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I begin with two assumptions: first, the accuracy of the

GEOS-C altimeter is known; second, the altimeter measures the

distance between the satellite and the geoid, (that is, the

geoid is coincident with sea level). In the context of GEOS-C,
the first assumption is definitely false. In fact, the primary

objective of the GEOS-C altimeter experiment is to verify the
accuracy of the altimeter itself. This is as it should be; the

altimeter opens up such a fruitful source of data, that it is

most important to determine just how good this data is. How-

ever, it is hoped that this question can be resolved, so that the

data then can be used for geodetic and geophysical application.

With respect to the difference between sea level and the geoid,

any time-invariant effects (like currents) or long-period effects

(like tides) will be an order of magnitude smaller than the fine

structure in the geoid separation (of the order of 5 to i0

meters) which cannot be discerned by dynamical satellite analysis

but which may be realizable from altimetry.

The basic principle of geoid determination from satellite

altimetry over the oceans is as follows (fig I). By tracking,

the height of the satellite above the ellipsoid, h , is obtained.

The satellite's height above the geoid (using assuNption 2 above),

h, is obtained by altimetry. Then the geoid height, N = h e - h.

The question arises: since the height of the geoid above

the ellipsoid depends on the determination of a dynamic orbit,
and this in turn depends on the knowledge of the gravitational

field, which is equivalent to knowing the geoidal height, isn't

this a circular approach? The answer is, no, because the var-

iations in N are of much shorter wavelength than their effect on

the orbit, and hence the orbit is not appreciably affected by

neglect of these short wave variations.

A further step in addition to the determination of the

localized ocean geoid is the use of the altimetry data to refine

the global gravity field. This will yield a better reference

orbit and determination of he, and thereby improve the value of
N. The altimetry provides data for observation equations which

can be added to observation equations obtained from tracking for

the improvement of parameters relating to the orbit and the
gravitational field.
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Figure 1

From fig. I,

: r - S

where _, r, s are vectors, r and s being the geocentric position
of the satellite and sub-satellite ocean surface point, respect-

ively. For the purpose of writing a linearized observation

equation, the small angles between these vectors are neglected,

and their magnitudes are taken in the relation

h = r - s.

This approximation can be recovered by iteration.

is

i

Then the observation equation for the measured altitude h,

hob s + 6h = hcalc + _ Ap

where p is a vector of parameters and 6h is due to the imperfect-
ion in the observation. Then

Also,

_r

hob s + 6h = hcalc + _ Ap

r : r(E, X)
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where E is a set of orbital parameters, and X a set of gravita-

tional parameters (non-gravitational effects being neglected or

considered as perfectly known).

s : A (i + BTx)
e

represents the radius of a point on the geoid expressed in terms

of a scaling factor (which in this case can be taken to be the

earth's equatorial radius, A ) and the set of gravitational

parameters X, oriented by th_ vector B. (For example, if X were

the usual spherical harmonic coefficients, B would be a set of

spherical harmonics).

_r _r _r

Then _ Ap - _E AE + _ AX

_s (i + BTx) + A BTAX
and _ Ap : AA e e

= AA + A BTAx
e e

finally yielding

_r dr BT) AX - AA .
hob s + 6h : hcalc • _-_ E + (_-_ - A e e

The form of this observation equation is due to Kaula (un-

published). A similar formulation can be found in Lundquist

et. al', [1989].

To state the problem in its most comprehensive form involves

two further considerations. First the gravitational parameters,

X, have purposely been written in ambiguous form, because many

of the detailed solutions to this problem proposed up to now have
advocated functions for X which are deliberate alternatives to

the conventional spherical harmonic approach. The essential dif-

ficulty with spherical harmonic coefficients is that they are in-

tegrated averages over the entire surface, and thus the higher

degree harmonics can have no meaningful physical correlation with

specific portions of the earth's surface. A second consideration

is the insertion of all possible data sources for an overall

solution. This means taking advantage of gravity data on land,

and the tracking data itself.
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Let us consider an approach due to Koch [1970]. Since

altimetry yields geoid heights, N, as data, the inverse of Stokes'

formula can be employed [Molodensky et. al., 1962, p. 50]

N N - N

Ags = - Y(_ + _ _ 3 s do)

where the subscript s denotes the point of measurement, r is the

distance between s and the surface elements do of the sphere

of radius R, y is normal gravity, and N is the geoid height at d_.

To apply this formula the geoid heights N must be known over the

entire globe; however_ altimetry will not be available over land.

But Stokes' formula itself is available:

ms = 4 Ry1 If Ag.S( )

where _ is the spherical arc between s and do, S(_) is Stokes'

function, and Ag is the gravity anomaly on do. This formula de-

pends on knowledge everywhere of Ag which has been obtained mainly

on land (and is even sparse in many areas there). But gravity

anomalies closest to the fixed point have the greatest influence

on the geoid undulations, and approximate values for Ag on the

oceans should suffice to give a good initial set of N on the

continents. Then successive approximation between these two

formulas should yield representative values of Ag s over the
oceans.

This preliminary approach has both mathematical and physical
deficiencies. The former lies in the fact that the conditions

for convergence of the scheme are not specifically known and

proven. However, physical intuition leads us to believe that

failure of convergence would be due mainly to a lack of sufficient-

ly well-distributed data. This could be overcome by using sta-

tistically obtained, instead cf observational, data, although

this alternative is not desirable. However, there are also de-

ficiencies due to imperfect physical assumptions. The use of

Stokes' formula and its inverse presupposes that the Earth has

been "regularized", that is, there are no masses outside the

geoid. Thus all topography is neglected. Over broad regions and

in the middle of the oceans, this will not mean much, but over

special areas of interest--like sea trenches, and the continental

shelf regions--this approximation must be accounted for.

This can beaccomplished by introducing two sets of integral,

equations, one of which uses N, the other Ag, as observational
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data:

R--__j X ds - Ny r s

H-H

x cos 1 x do-
2 R r r _

X do : Ag s

The derivation of these equations may be found in Koch

[1970] and Molodensky et. al. [1962, Ch. 5]. H is the topographic

height and e is the deflection of the vertical. The unknown in
these equations is the parameter X which expresses the anomalous

gravitational field as a simple density layer on the reference
surface. The practical method for solvin_ these equations is to

replace the integration by a summation over a set of surface

elements with a single density, Xi , corresponding to each surface
element g.. This yields a set of linear equations in

l

Xi (i = 1 ..., n) where n is the number of surface elements,

which can be treated as observation equations in the usual fashion,

taking advantage of redundant data (s>n), and employing pertinent

weights.

Young [1970] tackles the same problem as Koch in consider-

ing worldwide data consisting of a mix of gravity anomalies on

land_ and geoid heights (from altimetry)at sea. Young sets up
a function

where T is the anomalous potential. By the so-called fundamental

theorem of geodesy [Heiskanen and Moritz_ 1963_ p. 88]_ there is
obtained

_ r Ag -yN.
2

Young has two purposes; first, to exhibit uniqueness and exist-

ence proofs for the determination of T, and second to provide an
algorithm for the computation of T. The choice of _ satisfies

these purposes in the following way:

: H

is the formulation of the Neumann (or second boundary-value)

problem, which can be solved on the sphere by representing the

kernel K in terms of spherical harmonic functions. Furthermore,
to begin the algorithm, one can set the initial _ equal to
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- _ Ag on land, and to - yN at sea. Thee algorithm _then proceeds2

by solving for T in terms of spherical harmonic corrections 6C

directly from the integral expression. Practically, this is done

by a summation over a set of surface subdivisions, similar to

Koch's formulation. However, since spherical harmonics are
directly involved in the kernel, each summation term itself is

an integral of the form

_2

pm (sine) cos¢ d_n
¢,

where pm (sin_) is a spherical harmonic function of the latitude
n

¢. Recursion •formulas for this are available to expedite the

computation. The algorithm proceeds by computing corrections to

in terms of the current 6C until convergence is reached.

Young provides necessary conditions for the uniqueness and

existence of a solution for his method. As long as the zeroth
harmonic is given, a solution exists regardless of the relat_e

distribution of the gravimetry and altimetry. The computational

procedure, however, does not provide for the use of redundant

data, and involves more complicated computations than Koch's
method.

The most comprehensive attack on the problem combines

altimetry, gravimetry, and tracking data into one simultaneous

solution. This has been outlined by Koch [1970] in connection

with the density layer method of expressing the geopotential.

The integral equation expressing the geoid height, N, as a

function of X is introduced into the observation equation for the
altimetry measurement h _ . This is combined with integral

equations in Ag and with°_e conventional tracking data observa-

tion equation. Computational complexity is proportional to the

size of the surface elements chosen. This particular approach

is very flexible since the size can be varied according to the

specific use being made. The satellite orbit is not sensitive
to high frequency undulations (except in special cases of

resonance); hence the residual field can be approximated by a

coarse subdivision. On the other hand, to obtain the detailed

structure, a finer subdivision will be required. A common solu-
tion of all data (altimetry, gravity, and tracking) can employ

both the fine and coarse mesh. Final values of N and Ag are

computed directly from the corresponding integrals using the

final set of Xi. If desired, spherical harmonic coefficients can

also be obtained from the Xi.

Lundquist et. al. [1969] have concentrated on the problem

of best expressing the geopotential. This method employs

"sampling" functions which are linear combinations of spherical

2-6

|



harmonics, such that each function peaks strongly in the neighbor,
hood of a particular point. If the formulation is to be

equivalent to a spherical harmonic expansion up to degree n,

then (n+l) _ such points are chosen. The rationale behind this

method lies in the simplification in the computational pro-

cedure over the conventional spherical harmonic representation
of the gravity field. The coefficients of these functions are

those designated by X in the altimetry observation equation
exhibited earlier, and their improvement AX is obtained by using

just this equation. Paraphrasing from Lundquist et. al. [1969],

the sampling function coefficients over ground points will main-

i tain their initial values, obtained from the best information

available otherwise. However, there appears to be no reason why

a further set of observation equations for Ag in terms of

sampling function coefficient parameters could not be added, so

that the method would be conceptually as complete as the other

._ two. In addition, the approaches of both Young and Lundquist
et. al. should be amenable to the addition of tracking data in
a simultaneous solution.

It is plausible to assume that all these methods are equally

reliable in having the theoretical capability of yielding valid

results. The superiority of one over the other will probably be

in computing efficiency.

The amount of altimetry data points recoverable from GEOS-C

is potentially very large. Assuming one measurement per second

for a 20 minute altimeter run each revolution over a two-year
lifetime, the number of data points is of the order of

107 A more conservative estimate, mentioned by Hudson [1971]

is 5.5(105 ) data Points based on 1500 hours of data. Since there

are approximately 36,000 1° squares (subdivisions whose area is

the same as a 1° x 1 ° square at the equator) over water, there

will be on the average 15 data points per 1 ° square. In general,

'iithe oceans will be covered by altimetry better than the land by

gravity, provided that the coverage is uniform.

!i Statistical problems will emerge. Since the satellite

i travels about ?km per second, the points falling within a degreesquare (i00 x 100km) are likely to occur over one or two in-

:_ dividual revolutions, and thus present correlation problems.

Should aggregation be practiced as in the case of Dopper data
of which there is an excess? In fact this is the method employed

on land where the Ag are aggregates obtained from individual

i gravity measurements.

The way to first proceed probably will be to obtain a

_! uniform solution for the global geoid employing large size

subdivisions, say I0 ° x i0 °. The altimetry could be aggregated
more consistently over a block of this size. Such a solution

should be sufficiently accurate to obtain an orbit for the
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purpose of securing the geocentric position of the satellite

wMich can serve as a geoidal _eference against each altimeter
measurement.
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