130135

FINAL REPORT
FOR
LUNAR LIBRATION POINT FLIGHT DYNAMICS STUDY (MAY 1968 - NOV 1968)
CONTRACT NO: NAS 5-11551
Prepared by
GENERAL ELECTRIC COMPANY
for
GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

Res
$\therefore \because$
$\therefore \quad \therefore$
$\therefore \quad$ nasa-cr LUNAR LIBRATION POI M
FLIGHT DYNAMICS STUDY Final Report, May - Nov. 1968 (General Electric Co.) CSCL 22A 132 P WC $\$ 8.75$

GENERAL ELECTRIC

FINAL REPORT

FOR
LUNAR LIBRATION POINT FLIGHT DYNAMICS STUDY
(MAY 1968 - NOVEMBER 1968)

CONTRACT NO. NAS 5-11551
goddard space flight center

CONTRACTING OFFICER: C.W. TROTTER TECHNICAL MONITOR: ROBERT GROVES

Preparediay

SPACE SYSTEMS ORGANIZATION Valley Forge Space Center P. O. Box 8555 • Philadelphia, Penna. 19101

STUDY NIANAGER - DR. J.D. PORTER

FOR

GODDARD SPACE FLIGHT CENTER
 GREENBELT, MARYLAND

ABSTRACT

This study evaluated two satellite concepts (Halo - a satellite "orbiting" the L_{2} point, and Hummingbird - a satellite hovering near L_{2}) for a lunar libration point (L_{2}) satellite to be used as a tracking and communications link with the far side of the moon. Study areas included flight dynamics, communications, attitude control, propulsion, and system integration. On the basis of these studies, both the concepts were proved feasible. However, the Halo ; was shown to be the better concept. The Halo concept should be investigated in more detail, and technology studies in the areas of multiple feed antennas and specific attitude control techniques should be initiated.

TABLE OF CONTENTS

Section Page
1 INTRODUCTION AND SUMMARY. 1-1
2 FLIGHT DYNAMICS STUDIES 2-1
2.1 Transfer Trajectories 2-1
2.1.1 Trajectory Calculations 2-2
2.1.2 In-Plane Trajectories 2-3
2.1.3 Launch Windows 2-9
2.1.4 Out-of-Plane Transfer Trajectories. 2-12
2.2 Equations of Motion 2-13
2.2.1 Hummingbird 2-19
2.2.2 Halo 2-21
2.2.3 Nonlinear Effects 2-25
2.3 Tracking Accuracy Study 2-28
2.3.1 Technical Approach 2-28
2.3.2 Results of Tracking Accuracy Program 2-30
2.4 Halo Orbit Simulation 2-33
3 COMMUNICATIONS STUDIES 3-1
3.1 Link Analyses 3-1
3.2 I'ransponder Characteristics 3-14
3.3 Antenna Characteristics 3-18
4 ATTITUDE CONTROL STUDIES 4-1
4.1 Attitude Control During Midcourse Correction and Lunar Orbit Insertion. 4-1
4.2 Attitude Control Concepts During the Communication and Stationkeeping Phases of the Mission 4-2
4.3 Hummingbird Results 4-7
4.4 Halo Results 4-10
4.5 Conclusions. 4-13

TABLE OF CONTENTS (Cont'd)

5 PROPULSION STUDIES. 5-1
5.1 Introduction 5-1
5. 2 Launch Vehicles for Earth Orbit and Lunar Transfer Trajectory 5-1
5.3 Propulsion System Characteristics 5-2
5.4 Midcourse Correction and Lunar Orbit Injection 5-11
5.5 Lunar Orbit Maintenance 5-15
5.6 Attitude Controi 5-18
5.7 Figure of Merit Propulsion System Tradeoff 5-18
5.3 Summary and Conclusions 5-21
6 SYSTEM INTEGRATION AND EVALUATION 6-1
6.1 Subsystem Modeling 6-1
6.2 System Synthesis 6-2
6.3 System Evaluation 6-2
7 CONCLUSIONS AND RECOMMENDATIONS 7-1
7.1 Conclusions. 7-1
7.2 Recommendations for Future Studies 7-2
8 REFERENCES 8-1
APPENDIX I: Attitude Control I-1
APPENDIX II: Subsystem Models II-1

IIST OF ILLUSTRATIONS

Figure Page
2-1 Earth to L_{2} Transfer Trajectory in Rotating Coordinate System. 2-4
2-2 L_{2} to Moon Transfer Trajectories. 2-5
2-3 L_{2} to Moon Transfer Trajectories. 2-6
2-4 Earth to Moon Transfer Trajectories. 2-7
2-5 Earth to L_{2} Transfer Trajectory "Fast" L_{2} - Moon Transfer. 2-8
2-6 Earth to L_{2} Transfer Trajectory "Slow" L_{2} - Moon Transfer. 2-8
2-7 Launch Times vs Moon Position 2-11
2-8 Transfer Trajectory Inclination vs Moon Position 2-11
2-9 L_{2} - Moon Out-of-Plane Transfers 2-122-102-112-122-132-14
Earth-Moon- L_{2} Geometry 2-19
Halo Orbit, X-Y Projection, 0 to 20 Days 2-37
Halo Orbit, Y-Z Projection, 0 to 20 Days 2-37
Halo Orbit, X-Y Projection, 20 to 37 Days. 2-38
Halo Orbit, Y-Z Projection, 20 to 37 Days. 2-38
3-1 Apollo Unified S-Band Communication Links 3-4
3-2 Block Diagram of Lunar Libration Satellite Transponder 3-15
3-3 Beam Displacement vs Satellite Offset 3-19
4-1 Hummingbird and Halo Orbit Stabilization and Control Block Diagram (Concept No. 1) 4-5
4-2
Control Block Diagram (Concept No. 2) 4-5
5-1 Typical Bipropellant Propulsion System Schematic 5-3
5-2 Bipropellant (MMH/ $\mathrm{N}_{2} \mathrm{O}_{4}$) Propulsion System
Weight vs Total Impulse 5-45-3
Bipropellant ($\mathrm{MMH} / \mathrm{N}_{2} \mathrm{O}_{4}$) System Thruster Weight vs Thrust Level. 5-5
5-4 Typical Monopropellant Propuision System Schematic 5-6
5-5 Monopropellant ($\mathrm{N}_{2} \mathrm{H}_{4}$) Propulsion System Weight vs Total Impulse 5-75-75-8
5-9 Propellant Required (Percent of Spacecraft Weight) as a Function of Propulsion System Delivered Impulse 5-17
5-6
5-6 Monopropellant ($\mathrm{N}_{2} \mathrm{H}_{4}$) System Thruster Weight vs Thrust Level. 5-8
SERT II Thruster System, Anode Diameter 15 Centimeters 5-10
Mid-course Correction and Lunar Orbit Injection Propellant Requirements. 5-12
5-10 Launch Vehicles vs Payload to Lunar Transfer Injection 5-19

SECTION 1

INTRODUCTION AND STMMARY

This is the final report on the Lunar Libration Point Flight Dynamics Study as specified in Contract NAS5-11551.

The program objective was to obtair: preliminary information on the problems involved with communications and ilight dynamics for a lunar libration point relay sateilite syste:.1 for use as a tracking and communications link between the far side of the moon and an earthbound tracking system for two types of satellites:
a. Halo type, which orbits the L_{2} point while continuously visible from Earth.
b. Hummingbira type, which hovers near the L_{2};oint and is also continuously visible from Earth.

On the basis of these studies, the feasibility of each concept was to be evaluated anc: she better concept selected as the preterred system.

The sturiy was performed by determining the system requirements on the basis of flight dynamics and communivations studies, and by synthesizing and evaluating system concepts for both the Halo and Hummingbird satelyi:2s. In order to synthesize the concepts, studies in the attitude control and propulsion areas were required. Other subsystem models, such as the pover and structural subsystems, were utilized as necessary. The study guidelines are given in the following list:
a. 1971 State of the Art
b. Three Year Lifetime
c. NASA Supplied List of Launch Vehicles
d. Use of Apollo Communication Modes as the Desired Communications Links
e. Use of Apollo CSM and LM as Typical Lunar Orbiting and Lunar Surface Vehicles.

Both types of satellites were deemed feasible. However, on the basis of lower system weight and cost, and no increase in system complexity, the Halo satellite was selected as the preferred system.

It was recognized early in the study that the major trade-off area was whether the more difficult attitude control problem of the Halo orbiter would outweigh the increased propulsion requirements of the Hummingbird. The tradeoff went in favor of the Halo, however, because the selection of a dual beam, single antenna for both concepts simplified the Halo attitude control requirements to the point of equivalency with the Hummingbird; also the larger propulsion requirements of the Hummingbird tipped the scales in the Halo's favor.

The studies in the areas of flight dynamics, communications, attitude control, propulsion, and systems integration and evaluation will be described in the following sections as well as the conclusions and recommendations.

SECTION 2

FLIGHT DYNAMICS STUDIES

The major objectives of the flight dynamics studies were to determine the ΔV requirements for orbit injection and orbit maintenance and to determine the relationship between tracking accuracy and station-keeping ΔV requirement.

The areas described in the following sections are transfer trajeciories, launch windows, equations of motion around L_{2}, stabilization requirements and orbit simulation.

Many flight modes such as transfers are similar for both the Halo and Hummingbird concepts. Rather than repeat the discussicns, this section will be described along the flight mode lines rather than orbiter type. Unless otherwise noted, the following material pertains to both the Halo and Hummingbird concepts.

2.1 TRANSFER TRAJECTORIES

At the present time a satellite in orbit about or in the vicinity of the L_{2} lunar libration point must by necessity originate from the Earth. Thus, an investigation of the possible transfer trajectories between the Earth and L_{2} was carried out. Since there exists an infinite number of possible transfers, it was decided to determine only the existence and characteristics of some reasonable transfers without recourse to any optimization procedure. Reasonable transfers here refer to practical flight times and allowable velocity impulses. As a start in understanding the transfer trajectory problem, calculations were restricted initially to the Earth-Moon plane. These results were then applied as a first approximation for the calculation of out-of-plane transfers. Out-ofplane transfers are necessary since an Earth launch into the Moon's orbital plane is possible only under very restrictive conditions. It was assumed that a launch vehicle will initially place the satellite in a low-Earth parking orbit. The launch window problem is then involved in blending the timing and geometry constraints of the launch site location and the injection into the transfer trajectory.

2.1.1 TRAJECTORY CALCULATIONS

Transfer trajectories were computed by numerically integrating the restricted 3-body equations of motion expressed in a rotating coordinate system. The model used was one in which the Earth and Moon revolve in circular orbits about their barycenter. The coordinate system employed was centered at the Moon with the X-axis along the Earth to Moon line direction, the Z -axis perpendicular to the Earth-Moon plane, and the Y-axis in the plane so as to form a right-handed system. The equations of motion in this system are:

$$
\begin{aligned}
& \ddot{X}=2 \dot{Y}+X\left(1-\frac{1-\mu}{R_{i}^{3}}-\frac{\mu}{R_{2}^{3}}\right)+(1-\mu)\left(1-\frac{1}{R_{1}^{3}}\right) \\
& \ddot{Y}=-2 \dot{X}+Y\left(1-\frac{(1-\mu)}{R_{1}{ }^{3}}-\frac{\mu}{R_{2}^{3}}\right) \\
& \ddot{Z}=-Z\left(\frac{(1-\mu)}{R_{1}{ }^{3}}+\frac{\mu}{R_{2}^{3}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& R_{1}^{2}=(X+1)^{2}+Y^{2}+Z^{2} \\
& R_{2}^{2}=X^{2}+Y^{2}+Z^{2}
\end{aligned}
$$

R_{1} is che distance of the vehicle from the center of the Earth and R_{2} is the distance from the center of the Moon. An important parameter, the only constant of integration of these equations, is the Jacobi constant given by:

$$
c=\Omega-v^{2}
$$

where

$$
\Omega=(X+1-\mu)^{2}+Y^{2}+\frac{2(1-\mu)}{R_{1}}+\frac{2 \mu}{R_{2}}
$$

The units used in these equations are such that the unit of mass is equal to the sum of the masses of the Earth and Moon and the unit of distance is equal to the Earth-Moon distance. Also, the unit of time is chosen such that the angular velocity of the Earth-Moon line is equal to 1 . In this system of units the parameter $\mu=0.01215$ and is equal to the ratio of the mass of the Moon to the sum of the masses. The relation of these units to the metric system is given below:

Distance Unit	$384,400 \mathrm{~km}$
Time Unit	4.34838 days
Velocity Unit	$1.02316 \mathrm{~km} / \mathrm{sec}$
Acceleration Unit	$2.72334 \times 10^{-3} \mathrm{~m} / \mathrm{sec}^{2}$

The numerical integration was performed by utilizing a Runge-Kutta procedure, since this allowed a variable integration step size depending on the vehicle's position in the Earth-Moon system. It was assumed that transfer trajectories originated at a distance from Earth corresponding to a parking orbit altitude of 185.2 km and ended by passing through the L_{2} location. The retro velocity requirement at L_{2} is then quoted simply as the vehicle's velocity at L_{2}. In actuality the vehicle will not come to rest at L_{2}, but will either orbit it or will be forced to remain at some off-set point. The difference between the true and the simplified terminal velocities, however, will be small. In practice, some transfer trajectories were calculated by starting at the L_{2} point and traveling toward the Earth. This was done in order to simplify the interaction calculations which were necessary to match end conditions. Due to the symmetry of the rotating coordinate system, time reveioai trajecuries were obtained by mirroring in the $\mathrm{X}-\mathrm{Z}$ plane.

2.1.2 IN-PLANE TRAJECTORIES

The first types of transfer trajectories investigater were ones which lie in the Earth-Moon plane and allow two-dimensional calculations. Twe modes of transfers were studied: direct, and close lunar fly-by. In the direct mode, trajectories are free-flown from
an Earth parking orbit to the L_{2} point, while in the other mode, a close lunar pass is made on the Earth outbound leg and a velocity impulse is applied to the vehicle while near the Moon to reduce the velocity requirements at L_{2}.

Direct mode transfers were computed by varying the velocity vector in the vicinity of the Earth, assuming a tangential impulse until a trajectory passed through the L_{2} point. An example of direct mode transfer is shown in Figure 2-1 for a trip time of four days and for a velocity requirement of $1230 \mathrm{~m} / \mathrm{sec}$ at L_{2}. This velocity is typical of acceptable direct mode transfer trajectories. In fact, the velocity requirement at the L_{2} point assuming a massless Moon is $1054 \mathrm{~m} / \mathrm{sec}$.

Figure 2-1. Earth to L_{2} Transfer Trajectory in Rotating Coordinate System

Fly-by mode transfer trajectories were calculated by computing transfers between the L_{2} point and the Moon and between the Earth and the Moon. Position and velocity of the vehicle for the different legs in the vicinity of the Moon were then studied in order to determine the required velocity impulse.

Transfer trajectories from the L_{2} point to the Moon were constructed by varying the magnitude of the velocity vector at L_{2} and determining the closest approach distance at the Moon (perilune distance). Figure 2-2 shows the minimum radius at the Moon and trip time as a function of direction for a fixed velocity at L_{2} of $102.3 \mathrm{~m} / \mathrm{sec}$. Higher velocities will lie below this curve with lower velocities shown above it. By inspecting various velocity curves of the Figure 2-2 type, there are found to be two transfer trajectories which give a minimum ΔV at L_{2} in order to satisfy a given perilune distance.

Figure 2-2. L_{2} to Moon Transfer Trajectories

These were characterized by the terms "slow" and "fast" due to their difference in trip times. They are shown in Figure 2-3 where the perilune radius is plotted as a function of minimum ΔV at L_{2}. This minimum ΔV was found by varying the direction of the velocity vector at L_{2} for a rixed perilune radius. An interesting aspect of the "slow" L_{2}-Moon transfer is the property that the $v t^{\prime}$ icle never crosses the Earth-Moon line behind the Moon, thus satisfying the occultation problem.

Figure 2-3. L_{2} to Moon Transfer Trajectories

Next, Earth to Moon fly-by trajectories were constructed and studied. These transfers originated from a simulated 185.2 km circular parking orbit about the Earth. A tangential impulse at Earth was assumed and the velocity magnitude and injection radius position were varied in order to obtain transfers. Some typical Earth to Moon transfers are shown in Figure 2-4 for a fixed velocity magnitude at Earth. These trajectories and others were used to determine the vehicle's velocity in the vicinity of the Moon.

Figure 2-4. Earth to Moon Transfer Trajectories

Finally these two transfers were matched in the vicinity of the Moon. The procedure for doing this was as follows. Representative transfers of the "fast" and "slow" L_{2} to Moon types were found which hed a perilune miss distance of 185.2 km . A tangential velosity impulse was then applied at this point in order to obtain the final desired perigee condition 185.2 km closest to approach at the Earth. An iteration on the magnitude of this impulse had to be made in order to obtain the end conditions. The Earth-to-Moon transfers provided initial starting values for the iteration. A minimum velocity was then found by varying the point of application in the trajectory near the perilune point. An absolute minimum velocity impulse might be found if non-tange.ltial impulses were allowed, however, this would result at the most in only a few percent decrease.

Figure 2-5. Earth to L_{2} Transfer Trajectory "Fast" L_{2}-Moon Transfer

Figure 2-6. Earth to L_{2} Transfer Trajectory "Slow" L_{2}-Moon Transfer

Two sample complete Earth to L_{2} point transfers using close lunar fly-by are shown in Figures 2-5 and 2-6 for the "fast" and "slow" cases. In Figure 2-5 ("fast" Moon-L 2 transfer) the tota' Earth to L_{2} trip time is 8.59 days; 5.36 days for the Earth to Moon leg and 3.23 days for the Nioon to L_{2} leg. The total required ΔV is $333 \mathrm{~m} / \mathrm{sec} ; 189 \mathrm{~m} / \mathrm{sec}$ in the vicinity of the Moon and $144 \mathrm{~m} / \mathrm{sec}$ at L_{2}. In Figure 2-6 ("slow" Moon- L_{2} transfer) the total Earth to L_{2} trip "ime is 17.86 days; 8.38 days for the Earth to Moon leg and 9.48 days for the Moon to L_{2} leg. The total required ΔV is $353 \mathrm{~m} / \mathrm{sec} ; 247 \mathrm{~m} / \mathrm{sec}$ in the vicinity of the Moon and $106 \mathrm{~m} / \mathrm{sec}$ at L_{2}. Thus, comparing the direct and close lunar fly-by modes, there is a sizable reduction in ΔV requirement in employing the latter mode.

So far, only transfer trajectories which lie in the Earth-Moon plane have been investigated. However, in order to obtain a reasonable launch window, transfer trajectories out of the plane must be flown. The launch window problem will now be introduced and discussed,

2.1.3 LAUNCH WINDOWS

The problems involved in obtaining a launch window for Earth to L_{2} transfer trajectories lie in the following four facts:
a. Launch site is situated at a fixed latitude on a rotating Earth.
b. Moon and L_{2} point are in an orbit inclined to the Earth's equatorial plane.
c. The position of the Moon relative to the ascending node of the Moon's orbital plane on the equatorial plane moves through 360 degrees during one month.
d. The inclination of the Moon's orbital plane relative to the Earth equatorial plane varies from about 18.5 degrees to 28.5 degrees over an 18-1/2 year cycle.

A laurich window is available, however, twice a day every day of the month under the following three assumptions:
a. Variable launch azimuth
b. Utilization of an Earth parking orbit
c. Variable inclination of the trans-lunar orbit

A launch period is obtrined by determining those periods during the day when a launch plane can be achieved which includes both the launch site and the Moon at lunar fly-by. This implies that this plane includes the Earth-Moon line at fly-by. This is an approximation; however, actual trajectory calculations show it to be a very good one. A variable launch plane is obtainec: by adjusting the launch azimuth and the variable time in Earth parking orbit allows tw: launch periods during the day, one corresponding to a short coast in orbit and the other to a long coast in orbit. During each day of the month the Moon will be in a different position in its orbit, thus causing a variation in each of the launch periods and in the required inclination of the near-Earth transfer trajectory relative to the Moon's orbital plane (i_{TR}).

As an example of possible launch windows, numerical calculations were carried out for the following conditions.
a. Launch site is Cape Kennc ly
b. Launch azimuth range is 90° to 115°
c. Inclination of Moon's orbital plane is 26° (1972)

Results are presented in Figures 2-7 and 2-8. In Figure 2-7 the two launch periods $\left(\Delta t_{1}, \Delta t_{2}\right)$ are shown as a function c^{7} the position of the Moon at lunar fly-by. The angle β is the central angle of the Earth "Ioon line measured from the ascending node of the Moon's orbital plane on the Earth equatorial plane. Also shown in the plot is the waiting time between the two le unch per . ds $\left(\Delta t_{1}-t_{2}\right)$. As can be seen, each launch period varies from 1.3 to 4.6 hours ovf- the month. A total constant launch period of 5.9 hours is possible each day of the ; onth. The waiting time between launch periods varies from 2,1 hours to 9 hours over the month. Figur 2-8 presents the transfer trajectory inclination (i_{TR}) near the Earth as a function of rosition of the Moon at lunar fly-by over the month. In order to make use of the twal possible launch windows, inclinations of -63° to $+63^{\circ}$ relative to the moon's ortrital piane must be available. However, the smallest inclination that can be used has an ..bso'ute magnitude of 2.5 degrees, the difference between the launch site latitude and the inclination of the Mon's orbital plan in 1972. Thus, it is seen that transfer trajecturies which travel out of the Moon's orbital plane must be used in order to obtain a launch windows.

Figure 2-7. Launch Times vs Moon Position

Figure 2-8. Transfer Trajectory Inclination vs Moon Position

2.1.4 OUT-OF-PLANE TRANSFER TRAJECTORIES

During this portion of the study, it was desired to compute representative transfer trajectories which lie out of the Moon's orbital plane. No effort was made to exhaust the total possibility of this type of transfer but only to show the existence of applicable ones. Also, due to the large savings in velocity requirements, only the close lunar flyby mode transfers were investigated.

The method of computing matched transfer legs was similar to that used for the in-plane trajectories. Transfers were calculated from the L_{2} point to the vicinity of the Moon with the velocity vector at L_{2} now having some elevation angle with respect to the Moon's orbital plane. For a fixrd elevation angle, the velocity magnitude was varied until a perilune miss distance of 185.2 km was obtained. The in-plane velocity angle was that fourd from the previous studies for the "fast" $L_{2}-$ Moon transfer. Relations between the velocity elevation angle at L_{2}, the velocity magnitude at L_{2}, and the radius of closest approach at the Moon are presented in Figure 2-9. It can be seen from the upper plot in Figure 2-9 that a perilune altitude of $185.2 \mathrm{~km}\left(\mathrm{R}_{2_{\mathrm{MIN}}}=1922 \mathrm{~km}\right) \mathrm{can}$

Figure 2-9. L_{2}-Moon Out-Of-Plane Transfers
not be achieved if the velocity elevation angle is greater than about 20 degrees. The velocity at $L_{2}\left(\Delta V_{L_{2}}\right)$ as a function of elevation angle for this perilune altitude is shown in the lower plot.

Moon to Earth transfers were then computed by applying a tangential velocity impulse in the vicinity of the Moon, at or near the perilune point. Parameters of actual computed patched trajectories are presented in Table 2-1. The perigee altitude at the Earth was held at 185.2 km . This table indicates that transfers with high near-Earth inclinations ${ }^{\left(i_{T R}\right)}$) can easily be found. For example, the transfer with $i_{T R}=54.31$ degrees requires a total velocity impulse of $370.5 \mathrm{~m} / \mathrm{sec}$, compared with the required impulse of $333 \mathrm{~m} / \mathrm{sec}$. for the in-plane transfer (Figure 2-5), an increase of only 11 percent.

The results shown in Table 2-1 are for positive velocity vector elevation angles at L_{2}. However, due to the symmetry of these transfers with respect to the $X-Y$ plane, identical results except for negative near-Earth inclinations (-i TR) are obtained for negative elevation angles.

2.2 EQUATIONS OF MOTION

In the restricted problem of three bodies, the equations of motion of the third body (conside sed to have negligible mass) in a coordinate system rotating with the primary bodi. s are 'Ref 13, p. 261):

$$
\begin{aligned}
& \ddot{X}-2 \dot{Y}=\frac{\partial \Omega}{\partial X}=\frac{\partial \Omega}{\partial r_{1}} \frac{\partial r_{1}}{\partial X}+\frac{\partial \Omega}{\partial r_{2}} \frac{\partial r_{2}}{\partial X} \\
& \ddot{Y}+2 \dot{X}=\frac{\partial \Omega}{\partial Y}=\frac{\partial \Omega}{\partial r_{1}} \frac{\partial r_{1}}{\partial Y}+\frac{\partial \Omega}{\partial r_{2}} \frac{\partial r_{2}}{\partial Y} \\
& \ddot{Z}=\frac{\partial \Omega}{\partial Z}
\end{aligned}
$$

Table 2-1. Sample 'Trajectories

$0=5^{\circ} \quad \Delta V_{L_{2}}$				
	Sample Number			
	1	2	3	4
$\Delta \alpha$ (deg)	-29.5	-15.8	-1.2	13.5
$\Delta V_{M}(\mathrm{~m} / \mathrm{sec})$	196.5	193.5	193.5	196.7
$\Delta V_{T}(\mathrm{~m} / \mathrm{sec})$	341.8	338.8	338.8	342.0
$\Delta \mathrm{t}_{1}$ (days)	3.22	3.22	3.22	3.22
Δt_{2} (days)	5.19	5.34	5.50	5.67
$\Delta \mathrm{t}_{T}$ (days)	8.41	8.56	8.72	8.89
$\mathrm{i}_{\mathrm{TR}}(\mathrm{deg})$	20.61	19.53	18.46	17.47
$\delta=10^{\circ} \Delta \mathrm{V}_{\mathrm{L}_{2}}=149.8 \mathrm{~m} / \mathrm{sec}$				
Sample Number				
	1	2	3	4
Δ^{α} (deg)	-14.7	0	14.2	28.5
$\Delta V_{M}(\mathrm{~m} / \mathrm{sec})$	220.7	215.1	215.0	219.2
$\Delta \bar{V}_{\mathrm{T}}(\mathrm{~m} / \mathrm{sec})$	370.5	264.9	364.8	369.0
Δt_{1} (days)	3.21	3.21	3.22	3.22
Δi_{2} (days)	5.26	5.47	5.68	5.87
$\Delta t_{T}(\text { days })$	8.47	8.68	8.90	9.09
${ }^{1}$ TR ${ }^{\text {(deg) }}$	54.31	48.25	43.69	40.11

whes:
$\Delta \alpha$: central angle from perilune point
ΔV_{M} : velocity impulse at Moon ΔV_{T} : total velocity impulse $\Delta t_{1}: L_{2}$-Moon trip time
Δt_{2} : Moon-Earth trip time
Δ_{T} : total trip time
${ }^{i_{T R}}$: inclination of transfer trajectory near Earth
where

$$
\begin{aligned}
& \Omega=(1-\mu)\left(\frac{1}{r_{1}}+\frac{r_{1}^{2}}{2}\right)+\mu\left(\frac{1}{r_{2}}+\frac{r_{2}^{2}}{2}\right)-\frac{1}{2} \mu(1-\mu) \\
& \left.r_{1}=\text { distance from first body (mass } 1-\mu\right) \\
& r_{2}=\text { distance from second body (mass } \mu \text {) }
\end{aligned}
$$

The "libration points" are those equilibrium points where

$$
\frac{\partial \Omega}{\partial X}=\frac{\partial \Omega}{\partial Y}=\frac{\partial \Omega}{\partial Z}=0
$$

For the collinear points, $\mathrm{Y}=\mathrm{Z}=0$. Therefore

$$
\frac{\partial r_{1}}{\partial Y}=\frac{\partial r_{2}}{\partial Y}=0 \text { and } \frac{\partial r_{1}}{\partial X}=\frac{\partial r_{2}}{\partial X}=1
$$

The L_{2} point is located along the X-axis at a distance $r_{2}=\rho$ beyond the smaller body such that
or

$$
\frac{\partial \Omega}{\partial r_{1}}+\frac{\partial \Omega}{\partial r_{2}}=0
$$

$$
(1-\mu)\left(\frac{1}{r_{1}^{2}}-r_{1}\right)+\mu\left(\frac{1}{r_{2}^{2}}-r_{2}\right)=0
$$

Since $r_{1}=1+r_{2}=1+\rho$, then

$$
\left(1-\mathbb{D}\left[\frac{1}{\left(1+g^{2}\right.}-1-p\right)\right]+\mu\left(\frac{1}{\rho^{2}}-\rho\right)=0
$$

or

$$
1-\mu+\rho-\frac{1-\mu}{(1+\rho)^{2}}-\frac{\mu}{\rho^{2}}=0
$$

For the Earth-Moon system, $\mu=.012150$. With this value, the above equation has a positive real root at $\rho=0.16782991$.

With a value of $384,400 \mathrm{~km}$ for the Earth-Moon distance, the distance at L_{2} from the Moon is $64,513.8 \mathrm{~km}$.

If the equations of motion are linearized around the L_{2} point, then in a rotating coordinate system centered at L_{2}, we have

$$
\begin{array}{r}
\overline{\mathrm{X}}-2 \dot{\mathrm{Y}}-(1+2 \mathrm{~A}) \mathrm{X}=0 \\
\ddot{\mathrm{Y}}+2 \dot{\mathbf{X}}-(\mathbf{1}-\mathrm{A}) \mathrm{Y}=0 \\
\ddot{\mathrm{Z}}+\mathrm{AZ}=0
\end{array}
$$

where

$$
\mathrm{A}=\frac{1-\mu}{\mathrm{r}_{1}{ }^{3}}+\frac{\mu}{\mathrm{r}_{2}{ }^{3}}
$$

The soiutions of these equations are:

$$
\begin{aligned}
& \mathbf{X}=\frac{1}{\alpha_{1}^{2}+\alpha_{2}^{2}}\left\{\left[\alpha_{1}^{2}+\mathrm{A}+3\right) \cosh \alpha_{1} \mathrm{t}-\left(\alpha_{2}^{2}-\mathrm{A}-3\right)\left(\cos \alpha_{2} \mathrm{t}\right)\right] \mathrm{X}_{\mathrm{o}} \\
& +2(1-\mathrm{A})\left(\frac{1}{\alpha_{1}} \sinh {\alpha_{1}}^{\mathrm{t}}-\frac{1}{\alpha_{2}} \sin \alpha_{2} \mathrm{t}\right) Y_{0} \\
& +\left(\frac{\alpha_{1}^{2}+\mathrm{A}-1}{\alpha_{1}} \sinh 1_{1} \mathrm{t}+\frac{\alpha_{2}^{2}-\mathrm{A}+1}{\alpha_{2}} \sin _{\alpha_{2}} \mathrm{t}\right) \dot{X}_{0} \\
& \left.+2\left(\cosh \alpha_{1} \mathrm{t}-\cos \alpha_{2} \mathrm{t}\right) \dot{Y}_{\mathrm{o}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& Y=\frac{1}{\alpha_{1}^{2}+\alpha_{2}^{2}}\left\{-2(1+2 A)\left(\frac{1}{\alpha_{1}} \sinh \alpha_{1} t-\frac{1}{\alpha_{2}} \sin \alpha_{2} t\right) X_{0}\right. \\
& +\left[{\left.\left.\frac{\alpha_{1}}{2}-2 A+3\right) \cosh \alpha_{1} t+\left(\alpha_{2}^{2}+2 A-3\right) \cos \alpha_{2} t\right] Y_{0}}_{-2\left(\cosh \alpha_{1} t-\cos \alpha_{2} t\right) \dot{X}_{0}}^{\left.+\left(\frac{\alpha_{1}-2 A-1}{\alpha_{1}} \sinh \alpha_{1} t+\frac{\alpha_{2}^{2}+2 A+1}{\alpha_{2}} \sin \alpha_{2}^{t}\right) \quad \dot{Y}_{0}\right\}}\right. \\
& Z=\left(\cos \alpha_{3} t\right) Z_{0}+\frac{1}{\alpha_{3}}\left(\sin \alpha_{3} t\right) \dot{Z}_{0}
\end{aligned}
$$

where α_{1} and α_{2} are the magnitudes of the real and imaginary roots, respectively, of

$$
S^{4}-(A-2) S^{2}+(1+2 A)(1-A)=0
$$

and

$$
\alpha_{3}=\sqrt{A}
$$

For the L_{2} point with $\mu=.012150$:

$$
\begin{aligned}
& A=3.1904366 \quad \text { (The unit of time is } \frac{1 \text { sidereal month }}{2 \pi} \text {) } \\
& \alpha_{1}=2.15868 \\
& \alpha_{2}=1.86265 \\
& \alpha_{3}=1.78618
\end{aligned}
$$

With these values, the solution in the $\mathrm{X}-\mathrm{Y}$ plane is:

$$
\begin{aligned}
X & =\left(1.3347 X_{0}+.2460 \dot{Y}_{0}\right) \cosh \alpha_{1} t-\left(.2496 Y_{0}-.3904 \dot{X}_{0}\right) \sinh \alpha_{1} t \\
& -\left(.3347 X_{0}+.2460 \dot{Y}_{0}\right) \cos \alpha_{2} t+\left(.2893 Y_{0}+.0845 \dot{X}_{0}\right) \sin \alpha_{2} t \\
Y & =\left(.1573 Y_{0}-.2460 \dot{X}_{0}\right) \cosh \alpha_{1} t-\left(.8412 X_{0}+.1551 \dot{Y}_{0}\right) \sinh \alpha_{1} t \\
& +\left(.8427 Y_{0}+.2460 \dot{X}_{0}\right) \cos \alpha_{2} t+\left(.9749 X_{0}+.7166 \dot{Y}_{0}\right) \sin \alpha_{2} t
\end{aligned}
$$

For small values of t, the solution can be written (to terms in t^{4}):

$$
\begin{aligned}
X & =\left[1+(1+2 A) t^{2} / 2-(1+2 A) t^{4} / 24\right] X_{0}+\left[(1-A) t^{3} / 3\right] Y_{0} \\
& +\left[t-(3-2 A) t^{3} / 6\right] \dot{X}_{0}+\left[t^{2}-(2-A) t^{4} / 12\right] \dot{Y}_{0} \\
Y & =-\left[(1+2 A) t^{3} / 3\right] X_{0}+\left[1+(1-A) t^{2} / 2-(1-A)(3+A) t^{4} / 24\right] Y_{o} \\
& -\left[t^{2}-(2-A) t^{4} / 12\right] \dot{X}_{0}+\left[t-(3+A) t^{3} / 6\right] \dot{Y}_{0}
\end{aligned}
$$

If the third body is subject to constant external accelerations, the equations of motion are:

$$
\begin{aligned}
\ddot{X}-2 \dot{Y}-(1+2 A) X & =a_{x} \\
\ddot{Y}+2 \dot{X}-(1-A) Y & =a_{\mathbf{y}} \\
\cdot \ddot{Z}+A Z & =a_{z}
\end{aligned}
$$

For zero initial conditions, the solution of these equations is:

$$
\begin{aligned}
\mathbf{X} & =\frac{1}{\alpha_{1}^{2}+\alpha_{2}^{2}}\left\{\left[\frac{\alpha_{1}^{2}+A-1}{\alpha_{1}^{2}}\left(\cosh \alpha_{1} t-1\right)-\frac{\alpha_{2}^{2}-A+1}{\alpha_{2}^{2}}\left(\cos \alpha_{2} t-1\right)\right]\right. \\
& +\left[\frac{2}{\alpha_{1}} \sinh \alpha_{1} t-\frac{2}{\alpha_{2}} \sin \alpha_{2} t\right] \quad a_{y}
\end{aligned}
$$

$$
\begin{aligned}
Y & =\frac{1}{\alpha_{1}^{2}+\alpha_{2}^{2}}\left\{\left[-\frac{2}{\alpha_{1}} \sinh \alpha_{1} t+\frac{2}{\alpha_{2}} \sin \alpha_{2} t\right] a_{x}\right. \\
& \left.+\left[\frac{\alpha_{1}^{2}-2 A-1}{\alpha_{1}^{2}}\left(\cosh \alpha_{1} t-1\right)-\frac{\alpha_{2}^{2}+2 A+1}{\alpha_{2}^{2}}\left(\cos \alpha_{2} t-1\right)\right] a_{y}\right\} \\
Z & =\frac{1}{\alpha^{2}}\left(1 \cdot \cos \alpha_{3} t\right) a_{z}
\end{aligned}
$$

The Z equation is uncoupled from X and Y and can be treated separately. In order for the vehicle to be in view of the Earth, it must be displaced at least 3100 km from the L_{2} point as shown in Figure 2-10. This can be accomplished within the scope of the mission by inaintaining the vehicle in an offset position (Hummingbird, References 1 and 3) or allowing the vehicle to "orbit" the L_{2} point (Halo orbit) but not coming closer to it than 3100 km . In order to determine the nature of these orbits, and to establish the ΔV requirements, one must consider the free motion of a vehicle in the region of L_{2}.

Figure 2-10. Earth-Moon- L_{2} Geometry

2.2.1 HUMMINGBIRD

In the Hummingbird concept, the vehicle is maintained at a fixed location, displaced a ininimum of 3100 km from the L_{2} point in a direction perpendicular to the Earth-Mcon
line so as to insure line-of-sight at all times from the Earth. For this configuration to be maintained, continuous thrusting must be supplied. The thrust requirement may be obtained from the equations of motion of the vehicle subject to constant external accelerations.

In lunar units, an offset of 3100 km is

$$
\frac{3100}{384,400}=0.00806
$$

$$
\text { and } A=3.19\left(\text { for } L_{2}\right)
$$

For the vehicle to be stationary in the rotating coordinate system

$$
\ddot{X}=\ddot{Y}=\ddot{Z}=\dot{X}=\dot{Y}=\dot{Z}=0
$$

Therefore, letting $\mathrm{X}=0$, the required thrust for an offset in the Y direction is

$$
\begin{aligned}
a_{\mathbf{Y}}=(A-1) Y_{\text {offset }}=2.19 \times 0.00806 & =0.0177 \text { lunar acceleration units } \\
& =4.8 \times 10^{-5} \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

For an offset in the Z direction, the required thrust is

$$
\begin{aligned}
a_{z}=A Z_{\text {offset }}=0.19 \times 0.00806 & =0.0257 \text { lunar acceleration units } \\
& =7.0 \times 10^{-5} \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

An offset in the Y directic.- (in the Earth-Moon plane) requires the least thrust and is therefore preferred. Since the offset from the L_{2} point is small compared with the distance of L_{2} from the Moon ($64,500 \mathrm{~km}$), the distance of the vehicle from the Moon (and from the Earth) is practically unchanged, and the use of the linearized equations is justified.

2.2.2 HALO

If the values of $\mathbf{X}, \mathbf{Y}, \dot{\mathrm{X}}$ and $\dot{\mathrm{Y}}$ at some time are such that coefficients of the hyperbolic terms vanish, the motion of the vehicle in the $X-Y$ plane will be aling an ellipse centered at L_{2} with its major axis in the Y direction. The ratio of the maximum excursion in the Y direction to the maximum excursion in the X direction is 2.9126 and the period is 14.67 days. The motion in the Z direction is simple harmonic with a period of 15.30 days. If the initial conditions are chosen so that only the periodic modes are excited and the maximum Y and Z excursions are each greater than 3100 km and approximately 90° out of phase, the vehicle will orbit around the L_{2} point and will be continuously visible from the Earth. Since the period of the out-of-plane motion is slightly different from the period on the in-plane motion, the projection of the path on a plane perpendicular to the Earth-Moon line will be a Lissajous figure; that is, the initially circular trace will become elliptical and the line-of-sight to the Earth will be interrupted by the Moon for some portion of each orbit. This can be prevented by thrusting at periodic intervals so as to force the two periods to be equal and to maintain the 90 -degree phase relationship.

The phase difference between the two motions accumulating during one-half an orbit is:

$$
\Delta \emptyset=\frac{\underset{2-\alpha}{\alpha}-3}{\alpha_{2}} \pi=0.129 \text { radians }
$$

If the phase control is accomplished by adjusting the out-of-plane motion, the impulse required to correct this phase difference is

$$
\Delta V=\Delta \phi \cdot \alpha_{3} \cdot Z_{\max }
$$

The impulse is applied in the Z direction at the point at maximum Z amplitude. For a $Z_{\text {max }}$ of 3100 km , the required impulse is $1.90 \mathrm{~m} / \mathrm{sec}$ each one-half period or $94 \mathrm{~m} / \mathrm{sec} / \mathrm{yr}$.

Period control of the X-Y motion is more complex due to the presence of the divergent mode. Let it be assumed that corrections are made every one-half orbit, and the resulting change in the half-period is $\Delta \mathrm{T}$. Also, let $\mathrm{X}(0), \mathrm{Y}(0), \dot{\mathrm{X}}(0), \dot{\mathrm{Y}}(0)$ be the X and Y positions and velocities just after a correction, and $X\left(\frac{T}{\dot{Z}}+\Delta T\right), Y\left(\frac{T}{2}+\Delta T\right), \dot{X}\left(\frac{T}{2}+\Delta T\right)$, $\dot{\mathrm{Y}}\left(-\frac{\mathrm{T}}{2}+\Delta \mathrm{T}\right)$ be the positions and velocities just before the next correction. (T is the natural $\mathrm{X}-\mathrm{Y}$ period.) The conditions for periodicity are then:

$$
\begin{aligned}
& \mathrm{X}\left(\frac{\mathrm{~T}}{2}+\Delta \mathrm{T}\right)=-\mathrm{X}(0), \quad \mathrm{Y}\left(\frac{\mathrm{~T}}{2}+\Delta \mathrm{T}\right)=-\mathrm{Y}(0) \\
& \dot{\mathrm{X}}\left(\frac{\mathrm{~T}}{2}+\Delta \mathrm{T}\right)+\Delta \dot{\mathrm{X}}=-\dot{\mathrm{X}}(0), \quad \dot{\mathrm{Y}}\left(\frac{\mathrm{~T}}{2}+\Delta \mathrm{T}\right)+\Delta \dot{\mathrm{Y}}=-\dot{\mathrm{Y}}(0)
\end{aligned}
$$

If the solutions to the linearized equations of motion are substituted into the first set of the above equations, the resulting equations can be solved for $\dot{\mathrm{X}}(0), \dot{\mathrm{Y}}(0), \dot{\mathrm{X}}\left(\frac{\mathrm{T}}{2}+\Delta \mathrm{T}\right)$ and $\dot{Y}\left(\frac{T}{2}+\Delta T\right)$ in terms of $X(0)$ and $Y(0)$. If these are substituted into the second set, the required velocity changes can be solved. The resulting expressions are:

$$
\begin{aligned}
& \Delta \dot{X}=-22.06 \Delta T \cdot X(0) \\
& \Delta \dot{Y}=-2.60 \Delta T \cdot Y(0)
\end{aligned}
$$

The position in the orbit can be expressed as follows:

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{X}_{\text {max }} \cos \theta=0.343 \mathrm{Y}_{\text {max }} \cos \theta \\
& \mathrm{Y}=-\mathrm{Y}_{\text {max }} \sin \theta
\end{aligned}
$$

where $\theta=\alpha_{2}\left(t-t_{0}\right)$ and t_{o} is the time at which the vehicle crosses the X axis. The velocity requirement is then

$$
\begin{aligned}
& \Delta \dot{\mathrm{X}}=[-7.57 \Delta \mathrm{~T} \cos \theta] \mathrm{Y}_{\max } \\
& \Delta \dot{\mathrm{Y}}=[2.60 \Delta \mathrm{~T} \sin \theta] \mathrm{Y}_{\max }
\end{aligned}
$$

or

$$
\Delta V=\sqrt{\Delta \dot{X}^{2}+\Delta \dot{Y}^{2}}=\sqrt{57.36 \cos ^{2} \theta+6.76 \sin ^{2} \theta} \Delta T \cdot Y_{\max }
$$

It can be seen that ΔV is a minimum when $\theta=90^{\circ}$, that is, when the vehicle crosses the Y axis. Therefore the eptimum point to adjust phase is when Y is maximum and X is zero. $\wedge \mathrm{T}$ for one-half period is about 7.5 hours.

The required impulse is in the Y direction and for a Y amplitude of 3100 km is 1.52 $\mathrm{m} / \mathrm{sec}$ every one-half orbit or $73 \mathrm{~m} / \mathrm{sec} / \mathrm{yr}$. If it is considered undesirable for the vehicle to be in a divergent condition (due to the possibility of failing to perform a correction) a method of phase control can be used in which the direction of the impulse is always such that $\Delta \dot{X}=-0.63024 \Delta \dot{Y}$, or at an angle of 122.22° or -57.78° from the X axis. In this case, the divergent mode is not excited and the only permanent effect of the impulse will be on the phase and amplitude of the oscillatory motion. If the impulse is applied about 12 hours before the time of maximum Y excursion, only the phase will be affected, the amplitude remaining unchanged. The impulse necessary to make the $\mathrm{X}-\mathrm{Y}$ period equal to the Z period is about $1.8 \mathrm{~m} / \mathrm{sec}$ every one-half orbit or about $85 / \mathrm{m} / \mathrm{sec} / \mathrm{yr}$ for a maximum Y excursion of 3100 km . If the impulse is made in the same direction but 12 hours before the time of maximum X excursion, the amplitude only will be changed. For a $1 \mathrm{~m} / \mathrm{sec}$ impulse, the change in the maximum Y excursion will be 233 km .

The corrections for maintaining the $\mathrm{X}-\mathrm{Y}$ and Z periods equal require a significant amount of fuel over the expected lifetime of the vehicle. The corrections make up the major portion of the total orbital maintenance requirement, since it appears that the ΔV required for orbit stability is about an order of magnitude less. It is of interest, therefore, to investigate the possibility of reducing the requirem.3nt for period control. It has been found that if the amplitude of the halo orbit in the $\mathrm{X}-\mathrm{Y}$ plane is increased, the $\mathrm{X}-\mathrm{Y}$ and Z periods become more equal, due to non-linear effects.

Using a computer program which numerically integrates the exact, restricted three-body equations, a family of orbits around L_{2} have been found for which the $X-Y$ and Z periods are exactly equal, that is, the orbits are truly periodic in three dimensions, and therefore would require no period control. (The orbits being unstabie, however, active control would still be necessary for stabi'ity.) The maximum Y displacement of these orbits is from $33,000 \mathrm{~km}$ to $45,000 \mathrm{k}$ ll depending on the maximum Z displacement; 100% Earth visibility is achieved at all times. The major disadvantage is that the maximum range from the Moon is about $50,000 \mathrm{~km}$ or $15,000 \mathrm{~km}$ larger than the maximum range with the smaller orbits. Transmission losses would, therefore, be greater. In addition, in order to maintain a more or less constant angular separation between the Earth and the Moon as viewed from the orbit, the maximum Z excursion would also have to be on the order of $35,000 \mathrm{~km}$ to $40,000 \mathrm{~km}$. From a reliminary analysis, it appears that the insertion ΔV requirements for such an orbit would be substantially larger than for a small orbit, since indirect transfers (transfers using a close lunar fly-by) could probably not be used to good advantage.

The solution of the linearized equations of motion in two dimensions has the form:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{A}_{1} \mathrm{e}^{\alpha_{1} \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-\alpha_{1} \mathrm{t}}+\mathrm{A}_{3} \cos \alpha_{2} \mathrm{t}+\mathrm{A}_{4} \sin \alpha_{2} \mathrm{t} \\
& Y=\mathrm{B}_{1} \mathrm{e}^{\alpha_{1} \mathrm{t}}+\mathrm{B}_{2} \mathrm{e}^{-\alpha_{1} \mathrm{t}}+\mathrm{B}_{3} \cos \alpha_{2} \mathrm{t}+\mathrm{B}_{4} \sin \alpha_{2} \mathrm{t}
\end{aligned}
$$

where

$$
A_{1}=1.3374 \mathrm{X}_{0}-0.2486 \mathrm{Y}_{0}+0.3904 \dot{\mathrm{X}}_{\mathrm{o}}+0.2460 \dot{\mathrm{Y}}_{\mathrm{o}}
$$

and

$$
B_{1}=-0.6302 \mathrm{~A}_{1}
$$

It can be seen that A_{1}, since it is the coefficient of an increasing exponential term, determines the rate of divergence, while the other terms are all bounded. This suggests the possible control strategy of changing \dot{X} and \dot{Y} to make $A_{1}=0$. For a given ΔV magnitude, the maximum change in A_{1} is obtained when $\Delta \dot{Y}=0.6302 \Delta \dot{X}$.

The control strategy is, therefore,

$$
\Delta \dot{X}=\frac{1}{0.6302} \quad \Delta \dot{Y}=-K_{1} A_{1}
$$

To insure stability, $\frac{1-\mathrm{e}^{-\alpha} \mathrm{T}}{0.3904}<\mathrm{K}_{1}<\frac{1+\mathrm{e}^{-\alpha_{1} \mathrm{~T}}}{0.3904}$, where T is the interval between corrections.

In order to implement this method of control, it is necessary to be able to estimate the four state variables: X, Y, \dot{X} and \dot{Y}, from Earth-based tracking data. Since these estimates will, in general, be subject to some errors, some residual divergence will remain after each correction. A knowledge of the capability of the tracking and data processing system is therefore necessary to predict the stationkeeping fuel required to insure stability. This problem is discussed in Section 2.3.

2.2.3 NONLINEAR EFFECTS

The linearized analysis presented so far is only an approximation to the actual motion around the libration point. A more accurate treatment of the problem should consider such effects as eccentricity of the lunar orbit, solar gravitational perturbations, and nonlinear terms in the Earth-Moon gravity field.

2.2.3.1 Eccentricity Effects

The libration points represent equilibrium solutions of the equations of motion for cases where the primary bodies move in elliptical orbits as well as circular orbits. Consequently, the effect of eccentricity of the lunar orbit on motion near a libration point is relatively small and does not affect the general nature of the solution.

Using a first-order analysis, Farquhar (Ref 12) obtains additional periodic terms representing the effect of cccentricity. The largest of these terms is about 10% of the amplitude of the halo orbit, or a little more than 300 km for a Y amplitude of 3100 km . This is the largest perturbation for an orbit of this size, since it is an order of magnitude larger than the effects of solar gravitational perturbation and nonlinear terms in the Earth-Moon gravity field. Periodic fluctuations in position of several hundred kilometers can be expected also for the Humningbird concept, due to lunar orbit eccentricity.

2.2.3.2 Solar Perturbation Effects

The effect of solar gravitation on the motion of a vehicle near a libration point has been studied by a number of investigaiors. A popular device for performing this analysis has been to assume that the Earth and Moon move in circular orbits around their barycenter, which in turn moves in a cirrular orbit around the sun (The so-called Very Restricted Problem of Four Bodies, References 1, 4, and 5). Although this model is attractive because of its simplicity, its value is dubious because it completely neglects the indirect effect of the Sun on the Moon. It has been shown (References 6 and 7) that in the linear approximation, the direct effect of the sun on a vehicle at a collinear libration point $\left(L_{1}, L_{2}\right.$ and L_{3}) is completely cancelled by the indirect effect of the solar perturbation of the Sun on the Moon. Consequently, an analysis based on the use of a circular orbit for the Earth and Moon will usually result in erroneous conclusions concerning the nature and magnitude of the solar effect. In particular, such an analysis predicts a large periodic solar perturbation (about $10^{-5} \mathrm{~g}$) with a period of one-half a synodic month (14.765 days), whereas an analysis which includes the indirect effect shows that no solar perturbation at all exists with this period for a vehicle either at a libration point or moving freely around it. The net acceleration of a body at a libration point due to the presence of the sun consists only of periodic terms which are of second order or higher in the ratio of the Moon's distance to the Sun's distance (as described by Nicholson, Reference 7). For the L_{2} point, the maximum magnitude of the principal portion of this acceleration is about 2.3×10^{-8} $\mathrm{m} / \sec ^{2}$ (about $2 \times 10^{-9} \mathrm{~g}$). Two periods are present, one equal to a synodic month and the other equal to one third of a synodic montr, If the initial conditions are chosen so that the natural modes are not excited, the forced motion resulting from this acceleration has
a maximum amplitude of about 1 km . If the vehicle is displaced from the L_{2} point, as is the case for a far-side communications relay, the first-order solar perturbation terms will no longer completely cancel, and there will be a residual acceleration due to the Sun whose magnitude will be proportional to the distance of the vehicle from the L_{2} point. The magnitude will always be less than $1 / 200$ of the acceleration due to the Earth-Moon gravity field. Farquhar (Reference 12) obtains an effect of about 1.2% of the lalo orbit amplitude due to solar perturbation.

For a fixed displacement (the Hummingbird concept), the period of the first-order solar perturbation will be one-half a synodic month or 14.765 days. Since this is very close to the period of the in-plane free motion (14.669 days), a near-resonant condition exists which, if uncontrolled, would result in fluctuatic n s of several hundred kilometers around the desired location, even though the disturbing acceleration is small.

In order to maintain the vehicle on station, the guidance system must control: (1) the tendency toward divergent motion due to the basic instability of the L_{2} point and (2) the buildup of oscillations due to the solar perturbation.

2.2.3.3 Nonlinear Gravitatio.al Effects

In the region of linearity, the periods of both in-plane and the out-of-plane motion are independent of the size of the orbit. If, however, the size of the orbit becomes large enough so that the departure from linearity becomes significant, the periods will depend to some extent on the amplitude of the motion. For displacements as large as 3100 km , the nonlinear acceleration terms become on the order of a few percent of the linear terms.

The principal effect of the second-order terms in a power series expansion of the gravity field is to shift the center of the halo orbit towards the Moon by an amount proportional to the square of the halo orbit amplitude. For maximum Y and Z excursions of 3100 km , the shift in the orbit is about 70 km . A third-order solution shows that the $\mathrm{X}-\mathrm{Y}$ period of the orbit is increased and the Z period is decreased, again by an amount proportional to the square of the orbit amplitude. For a 3100 km orbit, the $\mathrm{X}-\mathrm{Y}$ period increase is about two minutes,
and the Z period decrease is about nine minutes. (Nominal halo orbit period is about 15 days.)

It can be concluded that, although some of these effects are appreciable, they do not cause any siguificant increase in stationkeeping propulsion requirements above that predicted by the linearized analysis. For an actual mission, of course, these higher order terms would have to be taken into account in determining the vehicle state and computing the required correction.

2.3 TRACKING ACCURACY STUDY

2.3.1 TECHNICAL APPROACH

A prediction accuracy program has been developed by utilizing existing error analysis subroutines and adding functions peculiar to the lunar libration point study. This program was then used to perform a tracking accuracy study in order to determine the accuracy with which the state of a vehicle near the L_{2} libration point can be estimated from Earthbased tracking data. The results of this study were used to determine the effect of tracking uncertainties on stationkeeping scheduling and fuel requirements.

Inputs to the program are:
a. Initial state error covariance matrix
b. Tracking stations location
c. Earth rotation rate and Moon's mean motion
d. Frequency of observations
e. Measurement error variance
f. Frequency of print-out

Output of the program is:
a. Time
b. Tracking data (range, range rate, azimuth, elevation)
c. State error covariance matrix at specified time
d. Standard deviations in state errors.
e. Correlation matrix

Tracking data was processed by means of a Kalman-Schmidt linear filter which handles each data point sequentially.

The standard equations used were:

$$
\begin{aligned}
P\left(t_{n}+1\right) & =\Phi\left(t_{n+1}, t_{n}\right) P^{\prime}\left(t_{n}\right) \Phi^{T}\left(t_{n+1}, t_{n}\right) \\
K & =P\left(t_{n+1)} G^{T}\left[G P\left(t_{n+1}\right) G^{T}+\sigma i^{2}\right]^{-1}\right. \\
P^{\prime}\left(t_{n+1}\right) & =[I-K G] P\left(t_{n+1}\right)
\end{aligned}
$$

where
$P\left(t_{n+1}\right)=$ covariance matrix at t_{n+1} (before observation)
$P^{\prime}\left(t_{n+1}\right)=$ covariance matrix at t_{n+1} (after observation)
G $\quad=\quad$ vector of partials of observables with respect to state variables
I $=$ identity matrix
$\mathrm{K} \quad=\quad$ linear filter matrix
$\mathbf{\Phi}=$ state transition matrix between times of observation
$\sigma^{2}=$ variance of random error in observable

The mathematics was simplified by the use of a three-dimensional restricted three-body model with the primary coordinate system being a rotating one centered at the Moon. Since the tracking stations are on a rotating Earth, the appropriate rotation transformations were developed to calculate nominal tracking data from the motion of a vehicle at or near L_{2}. Linearized equations of motion for the vehicle were used and thus the vehicle state was given in closed form as a function of the initial state and elapsed time. The state transition matrix was formed from this linearized solution and was a function of elapsed time only. Since all calculations were in closed form, and no numerical integrating was required, computer processing time was quite small.

The state covariance matrix calculated was the uncertainty in the whicle's state vector (position and velocity) as estimated from tracking data obtained from Earth ground stations. For the case of the Hummingbird, imposed accelerations were included in the vehicle's state vector and the effect of their uncertainty on position and velocity was determined. An accurate estimation is possible due to the variable geometry caused by relative vehicle and tracking station motion and to the unstable vehicle dynamics.

It was assumed in the data processing that the only source of error was unbiased, uncorrelated, random noise on the observations. Sources of error which were not factored in were: observation bias errors, station location errors, and model errors.

2.3.2 RESULTS OF TRACKING ACCURACY PROGRAM

An orbit determination error analysis was performed utilizing the tracking accuracy program in order to determine the accuracy with which the vehicle state can be estimated from Earth-based tracking data. The following assumptions were made:
a. Range rate was observed from a tracking station at a latitude of $35^{\circ} \mathrm{N}$.
b. Observations were made at intervals of 1.04 hours until 10 observations had been processed. The resulting covariance matrix was then propagated ahead 14.6 hours with no observations being made. This sequence was repeated until four tracking passes were accumulated.
c. The standard deviation of the noise on a single observation was 0.01 meter/ second.
d. The vehicle was assumed to be moving freely near L_{2} under the influence of gravitational forces only (Halo orbit).

2.3.2.1 HALO

Two cases were considered. In Case 1, the initial covariance matrix was chosen to be very large. This was done to approximate a situation where the orbit estimation was made from the tracking data alone with essentially no a priori information concerning the vehicle state. The actual variances used corresponded to standard deviations of 2720 km in all three position coordinates and 7.24 meters/seccad in all three velocity components. All correlations were assumed zero; that is, the initial covariance matrix was diagonal. For Case 2, the initial covariance matrix was the covariance matrix from Case 1 after four tracking passes with varisnces of $0.01 \mathrm{~m}^{2} / \mathrm{sec}^{2}$ (corresponding to velocity errors of $0.1 \mathrm{~m} / \mathrm{sec}$) added to the three velocity diagonal elements. The resulting covariance matrix then represents the knowlelge of the trajectory state after a r - rrcetion has been made, i.e., no position information is lost, but knc .lledge of velocity is degraded due to execution errors in performing the correction.

The results of the analysis are shown in Tables 2-2 and 2-3. The first six columns give the standard deviations of the errors in the three position and three velocity coordinates just before and just after each tracking pass. The seventh column is the standard deviation of the minimum velocity required to correct the divergence and is, therefore, a measure of the uncertainty in the estimate of the divergent mode. It can be seen that only two tracking passes are required to recover the information lost during a correction. After four passes, the uncertainty in the estimate of the velocity required to correct the

Table 2-2. Errors in Estimates of State Variables, Case 1

Time (hrs)	No. of Observations	Standard Deviations						
		${ }^{\sigma} \mathbf{X}$	${ }^{\sigma} \mathbf{Y}$	${ }^{\sigma} \mathbf{Z}$	${ }^{\sigma} \dot{\mathbf{X}}$	${ }^{\sigma} \dot{\mathbf{Y}}$	${ }^{\sigma} \stackrel{\square}{\text { Z }}$	${ }^{\sigma} \mathrm{V}_{\mathrm{c}}$
		(Kilometers)			(Meters/Second)			
0	0	2.20	2720	2720	7.24	7.24	7.24	22.4
10.4	10	400	1270	2300	0.114	4.13	6.30	1.70
25.0	10	395	1190	2210	0.166	4.46	6.93	2.31
35.5	20	185	54	72	0.044	1.89	3.19	0.45
50.0	20	183	148	228	0.058	1.80	3.02	0.62
60.5	30	20.5	20.9	26.6	0.012	0.21	0.34	0.068
75.0	30	20.1	30.4	40.5	0.014	0.19	0.31	0.093
85.5	40	9.1	15.7	17.3	0.009	0.088	0.144	0.040
100.0	40	8.8	19.5	22.4	0.008	0.074	0.127	0.054

Table 2-3. Errors in Estimates of State Variables, Case 2

Time (h1	No. of Observations	Standard Deviations						
		${ }^{\sigma} \mathbf{X}$	${ }^{\sigma} \mathbf{Y}$	${ }^{\mathbf{Z}}$	${ }^{\sigma} \dot{\mathbf{x}}$	${ }_{\mathbf{\sigma}}^{\mathbf{Y}}$	${ }^{\sigma} \mathbf{Z}$	${ }^{\sigma} \mathrm{V}$
		(Kilometers)			(Meters/Second)			
	0	9.1	15.7	17.3	0.103	0.135	0.177	0.110
10.4	10	7.8	16.0	20.9	0.011	0.102	0.166	0.048
25.0	10	7.5	20.2	27.0	0.025	0.085	0.145	0.064
35.5	20	5.3	15.8	24.4	0.008	0.045	0.113	0.038
50.0	20	5.2	17.5	28.3	0.010	0.033	0.091	0.051
60.5	30	2.7	30.6	17.0	0.006	0.022	0.069	0.025
75.0	30	2.7	11.0	18.4	0.007	0.019	0.061	0.033
85.5	40	1.8	6.8	12.3	0.005	0.018	0.055	0.016
100.0	40	1.8	6.8	12.9	0.006	0.018	0.051	0.022

divergence is $0.016 \mathrm{~m} / \mathrm{sec}$, that is, if a correction is made at that time based on the current estimate of the vehicle state, 27 error of $0.016 \mathrm{~m} / \mathrm{sec}$ will remain due to orbit estimation errors. If it is assumed that errors of $0.04 \mathrm{~m} / \mathrm{sec}$, randomly oriented, are made in executing phase corrections, the expected component of error in the direction giving the maximum divergence will be $0.02 \mathrm{~m} / \mathrm{sec}$. This error combined with the orbit estimation error is $\sqrt{0.02^{2}+0.016^{2}}=0.026 \mathrm{~m} / \mathrm{sec}$. Since the divergence grows exponentially with a time constant of very nearly two days, the error will grow, in a four day period, to $0.026 \mathrm{e}^{2}$ or about $0.2 \mathrm{~m} / \mathrm{sec}$ with these assumptions. The $\Delta \mathrm{V}$ rate required for stationkeeping is then $0.05 \mathrm{~m} / \mathrm{sec} /$ day, which is only 20% of the requirement for period control.

2.3.2.2 Hummingbird

A similar investigation was made for the Hummingbird concept. In this case, since there is some uncertainty introduced due to error in thrust magnitude and direction, the effect of estimating acceleration, as well as position and velocity, was included. It was found that under these conditions range rate tracking alone was insufficient to determine the vehicle state adequately. It is concluded that both range and range rate tracking are required for the Hummingbird case in order to provide orbit estimation of sufficient accuracy to insure orbit stability. With range rate measurements accurate to $0.01 \mathrm{~m} / \mathrm{sec}$, and range measurements accurate to 1 km , the ΔV rate required for stationkeeping is estimated to be 0.1 to $0.2 \mathrm{~m} / \mathrm{sec} / \mathrm{day}$.

2.4 HALO ORBIT SIMULATION

In order to confirm the conclusions concerning the magnitude of the velocity co.rections required for orbit maintenance, a simulation of the orbit maintenance procedure was performed. A typical Halo orbit trajectory orbiting the L_{2} point was generated using an " N -body" trajectory program which integratee the exact equations of motion in an Earthcentered equatorial system. An integration interval of two hours was used. Positions of the Sun and Moon were obtained from an ephemeris tape based on the JPL ephemeris tape system. Use of the N-body program provided "real world" conditions in that the effects of solar perturbation, non-linearity and lunar eccentricity were included. Velocity
corrections were made at intervals of four to six days to control the amplitude and phase of the in-plane and out-of-plane motions, and to suppress the divergence resulting from the unstable nature of the equilibrium at the L_{2} point. The corrections were calculated using the solutions to the linearized equations of motion. In order to simulate the effect of orbit determination uncertainties and maneuver errors, a velocity error of about 0.05 meters/second was added to each correction. The direction of the velocity error was chosen to approximate a "worst case" condition, that is, the direction resulting in the most rapid divergence.

The starting point of the trajectory (in the rotating ccordinate system) was

$$
\bar{r}_{\text {initial }}=\left(\begin{array}{l}
-2000 \mathrm{~km} \\
0 \\
2000 \mathrm{~km}
\end{array}\right)
$$

That is, 2000 km above the Moon's orbital plane and 2000 km from L_{2} toward the Moon. This was assumed to be the point at which the final retro maneuver was performed to inject the vehicle into the halo orbit from the transfer trajectory. Since this point does not lie on the desired halo orbit, it simulates the effect of guidance errors during the Earth $-L_{2}$ transfer.

NOTE:

It can be shown that aim point errors of several thousand kilometers due to midcourse guidance errors can be accommodated by adjusting the retro maneuver so as to piace the vehicle on a path which approaches the desired halo orbit asymptotically. (A second maneuver is usually required to establish the proper phase relationship between the in-plane and out-of-plane motions.) Of course, the vehicle's position and veiocity at the time of the retro maneuver must be accurately known; this will flways be the case since there will be adequate time for tracking and orbit determination between the last midcourse correction and orbit injection.

The initial velocity (relative to L_{2}) was chosen so as to yield an orbit with maximum excursions of about 3500 km in both the Y and Z directions. Since the magnitude of the retro maneuver (for indirect transfers) is about 150 meters/second, and attitude errors during injection may be as large as $1 / 2$ degree, a velocity error of 1.5 meters/second was added to the initial velocity to simulate the retro maneuver execution error. After four days, a correction was made to establish the proper phase relationship between the in-plane and out-of-plane motions, and to nullify the divergence resulting from the initial velocity error. This process was continued with corrections being made after 4, 8, 14, 18, 22, 27, 31 and 35 days. The resulting orbit is shown in Figures 2-11 through 2-14. Figures 2-11 and 2-12 show the projections of the orbit on the X-Y plane and the Y-Z plane respectively for the first 20 days. Figures 2-13 and 2-14 show the projections from 20 days after injection to 37 days. The dotted portions of the trace shows the path the vehicle would have taken if the corrections had not been made. The arrows show the direction in which the correction was made. The magnitude of each correction and the purpose of the correction are listed in Table 2-4. The table also shows the amount of divergence remaining after each correction, expressed in terms of the minimum velocity which would be required to remove the divergence. This error is a combination of the "noise" added to simulate orbit determination errors, and the errors resulting from the use of linear theory in computing the corrections, thereby neglecting non-linear effects, lunar eccentricity and solar perturbation. The magnitude of the errors resulting from the use of a linear model was estimated to be about 0.05 to 0.1 meter/second. In actual practice, these errors could be eliminated by the use of a more exact model in computing the corrections. Even with these errors, the sum of the velocity corrections is 9.3 meters/second for 31 days (the first correction, four days after injection, is not included since it is atypical), or about 0.30 meter/second/day. Allowing for the fact that no special attempt was made to optimize the times at which the corrections were made, this figure is in good agreement with the requirement of 0.25 meters/second/day for perind control, obtained from linear theory.

The generation of this trajectory demoustrated the feasibility of stabilizing and maintaining a suitable "halo" orbit under "real world" conditions and allowing for orbit determination errors.

Table 2-4. Typical Correction Requirements

Time of Correction (days after injection)	Magnitude of Correction (Meters/second)	Purpose of Correction	Divergence Remaining after Correction (Meters/second)
4	9.10	divergence, Z phase, Z amplitude	0.19
8	1.38	divergence	0.04
14	. 87	divergence	0.17
18	1.33	divergence	0.02
22	1.97	Y amplitude, Z phase	0.03
27	0.99	divergence, Y phase Z amplitude	0.15
31	1.53	divergence, Z phase	0.01
35	1.21	Y phase	

Figure 2-11. Ha., Orbit, X-Y Projection, 0 to 20 Days

Figure 2-12. Halo Orbit, Y-Z Projection, 0 to 20 Days

Figure 2-13. Halo Orbit, X-Y Projection, 20 to 37 Days

SECTION 3

COMMUNICATIONS STUDIES

The objective of the communications portion of this study is to determine for a satellite in the vicinity of the lunar libration point what is necessary to provide the following:
a. Relay of the Apollo Unified S-Band telecommunications and tracking signals between:

1. Lunar bases on the far side of the moon
2. Lunar base and lunar orbiting spacecraft
3. Lunar base or lunar orbiting spacecraft and earth
b. Commands, range and range rate tracking, and telemetry for the lunar libration point satellite itself.

3.1 LINK ANA LYSES

3.1.1 APPROACH

Introduction of a relay at the lunar libration satellite (LLS) will make compound links of both the up and the down Apollo Unified S-Band links. Since the Manned Space Flight Network ground stations that will be used when the vehicles are at lunar distances have 25.90 -meter diameter antennas, high power (10 KW) transmitters, and low noise ($33^{\circ} \mathrm{K}$) receivers, the space-to-space legs of the compound links are more difficult than the earth-to-space or space-to-earth links. In order to see what a straightforward design of these links requires, the design parameters will be determined initially for an LLS which would provide the same quality signals to the command service module (CSM) and to the MSFN, assuming that the MSFN-to-LLS and TLLS-to-MSFN are perfect links, It will be seen that such a design has an excessively large antenna and requires a very large amount of electronic circuits for antenna-beam tracking of the Apo'lo Terminals. If a single antenna with a beamwidth large enough to cover both the Earth and the Moon is used, it leads to a communication capability for only low-rate data and voice (Reference 8). Attention will
then be concentrated on a system where the LLS has a single antenna with two beams, one just large enough to cover the lunar disc and one the earth. This system will provide most of the Unified S-Band services. It will be shown to be quite feasible.

Table 3-1 indicates a $435^{\circ} \mathrm{K}$ equivalent noise temperature for the down link which results from an antenna noise temperature of $240^{\circ} \mathrm{K}$, a receiver with a 2 dB noise figure, and circuit losses of 3 dB . The 3 dB figure for the circuit losses is felt to be reasonable because, in addition to the usual line losses, there will be significant loss due to the complex feed system necessary for the multiple narrow beams required. It is seen that 44.1 dB of gain must be provided by the receiving antenna in order to maintain the quality of the down link at the same level. A 44.1 dB antenna has a half-power beamwidth of 1.0°; at the down link frequency of 2.2875 GHz , a 30 -foot diameter antenna would be required to achieve this gain.

Insertion and erection of a 9.14 -meter diameter antenna in orbit at the lunar libration point would be a very expensive task. The cost would be further escalated because hundreds of pounds of complex electronics would be required to track the Apollo vehicles or bases due to the narrow beamwidth. There would also be a serious operational problem of signal acquisition with narrow-beam antennas on each terminal. For these reasons, attention in this study has been concentrated on a system having an antenna beam just wide enough to cover the moon, as this will provide service almost everywhere on the far side of the moon.

For the sake of completeness a differential analysis of the up-link is included in Table 3-2. It assumes that the 30 -foot diameter antenna can be used for transmission to the MSFN. Again assuming circuit losses of 3 dB , it is seen that the quality of the link will be maintained if the transmitter power is 25 watts, which is a reasonable amount.

3.1.2 GEOMETRY AND CARRIER FREQUENCIES

Figure 3-1 indicates the geometry of the Apollo Unified S-Band communication links. The existing up-link from the MSFN directly to the CSM has a carrier frequency $f_{1}=2.10640625$ GHz , and the existing PM down-link has a carrier frequency $\mathrm{f}_{2}=240 / 221 \mathrm{f}_{1}=2.2875 \mathrm{GHz}$.

Table 3-1. Differential Analysis of Down-Link

Parameter	CSM-to-MSFN	CSM-to-LLS	dB Difference in Power for Links
Maximum Range	$298,000 \mathrm{Km}$	$70,000 \mathrm{Km}$	-15.1
Receiving Antenna Gain	53.0 dB	44.1 dB	8.9
Receive Circuit Losses	0 dB	3.0 dB	3.0
Equivalent Noise Temperature	$209^{\circ} \mathrm{K}$	$435^{\circ} \mathrm{K}$	3.2
MSFN parameters taken from Reference 9.		0	

Table 3-2. Differential Analysis of Up-Link

Parameter		MSFN-to-CSM	LLS-to-CSM
Maximum Range	in Power for Links		
Transmitting Antenna Gain	$298,000 \mathrm{Km}$	$70,000 \mathrm{Km}$	-15.1
Transmit Circuit Losses	52.0 dB	43.5 dB	8.5
Transmitter Power	0 dB	3.0 dB	3.6
Receiving Antenna Gain*	40.0 dBW	13.9 dBW	26.1
Receive Circuit Losses	0 dB	23.3 dB	-23.3
		7.0 dB	0.8

*Assume: omni-directional antenna on the MSFN-to-CSM link and hi-gain antenna on
the LLS-to-CSM link.
MSFN an. CSM parameters taken from Reference 10.

Figure 3-1. Apollo Unified S-Band Comnıunication Links

When the CSM is occulted by the moon, its communications will be relayed via the LLS. To avoid alterations in the CSM receiver design, the carrier frequencies received and transmitted by the CSM are maintained at f_{1} and f_{2}, respectively. In order to maintain the ability to determine range rate from doppler frequency shifts, the LLS should be designed to coherently translate the frequencies, so

$$
\begin{aligned}
& f_{1}=k_{1} f_{3} \\
& \text { and } f_{4}=k_{2} f_{2}
\end{aligned}
$$

To avoid confusion, only the communication links to one CSM are shown in Figure 3-1. Service will be provided to other vehicles and lunar bases in the same fashion. For example, suppose the up and down carrier frequencies for a lunar module (LM) are f_{5} and $f_{6}=$ $240 / 221 \mathrm{f}_{5}$, respectively. When relay via the LLS is necessary, the cirrier frequencies for the MSFN-to-LLS and the LLS-to-MSFN links will be taken as:

$$
\mathrm{f}_{7}=\frac{1}{\mathrm{k}_{1}} \quad \mathrm{f}_{5}
$$

$$
\text { and } f_{8}=k_{2} f_{6}
$$

Observe that the function of the LLS transponder is simply to translate in frequency the incoming signal and repeat it. This simple configuration is possible since all Apollo vehicles and terminals operating in space at the same time will be assigned diff crent carrier frequencies. Thus, transiation can be arranged so that all signals are in distinct bands, even though several transınissions 'aay be occurring s-multaneously. The design of the transponder is further discussed in Section 3. 2.

3.1.3 SIGNAL FLOW

Relay of up-link signals from MSFN to the CSM, LM, or lunar base is achieved at the LLS simply by receiving the signal from the antenna feed directed toward the earth, translating it in frequency, and tra-ismitting it from another feed on the same antenna directed toward the moon. The do: n-link signals would he handled in a similar fashion by the use of diplexers in the antenna feeds.

In order for one occulted terminal to communicate with another occulted terminal, the signal will be passed from the LLS down to the MSFN where it will be translated to the frequency appropriate to the up-link for the receiving base and transmitted to the LLS where it will be reiayed to the destination. Although this procedure may at first appear to be quite complicated, it in fact has many advantages, viz. :
a. The transponder design is kept very simple. No modulation, demodulation, or switching is required. For this reason, the transpender can be designed to handle many lunar terminals efficiently.
b. The MSFN can monitor all transmissions within the system.
c. No additional frequency spectrum is needed for this type of communication.
d. The problem of a CSM, LM, or lunar base receiving simultaneously from multiple sources is avoided.
e. CSM, LM, and lunar base equipment design need not be altered to permit this type of communication.

Communication between an occulted terminal and a non-occulted terminal is accomplished by having the occulted terminal comnunicate with the MSFN via the LLS and having the other terminal communicate directly with the MSFN. In every case it would be the burden of the MSFN to deteimine the destination of the signal it receives and then to transmit it at the appropriate frequency (either to the LLS for relay or to the destination directly).

3.1.4 TELEMETRY, TRACKING, AND CONTROL FOR THE LUNAR LIBRA TION SATELLITES

The necessary telemetry, tracking and control for the LLS should be provided so that these functions can be achieved independent of any Apollo Unified S-Band signals. Operation at some S-Band frequency close to the Apollo signals is recommended so that the same antenna and feed can be used for all earth-signals at the LLS.

Since it is necessary to know accurately the range and range rate of the LLS, a pseudorandom noise (PN) ranging code is transmitted to the LLS where it is coherently frequency translated and returned to the tracking station. Standard command and telemetry links are envisioned for the LLS.

3.1.5 POWER BUDGET

From the parameters of the Apollo Unified S-Band system and those assumed for the lunar libration satellite can be calculated $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ (the ratio of received signal power to noise power spectral density) for each leg of each communication link. By appropriately combining these for the two legs of a compound link, the effective S / N_{0} at the receiver can be calculated. Test measurements have established the value of S / N_{o} for threshold operation of the several services of the various PM modes. Compariscn of these values then will reveal the circuit margin anticipated in each case.

3.1.6 S/N REQUIRED FOR SERVICES IN VARIOUS MODES

Measured data has been obtained (Reference 11) that indicates the value of S / N_{0} for operation at threshold for each service of the various modes. These values, along with the criteria for services, are tabulated in Table 3-3 for the Up-link and in Table 3-4 for the PM Down-link.
Table 3-3. S / N_{0} Required and Margins for Services in the Various Modes

Mode	Service	Quality	$\begin{gathered} \text { Threshold } \\ S / N_{0} \\ d B \\ \hline \end{gathered}$	Nominal Margin		
				$\begin{gathered} \hline \text { CSM-Hi-Gain } \\ \text { dB } \end{gathered}$	LM-Steerable dB	Lunar Base dB
1	Carrier PRN	12 dB loop S/N	53.9	5.3	-0.9	10.4
2	Carrier	12 dB loop S/N	51.3	7.9	1.7	13.0
	Voice	90% intelligibility	55.5	3.7	-2.5	8.8
	Voice	70% intelligibility	52.0	7.2	1.0	12.3
3	Carrier	12 dB loop S / N	513	7.9	1.7	13.0
	Updata	$6.7 \times 10^{-6} \mathrm{SBER}$	58.4	0.8	-5.4	5.9
4	Carrier	12 dB loop S/N	54.4	4.8	-1.4	9.9
	Voice	90\% intelligibility	59.5	-0.3	-6.5	4.8
	Voice	70\% intelligibility	54.8	4.4	-1.8	9.5
	PRN					
5	Carrier	$12 \mathrm{~dB} 100 \mathrm{~S} / \mathrm{N}$	54.4	4.8	-1.4	9.9
	Updata	$6.7 \times 10^{-6} \text { SBER }$	64.2	-5.0	-11.2	0.1
	PRN					
6	Carrier	12 dB loop S / N	45.9	13.3	7.1	18.4
	Voice	90\% intelligibility	59.5	-0.3	-6.5	4.8
	Voice	70% intelligibility	54.8	4.4	-1.8	9.5
	Updata	6.7×10^{-6} SBER	66.2	-7.0	-13.2	-1.9
	PRN					
7	Carrier	12 dB loop S/N	46.8	12.4	6.2	17.5
	Voice	90\% intelligibility	58.7	0.5	-5.7	5.6
	Voice	70\% intelligibility	53.8	5.4	-0.8	10.5
	Updata	6.7×10^{-6} SBER	62.2	-3.0	-9.2	2.1
8	Carrier	12 dB loop S/N	51.3	7.9	1.7	13.0
	Voice	90% intelligibility	56.0	3.2	-3.0	8.3
	Voice	70\% intelligibility	51.5	7.7	1.5	12.8

Margins for worst case Apollo parameters are the same for the CSM-Hi-Gain, but 0.5 dB lower for both the ML-Steerable

Table 3-4. S/N Required and Margins for Services in the Various Modes
Of the Apollo Unified S-Band Down-Link

Mode	Service	Quality	$\begin{gathered} \text { Threshold } \\ S / N_{0} \\ d B \\ \hline \end{gathered}$	Nominal Margin		
				$\begin{gathered} \mathrm{CSM}-\mathrm{H}_{2}-\operatorname{CaIn} \\ \mathrm{di} \end{gathered}$	$\begin{gathered} \text { LM-Steerable } \\ \text { ds } \end{gathered}$	$\begin{gathered} \text { Runar Base } \\ \text { df } \end{gathered}$
1	Carrier	$12.81{ }^{\text {d }}$ loop $8 / \mathrm{N}$	33.6	32.0	, 29.8	37.3
	51.2 Kbps TM	$10^{-6} \mathrm{Em}$	65.6	0.0	-2.2	5.3
	Votce	90\% intellisibility	61.8	3.6	1.6	9.1
	Volce	70\% intelligibility	56.8	7.0	6.6	14.1
2	Carrier	$17 \mathrm{dy} 100 \mathrm{~s} \mathrm{~s} / \mathrm{m}$	23.9	41.7	39.5	470
	51.2 Mopa TLM	$10^{-6} \mathrm{EER}$	66.1	-0.5	3.7	4.8
	Voice	90\% intelligibility	61.8	3.8	1.6	9.1
	Volce	70\% intelligibility	56.8	7.0	6.6	141
	PRN	99.6% acq. in 9 mec.	38.3	23.3	25.1	32.6
28	Carzier 31.2 KOps TMA					
	Volce/blomed PNM	90\% intell/acceptable	64.3/?	1.3/7	-0.91?	6.6.1?
3	Carrier	12 dl loop S/N	33.9	31.7	29.5	370
	1.6 Kbpe TLM	$10^{-6} \mathrm{ELR}$	56.7	8.9	6.7	14.2
	Vaice	90\% intelligibility	54.6	11.0	8.8	16.3
	PRN	99.6\%aca. in 9 eec.	38.3	27.3	25.1	32.0
38	Cartier 1.6 Kbpa TM					
	Volce/biomed	90% Intell/ecceptable	57.6/7	8.0	3.8	13.3
	PRN					
4	Cerrier	$12.88 \mathrm{loop} 8 / \mathrm{M}$	33.6	32.0	29.8	373
	1.6 Kbpg TLM	10^{-6} BER	56.1	9.5	7.3	1.8.
	Volce	90\% intelligibility	54.7	10.9	8.7	16.9
	Volce	70\% intelilgibility		15.9	13.7	21.2
5	Corrier	12 dz loop s / m	35.8			
	1.6 Kope TLM	$10^{-6} \mathrm{~lm}$	47.2	29.8	27.6	35.1
				18.4	16.2	23.7
6	Carrier	12 dB loop S/m	31.3	34.3	32.1	39.0
	Key	99.0% ecq. in 9 nec.	30.5	35.1	32.9	40.4
7	Carrier	12 dil loop S / N	29.4	36.2	34.0	41.3
	PRM	99.6% acq. in 9 sec.	38.3	21.6	25.4	32.6
8	Carrier	12 dm loop S / M	34.2	31.4	29.2	36.7
	1.6 Kope TMM	10^{-6} ask	51.2	14.4	12.2	19.7
	Back-up Voice	90\% incelligibility	63.3	2.3	0.1	7.6
	Back-up Voice	70\% Intelligibility	$49 . ?$	13.9	13.7	61.2
9	Carrier	6 diloop $5 / \mathrm{N}$	30.2	35.4	33.2	40.7
	1.6 Kbps TLA	$10^{-6} \mathrm{sen}$	47.6	17.8	15.6	23.1
	PRN	99.62 acq . in 9 aec.	38.3	27.3	25.1	32.6

Murgins for the worat case Apollo parameters are 0.9 dB lower for the CSA-hi-Cain, 1.8 dB for the th-Steriatie. and 1.1 de lower for the Lunar Beee.

3.1.7 SYSTEM PARAMETERS

The pertinent Apollo Unified S-Band parameters are listed in Table : -5 , and those assumed for the LLS in Table 3-6.

The critical links are the space-to-space links: Moon-to-LLS and LLS-to-Moon. The parameter values selected for these links are felt to be realistic for a carefully designed system using 1971-72 technology. The antenna gain for these links has been deliberately selected to be the gain at the $4-\mathrm{dB}$ points of an antenna beam that just covers the moon from the position of the LLS, because this is the maximum gain for which a simple nontracking transponder is possible.

Implementation of components to yield these parameter values is discussed in Sections 3.2 and 3.3.

3.1.8 $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ FOR A COM FUUND LINK

The signal-to-noise density ratio at the receiver of a compound link will be determined here in terms of the signal-to-noise dansity ratios of the individual links and the improvement factor due to the transponder.

Let the signal-to-noise density ratio in the first leg be $S_{1} / N_{o l}=K_{1}$. Let the improvement factor be α, i. e., the signal-to-noise density ratio out of the transponder is αK_{1}.
Assuming the input to the second leg is all signal, let the signal-to-noise density ratio in the second leg be $\mathrm{S}_{2} / \mathrm{N}_{02}=\mathrm{K}_{2}$, where

$$
S_{2}=A\left(\alpha S_{1}+N_{o l} B\right)
$$

where A is the amplification due to the transponder and B is the transponder bandwidth. The ultimate signal-to-noise density ratio at the receiver is:

Table 3-5. Apollo Unified S-Band Parameters

Parameter	MSFN Station	CSM	LM
Transmitter Power	10 Kw	11.2 W	20 W
		12.6 W	0.72 W
Transmitling Antenna Gain	52.0 dB	25.7 dB	\therefore An ib
		0 dB	$\therefore \mathrm{O} .5 \mathrm{dm}$
			. 3.0 dB
Receiving Antenna Gain	53.0 dB	23.3 dB	31.2 dB
		0 dB	16.5 dB
			$-3.0 \mathrm{~dB}$
Transmit Circuit Losses	0 dB	$7.0 \mathrm{~dB}$	
		6.2 dB	5.1 dB
			4.9 dB
Receive Circuit Losses	0 dB	7.0 dB	9.8 dB
		6.2 dB	5.9 CB
			5.7 dB

Tav.e 3-6. Iunar Libration Satellite Parameters

Parameter	MSFN-to-LLS	LLS-to-MSFN	LLS-to-Moon	Moon-to LLS
Antenna Gain	31.6 dB	31.0 dB	31.0 dB	31.6 dB
Polarization Losses	0.7 dB	0.7 dB	0.5 dB	0.5 dB
Transmit Circuit Losses	---	2.0 dB	1.5 dB	---
Receive Circlit Losses	3.0 dE	-	---	1.0 dB
Receiver Noise Figure	11.0 dB	---	--	2.0 dB
Transmitter Power (Apollo Signals)	---	5 W	50 W	---
Transmitter Power	---	5 W	\cdots	---

$$
\begin{aligned}
K & =\frac{\alpha A S_{1}}{\mathrm{AN}_{\mathrm{ol}}+\mathrm{N}_{\mathrm{o} 2}}=\frac{\alpha \mathrm{AS}_{1}}{\mathrm{AN}_{\mathrm{ol}}+\mathrm{S}_{2} / \mathrm{K}_{2}} \\
& =\frac{\alpha A S_{1}}{\mathrm{AN}_{\mathrm{ol}}+\frac{\alpha \mathrm{S}_{1}+\mathrm{AN}_{\mathrm{ol}} \mathrm{~B}}{\mathrm{~K}_{2}}} \\
& =\frac{\alpha \mathrm{S}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{2} \mathrm{~N}_{\mathrm{ol}}+\alpha \mathrm{S}_{1}+\mathrm{N}_{\mathrm{ol}} \mathrm{~B}} \\
& =\frac{\alpha K_{1} K_{2}}{\alpha \mathrm{~K}_{1}+\mathrm{K}_{2}+\mathrm{B}}
\end{aligned}
$$

3.1.9 S/N ${ }_{0}$ AVAILABLE FOR LINKS RELAYED VIA THE LUNAR LIBRATION SATELLITE

3.1.9.1 Up-Link

As Table 3-7 shows, the MSFN-to-LLS leg of the up-link is a very strong link. For simpiicity, the carrier frequency of this link is assumed to be the same as that of the direct down-link, or $k_{1}=221 / 240$. The calculations will not change significantly whatever the actual value is. Hence, the S / N_{0} at the $C S M, L M$, or lunar base receiver will be essentially that of the LLS-to-Moon link. The calculations of these values are indicated in Table 3-8.

3.1.9.2 PM Down-Link

The calculations of the S / N_{0} for the LLS-to-MSFN leg of the down-link are given in Table 3-9. The LLS-MSFN leg is shown to be a strong link, but it does cause the S / N_{o} for the overall down-link to be somewhat lower than that for the space-to-space leg. The calculations of the S / N_{o} for the CSM, LM, and lunar base-to-LLS leg of the down-link are given in Table 3-10. The S / N_{o} for the overall down-link is given at the bottom of Tabie 3-10. Again, for simplicity, the carrier frequency of the LLS-to-MSFN link is assumed to be the

Table 3-7. $\mathrm{S}_{\mathrm{o}} \mathrm{N}_{\mathrm{o}}$ for MSFN-to-LLS Link

Transmitter Power	40.0 dBW
Transmitting Antenna Gain	53.0 dB
Transmit Circuit Losses	0 dB
Effective Radiated Power	93.0 dBW
Max Range $460,000 \mathrm{Km}$	
Carrier Frequency $2.2875 / 2.2825 \mathrm{GHz}$	212.9 dB
Dispersion Loss	
Polarization Loss	0.7 dB
Receiving Antenna Gain	31.6 dB
Receive Circuit Losses	3.0 dB
Signal Power Available at Receiver, S	-92.0 dBW
Receiver Noise Figure 11 dB	
Receiver Noise Temperature $3360^{\circ} \mathrm{K}$	
Antenna Noise Temperature 2900K	
Equivalent Noise Temperature $3650^{\circ} \mathrm{K}$	-193.0 dBW
Noise Power Density	101.0 dB
S/No	

Table 3-8. $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ for the LLS-to-Moon Link

	$\begin{gathered} \text { CSM-H1-Gain } \\ \mathrm{dB}(W) \end{gathered}$	$\begin{gathered} \text { LM-Steerable } \\ d B(W) \end{gathered}$	$\begin{gathered} \text { Lunar Base } \\ d b(w) \end{gathered}$
Transmitter Power	17.0	17.0	17.0
Transmit Circuit Losses	1.5	1.5	1.5
Transmitting Antenna Gain	31.0	31.0	31.0
Effective Radiated Power	46.5	46.5	46.5
Disnersion Loss	195.8	195.8	195.8
Pol: :ation Loss	0.5	0.5	0.5
Receiving Antenna Gain	23.3	16.0	31.2
Receive Circuit Losses	7.0	5.9	9.8
Signel Power Receivel, S	-133.5	-139.7	-128.4
Equivalent Noise Power Density, ${ }^{\text {N }}$ O	-192.7	-192.7	-192.7
S / N_{0} for LLS-to-Moon Link	59.2	53.0	64.3
S / N_{0} for Overall Up-Link	59.2	53.0	64.3
Receiver Noise Figure	11.3 dB	11.3 dB	11.30 dB
Receiver Nolse Temperature	$3630{ }^{\circ} \mathrm{K}$	$3630^{\circ} \mathrm{K}$	$3630{ }^{\circ} \mathrm{K}$
Antenna Noise Temperature	100 3880	100% 3870	${ }_{3890}{ }^{\circ} \mathrm{K}$

Table 3-9. S / N_{0} for LLS-to-MSFN PM Link

Transmitter Power 5W	7.0 dBW
Transmit Circuit Losses	2.0 dB
Transmitting Arstenna Gain	31.0 dB
Effective Radiated Pcwer	36.0 dBW
Max Range $460,000 \mathrm{Km}$	
Carrier Frequency $2.10640625 / 2.101802 \mathrm{GHz}$	
Dispersion Loss	212.2 dB
Polarization Loss	0.7 dB
Receiver Antenna Gain	52.0 dB
Line Losses	0 dB
Signal Power Available at Receiver, S	-124.9 dBW
Receiver Noise Temperature $33{ }^{\circ} \mathrm{K}$	
Antenna Noise Temperature $125{ }^{\circ} \mathrm{K}$	
Equivalent Noise Temperature $158{ }^{\circ} \mathrm{K}$	
Noise Power Density, N_{0}	-206.6 dBW
S / N_{0}	81.7 dB

Table 3-10. S / N_{o} for the Moon-to-LLS PM Link

CSM-Hi-Gain $d B(W)$	LM-Steerable $d B(W)$	Lunar Base $d B(W)$

	$d B(W)$	$d B(W)$	$d B(W)$
Transmitter Power	10.5	13.0	13.0
Transmit Circuit Losses	7.0	5.1	8.9
Transmiting Antenna Gain	26.7	20.0	32.0
Effective Radiated Power	30.2	27.9	36.1
Dispersion Lose	196.5	196.5	196.5
Polarization Lose	0.5	0.5	0.5
Receiving Antenna Gain	31.6	31.6	31.6
Receive Circuit Losses	1.0	1.0	1.0
Signal Power Received, S	-122.2	-138.5	-130.3
Equivalent Noise Power Density, ${ }^{*} \mathrm{~N}_{0}$	-202.4	-202.4	-202.4
S/Nofor LLS-to-Moon Link	66.2	63.9	72.1
$\mathrm{S} / \mathrm{N}_{0}$ for Overall Down-Link	65.6	63.4	70.9
Receiver Noise Figure	2.0 dB	2.00 dB	2.0 ds
Receiver Noise Temperature	$170{ }^{\circ} \mathrm{K}$	$170{ }^{\circ} \mathrm{K}$	$170{ }^{\circ} \mathrm{K}$
Antenna Noise Temperature	$240^{\circ} \mathrm{K}$	$240^{\circ} \mathrm{K}$	$240^{\circ} \mathrm{K}$
Equivalent Noise Temperature	$420^{\circ} \mathrm{K}$	$420{ }^{\circ} \mathrm{K}$	$420{ }^{\circ} \mathrm{K}$

[^0]same as that of the direct up-link, or $k_{4}=221 / 240$. No significant change in the calculations will occur for a slightly different carrier frequency.

It is assumed in these calculations that the LLS is relaying only one signal at a time. If two or more were to be handled simultaneously, the power transmitted by the LLS would be divided among them. The resultant degradation in the overall $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ would be slight (a fraction of a dB) for the down-link, but appreciable (several dB's) for the up-link. Thus it is desirable to program up-link transmissions so that there is communication with only one terminal at a time.

3.1.10 MARGINS FOR SERVICES IN VARIOUS MODES

The difference between the available $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ and the $\mathrm{S} / \mathrm{N}_{\mathrm{o}}$ required for threshold represents the margin with which a service is (or is not) provided. The margins for the services of the up-link modes are listed in Table 3-3. Margins for the services of the PM down-link modes are iisted in Table 3-4.

No calculations have been included on the FM down-link modes because no test data was available from which their threshold S / N_{0} could be derived. The FM modes provide basically two services: (1) replay of data stored while the Apollo vehicles are behind the moon and '2) real-time television. Successful operation of an LLS relay would obviate the need for the first function. Based on the differential link analysis and on the data presented in Reference 1, it is estimated that relay of TV through the LLS would result in an acceptable picture when transmission is from the erectable antenna on the lunar surface, but a sub-marginal picture when transmission is from the CSM hi-gain antenna. Note that the transponder design is capable of handling the FM modes without modification.

3.2 TRANSPONDER CHARACTERISTICS

Figure 3-2 is a functional diagram of the Lunar Libration Sateliite transpondur. The transponder performs the following functions:

Figure 3-2. Block Diagram of Lunar Libration Satellite Transponder
a. Command receiver for satellite housekeeping.
b. Telemetry transmitter for satellite monitoring, housekeeping and ranging.
c. Data relay from Manned Space Flight Network to Apollo mission spacecraft.
d. Data relay from Apollo mission spacecraft to Manned Space Flight Network.

It is assumed that four 4 MHz spacecraft-to-earth data channels may operate simultaneously, but that only a single 4 MHz earth-to-spacecraft link will be operative at any one time. Four separate links will be available, however. Ranging and telemetry data from LLS-toearth will occupy another 4 MHz down-channel. The satellite up-link transmitter will product a total rf power output of 50 watts. The satellite dcwn-link will contain two channels, one for LLS ranging and TM data, and one for Apollo data. The two channels will employ a common 10 -watt power amplifier. Phase coherence of the up-link and down-link carriers will be preserved in the translational processes. On-board telemetry and the ranging code will be transmitted from the LLS to earth on a carrier that is phase-locked to the up-link carrier.

3.2.1 FIFTY WATT LLS TO A POLLO TRANSMITTER

The bandwidth and power requirements here indicate use of a traveling wave tube amplifier. A good estimate of the properties of such an amplifier can be gained from the following specifications for the Varian X-1250 TWTA:

VAR'AN/EIMAC X-1250 TWTA

Frequoncy	2.2 to 2.3 GHz
RF Power Output	56 watts
Total Power Input	175 watts
Efficiency	32%
Length	$11-1 / 2$ inches $(0.2921 \mathrm{~m})$
Width	$5-3 / 8$ inches $(0.1365 \mathrm{~m})$
Height	$2-7 / 8$ inches
Weight	7.8 pounds
Input Voltage	$25-50$ vdc
Temperature	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Gain	30 dB

3.2.3 RECEIVER PREAMPLIFIERS

Transistor and tunnel diode amplifiers operating at 2.2 to 2.3 GHz have not achieved noise figures better than 3.5 to 4.0 dB . Uncooled parametric amplifiers achieve noise figures as low as 1.3 dB (Micromega R-1108). Units designed for spacecraft environment and provided with solid state pump power sources can be expected to exhibit noise figures of 2.0 dB or slightly less.

3.2.4 10-WA TT DOWN-LINK TRANSMITTER

A 10 -watt traveling wave tube amplifier is estimated to occupy a volume $1.5^{\prime \prime} \times 5.5^{\prime \prime} \times 14^{\prime \prime}$ and to weigh 6.5 lbs.

3.3 ANTENNA CHARACTERISTICS

The recommended antenna configuration for either the halo or hummingbird orbits is a single parabolic reflector (3.5 meters in diameter) with multiple anitenna beams. The preferred antenna is a compromise between smaller, lower gain antennas which would limit the available service and larger, higher gain antennas which would require complex electronics for tracking.

In order to avoid the complexities of tracking, the antenna beam must be broad enough to cover the angular extent of the Moon. The mean angular size of the Moon is 3.1 degrees and has extremes of 2.86 and 3.4 degrees corresponding to apogee and perigee of the Moon. The angular size varies negligibly with satellite offset for offsets from 3,100 to $4,500 \mathrm{~km}$. The optimum antenna gain to provide this coverage is realized by choosing the 4 dB beamwidth equal to the Moon size from maximum range and allowing ± 0.1 degree for attitude control error. The optimum antenna would thus have a 3.06 degree, 4 dB beamwidth which corresponds to a 2.66 half-power beamwidth. A 3.5 m diameter parabola would satisfy this requirement and, if 55 percent efficient, would have a prak gain of 35.7 dB . This antenna would provide 31.7 dB gain at the edge of the Moon at maximum range and 30.2 dB at minimum range.

The difference in gain compensates for the difference in path loss for the two ranges and, thus, represents the maximum link capability for a single, non-tracking, antenna beam.

The links to the Earth would require an additional antenna beam angularly displaced from the beam for the Moon links. The amount of beam displacement required varies with the satellite offset as shown in Figure 3-3.

It is desirable for the feeds which generate the two beams to be physically and electrically separaie. The feed design and focal length-to-diameter ratio may be chosen in conjunction to meet the beam displacement requirements for satellite offsets of 4000 km or more. The feed development and packaging of the polarizers and circuitry become simpler for the larger offsets, but it remains to be determined whether these savings counterbalance the additional fuel required to maintain the larger offsets.

Figure 3-3. Beam Displacement vs Satellite Offset

The feed for the Moon-directed beam would be placed on the reflector axis so that maximum antenna performance will be realized for the critical LM and CSM links. The feed for the Earth-directed beam would be located off axis. For the hummingbird, the antenna axis would be pointed at the Moon center at all times. The center of the Earth-directed beam would migrate somewhat as the Earth-Moon distance changed, but the Earth would always be within the 3 dB beamwidth. For the halo orbit, the antenna axis would again be pointed at the Moon center and the Earth-directed beam would precess around the axis at the LLS orbital rate. This could be done by rotating the feed or by electronically switching between a cluster of feeds. Of these alternates, mechanical rotation appears to be the most attractive.

SECTION 4

ATTITUDE CONTROL STUDIES

Abstract

Attitude control must be provided during the midcourse correction and lunar orin: uscirion, as well as during the communication and stationkeeping phases of the mission. Guitar. considerations require that the thrust vector be aligned to within ± 0.5 degrees during midcourse correction and lunar orbit insertion. Communications require that the antenna be aligned to the Moon to within 0.5 degrees, but a goal of 0.1° has been selected for the study. An attitude control concept for the midcourse correction and lunar orbit insertion is described. Several feasible attitude control concepts during the communications and stationkeeping phases of the mission are described for each of the two proposed orbits. The initial stabilization procedure is specified for each concept. Disturbance torques are estimated and controller requirements are determined. System block diagrams and weight and power summaries for each concept are also included.

4.1 ATTITUDE CONTROL DURING MDCOURSE CORRECTION AND LUNAR ORBIT INSERTION

 The attitude control system proposed during the orbit transfer phase of the mission will be similar to the system that has proved itself on the Mariner, Surveyor, and Lunar Orbiter missions. This system uses sun sensors to control two axes to the sun, and a star tracker to control the third axis to the star canopus. Control torque is provided by a pneumatic system. Rate information is provided by a body mounted three axis gyro package. The gyros would be in the rate mode. This orientation is maintained throughout the transfer orbit except during midcourse correction and lunar orbit insertion. At this time, control is transferred from the sun sensors and the star tracker to the body mounted gyro package that has been switched to the rate and position mode. The vehicle is then slewed by precessing the gyros one axis at a time to the orientation required for each rocket burn. Because of the increase in disturbance torque due to rocket misalignment, control torque during rocket burn is provided by vectoring of the rocket thrust. Guidance considerations require that the thrust vector be aligned to within ± 0.5 degrees.
4.2 ATTITUDE CONTROL CONCEPTS DURING THE COMMUNICATION AND STATIONKEEPING PHASES OF THE MISSION

Several feasible attitude control concepts were selected for each of the two orbits proposed.

4.2.1 HUMMINGBIRD ORBIT

In this orbit, the satellite would lead the Moon around the Earth and always remain in the Moon orbital plane. The satellite position would be maintained so as to present a constant geometry between the Earth, the satellite, and the Moon.

The uirst concept uses an internal constant speed momentum wheel as a gyroscope for orientation control. The spin axis of the momentum wheel is maintained normal to the Earth/Moon plane. This provides control about two axes of the vehicle. Control about the third axis, which is parallel to the momentum wheel spin axis, is obtained by modulating a flywheel, whose spin axis is parallel to the spin axis of the momentum wheel, using an error signal from an Earth sensor operating in the infrared range of the spectrum. Precession control to align and maintain the rotor axis normal to the Earth/Moon plane will be performed by reaction jets. Jet actuation will be based on error signals from the Earth sensor and the Canopus star tracker. A nutation damper will be provided to damp out any coning motion induced by jet actuation or disturbance torques. The communications antenna would be rigidly attached to the vehicle with its symmetrical axis pointed to the Moon. A secondary feed would be rotated off this axis at some fixed angle to point to the Earth. A solar array, for power collection, will be mounted to each end of the vehicle on the axis perpendicular to the Earth/Moon plane. The arrays will be rotated about this axis so that they always face the sun. Because the Earth/Moon plane is inclined only five degrees with respect to the ecliptic plane, the normal to the solar array will never be misaligned more than five degrees with respect to the sun line. To provide period and stabilization control to maintain the hummingbird orbit, a thruster will be mounted to the vehicle so that it lies in the Earth/Moon plane and is perpendicular to the Earth/Moon line. To minimize disturbance torques, the line of action of the thruster must be as close as possible to the center of the mass of the vehicle. Calculations show that this moment arm should be kept to within 0.00254 meter (0.1 inch). To accomplish this, some form of
thrust vector control about two axes must be provided. For orbit stabilization control, it would be advisable to have a sep arate thruster aligned along the yaw axis acting through the center of mass with the moment arm not to exceed 0.00635 meter (0.25 inch).

Initial stabilization is accomplished by using the body mounted gyro package that has been switched to the rate and position mode to orient the vehicle so that the spin axis of the flywheel is perpendicular to the orbit plane. The vehicle is then spun about this axis to establish an angular momentum vector to maintain this orientation until the flywheel can be spun up. Since this will probably be a minimum moment of inertia axis, the nutation damper should be caged prior to spin up to minimize cone angle build up. The flywheel is then energized. As the flywheel spins up, the vehicle rate will decrease until it reaches zero. It will be maintained at zero by the pitch jets. The nutation damper can now be uncaged to remove any cone angle that may have built up. The flywheel should be brought to top speed as quickly as possible. If the vehicle is not exactly symmetrical about the spin axis of the flywheel, this axis as the flywheel spins up temporarily becomes an intermediate moment of inertia axis which is unstable and will cause a cone angle build up. Therefore, it is necessary to pass through this region as quickly as possible. When the flywheel reaches top speed, the sun is acquired as a reference with the pitch axis. Using the body mounted gyros, the vehicle is rotated about the pitch axis until the Earth sensor points to the Earth. Control is then switched to the Earth sensor and the Earth is acquired. Once the Earth is acquired, any roll and yaw errors can be reduced by precessing the vehicle using error signals from the Earth sensor and the canopus tracker. The solar array can then be extended and the antenna erected. A block diagram of this stabilization system is given in Figure 4-1.

The second concept would have a three axis active control system. Two axes of the vehicle would be controlled to the Earth using an Earth sensor; the other axis would be controlled to the star canopus using a star sracker. The actuators would be flywheels with jet unloading. The communications antenna, the solar arrays, and the period and stabilization control thruster would require the same mounting as in concept No. 1.

Initial stabilization is accomplished by using the ${ }^{1}$. dy mounted gyro package that has been switched to the rate and position mode to orient the vehicle so that the Earth sensor is pointing to the Earth and the canopus tracker pointing to the star canopus. Control is then switched to the Earth sensor and the canopus tracker, and the Earth and star canopus are then acquired. The solar array can then be extended and the antenna erect $; d$. A block diagram of this concept is given in Figure 4-2.

4.2.2 HALO ORBIT

In this orbit, the satellite would circle the libration point. The satellite/libration point plane would be inclined 71 degrees to the Earth/Moon plane. The period of rotation about the libration point would be approximately 15 days. The distance from the libration point would be sufficient to allow the satellite to view the Earth at all times. With this orbit, unlike the Hummingbird orbit, the sateilite will move out of the Earth/Mocn plane as it circles the libration point. As viewed from the Eartit, this excursion out of the Earth; Moon plane will be approximately $\pm 0.5^{\circ}$.

The first halo orbit concept is similar to the first concept considered for the Hummingbird orbit; but, since the satellite in circling the libration point no longer maintains a fixed geometry relative to the Earth and Moon, two changes must be made. Because of the excursion of the satellite out of the Earth/Moon plane of 0.5°, if the spin axis of the constant speed flywheel were maintained normal to the Earth/Moon plane, this would represent an attitude error of $\pm 0.5^{\circ}$. Since the pointing accuracy requirement is $\pm 0.1^{0}$, this would be unacceptable. Therefore, the spin axis f, f the flywheel must be precessed $\pm 0.5^{\circ}$ every 15 days. Due to the changing geometry of the Earth and the Moon, if the antenna is to remain rigidly attached to the vehicle, the symmetrical axis of the antenna

Figure 4-1. Hummingbird and Halo Orbit Stabilization and Control Elock Diagram (Concept No. 1)

Figure 4-2. Hummingbird and Halo Orbit Stabilization and Control Biock Diagram (Concept No. 2)
must be pointed to the Earth and the secondary feed pointed to the Moon. This secondary feed would be maintained at some fixed angle relative to the symmetrical axis of the antenna, but would have to rotate around it every 15 days. If the antenna could be gimballed about two axes, then the symmetrical axis of the antenna could be pointed at the Moon and the secondary feed pointed to the Earth.

Period and stabilization control will also be required to maintain the Halo orbit. Period control thrusts will be required every seven days when the vehicle crosses the Earth/Moon plane. The duration of the thrust.s could be as long as one day. The thrusts will alternate from the positive roll to the negative roll axis. To minimize disturbance torques, the line of action of the thruster must be as close as possible to the center of mass of the vehicle. For orbit stabilization control, a thrust is required in the Earth/Moon plane. 30 degrees off the Earth/Moon line. This can be accomplished with a thruster mounted in the roll/yaw plane of the vehicle, 30 degrees off the yaw axis. The moment arm of these thrusters should not exceed one-quarter inch.

Initial stabilization would be accomplished like concept No. 1 of the Hummingbird orbit.

The second Halo orbit concept is similar to the second concept considered for the Hummingbird orbit, but the communications antenna and the period and stabilization control thrusters would require the same mounting as in concept No. 1 for the Halo orbit.

4.2.3 DISTURBANCE TORQUES

The two major disturbance torques are due to solar pressure and orbit control. The disturbance torque calculations and associated control requirements are given in Appendix I.

4.2.3.1 Solar Pressure

If there is an offset between the center of pressure and the center of mass, solar pressure disturbance torques will be developed. The vehicles for both the Hummingbird and Halo orbits will require solar arrays with large cress-sectional areas. Therefore, the solar
array, rather than the vehicle cross section, will be assumed to have predominate effect. It can be easily shown that a component of the moment arm between the center of pressure and center of mass along the pitch axis will cause torques about both the roll and yaw axes. These torques are cyclic over a period of one year. A component of the moment arm along in axis in the orbit plane and perpendicular to the fun line will cause torques about the pitch axis. These torques are accumulative.

4.2.3.2 Orbit Control

Hummingbird Orbit - If there is a moment arm between the thrust vector and the center of mass, disturbance torques will be developed. To maintain the orbit of the Hummingbird requires that a constant thrust be developed along the positive roll axis of the vehicle at all times. A component of the moment arm between the thrust vector and the center of mass along the pitch axis will cause a torque about the yaw axis. These torques are cyclic over a period of one orbit of the Earth. A component of the moment arm along the yaw axis will cause torques about the pitch axis. These torques are accumulative.

Halo Orbit - Orbit control thrusts will be required every seven days when the vehicle crosses the Earth/Moon plane. The duration of the thrusts could be as long as one day. The thrusts will alternate from the positive roll to the negative roll axis. A component of the moment arm along the pitch axis will cause torques about the yaw axis. These torques are cyclic over a period of one orbit of the Earth. A component of the moment arm along the yaw axis will cause torques about the pitch axis. Since these torques will be caused by two separate jets, they will have different moment arms. Therefore, it is possible that these torques could add or subtract from each other. However, the worst case should be considered for sizing of the flywheels.

4.3 HUMMINGBIRD RESULTS

4.3.1 CONCEPT NO. 1

To minimize the disturbance torque due to a moment arm between the thrust vector and the center of mass, the ion engine used for orbit control must have thrust vector control about
two axes. For orbit stabilization control, it would be advisable to have a separate thruster aligned along the yaw axis acting through the center of mass instead of using the roll axis ion engine. The moment arm for this thruster should not exceed 0.00635 meter (0.25 inches).

Since the ion engine used for orbit control will be thrust vector controlled, it is expected that the moment arm between the thrust vector and the center of mass can be maintained to within (0.00254 meters (0.1 inch). It is recommended that a constant speed flywheel with an angular momentum storage capacity of $100 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used. This would require making precession control corrections on an hourly basis. The maximum impulse that could be imparted from the precession control jets to the vehicle at one time to prevent the attitude error from exceeding 0.1 degree due to the control action would be $0.087 \mathrm{lb} / \mathrm{sec}$. The duration of this pulse should not exceed $0.00175 \mathrm{I}_{\mathrm{xz}} \mathrm{sec}$. The total impulse that would be required for control action due to disturbance torques is $656 \mathrm{lb} / \mathrm{sec} / \mathrm{year}$. If a gas with an $I_{s p}=110 \mathrm{sec}$ is used, the weight of the gas would be $5.97 \mathrm{lb} /$ year. The impulse required during constant speed flywheel spin up is $100 \mathrm{lb} / \mathrm{sec}$. This would require 0.91 lbs of gas.

It is recommended that couples be used for all control jets to avoid disturbing the orbits with translational thrusts.

For control about the pitch axis, it is recommended that a modulated flywheel with an angular momentum storage capacity of $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used. The flywheel should unload only 25 percent of maximum momentum ($0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) with a torque not exceeding $0.01 \mathrm{ft} / \mathrm{lb}$. Approximately seven unloadings per day would be required due to the disturbance torque if they act about the pitch axis.
4.3.2 CONCEPT NO. 2

4.3.2.1 Roll, Pitch and Yaw Flywheel Sizing

4.3.2.1.1 Solar Pressure Torques

Solar pressure torques are cyclic over a period of one year about the roll and yaw axes;
they are also accumulative in piten. To keep from unloading the wheels in the roll and yaw axes due to solar pressure torques would require flywheels with sufficient angular momentum storage to absorb the solar pressure disturbance torque for one-half year.

$$
\mathrm{H}_{\mathrm{w}}=0.0695 \mathrm{ft} / \mathrm{lb} / \mathrm{sec} / \mathrm{day}\left(\frac{365}{2}\right) \text { days }=12.7 \mathrm{ft} / \mathrm{lb} / \mathrm{sec}
$$

This does not seem advisable since the weight of the gas required to remove the angular momentum due to solar pressure is at most $0.115 \mathrm{lb} / \mathrm{yr}$. Therefore, it would seem much more practical to use a $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ modulated flywheel on all three axes, and unload them 25% every 7. 2 days.

4.3.2.1.2 Orbit Control Torques

The disturbance torques due to the misalignment of the thruster for orbit control are cyclic over a period of one orbit of the Earth in the roll and yaw axis; they are also accumulative in pitch.

To keep from unloading the wheels in roll and yaw would require a minimum of

$$
\mathrm{H}_{\mathrm{w}}=3.525 \mathrm{ft} / \mathrm{lb} / \mathrm{sec} / \text { day (} 14 \text { days) }=49.4 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}
$$

of momentum storage in the roll and yaw wheels if we assume a moment arm of 0.1 inch.
If, insteat, we used a $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ modulated wheel on all three axes, the number of unloadings per day would be as shown in Appendix I.

4.3.2.2 Conclusions - Conept No. 2

The ion engine on the $\mathrm{r}^{\prime} \mathrm{l}$ axis used for orbit control must be thrust vector controlled about two axes to minimize the disturbance torque due to a moment arm between the thrust vector and the center of mass. For orbit stabilization control, it would be advisable to have a separate thruster aligned along the yaw axis acting through the center of mass instead of using the roll axis ion engine. The moment arm for this thruster should not exceed 0.00635 meter (0.25 inch).

Since the ion engine used for period control will be thrust vector controlled, it is expected that the moment arm between the thrust vector and the center of mass can be maintained to within 0.00254 meter (0.1 inch).

It is recommended that a modulated flywheel with an angular momentum storage capacity of $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used for control about each axis. They should be unloaded only 25% of maximum momentum ($0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) with a torque not exceeding $0.01 \mathrm{ft} / \mathrm{lb}$. Approximately seven unloadings per day would be required due to the disturbance torques.

It is also recommended that couples be used for all control jets to avoid disturbing the orbits with translational thrusts. The total control impulse that would be required due to disturbance torques is $656 \mathrm{lb} / \mathrm{sec} /$ year. If a gas with an $I_{\mathrm{sp}}=110 \mathrm{sec}$ is used, the weight of the gas would be $5.97 \mathrm{lb} /$ year.

4.4 HALO RESULTS

4.4.1 CONCLUSIONS - CONCEPT NO. 1

To minimize the disturbance torque for ΔV corrections due to a moment arm between the thrust vector and the center of mass, the moment arm should not exceed one-quarter inch.

It is recommended that a constant speed flywheel with an angular momentum storage capacity of $100 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used. This would require making precession control corrections on an hourly basis if the ΔV correction is imparted over a period of one full day. The maximum impulse that could be imparted from the precession control jets to the vehicle at one time to prevent the attitude error from exceed 0.1 degree due to the control action would be $0.087 \mathrm{lb} / \mathrm{sec}$. The duration of this pulse should not exceed $0.00175 \mathrm{I}_{\mathrm{xz}}$ second.

For control about the pitch axis, it is recommended that a modulated flywheel with an angular momentum storage capacity of $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used. It should be unloaded only 25% of maximum momentum ($0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) with a torque not exceeding $0.01 \mathrm{ft} / \mathrm{lb}$. Approximately 6.5 unloadings will be required during each ΔV correction if the disturbance torque acts about the pitch axis.

It is recommended that couples be used for all control jets to avoid disturbing the orbits with translational thrusts.

The total impulse that would be requi $\cdot \mathrm{sd}$ for control action due to disturbance torques and precession control for satellite motion out of the Earth/Moon plane is $136.1 \mathrm{lb} / \mathrm{sec} / \mathrm{year}$. If a gas with an $I_{s p}$ of 110 sec is used, this would require $1.25 \mathrm{lb} /$ year of gas. The impulse required for constant speed flywheel spin up is $100 \mathrm{lb} / \mathrm{sec}$. This requires 0.91 lb of gas.

4.4.2 CONCEPT NO. 2

4.4.2.1 Roll, Pitch and Yaw Flywheel Sizing

4.4.2.1.1 Solar Pressure Torques

Solar pressure torques are cyclic over a period of one year about the roll and yaw a xes; they are also accumulative in pitch. To keep from unloading the wheels in the roll and yaw axes due to solar pressure torques would require flywheels with sufficient angular momentum storage to absorb the solar pressure disturbance torque for one-half year.

$$
\mathrm{H}_{\mathrm{w}}=0.03456 \mathrm{ft} / \mathrm{lb} / \mathrm{sec} / \text { day }\left(\frac{365}{2}\right) \text { days }=6.35 \mathrm{ft} / \mathrm{lb} / \mathrm{sec}
$$

This does not seem advisable since the weight of the gas required to remove the angular momentum due to solar pressure is at most $0.058 \mathrm{lb} /$ year. Therefore, it would seem much more practical to use a $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ modulated flywheel and unload it 25% every 14.4 days.

4.4.2.1.2 Orbit Co rol Torques

As mentioned before, orbit control thrusts will be required every seven days of the halo orbit. These thrusts will alternate from the positive roll to the negative roll axis. These thrusts could produce torques about the yaw axis or the pitch axis depending on where the
moment arm is located. The torques produced by the positive roll jet on the yaw axis would cancel each other every one ralf orbit of the Earth, as would the torques produced by the negative roll jet.

To keep from unloading the wheels in the roll and yaw axes due to period contol torques, would require a minimum of

$\left(l^{\prime \prime}\right.$ M. A. $)$	$H_{w}=13 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$
$\left(1 / 4^{\prime \prime}\right.$ M. A.)	$H_{w}=3.24 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$
$\left(0 . \mathrm{l}^{\prime \prime}\right.$ M. A. $^{H_{w}}$	$\mathrm{H}_{\mathrm{w}}=1.3 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$

of momentum storage in the roll and yaw wheels. To the above numbers must be added $0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ which is the angular momentum that would be absorbed by the wheels due to solar pressure over 14 days. The angular momentum required for the 0.1 inch moment arm falls within the $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ flywheel recommended previously.

If the $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ flywheel were used with the other two momentum arms, the number of flywheel unloadings required would be that shown in Appendix I.

4.4.2.2 Conclusions - Concept No. 2

To minimize the disturbance torques for ΔV corrections due to a moment arm between the thrust vector and the center of mass, the moment arm should not exceed one-quarter inch. The ΔV correction should be imparted over a period of not less than one hour so as not to exceed 0.1 degrees attitude error.

It is recommended that a modulated flywheel with an angular momentum storage capacity of $2 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$ be used for control about each axis. The flywheels should be unloaded only 25% of maximum momentum ($0.5 \mathrm{lb} / \mathrm{ft} / \mathrm{sec}$) with a torque not exceeding $0.01 \mathrm{ft} / \mathrm{lb}$. Approximately 6.5 unloadings will be required during each ΔV correction.

It is recommended that couples be used for all control jets to avoid disturbing the orbits with translational thrusts.

4.5 CONCLUSIONS

The weight and power summaries for both concepts are given in Tables 4-1 and 4-2. It can be seen that the weight range is from 103 to 111 pounds and the power requirements vary from 91 to 107 watts. Both concepts are feasible and comparable in weight, power and complexity; either would be satisfactory for Halo or Hummingbird stabilization control.

Table 4-1. Hummingbird and Halo Orbit Attitude Control Subsystem Weight and Power Summary (Concept No. l)

Component	Number Required	Weight/Syatem $1 \mathrm{ba}$	Power/Syatem watte	Deve lopment Statis
coarse sun Semsor	2	1.8	---	OAO
fine hun Seneor	2	2.3	---	OAO
tanopur Star Sensor	1	12.0	8.0	Mariner
tarth Sensor	1	0	3.0	Barnen or Quantic (radiometric balance)
lnertidel Package	1	7.5	14.5	oAO Raps Package
Inertal Paskage Electronics	1	13.7	17.3	DAO RAPS Package
Control Electronsas	1	20.0	20.0	To be developed
S-lat Areas Driva	1	12.0	1.10	Nimbus ${ }^{\text {B }}$
Pitch Axis Mosulated tiywheel	1	10.0	5.0	OAO
Nutation Damper	1	8.0	\ldots	Sperical Pendulum Damper
Piteh Axis Constant Speed $f 1$ vehee:	1	20.0	25.0 ave. (72.0 gtarting)	
		$\begin{gathered} 111.3 \\ (50.4856 \mathrm{~kg}) \end{gathered}$	106.8	

Table 4-2. Hummingbird and Halo Orbit Attitude Control Subsystem Weight and Power Summary (Concept No. 2)

(omponent	Number Required	Weight/System $1 b_{s}$	Power/System wates	Development Status
Coarse Sun Sensor	2	1.8	---	OAO
Fine Sun Sensor	2	2.3	---	OAO
Canopus Star fensur	1	12.0	8.0	Mariner
t.arth Sensor	1	4.0	3.0	Barnes or Quantic (radiamerric balance)
Inertial Package	1	7.5	14.5	OAO RAPS Package
Inertial Package Electronics	1	13.7	17.3	OAO RAPS Package
Control Electronics	1	20.0	20.0	To be developed
Solar Array Drive	1	12.0	14.0	Nimbus B
Modulated Flywheels	3	30.0	15.0	OAO
		$\begin{gathered} 103.3 \\ (46.8568 \mathrm{~kg}) \end{gathered}$	91.8	

SECTION 5

PROPULSION STUDIES

5.1 INTRODUCTION

This report documents the study results of propulsion systems required for the Lunar Libration Point Satellite. Spacecraft propulsion for this mission is required for the performance of the following functions:
a. Midcourse correction and lunar orbit injection
b. Lunar orbit maintenance
c. Spacecraft attitude control

Typical propulsion systems for each of these functions are selected, described and evaluated using a figure of merit comparison. Additional? , launch vehicle nost and payload to lunar transfer trajectory data (as supplied by NASA) are presented.

5.2 LAUNCH VEHICLES FOR EARTH ORBIT AND LUNAR TRANSFER TRAJECTORY

 The objective of the launch vehicle study was the selection and tabulation of boosters and upper stage combinations having a broad range of payload capability into a lunar transfer trajectory. The launch trajectory assumed an Eastern Test Range injection into a 185. 2 -kilometer parking orbit. This was followed by an insertion into the lunar transfer trajectory which required a total inertial velocity of $10,942.32 \mathrm{~m} / \mathrm{sec}$.The selection of boosters for the tabulation was restricted to the Delta, Atlas, and Titan families with various applicable upper stages. Included in the tabulation are various proposed launch vehicle configurations potentially available within the 1973-75 time period. Table 5-1 contains the launch vehicle tabulation alung with the respective payload capability and approximate recurring cost data.

Table 5-1. Launch Vehicle Capabilities Summary

Launch Vehicle	Escape Payload* (lbs)	Replacement Costs (\$M)
TAT-Delta - 3 Castors - FW 4	380	3.01
TAT-Delta - 3 Castors - TE 364	47^{\wedge}	3.07
SLV3A - Burner 2	625	4.3
TAT-Delta - 6 Castors - TE 364	710	3.36
TAT-Delta - 9 Castors - TE 364	830	3.62
(TAT-Delta - 3 Castors - HOSS ${ }^{* *}$ - TE 364	1150	3.76
*** TAT-Delta - 6 Castors - HOSS	1280	4.05
TAT-Delta - 9 Cרstors - HOSS	1480	4.31
Titan 3X - Agena	2300	8.6
SLV3C - Centaur	2800	10.8
SLV3X - Centaur	4800	10.8
Titan 3C	5000	17.2
Titan 3D - Centaur	12500	16.8

*ETR launch with 185.2 km parking orbit
**HOSS - Hydrogen Oxygen Second Stage
***proposed class of launch vehicles

5.3 PROPULSION SYSTEM CHARACTERISTICS

Thi objective of this section is to describe the general configuration, performance, weight and power requirement characteristics for three types of propulsion systems which are the most likely candidates for fulfillment of one or more of the following spacecraft functions:
a. Midcourse correction and lunar orbit injection
b. Lunar orbit maintenance
c. Spacecraft attitude control

5.3.1 BIPROPELLANT PROP ULSION SYSTEMS

Bipropellant propulsion systems are used for all thrust levels down to a practical minimum of $2 \mathrm{lb}_{\mathbf{f}}$. Most current state-of-the-art low thrust systems, approximately $1000 \mathrm{lb}_{\mathrm{f}}$ and below, utilize a hypergolic propellant combination of monomethyl hydrazine (MMH) as the fuel and nitrogen tetraoxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ as the oxidizer; such fuels operate at an oxidizer to fuel mixture ratio (by werght) of 1.6 . Vacuum specific impulses of 285 to $295 \mathrm{lb}_{\mathrm{f}}-\mathrm{sec} / \mathrm{lb}_{\mathrm{m}}$ are typically achieved for this propellant combination. MMH has a propellant density of $54.4 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ while $\mathrm{N}_{2} \mathrm{O}_{4}$ has a density of $90.5 \mathrm{lb} \mathrm{mn} / \mathrm{ft}^{3}$. This propellant combination has the advantage of occupying equal propellant volumes (equal size propellant tanks) at the operating mixture ratio and has a high overall bulk propellant specific gravity of 1.23. MMH freezes at a temperature of $-63^{\circ} \mathrm{F}$ and boils at $189^{\circ} \mathrm{F}$ while $\mathrm{N}_{2} \mathrm{O}_{4}$ freezes at $11.8^{\circ} \mathrm{F}$ and boils at $70^{\circ} \mathrm{F}$. A schematic of a typical biprepellant propulsion system is shown in Figure 5-1.

Figure 5-1. Typical Bipropellant Propulsion System Schematic

A curve $u i$ bipropellant system weight plotted as a function of total impulse is presented in Figure 5-2. A least-square curve fit of this riot results in the following mathematical equation for propulsion system weight:

$$
W_{P . S .}=C_{2}+C_{2}\left(\frac{I_{T}}{10^{3}}\right)+C_{3}\left(\frac{\mathrm{I}_{\mathrm{T}}}{10^{3}}\right)^{2}+\mathrm{C}_{4}\left(\frac{\mathrm{I} T}{10^{3}}\right)^{3}+\mathrm{C}_{5}\left(\frac{\mathrm{I}_{\mathrm{T}}}{10^{3}}\right)^{4}+\mathrm{N}\left(\mathrm{~W}_{\mathrm{TH}}\right)
$$

where $\quad W_{\text {P.S. }}=$ propulsion system weight -lbs
$\mathrm{I}_{\mathrm{T}} \quad=$ total impulse required - $\mathrm{lb}-\mathrm{sec}$
$\mathrm{N} \quad=$ number of thrusters required
$\mathrm{W}_{\mathrm{TH}}=$ weight of each thruster (deternined from Figure 5-3) - lbs

$$
C_{1}=14.49
$$

$$
\mathrm{C}_{2}=5.755
$$

$$
C_{3}=-0.4179 \times 10^{-1}
$$

$$
\mathrm{C}_{4}=0.3077 \times 10^{-3}
$$

$$
C_{5}=-0.4626 \times 10^{-6}
$$

Figure 5-2. Bipropellant (MMH/ $\mathrm{N}_{2} \mathrm{O}_{4}$) Propulsion System Weight vs Total Impulse

Figure 5-3. Bipropellant ($\mathrm{MMH} / \mathrm{N}_{2} \mathrm{O}_{4}$) System Thruster Weight vs Thrust Level

Power requiren. ents ior a bipropellant system are minimal. Each solenoid valve can be estimated to draw approximately 10 watts of electrical power. This results in a maximum estimated power requirement of 50 watts for the system.

5.3.2 MONOPROF ELLANT PROPULSIONS SYSTEMS

Monopropellant hydrazine propulsion systems have been designed throughout the thrust range of $0.05 \mathrm{l}_{\mathrm{i}}$ to $500 \mathrm{lb}_{\mathrm{f}}$. Hydrazine thrusters utilize Shell 405 as the spontaneous catalyst which deccmposes the hydrazine into $1800^{\circ} \mathrm{F}$ gases consisting of ammonia, nitrogen and hydrogen. Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ has a propellant density of $63 \mathrm{lb} / \mathrm{ft}^{3}$, a freezing temperature of $35.1^{\circ} \mathrm{F}$ and a boiling temperature of $236^{\circ} \mathrm{F}$. A schematic of a ty, icu; monopropellant propulsion system is shown in Figure 5-4.

Figure 5-4. Typical Monopropellant Propulsion System Schematic

A curve of monopropellant system weight plotted as a function of total impulse is presented in Figure 5-5. A least-square curve fit of this plot results in the fo!lowing equation for system weight:

$$
\mathrm{W}_{\text {P. S. }}=\mathrm{C}_{1}+\mathrm{C}_{2}\left(\frac{\mathrm{I}_{\mathrm{T}}}{10^{3}}\right)+\mathrm{C}_{3}\left(\frac{\mathrm{I} \mathrm{~T}}{10^{3}}\right)^{2}+\mathrm{C}_{4}\left(\frac{\mathrm{I} \mathrm{~T}}{10^{3}}\right)^{3}+\mathrm{C}_{5}\left(\frac{\mathrm{I}_{\mathrm{T}}}{10^{3}}\right)^{4}+\mathrm{N}\left(\mathrm{~W}_{\mathrm{TH}}\right)
$$

where $\quad W_{\text {P.S. }}=$ propulsion system weight - lbs
$\mathrm{I}_{\mathrm{T}} \quad=$ total impulse required $-\mathrm{lb}-\mathrm{sec}$
$\mathrm{N} \quad=$ number of thrusters required

Figure 5-5. Monopropellant $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ Propulsion System Weight vs Total Impulse

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{TH}} & =\text { weight of each thruster }- \text { lhs (determined from Figure 5-6) } \\
\mathrm{C}_{1} & =7.049 \\
\mathrm{C}_{2} & =8.967 \\
\mathrm{C}_{3} & =-0.525 \\
\mathrm{C}_{4} & =0.2866 \times 10^{-1} \\
\mathrm{C}_{5} & =-0.3897 \times 10^{-3}
\end{array}
$$

Power requirements are limited to sclenoid valves each of which requires approximately 10 watts of electrical power. This results in a maximum estimated power requirement for the system of 50 watts.

Figure 5-6. Monopropellant $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ System Thruster Weight vs Thrust Level

Another monopropellant system not considered in this study hut which may be available by the 1973-75 time period is the one using a propellant blend consisting of $76 \% \mathrm{~N}_{2} \mathrm{H}_{4}$ and $24 \% \mathrm{~N}_{2} \mathrm{H}_{5} \mathrm{NO}_{3}$. The advantages of this propellant over hydrazine are a specific gravity of 1.106 , a freezing temperature of $+2^{\circ} \mathrm{F}$ and a propulsion system specific impulse in the range of 250 to 255 seconds.

5.3.3 ION ENGiNE

There are only two fully developed flight systems at this time. One system is a $5-20$ micro lb unit built by Electro-Optics for NASA's ATS-D flight. The second system is in final testing by NASA-Lewis for the SERT-II which is scheduled for some time in 1969.

EOS Micro-Thrust System - Thrust level at 5 to 20 micio lb is too low for use in the Lunar Libration Spacecraft. This is a cesium contact ion engine for which the thrust can be varied in 5 micro lb steps from 5 to 20 micro lb . The power level is 34 watts
total at 20 micro lb . The total energy capability is low since this was one of the experiments flown on ATS-D and presumbaly will also be on board ATS-E.

SERT-II ION E: :-ine System- The SERT-II ion engine has a thrust of 6.2 m lb at a total power input of 900 to 1000 watts. This thrust level is approximately that required for the Hummingbird-Lunar stationkeeping application. The engine is a morcury-electronbombardment thruster with a 15 -cin diameter discharge chamber, a mercury plasmabridge neutralizer, and a pressurized mercury propellant tank. The tank carries $\mathbf{3 0 . 8} \mathrm{lb}$ of mercury, a nine month supply, although program goal is continuous operation for six month. 'The total system loaded weight 40 lb plus 5 to 10 lb for the mechanical gimbal system. The mechanical gimbal operates in two planes to $\pm 10^{\circ}$. Pointing accuracy only requires control to the nearest degree.

A complete prototype thruster has been operated for 1000 nours without failure. Additional certification testing is in progress. Separate key components of the thruster have been tested from 2000 to 3400 hours. As a consequence, it is estimated that the thruster system has a potential life of 10,500 hours. A three year life requirement for the Hummingbird application amour-s to 26,280 hours. Figure $5-7$ shows some detail as to the assemblage of the thruster. Two complete units will be flown in SERT-II.

5.3.3.1 Hummingbird System Size

The Hummingbird thruster would have a thrust of 6 m lb with a specific impulse of 4550 to 4650 sec . Гotal hardware weight would be about 42 lb including two thrusters at 65 to 70 lb each, a main propellant tank 10 inches in diameter and weighing 6 lb ; a power conditioning and control panel $20^{\prime \prime} \times 50^{\prime \prime} \times 4^{\prime \prime}$ and weighing about 18 lb ; plus a support structure. The thruster would be cylinders $9^{\prime \prime} \times 9^{\prime \prime}$ in size. By 1971 electrical thrust vector control may be possible at no increase in weight.

5.3.3.2 Major Problems

The only major problem would be whether or not electrical gimballing will be proven out by 1971. This type of thruster, being multi-apertured, is not so readily controlled as

Figure 5-7. SERT II Thruster System, Anode Diameter 15 Centimeters
are "slit" and "button" type thrusters for thrust vector control. Micro thrusters of 10 micro lb and the ATS-D 5 to 20 micro lb thrusters are easily thrust vector controlled (TVC) by segmenting the accelerating electrode. "Slit" thrusters of 0.3 to 0.8 m lb can also be electrically thrust vector controlled. NASA-Lewis is currently engaged in research to determine if a successful electrical approach can be developed for TVC. Electro-Optics (EOS) is exploring a thermal shift of position of the accelerating electrode screen as a means of achieving TVC.

Extension of total life from 10,000 hours to 26,280 hours sounds formidable but Lewis feels this can be easily accomplished.

5.4 MISCOURSE CORRECTION AND LUNAR ORBIT INJECTION

5.4.1 REQUIREMENTS

The spacecraft propulsion system requirements for a lunar transfer trajectory terminating in an orbit near the L_{2} location were assumed to be those associated with a near optimum trajectory mode as defined in the mid-term report. The mode chosen wai a close lunar fly-by which requires that this velocity impulse must be imparted within a 10r.inute time interval for maximum propulsion effectiveness. Also assumed was the use of a "fast" trajectory which requires 8.57 days for accomplishing the Earth to L_{2} transfer.

The mission velocity impulse requirements f_{L} - the trajectory to L_{2}, as shown in Table 5-2, total $375.51 \mathrm{~m} / \mathrm{sec}$. This value was used for all subsequent propulsion system weight calculations.

Table 5-2. Velocity Impulse Requirements Summary, Moon to L_{2}

Velocity Impulse (m/sec)
Propulsion Reçuirement

Earth-Moon Midcourse Correction
36.57

Velocity Impulse Near Moon 190.80

Mool L_{2} Midcourse Correction
Orbit Establishment Near L_{2} Total
375.49

Figure 5-8 presents a plot of propellant requirements as a function of needed velocity impulse for a typical bipropellant and monopropellant system. As shown in the figure, the weight of propellant required to impart a velocity impulse of $375.49 \mathrm{~m} / \mathrm{sec}$ to a spacecraft will consume approximately 14% of the spacecraft weight using a bipropellant propulsion system and approximately 18% using a monopropellant propulsion system. These percentage values represent reasonable weight allocation requirements for this propulsion function. Therefore, these two types of propulsion systems will be compared in the subsequent tradeoff studies for performing the function of lunar orbit injection.

Figure 5-8. Mid-course Correction and Lunar Orbit Injection Propellant Requirements

5.4.2 HALO ORBIT

Based on subsystem weight estimates, a spacecraft weight in lunar transfer trajectory of 1200 lbs was assumed for the Halo orbit concept. Using this weight plus the velocity impulse requirement, the total impulse that the propulsion system must deliver can be calculated as follows:

$$
\begin{aligned}
I_{T}=\Delta V\left(\frac{W}{g}\right) & =375.49 \mathrm{~m} / \mathrm{sec} \frac{1200}{} \frac{\mathrm{lbs}}{9.81 \mathrm{~m} / \mathrm{sec}^{2}} \\
& =47,400 \mathrm{lb}-\mathrm{sec}
\end{aligned}
$$

A constraint on the propulsion system is that the velocity impulse at the Moon be delivered within 10 minutes. The impulse requirement for this fly-by is:

$$
\mathrm{I}_{\mathrm{T}}=190.8 \times \frac{1200}{9.81}=23,400 \mathrm{lb}-\mathrm{sec}
$$

Therefore, the minimum thrust level required is:

$$
\mathrm{F}=\frac{\mathrm{I} \mathrm{~T}}{\mathrm{TIME}}=\frac{23,400 \mathrm{lb}-\mathrm{sec}}{600 \mathrm{sec}} \approx 40 \mathrm{lbs}
$$

Two types of propulsion systems, bipropellant and monopropellant, were evaluated for this function. The characteristics of each were determined using Section 5.3 of this report. Assuming specific impulses of 280 seconds and 220 seconds, propellant weights of 170 lbs and 216 lbs for the bipropellant and monopropellant system, respectively, are required to perform this function. The bipropellant system has the advantage of lesser complexity and of proving propellant commonality for other spacesraft functions requiring low thrust levels. Halo orbit propulsion system weights and performance levels of the two systems are determined from the Section $5 \cdots 3$ data are summarized in Table 5-3.

5.4.3 HUMMINGBIRD ORBIT

A spacecraft weight of 1300 lbs in lunar transfer trajectory was assumed for the Hummingbird orbii concept. The cotal impulse required for this spacecraft weight was calculated to be $49,800 \mathrm{lb}-\mathrm{sec}$. The thrust level required for delivering the lunar fly-by velocity impulse within 10 minutes is approximately 55 lbs . Bipropellant and monopropellant systems requiring 180 to 230 lbs of propellant respectively were chosen for evaluation. Hummingbird orbit propulsion system weights and performance levels for the two considered systems are summarized in Table 5-3.
Table 5-3. Spacecraft Propulsion System Summary

Propulsion Function	$\begin{gathered} \text { av Ref'd } \\ (\mathrm{r} / \mathrm{sec}) \end{gathered}$	$\begin{aligned} & \text { Spacecratt } \\ & \text { welght } \\ & \text { welb } \end{aligned}$		System No. 1					System No. 2				
				$\begin{aligned} & \text { Wropulsion } \\ & \text { Type } \end{aligned}$	Thrus (ibs F_{F}				$\begin{gathered} \text { Propulsion } \\ \text { Type } \end{gathered}$	$\left.\right\|_{\substack{\text { thrust } \\ \text { Rlb }_{\mathrm{F}}^{\prime}}}$			$\begin{gathered} \text { Syytem } \\ \text { welem } \\ \text { webshe } \\ \text { abs } \end{gathered}$
1. Lunar Orbit Injection 2. Lunar Orbit Maintenance (3 yrs) 3 Attitude Control (3 yrs)	$\begin{aligned} & 375.51 \\ & 255 \quad 11 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{array}{r} 47,400 \\ 26,000 \\ 2,000 \end{array}$	halo orbit					Monopropellant Monopropellant Monopropellant		$\begin{aligned} & 220 \\ & 200 \\ & 125 \end{aligned}$	$\left.\begin{array}{c} 216 \\ { }_{16}^{216} \\ 16 \end{array}\right\}$	500$\begin{aligned} & \text { Total } \\ & \text { Sus } \\ & \text { lbs } \end{aligned}$
				Bipropellant Monopro- pellant Monopro- pellant	0.1 0.1	280 200 125	$\left.\begin{array}{c} 170 \\ { }_{160}^{130} \end{array}\right\}$						
					mmingab	Rd orbit							
1. Lunar ormit Injection	375.51	1300	49,800	Bipropella	55	280	180	260	propellant	55	220	230	360
2. Lunar Orbit Maintenance (3 yrs)	4541.52	1100	510,000	Ion	$\begin{aligned} & 5.4 \mathrm{x} \\ & 10^{-3} \end{aligned}$	4500	114	155	bn	5.4 x $10^{-3} \mathrm{C}$ 0.	4500	114	155
3. Attude Control (3 yrs)	--	1100	3,000	$\begin{aligned} & \text { Monopro- } \\ & \text { pellant } \end{aligned}$	0.1	125	24		Momopropellant	0.1	125	24	

5.5 LUNAR ORBIT MAINTENANCE

5.5.1 HALO ORBIT

Stationkeeping for the spacecraft in a Halo orbit requires imparting a velocity impulse of $1.76 \mathrm{~m} / \mathrm{sec}$ every one-half orbit for the purpose of maintaining orbit period control. Assuming a three year spacecraft mis ion design life, the total velocity impulse required is $255.11 \mathrm{~m} / \mathrm{sec}$. In the previous section the assumed spacecraft weight was given as 1200 lbs . However, approximately 200 lbs of propellant were expended for the functions of midcourse correction and lunar orbit injection. Therefore, the spacecraft weight in Halo orbit is estimated to be 1000 lbs . Thus, the total impulse required for the propulsion sysiem is:

$$
\mathrm{I}_{\mathrm{T}}=837 \times \frac{1000}{32.2}=26,000 \mathrm{lb}-\mathrm{sec}
$$

Because of the precision antenna pointing accuracy tolerance requirements, the orbit period control function must be achieved using a propulsion system operating at a relatively low thrust level. A value of 0.1 lb thrust was chosen as the approximate maximum level which will fulfill the spacecraft requirements. Thruster firing durations of 30 minutes every $7-1 / 2$ days are required at this thrust level to control the orbit period.

At this thrust level and firing duration, hydrazine thrusters exhibit superior periormance at minimum power requirements when compared to other applicable propulsion systems utilizing cold gas or electrically heated gas. A Hamilton Standard designed hydrazine thruster which operates at 0.05 to 0.1 lb thrust is undergoing development and is scheduled to fly on a military spacecraft before 1970. The thruster delivers a steady state specific impulse oi 200 second. and requires less than five watts of electrical power to operate the flow control solenoid valve. The weight of the thruster with valve is approximately 0.2 lbs . Because the hydrazine thruster performance, weight and power requirements characteristics associated with this low thrust level are difficult to equal vith other types of propulsion systems, only the hydrazine system was considered for the propulsion system tradeoffs for supplying orbit maintenance to the Halo concept spacecraft.

The total impulse requirement for crbit maintenance, as calculated earlier in this section, is $26,000 \mathrm{lb}-\mathrm{sec}$ for a three jear mission. Using a specific impulse of 200 sec , the weight of hydrazine propellant required is 130 lbs . The propulsion system weights, as combined with other required propulsion functions, are summarized in Table 5-3.

5.5.2 HUMMINGBIRD ORBIT

Stationkeeping for a spacecraft in a Hummingbird orbit requires the imparting of a continuous acceleration of $4.8 \times 10^{-5} \mathrm{~m} / \mathrm{scc}^{-2}$. The spacecraft weight in Hummingbird orbit was previously assumed to be 1300 los in a lunar transfer trajectory. As shown in Section 5.4 of this report, a propellant weight of approximately 250 lbs is required to position the spacecraft at the Hummingbird station. Therefore the spacecraft weight for the purpose of stationkeeping is approximately 1100 lbs .

The continuous thrust level of the propulsion system is calculated as follows:

$$
\begin{aligned}
F & =\frac{1100}{32.2}\left(1.575 \times 10^{-4}\right) \\
& =5.5 \times 10^{-3} \mathrm{lbs}
\end{aligned}
$$

Assuming a three year spacecraft mission design life, the total impulse required from the propulsion system is $510,000 \mathrm{lb}-\mathrm{sec}$. The total velocity impulse required is 14,900 fps. Using Figure 5-9, which presents the propellant required plotted as a function of propulsion system delivered impul se, the folluwing table can be generated:

Propulsion Type	Specific Impulse (sec)	Propellant Required (\% of Spacecraft Weight)
Ion Engine	4500	10
SPET	1200	32
Colloid Engine	1000	37

Figure 5-9. Propellant Required (Percent of Spacecraft Weight) as a Function of Propulsion System Delivered Impulse

For the three year mission, the ion engine offers a significant weight advantage over both the SPET and Colloid engines. Additionally, an ion engine capable of delivering a thrust in excess of six millipounds has been built and tested; the largest SPET and Colloid engine built have thrust capabilities in the range of 1 to 50 micropounds . Therefore, for the purpose of this study, only the ion engine will be considered for the propulsion device to supply the station maintenance required by the Hummingbird orbit.

Table 5-3 presents the propulsion system weights required for delivery of a velucity impulse of $4,541.52 \mathrm{~m} / \mathrm{sec}$ to the spacecraft. Assuming use of a backup thruster to insure three year life, the total weight of the ion engine propulsion system is estimated to be 181 pounds.

5.6 ATTITLDE CONTROL

Attitude control propulsion is requited for this spacecraft to perform the function of unloading reaction wheels. The total impulse requirement for this function is relatively small; the requirement was estimated at approximately $2000 \mathrm{lb}-\mathrm{sec}$ for the Halo orbit spacecraft and $3000 \mathrm{lb}-\mathrm{sec}$ for the Hummingbird orbit spacecraft. Thrust level requirements were estimated to be in the range of 0.05 to 0.1 lbs , making the choice of a hydrazine system the most attractive approach. Operating at this thrust level and in a pulse mode, an average specific impulse of 125 seconds was assumed in determining the weight of propellant required. Table 5-3 summarizes the propulsion system weights and performance for performing attitude control on the Halo and Hummingbird spacecraft.

5.7 FIGURE OF MERIT PROPULSION SYSTEM TRADEOFF

The following figure of merit model was used in the propulsion system tradeoff conducted on the Lunar Libration Point Satellite:

$$
\mathrm{FOM}=\frac{\mathrm{I}_{\mathrm{t}} \mathrm{R}}{\left[\mathrm{~W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}\right] \mathrm{Q}+[\mathrm{D}+\mathrm{NR}]} \quad\left(\frac{\mathrm{lb}-\mathrm{sec}}{\$}\right)
$$

where $I_{\text {tot }}=$ total impulse, lb-sec
$R=$ reliability for required firing duty cycle
$W_{1}=$ haruware weight, propulsion
$\mathrm{W}_{2}=$ equivalent power weight
$\mathrm{w}_{3}=$ propellant weigh:
Q = dollar value of one pound in specific spacecraft
D = non-recurring (development) cost
R = recurring cost ner system
$\mathrm{N}=$ number of systems required
Q is a factor which considers othes subsystems, the mission, the booster, and possibly the national needs reflected in the mission. A pound may change the mission lifetirne, change the booster, curtail other functions, etc.

An attempt to evaluate Q on the basis of launch vehicle costs was made as shown in Figure 5-10. Lauris vehicle costs used were those presented in Table 5-1. The slope of the cost line in the vicinity of a $1200-\mathrm{lb}$ spacecraft was determined at $\$ 700$ per pound, and that of a 1300 -pound spacecrift was also $\$ 700$ per pound. These two values of Q were then used for evaluation of the Halo or ${ }^{1}$ it and Hummingbird orbit spacecraft.

Figure 5-10. Launch Vehicle vs Payload to Lunar Transfer Injection
Table 5-5 summarizes the values used for calculating the figure of merit for the two spacecraft:

Table 5-5. Propulsion System Figure of Merit Parameters

Factor	Halo Spacecraft		Hummingbird Spacecraft	
	System No. 1	System No. 2	System NO. 1	System No. 2
I_{T}	75,400	75,400	562,800	562,800
R	0.97	0.97	0.95	0.95
W_{1}	129	138	154	158
W_{2}	20	20	240	240
W_{3}	316	362	318	368
Q	700	700	700	700
D	2,000,000	1,500,000	4×10^{6}	3.5×10^{6}
R	325,000	250,000	5×10^{5}	4.25×10^{4}
N	4	4	4	4

Development and recurring cost data were based on ROM values obtained from such propulsion vendors as Rocketdyne, Marquardt, Aerojet-General, Hughes, and EOS. The number of systems required was estimated to be four: prime, spare, qualification, and engineering units. Table 5-6 summarizes the types of propulsion systems evaluated and the respective figure of merit values calculated for each:

Table 5-6. Propulsion System Figure of Merit Results

Function	Halo Spacecraft		Hummingbird Spacecraft	
	System No. 1	System No. 2	System No. 1	System No. 2
Lunar Orbit Injection	Bipropellant	Monopropellant	Bipropellant	Monopropellant
Lunar Orbit Maintenance	Monopropellant	Monopropellant	Lon	Ion
Attitude Control	Monopropellant	Monopropellant	Monopropellant	Monopropellant
Tctal Propulsion Weight	445	500	460	515
Figure of Merit	0.0202	0.0255	0.824	0.0934

The figure of merit calculation for the $1200-1 b$ Halo spacecraft has a higher value for the neavier all-monopropellant propulsion system (System No. 2) as compared to a mixed biprc.pellant/monopropellant system (System No. 1). This is also true for the 1300-lb Hummingbird spacecraft, although the magnitude of the figure of merit difference is significantly less for the heavier spacecraft. However, if the weight of the Hummingbird spacecraft approacies or exceeds 1600 lbs , the value of Q should be readjusted, bearing in mind that a $65-\mathrm{lb}$ weight savings for the bipropellant/monopropellant system could mean use of a lower cost launch vehicle. The plot contained in Figure 5-10 shows that the 1200-lb Hain spacecraft is at the lower end of a particular launch vehicle's capability which cxtends to $\mathrm{a} v$ lue 1450 lbs . Therefore, the payload penalty of 55 lbs attributed to monopropellant propulsion for the Halo spacecraft is probably insignificant.

5. 8 SUMMARY AND CONCLUSIONS

The preceding sections have described propulsion systems capable of providing the following Halo and Hummingbird orbit concept spacecraft functions:
a. Midcourse correction and lunar orbit injection
b. Lunar orbit maintenance
c. Spacecraft attitude control

Two types of systems were described, and weight estimates made for each of the two orbit concepts. A figure of merit rating was then made for each of the two systems based on a propulsion system figure of merit model.

The following conclusions regarding types of propulsion were made as a result of this study.

5.8.1 HALO ORBIT - 1200 LB SPACECRAFT

- An integrated monopropellant hydrazine propulsion system utilizing thrusters of several sizes appears to be the most attractive system for supplying all three of the required spacecraft functions.
5.8.2 HUMMINGBIRD ORBIT - 1300 LB SPACECRAFT
- An ion engine is the only reasonable choice for the propulsion system to supply the function of lunar orbit maintenance for the spacecraft.

An integrated monopropellant hydrazine propulsion system utilizing two sizes of thrusters has the highest figure of merit rating for supplying the remaining two spacecraft functions. However, as the spacecraft weight approaches or exceeds 1600 pounds, the weight savings attributed to a combination bipropellant-monopropellant system may favor use of this system over the heavier integrated monopropellant propulsion system.

SECTION 6

SYSTEM INTEGRATION AND EVALUATION

The goal of the system integration and evaluation work was to sy nthesize systems for both the Halo and Hummingbird concepts and to select one of these as the preferred system.

The Halo and Hummingbird systems were synthesized from the selected subsystems which were described by mathematical models. The systems were compared and the preferred system selected. This section details the subsystem modeliny, the system synthesis, and evaluation.

6.1 SUBSYSTEM MODELING

The spacecraft can be synthesized from the following subsystems:
a. Antenna
b. Transponder/TT \& C
c. Electrical Power
d. Thermal Control
e. Midcourse/Insertion Propulsion
f. Orbit Maintenance/Stabilization Propulsion
g. Attitude Control
h. Structures

The mathematical models for weight, fabrication costs and engineering development costs for four of these subsystems (Antenna, Electrical Power, Thermal Control and Structures) are given in Appendix II. These models were developed by General Electric, under General Electric discretionar: funds, and represent estimates on weight and costs at the subsystem
level. The models have been used in connection with Contract NAS3-9708 for NASA-Lewis. All models are based on 1971 technology and are assumed to have a three-year lifetime. The remaining subsystems' characteristics have been estimated by the cognizant subsystem engineer on the study. The components of the transponder are also given in Appendix II.

6.2 SYSTEM SYNTHESIS

Using t"e subsystem models, the subsystem engineers' estimates, and the power requirements given in Table 6-1, it was possible to synthesize spacecraft for both the Halo and Hummingbird concepts. The weight and relative cost figures are given in Table 6-2 for both systems designed for a three-year lifetime. By comparing the weights of each system to the payload characteristics of the candidate boosters, it can be seen that the Halo Orbiter can be boosted into orbit with a TAT Delta +3 castors + HOSS; the Hummingbird requires the 6 -Castor version. The relative summation of the subsystem costs for each concept is given in Table 6-3.

6.3 SYSTEM EVALUATION

In order to compare the two concepts, certain parameters must be evaluated and combined into a figure of merit to provide a common scale for comparison. The major parameters are the weight, fabrication costs, engineering development costs, complexity and size. By assigning relative weight factors for the spacecraft, ground, and user, and weighting factors for the subsystems and major parameters for each, the figures of merit for both Halo and Humming rd could be obtained as shown in Table 6-4.

The procedures in this case can be substantially simplified, however, due to the commonality of many spacecraft subsystems and ground and user requirements. Those elements that are common can be eliminated from the evaluation and, hence, to first order only the spacecraft's major parameters themselves can be compared. The major parameters are given in Table 6-5.

Table 6-1. Power Requirements

Table 6-3. Relative Costs
Relative
Cost (\$)

Program Costs	Halo	Hummingbird
Launch Vehicle	.274	.296
Sat. Fabrication	.088	.134
Sat. Development	.638	.921
TOTAL	1.000	1.370

Table 6-4. Evaluation Procedure

Table 6-5. System Comparison

Major Parameter		
Weight (lb)	Halo	Hummingbird
System Fabrication Cost-Relative (1000S) (Including launch vehicle)	1084	1237
Engineering Dev. Cost-Relative (1000\$) Complexity (Relative) Size (Relative)	1.0	1.24

The first thiee elements have been described in the preceding sections. The basis for the evaluation of the complexity factor is that while all other subsystems are common or equivalent, the Hummingbird requires almost three times the electrical system as well as a more complex propulsion system than that selected for the Halo orbiter. However, the rotating dual feed requirement on the Halo antenna is more complex than the fixed dual antenna feed on the Hummingbird. Due to the much larger solar array requirements (222 sq ft vs 82 sp ft), the Hummingbird spacecraft would be larger than the Halo.

Regardless of the weighting factors, it can be seen that the Halo spacecraft concept is superior since it exceeds the Hummingbird spacecraft concept in each major parameter.

SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

The major conclusions and recommendations are given in the following lists.

7.1 CONCLUSIONS

- Transfers are possible every day.
- The stabilization/maintenance requirements are compatible with tracking capabilities.
- Halo - Range Rate Tracking ΔV for Phase Control $=0.23 \mathrm{~m} / \mathrm{sec} /$ day ΔV for Stability $=0.05 \mathrm{~m} / \mathrm{sec} /$ day \quad Corrections 2 to 4 days
- Hummingbird - Range \& Range Rate Tracking required $\Delta \mathrm{V}=0.1$ to $0.2 \mathrm{~m} / \mathrm{sec} /$ day
- The dynamics model and the maintenance strategy have been verified by a sample orbit.
- Both Halo and Hummingbird concepts are feasible from a flight dynamics point of view.
- Most of the communications links can be satisified using one 11-1/2-ft antema with dual feeds.
- Attitude control can be maintained using either a dual spinner or three-axis active concept.
- The optimum propulsion system for the Halo orbiter is an all-monopropellant system, whereas the optimum for the Hummingbird is a monopropellant-ion mix.
- Both concepts are feasible, but the Halo concept is superior on a weight and cost basis.

7. 2 RECOMMENDATIONS FOR FUTURE STUDIES

- Utilization of a Libration Point Satellite for detailed lunar gravitational field studies.
- Detailed technology studies
- Dual feed antenna
- Apollo communications subsystem improvements
- Specific control system designs in more detail
- System studies
- Phase B of the Halo concept
- Complexity/reliability quantification

Conclusions in each study area have already been given in the appropriate section.

SECTION 8

REFERENCES

1. Dunn, G. L., "A Libration Point Satellite Relay for Lunar Farside Communication," General Electric Company, GE TIS 63SPC-5, April 1963.
2. Farquhar, R. W., "Stationkeeping in the Vicinity of Collinear Libration Points with an Application to a Lunar Communications Problem," American Astronautical Society Paper 66-132, July 1966.
?. Vonbun, F. O., "A Hummingbird for the L_{2} Lunar Libration Point," Goddard Space Flight Center X-document, X-507-67-167, April 1967.
3. Richards, P. B. , "Approximate Effect of the Sun on Satellites near the Interior Earth-Moon Libration Point, " AIAA Paper 65-512, 1965.
4. deVries, J. P. and Pauson, W. M., "Stיdy of Motion near Libration Points in the Earth-Moon System, " General Electric Co., King of Prussia, Pa., Space Sciences Laboratory, GE TIS R62SD5, 1962.
5. Colombo, G., "The Stabilization of an Artificial Satellite at the Inferior Conjunction Point of the Earth-Moon System, "Smithsonian Contrib., Astrophys, Vol. 6, pp 213-222, 1961.
6. Nicholson, F. T., "Effect of Solar Perturbation on Motion n \quad ar the Collinear EarthMoon Libration Points, " AIAA Journal, Vol. 5, No. 12, Decimber 1967, pp 22372241.
7. Schmid, P. E., "Lunar Far-Side Communication Sateilites," Goddard Space Flight Center, X-507-67-328, July 28, 1967.
8. Moorehead, R. W. and Arndt, G. D., "The Apollo Unified S-Band Telecommunications System," Proceedings of the 1968 National Telemetering Conference, pp. 251-261.
9. NASA Manned Spacecraft Center Internal Note MSC-EB-R-67-1. "A Performance Analysis of the Apollo Unified S-Band Communications System for a Typical Lunar Mission", by C. T. Dawson, G. E. Arndt, and R. W. Moorehead, May 1, 1967.
10. Motorola, Inc. Military Division, Task III, Final Report, Apollo Unified S-Band System Block II Compatibility Test Program, Contract NAS9-2563.
11. Farquhar, R. W., "The © ntrol and Use of Libration Point Satellites," Stanford University Department of I! ronautics and Astronautics, Report No. 350, July 1968.
12. Brouwer, D. and Clemence, G. M., Methods of Celestial Mechanics, Academic Press, 1961.

APPENDIX I
 ATTITUDE CONTROL

1．1 CONTROLLER REQUIREMENTS

1．1．1 HUMMINGBIRD ORBIT

1．1．1．1 Disturbance Torque Magnitude

1．1．1．1．1 Solar Pressure
Assume 1000 watts solar array
at 10 watts $/ \mathrm{ft}^{2}$

320 Communications
100 Attitude Control
580 Period Control

Area $=100 \mathrm{ft}^{2}$
Solar pressure $=9.65 \times 10^{-8} \# / \mathrm{ft}^{2}$
Assume center of pressure of mass
offset of 1 inch
Torque $=9.65 \times 10^{-8}$ 非 $/ \mathrm{ft}^{2}\left(100 \mathrm{ft}^{2}\right)(1 / 12 \mathrm{ft})=8.04 \times 10^{-7} \mathrm{ft}$
Time $=3600 \mathrm{sec} / \mathrm{hr}(24 \mathrm{hr} /$ day $)=86,400 \mathrm{sec} /$ day
Angular Momentum $=.0695 \mathrm{ft}$ 非 $\mathrm{sec} / \mathrm{day}$

1．1．1．1．2 Orbit Control

Acceleration Required $=4.8 \times 10^{-5}$ meter $/ \mathrm{sec}^{2} \times 3.281 \mathrm{ft} / \mathrm{m}=15.75 \times 10^{-5} \mathrm{ft} / \mathrm{sec}^{2}$
Assume 1000 lb spacecraft
Thrist $=15.75 \times 10^{-5} \mathrm{ft} / \mathrm{sec}^{2}\left(1000 \sharp / 32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)=4.89 \times 10^{-3}$ lbs
Assume a 1 inch moment arm between thrust vector and center of mass
Torque $=4.89 \times 10^{-3} \mathrm{lbs}(1 / 12 \mathrm{ft})=4.08 \times 10^{-4} \mathrm{ft}$ 非
Angular Monentum $=4.08 \times 10^{-4} \mathrm{ft} \#(86,400 \mathrm{sec} / \mathrm{day})=35.25 \mathrm{ft}$ \＃ $\mathrm{sec} / \mathrm{day}$

Assuming one－quarter inch moment arm between thrust vector and center of mass

$$
T_{d}=4.89 \times 10^{-3} \#(1 / 4 \times 12 \mathrm{ft})=1.02 \times 10^{-4} \mathrm{ft} \#
$$

$$
\mathrm{H}_{\mathrm{d}}=1.02 \times 10^{-4} \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十\left(1.6400 \times 10^{4} \mathrm{sec} / \mathrm{day}\right)=8.82 \mathrm{ft} \text { 非 } \mathrm{sec} / \mathrm{day}
$$

Assuming 0.1 inch moment arm between $t_{\text {ia }}$ ust vector and center of mass

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=4.89 \times 10^{-3} \sharp(0.1 / 12 \mathrm{ft})=4.08 \times 10^{-5} \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三
\end{aligned}
$$

1．1．1．2 Concept 非1

1．1．1．2．1 Constant Speed

Flywheel Size－A component of the moment arm along

$$
\tan T=H_{d} / H_{w}
$$ the pitch axis will cause the spin axis of the $H_{W}=H_{d} / \tan \theta$ flywheel to precess．To prevent the flywheel from $\theta_{\text {max }}=0.1 \mathrm{deg}$ precessing more than 0.1 degree，the flywheel must hav the following angular momentum relationship due to the disturbance angular momentum．

$$
\mathrm{H}_{\mathrm{w}}=\mathrm{H}_{\mathrm{d}} / 0.1 / 5 \% .3=573 \mathrm{H}_{\mathrm{d}}
$$

1．1．1．2．1．1 Solar Pressure Torques

Since solar pressure torques about the roll and yow axes are cyclic over a period of one year，it would require a flywheel with enough angular momentum storage so that it would not precess more than 0.1 degree in one half year to keep from expanding gas．

$$
H_{w}=573(.0695 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { sec/day) }(365 / 2 \text { days })=7268 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { sec }
$$

However，this is imeractical，so the angular momentum required if corrections are made at periodic intervals was calculated．With a roll sensor both the roll and yaw errors can be sensed every half orbit but 90 degrees out of phase．Therefore， either a roll or a yaw correction every quarter of an orbit could be made．It would require a flywheel with enough angular momentum storage so that it would not
precess more than 0.1 degree ． one half orbit．

$$
\left.H_{w}=573 \text { i. } 0695 \mathrm{ft} \# \mathrm{sec} / \text { day }\right)(7 \text { days })=278.8 \nRightarrow \mathrm{ft} \mathrm{sec}
$$

To make corrections more often than every quarter of an orbit would require both a roll and yaw senso．．The flywheel size required to keep from precessing more than 0.1 degree per day is

$$
H_{w}=573(.0695 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~(\mathrm{sec} / \mathrm{day})-37.8 \# \mathrm{ft} \mathrm{sec} / \mathrm{day}
$$

1．1．1．2．1．2 Orbit Control Torgues

Since disturbance torques about the yaw axis due to the misalignment of the thruster for orbit control are cyclic over a period of one orbit of the Earch， it would require a flywheel with enough angular momentum storage so that it would not precess more than 0.1 degree in one half orbit or 14 days to keep from expending gas．

1＂moment arm

$$
H_{w}=573(35.25 \mathrm{ft} \# \mathrm{sec} / \mathrm{day})(14 \text { days })=282,775 \mathrm{ft} \# \mathrm{sec}
$$

$1 / 4^{\prime \prime}$ moment arm

$$
H_{w}=573(8.82 \mathrm{ft} \# \mathrm{sec} / \text { day })(14 \text { days })=70,754 \mathrm{ft} \# \mathrm{sec}
$$

$0.1^{\prime \prime}$ moment arm

$$
H_{w}=573 \text { (3.525 ft \# sec/day) }(14 \text { days })=28,278 \mathrm{ft} \# \mathrm{sec}
$$

Flywheel angular nomentum required to make correction on a daily basis：
1＂moment arm

$$
H_{w}=573(35.25 \mathrm{ft} \text { 护 sec/day)}=20,198 \mathrm{ft} \text { 非 } \mathrm{sec}
$$

1／4＂moment arm

$$
H_{w}=573(8.82 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { sec } / \text { day })=5,054 \mathrm{ft} \text { 非 } \mathrm{sec}
$$

0．1＂moment arm

$$
H_{w}=573(3.525 \mathrm{ft} \# \mathrm{sec} / \mathrm{day})=2,020 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 灬 \mathrm{sec}
$$

Flywheel angular momentum required to make corrections on an hourly basis：
1＂moment arm

$$
H_{w}=842 \mathrm{ft} \text { 非 } \mathrm{sec}
$$

1／4＂moment arm

0．l＂moment arm

$$
H_{w}=84 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \mathrm{sec}
$$

1．1．1．2．2 Precession Thruster Size（Assuming a 2 Ft Moment Arm）

To prevent the attitude errors from exceeding 0.1 degree，the maximum impulse that can be imparted to the vehicle is calculated as follows：

The equations describing the motion of a rigid symmetrical body with a constant speed flywhee：and a pulse of torque applied about the roll axis

$$
\dot{\omega}_{x}=\left(I_{y}-I_{z}\right) / I_{x z} \quad \omega_{y} \quad \omega_{z}+H_{w} / I_{x z} \quad \omega_{z}+T_{x} / I_{x z}-T_{x} / I_{x z} \quad j(t-k)
$$

$$
\dot{\omega}_{y}=0
$$

$$
\dot{w}_{z}=\left(I_{x}-I_{y}\right) / I_{x z} \quad w_{x} \quad w_{y}-H_{w} / I_{x z} w_{x}
$$

Since the vehicle is non spinning，$\omega_{y}=0$ ．

Using Laplace transformations and assuming zero initial conditions，

$$
s^{2} \phi(s)-\frac{H_{w}}{I_{x z}} s \quad \psi(s)=\frac{T_{x}}{I_{x z}} \quad \frac{\left(1-e^{-k S}\right)}{s}
$$

$$
\begin{aligned}
& \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{I}_{2}} \mathrm{~S} \phi(\mathrm{~S})+\mathrm{s}^{2} \boldsymbol{\psi}(\mathrm{~S})=0 \\
& \sigma(S)=\frac{T_{x} i I_{x z}\left(1-e^{-k S}\right)}{S\left(S^{2}+\frac{H_{w}^{2}}{I_{x z}^{2}}\right)} \\
& \Psi(S)=\frac{\frac{-T_{x} H_{w}}{I_{x z}^{2}}\left(1-e^{-k S}\right)}{S^{2}\left(S^{2}+\frac{H_{w}^{2}}{I_{x z}^{2}}\right)} \\
& \theta(t)=\frac{T_{x} I_{x z}}{H_{w}^{2}} \quad\left(1-\cos \frac{H_{w}}{I_{x z}} t\right)-\frac{T_{x} I_{x z}}{H_{w y}^{2}} \quad\left(1-\cos \frac{H_{w}}{I_{x z}}[t-k] \mu(t-k)\right. \\
& \varphi(t)=\frac{T_{X} I_{x z}}{H_{w}{ }^{2}} \quad\left(\frac{H_{w}}{I_{x z}} t-\sin \frac{H_{w}}{I_{x z}} t\right)+\frac{T_{x} I_{x z}}{H_{w}{ }^{2}} \quad\left(\frac{H_{w}}{I_{x z}}[t-k]-\sin \frac{H_{w}}{I_{x z}}[t-k] \mu(t-k)\right. \\
& \mathrm{t} \leq \mathrm{k} \\
& \sigma(t)=\frac{I_{x} I_{X Z}}{H_{W}^{2}}\left(1-\cos \frac{H_{w}}{I_{x Z}} t\right) \\
& \psi(t)=-\frac{\mathrm{T}_{x} \mathrm{I}_{x z}}{\mathrm{H}_{\mathrm{w}}{ }^{2}}\left(\frac{\mathrm{H}_{w}}{\mathrm{I}_{x z}} t-\sin \frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{I}_{x z}} t\right) \\
& t>k \\
& \sigma(t)=\frac{T_{x} I_{x z}}{H_{w}^{2}} \quad\left(X-\cos \frac{H_{w}}{\mathrm{I}_{x z}} t\right)-\frac{T_{x} I_{x z}}{H_{w}^{2}}\left(L-\left[\cos \frac{H_{w}}{I_{x z}} t \cos \frac{H_{w}}{I_{x z}} k\right.\right. \\
& \left.\left.+\sin \frac{H_{w}}{I_{x z}} t \sin \frac{H_{w}}{I_{x z}} k\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\boldsymbol{\psi}(t)=-\frac{T_{x} I_{x z}}{H_{w}^{2}} \frac{H^{\prime}}{I_{x z}} t-\sin \frac{H_{w}}{I_{x z}} t\right)+\frac{T_{x} I_{x z}}{H_{w}^{2}}\left(Z_{x z}^{H} t-\frac{H_{w}}{I_{x z}} k\right. \\
& \left.-\left[\sin \frac{H_{w}}{I_{x z}}+\cos \frac{H_{w}}{I_{x z}} k-\cos \frac{H_{w}}{I_{x Z}} \sin \frac{H_{w}}{I_{x z}} \cdot\right]\right) \\
& \text { if } \frac{H_{W}}{I_{x Z}} k<\frac{10}{57.3} \\
& k<\frac{10}{57.3} \frac{\mathrm{I}_{\mathrm{xz}}}{\mathrm{H}_{\mathrm{w}}} \\
& \phi(t)=\frac{T_{x}^{k}}{H_{w}} \quad \sin \frac{H_{w}}{I_{x z}} t \\
& \psi(t)=\frac{T_{x} k}{H_{W}}\left(1-\cos \frac{H_{W}}{I_{x z}} t\right)
\end{aligned}
$$

Therefore，if $k<\frac{10}{57.3} \frac{I_{x z}}{H_{W}}$ the motion of the vehicle would be the same as that due to an impulse．

$$
\begin{aligned}
& \text { where } T_{x} k=\frac{0.1}{57.3} H_{W}=1.75 \times 10^{-7} H_{W} \text { ft sec (assuming a } 2 \text { ft moment arm) } \\
& I=\frac{1.75 \times 10^{-3}}{2 \mathrm{ft}} \quad \mathrm{H}_{\mathrm{w}} \text { 非t sec}=8.7 \times 10^{-4} \mathrm{H}_{\mathrm{w}} \text { 非 } \mathrm{sec}
\end{aligned}
$$

The motion would be a precession of the spin axis of the flywheel and a coning motion whose amplitude would be equal to the precession angle．This coning motion would be damped out by the nuiation damper．Additional pulses should not be allowed for several time constants of the nutation damper．

1．1．1．2．3 Pitch Control Flywheel Size

1．1．1．2．3．1 Solar Pressure

$$
\mathrm{f}=\frac{0.5 \text { ft sec/unloading }}{.0695 \# \mathrm{ft} \mathrm{sec} / \mathrm{day}}=7.2 \text { days/unloading }
$$

1．1．1．2．3．2 Orbit Control

1＂moment arm

1／4＂moment arm

$$
\mathrm{f}=\frac{8.82 \mathrm{ft} \text { 非 } \mathrm{sec} / \text { day }}{0.5 \mathrm{ft} \text { 非 } \mathrm{sec} / \mathrm{unloading}}=17.6 \text { unloadings/day }
$$

$0.1^{\prime \prime}$ moment arm

$$
\mathrm{f}=\frac{3.525 \mathrm{ft} \text { 非 sec/day }}{0.5 \mathrm{ft} \mathrm{⿰⿰三丨⿰丨三一} \mathrm{sec} / \mathrm{unloading}}=7.05 \text { unloadings/day }
$$

1．1．1．2．4 Pitch Thruster Size（Assume a 1 Ft Moment Arm）
If we use a 0.01 非 thruster with an $I_{s p}=110 \mathrm{sec}$ ，the on time would be
$t=\frac{0.5 \text { 非 } \mathrm{ft} \mathrm{sec}}{0.01 \text { 非（1 ft）}}=50 \mathrm{sec}$

This torque should be low enough so that we do not exceed 0.1 degree with the unloading transient as shown by the following analysis．

Pitch Axis Control Loop

Inner Loop Transfer Function

$$
\frac{\dot{\theta}(S)}{l_{e}(S)}=\frac{\frac{1}{I S}}{1+\frac{K K_{W}}{I\left(1+T_{W} S\right)}}=\frac{1\left(1+T_{W} S\right)}{I S\left[I\left(1+T_{W} S\right)+K K_{w}\right]}=\frac{\left(1+T_{w} S\right)}{S\left(I+K K_{W}\right)\left(1+\frac{T_{w} I}{I+K K_{W}} S\right)}
$$

Closed l.oop Transfer Function

$$
\begin{aligned}
& \frac{\theta(S)}{\Gamma_{c}(S)}=\frac{\left(1+T_{w} s\right)}{S\left[T_{w} I_{S}{ }^{2}+\left(1+K K_{w}\right) S+K_{w}\right]}=\frac{\left(S+\frac{1}{T_{w}}\right)}{I S\left[\left(S+\frac{I+K K_{w}}{2 T_{W} I}\right)^{2}+\frac{K_{w}}{T_{w} I}-\left(\frac{I+K K_{W}}{2 T_{W} I}\right)\right]} \\
& \left.\frac{\theta(S)}{T_{c}(S)}=\frac{\frac{1}{I}\left(S+\frac{1}{T_{w}}\right)}{S\left(S+\left(\frac{I+K K_{w}}{2 T_{w} I}\right)+1 / 2 \sqrt{\left(\frac{I+K K_{W}}{T_{w} T}\right)^{2}-\frac{4 K_{W}}{T_{w} T}}\right)\left(S+\left(\frac{I+K K_{w}}{2 T_{w} T}\right)-1 / 2\left(\frac{I+K K_{w}}{T_{w} I}\right)^{2}-\frac{4 K_{w}}{T_{w} I}\right.}\right) \\
& \theta(S)=\frac{\frac{T}{100}\left(S+\frac{1}{50}\right)}{S^{2}\left(S+2.41+1 / 2 \sqrt{\left.(4.82)^{2}-\frac{4(2400)}{5000}\right)}\left(S+2.41-1 / 2 \sqrt{\left.(4.82)^{2}-\frac{4(2400)}{5000}\right)}\right.\right.} \\
& \theta(S)=\frac{\frac{T_{c}}{100}(S+.02)}{S^{2}(S+4.8)(S+.1)}
\end{aligned}
$$

General Solution

$$
\begin{array}{r}
\frac{s+A_{0}}{s^{2}(s+\alpha)(s+\beta)}=\frac{1}{\alpha \beta} 1+A_{0} t-\frac{A_{0}(\alpha+\beta)}{\alpha^{2} \beta 2}+\frac{1}{\beta-\alpha}\left[\frac{A_{0}-\alpha}{\alpha^{2}} e^{-\alpha_{t}}\right. \\
\left.-\frac{A_{0}-\beta}{\beta^{2}} e^{-\beta t}\right]
\end{array}
$$

Time Response

$$
\begin{array}{r}
\theta(t)=\frac{T_{c} / 100}{4.8(.1)}[1+.02 t]-\frac{.02(4.8+.1) T_{c} / 100}{(4.8)^{2}(.1)^{2}}+\frac{T_{c} / 100}{-.47} \\
\\
{\left[\frac{-4.78}{23} e^{-4.8 t}-\frac{-.08}{.01} e^{-.1 t}\right]}
\end{array}
$$

$$
\begin{aligned}
& \theta(t)=.0208 \mathrm{~T}_{\mathrm{c}}+4 \times 10^{-4} \mathrm{~T}_{\mathrm{c}} \mathrm{t}-.0435 \mathrm{~T}_{\mathrm{c}}+4.35 \times 10^{-5} \mathrm{~T}_{\mathrm{c}} \mathrm{e}^{-4.8 \mathrm{t}}+.16 \mathrm{~T}_{c} \mathrm{e}^{-.1 \mathrm{t}} \\
& \theta_{\mathrm{t}}=0=.1373 \mathrm{~T}_{c} \mathrm{rad} \\
& \begin{aligned}
& \theta=.1373 \mathrm{~T}_{\mathrm{c}}+.02 \mathrm{~T}_{\mathrm{c}}+.00112 \mathrm{~T}_{\mathrm{c}}=-.002 \mathrm{~T}_{\mathrm{c}} \mathrm{rad} \\
& \mathrm{t}=50 \mathrm{sec}
\end{aligned} \\
& 0.1^{0}=\frac{0.1}{57.3}=\frac{1}{573}=.00175 \mathrm{rad} \\
& \\
& \mathrm{~T}_{\mathrm{c}} \quad .01 \mathrm{ft}
\end{aligned}
$$

1，1．1．2．5 Gas Required

Assume a 2 ft moment arm

$$
\begin{aligned}
& I_{s p}=220 \mathrm{sec} \text { for thrust }>3 \# \\
& I_{s p}=150 \mathrm{sec} \text { for thrust } \geq 0.1 \sharp \leq 3 \# \\
& I_{s p}=110 \mathrm{sec} \text { for thrust }<0.1 \#
\end{aligned}
$$

1．1．1．2．5．1 Solar Pressure Torques

$$
\text { Impulse }=\frac{.0695 \mathrm{ft} \text { 非 } \mathrm{sec} / \mathrm{day}\left(365 \frac{\text { days }}{\mathrm{yr}}\right)}{2 \mathrm{ft}}=12.7 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { sec } / \mathrm{yr}
$$

$$
I_{s p}=150 \quad w=\frac{12.7}{150}=.085 \# / y r
$$

$$
I_{s p}=110 \mathrm{w}=\frac{12.7}{110}=.115 ⿰ ⿰ 三 丨 ⿰ 丨 三 丨 / \mathrm{yr}
$$

1．1．1．2．5．2 Orbit Control Torques

1＂moment arm

$$
\text { Impulse }=\frac{35.25 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一}{} \mathrm{sec} / \mathrm{day}(265 \text { days } / \mathrm{yr})=6,433 \text { 非 } \mathrm{sec} / \mathrm{yr}
$$

$$
\begin{aligned}
& I_{\mathrm{sp}}=220 \mathrm{w}=\frac{6, i 33 \# \mathrm{sec} / \mathrm{yr}}{220 \mathrm{sec}}=29.2 \text { 非/yr } \\
& I_{s p}=150 \quad w=42.9 \# / y r \\
& I_{s p}=110 \quad w=58.5 \text { 非/yr } \\
& \text { 1/4" moment arm } \\
& \text { Impulse }=\frac{8,82 \mathrm{ft} \text { 非 sec/day (365 days/yr) }}{2 \mathrm{ft}}=1,610 \text { 非 } \mathrm{sec} / \mathrm{yr} \\
& I_{s p}=220 \mathrm{w}=7.32 \#_{1}{ }_{j} \\
& I_{s p}=150 \mathrm{w}=10.73 \text { 非/yr } \\
& I_{s p}=110 \mathrm{w}=14,64 \text { 非/yr } \\
& 0.1^{\prime \prime} \text { moment arm } \\
& \text { Impulse }=\frac{3.525 \mathrm{ft} \text { 非 } \mathrm{sec} / \mathrm{day}(265 \text { days } / \mathrm{yr} \text {) }}{2 \mathrm{ft}}=643.3 \text { 非 } \mathrm{sec} / \mathrm{yr} \\
& I_{s p}=220 w=2.92 \text { 非/yr } \\
& I_{s p}=150 \mathrm{w}=4.29 \% / \mathrm{yr} \\
& I_{s p}=110 \quad w=5.85 ⿰ / / y r
\end{aligned}
$$

1．1．1．2．5．3 Constant Speed Flywheel Spin Up

As the constant speed flywheel is spun up，the angular momentum imparted to the vehicle must be removed by the pitch axis jets．This would require the following amount of gas if a one foot moment arm is assumed

$$
\text { Impulse }=\frac{H_{w} \# \mathrm{ft} \text { sec }}{1 \mathrm{ft}}=H_{w} \# \mathrm{sec}
$$

$$
\text { If } I_{s p}=110 \mathrm{sec} w=\frac{H_{w} \not ⿰ \mathrm{ft} \mathrm{sec}^{\mathrm{sec}}}{1 \mathrm{ft}(110 \mathrm{sec})}=\frac{H_{w}}{110} ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ 二 丨 刂 灬 丶
$$

1．1．2 HUMMINGBIRD ORBIT

1．1．2．1 Disturbance Torque Magnitude
1．1．2．1．1 Solar Pressure
Assume 500 watts solar array at 10 watts $/ \mathrm{ft}^{2}$
Area $=50 \mathrm{ft}^{2}$
Solar pressure $=9.65 \times 10^{-8}$ 非 $/ \mathrm{ft}^{2}$
Assume center of pressure and center of mass offset of $1^{\prime \prime}$
Torque $=9.65 \times 10^{-8}$ 非 $/ \mathrm{ft}^{2}\left(50 \mathrm{ft}^{2}\right)\left(\frac{1}{12} \mathrm{ft}\right)=4.02 \times 10^{-7} \mathrm{ft}$ 非
Anguiar Momentum $=4.02 \times 10^{-7} \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 一\left(1.6400 \times 10^{-4} \mathrm{sec} /\right.$ day $)=.0356 \mathrm{ft}$ 非 $\mathrm{sec} / \mathrm{day}$

1．1．2．1．2 Orbit Control

Assume 1000 非 spacecraft
ΔV required $=1.52 \frac{\text { meters }}{\text { sec }} /$ impulse $\times 3.281 \mathrm{ft} / \mathrm{m}=5 \mathrm{ft} / \mathrm{sec} /$ impulse

One impulse required every seven days

$$
\begin{aligned}
F & =m a \\
a & =\frac{F}{m} \\
V & =\frac{F}{m} t \\
\text { Impulse } & =F t=m V=\frac{1000 \text { 非 }}{32.3 \mathrm{ft} / \mathrm{sec}^{2}}(5 \mathrm{ft} / \mathrm{sec})=155 \text { 限 } \mathrm{sec}
\end{aligned}
$$

If we assume a $1^{\prime \prime}$ moment arm between thrust vector and $C M$ Angular Momentum $=155$ 非 $\sec \left(\frac{1}{12} \mathrm{ft}\right)=13$ 非 $\mathrm{fec} / \Delta V$ correction

1／4＂moment arm

$$
H=155 \# \sec \left(\frac{1}{4(12)} f t\right)=13 \# \mathrm{ft} \sec / \Delta V \text { correction }
$$

$0.1^{\prime \prime}$ moment arm

$$
H=155 \text { 非 } \sec \left(\frac{0.1}{12} \mathrm{ft}\right)=1.3 \not \equiv \mathrm{ft} \mathrm{sec} / \Delta \mathrm{V} \text { correction }
$$

1．1．2．2 Concept 非

1．1．2．2．1 Constant Speed Flywheel Sizing

A component of the moment arm along the pitch axis will cause the spin axis of the flywheel to precess．To prevent the flywheel from precessing more than 0.1 degree，the flywheel must have the following angular momentum relationship to the disturbance angular momentum．（Same as derived for the Hummingbird orbit）

$$
H_{W}=573 \mathrm{H}_{\mathrm{d}}
$$

1．1．2．2．1．1 Solar Pressure Torques

As with the Hummingbird orbit，the solar pressure torques about the roll and yaw axes are cyclic over a period of one year．Since the attitude error must not be greater than 0.1 degree，to keep from expending gas，the flywheel must be sized so that it will not precess more than 0.1 degree in one half year．

$$
H_{W}=573\left(.03456 \mathrm{ft} \text { 非 sec/day) }\left(\frac{365}{2} \text { days }\right)=3634 \mathrm{ft} \text { 非 } \mathrm{sec}\right.
$$

Since this is impractical，the flywheel angular momentum required is calculated if corrections are made on a weekly or on a daily basis．

1．1．2．2．1．2 Orbit Control Torses

Orbit control thrusts will be required every seven days of the Halo orbit when the vehicle crosses the Earth／Moon orbit plane．The duration of these thrusts could be as long as one day．The thrusts will alternate from the positive roll to the negative roll axis．These thrusts could produce torques about the yaw axis or the pitch axis depending on where the moment arm is located．Yaw torques will precess the vehicle about the roll axis，and pitch torques will generate angular momentum about the pitch axis which must be absorbed by the modulated pitch flywheel．The torques produced by the positive roll jet on the yaw axis would cancel each other every one half orbit of the Earth as would the torques produced by the negative roll jet．To keep from expending gas，the constant speed flywheel would have to be sized so that it will not precess more than 0.1 degree due to each period control thrust．

1＂moment arm

$$
H_{w}=573(13 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { ft sec) }=7450 ⿰ \mathrm{ft} \mathrm{sec}
$$

1／4＂moment arm

$$
\mathrm{H}_{\mathrm{w}}=573(3.24 \text { 非 } \mathrm{ftec})=1860 \text { 非 } \mathrm{ft} \mathrm{sec}
$$

0．1＂moment arm

$$
H_{w}=573(1.3 \text { 非 } \mathrm{ft} \mathrm{sec})=745 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { ft } \mathrm{sec}
$$

Since these wheel sizes do nc• seem practical，then it would seem advisable to size the thrust for orbit control to require a full day to obtain the necessary ΔV. ． The flywheel could then be sized to require a correction every hour for twenty－four hours every seven days．

1＂moment arm

$$
H_{w}=310 \not \|_{\mathrm{ft} \mathrm{sec}}
$$

$$
1 / 4^{\prime \prime} \text { moment arm }
$$

$$
\mathrm{H}_{\mathrm{w}}=77.5 ⿰ \mathrm{ft} \mathrm{sec}^{\mathrm{ft}}
$$

$0.1^{\prime \prime}$ moment arm

$$
H_{w}=31 \not ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ f t ~ s e c ~
$$

1．1．2．2．2 Pitch Control Flywheel Size

For both the solar pressure and orbit control disturbance torques，if the moment arm lies along the yaw axis，pitch torques will be produced．Both of these torques are accumulative．

If we assume the use of a 2 非 ft sec modulated flywheel for pitch control and unload only 25 percent of maximum momentum or 0.5 非 ft sec，the frequency of momentum unloading for the disturbance torques is calculated below．

1．1．2．2．2．1 Solar Pressure

$$
\mathrm{f}=\frac{0.5 \# \mathrm{ft} \mathrm{sec} / \mathrm{unloading}}{.03456 \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻}
$$

1．1．2．2．2．2 Orbit Control

1＂moment arm

$$
\mathrm{f}=\frac{13 \equiv \mathrm{ft} \mathrm{sec} / \mathrm{V} \text { correction }}{0.5 ⿰ ⿰ 三 丨 ⿰ 丨 三} \mathrm{ft} \mathrm{sec} / \mathrm{un} \text { loading } \quad=26 \text { unloadings } / \Delta V \text { correction }
$$

$1 / 4^{\prime \prime}$ moment arm

$$
\mathrm{f}=\frac{3.24 ⿰ ⿰ 三 丨 ⿰ 丨 三}{\mathrm{ft} \mathrm{sec} / \mathrm{V} \text { correction }} \underset{0.5 ⿰ ⿰ 三 丨 ⿰ 丨 三}{\mathrm{ft} \mathrm{sec} / 4 n l o a d i n g}=6.48 \text { unloading/ } \Delta V \text { correction }
$$

0．1＂moment arm

$$
\mathrm{f}=\frac{1.3 \text { 非 } \mathrm{ft} \mathrm{sec} / \mathrm{V} \text { correction }}{0.5 ⿰ ⿰ 三 丨 ⿰ 丨 三} \mathrm{ft} \mathrm{sec} / \mathrm{unloading} \quad 2.6 \text { unloading/ } \Delta V \text { correction }
$$

The number of flywheel unloadings specified under Orbit Control will be required for the duration of the ΔV correction，which could be as long as one day every seven days．Therefore，with a $1 i^{\prime \prime}$ moment arm and a ΔV duration of one day， there would be 6.5 flywheel unloadings during the period of the day．As calculate in section 1．1．1．2．4，the torque should not exceed ． 01 ft 非 so as not to exceed 0.1 degree with the unloading transien

1．1．2．2．3 Gas Required

Assume a 2 ft moment arm

$$
\begin{aligned}
& I_{s p}=220 \mathrm{sec} \text { for thrust }>3 \text { 非 } \\
& I_{s p}=150 \mathrm{sec} \text { for thrust } \geq 0.1 \text { 非 } \leq 3 \text { 非 } \\
& I_{s p}=110 \mathrm{sec} \text { for thrust }<0.1 \text { 非 }
\end{aligned}
$$

1．1．2．2．3．1 Solar Pressure Torques

$I_{s p}=220 \quad w=\frac{6.4 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 i \mathrm{sec} / \mathrm{yr}}{220 \mathrm{sec}}=.029 \# / \mathrm{yr}$
$I_{s p}=150 \mathrm{w}=.0427$ 非 $/ \mathrm{yr}$
$I_{s p}=110 \mathrm{w}=.0582 \# / \mathrm{yr}$

1．1．2．2．3．2 Orbit Control Torques
1＂moment arm

$$
\text { Impulse }=\frac{13 \sharp \mathrm{ft} \sec / \Delta V \text { correction }(52 \Delta V \text { corrections } / \mathrm{yr})}{2 \mathrm{ft}}=338 \text { 限 } \mathrm{sec} / \mathrm{yr}
$$

$$
I_{\mathrm{tp}}=220 \quad \mathrm{w}=1.54 \# / \mathrm{yr}
$$

$$
I_{s p}=150 \mathrm{w}=2.25 ⿰ ⿰ 三 丨 ⿰ 丨 三 丨 / \mathrm{yr}
$$

$$
I_{s p}=110 \mathrm{w}=3.08 \mathrm{i} / \mathrm{yr}
$$

$$
1 / 4^{\prime \prime} \text { moment arm }
$$

$$
\text { Impulse }=\frac{3.24 \# \mathrm{ft} \mathrm{sec} / \Delta \mathrm{v} \text { corrections }}{2 \mathrm{ft}}(52 \Delta \mathrm{~V} \text { corrections } / \mathrm{yr})=338 \# \mathrm{sec} / \mathrm{yr}
$$

$$
\mathrm{I}_{\mathrm{sp}}=220 \mathrm{w}=.383 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 / \mathrm{yr}
$$

$$
I_{s p}=150 \mathrm{w}=.56 * / \mathrm{yr}
$$

$$
I_{\mathrm{sp}}=110 \mathrm{w}=.765 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 \text { /yr }
$$

$$
0.1^{\prime \prime} \text { moment arm }
$$

$$
\text { Impulse }=\frac{1.3 \# \mathrm{ft} \mathrm{sec} / \Delta V \text { correction }(52 \Delta V \text { corrections } / \mathrm{yr})}{2 \mathrm{ft}}=33.8 \# \mathrm{sec} / \mathrm{yr}
$$

$$
I_{s p}=220 \mathrm{w}=.154 \not / \mathrm{yr}
$$

$$
\mathrm{I}_{\mathrm{sp}}=150 \mathrm{w}=.225 \sharp / \mathrm{yr}
$$

$$
I_{s p}=110 \mathrm{w}=.308 ⿰ ⿰ 三 丨 ⿰ 丨 三 一 / \mathrm{yr}
$$

1．1．2．2．3．3 Precession Control to Correct for Satellite Motion Out of the
 Earth／Moon Orbit Plane

As the satellite circles the libration point，it moves out of the Earth／Moon orbit plane ± 0.5 degree as viewed from the Earth．Since the allowable error is only ± 0.1 degree，the spin axis of the flywheel must be precessed to correct for this error．Effectively，the spin axis must be precessed 2 degrees every 14 days．

$$
H_{c}=H_{w} \tan e
$$

$$
\begin{aligned}
& \mathrm{H}_{c}=\frac{1 / 7 \mathrm{deg} / \mathrm{day}}{57.3 \mathrm{deg} / \mathrm{rad}} \quad \mathrm{H}_{\mathrm{w}}=2.5 \times 10^{-3} \mathrm{H}_{\mathrm{w}} \mathrm{ft} \# \mathrm{sec} / \mathrm{day} \\
& \text { Impulse }=\frac{2.5 \times 10^{-3} \mathrm{H}_{\mathrm{w}} \mathrm{ft} ⿰ ⿰ 三 丨 ⿰ 丨 三}{} \mathrm{sec} / \mathrm{day}(265 \mathrm{days} / \mathrm{yr}) \\
& 2 \mathrm{ft} \\
& \text { If } \mathrm{I}_{\mathrm{sp}}=110 \mathrm{sec} \quad \mathrm{w}=\frac{.455 \mathrm{H}_{\mathrm{w}} \text { 非 } \mathrm{sec} / \mathrm{yr}}{1110 \mathrm{sec}}=4.15 \times 10^{-3} \mathrm{H}_{\mathrm{w}} \# / \mathrm{yr}
\end{aligned}
$$

1．1．2．2．3．4 Constant Speed Flywheel Spin Up

As the constant speed flywheel is spun up，the angular momentum imparted to the vehicle must be removed by the pitch axis jets．This would require the following amount of gas if a 1 ft moment arm is assumed．

$$
\begin{aligned}
& \text { Impulse }=\frac{H_{w} \# \mathrm{ft} \mathrm{sec}}{1 \mathrm{ft}}=H_{w} \# \mathrm{sec} \\
& \text { If } I_{s p}=110 \mathrm{sec} \quad w=\frac{H_{w} \# \mathrm{ft} \mathrm{sec}}{1 \mathrm{ft}(110 \mathrm{sec})}=\frac{H_{w}}{110} \#
\end{aligned}
$$

SUBSYSTEM MODELS

The subsystem models for the Antenna, Thermal Control, Electrical Power, and Structures are given in the following charts and sections. The Transponder components are also listed.

Figure AII-1. Antenna Weight vs Gain

THERMAL CCNTROL FACTORS

```
QQ(1) = Transponder/TT&C dissipation (W) = 245.
QQ(2) = Power conditioner input (W)*.240 = 76.8
QQ(3) = Attitude control/stationkeeping input (W) = 165.
```

Thermal Control Area Factors are:
$A A(1)=.0176$
$\mathrm{AA}(2)=.0337$
$A A(3)=.042$
Thermal Control Area $=\mathrm{ATC}$
$\mathrm{ATC}=\mathrm{QQ}(1) * \mathrm{AA}(1)+\mathrm{QQ}(2) * \mathrm{AA}(2)+\mathrm{QQ}(3) * \mathrm{AA}(3)=13.84$
Thermal Control Weight Factor $=1.85$
Thermal Control Weight $=$ WTC
$W T C=A T C * 1.85=26$.
Thermal Control Fabrication Cost $=$ CTCl
$\operatorname{CTC} 1=1000 . *(\operatorname{EXP}(2.3 *(1.28+1.19 *(\operatorname{ALOG}(\mathrm{WTC}) / 2.3-2))))=.3.98 \mathrm{~K}$
Thermal Control Development Cost $=$ CTC2
$\operatorname{CTC} 2=1000 . *(\operatorname{EXP}(2.3 *(2.4+.7 *(\operatorname{ALOG}(\operatorname{WTC}) / 2.3-2))))=.98 . \mathrm{K}$

Figure AII -4. Structural Weights and Costs
TRANSPONDER/TT\&C
Consists of the following:
150 W Up Link Transmitter (TWT)
15 W Down Link Transmitters (Solid state)
1 Up Link Receiver
1 Down Link Receiver
150 W Diplexer
125 W Diplexer
120 W Quadruplexer
1 Range Demodulator
1 Command Demodulator
Telemetry SCO's $^{\prime}$ and Modulators (as required)
Estimated Physical Parameters:
Weight 17 1b
Volume $432 \mathrm{in}^{3}$
Input Power 320 W
Estimated Costs:FabricationReceiver-Exciter
50 W TWTTT\&C40K4540125K

Devel:upment 205K36095

660K

[^0]: Transponder Bandwidth Aseumed to be 16 Miz

