and 35 db for 
phase. These calibrations are recorded on both the film and the magnetic tape. 

The reduction of calibration data is divided into two parts; the first deals with 

amplitudes, the second with phase data. Phases are reduced only if amplitudes are 

successful. From all the recorded amplitudes, a table of input voltages against 

digital output is produced, stored, and punched for each individual station. Dep.ending 
on the setting of the equipment, there are usually 10 or 11 calibrating values, so it is 

possible to use linear interpolation among them. When this table has been success- 

fully produced, another table of input voltages against phase outputs is stored and 

punched for further use. 

5.5.3 Reduction of diffraction patterns and phase data 

This segment of the program takes most of the computer time necessary to 

reduce a meteor from a magnetic tape. The partial output produced, which is the 

I’ 
- 
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input for the final part of the reduction, is the same kind of output that was generated 

inthe past by people reading film, but it is much more accurate and reliable. 

At each station, the amplitude data are treated first. The signal at each pulse is 

converted to microvolts at the antenna, using the results of calibration; saturated 

signals are rejected. The maxima and minima of the Fresnel patterns are sought by 

a special pattern-finding procedure. The first maximum is initially recognized as the 

first group of high amplitudes in the record at that station, the first minimum as a 

following group of lower amplitude pulses, and so forth. Then the first two maxima 

and the first minimum are more definitely recognized by virtue of good least-squares 

fits to empirical expressions of the proper shapes. Finally, all maxima and minima 

that can be reliably detected are measured in order from the first maximum, by 

similar least-squares fits. 

If five or. more points are measured in the amplitudes, the phase data are con- 

verted to volts and analyzed. The received phase is computed at every suitable pulse 

and corrected for the phase shifts caused by the Fresnel diffractions. They are finally 

fitted by a set of phase coefficients used to find atmospheric winds and wind shear. 

This kind of analysis is performed for each receiving station and also for an extra 

set of phase data collected at the main station, where the pulsed-radar transmitter is 

located. Here there are two separate receiver channels connected to two antennas. The 

additional set of phase data recorded at this station gives an interferometric measure 

of the angle of arrival, which is necessary to determine the height of the meteor. The 

additional amplitudes are not digitized, but they are used for other studies. 

When three or more of these stations successfully give amplitude data, punched 

and printed output is produced, which can be examined or used for further reduction. 

Range measurements (not yet analyzed) are included in this output. 

5.5.4 Final reduction 

When enough data are generated in the partial reduction described earlier, they 

are used to derive all the information about the meteor and the atmosphere. 
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The amplitude diffraction data and the range furnish the velocity of the meteor. 
A measure of the velocity is given at each specular reflection point, as well as the 

time at which the point was reached. These velocities and times give the direction 
cosines of the radiant, which are necessary to compute the orbit and the meteor height. 

When the direction cosines are computed and there is a good measure of the angle of 

arrival of the echo from the interferometric data recorded at the main station, the 

height of the meteor is computed. The phase data are used at this stage of the reduction 
to correct the direction cosines and height of the meteor. After this correction is 
applied, the phase data are used to produce a wind profile along the meteor path in 
one dimension. Printed output and punched cards are generated for further use. The 
antenna patterns and the received and transmitted power are used to compute the 
magnitude of the meteor at different times. An ionization curve is fitted through these 

magnitudes, and a graph of it is printed. Then the density and the mass of the mete- 

oroid are computed, as well as the atmospheric density and the scale height. 

A summary of all geometric and physical quantities is printed during the reduc- 

tion, so that all the information about each meteor and the adjacent atmosphere is 
easily found. Most of these results are punched on cards, which can be used in differ- 

ent studies on the atmosphere and on the meteors themselves. 
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6. ANALYSIS PROCEDURE FOR TELEVISION OBSERVATIONS AND 
SIMULTANEOUS OBSERVATIONS 

Allan F. Cook, II 

The procedure we employed in the analysis of television and simultaneous obser- 

vations is one in which the position read from a plot of the meteor on a copy of a portion 
of a chart of the Atlas des N&dlichen Gestirnten Himmels (Sch&feld and KGger, 1899) 
is combined with the radar observations to find the trajectory in the atmosphere. The 
zero points of the time scales for the radar and optical records as established by the 

start of the radar return recorded on the audio channel of the video tape are exhibited on 

the light curve. The threshold for the kinescoped film is established to fit the dura- 
tion on the film so that the epochs of beginning and end of the meteor as kinescoped 

are found. We then have PC!. itions (beginning of meteor, beginnings and ends of frames, 
end of meteor) at specified epochs. The reduction requires that two well-determined 
positions and their epochs be selected. These are often the beginning and end and will 

be referred to by those terms for convenience. 

The linear velocity of the meteor is taken from results of the processing of the 
Fresnel patterns or of the complete radar reduction. Then a series of values of the 
range from Sidell, Illinois, to the end point of the meteor is introduced. A solution 
for the trajectory (rectangular coordinates and radiant) is found for each of these end 

ranges. The bisector of the directions of the transmitter and receiver from the meteor 
is also found for the minimum range epoch of each radar return. The cosine of the 

angle between this direction and the radiant is then determined. The correct solution 
is that at which this angle is a right angle and its cosine vanishes and is found by inter- 
polation with respect to the end range. Errors of observation cause these values of the 
end range to vary from one radar station to another. An appropriate mean is adopted. 
Also, the loop ranges are computed from each station as a check, and the phase is 
computed for site 3 (the transmitter). Comparison of this phase with that meas- 
ured between the two troughs at site 3 and of the computed loop ranges with their 

observed values serves to eliminate chance coincidences between a radar observation 
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of one meteor and an optical observation of another. The computed loop range is 

usually near a minimum with respect to end range from Side11 and so cannot be used 

to determine that end range. 

We are given at two epochs (beginning and ending) the right ascension and declina- 

tion of the meteor as observed from Sidell: tb, w hb; te, ae, he. We are also given 

for each radar station n the epoch tn of the first Fresnel maximum, the loop range 

R3,, and the velocity V deduced from the Fresnel pattern. We further know the 

alt-azimuth coordinates xn, y,, zn (to the East, North, and zenith, respectively) of 

each station referred to site 3 as the origin, and the coordinates of Side11 xs, y,, zs. 

We initially find the Greenwich Sidereal Time from the American Ephemeris and 

subtract the longitude of Havana (+6hOm5s27) to determine the Local Sidereal Time 

go. Also, we find the epochs of specular reflection tn at each site by application of 

the correction 

Atn= -0.4 X(R3n-RG3n) 
V , tn = t; + Atn , 

where R G3n is the range of site n from site 3: 

2 2 2 l/2 
RG3n = (xn + Y, + Zn) - 

@- 1) 

F-2) 

We commence by transforming our optical directions to hour angle and declination 

for the meridian of Havana as seen from Sidell: 

t=8 -a . 0 

The direction cosines on the local equatorial system are 

IE = -cos b sin t , 

mE = -cos 6 cos t , 

nE =sind . 

P-3) 

P-4) 
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Here the xE axis is directed to the East, the yE axis to the intersection of the meridian 
and the equator below the horizon, and the zE axis to the north celestial pole, as in 
Figure 6-1. 

111-131 

ZENITH = z AXIS 

NORTH q y AXIS 

(i=O,E=O)= y E AXIS 

Figure 6-l. Coordinate transformation. 
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We next rotate to the alt-azimuth system of Havana: 

P =‘E ’ 

m=m E sin C+ + nE cos + , 

n =-mECOS++~SiIl+ . 

(6-5) 

At Havana, the latitude + = +40” 15” sin C$ = +O. 6457, and cos + = +0.7636. These 

directions are from Side11 at 

xs=+185.38km , y,= -28.45km , zs=-2.67km . 

We choose as an independent variable the range Re at the end point of the meteor 

from Sidell. For such a chosen value, the end point lies at 

X me=ReQe+~s , yme=Reme+Ys , zme=Rene+zs - (6-6) 

Next we require the various angles in the triangle formed by Side11 and the meteor 

(see Figure 6-2). The pole of the trail is given by 

(6-7) 

Pp sin abe = mbne - menb , 

mpsinabe=Penb-Pbne , 

n Sina 
P k=Bbme-lemb , 

where abe is the angular distance from the beginning to the end. Then we have, by 

application of the law of sines, 

Re 
sin eb = V(te -$) sin abe , (6-W 

ee = Bb + abe . (6-g) 
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Figure 6-2. Geometry for analysis of simultaneous observations; 

Here we can use either solution of equation (8), i.e., 0 5 eb 5 90” or 90” 5 EJb i 180”. 

In either case, 

sin Be 
Rb= V(te-th) 7 . sm a be 

The beginning of the meteor then lies at 

xmb = R&, + xs Y ymb =% mb+Ys Y 

The radiant has the direction cosines 

Xmb - Xme ymb -yme ‘mb - ‘me 
‘R= v(te-tb) ’ mR= V(te-t$ ’ nR= V(te-tb) * 

(6- 10) 

zmb = %I+, + zs . F-11) 
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At the epochs of specular reflection tn, the meteor was at 

X tn-tb te-tn -+x - mn =Xme t emtb mb t e-53 ’ 

tn-tb te-tn 
Y mn = yme -’ ymb t t eWtb e-93 ’ 

(6- 13) 

tn-tb te-tn z -+z - mn =zme te- 
53 

mb te-tb ’ 

The loop range from sites 3 and n is given by 

R 3n=R3+Rn+R G3n ’ 

Rn = [(Xmn - Xn12 ’ (Ym -Ynj2 -I- (Zmn- Zn)21 
m 

9 (6- 14) 

R3 = (xgn + ykn + z.&) 1’2 . 

Finally, we wish to determine how close the meteor was to minimum loop range. 

This can be done by formation of the derivative 

dR3n dR3 dRn 
dt =dt+dt ’ 

dRn (xmn - xn) (b/dt) + (yrnn - Y,) (dy/dt) + (zmn - zn) (dz/dt) 
-= ~ 
dt Rn 

The derivatives are 

dx 

dt= -wR J g=-VmR J dz x= -vzR . 
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Then we have 

-= Ml dRn 
dt Rn 

dR3n V 
---- = - s dt Rn(xm3’R + ym3mR + Zm3nR) 

(6-15) 
+R 3 - xn)‘R + b&n -YnJmR + tZmn - ‘n) J 

dR33 2v -z--(x 
dt R3 rn3lR + ym3mR + ‘m3”R) ’ (6-16) 

To put these on a dimensionless basis, we divide by (-2V): 

1 
g * & = q { Rn(XmnBR + YmnmR ’ ‘mnnR) 

(6-17) 

+R - %)I R + (ytin -Yn)mR + tZmn - ‘pR J 

j$ (Xm31R + ym3mR + Zm3nR) - (6-18) 

Here ,I is a unit vector toward the radiant, I& is the unit vector bisecting the direc- 
tions to the meteor from sites 3 and n, and N, is the unit vector toward the meteor from 

site 3. 

The observation of phase gives us sin 4,’ where 4A is the phase angle from the 

trough at site 3. The direction cosines from station 3 are 

X m3 2xm3 

133=RQ=- 

ym3 2ym3 ‘m3 2zm3 

R33 ’ m33=RQ= R33 ’ n33=RQ= R33 ’ 
(6-19) 
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and the direction cosines of the southerly perpendicular to the trough are (direction 

toward A= 203”) - sin 23”’ - cos 23O, 0, or - 0.3907, - 0.9205, 0.0000. The scalar 

product of these two unit vectors is sin 4A: 

X m3 Y 
sin 4A = -0.3907 - - 

R3 
0.9205 222 

R3 ’ 

0.7814 xm3 + 1.8410 ym3 
=- 

R33 
(6-20) 

We repeat this process at successive ranges. We commence at Re = 80 lun and 

increase in lo-km steps to 180 km and then stop. Interpolation in Re to fit the condition 

2 . En = 0 is then carried out and a suitable compromise made between the various 

stations in arriving at a final end range Re. Finally, the computation is repeated at 

the adopted end range, and the height above mean sea level is found in the usual way 

from the deduced rectangular coordinates of the meteor. 

The deduced ranges are used with the apparent light curve to find the light curve 

in absolute magnitude (standard range 100 km). The observed radar magnitude (a 

line density of 1012 cm-1 corresponds by definition to a meteor of radar magnitude +5) 

is then corrected for the antenna pattern established by Z. Sekanina (see Section 4). 

Reference 

Schijnfeld, E . , and Kriiger, A. (1899). Atlas des N&dlichen Gestirnten Himmels. 

2nd. ed. J ed. and corr. by F. Kiistner, Marcus und Weber, Bonn. 
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7. RESULTS FROM THE SYNOPTIC YEAR 

Richard B. Southworth 

In mid-December 197 1, reduction was completed at Langley Research Center of 

19,698 meteors observed by the Havana radar system during the “synoptic year, lr 
October 1968 to December 1969. A few more remain to be reduced, so the total 

sample may exceed 20,000. 

The synoptic year constitutes the largest body of meteor data in existence. Its 
homogeneity is second to none, and its selection biases can be more reliably assessed 
than those of any other sample. Its accuracy is second only to the best photographic 
meteor data, which are far smaller in quantity (less than 400 meteors) and which 

pertain to much larger meteors of potentially different properties. The synoptic year 

data are sure to be the subject of further analyses for many years. 

Copies of magnetic tapes containing condensed results from the reductions will be 

filed with the Analysis and Computation Division of Langley Research Center. Inquiries 

concerning these tapes should be directed to T. Dale Bess, Space Technology Division, 

Langley Research Center, Hampton, Virginia 23365. 

Researchers intending to use the results in the form currently available should 

be aware, however, of certain limitations. As it has not yet been possible to exam- 

ine the results fully, there may be errors of reduction. It is not practicable to 
publish all auxiliary data, including hourly calibrations and operating logs, that may 
be necessary to some interpretations. Any statistical study would need to consider 
the numerous selection effects, depending on station locations, antenna gains, TR-ATR 

switches, recognition logics, receiver and recorder dynamic limits, and reduction- 

program data requirements, in addition to the physical selection factors discussed 

elsewhere in this report. We are studying these effects under a current contract 
with NASA. Finally, a very small proportion of the “meteors” observed must in fact 
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be composite observations of two (or more) meteors, one meteor at one or more 

stations, the other at other stations. 

We give below some statistics of observing times and masses and of orbits. The 

physical observations (heights’ diffusions’ ionization curves, indications of recombina- 

tion and fragmentation’ etc.) need further study before they can be usefully tabulated. 

Approximately 60,000 observations were selected for computer reduction from the 
film records. The computer program rejected two-thirds of these as inadequate, 
inconsistent’ or otherwise unsatisfactory for reduction. The yield of successful reduc- 

tions is therefore smaller than we had anticipated’ although ample for our purposes. 

(We projected that 10,000 to 15, 000 would be needed; and we expected to reduce only 

half or less of the data actually collected.) We will need to see whether the rejection 

process introduced significant selection effects. Our initial hypothesis is that phases 

were not reliably found on the faint meteors near the noise level; this would lead to 

rejection of observations for internal inconsistency, eqecially when there were 

appreciable wind shears in the meteor region. This mode of selection would not bias 

the data, except by decreasing the fraction of apparently faint meteors reduced. This 

does not affect the final statistics, since the distribution of apparent magnitudes must 

in any event be found from the hourly rate data, not from the eight-station reductions. 

Table 7-l shows the distribution by month of observation of 14, 941 synoptic- 

year meteors with radiants north of the ecliptic. This follows the normal trend of 
meteor rates in northern midlatitudes, except for a dip caused by a lack of observations 

in November 1968. Actual observing time will be taken into account in later statistical 

discussions. Table 7-2 shows the distribution by hour of observations. This agrees 

generally with previous Havana distributions J and also with theory (Elford and Hawkins, 
1964). 

Table 7-l. Synoptic-year observations by month. 

January 7.9% May 4.1% September 15.9% 
February 3.8 June 4.7 October 13.8 

March 5.7 July 14.9 November 6.4 

April 4.9 August 12.8 December 5.0 
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Table 7-2. Synoptic-year observations by hour (CST) . 

oh- lh 2.3% 6h-7h 6.6% 12h - 13h 4.6% lgh - lgh 2.4% 
1 -2 3.2 7 -8 7.1 13 - 14 3.6 19 -20 1.9 
2 -3 4.9 8 -9 6.4 14 -15 3.9 20 -21 1.6 

3 -4 5.9 9 -10 6.5 15 -16 4.0 21 -22 1.6 

4 -5 6.9 10 -11 5.1 16 - 17 3.1 22 -23 1.7 

5 -6 6.8 11 -12 5.4 17 - 18 3.0 23 -24 1.7 

Figure 7-1 shows the distribution of meteoroid masses observed in the synoptic 
year, computed with the ionizing efficiency heretofore used on this project (Verniani 

and Hawkins J 1964). We expect to revise these masses upward by approximately a 

factor of 10. Figure 7-l also shows the distribution of masses in a 1962 sample 

(Hawkins, Southworth, and Rosenthal’ 1964) of Havana radio meteors, observed with 

the same transmitter power and antennas as the synoptic year but with much less 

sensitive receivers and recording equipment. The limited dynamic range of the sys- 

tem, however, has eliminated some of the largest masses observed in 1962 from the 

synoptic-year sample. 

Figures 7-2 to 7-5 show the distributions of velocity, inverse semimajor axis, 

eccentricity, and inclination in synoptic-year meteors. These figures also show the 
corresponding distributions in a 1961 sample (Harvard Radio Meteor Project, 1961), 

similar to the 1962 sample shown in Figure 7-1. Above 35 km set -1 , the synoptic- 

year velocity distribution is nearly proportional to the earlier sample, although 

normalization to 100% has made the absolute percentages different. However, below 

25 km set -1 , the synoptic year includes many more meteors than the earlier one does. 

Recombination caused most of this observed difference’ if not all of it. Any real 
difference in the velocity distributions of bright and faint radar meteors has yet to be 

found (but these data are the place to look). 

Figures 7-3 to 7-5 show the qualitative differences in the distribution of orbital 

elements that would be expected from the velocity-distribution differences in Figure 

7-2, but no other differences. To a first approximation, we can conclude that the 

orbital distribution of radio meteors does not depend appreciably on mass. 
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Figure 7-l. Mass distribution, using Hawkins and Verniani’s ionizing probability. 
Revision of the ionizing probability will increase the masses by roughly 
a power of 10. 
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Figure 7-2. Velocity distribution. 

Figure 7-3. Distribution of inverse semimajor axis. 
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8. RESULTS FROM SIMULTANEOUS RADAR-TELEVISION OBSERVATIONS 

Allan F. Cook, II, J. T. Williams, and C.-Y. Shao 

Twenty-nine meteors were observed and reduced simultaneously by radar and 
television from February 1969 through June 1970. Tables 8-l to 8-5 list the results of 
these observations. The following quantities are presented in the tables: 

V is the velocity of the meteor; 

hB and hE are the beginning and end heights; 

M p max denotes the image-orthicon magnitude (approximately panchromatic) 

at maximum brightness; 

+CO 
-0.4 M 

Ip dt , IP- lo 
P , 

--m 

is the integrated brightness (including linear extrapolations of magnitude 

versus time below threshold), where Ip denotes the instantaneous 
panchromatic brightness in units of zero absolute magnitude (reference 

range of ,100 km); 

ZR is the zenith distance of the radiant from the zenith at Havana; 

Ceplecha’s (1968) class with respect to beginning height is read from his 

Figure 1; 

aR and hR are the right ascension and declination of the geocentric radiant 

(cleared of zenith attraction and diurnal aberration); 

VC is the geocentric velocity of the meteor; 

MR denotes the radar magnitude; and 

Mp is the image-orthicon magnitude. 
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The observed velocity was used for the velocity outside the atmosphere without correc- 

tion for deceleration by atmospheric drag. The orbital elements are denoted by the 

usual symbols (semimajor axis, eccentricity, distance from the sun at perihelion, 

argument of perihelion, longitude of the ascending node, inclination, and longitude of 

perihelion, respectively). The designations of the showers are those in Attachment A. 

Heights are referred to mean sea level. Magnitudes below threshold are indicated by 

an inequality sign. 

Velocities are probably uncertain by a few tenths of a kilometer per second (none 

of these relatively bright radar meteors is a first-class example of a well-observed 

radar meteor); no measurable decelerations were found. Heights are uncertain by a 

kilometer or two, or occasionally three. The threshold absolute magnitude quoted is 

an average for the beginning and end of the trail if both were observed, or it refers 

to the beginning alone if only it was observed and the meteor left the field while under 

observation. Masses are based on the suggested luminous efficiency of stone by Ayers, 

MeCrosky, and Shao (1970) 

Most of the observations appear to have been affected by fragmentation. Unmis- 

takable evidence can be seen for this in the light curves shown in Figures 8-l and 8-2. 

In particular, a fast rise followed by an exponential decay suggests mutual shadowing 

of droplets fro-m the air stream leading to mutual coalescence. This process has 

already been discussed by Cook (1968) as an explanation for exponential decay in 

terminal blending. The process requires that the droplets group about a few trajec- 

tories or even one trajectory, so that late in such a light curve, we can look for radar 

returns unattenuated by fragmentation. Also, near the beginning, before severe frag- 

mentation can spread the particles much, we can again look for little attenuation. 

Fragmenting meteors caught near the beginning that show relatively small values of 

MR - Mp are nos. 7, 12, and 19. Fragmenting meteors caught in exponential decay 

that exhibit relatively small values of MR - Mp are nos. 9, 15, and 23. One meteor, 

no. 24, has alight curve everywhere too close to threshold to allow recognition of a 

light curve typical of fragmentation; this meteor also yields relatively small values of 

MR - Mu* 
The light curves of meteors nos. 1, 2, 14, 21, and 25 all look classical, 

except that nos. 1, 2, 21, and 25 show behavior similar to terminal blending near 
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Figure 8-l. Light curves of meteors nos. 1 to 13. 
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Figure 8-2. Light curves of meteors nos. 14 to 29. 
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their end points. This occurred after the radar observations in these cases. Meteor 

no. 14 left the field too early to show terminal blending. 

Twelve meteors appear not to have had all their radar returns weakened by frag- 

mentation. These are no. 1 (sites 3,4, 5), no. 2 (all sites), no. 7 (sites 4, 5), no. 9 
(sites 3, 4), no. 12 (sites 3, 4), no. 14 (all sites), no. 15 (sites 4, 5), no. 19 (site 8), 
no. 21 (all sites), no. 23 (both sites), no. 24 (both sites), and no. 25 (all sites). 

Average values were formed for MR - Mp for each meteor. Means for two obvious 

groups in velocity (meteors nos. 2,7, 12, 25 and meteors nos. 1, 9, 14, 15, 19, 21,23,24) 
yield a difference of higher-velocity group minus lower-velocity group of -0.8 f 0.3 
(standard deviation) mag. A linear fit with standard deviations was, therefore, found: 

MR-Mp=;;.U;;.;(logV-6.408) , 
. . 

with the standard deviation for a single meteor being f0.6 mag. We note that meas- 

ures consistent with this result are found over the range in height from 81.7 to 100.7 km 
above sea level. No measurements at all are found below these heights. This floor is 
presumably imposed by dissociative recombination. Meteor no. 9 was measured above 

this height with an underdense echo that was affected either by fragmentation or by a 
large initial radius, or by both. For meteor no. 16, the observation at 109.2 km (site 8) 

must have been affected by the initial radius, and all the others must have been points 

at which the electron trail was overdense. Estimates of the strength of the radar return 

that should have occurred suggest that the known uncertainty of the antenna pattern at 

higher altitudes has taken its toll here. Meteors nos. 5 and 25 were also vulnerable 

to this difficulty. These data suggest that the size of the initial radius affects measure- 

ments above a height of 101 km. 

We must combine these results with the two really numerous comparisons between 

visual and radar meteors. The Geminids and Perseids were studied by Millman and 

McKinley (1956), who found a relationship between log TD and MV (TD is the duration 
of an overdense echo in seconds, and MV is the visual absolute magnitude). McKinley 
(1961, pp. 228-230) has discussed these results on the basis of Greenhow and Neufeld’s 

87 



(1955) relation for the coefficient of ambipolar diffusion of electrons and ions. He finds 

for the Geminids 

MV = 39.76 - 2.87 log q , 

where q here is in electrons per centimeter. The definition of radar magnitude MR is 

(McKinley, 1961, pp. 230-231) 

MR=35-2.5logq , 

and thus we have 

%= 
-0.42 + 1.148 MR . 

For the Perseids, McKinley derives the expression 

IV+, = 35.1 - 2.45 log q , 

from which we have 

Mv =+0.8 + 0.98 MR . 

The lines of regression, log TD vs. MV and MV vs. log TD, cross at MV = +O. 4, 

MR = -0.4 for the Perseids. For the Geminids, this point lies at MV = +O. 8, 

MR = +l. 0. The deviation from unity of the coefficient of MR for the Geminids is not 

significant, as it amounts to less than the unit of a half-magnitude used in quoting 

magnitudes even over a range of k3 mag from MV = +O. 8. 

Lindblad (1963) found for the Perseids 

log TD = -0.50MV+ 1.08 , 

where the echo duration TD is in seconds. He also quotes 

4= TD . 
4.5 x lo-l4 
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Combination of these equations yields 

logq= 14.427 - 0.50 MV , 

MR=-1.07+ 1.25MV . 

Lindblad’s lines of regression cross at MV = +l. 1, MR = +O. 3. We have two alter- 
natives. In the first we accept Millman and McK.inlc~‘s coefficient of MV; i. e., it is 

taken as unity. Then we have 

Authority v log MR MV MR-“V 
McKinley 6.556 +1. 1 +O. 8 +o. 2 
McKinley 6.781 -0.4 +0.4 -0.8 
Lindblad 6.781 +0.3 +1. 1 -0.8 

A linear fit through these two points (the second and third points coincide) yields 

MR - MV = -0.3 - 4.4 (log V - 6.668) . 

Our two points from the groups of radar and television meteors are 

log v MR-M 

6.234 i-3.5 *o-.2 
6.496 +2.4 f 0.3 

The mean of the higher of these values of log V and that for the Geminids falls at 
log V = 6.526. We extrapolate both fits to that value to find MR - MV = +O. 3, 

MR - Mp = +2.3. The former value requires adjustments to panchromatic magnitudes 
via the color index (photographic minus visual) of -1.0 mag for faint Super-Schmidt 

meteors (Jacchia, 1957) and of -0.2 mag for the panchromatic index (Millman and 
Cook, 1959). This yields MR - Mp = +l. 5. 
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This discrepancy in MR - Mp of +O: 8 mag, going from the visual observations of 

overdense radar meteors to the television observations of underdense radar meteors, 

drives us to our second alternative, which is to adopt Lindblad’s coefficient of Mv 

for overdense meteors, although not for underdense. The overdense fit intersects the 

Gem’inid and Perseid values of MR - Mp at MV = +O. 8 and joins the underdense fit 

3.2 mag fainter at Mv = +4.0, M 
ph 

= +3.0, Mp = +2.8, where M 
ph 

is the photographic 

absolute magnitude. Accordingly, we suggest the following very tentative fits: 

log v 5 6.526, Mp 2 +2.8 , MR -Mp= +2.8 - 4.0 (log V - 6.408) , 

log V z 6.526, Mp z +2.8 , MR-Mp=+l.7 - 4.4 (1ogV - 6.668) , 

1ogV ~6.526, Mp 5 +2.8 , MR-Mp= +2.8-4.0 (logV-6.408) + 0.25 (Mp-2.8) , 

log V 2 6.526, Mp 9 +2.8 , MR-Mp= +1.7-4.4 (logV-6.668) + 0.25 (Mp-2.8) . 

A physical argument for such a behavior is that ionization should increase as we 

move with increasing brightness into a regime of slip flow of a meteor’s own vapors. 

Use of these expressions for Mp brighter than -4 is at the reader’s peril, as the 

visual magnitude scale fails for such bright objects. 

Attention is called to the large number of light curves exhibiting a fast rise and 

exponential decay. This pattern suggests mutual shadowing of droplets vis-a-vis the 

air stream leading to mutual coalescence, a process discussed by Cook (1968) as an 

explanation of exponential decay in terminal blending. In this picture, no solid 

meteoroid is left. 

Finally, a comparison is in order between the above results and the estimated 

relation between ionization and luminosity by Verniani and Hawkins (1964). It can be 

shown that their relation can be expressed in the form 

MR -“P=+o-2 ’ 
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independent of velocity. The following short table compares the two results for faint 
meteors (MP 1 +2.8) : 

log v 

MR-“p Correction to 
This paper Verniani and Hawkins Verniani and Hawkins 

6.234 +3.5 +o. 2 +3.3 

6.496 +2.4 +o. 2 +2.2 
6.556 +2:1 +o. 2 t-l.9 
6.781 +1.0 +o. 2 +O. 8 

Multiplication of the. last column by -0.4 yields the correction to the logarithms of 

the masses obtained in the routine reduction of the radar observations. (Further 

corrections are necessary when either recombination or fragmentation occurs. ) 

Meteors Not Yet Reduced 

There remain more than 50 meteors not yet reduced. These were observed from 

July to December 1970, and many are of higher quality than those already reduced. 

We plan to begin with 22 more meteors from the nights of November 6-7 and 
December l-2. We hope to complete this work by the summer of 1972. A few of these, 

meteors may yield measurable decelerations. If this happens, then a full analysis in 

terms of the parameters in the deceleration and luminosity equations would be possible 
and would yield fundamental information about the structure of the meteoroids at a size 

much smaller than has been reached heretofore. The remaining 30-odd meteors should 
also be reduced if funds can be found. 
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Table 8-l. Circumstances of the observed meteors. 

Meteor 
number 1969 UT Radar Optical 

Radar Optical 

V hB hE hB hE 
(km SW-~) (km) (km) (km) ikm) 

1 Feb. 

2 Apr. 

3 July 

4 July 

5 Aug. 

6 Sept. 

7 Oct. 

8 Oct. 

9 Oct. 

10 Oct. 

I1 NOV. 

12 Nov. 

13 Nov. 

14 Dec. 

15 Dec. 

16 Jan. 

17 Feb. 

18 Feb. 

19 Feb. 

20 Feb. 

21 Feb. 

22 Feb. 

23 Mar. 

24 Apr. 

25 Apr. 

26 Apr. 

27 Apr. 

28 May 

14d10h57m 23”50-24”48 23”76-24!13 23:50-24”48 31.5 91.0-83.2 96.5- 75.7 

20 8 19 14.12- 15.00 14.12- 14.83 14.44-14.99 14.7 102.1-84.6 98.8- 93.1 

19 744 6.88- 7.86 7.13- 7.50 6.88- 7.86 17.1 86.4-82.6 89.0- 79.5 

19 830 6.87- 8.16 7.81- 8.16 6.87- 8.16 19.8 92.5-90.6 97.6-(90.6) 

18 7 42 53.16-54.66 53.72-53.95 53.16-54.66 26.0 105.3-91. < 110.8-(86.0) 

It3 852 55.65-56.48 55.65-55.91 55.72-56.48 20.4 97.1-93.8 96.2- 86.7 

8 6 18 37.20-38.86 37.42-37.82 37.20-38.86 17.9 94.1-88.7 97. I- 74.6 

15 852 2.70- 3.25 2.72- 3.09 2.70- 3.26 21.8 97.6-92.1 97.9-(88.6) 

15 955 30.54-31.08 30.66-30.98 30.54-31.08 28.8 105.3-98.8 iO6.4-(97.0) 

22 10 44 6.03- 7.25 6.21- 6.59 6.03- 7.25 32.9 98.5-90.6 102.2- 75.0 

8 843 2.15- 3.43 2.77- 2.85 2.15- 3.43 19.3 84.6-83.4 94.3- 74.4 

I6 733 7.42- 8.25 7.42- 7.87 7.60- 8.25 16.2 93.4-87.7 SJ. l- 82.8 

16 9 45 23.58-24. IO 23.83-23.99 23.58-24. IO 30.2 96.7-93.2 102.3- 90.7 

13 11 11 38.29-38.50 38.29-38.50 38.29-38.50 36.0 87.7-81.7 87.7-(81.7) 

16 9 45 46.89-48.02 46.94-47.24 46.89-48.02 30.1 100.9-92.3 101.4- 74.4 

1970 UT 

JO IO 26 3.38- 4.43 

12 7 50 11.22-12.04 

12 924 24.48-25.28 

12 10 11 44.62-45.39 

12 10 16 7.08- 7.82 

12 10 36 6. 12- 6.82 

12 JO 52 1.60- 2.53 

16 10 40 58.47-59. 14 

3 959 43.50-44.59 

7 748 48.43-49.55 

7 955 20.38-21. 11 

10 8 9 11.32-12.07 

5 9 19 16.73-17.50 

7 536 54.63-56.03’ 

(llO.O)-(91.7) 

96.2-(87.7) 

93.4- 83.4 

llO.Sl- 94.4 

29 May 

*Extrapolated out of field. 

3.38- 3.75 3.38- 4.43 44.5 110.0-103.0 

11.22-11.92 11.35-12.04 16.9 97.8-89.2 

24.48-24.74 24.66-25.28 25.5 96.3-92.0 

45.04-45.39 44.62-45.34 30.4 102.3-95.4 

7.15- 7.26 7.08- 7.82 19.3 91.1-89.6 

6. 12- 6.45 6.14- 6.82 32.0 95.8-88.2 

1.75- 1.93 1.60- 2.53 23.5 96.2-93.9 

58.54-59.10 58.47-59. 14 35.7 93.6-63.7 

43.53-43.72 43.50-44.59 27.1 94. J-89.9 

48.43-49.22 48.61-49.55 20.2 95.1-84.5 

20.53-20.75 20.38-21.11 35.5 102.6-96.8 

11.36-12.07 11.32-11.84 20.2 100.3-91.1 

16.73-17.28 16.80-17.50 17.5 94.2-87.0 

54.63-55.07 54.91-56.03+ 14.7 94.6-90.6 

92.0- 82.2 

95.3- 79.6 

99.8- 86.7 

94.8- 63.2 

94.7- 70.6 

92.7- RO. 1 

106.6- 87.2 

100.8-(94. 1) 

93.3- 84.1 

92. I- 81.7+ 

‘Light curve extrapolated to threshold. Ending could have been as early as 55?69. 
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Table 8-2. Radiant and photometric data for the observed meteors. 

Meteor I 
Ip dt Ceplecha’s 

number M 
(Zag set) 

cos z p max R class Threshold M 
P aR %t VG 

(km set-1) 

1 +5.5 

2 +5.3 

3 +5.0 

4 +3.9 

5 << 0 

G +4.9 

7 +‘l.3 

8 +5.6 

9 +4.9 

IO - 0 

II +e. 1 

12 +7.4 

13 +4.3 

14 +5.7 

15 +6.2 

16 - 0 

17 +6.3 

18 +4.6 

19 +5.2 

20 +6.3 

21 +6.5 

22 +6.3 

23 +G. 1 

24 +6.3 

25 +4.5 

26 +5.2 

27 +4.1 

28 +5.0 

29 +5.7 

3.4 x 10 -3 

2.7 X 10-3: 

7.7 x 10 -3 

- 

6.2 X 10-3: 

1.27 X 10 -2 

- 

2 x 10-3:: 

5.6X 10 -3 : 

5.4 x 10-3: 

2.1 x 10-3: 

2.7 X 10-3: 

2.1x lo-3: 

8.2 x 10-3: 

7.0x 10 
-3 

:: 

6 X 10-3: 

6 X 10-3: 

0.618 

0.745 

0.612 

0.273 

0.705 

0.613 

0.751 

0.628 

0.656 

0.629 

0.807 

0.790 

0.738 

0.805 

0.778 

0.438 

0.736 

0.635 

0.652 

0.751 

0.731 

0.764 

0.497 

0.820 

0.673 

0.744 

0.654 

0.764 

0.640 

B 

above Cl 

B 

Cl 
above C 1 

cl 
above Cl 

Cl 
above Cl 

c1 

Cl 

c1 

c1 
below A 

c1 
above C 1 

Cl 
B 

above Cl 

B-Cl 

B 

cl 
A-B 

B 

Cl 
above C 1 

above Cl 

Cl 
cl 

i7.4 166” 

+6.6 166 

+7.2 273 

+5.8 299 

+5.8 281 

+7.2 302 

t7.1 332 

+6.8 23 

+6.2 30 

+7.4 46 

+7.0 47 

+7.a 27 

+6.6 67 

+7.1 120 

+6.8 94 

+6.5 130 

+6.9 123 

+6.6 140 

+6.4 159 

+7.0 137 

+7.6 164 

+7.4 166 

+7.2 211 

+6.9 207 

+6.6 178 

t6.2 207 

+6.0 187 

+5.8 214 

+6.6 111 

+11” 29.4 

+83 10.0 

0 13.3 

-35 16.6 

+54 23.7 

+65 17.2 

+18 14.4 

+7 19.1 

+16 26.9 

+17 31.3 

+I9 16.0 

+25 12.2 

+18 28.4 

+23 34.5 

-t-27 28.2 

- 9 43.3 

+ 12 13.1 

+13 23.2 

+8 28.6 

+56 16.0 

t20 30.2 

+25 20.9 

-14 34.1 

+30 25.0 

+5 17.2 

+23 34.0 

+2 17.1 

+33 13.8 

+64 9.9 

Uncertain integrated intensities are indicated by a colon (10 to 25% contribution by extrapolated parts 
of light curve) and very uncertain values by two colons (25 to 50% contribution). 
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Table 8-3. Orbits of the observed meteors. 

Meteor 
number a e q cd 0 i ‘IT Shower 

(a.u.) (a.u.) 

1 1.55 0.82 0.28 306” 325” 7” 272 a 

2 2.31 0..57 1.00 190 30 10 220 

3 2.09 0.58 0.88 231 116 9 347 

4 1.56 0.56 0.68 85 296 8 21 

5 5.1 0.81 0.99 198 145 36 342 

6 1.39 0.30 0.97 212 175 30 27 

7 3.53 0.74 0.90 219 195 10 54 

8 1.60 0.64 0.58 95 22 2 116 
9 1.93 0.81 0.37 294 202 4 135 

10 1.75 0.87 0.23 131 29 1 160 
11 1.29 0.53 0.60 278 226 1 144 
12 1.80 0.54 0.84 236 234 4 109 
13 1.88 0.82 0.33 118 54 5 172 

14 0.97 0.94 0.06 341 261 7 242 

15 2.51 0.84 0.40 288 264 4 192 

16 56 0.99 0.31 112 110 55 221 
17 1.98 0.57 0.84 53 143 3 196 
18 3.79 0.84 0.62 79 143 2 222 

19 1.71 0.81 0.32 120 143 0 263 
20 2.54 0.66 0.87 225 323 16 188 
21 2.11 0.84 0.34 296 323 15 259 
22 1.20 0.60 0.47 293 323 14 256 
23 0.88 0.95 0.05 164 175 4 339 
24 3.57 0.80 0.73 247 13 27 260 

25 3.68 0.78 0.82 234 17 2 251 
26 -3.01 1.21 0.64 250 17 30 267 
27 2.49 0.69 0.78 243 20 2 263 
28 2;04 0.55 0.93 219 44 16 263 
29 2.10 0.53 0.99 159 46 10 205 

Northern Virginid 

K Cygnid 

Northern Piscid 

Southern Taurid 

Southern Taurid 

Northern X Orionid 

Southern 6 Leonid? 

o Leonid 
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Table 8-4. Radar and optical measurements of the observed meteors. 

Meteor 
number Site Epoch Height MR Mp MR -Mp 

0Q-N 
Remarks 

1 1 

2 

3 

5 

4 

2 4 

3 

5 

7 

3 3 

5 

4 

6 

4 3 

6 

5 5 
7 

6 

6 8 

7 4 

5 

6 

8 1 

2 

3 

4 

9 1 

8 

2 

23s81 88.8 

23.91 86.9 

23.99 85.4 

24.11 83.1 

24.13 82.7 

14.37 99.5 

14.44 98.8 

14.69 96.1 

14.83 94.6 

7.17 86.0 

7.27 84.9 

7.39 83.7 

7.50 82.6 

8.04 91.3 

8.16 90.6 

53.78 99.4 

53.80 99.1 

53.95 96.4 

55.91 93.8 

+ 9.7 +5.6 

+10.3 +5.8 

+ 9.3 +6.2 

-I- 9.0 +6.8 

+lO. 0 +6.8 

+ 8.8* >+6.8 

+ 9.4* 

+ 8.0 

+ 9.9 

+10.4 

+lO. 8* 

+12.2 

t11.0 

+ 8.4 

t’ 9.1 

+ 9.9* 

+lO. 9* 

+ 8.6 

+11.2 

+6.8 

+5.8 

+5.7 

+4.9 

+5.1 

+5.2 

t5.3 

+4.1 

+4.1 

+4.0 

c3.9 

-0.5:: 

+4.9 

+4.1 

+4.5 

+3.1 
i +2.2 \, 

+3.2, \ 

<+2.0 

+2.6 

+2.2 

+4.2 

+5.5 

+5.7 

t7.0 

+5.7 

+4.3 

+5.0 

+5.9 

i-7.0 

c9.1:: 

+6.3 

37.57 92.0 + 7.8 +5.0 +2.8 

37.58 91.8 + 8.2 +4.7 +3.5 

37.82 88.7 + 8.5 i-4.4 +4.1 

2.78 96.7 +lO. 5 +6.0 c4.5 

2.86 95.6 +lO. 2 t-5.8 +4.4 

2.92 94.7 + 9.8 t-5.7 +4.1 

3.09 92.1 + 9.5 +5.7 t3.8 

30.71 103.6 + 8.3 +5.0 +3.3 

30.81 101.7 + 9.1 +4.9 +4.2 

30.82 101.5 + 8.7 +4.9 +3.8 

Fragmentation 

Fragmentation 

Perhaps only a few 
fragments 

All stations appear 

to be affected by frag- 

mentation (see light 

curve) 

Strong 

fragmentation 

Fragmentation and 
broad flares 

Fragmentation 

Fragmentation 

throughout 

Fragmentation (rapid 

brightening, slow decline) 
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Table 8-4 (Cont.) 

Meteor 
number Site Epoch Height MR M 

O-9 P MR-“p Remarks 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

3 30790 

4 30.98 

7 6.59 

1 2.85 
3 7.66 
4 7.69 

5 7.87 

8 23.99 

1 38.34 

2 38.42 

3 38.50 

2 47.04 

8 47.12 

3 47.13 

4 47.19 

5 47.24 

8 3.43 

1 3.56 

3 3.64 

4 3.75 

2 11.44 

3 11.54 

6 11.92 

3 24.59 

5 24.69 

4 24.74 

8 45.12 

3 45.29 

5 45.35 

4 45.39 

100.0 + 8.0 
98.5 + 7.0 

90.6 + 9.8 
83.4 t10.6 
90.3 +11.4 

89.9 +10.4 
87.7 +11.6 
93.2 + 9.6 

86.3 + 7.6 

84.0 + 8.1 
81.7 + 8.5 

96.9 +ll.O 
95.1 +12.0 

94.9 +10.6 
93.5 + 8.6 

92.3 + 7.9* 
109.2 + 9.5:* 

106.6 + 7.9:* 
105.1 + 7.3* 

103.0 + 6.4:* 

95.1 +10.2 
93.9 +lO. 8 

89.2 +10.3 

94.4 +lO. 2 

92.8 +ll.O 
92.0 +10.4 

100.7 + 9.0 
97.4 +11.6 

96.2 +ll. 1 

t4.9 

+5.0 

+2.3: 

+6.8 
+7.8 
+7.7 

+7.5 
+5.9 

c6.6 
+6.0 

+5.8 

+6.5 
+6.4 

+6.4 

+6.3 

+6.3 
+3.5 
+l. 1 

-0.7:: 

-0.6:: 
+6.5 
+6.3 

+6.8 

(+6.5) 

(+6.4) 
+6.4 

+6.2 
+6.6 

+6.6 

95.4 +lO. 9 (+6.7) 

+3.1 
+2.0 

+7.5: 

+3.8 
+3.6 
+2.7 

e4.1 
i-3.7 

+l.O 

+2.1 
+2.7 

+4.5 

+5.6 
-1-4.2 
i-2.3 

+1.6 
+6.0 

+6.8 
-1-8. 0:: 

+7.0:: 
+3.7 

I +4.5 

+3.5 ) 
(+3.7) 

(+4.6) 
+4.0 
+2.8 

+5.0 1 
+4.5 
(+4.2) 

Pronounced flare 

Fragmentation 
Fragmentation 

Light curve indicates 
fragmentation; last two 

values of MR - Mp imply 
relative proximity 

among fragments 
Undoubtedly an overdense 

echo undergoing rapid 

diffusion 

Fragmentation 

Large flare 

Fragmentation (rapid 
rise, slow fall) 
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Table 8-4 (Cont.) 

Meteor 
number Site Epoch Height MR Mp MR - M Remarks 

W-0 P 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

8 7”20 

6 7.26 

7 7.26 

2 6.15 

8 6.18 

3 6.23 

4 6.31 

5 6.31 

6 6.45 

2 1.81 

8 1.93 

1 59.03 

5 59.10 

90.1 +10.7 

89.3 + 8.9 

89.3 +10.6 

95.1 +lO. 5 

94.4 +lO. 5 

93.2 + 9.4 

91.4 + 8.3 

91.4 + 8.9 

88.2 + 8.6 

96.0 + 9.8 

93.9 +11.4 

84.9 + 9.0 

83.7 + 9.8 

+6.4 +4.3 

+6.3 +2.6 

+6.3 +4.3 

+7.2 +3.3 

+7.0 +3.5 

+6.8 +2.6 

+6.6 +1.7 

+6.6 +2.3 

+6.5 +2.1 

+6.2 +3.6 

+6.3 +5.1 

+7.1 +1.9 

+7.2 +2.6 

1 43.62 92.1 +10.2 +6.5 +3.7 

2 43.72 89.9 + 9.4 +6.5 +2.9 

1 48.61 

3 48.78 

5 48.87 

4 48.98 

6 49.22 

8 20.75 

3 11.79 

6 12.07 

1 16.78 

8 17.28 

4 54.63 

3 54’. 8 1 

5 55.07 

92.7 +11.6* 

90.4 + 8.8* 

89.2 + 9.0” 

87.7 + 8.3* 

84.5 + 9. S:* 

96.8 +12.2:* 

94.7 + 8.8 

+6.4 

+5.8 

+5.2 

+4.7 

+5.6 

+5.3 

+4.5 

91. 1 +lO. 1 >+4.6 

93.6 +12.6* (+5.7) 

87. 0 + 8.9 +5.5 

94.6 +12.0 >>+6.4 

93.0 i-12.0 >+6.4 

90.6 + 9.4 +5.8 

+5.2 

+3.0 

+3.8: 

+3.6 

+4.0: 

+6.9: 

+4.3 

< +5.5 

(+6.9) 

+3.4 

<< +5.6 

< +5.6 

i-3.6 

Fragmentation (near 

peak), rapid rise, 
slow fall 

Maximum of, strongly 

fragmenting meteor 

Very near turning down 
end after slow fall; 
drops reconsolidated? 

Echoes from stations 
8,4, 5,6 give wild 
velocities, so either 
they are overdense 
(unlikely) or wind field 
spoils them 

Fragmentation 

Fragmentation 

Fragmentation? 

Fragmentation 

Fragmentation 

Parentheses denote magnitudes extrapolated from observed light curves. Uncertain 
magnitudes are indicated by a colon and very uncertain values by two colons. 
* 

Steep gradient in antenna pattern or noise in pattern. 
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Table 8-5. Masses of the observed meteors. 

Meteor 
number Initial mass 

w 

Meteor 
number Initial mass 

(g) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1.0 X 1o-3 

4.9 x lo-3: 

8.3 X 1O-3 

- 

5.3 x lo-3: 

1.43 x 1o-2 

- 

1.9 x 10-3: 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

1.8 X 10-3: 

6 X 10-4: 

1.7 x lo-3: 

4x 10-4: 

7.2 x lo-3: 

1.4 x lo-3:: 

7 x 10-3: 

1.1 x 10-2: 

Uncertain mass (10 to 25% of total in extrapolations of light curve) 
is indicated by a colon; very uncertain mass (25 to 50% of total in 
extrapolations of light curve) is indicated by two colons. 
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9. HOURLY RATE DATA 

Richard B. Southworth 

9.1 Purpose 

The mass-dependent influx of meteors to the earth is the single most important 

set of data for calculations of meteoroid hazard to spacecraft and provides essential 
information for any earth-based study of meteor distributions. Influx studies with a 

sensitive radar were indeed part of the primary mission of the Havana radar system. 
Nonetheless, the recording equipment for six- or eight-station observations of indi- 

vidual meteors was not suited to the unbiased counts of meteor echoes that are needed 
for influx determinations. The six- or eight-station recording (film and tape) was not 

continuous but was triggerer! only when the logics detected a fresh echo of adequate 

amplitude and when the recording apparatus was unoccupied. Without triggering, 
the entire project would have been economically unfeasible. But since it was not 

possible to state accurately how many meteors failed to trigger the recording, special 

recording apparatus was installed for counting all meteor echoes at one station 
(normally station 3). The first counting apparatus recorded analog signals on film; 

the second and third recorded digital counts on paper tape and magnetic tape, 

respectively. 

9.2 Film Recording of Echo Rates 

Intensity-modulated range-time film recording has been common in pulsed meteor 

radar systems. The intensity of the spot on a cathode-ray oscilloscope is made pro- 
portional to the strength of the radar signal received, and the horizontal position of the 
spot is made proportional to the time since the most recent pulse was transmitted, 

i.e., to the range from the station. The oscilloscope face is then imaged onto a film 

moving vertically. The film represents echo strength by image intensity, plotted with 
respect to range and time. 
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The Havana echo counting systems were connected to the output of the receiver 

from one of the troughs at station 3, before the logics. The first echo-counting system 

was an intensity-modulated range-time recording on 16-mm and later 35-mm film. 

The range sweep covered five pulse intervals beginning on the doubled transmitted 

pulse; the doubled echo of the doubled pulse served to resolve ambiguities of 200 km 

in range and to help differentiate genuine echoes from interference. Recording was 

normally performed for 5 min of each half hour that the radar system was in use. 

This film echo-counting system was installed in 1962 and was used for most of 

the subsequent operation of the Havana radar system. Echo rates have been counted 

from part of the films, but the resulting data have been little used because of the 

difficulty of determining the limiting echo power of the counts. The six- or eight- 

station records were used to calibrate the intensity-modulated films, although a 

sufficiently exact calibration could not be obtained. The intensity-modulated film 

recording was continued, however, in order to have a record of the information that 

the logics eliminated from the six- or eight-station recordings. 

9.3 Echo Analyzer 

The “echo analyzer I1 devised by Dr. M. R. Schaffner was a logical descendant 

of the Y1logicst’ that he devised to eliminate interference and to trigger recording. 

Each received echo was represented by a digital word circulating in a delay line at 

the pulse-repetition frequency. As in the logics, a meteor echo was recognized (and 

counted) if it reached a threshold amplitude for at least eight (normally) consecutive 

repetitions, or 8 + x with x intermediate repetitions below threshold. After the dis- 

appearance of an echo, the word representing it was retained for a while (usually 

for the echo’s lifetime) to prevent multiple counts of echoes that oscillated in amplitude. 

Echoes were also tracked in range. 

Over half an hour, the threshold amplitude was cycled through four levels, dis- 

,tributed over the system dynamic range from near cosmic noise to near receiver 

saturation. The counts at each level were punched on paper tape. Satisfactorily 

reliable and precise measurements of the thresholds were also made with special 

calibrating equipment. This equipment counted echoes from July 1965 for much of the 
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operating time of the Havana system. Extensive tabulations of hourly rates have been 

published (Lacy, 1966; Southworth, 1967), and much later data have been partially 

analyzed. 

The meteor influx to the earth was discussed, based on the echo-analyzer data by 

Nilsson and Southworth (1968). Further discussion has been postponed until we have 

better evaluated some of the physical observational biases (such as recombination) 

that we recognize as being important to a thorough interpretation of the data. 

9.4 Echo Processor 

The “echo processor” was the third piece of digital equipment designed by Schaffner 

for real-time processing of meteor radar echoes. Its operations were programed by 

punched cards and thus could be adapted to different purposes (Schaffner, 1966). The 

initial uses were joint distributions of meteor echoes in range, duration, and amplitude. 
Anticipated future uses included observations of head echoes, meteors simultaneously 

observed by the image orthicon, long-enduring echoes, the moon, and the sun. 

The echo processor was not completed before the Havana system was dismantled, 
but a few observations in a preliminary operating state were obtained. The equipment 
is on loan at the Massachusetts Institute of Technology, where Schaffner is continuing 

its development for applications in radar meteorology. 

9.5 References 
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10. HEAD-ECHO DATA 

Richard B. Southworth 

Bright radar meteors are observed to scatter radar signals from a target moving 

with the meteoroid. This is the “head echo, It distinguished from the echo of the 

ionized column left behind the meteoroid. Unlike the sharp aspect sensitivity of the 

ion column, the head echo represents nearly isotropic scattering, as if by a spherical 
or only mildly elongated body. The cross section of this body would be many times 
larger than the meteoroid’s? however, and its nature is not well understood. Ionization 

of a large volume of air by ultraviolet radiation from the meteoroid has been widely 
discussed (McKinley and Millman, 1949; Cook and Hawkins, 1960; Rajchl, 1969). 

Head echoes appear frequently on our intensity-modulated range-time films 

(Section 9.2) but are not recorded on our six- or eight-station recording, which con- 
tains only specular echoes from the ion columns behind the meteoroids. Furthermore, 

our stations are too closely spaced for reliable trajectory determinations from head 

echoes. However, we have made occasional special observations of head echoes during 

showers, at times when the shower radiant was not normal to the antenna beam, thus 
preventing us from making ordinary observations. 

Four cathode-ray oscilloscopes were mounted to be photographed on 35- or 50-mm 

film. Two gave intensity-modulated range-time presentations from different stations; 

the other two gave amplitude-time presentations from the same stations, for more 
accurate amplitude measurements than were possible from the intensity modulation. 

This recording system was used for the 1966 Leonids and for several later showers. 

The most valuable records for meteor physics concern Perseid and Geminid showers, 
which were simultaneously observed with the image-orthicon at Sidell. However, since 

we have not yet had an opportunity to reduce the image-orthicon measures, we have 
also deferred analysis of the radar data. 
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11. SUPER-SCHMIDT METEORS 

Richard E. McCrosky and C. -Y. Shao 

In order to enlarge our sample of photographic meteoric data, we have carried 

out a precise reduction program of photographic Super-Schmidt meteors following the 
automatic star-identification method developed by Posen and McCrosky (1967). 

A total of 314 meteors have been completely reduced; their trajectory and orbital 

results have been published in the Meteor Research Program Semiannual Technical 

Report Nos. 3, 4, 6, and 7. Of these meteors, 253 were photographed during 

1956-1959 by the Harvard Meteor Project in New Mexico, and the remaining 61 were 
obtained during 1965-1967 by the Smithsonian meteor group in Wallops Island, 
Virginia. 

In addition, about 40 meteors were at various stages toward completion when 
reduction program was discontinued. 

Reference 
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12. ATOMIC AND MOLECULAR STUDIES 

M. Raymond Flannery and Hiram Levy II 

In order to increase our understanding of the physical processes involved in the 
collision of meteoroids with the upper atmosphere, the Radio Meteor Project initiated 

studies of the collisions of heavy particles. Dr. M. R. Flannery joined the Observatory 
staff to carry out these studies with Dr. H. Levy II, under the guidance of Dr. A. 

Dalgarno. 

The optical and ionization phenomena produced by a meteor are caused by the 

impact of atoms evaporated from the meteor with the atmospheric atomic and molec- 

ular constituents. By use of the collision theory, one can determine the probability 

that a meteor atom excited by collisions will either emit a light quantum or produce 

an electron before reaching thermal equilibrium with the surrounding atmosphere. 

In a description of the collision between a meteor atom and an atmospheric mole- 

cule, the probability of emission of a light quantum can be expressed roughly as 

‘edQd’ where Qex is the appropriate inelastic cross section to excited states that 

lead ultimately to light emission, and Qd is the momentum-loss cross section. The 

probability that an electron will be produced is roughly Qi/Qd, where Qi is the ioniza- 
tion cross section. 

Flannery and Levy were developing theoretical methods for calculating cross 

sections valid for typical energies of the meteor (i. e., to about 100 ev) energy range. 

This energy range was not accessible to previous methods, which treated either higher 

or lower energies. 

Dr. Flannery developed the following two approaches for treating the excitation 
and ionization arising from the impact of two neutral atoms: 
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A. The multistate impact-parameter treatment, which was basically an attempt to 

refine and include certain effects neglected in a high-energy treatment. 

B. A semiquantal treatment, which had the advantage that reliable cross sections 

were obtained for complex systems with the same ease as those for simpler atomic 

systems. 

These methods, with applications, are described in a number of publications (see 
Flannery, 1969a-e, 1970a-k; Flannery and Levy, 1969a, b, 1970). 

Levy’s work was directed toward the development of theoretical models that would 

determine those collision processes responsible for ionization and excitation in meteor 

trails. 

The general problem, slow collisions of heavy atoms and molecules, has yet to 

be treated theoretically with high accuracy. The approach was first to study simple 

systems for which experimental results were available and then to develop semi- 

empirical models for the more complicated meteor system of many-electron metal 

atoms and atmospheric gases. 

The first step was the development of a general analytic representation of the 

interaction potential in an atom -atom representation (Flannery and Levy, 1969a, b). 

This potential was then applied to the hydrogen-atom-hydrogen-atom collision system 

(Levy, 1969a; Flannery and Levy, 1970) by use of the impact-parameter approximation 

for the heavy-body motion. 

This general form of the interaction potential was used to develop a first Born 

approximation for the collision between any two atoms that required only elastic and 

inelastic form factors (Levy, 1969b). First Born cross sections were then calculated 

for excitation and ionization of hydrogen and excitation of helium upon collision with 

He, Ne, Ar, Kr, N2, and O2 (Levy, 1969b, c, 1970a). Semiempirical scaling factors 

found for the many-electron target species gave good agreement between experiment 

and theory. 
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The same analytical potential was used to develop an impact-parameter approxi- 
mation that could be applied to any atomic or molecular system for which elastic and 
inelastic form factors and generalized oscillator strengths were available. This tech- 

nique was applied to a variety of excitation. collisions between hydrogen and rare gases 

(Levy, 1969d, 1970b). 

The final set of calculations was for quenching of metastable atomic hydrogen by 
rare gases (Levy, 197 1). 

At this point, the program was terminated as a result of a budget cut. 
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13. DYNAMICS OF METEOR STREAMS AND NEW ASTEROID-METEOR 
AND COMET-METEOR ASSOCIATIONS 

Zdenek Sekanina and Allan F. Cook, II 

Between November 1961 and November 1965, a total of 19,303 radio meteor orbits 

were determined from systematic observations by the Havana network. On the average, 

the network operated about 6 hr each day for 5-day periods, alternating with g-day 

rest intervals. The orbital data on the 19,303 meteors, called hereafter the sample 
meteors, served as the observational basis for a dynamical study of meteor streams. 

13.1 Statistical Model of Meteor Streams 

In contrast to all earlier methods of stream search and meteor-to-stream identi- 

fication, the present method is statistical in nature and is based on the following: 

A. The Southworth-Hawkins D-criterion, developed in 1963, tests the similarity 

of two Keplerian orbits in ternis of the differences in their orbital elements and 

measures essentially the mean-perturbation-velocity increment that would make the 
two orbits identical. Here D is the radius vector in a five-dimensional phase space. 

B. The appearance of any shower is contaminated to some extent by a sporadic 
background. Both the shower and the background have their own specific frequency 
distributions with respect to D. 

The fundamental aim of the investigation was the analysis of the properties of 
the observed (i. e., contaminated) D-distribution of a number of meteor streams, 
both known and previously unknown. We followed four steps: 

Definition and calculation of the mean elements of the stream orbit and of Step 1. 

the D-distribution of the sample meteors with respect to this “mean orbit. It 
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We must have a set of orbital elements to which the D-values of the sample meteors 

can be referred. For this purpose, the mean orbit of the stream has been defined by 

the numerical procedure shown in Figure 13-l. 

Discussion of the contamination of the observed D-distribution curve by a Step 2. 

sporadic meteor background and development of a model of the intrinsic D-distribution 

of the stream. 

To estimate the contamination effect, we have calculated the D-distribution of a 

number of artificial samples of meteors with orbits randomly dispersed about the paths 

of some known streams. We have found that the expected frequency-density D-distribu- 

tion of the sporadic background varies as D 2.8 , and its cumulative D-distribution, as 
D3. 8 . A few examples are given in Figure 13-2. 

The stream’s intrinsic D-distribution has been assumed to be Maxwellian in 

character. The proposed statistical model of meteor streams is represented in detail 

in Figure 13-3. The shape of the stream’s intrinsic D-distribution is specified by its 

dispersion coefficient o, whereas the stream’s strength relative to the surrounding 

sporadic background is expressed by the population coefficient A. The two parameters 

define what we call the inner (DI) and the outer (DII) boundaries of the stream (see 

Figure 13-3). The proposed model gives the total number of the stream’s members in 

the investigated sample but does not specify which meteors belong to it. Instead, the 

model attributes the degree of probability of stream membership to each of the sample 

meteors. 

In Figure 13-4, the contaminated cumulative D-distribution curves, as derived 

theoretically from the model, are plotted on a logarithmic scale as a function of 

D/oJ2 with A as a parameter. 

Elimination of the sporadic background contamination and determination Step 3. 

of the character of the intrinsic D-distribution of a stream. 

Comparing graphically the theoretical curves in Figure 13-3 with the empirical 

contaminated D-distributions, we derived the dispersion and population coefficients 

for all the detected showers. The fits for some of the streams are given in 

Figures 13-5 and 13-6. 
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FLOW CHART FOR THE CALCULATION 
OF THE MEAN ORBIT OF A STREAM 

INPUT: 
INITIAL ORBITAL ELEMENTS 

OF STREAM (IOE) 

CALCULATION OF D-TEST 
OF OE RELATIVE TO IOE 

WEIGHTING OF OE BY D 
I I 

NO 
END OF SAMPLE I 

CALCULATION OF WEIGHTED 
ORBIT OF STREAM (WOE) 

v 
YES WOE IDENTICAL WITH IOE 

1 

-/ 
IOE REPLACED BY WOE t 

Figure 13-l. Flow chart for the calculation of the mean orbit of a stream. 
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D 
005-43 

Figure 13-2. The D-distribution of an artificial sample of meteors moving in paths 
randomly dispersed about the mean orbit of the Orionids (top), the 
Andromedids (middle), and the Lyrids (bottom). The circled crosses 
denote a variation step of 1: 5 in angular elements and 0.026 a. u. in peri- 
helion distance; the solid circles, 2: 0 and 0.035 a. u. ; the open circles, 
2: 5 and 0.044 a.u. ; and the circled points, 3: 0 and 0.052 a.u. The lines 
indicate a slope of 3.8. 
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STATISTICAL MODEL OF METEOR STREAMS 
2 

STREAM : N (D)dD- D’exp -D dD; [ 1 2c2 
SPORADIC : N (0) dD-D2’8 dD 

MEMBERSHIP PROBABILITY AT ANY D, 

P(D) = KM 
KL+KM 

A= 
AREA (OAHO) 
AREA (OACOI 

CRITERION, D - 

Figure 13-3. Density distribution of the statistical model of meteor streams. The 
intrinsic distribution (solid curve) is proportional to D2 e [-D2/(202)1 dD, 
the sporadic background (dashed curve) increases as D 14EdD and the 
resultant contaminated distribution (dotted curve) is the sum of) the two. 
The membership probability of a meteor with D = m is p(D) = KM/(= + KM). 
The inner limit of the stream DI is defined as the abscissa of the intersec- 
tion point F of the intrinsic and sporadic distribution curves; the outer limit 
DD is given by the abscissa m such that areas (OABJFHO) and (OABJGFCO) 
are equal. The population coefficient A is defined by the ratio of area 
(OAHO) to area (OACO). 
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* 

t 
THEORETICAL CUMULATIVE- 

,’ DISTRIBUTION CIIRVFS 
.-.- ---.1-v 

Figure 13-4. Theoretical curves of the contaminated cumulative D-distribution in 
meteor streams. The two parameters are the population coefficient A and 
the dispersion 0. 
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Figure 13-5, Fits of the normalized cumulative D-distribution n(D) for the 
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Discrimination between real streams and spurious ones and determination Step 4. 

of possible comet-meteor and asteroid-meteor associations. Possible relation of the 

dispersion coefficient u to the dynamical evolution of the streams. 

Two criteria have been applied to the detected streams to find out whether they 

are real. One is based on the ratio of meteor population within D = 0.25 to that 
within D = 0.20. For a random sporadic distribution, this ratio is (0.25/O. 20)30 8 = 2.3. 

The existence of a stream at low D’s lowers this value, so the deviation from 2.3 

measures the probability that the stream is real. 

The other criterion says that a stream is real if the number of definite stream 

members within D is significantly greater than the square root of the number of 
sporadic meteors within the same D, for at least some D. 

Both criteria rather consistently indicate that almost all the streams are very 
probably real. 

13.2 Stream-Search Technique 

Theoretically, to make the search absolutely complete, we should search for 

meteors dynamically associated with every single sample meteor. Because of the 
complexity of calculations associated with this statistical model, however, such a pro- 

cedure would be in practice very inefficient and may become physically unfeasible 

even with the aid of a powerful computer. We therefore modified the first step of the 
search by substituting for the initial set of elements the orbits of all the objects of 

interest. These objects included visual, radio, and mainly photographic streams with 
known orbits previously detected by computer or conventional techniques, as well as 

comets and minor planets with orbits approaching the earth’s orbit. 

Except for spurious convergences, such a selection of initial orbits would make it 

impossible to detect radio streams not associated with any previously known object. 

We have therefore looked for high concentrations of meteor orbits in the sample, using 
a three-dimensional searching scheme, interrelating the longitude of perihelion with 

the longitude and latitude of the orbital pole. It is unlikely that we overlooked a major 
radio shower this way, but a number of minor streams could have’escaped unnoticed 
in the fluctuating %oise” of the sporadic field. It must be these minor streams that 
are responsible for the stream-population bias mentioned below. 
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A total of 83 streams have been detected in the sample of 19,303 radio orbits. 

The number of definite stream members found in the sample is estimated at slightly 

over 1400, or about 7.5%. If the search were complete, this would be a very con- 

servative figure by standards of the photographic samples. 

13.3 Radiant Distribution of Radio Meteors and Streams 

Computer plots of the ecliptical coordinates of our sample meteor radiants 

(radiant longitude X vs. radiant latitude p in Figure 13-7; radiant longitude relative to the 

sun1 - X0 vs. p in Figure 13-8) suggests that the directions of the observed meteor 

trajectories are far from being uniformly distributed. The location and power-gain 

pattern of the radar system and selection due to the observing schedule account for 

part of the nonuniformity, particularly for the significant lack of radiants in high 

southern latitudes. 

There is undoubtedly a definite concentration of radiants along the ecliptic, a 

decrease toward latitudes of +30” to +40”, and an increase in concentration at very high 

latitudes. The existence of frequent high-inclination, low-eccentricity orbits among 

radio meteors was reported previously by Davies (1957) and Hawkins (1963). We point 

out that some of the high-inclination showers we have detected suggest quite elongated 

orbits. 

Figure 13-7 also shows the effect of annual variation in the meteor distribution. 

In comparing the plots of individual radiants with those of mean radiants of the 

detected streams (Figures 13-9 and 13-lo), we find a certain degree of resemblance. 

This is not a trivial statement since the detected streams make up less than 10% of 

the total population of Figures 13-7 and 13-8. 

13.4 Differences between the%iotographic and the Radio Components in the Streams 

Possible relationships between the detected radio streams and previously known 

streams have bee,n extensively studied. On the one hand, there are straightforward 

relations (e. g. , the photographic and radio 6 Cancrids); on the other, there are about 
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40 photographic streams included in Jacchia and Whipple’s (1961), Southworth and 

Hawkins’s (1963), and Lindblad’s (1971) lists that have not been detected among the 

radio meteors. The lack of fast meteors in retrograde orbits is particularly striking. 

In a number of streams, dynamical differences have been found between the photo- 

graphic and the radio meteors. Here we mention three of them: 
I 

A. Taurids. The gap between the Northern and Southern branches of this stream, 

so prominent in the photographic region, completely disappears in our radio sample 

(see Figure 13-11). Also, the radio Taurids appearing on the same day as the photo- 

graphic Taurids have their radiants shifted eastward some lo”, on an average. 

B. Southern 6 Aquarids. There is a systematic difference in the no-atmosphere 

velocities (see Figure 13-12) between the photographic meteors of this stream (circled 

points, open circles) and the radio meteors (solid disks, points). 

911- 122 

NORTHERN BRANCH 

+ IO’ 

SOUTHERN BRANCH 

R.A.(l950.0) 

Figure 13-11. Plot of individual radiants of the Taurid radio meteors, 1961-1965 
(dots). For comparison, the paths of the mean radiants of the two 
branches of the bright photographic Taurids are drawn after Wright 
and Whipple (1950). 
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35 

. 

, I I I I I I I I I I I III Ill I III II I III III 

I 2o” 130” 140° 

SOLAR LONGITUDE 

Figure 13-12. Comparison of the no-atmosphere velocities of the radio and photographic 
Southern 6 Aquarids. The solid circles are the radio meteors of 1962-1965 
with membership probability larger than 0.5; the dots, the radio meteors 
of 1962-1965 tith membership probability between 0.1 and 0.5; the circled 
dots, the photographic meteors of 1952-1953 with precision orbits published 
by Jacchia and WhippIe (1961); and the open circles, the photographic 
meteors of 1952-1953 with approximate orbits published by McCrosky and 
Posen (1961). The line is a fit of the Jacchia-Whipple data. 

C. q Aquarids. Two maxima with a separation of about 2 days have been found 

in the q-Aquarid shower. The two radiants are very near each other, but the mean 

orbital elements of the two showers differ remarkably. The one passing through the 

node later is here called the Halleyid shower since its orbit is much closer (3 times 

closer, in terms of the D-criterion) to the orbit of Comet Halley (see Table 13-1). 

13.5 Twin Showers 

As pointed out for the first time by WhippIe (1940) in the case of the Taurids, a 

broad meteor stream moving in a low-inclination orbit can easily meet the earth at 

two points, before the perihelion passage and after it, thus producing two apparently 

“independent, VI but actually closely related, showers. We will call these the twin showers. 
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Table 13-1. Orbits of q Aquarids, Halley-ids, and P/Comet Halley 
(equinox 1950.0). 

Halleyids P/Halley 

96’17 f 2.2 111: 7 

s-2 44:9*0.4 47: 1 f 1.7 57: 8 

i 16X2 f 0.9 164:6 f 0.8 162: 2 

q (a. u. 1 0.468 f 0.010 0.587 f 0.018 0.587 

e 0.834 f 0.014 0.894 f 0.017 0.967 

a (a.u.) 2.823 5.550 17.95 

P (yr) 4.74 13.1 76.0 

IT 124” 4 143: 8 169: 5 

i-22- w 325: 4 310: 4 306: 1 

R. A. 338:3 f 0.5 338”.1* 1.2 336”* 
Radiant 

Deck -09 3 f 0.5 -1”. 3 f 0.8 -I”* 

Date of pass 
through node 
(UT, epoch 1950) 

May 5.9 May 8.2 May st 

* 
Theoretical radiant. 

t Date of pass through the closest point to the earth’s path in 1910. 

We have been investigating the possibility of the appearance of twin showers in the 

radio meteor sample, especially because of Hoffmeister’s (1948) prediction of daytime 
showers associated with the Scorpiids-Sagittariids, Piscids, and Virginids (in 

addition to the Taurids). We have confirmed two twins already reported by Almond 
(1951) and have disclosed a few more. They are all listed in Table 13-2. 
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With the exception of the meteors associated with Halley’s comet, the twin 

showers seem to have their radiants fairly near each other. We have investigated the 
problem generally for a meteor stream moving in an elliptic orbit coplanar with the 

earth’s orbit. We found that the difference in the longitude of radiants between the 

twin showers, M = A postperihelion -A preperihelion’ is given by the relation 

tan2 ( ) LA p/r) d/2 - (p/r) - (r/a) 

1 - b/r) f &Frl - (r/a)1 ’ 
(13-1) 

where p is the stream’s orbital semilatus rectum, a its semimajor axis, and r the 
solar distance of the encounter. The upper signs stand for the direct orbits; the 
lower, for the retrograde ones. Although the formula allows for the ellipticity of the 
earth’s orbit, we have put r = 1 a. u. and plotted the curves of constant longitudinal 
difference M in Figure 13-13. The figure readily explains why twin showers typically 

have small M: For direct orbits and semimajor axes over 1 a.~., the radiants must 
always be less than 40” apart for any q > 0.35 a.~. For retrograde orbits, on the 
other hand, the radiants must be more than 90” apart for any q < 0.7 a.~. 

Similarly, the longitudinal difference between the radiants of the twin showers 

re1ative to the sun, a, = (x - Xdpostperihefion - (h - ‘dpreperihe~ion9 is 

tan ( > &AA* = J2 - (p/r) - (r/a) 

lrl/is ’ 
(13-2) 

with the symbols defined as above. 

The curves of constant AA, are represented in Figure 13-14. For direct orbits with 
semimajor axes larger than 1 a. u., M, approaches 180” within 45” for any q between 
0.3 and 0.8 a.u. For retrograde orbits, on the other hand, M, < 60” for any 
q>0.4a.u. andM,<75”foranyq>0.2a.u. In other words, the twin showers of a 
stream of direct motion are typically one nighttime and one daytime, while those of a 
stream of retrograde motion can both be nighttime, as in the case of the showers ‘. 

associated with Comet Halley. The distribution of inclinations in the stream can some- 
how modify the numerical data mentioned, but it does not violate the basic rule. To 
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SEMIMAJOR AXIS ( a.u.) 

Figure 13-13. Difference M in the longitude of radiants between the twin showers (in the 
sense ‘postperihelion minus preperihelion”) of an ecliptical stream versus 
the semimajor axis and the perihelion distance of the stream. Solid curves 
are the loci of constant M for streams in direct orbits; broken curves, 
those for streams in retrograde orbits. The dotted curve is the locus of 
the tips of loops, the open circles indicating Ax at 1” separation. The 
large solid circles represent detected twin showers (for their identifica- 
tion, see Table 13-2). 
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INVERSE SEMIMAJOR AXIS [C a .u.)-I ] 
1.5 1.0 0.5 0.0 

0.8 

0.5 0.6 0.7 0.8 0.9 1.0 1.5 2 3 5 lam 

SEMIMAJOR AXIS (a.u.1 

Figure 13-14. Difference AA* in the sun-oriented longitude of radiants between the 
twin showers (in the sense ‘postperihelion minus preperihelion”) of an 
ecliptical stream versus the semimajor axis and the perihelion distance 
of the stream. Solid curves are the loci of constant M* for the streams 
in direct orbits; broken curves, those for the streams in retrograde 
orbits. The large solid circles represent detected twin showers (for 
their identification, see Table 13-2). 
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prove the validity of the rule in practice, we have calculated the radiant differences for 

the seven pairs of twin showers detected in our sample. Table 13-2 confirms that our 

prediction of M and M, is good within about lo’, the deviations being essentially due 

to the differences in the shapes between the orbits of the twin showers (which had to be 

averaged in order to apply equation (13-l)), rather than to the inclination effect. 

13.6 Associations of the Radio Meteor Streams with Comets and Minor Planets 

Calculations modeling random perturbations by the planets of a meteor stream 

suggest that the intrinsic D-distribution keeps essentially its Maxwellian character 

but becomes increasingly broader with time. Consequently, the dispersion CJ appar- 

ently measures the degree of dissipation of the stream, and therefore indirectly its 

“age. ‘I The calculations also suggest that the D-value of the criterion between the 

stream’s mean orbit and the parent object, D 
P’ 

is related, statistically, to the 0 

dispersion by 

D p=3.40 . (13-3) 

Table 13-3 lists the potential parent objects for streams where an association 

appears possible. Investigation of the associations is put on a quantitative basis follow- 

ing the above suggestions. However, since the Di/o criterion is only a statistical test, 

a reasonably.10~ value of this parameter by no means indicates that the association is 

certain. Especially for very disperse streams, the above ratio can easily come out 

pretty small, and indeed we have found more than one potential parent for a few 

streams (Piscids, Southern Arietids, and Triangulids). 

Each possible association must therefore be considered in connection with other 

evidence available in each specific case. For example, the apparent resemblance 

between the orbits of the Cphiuchids and periodic Comet Lexell is likely to be quite 

fortuitous. Cook (1970) gave significant arguments against the existence of any 

stream associated with this comet. 
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Table 13-3. Possible comet-meteor and asteroid-meteor associations 

‘Dd 
cr 2 6). 

.Potential parent object Meteor stream D D u 
P d 

P/Biela 

P/Crommelin 

P/Encke 

P/Giacobini-Zinncr 

P/Halley 

P/Honda-Mrkos-Pajd&kovi 

P/ Lexell 

P/Mcllish 

P/Pans-Winnecke 

1861 I 

(1566) Icarus 

(1580) Bet&a June Draconids 0.374 

1932 HA Apollo v Librids 0. 125 2.8 
x Scorpiids 0. 162 4.9 

1936 CA Adonis 

1937 UB Hermes 

1950 DA 

1968 AA 

Meteorite Phiram u Leonids 0.352 

y Camelopardalids 0.330 3.5 
Trianylids 0.277 3.6 
Andromedids 0.168 4.6 

November Cepheids 0.279 4.7 

Taurids 0.235 2.0 
6 Taurids 0.220 3.5 
Southern Arietids 0.423 3.5 

October Draconids 0.393 5.9 

Halleyids 0.126 2.7 
Orionids 0.214 5.0 

a Capricornids 
Aquarids-Capricornids 

0.290 
0.272 

3.3 
3.5 

Ophiuchids 0.310 2.2 
June Scutids 0.317 3.8 

Monocerids 0.234 2.1 

July Draconids 0.213 3.4 

Lyrids 0.197 4.6 

Taurids-Perseids 0.083 1.4 
Piscids 0.462 3.3 
Southern Arietids 0.468 3.9 
Arietids 0.245 4.2 

/ 4.3 

a Capricornids 0.097 0.8 
Scorpiids-Sagittariids 0.215 1.9 
Capricornids-Sagittariids 0.318 2.3 
x Capricornids 0.185 3.4 

x Plscids 0.107 1.3 
Piscids 0.457 3.3 
Southern Arietids 0.430 3.6 
Triangulids 0.351 4.5 
6 Cetids 0.340 5.4 

May Ursids 0.285 3.2 
April Ursids 0.277 6.0 

a Cygnids 0.267 
x Draconids 0.272 
b Cygnids 0.212 

2.0 
2.9 
4.7 

5.9 
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One has to be.particularly careful about interpreting the resemblance between the 

orbits of some of the detected radio streams and those of the minor planets of the 

Apollo and Albert types. If these associations were confirmed, they would represent 

a major argument in favor of the hypothesis, considering these minor planets to be 

defunct cometary nuclei. We have studied possible evolution of such objects (Sekanina, 

1971a, b), assuming that they underwent a process similar to that recently experienced 

by periodic Comet Encke. The process is caused by accumulation of the secular effects 

of the nongravitational mechanism and dynamically results in a systematic reduction of 

the aphelion distance. The calculations show, however, that such a process is of low 

efficiency and that our present knowledge of the nongravitational mechanism gives no 

satisfactory explanation for evolutionary paths of the minor planets with aphelia nearer 

than 3 to 3.5 a.~. from the sun. 

It is therefore imperative that each of the potential asteroid-meteor associations 

be checked by applying more rigorous dynamical tests. We have tested the likely 

evolutionary relationship between Adonis and a radio stream, using a method suggested 

for the Encke-Taurid association by S. E. Hamid (1970, private communication). It 

explains the differences between the present orbits of a meteor and the parent body by 

the combined effect of the conditions at the time of ejection and differential secular 

perturbations. We have assumed that the ejection occurred at perihelion, in the orbit 

plane, and with a velocity of 50 m set -1 , which corresponds to an average mass of the 

associated meteors of the order of 10 -4 g. We have also assumed that the motion of 

Adonis was affected in the past by a nongravitational acceleration, which implies that 

the material should have been ejected preferentially in the direction of motion. Such 

an impulse would suddenly increase the eccentricity of the expelled material by 0.003 

relative to Adonis but keep the other elements unchanged. We have computed differen- 

tial secular perturbations for various times of ejection in the past and found that the 

best agreement between the model and the mean orbit of the associated meteors from 

the sample is achieved if the ejection is assumed to have occurred about 9000 yr ago. 
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13.7 A Working List of Meteor Streams 

A. F. Cook has prepared a list of those streams that he is convinced do exist. 

Most catalogs of streams, if they are large, include many that have only a certain 
probability of existence. An extreme case is that of the old catalogs of visual radiants. 
The apparent distribution of radiants of individual sporadic meteors exhibits not the 

true distribution of numbers larger than a chosen mass as a function of direction, but 

an apparent distribution greatly affected by the luminous efficiency of meteors, which 

emphasizes the meteors of higher velocity. This distribution has its primary maxi- 
mum on the ecliptic 165” behind the sun (and another equal primary maximum only 15” 

behind the sun, which is only detectable among radar meteors). There is a broad 
secondary maximum about the meteoric apex 90” behind the sun, from which the 

highest velocity meteors come, and two tertiary maxima at the celestial longitude of 

the apex (90” behind the sun) and at celestial latitudes *75” (and thus near the poles of 

the ecliptic). These combine with a natural weighting toward the zenith of an observer 
to give a rather nonuniform background of radiants of sporadic meteors and have 

caused visual radiant catalogs to cover the sky with spurious radiants. 

Radar observations suffer from a similar effect, so care in identification of radar 
streams is required. It is now abundantly clear that similar care is required in 

identification of streams among photographed meteors. 

Cook’s list (see Attachment A) contains 57 entries. Three of these (the Daytime 
p Taurids, the Southern Taurids, and the Northern Taurids) are associated with 

P/Comet Encke. Two (the n Aquarids and the Orionids) are associated with P/Comet 

Halley. Two Andromedid radiants are given, one an annual moving radiant with a 
pronounced change in orbit as it moves, and the other the radiant of the great Andromedid 

showers. These are associated with P/Comet Biela. Four other pairs are not associ- 
ated with a known comet. Two are pairs of a daytime with a nighttime shower 

(Daytime Arietids with the Southern 6 Aquarids and Daytime 5 Perseids with the 
Northern Piscids), and two are pairs of northern and southern branches of the same 
streams (I Aquarids and x Orionids). The 57 entries thus come from 49 streams. 
There are two additional pairings that appear to indicate a common origin for the 
parent bodies of the streams. These are the Daytime Sextantids with the Geminids 
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and the Pegasids with the December Phoenicids. The December Phoenicids, in turn, 

plainly come from Comet 1819 IV Blanpain. The parent body of the Pegasids may no 

longer exist, but it and the comet must have separated rather a long time ago, in view 

of the difference in the orbital planes. The absence of a large dispersed system of 

meteoroids like that of P/Comet Encke is shown by the absence of continuous simul- 

taneous activity from the Pegasids and Phoenicids throughout October, November, 

and December. 

Cook suggests that a small comet or asteroid-like body may be found moving in 

the currently predicted orbit of P/Comet Biela. Comet Blanpain has not been seen 

since 1819, so a search for it would be pretty hopeless. Condensed streams for which 
comets might be sought are the Quadrantids, Librids, and Corvids, with the first 

offering much the best prospect. Small asteroids might be searched for along the 

orbits of the Geminids and the Daytime Sextantids, with the former offering the better 

prospect. In short, first priority for such searches should go to P/Comet Biela, 

the Quadrantids, and the Geminids. 
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14. PERSONNEL OF THE RADIO METEOR PROJECT: 

1966 to 1971 

The Radio Meteor Project has been under the direction of Dr. Whipple since its 
inception in 1955. It was transferred from HCO to SAO in January 1966, from which 
time Drs. R. B. Southworth and R. E. McCrosky have been Principal Investigators. 
From 1966 to 1969, Dr. G. S. Hawkins coordinated the project. Mr. Dorik Mechau 
was Administrator in 1966, followed by Mr. C. Hagge, from 1966 to 1970. Mr. P. 

Sozanski then served as interim Administrator until Mr. H. E. Rosenthal was 
appointed Administrative Officer in 1970. 

The members of the SAO headquarters staff have been as follows (listed accord- 

ing to their starting dates): 

Mathematicians: Mr. R. Lacy, 1966-1969; Mrs. S. Rosenthal, 1966-present; 

Mrs. A. Poser+ 1966-present; Mr. D. Wilson, 1967. 

Astronomers: Dr. G. S. Hawkins, 1966-1969; Dr. G. Forti, 1966-1971; 
Dr. A. F. Cook, 1966-present. 

Physicists: Mrs. G. Southworth, 1966-1969; Dr. M. R. Flannery, 1968-1970; 

Dr. H. Levy II, 1968-1970; Dr. Z. Sekanina, 1969-present. Dr. A. Dalgarno acted 
as advisor to Drs. Flannery and Levy. 

Astrophysicist: Dr. C. S. Nilsson, 1966-1969. 

Engineering Support: Dr. M. R. Schaffner, 1966-1970; Mr. J. Maxwell, 1967. 

Dr. W. W. Salisbury, Mr. A. Goldstein, Dr. M. D. Grossi, and Mr. W. M. Grim 

also assisted with the engineering support. 

Electronic Technicians: Mr. F. Licata, 1966; Mr. P. Ouellette, 1969-1970. 

Secretarial Support: Mrs. S. Bull, 1966-1969; Miss E. Smith, 1969-present. 
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Members of the Radio Meteor Project field team were as follows: 

Havana 

Station Manager: Mr. J. Simms, 1966-1971. 

Technical Aide: Mrs. B. Daniel, 1966-1970. 

Electronic Technicians: Mr. R. Stockus, 1966; Mr. D. Summers, 1966-1967; 

Mr. C. Ewan, 1966-1967; Mr. P. Woulfe, 1966-1969; Mr. K. Rhinehart, 1966-1969; 

Mr. J. Kopico, 1967-1969; Mr. D. Hallenbeck, 1967-1971. 

Physical Science Aides: Mrs. J. Summers, 1967; Mrs. P. Layton, 1967-1969; 

Mr. D. Shaw, 1970. Dr. A. Cook and Mr. J. Shao also assisted in the field. 

Urbana 

Station Manager: Mr. J. T. Williams, 1967-present. 

Physical Science Aides: Mr. L. Alexander, 1969-1970; Mr. D. Hutchins, 

1970-1971. 

Dr. Z. Ceplecha and Dr. B. -A. Lindblad were visiting scientists during the 

course of the Radio Meteor Project. 

Various people from NASA assisted throughout the years, including A. 

Wineman, Mr. K. Baker, and Mr. T. D. Bess. 

Mr. M. Malec, of the SAO Business Office, and Dr. C. A. Lundquist, of the 

Director’s Office, contributed much contractual and scientific assistance. 
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ATTACHMENT A 

A WORKING LIST OF, METEOR STREAMS 

Allan F. Cook, II 

This working list has been compiled from the following sources: 

A. A selection by myself (Cook, 1970) from a list by Lindblad (197 la), which he 

found from a computer search among 2401 orbits of meteors photographed by the 
Harvard Super-Schmidt cameras in New Mexico. 

B. Five additional radiants found by McCrosky and Posen (1959) by a visual search 

among the radiants and velocities of the same 2401 meteors. 

C. A further visual search among these radiants and velocities by Cook, Lindblad, 

Marsden, McCrosky, and Posen (1972). 

D. A computer search by Lindblad (1971b) among 1827 precisely reduced photo- 

graphed meteors from all available sources. 

E. Visual radiants reported by Hoffmeister (1948). 

F. A report on the Phoenicid shower of December 5, 1956, by Ridley (1962). 

G. A list of visual radiants by McIntosh (1935). 

H. A report on the June Lyrids by Hindley (1969). 

I. Two papers on radar radiants in the southern sky by Weiss (196Oa, b). 

J. A paper on radar radiants in the southern hemisphere by Nilsson (1964). 

K. Several compilations of visual, photographic, and radar radiants by Whipple 

and Hawkins (1959), McKinley (1961); Millman and McKinley (1963), and Jacchia 
(1963). 

This list is’ restricted to streams that the author is convinced do exist. It is 

perhaps still too comprehensive in that there are six streams with activity near the 
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threshold of detection by photography not related to any known comet and not shown 

to be active for as long as a decade. Unless activity can be confirmed in earlier or 

later years or unless an associated comet appears, these streams should probably be 

dropped from a later version of this list. The author will be much more receptive to 

suggestions for deletions from this list than he will be to suggestions for additions to 

it. Clear evidence that the threshold for visual detection of a stream has been passed 

(as in the case of the June Lyrids) should qualify it for permanent inclusion. 

A comment on the matching sets of orbits is in order. It is the directions of 

perihelion that should match, a condition clearly met in most cases: 

A. April Lyrids and Comet 1861 I Thatcher. 

B. 7) Aquarids, Orionids, .and P/Comet Halley. 

C. T Herculids and Comet 1930 VI Schwassmann-Wachmann 3. 

D. Daytime p Taurids, Southern Taurids, Northern Taurids, and P/Comet Encke. 

E. June BoMids and P/Comet Pons-Winnecke 1915 III. 

F. o Drac.onids and Comet 1919 V Metcalf. 

G. Southern and Northern L Aquarids. 

H. Perseids and Comet 1862 III Swift-Tuttle. 

I. Aurigids and Comet 1911 II Kiess. 

J. Daytime Sextantids and Geminids. 

K. Annual Andromedids and the predicted orbit of P/Comet Biela for 1972. 

L. Andromedids and P/Comet Biela 1852 III. 

M. October Draconids and P/Comet Giacobini-Zinner 1946 V. 

N. Leo Minorids and Comet 1739 Zanotti. 

0. Pegasids, December Phoenicids, and Comet 1819 IV Blanplain. 

P. Leonids and P/Comet Tempel-Tuttle 1965 IV. 

Q. Monocerotids and Comet 1917 I Mellish. 

R. Northern and Southern X Orionids. 

S. Ursids and P/Comet Tuttle. 
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In the case of the Sextantids and the Geminids, the temporary character of the 
Sextantids and the concentration and strength of the Geminids suggest two parent bodies 

for the streams. The similarities in the directions of perihelion, distances at 

perihelion, and semimajor axes then imply that these two parent bodies separated 

from a common body at an earlier time. In the case of the Pegasids, December 

Phoenicids, and Comet 1819 IV Blanplain, the strength, concentration, and single 

apparition of the December Phoenicids suggest that a small comet still exists; the 

presence of meteors in the orbital plane of the Pegasids suggests that another comet 

separated long ago from Comet 1819 IV. If we were in the presence of a broad 

distribution of meteoroids, there would be continuous activity from northern and 
southern radiants in October, November, and December. 

In two cases some serious failure to match occurs. Among the Daytime Arietids, 

Northern 6 Aquarids, and Southern 6 Aquarids, it is clear that the Northern 6 Aquarids 
do not fit and are dubious members of the system; and in the case of the Daytime 5 

Perseids, Southern Piscids, and Northern Piscids, it is clear that the Southern Piscids 

do not fit and are dubious members of the system. The traditional association between 

the acapricornids and P/Comet Honda-Mrkos-PaJ’d&%kova/ is rejected, as the direc- 

tions of perihelia diverge by nearly 30”. 

Of the 57 entries in the list, two are additional radiants associated with P/Comet 

Encke and six more are associated with another radiant, each in the sense that they 

appear to come from the same parent body. One of these pairs is the n Aquarids and 

Orionids associated with P/Comet Halley. Another is the pair of Andromedid radiants, 

one that of the great showers, the other that of the current weak annual stream 

matching the current predicted orbit of P/Comet Biela. The remaining four pairs 

are not associated with a comet; two are pairs of daylight and night showers -the 

Daytime Arietids with the Southern 6 Aquarids and the Daytime 5 Perseids with the 

Northern Piscids . The remaining two are merely northern and southern branches 

of the same streams; these two cases are the L Aquarids and the X Orionids. Thus, 

we deal here with 49 separate streams. Two additional pairings appear to be at the 

level of parent meteoroid-shedding bodies having separated from a larger body at an 
earlier time. These pairings are the Daytime Sextantids with the Geminids and the 

Pegasids with the December Phoenicids, which in turn apparently came from Comet 

1819 IV Blanplain. It appears that 47 initial parent bodies are required to explain 
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the present list of streams. Some 15 of the 49 currently required parent bodies have 

been observed as Comets. Two are lost, and P/Comet Biela is perhaps the best 

target for an effort at recovery. Small asteroids .might be searched for along the 

orbits of the Geminids and Sextantids, and comets might be searched for along the 

orbits of the highly concentrated Quadrantids, Librids, and Corvids. The other 29 

parent objects are associated with weak or diffuse stream systems, so a search for 

them would be tantamount to a general search of the sky! 

The author is grateful for access to B. G. Marsden’s forthcoming catalog of 

orbits of comets in advance of publication, and also for the predicted orbit of P/Comet 

Biela in 1972. This work was supported in part by contract NGR 09-015-033 from the 

National Aeronautics and Space Administration. 
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Nt2llW Dates Max. 

Quadrantids 

6 Cnncrlds 

Virginids 

b Leonids 

Camelopnrdallds 

(T LeonIds 

6 Draconids 

K Serpentids 

)I Virginids 

o Scorpiids 

m- B&Ids 

+ Bo6tids 

April Lyrids 

q Aqunrids 

T Herculids 

X Scorpiids 

Daytime Arietids 

Daytime 5 Perseids 

Librids 

Sngittnriids 

6 Ophiuchids 

June Lyrids 

Daytime p Tnurids 

Corvids 

June B&ids 

July Phoenicids 

o Draconids 

Northern 6 Aquarids 

Southern 6 Aqua-Ids 

q Capricornids 

Southern t Aquarids 

Northern L Aqunrids 

Perseids 

I( Cygnlds 

Southern Piscids 

Northern Piscids 

Aurigids 

K Aqunrids 

Southern Tnurids 

Northern Tnurids 

Daytime Sextantids 

Annunl Andromedids 

Jan. 1-4 Jan. 3 

Jan. 13-21 Jan. 16 

Feb. 31Apr. 15 

Feb. 5-Mar. 19 Feb. 26 

Mar. 14-Apr.7 

Mar.21--May 13 Apr. 17 

Mar.28-Apr. 17 

Apr. 1-7 

Apr. I-May 12 Apr.25 

Apr. Il-May 12 May 3 

Apr. ll-May 12 Apr. 28 

Apr. 16-May 12 May 1 

Apr. 20-23 Apr.22 

Apr.21-May 12 May 3 

May 19-June 14 June 3 

May 27 -June 20 June 5 

May 29-June 19 June 7 

June I- 17 June 7 

1937 June 8-S June 8 

195i-R June8-16 June II 

June 8- 16 June 13 

1969June II-21 June 16 

June 24-July 6 June 29 

1937 June 25-30 June 26 

1916 June 28 June 28 

July 3- 18 July 14 

July 7-24 July 16 

July 14-Aug.25 Aug. 12 

July 2 I-Aug. 29 July 29 

July 15-Aug. 10 July 30 

July 1%Aug. 25 Aug. 5 

July 15-Sept.20 Aug. 20 

July 23-Aug. 23 Aug. 12 

Aug. S-Oct.6 Aug. 19 

Aug.31-Nov.2 Sept. 20 

Sept.25-Oct. 19 Oct. 12 

1935 Sept. 1 Sept. 1 

Sept. II-28 Sept.21 

Sept. 15-Nov.26 Nov.3 

Sept. IS-Dec. 1 Nov. 13 

Sept. 24-Oct. 5 Sept. 29 

Sept.25-Nov. 12 Oct. 3 

- 

LOnglhlde of sun (1950) Geocentric Radiant 

R.A. &Cl. ve1oc1ty 
J3eglnning Half Max. Max. Half Max. End 1950 1950 (km set-I) Sun 

280:s 

293 

314 

316 

353 

1 

7 

11 

12 

21 

24 

26 

30.7 

30 

58 

65 

67 

70 

77.6 

77 

77 

79 

91 

94.8 

97.5 

101 

104 

111 

118 

123 

112 

112 

120 

136 

158 

182 

168 

172 

176 

179 

182 

262:5 

31.2 

39 

71 

72 

81 

93 

94.9 

121 

138 

206 

184 

282:7 

296 

336 

27 

35 

42 

36 

40 

31.7 

42.4 

72 

74 

76 

76 

78.2 

80 

82 

84.5 

96 

95.2 

97.6 

112 

139 

125 

126 

131 

147 

139 

145 

177 

199 

157.9 

178 

220 

230 

184 

190 

282:s 

32.2 

45 

83 

83 

87.5 

99 

97.6 

129 

141 

240 

195 

283:4 23O:l 

301 126 

25 186 

359 159 

17 118.7 

52 195 

27 281 

17 230 

51 221 

51 240 

51 218 

51 240 

32.7 271.4 

51 335.6 

83 228 

89 247 

88 44 

86 62 

78.4+ 22i.2 

82 304 

85 267 

so 278 

103 86 

97.9 191.9 

97.7 219 

116 

121 

152 

155 

138 

151 

177 

150 

193 

219 

206 

184 

244 

249 

190 

230 

31.1 

271 

339 

333.1 

307 

333.3 

327 

46.2 

286 

6 

26 

84.6 

338 

50.5 

58.3 

152 

+40:5 41.5 28237 

+20 28 296 

0 35 350 

+19 23 338 

l 66. 3 6.8 359.0 

-5 20 28 

~68 26.7 14 

+I8 45 14 

-5 29 35 

-22 35 42 

Cl9 20 36 

+51 12 40 

+33.6 47.6 31.7 

- 1.9 65.5 42.4 

c39 15 72 

-13 21 74 

+23 37 77 

+23 27 78 

-28.3 16 f 2 78.2 

-35 52 80 

-28 26.7 82 

+35 31 l 3 84.5 

+19 30 96 

-19.1 10 * 2 95.9 

+49 13.9 98 

-47.9 47 * 3 109.6 

+59 28.6 113 

-5 42.3 139 

-16.5 41.4 125.0 

-10 22.8 127 

-14.7 33.8 131.0 

-6 31.2 147 

+57.4 59.4 139.0 

+59 24.8 145 

0 26.3 177 

+14 29 199 

+42.0 66.3 157.9 

-5 16.0 178 

+13.6 27.0 220.0 

+22.3 29.2 230.0 

0 32.2 183.6 

+8 23.2 190 

+34 18.2 228 
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NZXlle Dates 

Longitude of Sun (1950) Geocentric Radiant 
R.A. &Cl. 

MXX. Beginning Half Max. Max. Half Max. 
Velocity 

End 1950 1950 (km SW’) sun 

Andromedids 1885 Nov. 27 

Orionids O&Z-Nov.7 

October Draconids Oct. 9 

t. Geminids Oct. 14-27 

Leo Minorids oct.22-24 

Pegnsids Oct.29-Nov. 12 

Leonids Nov. 14-20 

Monocerotids Nov.27-Dec. 17 

cr Hydrids Dec. 3- 15 

Northern X Orionids Dec.4- 15 

Southern X Orionids Dec.7- 14 

Geminids Dec. 4- 16 

December Phoenicids 1956 Dec. 5 

6 Arictids 

Comn Berenicids 

Ursids 

Dec. R- 14 

Dec. 12-Jan.23 

Dec. 17-24 

NOV. 27 246!6 

o&:23 189 

Oct.9 0196.25 

Oct. 19 201 

Oct.24 209 

Nov. 12 215 

Nov. 17 231 

Dec. JO 245 

Dec. II 251 

Dec. 10 252 

Dec. 11 255 

Dec. 14 252 

Dec. 5 253. IR 

256 

260 

Dec. 22 265 

246:65 246!7 246:7; 246:8 25. 

206.7 207.7 208.3 225 94.5 

196.3 JS6.35 262. J 

206 214 JO4 

211 211 162 

230 230 335 

234.447 234.462 234.477 237 152.3 

256 265 99.8 

259 263 126.6 

256 261 84 

259 262 85 

260.6 261.7 262.1 264.2 112.3 

253.45 253.55 253.65 

269 270 271 

253.70 ,5 
1 

15 

262 52 

303 175 

272 2 17.06 

+44* 16.5 247. 

+J5.8 66.4 208.0 

+54. J 20.43 196.3 

+27 69.4 209 

+37 61.6 211 

+21 11.2 230 

c22.2 70.7 234.5 

~14.0 42.4 257.6 

+ 1.6 56.4 259.0 

+26 25.2 258 

+16 25.5 259 

+32.5 34.4 261.0 

-55 12.7 253 

-45 11.7 254 

+22 13.2 257.6 

+25 65 282 

l 75.85 33.4 270.66 
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Daily Motion of Number in 

Radiant Sample of Maximum Maximum 
McCrosky and Visual Radar 

Name R.A. Deck Posen (i96 1) Zenithal Rate Echo Rate 
od olr-3 

Quadrantids 
6 Cancrids 
Virginids 
6 Leonids 

C amelopardalids 
o Leonids 
6 Draconids 

K Serpentids 
p Virginids 
cc Scorpiids 

a BoBtids 

+ Boiitids 

April Lyrids 

n Aquarids 

T Herculids 
X Scorpiids 
Daytime Arietids 
Daytime 5 Perseids 
Librids 

Sagittariids 

6 Ophiuchids 
June Lyrids 

Daytime 6 Taurids 
Corvids 

June Boiitids 
July Phoenicids 

o Draconids 
Northern 8 Aquarids 
Southern &i Aquarids 

a Capricornids 

+0:81 -0”33 
+0.75 -0.50 
+1.35 +o. 51 
-I-o.44 +o. 11 

+o. 53 

+o. 50 
+0.7 

-0.30 

-0.19 
+0.2 

+l. 1 0.0 

+0.9 +0.4 
-0.1 +o. 9 
+0.9 +o. 5 
+0.7 +0.6 
+l. 1 +0.4 

+0.8 +0.4 

cl.04 +o. 53 

+1.0 +0.2 
+0.80 +O. 18 
+0.9 +o. 3 

17 140 
7 
6 

24 
4 

19 
4 
4 

7 

5 

8 

6 

5 

7 

14 

11 

12 
96 (1922) 

30 

lO(1937) 

2 

9 

13 (1937) 

100 (1916) 

3 

9 20 
13 30 
21 30 

60 
40 

30 

30 

30 

159 



Name 

Daily Motion of Number in 

Radiant Sample of MaXimUll MaXil3Iull-l 
McCrosky and Visual Radar 

R.A. Decl. Posen (196 1) Zenithal Rate Echo Rate 
@r-l) @r-l) 

Southern L Aquarids 

Northern L Aquarids 

Perseids 

K Cygnids 

Southern Piscids 

Northern Piscids 

Aurigids 

K Aquarids 

Southern Taurids 

Northern Taurids 

Daytime Sextantids 

Annual Andromedids 

Andromedids 

Orionids 

October Draconids 

E Geminids 

Leo Minorids 

Pegasids 

Leonids 

Monocerotids 

CJ Hydrids 

Northern x Orionids 

Southern x Orionids 

Geminids 

December Phoenicids 

d Arietids 

Coma Berenicids 

Ursids 

+1”07 +OP 18 
+1.03 +o. 13 

+1.35 +o. 12 

0.0 0.0 

+0.79 

+0.76 

+0.38 

+1.23 

+0.7 

+0.70 

+0.7 

+1.02 

+o. 88 

+o. 15 

+o. 10 

+o. 66 

+o. 13 

0.0 

-0.42 

-0.2 

-0.07 

-0.45 

12 15 
3 15 

45 70 

8 5 

14 

9 

30 

5 

46 7 

45 <7 

30 

23 

49 
2 

7 

3 

6 

5 

3 

8 

4 

8 

77 

.13, 000(1885) 

30 

30,000( 1933) 

14,000( 1833) 

70 

100 

7 

11 

20 
llO(1945) 

20 
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Orbital Elements 

Nnmc a e Q w n I lr 

Quadrantids 

6 Cnncrids’ 

Virginids 

h Lconids 

Cnmelopnrd:~litls 

u I.conids 

h Drnconids 

K Serpcntids 

11 Virginids 

cr Scorpiids 

:I 1300tids 

+ Do6titls 

April Lyrids 

Comet 1861 I 

71 Aqunrids 

Orionids 

P/Comet IInllcy 
1835 III 

T IWrculids 

Comet 1930 VI 

X Scorpiids 

Daytime Arietids 

Northern 6 Aquarids 

Southern 6 Aquarids 

Daytime < Perseids 

Southern Piscids 

Northern Piscids 

Librids 

Sagittariids 

9 Ophiuchids 

June Lyrids 

Daytime p Taurids 

Southern Taurids 

Northern Taurids 

P/Comet Encke 197oL 

Corvids 

June RoBtids 

3.08 

2.3 

2.63 

2.62 

1.534 

2.35 

2.770 

r 

3.12 

2.15 

2.65 

I. 25 

28 

55.7 

13 

15.1 

18.0 

2.70 

3.09 

3.11 

1.6 

2.62 

2.86 

1.6 

2.33 

2.06 

2.5/10 

m 

2.90 

2.5/10 

2.2 

1.93 

2.59 

2.217 

2.5/10 

3.27 

P/Comet Pons-Winnecke 3.26 1 
1915 III 

July Phoenicids 2.5/w 

0.683 0.977 17O”O 282”7 72”5 92”8 

0.80 0.45 283 296 0 219 

0.90 0.26 304 350 3 294 

0.75 0.64 259 338 6 237 

0.352 0.974 185.0 359.0 8.2 184.0 

0.66 0.75 248 28 1 276 

0.640 0.996 171.1 13.7 37.5 184.8 

1.00 0.45 275 14 64 289 

0.83 0.48 280 35 JO 315 

0.90 0.21 134 222 3 356 

0.71 0.75 247 36 18 283 

0.24 0.95 226 40 19 266 

0.968 0.919 214.3 31.7 79.0 246.0 

0.983 0.921 213.4 31.2 79.8 244.6 

0.958 0.560 95.2 42.4 163.5 137.6 

0.962 0.571 82.5 28.0 163.9 110.5 

0.967 0.587 110. G 56.8 162.2 167.4 

0.63 0.97 

0.672 1.011 

0.77 0.68 

0.94 0.09 

0.97 0.07 

0.976 0.069 

0.79 0.34 

0.82 0.42 

0.80 0.40 

0.65/O. 92 O.SS/O.SS 

1.00 0.10 

0.84 0.46 

204 72 19 276 

192.3 76.8 17.4 269. 1 

257 74 6 331 

29 77 21 106 

332 139 20 111 

J52.8 305.0 27.2 97.8 

59 78 0 137 

107 357 2 104 

291 199 3 130 

46/49 258.2 4/5 305/308 

142 260 99 42 

101 262 4 4 

237/23 1 84.5 44/50 321/315 

246 276.4 6 162 

113.2 40.0 5.2 153.2 

292.3 230.0 2.4 162.3 

185.9 334.2 12.0 160.1 

0.67/0.92 0.83/0.84 

0.85 0.34 

0.806 0.375 

0.861 0.359 

0.847 0.339 

0.60/0.90 1.013/1.012 7.6/7.9 274.9 3/4 282. S/282.8 

0.69 1.02 180 98 18 278 

0.702 0.971 172.4 99.8 18.3 272.2 

O.SZ/i.OO 0.96/0.97 3 l/24 289.6 82/87 321/313 
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Name 

Orbital Elements 

a e q w n L l-r 

0 Drnconids 

Comet 1919 V 

17’ Capricornids 

Southern L Aquarids 

Northern L Aqunrids 

Pcrseicls 

Comet 1862 III 

K Cygnids 

Aurigitls 

Comet 1911 II 

h’ Aquarids 

Dxytime Scxtnntids 

Gem initls 

Annual Andromedids 

P/Comet Rieln (1972) 

Andromedids 

P/Comet Bieln 1852 III 

October Draconids 

P/Comet Gincobini- 
Zinner 1946 V 

c Gem inids 

Leo Minorids 

Comet1739 

Pegnsids 

December Phoenicids 

Comet 1819 IV 

Lconids 

P/Comet Tempel- 
Tuttle 1965 IV 

Monocerotids 

Comet 1917 I 

0 Hydrids 

Northern X Orionids 

Southern X Orionids 

d Arietids 

Coma Berenicids 

Ursids 

P/Comet Tuttle 
1939 x 

00 

WI 

2.53 

2.36 

1.75 

28 

24.3 

3.09 

1.00 1.01 190” 113" 

1.000 1.115 185.7 121.4 

0.77 0.59 269 127 

0.912 0.208 131.8 311.0. 

0.84 0.26 308 147 

0.965 .o. 953 151.5 139.0 

0.960 0.963 152.8 138.7 

0.68 0.99 194 145 

1.000 0.802 121.5 157.9 

0.996 0.684 110.3 158.0 

0.74 0.81 236 178 

0.87 0.16 213 3.6 

0.896 0.142 324.3 261.0 

0.82 0.58 267 190 

0.76 0.79 238 228 

0.77 0.82 255 213 

0.76 0.86 222 247 

0.756 0.861 223.3 247.2 

0.717 0.996 171.8 196.3 

0.717 0.996 171.8 196.3 

43" 

46.4 

al 

153 

3.20 

1.25 

1.36 

1 

3.22 

3.29 

3.54 

3.53 

3.53 

3.51 

3.51 

6.9 

5 

113.8 

113.6 

38 

146.4 

148.4 

2 

22 

23.6 

4 

12 

8 

13 

12.G 

30.7 

30.7 

303" 

306.9 

36 

82.8 

95 

290.5 

291.5 

339 

279.4 

268.3 

54 

217 

225.3 

97 

106' 

108 

109 

J 10.5 

8.1 

8.1 

26.77 0.97 0.77 237 209 173 86 

58.6 0.99 0.65 106 211 124 317 

co 1.00 0.674 104.8 210.3 124.3 315.1 

3.86 0.75 0.97 196 230 8 65 

j 2.96 0.68 0.98 0 73 16 74 

1. 2.96 0.67 0.99 359 74 13 72 

2.96 0.699 0.892 350.2 79.2 9. 1 69.4 

11.5 0.915 0.985 172.5 234.5 162.6 47.0 

10.27 0.904 0.982 172.6 232.4 162.7 45.0 

24.8 

32.7 

125.5 

2 

42 0.997 0.14 135.8 77.6 

27.64 0.993 0.190 121.3 87.5 

30.0 0.992 0.244 120.7 79.0 

2.22 0.79 0.47 281 258 

2.18 0.78 0.47 101 79 

2.13 0.605 0.838 232.8 257.6 

Co 1.00 0.58 258 282 

5.70 0.85 0.9389 205.85 270.66 

5.70 0.821 1.022 207.0 269.8 

1.8 

134 

53.6 

54.7 

213.4 

208.8 

199.8 

179 

180 

130.4 

180 

116.51 

116.8 
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Notes on Individual Streams: 

Virginids, 
o Leonids, and 
l.~ Virginids 

CC Scorpiids 

April.Lyrids 

n Aquarids and 
Orionids 

T Herculids 

X Scorpiids 

Librids 

Sagittariids 

0 Ophiuchids 

June Lyrids 

C orvids 

June Boijtids 

July Phoenicids 

a Capricornids 

Southern L Aquarids 

These streams are contributors to Hoffmeister’s (1948) 
visual Virginids. 

This stream is a contributor to Hoffmeister’s (1948) Scorpius- 
Sagittarius system. 
This stream is a weak annual one at the threshold of detection 
for visual observers but has given stronger displays in 1884 
(22 hr-l), 1922 (96 hr’l), and 1948 (20 hr-l). 
At this inclination, $2-w should be compared between orbits, 
not TT. The three values are 307”4, 305”5, and 306”2 for the 
n Aquarids, the Orionids, and P/Comet Halley, respectively. 

Some evidence exists that this stream was detected visually, 
its radiant being regarded as early activity of the June 
Boijtids (Olivier, 1916; Smith, 1932). 

This stream is a contributor to Hoffmeister’s (1948) 
Scorpius-Sagittarius system. 

This shower was observed only in 1937. Two sets of elements 
are given to present likely extremes. 

This shower was observed only by radar and only in 1958. 
It was absent in the years 1952 to 1956. 
This stream is the maximum of Hoffmeister’s (1948) 
Scorpius-Sagittarius system. 

This weak visual stream has appeared only from 1966 
onward (Hindley, 1969). Two sets of elements are given to 
present likely extremes. 

This shower was observed only in 1937. Two sets of elements 
are given to present likely extremes. Hoffmeister’s Orbit I 
(1948, p. 122) for a = 2.5 is incorrect. 
This shower was strong only in 1916 (100 hr-I) and showed 
6 hr-1 in 1921 (Hoffmeister, 1921). 

This shower was observed only by radar from 1953 through 
1958. It does not appear in visual lists, although it should 
if it is not a recent arrival at the earth’s orbit. Two sets 
of elements are given to present likely extremes. 

These are Weiss’ (1960b) Capricornids; They are not 
resolvable visually from the Southern 5 Aquarids. 

These are Weiss’ (1960b) Piscis Austrinids. They are not 
resolvable visually from the Southern b Aquarids. 
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Northern L Aquarids 

Southern Piscids and 
Northern Piscids 

Aurigids 

Southern Taurids and 
Northern Taurids 

Annual Andromedids 

Andromedids 

October Draconids 

Leonids 

December Phoenicids 

Coma Berenicids 

Early on, this shower is not resolvable visually from the 
Southern d Aquarids, and in its feeble late stages, it contri- 
butes to Hoffmeister’s (1948) visual Piscids. 

These streams contribute to Hoffmeister’s (1948) visual 
Pis cids . 

This shower was strong for 1 hr before morning twilight 
on one night only. 

These streams cannot be resolved from one another visually. 

This stream begins its activity by contributing to Hoffmeister’s 
(1948) visual Piscids and then moves northward toward the 
radiant of the famous Andromedid showers. Two radiants 
and sets of elements are given to display the changes during 
the earth’s passage through the stream. 

Strong showers occurred on December 5, 1741; December 7, 
1798 (- 400 hr-1); December 7, 1830; December 6, 1838 
(- 100 hr-l); December 6, 1847 (- 150 hr-l); November 30, 
1867; November 27, 1872; November 27, 1885 (- 13,000 hr-1); 
November 23, 1892 (- 300 hr-l); November 24, 1899 (- 100 1x-1); 
November 21, 1904 (- 20 hr-1); and November 15, 1940 
(- 30 hr-1). 

Strong showers occurred in 1927 (17 hr-l), 1933 (30, 000 hr-l), 
1946 (10,000 hr-l), and 1952 (200 hr-1). 

Strong showers occurred in 1799, 1832, 1833, 1834, 1839, 
1866, 1867, 1868, 1898, 1901, 1903, 1961, 1965, 1966, and 
1969. In other years, activity was very feeble. 

This shower appeared only in 1965. The northern radiant is 
visual; the southern is from radar observations. 

The December portion of this stream is called the December 
Leo Minorids by Cook . (1972), but Lindblad (1971b) 
found bridging meteors that connect the December Leo 
Minorids to the Coma Berenicids in January. 
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