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The purpose of this paper is to summarize our current work related to

geodetic altimetry. Special emphasis is placed on the effects of pulse

l@ngth on both altimetry and sea-state estimation. Some discussion is also

given of system tradeoff parameters and sea truth requirements to support

scattering studies. The paper first considers the problem of analyzing

signal characteristics and altimeter waveforms arising from rough surface

backscattering.

1.0 Rough Sea Effects on the Altimeter Backscattered Waveform

The most frequently used analytical model for describing ocean surface

waveform effects on the altimeter signal is based on linear scattering

theory [1-3]. With this model, the scattering process may be conceptualized

as resulting from the double convolution of the transmitted pulse, the sea

scattering impulse response, and the altimeter system impulse response, as

shown in Fig. i. The sea surface ensemble average, temporal impulse

response f(t) for this model may be written, for pulse lengths up to a few

microseconds, as [2]

kc
f(t) = _ l(8,t)

ct.4

f

I h-z) p(z) dz

-ct

2

where c is the velocity of light, h is satellite altitude, p(z) is the ocean

wave height probability distribution as weighted by the radar observation,

and l(8,t) describes the altimeter antenna pattern.

The principal assumptions in this theory are:

(i) The radar scattering from the ocean surface occurs as though

the surface contained an arbitrarily large number of spatially
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stationary, independent, random scattering elements distributed

on the ocean surface.

(2) The radar scattering is scalar with no polarization effects,

and the return power is proportional to the incremental

ocean area illuminated, appropriately weighted by antenna

beamwidth and geometry factors. Radar cross-section varla-

tlon with angle is assumed to be negligible over the antenna

beamwldth expanse.

(3) The effect of ocean surface roughness on the radar waveform

is derived based upon a model which assumes that the

reflection statistics are known a priori. The scattering

function is assumed to be distributed in the vertical

coordinate in a manner describable by probability density

function p(z).

(4) It is assumed that the convolution operations can be inter-

changed with the waveform expectation operatlon, for ensemble

or mean waveform computations.

The greatest unknown in this model is considered to be the effective

wave height probability distribution p(z) and its relationship to the true

ocean surface. The work of Yaplee et al. marks the first occasion for

which experimental data is available concerning p(z) and the ocean wave

height distribution simultaneously [6]. The oceanographic unknowns and

statistical complexities of the problem appear to preclude a derivation of

the p(z) distribution based on oceanographic variables in the foreseeable

future [4]. Longuet-Higgins has given an analysis based on a facet scattering

model and use of idealized ocean surface statistics [5]. Attempts to extend

this work have been unsuccessful for the following reasons: The two

dimensional problem involves ocean spectral moments m.. such as

E x x y

in which S(kX,ky ) is the directional wave number spectrum. This integral can

be shown to be unbounded for frequently used ocean spectral models [4].

Secondly, joint probability distributions of the ocean surface are not known.
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In regard to the other assumptions, experimental tests of correctness

of the overall model will be available from the Skylab waveform experiment.

Item 4 above may be verified and the model improved for particular system

configurations via Monte Carlo simulations presently being conducted by the

authors or through a tlme-variant linear system formulation of the problem.

A problem area that is closely associated with waveformmodeling is

that of sea-state bias. The term "sea-state bias" is used herein to denote

differences between mean sea level as sensed by the altimeter and geometrical

mean sea level. That is, any discrepancies that arise in the altitude

processing operation that results from differences in the radar observed p(z)

and the true wave height distribution q(z) will appear as a bias in the

altitude measurement. Estimates of sea state bias were first made by Pierson

based upon the bias effect arising solely from skewness in q(z) and by

equating p(z) to q(z) [i]. (It should be noted that such a model results in

larger biases for shorter pulse length altimeters [2]). In the following

section we examine the experimental data recently published by Yaplee et al.,

and present a rationale for the essential time displacements he observed

between p(z) and q(z).

2.0 Sea State Bias and Radar Observed Wave Height Distribution

The experimental data recently published by _aplee et al. on their

nanosecond radar measurements shows sea state bias to be much larger than

previously estimated for low sea states, While th9 data base is quite

limited and the results are preliminary, it is of interest to examine Yaplee's

data in terms of its inferences regarding radar backscattering. On physical

grounds we expect the radar wave height profile to be a distorted version

of the ocean wave height profile, and the data of Yaplee et al. may be

interpreted as indicating that this distortion appears mainly as a relative

time shift between the two distributions as shown in Fig. 2. In the following

we find that this apparent displacement can be accounted for, within

experimental error,'by assuming that p(z) is a weighted replica of q(z).

Yaplee's experimental configuration is that of a beamwidth limited

exploration of the sea surface. The surface area investigated is that due

to an essentially collimated beam. The data we wish to discuss is contained

in Figures 9-12 of Ref. 6.
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In attempting to model rough sea effects, it has been universally

assumed that the cross-section is a function of the area of the ocean surface

illuminated. There can be not large quarrel with this assumption; however,

there is presently no basis for assuming that the scattering cross-section

per unit area is independent of height above "mean sea level", (MSL), and

only a function of the projected area. Figures 9 and i0 of [6] can, in fact,

be interpreted as showing that radar cross-section of the ocean surface over

the range of wave heights increases linearly with increasing distance below

the wave crests. For these figures, the slope of the linear increase is

approximately

.185
m _ -_

o
for Figure (9) (calm seas)

•141
m -

(I
for Figure (10)(21 knot wind)

where o is the rms wave height•

If we take the geometricai centers of the delay expanse in these data as

identifying MSL, then the variation of radar cross-section about MSL is given

by

z
1 - m--

(_

where z is measured positive about MSL. Assume for the moment that p(z) can

be interpreted as the product of two terms:

p(z) = h(z).q(z)

where h(z) is the z variation of radar cross-section per unit area and q(z)

is the probability of finding a surface element z meters about MSL. We might

expect that q(z) may well be of the form proposed by Pierson and Mehr [i].

However, for the conditions at the time that Yaplee's data were taken

(calm sea-swell), the skewness parameter _ is expected to be quite small•

Accordingly, wetake

q(z)=
2

z
exp _m .

2o2
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We are concerned, therefore, with the behavior of p(z) as implied by

Yaplee's data.

Three curves are shown In Flg. 3.

I 2

p(x) = h(x).q(x) =-_ [l-mx] exp(- _)

i

q(x) = _ exp (- '-x'_")d.

p(x + .175) = 1.0_._._22exp (- .(x - .175) 2 ).

2

weighted Gausslan

true Gausslan

displaced Gausslan

where m was taken to be 0.115.

Comparison of these curves indicates that p(x) is displaced from the

wave height distribution, just as is the data in Yaplee's Figure ii (see

Flg. 2). Thex variable used in these calculations ls the height normalized

by the rms wave height. From Yaplee's Figure (ii), we find that the rms

wave height expressed in nanoseconds is 1.725. The delay between the peaks

of the two curves [p(x) and q(x)] is therefore .3 nanoseconds. The third

curve--merely the Gaussian curve shifted and re-normalized--shows the extent

to which p(x) can be approximated by a shifted Gausslan curve. The reader

may satisfy himself that Yaplee's radar data in Figure ii can be obtained

by simply shifting the wave staff data .3 nanoseconds to the right.

Thls discussion suggests that one possible explanation of the shift in

¥aplee's radar curve is a simple height dependence of the scattering

cross-section as provided by the h(z) term. Note that for this sea condition,

a skewness parameter _ cannot support the data--it would require a _ of

approximately .37 for a calm sea! Note further that the skewness correction

a Gaussian curve is essentially a cubic [i + 6-- (x 2 - 3)] and thatto there

wlll be three places at which the Gaussian intercepts the composite curves.

Yaplee's data show only one intersection between the radar and wave staff

data--whlch would be expected if the radar data are just shifted wave staff

data. Thls may be taken as further proof that for this sea condition the

wave staff data are essentially Gausslan.

Under conditions of a true wlnd-driven sea, one might expect that

the variation of radar cross-section wlth height above mean sea level may
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change. Possibly "m" might decrease. With increasing wlnd.speed, one might

also expect the value of %, the skewness parameter in the wave height

distribution, to increase. The overall effect on sea surface bias will still

be Contained in the formula for p(z)

p(z) = I +6 3 - m exp
o

These detailed variations with wind speed and sea state are not known and must

be measured. In any event, Yaplee has made a clear case for the inclusion of

a term which reflects the increasing radar cross-section per unit area with

increasing distance below the wave crests.

3.0 Selection of GEOS-C System Parameters Relative

to a Sea-State Experiment

Inthls section we discussed the problem of estimating ocean surface

roughness using information available from altimeter normal incidence wave-

forms. Referring back to Fig. I, in such an experiment an attempt would be

made to measure the width of the p(z) distribution (i.e., its rms value)

and thereby infer the surface roughness parameter in the wave height distribu-

tion q(z). In order to implement such an experiment, it is necessary to

sample a number of points on each incoming waveform and subsequently average

(either in the satellite or on the ground) the sample values to extract

the ensemble average. The mean waveform can then be examined to derive

surface roughness estimates. If it is assumed that p(z) is a symmetrical bell

shaped distribution, in an idealized case the sample and hold spacing could

be as great as one-half the transmitted pulse length. If it desired to obtain

data on the p(z) distribution, then a rather dense collection of sample and

hold values would be needed. The problem areas in such an experiment

are: i) Given that satellite constraints place a limit on the sample and

hold spacing and signal-to-noise ratio available, and that sea state

sensitivity is greatest for short pulses; then an optimum pulse length may

exist for seastate measurement. 2) The number of waveform samples available

per measurement interval is limited by the homogeneity of the ocean surface

during the experiment, the statistical nature of the received signal and other
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system constraints. These factors may be seen from an examination of Figs.

4 and 5, which comprise computed mean waveforms as a function of sea state.

These figures show square-law detected waveforms for a matched receiver

(i.e. an IF bandwidth equal to the reciprocal of the pulse length) for both

I0 and 25 n.s. pulse lengths. RMS surface roughness values are shown on

these figures for an assumed Gaussian p(z). To convert these values to

significant wave height (H 1/3 ) requires multiplication by a factor of

four [l].

Figures 4 and 5 also show the one-slgma confidence bounds for the

magnitude fluctuations on a waveform containing 1000 sample cases. Based

upon an input signal comprising a square-law detected narrow-band,

time-varying Gaussian signal, the rms deviatlon of a sample function about

the distribution mean is

2

x

Y

where y is the detected process and y the input process. For this model the

output will be chi-squared distributed (single degree of freedom) and the

average value of y is

This distribution will be modified to some degree, by the presence of the

post-detection filter. Our recent work has shown the filter to produce

significant departures from the chi-squared distribution for filter bandwidths

of approximately the "matched filter" condition. Figure 7 contains a

histogram of the filtered distribution, based on simulation results. It

shows a standard deviation of very nearly one-half that of the chi-squared

distribution. Adding this factor to the above result gives a vertical error

component o of ,
v

o
v

waveform ensemble average
m

These data have been computed by both closed form and hybrid computers

simulations; as verification of the interchange of ensemble and convolution

operations.
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where the waveform ensemble average is taken to be the value of the true

will be i/2_n
mean waveform at the point of interest. For example, °v

at the peak of the normalized mean waveform; or _ 2.2% of the peak for

n = I000.

Figure 6 is a graph of the relative sensitivity of the i0 and 25

nanosecond pulse length altimeters. These data are a re-plotted version of

the information contained in Figs. 4 and 5. Note that the shorter pulse

length increases sensitivity to the lower sea states.

In summary, the uncertainty in measuring surface roughness, for seas

in the range of 1-2 meters rms, for the 25 ns pulse length is ~ 0.2 meter

rms for a one second average of i000 pulses. Table I gives other estimates.

Table I

Estimated uncertainty in measuring

surface roughness for a i0 or 25

ns pulse lengths.

Sea Roughness Uncertainty (1-2 rms seas)

Averaging 25 ns I0 ns

Period rms El/3 rP.s HI/3
Sec.

1 0.21 meters 0.84 meters 0.14 0.56

5 .07 .28 meters .045 .18

The timing error component in the waveformmeasurement, which relates to

sample and hold jitter is neglected in the above discussion for the following

reasons. Assuming that the sample and hold circuits follow the output of a

split gate tracker, this error will be approximately 3.6 ns for n = i000,

SNR = I0 db, T = i0 ns and for a tracker bandwidth of i0 Hz (bandwidth is

related to orbit eccentricity) [7,15]. If instead the sample and hold

circuits are held stationary during the sea-state experiment interval, and

adequately spaced to define the mean waveform, this error component will be

approximately 14 ns for an orbit ellipticity of 1.05 and for a i second

averaglng interval. As the third option, the sample and hold timing could

be programmed, based on orbit parameters or tracker data, thereby reducing
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this error component to a fraction of the vertical error. This added

complexity appears necessary except for highly circular orbits.

4.0 Altitude Measurement Considerations

At the present time it appears that GEOS-C will utilize a pulse

compression mode, which in turn may permit use of pulse lengths as short

as I0 n.s. Considerable emphasis has been placed on a i0 n.s. system in

past program meetings and the purpose of this section is to briefly indi-

cate other system considerations.

Previous system error analyses have shown that the largest random,

instrument error in the altitude measurement is likely to be altitude

noise [2,_,8,9]. Based on a pulse repetition frequency (prf) which provides

independent waveform samples, the random altitude error o is given by [15]a

a

0.1ST _ 7 6 8

_6L

where 6L is the 3db loop bandwidth, T is the pulse length in nanoseconds, and

SNR is signal-to-noise ratio. For high signal-to-noise ratios, this ex-

pression may be approximated as

As a simple tradeoff situation, assume that it is possible to use an altimeter

that either (a) operates at an unambiguous prf of i00 pps and with • = I0 n.s.,

or (b) uses an ambiguous prf of 1,000 pps (which necessitates an acquisition

mode) and a pulse length of 25 n.s. Use of the above equation sh@ws that

the 25 n.s. system will produce a lower c value. Other levels of comparison
a

are possible. If both (a) and (b) operate at an ambiguous prf based on the

doppler criterion, c can be shown to be proportional to pulse length to the
a
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three-fourths power. If it is further assumed that the signal pulse signal-

to-noise ratio decreases from i0 db to 5 db, the first equation above may

be evaluated to show that

/7 6 8

a _, TlO 3/

o (25 n.s.) -
a 7 6 ,8

+ SNR(25) + SNR2(25)

--_ 0.8

and the I0 n.s. system gives an improvement of _ 20%.

The purpose of this discussion is to point out the fallacy In assessing

altimeter performance solely on the basis of pulse length; careful considera-

tion must also be given to satellite hardware constraints affecting average

transmitter power, complexity of sample and hold circuits, logic clock rates,

degree of on-board processing available and so forth.'

5.0 Ground Truth Needs for a o ° Experiment

It is often stated that normal incidence, centimeter r-f wavelength

scattering is dominated by the short wavelength or capillary range of the ocean

spectrum. This statement derives from series approximations or asymptotic

expansions of the physical optics scattering integral, in which o is found

to be proportional to the mean-squared slope of the ocean surface [!0]. This

slope dependency coupled with use of popular models of the ocean spectrum

forms the basis for this assumed capillary dependency. The work to be

summarized below examines in detail the question of what ocean wavelength range

dominates the physical optics scattering integral for a Phillips type of

spectrum; thls question is important in its implications concerning sea truth
o

measurements necessary for validating a o experiment.

The near-normal incidence dependence of o ° on ocean surface parameters is

generally agreed to depend on the integral

='_o 2"n" J2_orCOS_Sln8- 4_2h2cos2e[l-On(r,_)]
0 m

.. ISC ffi e rdrd_
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where

m

k = rf wavenumber
O

h2 = mean-squared height of the ocean waves
m

6 = angle of incidence (measured from the normal to the mean

ocean surface)

0n(r,_) = normalized surface height correlation function.

In order to verify the relationship between a° and sea state, it is

necessary to measure the mean-squared ocean height and also obtain the ocean

height correlation function, simultaneously with o°. One approach to deter-

mining Pn(r,_), the normalized height correlation function, is to measure

the ocean height spectrum S(k,_) and subsequently to compute Pn(r,_) from

the transform relation,

Pn(r,_) =-- i-/o=/o
2_h 2

m

S(k,_) ejkrc°s(_-_) kdkd_

The spectral form chosen for this study is primarily based on the

asymptotic behavior of the Phillips equilibrium spectrum [13]. The low wave-

number range, for which the analysis is less sensitive, is based on experi-

mental data given in [15]. The spectral form is

Sa(k) =
k 5

(k 2 + a2) 4

where 8 = 4.05xi0 -3, a2 = 1/(300 v4), v is the wind speed which has dimensions

in knots and k has dimensions in centimeters. These values equate the mean

square height derived from Sa(k) to that of the Pierson-Moskowltz spectrum.

In accordance with most scattering analyses, the spectrum is taken to be

isotropic [i0].

12-11



Pn(r) = ar -arKo(ar) + + _ Kl(ar

i51

iiii

where Ko(ar) and Kl(ar ) are modified Bessel functions. A plot of Pn(r) and

the scattering Integrand is shown in Figures 8 and 9. Several unsuccessful

attempts were made to obtain an asymptotic expansion which would represent

the o° behavior as a function of wind speed. The integrand plots in Figure 9

provide a graphic illustration of the difficulty associated with asymptotic

techniques. The effective integration range spreads in the r parameter to

the extent that it is difficult to obtain a valid point expansion. The

scattering integral ISC is shown in Figures i0 and ii as a function of

wind speed and angle of incidence for an r-f wavelength of 3 cm. These

figures also show a comparison with experimental data from Ref. ii. Note

that a saturation effect at the higher wind speeds is present in Figure i0.

To compute the effect of spectrum truncation on the correlation function,

the upper limit on the k-integration was taken to be k rather than
c

infinity, i.e.,

k

i/0c n(r)--
m

Jo(kr) Sa(k) kdk

f

In order to avoid a time consuming numerical integration, the

following series representations for Pn(r) were developed and verified;

ir2)mb
= E 2 m + 8 0(kcr)

m=0 (m!)

where for k r < i,
c

_(kcr) -- 0
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and fOr(ak---qc)> 9 and kcr < 5

1

_(kcr) = _ Zm=2 (m!) 2(2m-2)

and flnally for(-_)2> 9 and kcr>5 ,

1 - Jo(kcr) + I-_l Jl(kc r)

"[ j2 2gl(kcr ) Jo(kcr) go(kcr) Jl(kcr )

+ _-- (kcr) 2 - (kcr)

The functions gl(kc r) and go(kcr) are given in [14], y is Stirling's constant

and the b coefficients are as follows:
m

1 62 + a262 1 4_3
=---- -_a obo 3a 2

bl _log(a 2) 11 3 4.2 1 6 3= -_-+ log(f) + 3a26 - _a 0 + _a 6

I0 2
b 2 "_-a + 4a21og(a 2) _ 4a21og(6) _ 6a46 + 2a662 1 8_3

and 6 = (kc2

When k
c

+ a2) -1.

(the upper truncation point) was set equal to one (cm) -1, the

÷ _ Toscattering integral ISC had essentially the same value as when k c

understand how the scattering integral behaves as a function of the spectral

truncation point, it is necessary to examine l-p(r) as a function of r.

Figure 12 is such a plot with k = l(cm) -I and as a function of r and wind
c
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speed. All of the curves have exactly the sameshapewith a downwardtransla-
tion being the only effect of increasing the velocity. This fact indicates

that the correlation function Pn(r) is parabolic over the region of interest.
The other important point to note from Figure 12 is that [i - Pn(r)] decreases
almost uniformly with increasing velocity. In Figure 13, the spectrum
interval from i0 -3- I (cm)-I was taken to represent Pn(r). Here it should
be noted that [i - Pn(r)] becomesindependentof velocity for v _ 20 knots.
Since the mean-squaredheight continues to increase with velocity, this would

imply that the scattering integral ISCwill exhibit a very rapid roll-off
as a function of velocity for greater than 20 knots. Figure 14 showshow the
scattering integral behaveswhenthe lower spectrumtruncation point is
increased from zero to 10-2 (cm)-I. Figure 15 showsthe effect of truncating

the spectrumbelow kc = 1.0 (cm) -I. It is most interesting that while

varying the lower truncation point drastically changes the shape of the curve,

changing the upper truncation point apparently only causes a level shift and

not a significant change in the shape of the curve.

The computations presented here indicate that a correlation of spectrally

narrow-band sea truth data and experimental values of o with theoretical

formulations (for near-normal incidence) will not yield good agreement. Data

shown in Figure 15 indicates ' that sea truth data over a wavenumber range of
-i

0.001 to 1.0 cm will be adequate for equilibrium surface winds < 8 knots.

For higher winds, it is necessary to locate the lower truncation point at a

position somewhat below the equilibrium spectral peak.

It must also be concluded that the often-used isotropic assumption is,

strictly speaking, not appropriate. However, adequate oceanographic infor-

mation is not available for an analysis which includes directionality. Also,

current work indicates that the conclusions given herein will still hold.

6.0 Summary and Conclusions

We discussed the use of ocean surface impulse response models to obtain

radar return waveform expectation values. It was assumed that the ensemble

averaging and convolution operations could be interchanged, and preliminary

results from our current analog simulation work support this assumption.

We distinguished between the radar-observed height distribution p(z) and

the true geometric distribution q(z). Although it has usually been assumed
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that p(z) and q(z) are identical, we discussed the experiment of Yaplee et

al. as an example of a situation in which experimental data could be

explalned by assuming that p(z) and q(z) are not identical. We recommend

that Yaplee's type of experimental data be obtained from as wide a range of

sea conditions as possible and that, because of the difficulty of scaling

from near-surface to satellite conditions, direct measurement of satellite

altimeter bias be attempted using over-water radar reflectors.

We presented examples to'show that sea state resolution and altitude

precision did not simply vary inversely as the radar pulse length but were

functions of a number of radar system parameters. It is fallacious to assess

altimeter performance solely on the basis of pulse length and experimenters

_hould instead state their needs in such terms as: extent of ocean surface

over which "sea state" data can be averaged; needed sea-state resolutions and

roughness range, or geographic regions of prime interest ; specifications

of desired altitude noise level, and time or spatial regions over which the

data can be averaged. This information can then be used as input data during

the altimeter system optimization phase, to select the radar system parameters

and to establish different parameter tradeoffs.

Using a physical optics theory for 3 cm rf wavelength scattering

at normal incidence from an ocean described by a Phillips type of

equilibrium spectrum, we found that o ° depends heavily on surface wavenumbers

-i
in the range .001 - 1.0 cm , or ocean surface wavelengths of .06 - 60

meters, for surface winds _ 8 knots. This means that any o ° experimentation

must include acquisition of gravity wave-range spectral information,

not the often-assumed capillary range, as "sea-truth" for o ° verification.

The analysis also predicts negative results for o° vs. wind speed experiments

since a saturation effect is found in the normal incidence case, similar to

O

the effect noted by Guinard for scatterometer geometry [ii]. The Skylab o

experiment should provide a most valuable data base for this effect.
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