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The radar height distribution of the vertical ocean
surface structure has been measured with a 1 ns radar

system from a tower platform. It is shown that the
reflecting properties of the ocean biases the mean sea
level by about 5% of the significant wave height, and that
the radar measured water wave height is reduced by about

6_ of the significant wave height. For SWH up to 2 m, it

can be assumed that the shape of the distribution is

normal and that the mean sea level and water wave height

of the observed ocean surface can be directly obtained

from the convolved pulse, that is obtained from a high

flying altimeter, with accuracies of a few centimeters.

Measurements of higher sea states and utilizatioff of an

aircraft platform for pulse width limited observations

are needed to confirm these preliminary results.

INTEODUCT ION

A series of radar measurements over the ocean were

made in the spring of 1970 to determine the effect of water
waves on extremely narrow radar pulses. The objective of

the measurements was to obtain from an analysis of the

interaction of a 1 nanosecond radar pulse with the vertical

water wave structure quantitative information about the

electromagnetic (e-m) ocean height distribution. This

information is needed to establish the potential height

accuracy and resolution which could be attained with a

high resolution satellite radar altimeter over the ocean.
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OBSERVATION PROCEDURE AND METHOD OF ANALYSIS

The radar system [1] was installed on the Chesapeake

Light Tower (Fig. 1) which is located about 15 miles east
of Virginia Beach, Virginia. The radar antennas are about
21 meters above the mean sea surface and sampled a 70 cm

diameter ocean surface spot 10 times per second. The ocean
wave heights were monitored by three wave staffs separated

by about 1.5 m and placed in a delta configuration about
the radar illuminated spot (Fig. 2). The wave staff outputs
were recorded simultaneously with the corresponding radar

return on digital magnetic tape at the 10 Hz rate. For
range and reflectivity calibrations, a corner reflector was

placed about 3 m above the mean sea surface in the center
of the radar beam. A raw data record is shown in Fig. 3

where the wave staff record has been superimposed on the

radar return, but shifted in delay, so as to allow the

pulse shape of the radar return to be seen more clearly.

The ocean radar returns provide two independent types of

information, the delay variations of the radar echo with

time and the amplitude variations for the different delays.

These two effects will be analyzed separately.

The radar height of the sea surface is obtained by
measuring the differential delay between the peak amplitude
of the sea surface and corner reflector radar return with a

potential precision of 0.25 ns. it can be seen that the radar
height variations correspond very closely to the wave staff
record.

The amplitude variations as a function of observed

delay is obtained by calibrating and converting each ampli-
tude to a normalized radar cross section and then averaging

the normalized radar cross section for each delay. The two
effects are then combined to obtain the resultant electro-

magnetic height distribution or impulse response.

It was found that the observations could be separated
into two groups, one representing the lower sea states
covering significant wave heights (SWH) from 0.85 to 1.25 m
with wind velocities ranging from 0 to 20 knots and higher
sea states with SWH from 1.15 to 1.80 m and wind velocities
from 20 to 27.5 knots. The basic difference between the

t_,o groups was the noticeably increased fine structure in
the height distribution for the larger sea state that was
superimposed on the basic gaussian distribution.

In the following presentation of the results a typical
example of each group will be discussed to indicate the
effect of the sea state on the radar returns and their rela L
[_n to the wave staff data.
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WAVE STAFF AND RADAR HEIGHT MEASUREMENTS

When the amplitude variations of the radar return are
removed and only the delay of the peak amplitude is plotted
as a function of time, the radar and wave staff profiles of
the sea surface for a calm and 20 knot wind sea are obtained

as shown in Figs. 4a, b. It is seen that for the calm sea
(CLT 17) the radar essentially profiles the underlying sea
surface due to the small spot size that is produced by the
small antenna beam width and the low platform height. For
the higher sea state (CLT 7), it is apparent that some of

the higher peaks of the water waves are missed by the radar
and the peaks are rounded off due to the finite spot size.
The effect of this distortion on the height distribution is
shown in Fig. 5a, b for the two cases and the corresponding
statistical parameters are given in Table 1. For the calm

sea, while no significant difference is apparent in the
height distribution, there is a decrease of the skewness

value from 0.15 to 0.08 for the radar height distribution.
For the wind driven sea there is a decrease both in the

skewness value and the width of the radar height distribution,
which is apparent from the large number of measured heights
near the centroid. The reduced skewness and width is

probably caused by the finite size of the illuminated spot

and the favoring of the lower areas for reflection, as will
be shown later. The differential values of the four moments

for all the observations are listed in Table 2. It is seen

that the shift in height is random, with an average value

of less than 1 am, but that small biases are introduced to

the width_ skewness, and kurtosis values of the radar height
dis tribut ions.

The wave spectra for the two cases have been plotted
in Figs. 6a, b to provide further comparisons between the
radar and wave staff data. The mean frequency and frequency
width for the two observations are given in Table 1. Almost
no difference is found for the calm sea, but a slight decrease
of the mean frequency occurs for the higher sea state with

a small higher frequency component appearing in the radar
wave spectrum.

OCEAN RADAR IMPULSE RESPONSE

The beam width limited radar response of this experi-

ment can berelated to the equivalent pulse width limited

radar response from a satellite altimeter through the ocean

radar impulse response. This is obtained by multiplying

the radar height distribution by the average normalized

radar cross section at each height increment. Typical
normal radar cross section variations as a function of
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delay are shown in Figs. 7a, b and the gradual increase of
the normalized radar cross section as the radar wave pene-
trates the deeper layers of the water wave structure was
noted for all the observed sea states. The slope of the

reflectivity curve varied between 3 to 10 cross section
units per nanosecond, but no relation between slope and

significant wave height or wind velocity could be establish-
ed. Multiplying the normalized radar cross section with the
radar height distributions shown previously for the two sea
states, and normalizing the resultant distribution for com-

parison with the wave staff distribution results in Figs.
8a, b. The weighted distribution is defined as the radar

impulse response or electromagnetic height distribution
and would correspond to a radar return of an impulse, if
a large cylindrical antenna beam were available. The
shift of the radar impulse response distribution toward
the troughs due to the increasing reflectivity is apparent,

but the overall shape has not been greatly affected.

ANALYSIS OF IMPULSE RESPONSE AND RESULTS

The impu_ e response shown above are typical Of 16
observations that covered a range of significant wave heights
from 0.84 to 1.81 m •(2.77 - 6.05 feet) and wind velocities

from 0 to 27.5 knots. To obtain quantitative estimates of
the changes of the impulse response distribution relative to
the wave staff height distribution, the first four moments

of the impulse response distribution were compared with the

corresponding moments of the wave staff distribution and
the differential values are listed in Table 3.

The shift of the first moment (centroid) is plotted as
a function of the significant wave height in Fig. 9. The
scatter in the measurements may indicate that the bias is

not simply related to the significant wave height, but
attempts to relate the spread of the bias to wind velocity,
wave spectra skewness, and kurtosis have not been successful.
It seems at present that, while other unknown factors of the

sea surface structure may contribute to the shift of the
electromagnetic centroid, the significant water wave heights
are still the dominating parameter in the functional relation.
A linear least square fit to the data shows that the bias is

about 4.7 percent of the significant wave height with an
rms error of ±5 mm. The results indicate that for signifi-
cant wave heights up to 2 m the error of the radar height
measurements should not exceed 10 cm an_ if independent
water wave height measurements are available, this error
could be further reduced by a first order correction.
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To evaluate the potential height resolution of the
radar measurements, the width of the impulse response dis-
tribution was compared with the width of the wave staff
distribution in terms of their equivalent SWH. Again the
only relation that could be established was an increasing
reduction of the impulse response width relative to the
wave staff distribution width as the SWH increased. The

results are plotted in terms of the SWH shift in Fig. 10.
A linear least squares fit indicates that on the average
the equivalent radar SWH is reduced by about 6 percent of

the geometric SWH with an rms error of _+1.4 cm.

The skewness values, appeared to be random with an
average value of about 0.15 for the wave staff distribu-
tion and 0.1 for the impulse response.

The radar kurtosis values were slightly smaller than
the corresponding, geometric kurtosis values.

Summarizing the results of the impulse response
analysis, it is concluded that for small significant wave
heights (up to 2 m)

1. the basic normal height distribution is preserved
in the radar measurements,

2. the shift of the electromagnetic centroid is small

for low SWH, but increases with SWH and may become signifi-
cant for larger wave heights, and

3. the narrowing of the impulse response introduces
a small error in the derived SWH.

PULSE WIDTH LIMITED PULSE SHAPE

To extrapolate from the beam width limited radar

observations to the pulse width limited measurements obtained

from satelliteheights, the observed impulse responses were
convolved with a Ins ramp and the resulting pulse rise time

is shown in Figs. lla, b for the two examples of sea state.

It is apparent that the fine structure of the impulse response

is smoothed out, and that the assumption of a simple gaussian
distribution model for the impulse response would introduce

little error. For a simple gaussian distribution, the mean

delay is obtained at the 50 percent threshold level of the
maximum amplitude, and the standard deviation can be obtained

by halving the delay difference between the 84 percent and

16 percent threshold level of the pulse rise time. Applying

the threshold technique to the observed data, it was found

that the fine structure of the impulse response introduces
peak errors of less than I cm to the radar mean height and

radar significant wave height.
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MODIFICATION OF SATELLITE ALTIMETER PULSE SHAPE
AND DESIGN CRITERIA

The previously shown pulse rise time assumes infinite

bandwidth receivers and no noise contribution. The finite

bandwidth of a receiver will introduce an additional delay

and decrease the slope of the radar return. While the

additional delay can be calibrated out, at least to first

order, the increased slope will reduce the accuracy if

noise is present. While the receiver noise can be reduced

by increasing the radar system sensitivity, the basic
accuracy is limited by the intrinsic noise due to sea

clutter, which is determined by the available integration
time for a given spatial resolution. Thus it is desirable

to maximize the slope for a gfven sea state if high accuracy

is needed. This means that not only should the receiver

bandwidth be larger by at least a factor of 2 than that

needed for maximum signal to noise ratio, but also that the

transmitted pulse width he small relative to the width of

the impulse response or the equivalent significant wave

height. The effect of a I0 ns pulse on the slope of the
rise time is shown in Figs. 12a, b for the observations

shown previously. Inthis case the pulse width is compar-
able to the width of the impulse response and the slope is

increased by a factor of about 2. Thus for optimum height

accuracy, low sea statesj narrow pulse widths, and wide

receiver bandwidths are necessary.

FUTURE PLANS

Additional measurements are needed to establish

whether the behavior of the impulse response as obtained

f:'om a fixed platform close to the observed ocean surface
can be extended to radar observations from a high moving

platform. In addition, data at higher sea states are
needed to determine whether the relation between the mean

height and significant wave height can be extended to

larger significant wave heights and whether the assumption

of a simple gaussian model distribution is valid for larger

sea states. If the impulse response distribution is

sufficiently distorted at higher sea states, it may be

possible to discriminate between swell and wind driven

waves and thus obtain information on the wind velocity
field.
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An aircraft experiment is now being planned to fly a

1 nanosecond radar over the observing tower and obtain

simultaneous radar measurements so that the assumed ergodic

hypothesis, i.e., whether time and spatial water wave

distributions are equivalent, can be proven. After the

initial calibration of the aircraft data, the moving

platform will be used to simulate pulse width limited

observations and seek out higher sea states so that the

data can be extended to the larger significant wave

heights.
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TABLE 2

DIFFERENTIAL /_EAN HEIGHT, SWH, SKEWNESS AND KURTOSIS

FOR RADAR HEIGHT DISTRIBUTION

4
8WH A h A h A_ A _ v Obs.
(m) (m) (m) w (kn_ts)

0.84 0.004 0.018 0.11 0.02 10 NE 22

0.88 0.015 0.006 -0.07 -0.13 5 NE 20

0.88 -0.02 0.024 0.15 -- 15 SE 24

0.92 -0.006 -0.006 0.13 0.04 20 SE 25

0.96 -0.008 -0.048 0.19 0.07 14 E 23

1.02 0.014 0 0.02 0.05 20 SSE 27

1.04 0 -0.012 0.1 0 0 2

1.04 0.018 0.012 0.07 0.05 0 17

1.04 -0.003 0.012 0.01 0..12 15 SE 15

1.05 0.02 -0.018 -0.12 -0.11 15 SE 13

1.15 0.01 -0.004 0.06 -0.09 27.5 S 26

1.20 0.02 -0.03 0.07 -0.06 12 NNE 5

1.26 0.016 -0.04 0.08 -0.2 6 ENE 11

1.74 -0.01 -0.09 0.05 -0.02 12 NE I0

1.76 0.009 -0.12 0.11 -0.08 21 NE 7

1.81 0.027 -0.12 0.Ii 0.02 20 NE 8
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TABLE 3

DIFFERENTIAL MEAN HEIGHT,

AND KURTOSIS FOR OCEAN RADAR

SWH, SKEWNESS

IMPULSE RESPONSE

4
SWH A h A hw AX A_ vw
(m) (m) (m) (knots)

iii 0.84 0.027 0.003 0.13
0.88 0.011 -0.054 -0.i

i!_ 0.88 0. 006 -0. 003 0.08

-_ 0.92 0.063 -0.036 0.04

• 0.96 0.080 -0.066 0.09

1.02 0.057 -0.072 0.01

:_, 1.04 0.014 -0.003 0.07

1.04 0.057 0.003 0.07

1.04 0.041 -0.012 0

1.05 0.051 -0.102 -0.18

:" 1 15 0 080 -0.036 0 26

1.20 0.033 -0.042 0

1.26 0.051 -0.12 0.12

'i, 1.74 0.054 -0. 102 0.08

ii 1.76 0.084 -0. 132 0.13
4

i:_ 1.81 0.12 -0.222 0.14

.i

Obs.

-0.02 10 NE 22

-0.08 5 NE 20

-0.18 15 SE 24

-0.16 20 SE 25

0.02 14 E 23

-0.09 20 SSE 27

0.02 0 2

-O.11 0 17

O. 03 15 SE 15

-0.2 15 SE 13

-o.o4 27.5 s 26

-0.04 12 NEE 5

-0.01 6 ENE II

-0.07 12 NE I0

-0.13 21 NE 7

-0.05 20 NE 8
f
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Figure I. Chesapeake light tower.
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Figure _. Placement of wave staffs and corner reflector.
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Raw data record for observation 7.
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Figure 5a. Wavestaff and direct radar height distribution for
observations I? and 7.
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Figure 11a. I nanosecond pulse shape, for observations 17 and 7.
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Pigure 11b. I nanosecond pulse shape for observations 17 and ?.
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Y'3:_re 12a. I0 nanosecond pulse shape for observations 17 and ?.
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