ANALYSIS OF THE FLOW FIELD GENERATED NEAR AN

 AIRCRAFT ENGINE OPERATING IN REVERSE THRUSTVANDERBILT UNIVERSITY

WALTER ANDREW LEDWITH, JR.

August, 1972

DEPARTMENT OF MECHANICAL ENGINEERING SCHOOL OF ENGINEERING

ANALYSIS OF THE FLOW FIELD GENERATED

 NEAR AN AIRCRAFT ENGINE OPERATING IN REVERSE THRUSTBy
Walter Andrew Ledwith, Jr.
Thesis
Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in
\section*{Mechanical Engineering}

August, 1972
Nashville, Tennessee

Approved:
\qquad
\qquad
\qquad

SU MMARY
This thesis develops a computer solution to the exhaust gas reingestion problem for aircraft operating in the reverse thrust mode on a crosswind-free runway. The computer program determines the location of the inlet flow pattern, whether the exhaust efflux lies within the inlet flow pattern or not, and if so, the approximate time before the reversed flow reaches the engine inlet. The program is written so that the user is free to select discrete runway speeds or to study the entire aircraft deceleration process for both the farfield and cross-ingestion problems. While developed with STOL applications in mind, the solution is equally applicable to conventional designs.

The inlet and reversed jet flow fields involved in the problem are assumed to be non-interacting. The nacelle model used in determining the inlet flow field is generated using an iterative solution to the Neuman Problem from potential flow theory while the reversed jet flow field is adapted using an empirical correlation from the literature. Sample results obtained using the program are included.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John W. Tatom, for suggesting this topic and for the assistance he gave me during the course of this investigation. I would also like to thank Dr. Norman M. Schnurr and Dr. Hugh F. Keedy for their help and for reading the manuscript.

This work was partially supported by NASA Grant NGR 43-002-034.

TABLE OF CONTENTS

Page
SU MMARY ii
ACKNOWLEDGEMENTS iii
LIST OF ILLUSTRATIONS vi
LIST OF TABLES vii
NOMENCLATURE viii
Chapter
I. INTRODUCTION 1
II. PAST RESEARCH EFFORTS 5
III. THEORY 11
The Inlet Flow Field Model 13
The Reversed Jet Model 15
IV. DEVELOPMENT OF THE MATHEMATICAL MODEL 18
The Initial Singularity Strengths 18
The Inlet Flow Field Model 19
Evaluation of the Singularity Strengths - The Iterative Procedure 29
Generation of the Streamlines 33
The Reversed Jet Flow Field Model 35
Time Calculations 38
Cross Ingestion 39
The Pre-entry Streamtube Radius Equation 42
V. THE COMPUTER PROGRAM 43
Page
VI. RESULTS AND DISCUSSIONS 47
Nacelle Generation 47
The Streamline Computational Scheme 54
The Reingestion Example 58
VII. CONCLUSIONS 61
APPENDIX I 62
APPENDIX II 77
BIBLIOGRAPHY 81

LIST OF ILLUSTRATIONS

Figure Page

1. Jet Penetration Correlation 9
2. The Physical Situation 12
3. The Reversed Jet 16
4. The Inlet Flow Field Model 20
5. Arbitrary Surface with Distributed Singularities 23
6. Singular Point Velocity Vectors 32
7. The Cross Ingestion Model 40
8. Flow Chart of the Computer Program 44
9. Streamlines about a Nacelle 55
10. Pre-entry Streamtubes 56
11. The Example Problem 60

LIST OF TABLES

Table Page

1. Nacelle Generation Data 48
2. Nacelle Generation Data 49
3. Nacelle Generation Data 50
4. Nacelle Generation Data 51
5. Effects of No-Flow Criteria 52
6. Results of Continuity Check 57
7. Example Problem 59

NOMENCIATURE

Symbol	Definition
$A^{1}{ }^{1}$	Area, ft^{2}
AL'	Nacelle length, ft
CHEKX	Normal velocity on the end cap
CHEKR	Normal velocity on the nacelle
D^{\prime}	Distance between two points, ft
DI'	Distance between a point of interest in space and a point on the engine inlet, ft
D2'	Distance between a point of interest in space and a point on the nacelle, ft
D3'	Distance between a point of interest in space and a point on the end cap, ft
DIAJET	Diameter of the reversed jet at the point of origin
DSAB	Distance between points "a" and "b"
EP	Nacelle generation no-flow criteria - a select percentage of the freestream velocity
g^{\prime}	Number of singularities per unit area, ft^{-2}
\dot{m}^{\prime}	Strength of a singularity, $\mathrm{ft}^{3} / \mathrm{sec}$
PMPP	The "P" coordinate in the jet plane of the Maximum Penetration Point of the reversed jet

${ }^{1}$ In this work, primes indicate dimensional quantities while nonprimes indicate dimensionless quantities. Velocity and length terms are non-dimensionalized by referring them, respectively, to the freestream velocity U_{∞} ' and to the nacelle radius R^{\prime}. The product of $U_{\infty}{ }^{\prime} R^{\prime}$ is used to non-dimensionalize the velocity potential and stream function terms.

Symbol	Definition
Q'	Volumetric flow rate from a singularity, $\mathrm{ft}^{3} / \mathrm{sec}$
QMPP	The "Q" coordinate in the jet plane of the Maximum Penetration Point of the reversed jet.
qs ${ }^{\prime}$	The strength of the inlet sink, $\mathrm{ft}^{3} / \mathrm{sec}$
r	A radial space coordinate
r3	A radial space coordinate on the model nacelle
RA	Radius of point "a"
RAB	Radial distance between points "a" and "b"
RB	Radius of point "b"
RCROSS	Radius of the Maximum Penetration Point of the reversed jet of an adjacent engine on the coordinate system of an engine under study
RMPP	Radial coordinate of the Maximum Penetration Point of the reversed jet
RPEST	Radius of the pre-entry streamtube at an infinite axial location upstream of the engine inlet
s_{J}	A velocity component of VELJET
TAB	The time required for a tracer particle to go between points "a" and "b", (TAB') ($\left.\mathrm{U}_{\infty}{ }^{\prime}\right) /\left(\mathrm{R}^{\prime}\right)$
u_{J}	A velocity component associated with VELJET
V	Velocity
VAB	The average velocity of a tracer particle between points "a" and "b"
VAX	A normal velocity produced by a singularity on the end cap
VAXY	The axial velocity at any point in space

Symbol	Definition
VELJET	The velocity of the reversed jet
VELRAT	The inlet-to-freestream velocity ratio, $\mathrm{qs} 1{ }^{\prime} /\left(2 \cdot \mathrm{U}_{\infty}{ }^{\prime}\right)$
$V_{n}{ }^{\prime}$	A normal surface velocity, ft/sec
VP	Velocity at a point
VPA	Velocity at point "a"
VPB	Velocity at point "b"
Vr	The normal velocity produced by a singularity on the nacelle
VRAD	The radial velocity of any point in space
w_{J}	A velocity component of VELJET
x	An axial space coordinate
xI	An axial space coordinate along the nacelle
XA	The axial coordinate of point "a"
XAB	The axial distance between points "a" and "b"
XB	The axial coordinate of point "b"
XJET	The axial coordinate of the reversed jet origin
XMPP	The axial coordinate of the Maximum Penetration Point of the reversed jet
XOP	The axial coordinate of the Maximum Penetration Point of the reversed jet of an adjacent engine on the coordinate system of an engine under study
XSPACE	The " x " component of the distance between the end cap center points of two adjacent engines
Y	A space coordinate

Symbol	Definition
yl	A space coordinate on the nacelle
YJET	A coordinate of the reversed jet exhaust origin
YMPP	A coordinate of the Maximum Penetration Point of the reversed jet
YOP	A coordinate of the Maximum Penetration Point of the reversed jet of an adjacent engine on the coordinate system of an engine under study.
YSPACE	The "y" component of the distance between the end cap center points of two adjacent engines
z	A space coordinate
21	A space coordinate on the nacelle
ZJET	A coordinate of the reversed jet exhaust origin
ZMPP	A coordinate of the Maximum Penetration Point of the reversed jet
ZOP	A coordinate of the Maximum Penetration Point of the reversed jet of an adjacent engine on the coordinate system of an engine under study
ZSPACE	The " z " component of the distance between the end cap center points of two adjacent engines
$\alpha 1$	The exhaust jet pitch angle
$\alpha 2$	The exhaust jet turning angle
β	Angle between the reversed jet and the x-y plane
A	The angle in the jet plane that the reversed jet makes with the "P" axis
01	Angular space coordinate
9)	Velocity potential

Symbol	Definition
¢ 1	Velocity potential associated with the freestream-inlet combination
${ }^{\prime \prime} \mathrm{CAX}$	Velocity potential associated with the distributed compensatory singularities on the end cap
${ }^{9} \mathrm{CR}$	Velocity potential associated with the distributed compensatory singularities on the nacelle
${ }^{\varphi}$ FS	Velocity potential induced by the freestream
${ }^{\varphi}$ S	Velocity potential induced by the inlet sink
Ψ	Stream function

CHAPTER I

INTRODUCTION

The forthcoming development of both military and commercial short take-off and landing (STOL) aircraft will have a significant impact on air transportation. Quiet, civil STOL aircraft will greatly diminish city-to-city travel times and help relieve present airport congestion by operating from short, inner city airstrips. Such airstrips will be inexpensive enough that jet transportation can be extended to small communities and underdeveloped countries alike. In military versions, STOL transports will greatly improve the ability to supply remote regions.

But before such a family of aircraft can be put into service there remain a number of problems to be resolved. One of the more important areas is the need for better thrust reversers. Unlike conventional aircraft, the normal means of stopping both military and commercial STOL's will most likely be through the use of reversers alone. For the military, the capability to brake with reversers alone will greatly enhance operation from unprepared airstrips, by avoiding the rutting problem associated with wheel braking. For the commercial user, efficient reverse thrust braking is a matter of both economics and safety. The high operating costs of such aircraft will demand maximum daily utilization for profitable operation. Not only is brake maintainance a
major operating expense, but brake cooling requirements play a significant role in determining the aircraft turn-around time. From safety considerations, the full reverser stopping capability will improve operation from short, icy runways.

Though thrust reversers have been used on jet aircraft for years, none have achieved the full stopping capability. There are several reasons for this. First, unlike STOL aircraft, conventional aircraft do not have sufficient thrust-to-weight ratios to stop within reasonable distances without the simultaneous use of wheel brakes. Secondly, the tendency of the engines to reingest their own reversed exhaust at low speeds has demanded that reverse thrust operation be terminated long before the aircraft has reached a halt. In addition to damaging parts, reingestion can cause compressor surge and greatly diminish the magnitude of the braking force. Thus any practical STOL aircraft must be designed to operate in reverse thrust, free of exhaust gas reingestion down to very low ground speeds.

The purpose of this thesis is to develop an analytical model of the flow field near an aircraft engine operating in reverse thrust on a crosswind-free runway and to predict whether exhaust gas reingestion will occur. The study provides a tool, in the form of a computer program, to be used in the design of engine-nacelle-reverser systems. The designer is free to choose whatever dynamic and geometric conditions he wishes and can then see how effective they are with regard to the
reingestion problem.
The overall flow field in this problem can be divided into two regimes:

1. the inlet flow field which is basically potential, and
2. the reversed jet flow field which is highly turbulent.

Ordinarily, the presence of two such diverse flow fields would make the development of any single analytical model an enormously difficult task. But in this investigation the two are mathematically uncoupled and solved separately. This greatly simplifies the analysis.

There are several basic types of exhaust gas reingestion. The first type is near-field reingestion which occurs when the exhaust efflux passes too close to the nacelle. Because of the Coanda effect, the reversed jet attaches to the nacelle and subsequently enters the engine inlet. A second type is farfield reingestion where the jet penetrates the engine inlet flow pattern. A third type is cross-ingestion, where the reversed jet penetrates the inlet flow pattern of an adjacent engine.

The computer program presented here is designed to study the latter two cases. It will not analyze the first case since no relavent studies of nacelle attachment currently exist. Therefore all solutions generated by this program are based on the assumption that the nearfield problem does not occur.

The basic case under study is that of a turbofan engine installed in a long-duct nacelle, with a target reverser simultaneously handling the fan and core engine flows. One reason for selection of this configuration is its superiority in reducing approach and sideline engine noise. This currently is an important consideration since to receive community acceptance STOL aircraft will have to be significantly quieter than conventional aircraft.

CHAPTER II

PAST RESEARCH EFFORTS

A search of the literature failed to reveal a past analytical solution to the thrust reverser reingestion problem. The solution presented here is based on a method proposed by Tatom [1]. This method employs an axisymmetric model of an engine nacelle discharging round, turbulent, reversed jets ${ }^{2}$ and is described in detail in the next chapter.

Because of the importance of mathematically uncoupling the inlet and reversed-jet flow fields in Tatom's method, an investigation of the validity of this simplification was first made. It appears that the concept is well founded since there is ample evidence that:

1. The effect of the presence of the reversed jet on the freestream is small (i.e., the freestream flow near the jet is essentially the same with and without the jet).

[^0]2. The effect of the engine inlet suction on the reversed jet is small (i.e., the trajectory of the jet is essentially the same with and without the presence of the inlet).

Keffer and Baines [2] studied round turbulent jets introduced normally into a freestream. It was observed that the freestream was unaffected by the presence of the jet and that in the vicinity of the jet the static pressure and mean velocity of the freestream could be considered constant. Additional evidence of non-interaction between the jet and the freestream can be found in the report by Weiss and McGuigan [3]. This paper contains oil-streak photographs of coldflow tests of a model reverser-nacelle configuration. In each of these photographs the freestream is essentially parallel at a distance of less than 2 jet diameters upstream of the deflected jet.

In each of the references cited above, the jets were discrete and thus produced relatively small blockage of the freestream flow field. The works of Cooper [4] and Hayden [5] are concerned with a twodimensional reverser model with a simulated eng ine inlet. In this study the reversed jet blocked the entire freestream flow. Nowhere was the inlet flow field far removed from the reverser flow field. Yet flow visualization photographs of the reversed jet and temperature and velocity data taken with and without inlet suction, show no significant differences. These results further indicate that the freestream is almost unaffected
by the presence of the jet. Thus the independence of the two flow fields is verified. Since a round jet occupies much less volume in the region of the inlet than a two-dimensional jet, it follows that the effect of the inlet on a round jet will also be small.

With the uncoupling hypothesis justified, attention is turned to previous efforts in the separate areas of inlet flow prediction and the trajectories of turbulent transverse jets.

The inlet flow portion of the reingestion problem can be described adequately from potential flow theory. The basic problem (the Neuman Problem) involves generating a mathematical model of the flow near an engine nacelle within a freestream. This could be done by employing the Douglas-Neuman Potential Flow Computer Program developed by A.M.O. Smith and J. Pierce [6]. This selection was not used in [1] for several reasons. First, the program was unavailable at the Vanderbilt University Computer Center and it was felt that adaptation of the program both to the Center's machine and to the reingestion problem would present as many difficulties as developing a new one. Secondly, it was felt that a new program might offer simplifications over the Douglas program and thus cost less to operate.

The remaining area to be discussed is concerned with studies of jets penetrating into a freestream. Unfortunately, most of the available
literature is of little valve for two reasons:

1. The studies are concerned with deflection of and velocities along the jet centerline which are of little importance here. The principle area of concern in the reingestion problem is the maximum penetration of the jet into the freestream.
2. The sutdies are concerned with jet-to-freestream angles and velocity ratios considerably different than those encountered in reverser applications. Several analytical studies of opposing jets exist $[7,8,9]$, but these assume an incompressible, irrotational flow field.

The engine-nacelle model proposed in [1] incorporates the results of a Lockheed-Georgia study [10] to describe the reversed jets. The study was concerned with a round, turbulent jet introduced obliquely into an opposing freestream. Conducted in a low turbulence wind tunnel the experiment allowed the Maximum Penetration Point of the jet into the freestream to be photographically measured. The tests employed a wide range of values for the jet exit diameter, the jet-tofreestream velocity ratio, and the jet-to-freestream included angle. The result of this study was the Lockheed jet penetration correlation as presented in Figure 1, empirically relating the time averaged maximum

FIGURE 1. JET PENETRATION CORRELATION
penetration to the above menetioned variables. Additional data by Margeson [11] is also presented.

Figure 1 also shows a sketch of the reversed jet. Several characteristics of this jet should be noted. First, photographs indicate that the Maximum Penetration Point can be considered to lie approximately on an extension of the jet centerline. Secondly, the jet should not be considered as a fixed region in space. All flow visualization studies report that the reversed jet is an area of violent turbulence. Thus, the time-averaged Lockheed data does not show where the Maximum Penetration Point lies at any instant, but where it is most often found.

CHAPTER III

THEORY

An overall view of the flow field involved in the problem is shown in Figure 2. As has already been noted, this flow field can be divided into inlet and reversed-jet flow fields; these being respectively, potential and turbulent in nature. The uncoupling hypothesis allows the two to be treated as independent problems. Hence the inlet flow model appears as a fictitious engine ingesting air but producing no exhaust, while the exhaust flow model appears as an isolated turbulent jet discharging obliquely into an opposing freestream.

The inlet flow field is represented in the figure by the presence of the streamlines. Among these, the pre-entry streamtube is of special importance. This is defined such that fluid lying inside of it enters the engine while fluid lying outside of it travels past the nacelle.

The exhaust flow too, has an item of special importance: the Maximum Penetration Point. At this point, the axial momentum of the jet has been completely depleted so that additional axial travel is determined by the opposing freestream. If the Maximum Penetration Point lies within the pre-entry streamtube, exhaust gas will be carried into the engine inlet. This is the cause of farfield reingestion. The primary task of this investigation is to develop an analytical model capable of generating

FIGURE 2. THE PHYSICAL SITUATION
the pre-entry streamtube and the Maximum Penetration Point, and determining whether or not the latter lies inside or outside of the former. ${ }^{1}$

The Inlet Flow Field Model

The inlet flow field solution is developed around a cylindrical nacelle configuration, with an end cap at the rear and a full frontal area inlet (Figure 2). This geometry differs somewhat from actual engines. First, the inlet cannot fill the entire frontal area in a real nacelle due to structural and aerodynamic considerations. Secondly, nacelles are not cylindrical but are more streamlined bodies of revolution. The approximate nacelle representation is used because of the mathematical simplifications and resulting savings in computer time it affords. These simplifications are not believed to decrease significantly the accuracy of the solution since, in the farfield problem, the area where reingestion begins is somewhat removed from the engine. However, it must be recognized that near the inlet, the nacelle contour materially influences the shape of the streamlines.
$l_{\text {It should be noted that up to the Maximum Penetration Point the }}$ jet is entraining, not releasing, fluid. Hence, it is premissible for the reversed jet to lie within the pre-entry streamtube, as long as the Maximum Penetration Point does not.

Any exact mathematical model should acknowledge the rapid deceleration involved in the reversing process. While a transient description of the flow fields is desirable, a method for developing one is unclear. Therefore, as a final simplification, it is assumed that the aircraft passes continuously through a series of equilibrium flow fields in coming to rest.

The purpose of the inlet flow field model is to generate the streamlines about the engine nacelle. The development of this model begins by placing a potential flow freestream (alligned with the axis) on an axisymmetric coordinate system to simulate the runway speed of the aircraft. The engine nacelle is generated within this freestream. Towards this end, an origin is established on the coordinate system and at this origin a disk sink is added to simulate the engine inlet (Figure 2).

In establishing the nacelle and end cap surfaces, a special set of boundary conditions must be satisfied. Because a real nacelle surface is solid, no fluid passes through it and hence the normal surface velocities must vanish. The same boundary condition applies along the end cap too, because the uncoupling assumption has removed the exhaust flow from the inlet model. The boundary conditions are satisfied by establishing a distributed system of compensatory singularities over the nacelle and end cap surfaces.

An iterative procedure is used to determine the singularity strengths. Initially, each singularity strength is set opposite and proportional to the normal velocity induced by the freestream-inlet combination at the point. This would be sufficient for compensation at isolated points. However, the presence of neighboring singularities induces an additional normal velocity at each point. These velocity components must also be cancelled and this is done by the iterative adjustment scheme. ${ }^{2}$ Once the boundary conditions are satisfted the inlet flow field model is capable of generating streamlines.

The Reversed Jet Model

The purpose of the reversed jet model is to locate the Maximum Penetration Point of the exhaust flow. The geometry of the problem is shown in Figure 3, with the nacelle outline included for clarity. The centerline of the jet is considered to lie in a plane. This jet plane (the $P-Q$ coordinate system in the figure) is defined by the freestream and reversed jet velocity vectors and has its origin (o') at the point of reversed exhaust discharge. It is in this plane that the Lockheed correlation applies.
${ }^{2}$ The surface generation process discussed here and proposed in [1] evolved from the analysis of [12]. The major computational difference between the two is that the latter makes no attempt at eliminating the normal velocity component induced by the neighboring singularities.

FIGURE 3. THE REVERSED JET

As the figure shows, the axisymmetric coordinate system of the inlet flow field model has been superimposed with a three-dimensional Cartesian system having the same origin. This new system is used to properly locate the origin of the jet plane with respect to the engine inlet. The angle between the freestream and the jet efflux in the $P-Q$ coordinate system (θ) is defined in terms of the pitch angle $(\alpha 1)$ and turning angle ($\alpha 2$). The $\mathrm{P}-\mathrm{Q}$ coordinates of the Maximum Penetration Point are found from the Lockheed correlation. Then, a multiple transformation of coordinates is employed to establish the axial and radial coordinates of the Maximum Penetration Point with respect to the original axisymmetric coordinate system. This completes the reversed jet flow field model.

The geometries of the two flow fields are now superimposed to evaluate the likelihood of reingestion. If reingestion is predicted, the computer program is designed to note this and to determine the approximate time required for a fluid particle to travel from the Maximum Penetration Point to the engine inlet.

CHAPTER IV

DEVELOPMENT OF THE MATHEMATICAL MODEL

The Initial Singularity Strengths

Before developing the inlet flow field model, it is useful to determine the initial compensatory singularity strength used in the iterative nacelle generation procedure.

Consider an isolated area A^{\prime} containing a singularity of strength \dot{m}^{\prime}. The volumetric flowrate Q^{\prime} associated with this surface can be expressed as:

$$
Q^{\prime}=\dot{m}^{\prime} A^{\prime} g^{\prime}
$$

where g^{\prime} is the number of singularities per unit area and is equal to one in this case. In general, however, volumetric flowrate can be expressed as the product of a flow area and the velocity $\left(V_{n}\right)$ normal to it. For a singularity, the flow area is twice the area in the above equation because fluid simultaneously enters or leaves both sides. Hence:

$$
Q^{\prime}=2 A^{\prime} \cdot V_{n}^{\prime}
$$

Combining the two equations gives the singularity strength as a function
of V_{n}^{\prime}, or:

$$
\begin{equation*}
\dot{m}^{\prime}=2 V_{n}^{\prime}\left(\text { for } g^{\prime}=1\right) \tag{1}
\end{equation*}
$$

Therefore, the initial step in the iterative procedure is to set the strength of each singularity equal to twice the negative of the normal velocity induced by the freestream-inlet combination at the point to produce the cancelling normal velocity, V_{n}^{\prime}.

The Inlet Flow Field Model

Let P in Figure 4 represent an arbitrary point in the flow field. The velocity potential induced at point P by all of the elements of the model can be described from potential flow theory as:

$$
\begin{equation*}
\varphi^{\prime}=c c_{F S}^{i}+\varphi_{S}^{\prime}+\varphi_{\mathrm{CR}}^{\prime}+\varphi_{\mathrm{CAX}}^{\prime} \tag{2a}
\end{equation*}
$$

where the terms on the right of the above expression represent the contributions to the potential from the freestream, the inlet sink, the distributed singularities on the nacelle, and the distributed singularities on the end cap, respectively.

It is convenient to work with non-dimensional terms. Towards this end, length terms are non-dimensionalized with respect to the nacelle radius R^{\prime}, while velocity terms are divided by the freestream velocity $\mathrm{U}_{\omega}^{\prime}$. The velocity potential terms are made dimensionless by

FIGURE 4. THE INLET FLOW FIELD MODEL
referring them to the product of the freestream velocity and nacelle radius. Equation $2 a$ can thus be rewritten:

$$
\begin{equation*}
\varphi=\frac{\varphi^{\prime}}{U_{\infty}^{\prime} R^{\prime}}=\varphi_{F S}+\varphi_{S}+\varphi_{\mathrm{CR}}+\varphi_{\mathrm{CAX}} \tag{2b}
\end{equation*}
$$

It is also convenient to group ther terms associated with the freestream and inlet sink together, or:

$$
\begin{equation*}
\varphi 1=\varphi_{\mathrm{FS}}+\varphi_{\mathrm{S}} \tag{3}
\end{equation*}
$$

Hence, equation 2 b becomes:

$$
\begin{equation*}
\varphi=\varphi 1+\varphi_{\mathrm{CR}}+\varphi_{\mathrm{CAX}} \tag{4}
\end{equation*}
$$

From potential flow theory, the radial and axial velocities at a point can be determined by taking the appropriate partial derivatives of equation 4; e.g.

$$
\begin{align*}
& \text { VRAD }= \frac{\partial \varphi}{\partial r}=\frac{\partial \varphi 1}{\partial r}+\frac{\partial \varphi}{\partial r}+\frac{\partial \varphi}{\partial r} \mathrm{CAX} \tag{5}\\
& \text { and } \\
& \text { VAXY }=\frac{\partial \varphi \varphi}{\partial x}=\frac{\partial \varphi 1}{\partial x}+\frac{\partial \varphi \mathrm{CR}}{\partial x}+\frac{\partial \varphi \mathrm{CAX}}{\partial x} \tag{6}
\end{align*}
$$

The four velocity potential terms in equation 2 b are now to be developed. From potential flow theory, a freestream can be described as:

$$
\varphi_{F S}^{\prime}=U_{\infty}^{\prime} x^{\prime}
$$

or in non-dimensional terms:

$$
\begin{equation*}
\varphi_{F S}=x \tag{7}
\end{equation*}
$$

The remaining terms in equation $2 b$ describe surfaces of distributed singularities. Figure 5 shows an arbitrary surface divided into subareas dA^{\prime}, each containing one singularity of strength \dot{m}^{\prime}. The incremental velocity potential induced at a point P by any such subarea, a distance D^{\prime} away can be described by [13]:

$$
\mathrm{d} \varphi^{\prime}=\frac{1}{4 \pi} \frac{\dot{\mathrm{~m}}^{\prime} \mathrm{dA}^{\prime}}{\mathrm{D}^{\prime}}
$$

Hence, the velocity potential induced at P by all such subareas can be written as:

$$
\varphi^{\prime}=\frac{1}{4 \pi} \int_{A} \frac{\dot{m}^{\prime} \mathrm{dA}^{\prime}}{D^{\prime}}
$$

or in non-dimensional form:

$$
\begin{equation*}
r p=\frac{1}{4 \pi U_{\infty}^{\prime} R^{\prime}} \quad \int_{A} \frac{\dot{m}^{\prime} d A^{\prime}}{D^{\prime}} \tag{8}
\end{equation*}
$$

FIGURE 5. ARBITRARY SURFACE WITH DISTRIBUTED SINGULARITIES

If, in Figure 5, point P lies on the surface, then the subarea containing P must be excluded from the integration of equation 8.

Two of the components of the model to be described by equation 8 are disks. Hence as Figure 4 shows the area integral in equation 8 is evaluated with respect to r3' and 01 and can be written:

$$
\mathrm{d} A^{\prime}=\mathrm{r} 3^{\prime} \mathrm{dr} 3^{\prime} \mathrm{d} \theta 1
$$

or

$$
\begin{equation*}
d A^{\prime}=\left(R^{\prime}\right)^{2} r 3 d r 3 d \theta 1 \tag{9}
\end{equation*}
$$

The remaining component to be described by equation 8 is the cylinder and hence the area integral is evaluated with respect to $x l^{\prime}$ and $\theta 1$; or:

$$
d A^{\prime}=R^{\prime} d x l^{\prime} d \theta l
$$

or

$$
\begin{equation*}
d A^{\prime}=\left(R^{\prime}\right)^{2} d x l d \theta 1 \tag{10}
\end{equation*}
$$

With continuing reference to equation 8, Figure 4 shows that there are three D^{\prime} terms: one for the inlet (Dl'), one for the cylinder (D2') and one for the end cap (D3') . In general, the distance between point P and any point on the nacelle can be written:

$$
D^{\prime}=\sqrt{\left(x^{\prime}-x l^{\prime}\right)^{2}+\left(y^{\prime}-y l^{\prime}\right)^{2}+\left(z^{\prime}-z l^{\prime}\right)^{2}}
$$

or

$$
\begin{equation*}
D^{\prime}=\left(R^{\prime}\right) \sqrt{(x-x l)^{2}+(y-y l)^{2}+(z-z l)^{2}} \tag{11}
\end{equation*}
$$

The terms x, y, and z, are the coordinates of point P from the origin. The terms xl, yl, and zl , are the coordinates of any point on the nacelle. Because the system under study is axisymmetric, reference point P can be defined as always lying at $z=0$.

In evaluating the D1' and D3' expressions, the areas involved are disks and hence the xl terms are zero for the former and AL for the latter. In all the D^{\prime} expressions, the values of $y l$ and $z l$ can be written:

$$
z!=r 3 \sin \theta
$$

and

$$
y l=r 3 \cos \theta
$$

In the D1' and D3' expressions, r3 terms in the above pair of equations remain as variables while in the D2' expression r3 is a constant with a value of unity. The three distance equations can thus be written, after simplification, as:

$$
\begin{align*}
& D 1^{\prime}=\left(R^{\prime}\right) \sqrt{x^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}} \tag{12}\\
& D 2^{\prime}=\left(R^{\prime}\right) \sqrt{(x-x 1)^{2}+r^{2}-2 r \cos \theta 1+1} \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
D 3^{\prime}=\left(R^{\prime}\right) \sqrt{(x-A L)^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}} \tag{14}
\end{equation*}
$$

The remaining term to be considered in equation 8 is the singularity strength, $\dot{\mathrm{m}}^{\prime}$. For the case of the inlet sink, the strength (qs1) is constant over the area and is a function of a particular engine design and/or engine power setting. Thus it can be brought outside the integral.

In the cases of the nacelle and end cap surfaces, \dot{m}^{\prime} is a function of axial position along the nacelle and radial position along the end cap. Therefore in these cases \dot{m}^{\prime} must remain inside the integrals. As mentioned in the previous section, the strength of each singularity on these surfaces is initially set at twice the negative of the normal velocity induced by the freestream-inlet combination at the point.

All of the expressions necessary to describe the velocity potential at an arbitrary point can now be written. Combining equations 7, 8,9 , and 12 with equation 3 gives, after simplification, the potential due to the freestream and inlet:

$$
\begin{equation*}
\varphi 1=x+\frac{q s 1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{r 3 d r 3 d \theta 1}{\left[x^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}\right]^{1 / 2}} \tag{15}
\end{equation*}
$$

where the limits of integration in this and all of the velocity potential expressions are those already noted for the surface areas under consideration.

An expression for the potential due to the nacelle can be obtained by combining equations $1,8,10$, and 13 and gives, after simplification:

$$
\begin{equation*}
\varphi_{\mathrm{CR}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{A I} \frac{\operatorname{Vr}(\mathrm{x} 1) \mathrm{dx} 1 \mathrm{~d} \theta 1}{\left[(x-x \mathrm{l})^{2}+\mathrm{r}^{2}-2 r \cos \theta 1+1\right]^{1 / 2}} \tag{16}
\end{equation*}
$$

And finally, combining equations $1,8,9$, and 14 gives, upon simplification, the potential due to the end cap:

$$
\begin{equation*}
{ }_{C A X}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{\operatorname{VAX}(r 3) r 3 d r 3 d \theta 1}{\left[(x-A L)^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}\right]^{1 / 2}} \tag{17}
\end{equation*}
$$

In order to evaluate equations 5 and 6 the partial derivatives of the above three equations must be taken with respect to x and r. Applying Leibnitz's rule [14] to equations 15,16 , and 17 gives, upon simplification:

$$
\begin{align*}
& \frac{\partial \varphi p l}{\partial r}=-\frac{q s l}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{(r-r 3 \cos \theta 1) r 3 d r 3 d \theta 1}{\left[x^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}\right]^{3 / 2}} \tag{18}\\
& \frac{\partial{ }^{r} 1 \mathrm{CR}}{\partial \mathrm{r}}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{A L} \frac{[\operatorname{Vr}(x 1)][r-\cos \theta 1] d x l d \theta 1}{\left[(x-x 1)^{2}+r^{2}-2 r \cos \theta 1+1\right]^{3 / 2}} \tag{19}\\
& \frac{\partial r \varphi}{\partial r} C A X=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{[\operatorname{VAX}(r 3)][r-r 3 \cos \theta 1][r 3] d r 3 d \theta 1}{\left[(x-A L)^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}\right]^{3 / 2}} \tag{20}\\
& \frac{\partial r \rho l}{\partial x}=1-\frac{q s 1 . x}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{r 3 \operatorname{dr} 3 d \theta 1}{\left[x^{2}+r^{2}-2 r r 3 \cos \theta 1+r 3^{2}\right]^{3 / 2}} \tag{21}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{A L} \frac{[\operatorname{Vr}(x 1)][x-x 1] d x l d \theta 1}{\left[(x-x 1)^{2}+r^{2}-2 r \cos \theta 1+1\right]^{3 / 2}} \tag{22}\\
& \frac{\partial C \theta}{\partial x}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{[V A X(r 3)][x-A L][r 3] \operatorname{dr} 3 d \theta 1}{\left[(x-A L)^{2}+r^{2}-2 r r 3 \cos \theta I+r 3^{2}\right]^{3 / 2}} \tag{23}
\end{align*}
$$

The above equations must be integrated to obtain the six velocity components. Integrations involving both variables of equations 19, 20, 22, and 23 must be performed numerically because of the dependence of the singularity strengths on position. Equations 18 and 21, however, can be integrated in closed form with respect to r3, though they must be integrated numerically with respect to $\theta 1$. Performing the cosed form integration gives:

$$
\begin{align*}
& \frac{\partial c \rho l}{\partial r}=-\frac{q s l}{4 \pi} \int_{0}^{2 \pi}\left\{\left(\frac{r}{4 A-B^{2}}\right)\left[4 \sqrt{A}-\frac{(2 B+4 A)}{\sqrt{A+B+1}}\right]\right. \\
& -\cos \theta 1\left\{\left(\frac{1}{4 A-B^{2}}\right)\left(\frac{2 B^{2}-4 A+2 A B}{\sqrt{A+B+1}}-2 B / A\right)\right. \\
& \tag{24}\\
& \left.\quad+\ln \left[\frac{\sqrt{A+B+1}+B / 2+1}{\sqrt{A}+B / 2}\right]\right\} d \theta l
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \varphi 1}{\partial x}=1-\frac{q s 1 \cdot x}{4 \pi} \int_{0}^{2 \pi}\left(\frac{1}{4 A+B^{2}}\right)\left[4 \sqrt{A}-\frac{(2 B+4 A)}{\sqrt{A+B+1}}\right] d \theta 1 \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad A=x^{2}+r^{2} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad B=-2 r \cos \theta 1 \tag{27}
\end{equation*}
$$

Numerical results using equations 5 and 6 can be obtained when the singularity strengths have been evaluated.

Evaluation of the Singularity Strengths -
 The Iterative Procedure

To satisfy the no-flow condition the normal velocity must vanish at each nacelle and end cap singularity. As explained earlier, the first step toward this end is to set the singularity strength at each location equal to twice the negative of the normal velocity induced by the free-stream-inlet combination. Consider any point P on the nacelle surface. The normal velocity CHEKR at P is determined from the equation:

$$
\begin{equation*}
\text { CHEKR }=\frac{\partial \subset \rho \mathrm{l}}{\partial r}-\mathrm{Vr}+\frac{\partial \varphi \mathrm{CR}}{\partial r}+\left.\frac{\partial \varphi \mathrm{CAX}}{\partial r}\right|_{\text {at } P} \tag{28}
\end{equation*}
$$

In the above equation, the quantity Vr represents the velocity produced by the singularity at P and is initially equal in magnitude to $\frac{\partial r o l}{\partial r}$. The remaining terms are identical to the corresponding terms in equation 5. However, because point P lies on the nacelle surface, the
area containing P must be excluded from the numerical integration of the $\frac{{ }^{\partial c \infty} \mathrm{CR}}{\partial r}$ term (equation 19).

The no-flow boundary condition is satisfied along the nacelle when the velocity CHEKR vanishes at each singular point.

An equation analogous to equation 28 for the normal velocity at any point P on the end cap is:

$$
\begin{equation*}
\operatorname{CHEKX}=\frac{\partial \varphi 1}{\partial \mathbf{x}}-\mathrm{VAX}+\frac{\partial \varphi \mathrm{CR}}{\partial \mathbf{x}}+\left.\frac{\partial \varphi \mathrm{CAX}}{\partial \mathbf{x}}\right|_{\text {at } P} \tag{29}
\end{equation*}
$$

The partial differential terms in the above equation are identical to the corresponding terms in equation 6. The quantity VAX represents the velocity produced by the singularity at P and is initially equal in magnitude to $\frac{\partial \varphi \rho}{\partial x}$. In performing the numerical integration of the $\frac{\partial \rho \mathrm{CAX}}{\partial \mathrm{x}}$ term, the area containing P must be excluded.

The no-flow boundary condition is satisfied along the end cap when the velocity CHEKX vanishes at each singular point.

The iterative procedure used in generating the nacelle and end cap surfaces is as follows:

1. The normal velocity induced by the freestreaminlet combination is calculated at each nacelle $\left(\frac{\partial \varphi l}{\partial r}\right)$ and end cap $\left(\frac{\partial \varphi l}{\partial x}\right)$ singular point by evaluating equations 24 and 25 , respectively.
2. At each nacelle singular point, Vr is set equal to the negative of $\frac{\partial \varphi l}{\partial r}$, while at each end cap singular point, VAX is set equal to the negative of $\frac{\partial \varphi l}{\partial x}$.
3. The normal velocity CHEKR is determined at each nacelle singular point by evaluating equation 28 and the normal velocity CHEKX is determined at each end cap singular point by evaluating equation 29 .
4. At each nacelle singular point where CHEKR is non-zero, an adjustment scheme (to be described below) resets Vr. Likewise, at each end cap singular point where CHEKX is non-zero, VAX is reset.
5. The procedure is repeated from STEP 3 until the no-flow condition is met at all singular points to some specified precision.

The adjustment procedure mentioned in STEP 4 is as follows. Consider first equation 28 . Figure 6 represents all of the velocity components associated with this equation for a singular point P on the nacelle surface. Let it be assumed that CHEKR at P is not zero and hence Vr must be adjusted. The first step is to determine if

FIGURE 6. SINGUIAR POINT VELOCITY VECTORS

CHEKR and Vr are of the same sign. If they are not, the magnitude of Vr must be increased. This is done by employing the equation:

$$
\begin{equation*}
\left.V r\right|_{\text {new }}=\left.V r\right|_{\text {old }}-\text { CHEKR } / 2 \tag{30}
\end{equation*}
$$

The choice of the correction term, CHEKR/2, in equation 30 is arbitrary. If Vr and CHEKR are of opposite sign, the magnitude of Vr must be decreased. The procedure for doing this depends on the value of CHEKR/2. If the magnitude of CHEKR/2 is less than that of Vr , equation 30 is applied. However, if the magntide of CHEKR/2 is greater than that of Vr , the new Vr is obtained from:

$$
\begin{equation*}
\left.\operatorname{Vr}\right|_{\text {new }}=\left.\operatorname{Vr}\right|_{\text {old }} / 2.00 \tag{31}
\end{equation*}
$$

Again, the choice of the correction is arbitrary.
An identical adjustment procedure is used along the end cap with CHEKX (from equation 29) substituted for CHEKR and VAX substituted for Vr in equations 30 and 31.

Generation of the Streamlines

Let a fluid particle be released from a point P in the flow field with the object being to determine the path it follows. Since the flow field is assumed to be in equilibrium, the fluid particle will travel along a streamline. The value of the stream function along any
streamline is constant and hence:

$$
\begin{equation*}
\partial \Psi=\left.0\right|_{\text {Along any streamline }} \tag{32}
\end{equation*}
$$

In an axisymmetric system, the stream function is a function of x and r and hence:

$$
\Psi=\Psi(x, r)
$$

Taking the derivative and applying it along a streamline gives:

$$
\partial \Psi=0=\frac{\partial \Psi}{\partial r} d r+\frac{\partial \Psi}{\partial x} d x
$$

or rearranging:

$$
\begin{equation*}
\left.\frac{\mathrm{dr}}{\mathrm{dx}}\right|_{\Psi=\text { Const. }}=-\frac{\partial \Psi / \partial x}{\partial \Psi / \partial r} \tag{33}
\end{equation*}
$$

The radial and axial velocity at any point in an axisymmetric system can be expressed from Stokes Stream Function [15] as:

$$
V A X Y=\frac{1}{r} \frac{\partial \Psi}{\partial r}
$$

and

$$
V R A D=-\frac{1}{r} \frac{\partial \Psi}{\partial x}
$$

Rearranging the above two equations and combining them with equation 33 gives, after simplification:

$$
\begin{equation*}
\left.\frac{\mathrm{dr}}{\mathrm{dx}}\right|_{\Psi=\text { Const } .}=\frac{V R A D}{\mathrm{VAXY}} \tag{34}
\end{equation*}
$$

With the coordinates of the release point known, the above differential equation can be numerically solved using the RungeKutta Method [16] to determine the radial and axial coordinates of the points along the streamline which the fluid particle follows. The velocities VRAD and VAXY needed in this solution are obtained by evaluating equations 5 and 6 , respectively.

The Reversed Jet Flow Field Model

This section developes the axial and radial coordinates of the Maximum Penetration Point of the reversed jet relative to the axisymmetric coordinate system of the inlet flow field model. The problem is defined in Figure 3.

The P coordinate of the Maximum Penetration Point in the jet plane is found from the Lockheed correlation (Figure 1):

$$
\text { PMPP }=2.97(\text { DIAJET })(\text { VELJET })^{.94}\left(1-.734 \mathrm{SIN}^{.685} \theta\right)
$$

From Figure 3, the Q coordinate of the Maximum Penetration Point can be written:

$$
\begin{equation*}
Q M P P=P M P P \tan \theta \tag{36}
\end{equation*}
$$

The axial coordinate of the Maximum Penetration Point with respect to the axisymmetric coordinate system can be written from Figure 3 as:

$$
\begin{equation*}
\mathrm{XMPP}=\mathrm{XJET}-\mathrm{PMPP} \tag{37}
\end{equation*}
$$

where PMPP is found from equation 35 . An expression must now be developed for the radial coordinate of the Maximum Penetraion Point with respect to the axisymmetric coordinate system. From Figure 3:

$$
\begin{equation*}
\mathrm{RMPP}=\sqrt{\mathrm{YMPP}^{2}+\mathrm{ZMPP}^{2}} \tag{38}
\end{equation*}
$$

where:

$$
\mathrm{YMPP}=\mathrm{YJET}+\mathrm{QMPP} \cdot \cos (\beta)
$$

and

$$
\mathrm{ZMPP}=\mathrm{ZJET}+\mathrm{QMPP} \cdot \sin (\beta)
$$

Substituting the above expressions into equation 38 gives, upon simplification:

$$
\begin{equation*}
\mathrm{RMPP}=\sqrt{\mathrm{YJET}^{2}+\mathrm{ZJET}^{2}+2 \mathrm{QMPP}[Y J E T \cdot \cos \beta+Z J E T \cdot \sin \beta]+\mathrm{QMPP}^{2}} \tag{39}
\end{equation*}
$$

Everything necessary to solve equation 39 has now been developed except for the in-plane angles, θ and β. From Figure 3:

$$
\mathrm{s}_{\mathrm{J}}=\text { VELJET } \cdot \cos \alpha 1
$$

or:

$$
\begin{equation*}
\frac{\mathrm{s}_{\mathrm{J}}}{\overline{\mathrm{VELJTT}}}=\cos \alpha 1 \tag{40}
\end{equation*}
$$

Likewise, for u_{J}

$$
u_{J}=s_{J} \cos \alpha 2
$$

or:

$$
\begin{equation*}
\frac{u_{\mathrm{J}}}{\mathrm{~s}_{\mathrm{J}}}=\cos \alpha 2 \tag{41}
\end{equation*}
$$

From Pigure 3:

$$
\begin{equation*}
\cos \theta=u_{\mathrm{J}} / \text { VELJET } \tag{42}
\end{equation*}
$$

Equation 42 can be rearranged as:

$$
\cos \theta=\frac{\mathrm{s}_{\mathrm{J}}}{\mathrm{VELJET}} \cdot \frac{\mathrm{u}_{\mathrm{J}}}{\mathrm{~s}_{\mathrm{J}}}
$$

Combining equations 40 and 41 with the above gives:

$$
\cos \theta=\cos \alpha 1 \cdot \cos \alpha 2
$$

or:

$$
\begin{equation*}
\theta=\cos ^{-1}[\cos \alpha 1 \cdot \cos \alpha 2] \tag{43}
\end{equation*}
$$

Referring to Figure 3, the following can be written:

$$
\begin{equation*}
\tan \alpha \mathrm{l}=\mathrm{w}_{\mathrm{J}} / \mathrm{s}_{\mathrm{J}} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \alpha 2=v_{\mathrm{J}} / \mathrm{s}_{\mathrm{J}} \tag{45}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\tan \beta=\mathrm{w}_{\mathrm{J}} / \mathrm{v}_{\mathrm{J}} \tag{46}
\end{equation*}
$$

Equation 46 can be rearranged as:

$$
\tan \beta=\frac{w_{J}}{s_{J}} \cdot \frac{s_{J}}{v_{J}}
$$

Combining equations 44 and 45 with the above gives:

$$
\tan \beta=\tan \alpha 1 / \sin \alpha 2
$$

or:

$$
\begin{equation*}
\beta=\operatorname{TAN}^{-1}\left[\frac{\operatorname{TAN} \alpha 1}{\sin \alpha 2}\right] \tag{47}
\end{equation*}
$$

With equations 43 and 47 complete, the location of the Maximum Penetration Point with respect to the axisymmetric coordinate system can be determined from equations 37 and 39.

Time Calculations

This section develops a method of approximating the time required for a fluid particle to travel from the Maximum Penetration Point to the engine inlet, for cases where reingestion occurs. Figure 3 shows two points, A and B, on a streamline located within the pre-entry streamtube. Equations have already been developed for finding both the radial and axial velocitites at these points (equations 5 and 6), as well as the locations of the points themselves, (equation 34). Let the quantity VAB be defined as the average speed between points A and B. It follows then, that:

$$
\begin{equation*}
V A B=\frac{V P A+V P B}{2} \tag{48}
\end{equation*}
$$

where VPA and VPB are the speeds at points A and B, respectively. These speeds can be determined from:

$$
\begin{equation*}
V P=\sqrt{(V A X Y)^{2}+(V R A D)^{2}} \tag{49}
\end{equation*}
$$

Let $X A B$ be the axial distance between the points and $R A B$ be the radial distance between the points. Then:

$$
\begin{equation*}
X A B=X A-X B \tag{50a}
\end{equation*}
$$

and

$$
\begin{equation*}
R A B=R A-R B \tag{50b}
\end{equation*}
$$

The approximate distance between the points, DSAB can be described as:

$$
\begin{equation*}
D S A B=\sqrt{(X A B)^{2}+(R A B)^{2}} \tag{51}
\end{equation*}
$$

From the elementary equation, distance equals speed times time, DSAB can also be expressed as:

$$
D S A B=(V A B)(T A B)
$$

where $T A B$ is the time required for the particle to travel the distance DSAB at an average speed of VAB. The above equation can be rewritten as:

$$
\begin{equation*}
\mathrm{TAB}=\frac{\mathrm{DSAB}}{\mathrm{VAB}} \tag{52}
\end{equation*}
$$

By summing the TAB values between all of the points along the streamline from the Maximum Penetration Point to the inlet, the approximate time involved in the reingestion process can be determined.

Cross Ingestion

Figure 7 shows a sketch of a four-engined jet transport with wing-mounted engines. The quantities XOP and RCROSS are defined

FIGURE 7. THE CROSS INGESTION MODEL
respectively as the axial and radial coordinates of the Maximum Penetration Point of the reversed jet of the inboard engine relative to the outboard engine coordinate system. Clearly cross ingestion occurs if RCROSS lies within the outboard engine pre-entry streamtube at XOP. With this in mind, expressions for these quantities are now developed.

The first step is to establish the center point of the inboard engine end cap relative to the same point on the outboard engine with the quantities XSPACE, YSPACE, and ZSPACE. With this done, XOP can be described as:

$$
\begin{equation*}
X O P=X M P P-X S P A C E \tag{53}
\end{equation*}
$$

From Figure 7, the following expressions can also be written:

$$
\begin{equation*}
Y O P=Y S P A C E-Y M P P \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{ZOP}=\mathrm{ZSPACE}+\mathrm{ZMPP} \tag{55}
\end{equation*}
$$

From these two equations, RCROSS can be described as:

$$
\begin{equation*}
\text { RCROSS }=\sqrt{\mathrm{YOP}^{2}+\mathrm{ZOP}}{ }^{2} \tag{56}
\end{equation*}
$$

With XOP and RCROSS determined, the likelihood of cross ingestion can be evaluated.

The Pre-entry Streamtube Radius Equation

The most important streamtube is the pre-entry streamtube and while the radius of this boundary cannot be analytically determined at arbitrary axial locations, it can be determined at minus infinity (RPEST). At minus infinity, the velocity within the pre-entry streamtube is the freestream velocity $\left(\frac{U_{\infty}^{\prime}}{U_{\infty}^{\prime}}=1\right)$. At the engine inlet, the velocity within the pre-entry streamtube is the sum of the freestream and inlet induced (VELRAT) velocities. The flow areas at these two axial locations are $\pi \cdot \operatorname{RPEST}^{2}$ and $\pi \cdot 1^{2}$, respectively. Since continuity is maintained within the pre-entry streamtube, the following can be written:

$$
\begin{aligned}
& \left.V \cdot A\right|_{a t-\infty}=\left.V \cdot A\right|_{\text {at Inlet }} \\
& 1 \cdot \pi \operatorname{RPEST}^{2}=(V E L R A T+1) \pi \cdot 1^{2}
\end{aligned}
$$

or:

$$
\begin{equation*}
\operatorname{RPEST}=\sqrt{\operatorname{VELRAT}+1} \tag{57}
\end{equation*}
$$

CHAPTER V

THE COMPUTER PROGRAM

The statement listing of the computer program is presented in Appendix I. The block diagram of this program is shown in Figure 8 and for clarity, the step numbers in the figure are included in the statement listing.

Referring to Figure 8, the initial step in the program is the inputting of the geometric, dynamic, and program variables and selection of the program options. The procedure for doing this is described in Appendix II.

Program initialization for the first inlet-to-freestream velocity ratio to be studied occurs in STEP 2.

In STEP 3, the normal velocities induced at each nacelle and end cap singularity by the freestream-inlet combination are computed from equations 24 and 25 , respectively. ${ }^{1}$ In addition, the initial strength settings of the compensatory singularities are assigned here.

The iterative nacelle generation procedure comprises STEPS 4, 5, and 6. In STEP 4, the induced normal velocities at each nacelle and end
${ }^{1}$ For programming convenience, the number of singularities on the nacelle and end cap are equal.

FIGURE 8. FLOW CHART OF THE COMPUTER PROGRAM
cap singularity due to all of the elements of the system are computed from equations 28 and 29 , respectively. The purpose of STEP 5 is to record in computer memory those points where the above normal velocities have not vanished. At all such points the singularity strengths are adjusted in STEP 6 using the procedure described in Chapter IV. The degree of accuracy to which the no-flow condition is established is controlled by the inputted quantity EP, which represents a selected percentage of the freestream velocity.

The program proceeds to STEP 7 when the no-flow condition is met at every singular point. Otherwise, control is returned to STEP 4.

The purpose of STEP 7 is to provide the coordinates of a starting point for the streamline generation procedure of STEP 8. Two program options are available here. With one option the coordinates of the Maximum Penetration Point of the reversed jet are computed using the Lockheed correlation. This option is employed to evaluate the likelihood of reingestion. If the other option is chosen, the coordinates of an inputted point are used. This option is employed for generating selected streamlines.

With an initial point determined, the path of a streamline is generated in STEP 8. Additionally, the time required for a fluid particle to travel the streamline is determined here.

In STEP 9 the likelihood of reingestion is evaluated. Output confirms whether or not exhaust efflux has entered the engine inlet. If
reingestion occurs, the fluid particle time is also outputted. Additionally, a program option is available to determine if the entraining portion of the jet penetrates the pre-entry streamtube.

Program operation is terminated in STEP 10 unless further inlet-to-freestream velocity ratios are to be studied. If this is the case, control is transferred back to STEP 2.

CHAPTER VI

RESULTS AND DISCUSSION

Varification of the operationality of the computer program consists of three steps:

1. Demonstration of the nacelle generation sections of the program. This is accomplished by showing that the inlet flow field model can be generated over a wide range of geometric and dynamic conditions, to any specified degree of accuracy.
2. Demonstration of the streamline computational scheme. This is accomplished qualitatively by plotting selected streamlines about a nacelle and quantitatively by showing that continuity is satisfied between adjacent streamlines.
3. Demonstration of the ability of the program to analyze a realistic reingestion problem.

Nacelle Generation

Results from several nacelle generation studies are presented in Tables 1 through 5. At each singularity, the tables note the normal

TABLE 1. NACELLE GENERATION DATA

Singularity Location	$\frac{\partial \varphi 1}{\partial r}$	Vr	CHEKR	$\frac{\partial \varphi 1}{\partial x}$	VAX	CHEKX
1	-29.12381	24.17546	0.007	0.18362	-0.75719	0.010
2	-25.46819	19.73041	0.005	. 18371	-. 75737	0.010
3	-14.12882	9.91636	0.003	. 18396	-. 75785	0.010
4	-8.70776	4.58291	0.001	. 18436	-. 76371	0.005
5	- 5.66953	2.44176	-0.010	. 18494	. 76497	0.005
6	- 3.84147	1.35647	-0.010	. 18566	-. 76272	0.010
7	- 2.69018	. 78559	-0.009	. 18656	-. 76994	0.005
8	- 1.93872	. 47825	-0.007	. 18760	- . 77259	0.006
9	- 1.43300	. 30737	-0.005	. 18879	-. 77628	0.007 0.008
10	- 1.08323	. 20862	-0.004	. 19016	-. 78017	0.008
11	- 0.83533	. 14861	-0.004	. 19168	-. 78562	0.009 0.005
12	- . 65568	. 10929	-0.005	. 19334	-. 89736	0.006
13	. 52286	. 09744	0.008	. 19518	-.80610	0.008
14	- . 42287	. 08309	0.009	. 19716	-. 81636	0.010
15	. 34636	. 07186	0.006	. 19929	-. 83018	0.007
16	- . 28693	. 06938	0.005	. 20154	-. 85308	0.008
17	- . 24015	. 07722	0.005	. 20397	- 8.8175	0.008
18	- . 20286	. 08830	-0.008	. 20653	-. 91593	0.005
19	- . 17282	. 14561	-0.007	. 20923	-. 96087	0.008
20	- . 14835	. 29073	-0.008	. 21207	-1.01060	0.005
21	- . 13781	. 50227	-0.007	. 21354	-1.03314	0.005

TABLE 2. NACELLE GENERATION DATA
$\operatorname{VELRAT}=10 ; \quad \operatorname{ASPECT} \operatorname{RATIO}=3 ; \quad E P=0.01 ;$ NO. OF ITERATIONS $=12$

Singularity Location	$\frac{\partial \omega l}{\partial r}$	Vr	CHEKR	$\frac{\partial \varphi 1}{\partial x}$	VAX	CHEKX
1	-4.85397	4.03431	0.007	0.86394	-1.01892	0.007
2	-4.24470	3.29298	0.006	.86395	-1.01914	0.007
3	-2.35480	1.50842	0.007	.86399	-1.01982	0.007
4	-1.45129	0.76922	0.006	.86406	-1.02095	0.007
5	-0.94492	.40662	-0.003	.86416	-1.02260	0.007
6	-.64025	.22387	-0.006	.86428	-1.02412	0.008
7	-.44836	.12865	-0.006	.86443	-1.02690	0.009
8	-.32312	.07572	-0.008	.86460	-1.03038	0.009
9	-.23883	.04957	-0.006	.86480	-1.03468	0.010
10	.- .18054	.03204	-0.008	.86503	-1.04505	0.006
11	-.13922	.02505	-0.005	.86528	-1.05205	0.006
12	-.10928	.01624	-0.009	.86556	-1.05957	0.008
13	-.08714	.01584	-0.007	.86586	-1.07019	0.009
14	-.07048	.01789	-0.004	.86619	-1.08857	0.005
15	-.05773	.02283	-0.002	.86655	-1.10572	0.006
16	-.04782	.03210	-0.001	.86692	-1.12854	0.008
17	-.04002	.04972	-0.002	.86733	-1.15886	0.009
18	-.03381	.07909	-0.010	.86776	-1.20559	0.007
19	-.02880	.16141	-0.006	.86820	-1.26252	0.009
20	-.02472	.35474	-0.009	.86868	-1.33049	0.005
21	-.02297	.63382	-0.008	.86892	-1.35254	0.006

TABLE 3. NACELLE GENERATION DATA
VELRAT $=5 ; \quad$ ASPECT RATIO $=2 ; \quad E P=0.01 ;$ NO. OF ITERATIONS $=14$

Singularity Location	$\frac{\partial \varphi l}{\partial r}$	Vr	CHEKR	$\frac{\partial \varphi 1}{\partial x}$	VAX	CHEKX
1	-2.42699	2.00175	0.009	.85071	-1.01983	0.008
2	-2.74531	2.25474	0.009	.85075	-1.02006	0.008
3	-1.71072	1.22803	0.007	.85084	-1.02075	0.008
4	-1.17740	0.74237	0.004	.85099	-1.02192	0.008
5	-0.84646	.47211	0.005	.85121	-1.02360	0.009
6	-.62576	.30499	0.002	.85150	-1.02485	0.010
7	-.47246	.20102	-0.001	.85184	-1.03277	0.005
8	-.36304	.13840	0.001	.85224	-1.03664	0.006
9	-.28331	.09497	-0.002	.85271	-1.04080	0.007
10	-.22418	.06794	-0.004	.85323	-1.04632	0.008
11	-.17967	.05194	-0.005	.85381	-1.05296	0.009
12	-.14569	.04375	-0.005	.85445	-1.06194	0.010
13	-.11942	.04371	-0.002	.85514	-1.07872	0.006
14	-.09886	.04334	-0.006	.85589	-1.09307	0.008
15	-.08260	.05370	-0.006	.85669	-1.11731	0.005
16	-.06961	.06959	-0.010	.85754	-1.14520	0.007
17	-.05912	.10802	-0.005	.85844	-1.18936	0.005
18	-.05058	.16379	-0.008	.85939	-1.25380	0.008
19	-.04357	.27233	-0.006	.86039	-1.37106	0.007
20	-.03777	.51670	-0.009	.86143	-1.56440	0.005
21	-.03524	.91305	-0.010	.96197	-1.66026	0.007

TABLE 4. NACELIE GENERATION DATA
VELRAT $=5 ; \quad$ ASPECT RATIO $=4 ; \quad E P=0.01 ;$ NO. OF ITERATIONS $=11$

Singularity Location	$\frac{\partial \varphi l}{\partial r}$	VR	CHEKR	$\frac{\partial \varphi 1}{\partial x}$	VAX	CHEKX
1	-2.42699	2.02620	0.008	.96139	-1.05643	0.007
2	-1.71072	1.25887	0.007	.96139	-1.05665	0.007
3	-.84646	.48609	0.006	.96140	-1.05732	0.007
4	-.47246	.21190	0.005	.96141	-1.05844	0.007
5	-.28331	.09349	-0.004	.96142	-1.06006	0.007
6	-.17967	.04307	-0.008	.96144	-1.06222	0.008
7	-.11942	.02236	-0.007	.96147	-1.06497	0.008
8	-.08260	.01461	-0.004	.96150	-1.06841	0.008
9	-.05912	.00929	-0.004	.96153	-1.07265	0.009
10	-.04357	.00198	-0.009	.96156	-1.07781	0.010
11	-.03293	.00170	-0.008	.96161	-1.08912	0.005
12	-.02543	.00245	-0.005	.96165	-1.09688	0.006
13	-.02001	.00400	-0.003	.96170	-1.10670	0.007
14	-.01601	.00644	0.000	.96176	-1.11870	0.008
15	-.01300	.01300	0.006	.96182	-1.13342	0.009
16	-.01069	.01624	0.005	.96188	-1.15675	0.005
17	-.00889	.02644	0.005	.96195	-1.17934	0.007
18	-.00747	.04486	-0.002	.96202	-1.20706	0.008
19	-.00633	.10096	-0.006	.96209	-1.23760	0.009
20	-.00541	.26865	-0.009	.96217	-1.26875	0.005
21	-.00502	.51886	-0.008	.96221	-1.27575	0.006

TABLE 5. EFFECTS OF NO-FLOW CRITERIA
VELRAT $=5$; ASPECT RATIO $=3$

		$\begin{gathered} \text { PART A } \\ \mathrm{EP}=0.01 \end{gathered}$ NO. OF ITERATIONS $=12$		$\begin{gathered} \text { PART B } \\ \text { EP }=0.001 \\ \text { NO. OF ITERATIONS }=19 \end{gathered}$	
Singularity Location	$\frac{\partial \varphi p}{\partial r}$	CHEKR	Vr	Vr	CHEKR
1	-2.42699	0.008	2.02155	2.01511	0.001
3	-1.17740	0.004	0.75460	0.75191	0.000
5	-0.47246	-0.002	0.20368	0.20418	-0.001
7	-0.22418	-0.007	0.06212	0.06643	-0.001
9	-0.11942	-0.006	0.02430	0.02711	-0.000
11	-0.06961	-0.007	0.01053	0.01485	-0.000
13	-0.04357	-0.004	0.01048	0.01265	-0.000
15	-0.02886	-0.001	0.01927	0.01931	0.000
17	-0.02001	-0.001	0.04803	0.04780	0.000
19	-0.01440	-0.006	0.16279	0.16727	-0.001
21	-0.01148	-0.008	0.64707	0.65953	-0.001
Singularity Location	$\frac{\partial \varphi p}{\partial x}$	CHEKX	VAX	VAX	CHEKX
1	0.93197	0.007	-1.04498	-1.05467	0.001
3	0.93200	0.007	-1.04589	-1.05567	0.001
5	0.93208	0.007	-1.04870	-1.05890	0.001
7	0.93221	0.009	-1.05307	-1.06466	0.001
9	0.93240	0.010	-1.06097	-1.07378	0.001
11	0.93264	0.006	-1.07857	-1.08830	0.001
13	0.93293	0.009	-1.09704	-1. 10979	0.001
15	0.93327	0.006	-1.13314	-1.14448	0.001
17	0.93366	0.009	-1.18730	-1. 20247	0.001
19	0.93410	0.009	-1.29298	-1.30950	0.001
21	0.93446	0.006	-1.38476	-1.40059	0.001

velocity induced by the freestream-inlet combination $\left(\frac{\partial \varphi 1}{\partial r}\right.$ or $\left.\frac{\partial \varphi 1}{\partial x}\right)$, the normal velocity induced by all of the elements of the system (CHEKR or CHEKX), the singularity-produced velocity (Vr or VAX), and the number of iterations required to achieve the no-flow condition.

The singularity location numbering scheme used in the tables is as follows. The equally spaced nacelle singularities begin with point 1 at the inlet plane and run axially to point 21 at the end cap plane. Similarly, the equally spaced end cap singularities begin with point 1 on the nacelle centerline and run radially to point 21 at the nacelle surface.

To establish the inlet flow field model, the nacelle generation procedure must reduce the normal velocities CHEKR and CHEKX along the nacelle and end cap, respectively, to an absolute value no greater than the no-flow criteria, EP. A comparison of these normal velocities to the selected value of EP (0.01) in Tables 1-5A clearly confirms the generality of this procedure with respect to the inlet-to-freestream velocity ratio (VELRAT) and the nacelle aspect ratio (AL'/2R').

The two cases presented in Tables 5A and 5B have identical dynamic and geometric conditions but differ by an order of magnitude in EP. Table 5B shows that increased accuracy is readily obtainable, but at the expense of additional iterations and consequently additional computer time.

At most of the singularity locations in Tables 1-5 the magnitude of the singularity-produced velocity (Vr or VAX) required to establish the no-flow condition differs substantially from that of the normal velocity induced by the freestream-inlet combination $\left(\frac{\partial \varphi l}{\partial r}\right.$ or $\left.\frac{\partial \varphi l}{\partial x}\right)$. This shows the importance of using a singularity strength adjustment scheme to generate accurately the inlet flow field model.

The Streamline Computational Scheme

A series of streamlines generated using the computer program are presented in Figures 9 and 10. The results in both figures were obtained with a nacelle aspect ratio of 3 and an EP of 0.01 .

The streamlines in Figure 9 were computed at a constant inlet-to-freestream velocity ratio of 5. Curve 1 in this figure represents the pre-entry streamtube. Moving progressively outward from curve 1, curves 2,3 , and 4 exhibit the expected decreasing influence of the nacelle's presence.

Figure 10 shows three pre-entry streamtubes, computed at inlet-to-freestream velocity ratios of 5,10 , and 60 . This figure illustrates the increasing probability of exhaust gas reingestion with decreasing aircraft speed, due to the larger size of the pre-entry streamtube.

An additional pre-entry streamtube was calculated using a 5/1 inlet-to-freestream velocity ratio but with a $2 / 1$ nacelle aspect ratio. The points on this curve were indistinguishable from the $3 / 1$ nacelle

FIGURE 9. STREAMLINES ABOUT A NACELLE

FIGURE 10. PRE-ENTRY STREAMTUBES
aspect ratio case. This suggests that the path of the pre-entry streamtube is not strongly dependent on the nacelle shape.

Table 6 presents the results of a check for continuity undertaken at three axial locations between several adjacent streamtubes in Figure 9. At each of the locations, the discharge $(V \cdot A)$ was found by summing the $V \cdot A$ products of 20 subareas. The results of the check show the discharge to be nearly constant between streamtubes. The maximum variation of only 1.2% from the average clearly demonstrates the precision of the streamline computational scheme.

TABLE 6. RESULTS OF CONTINUITY CHECK

AXIAL	DISCHARGE $(\mathrm{V} \cdot \mathrm{A})$	
LOCATION	Between	Between
Streamtubes $2 \& 3$	Streamtubes $3 \& 4$	
-5.100	2.57115π	4.81250π
3.000	2.54358π	4.79576π
8.850	2.51183π	4.79334π

The Reingestion Example

The dynamic and geometric conditions of the example problem are presented in Table 7. The example begins with the touchdown of a four-engined (wing-mounted) STOL transport and continues through the full deceleration process.

The results are included in Table 7 and Figure 11. In this example, deceleration for the inboard engine occurs reingestion free. Also, the entrainment portions of both reversed jets never penetrate the pre-entry streamtubes of the engines discharging them. The aircraft configuration, however, proves to be highly prone to cross ingestion of the inboard engine exhaust to the outboard engine. Cross ingestion begins at an aircraft speed of about 70 miles per hour and continues through 50 miles per hour. Below this speed, the Maximum Penetration Point of the reversed jet of the inboard engine lies outside of the inlet flow field of the outboard engine. The entraining portion of the jet, however, continues to lie in this flow field and thus the possibility of further cross ingestion remains.

Table 7 also lists the fluid particle time for those speeds where cross ingestion occurs.

TABLE 7. EXAMPLE PROBLEM
DYNAMIC AND GEOMETRIC CONDITIONS

FIGURE 11. THE EXAMPLE PROBLEM

CONCLUSIONS
This investigation succeeds in developing a method for analyzing the crosswind-free exhaust gas reingestion problem. The cases presented cover a wide range of nacelle aspect ratios and inlet-to-freestream velocity ratios and clearly demonstrate the generality of the computer program.

Results show the importance of using some type of singularity strength adjustment scheme in generating the inlet flow field model. At most points, the magnitude of the singularity-produced velocity required to establish the no-flow condition differs substantially from that of the normal velocity induced by the freestream-inlet combination.

Additionally, data suggests that the shape of the pre-entry streamtube is uninfluenced by the nacelle aspect ratio. It appears that the accuracy of the method is independent of the nacelle shape, as is assumed in the development of the inlet flow field model.

APPENDIX I

THE COMPUTER PROGRAM

0159			RADIAbfj）－－0S 2 ＊OPS＊SUM2
0120			Vax（J）＝－AxIAL（J）
0121			VR（J）＝－RADIAL（J）
0122			jP（AXIAL（J）${ }^{\text {S }}$ ，29，29
0123	5		WRITE $(6,307)$
0124			
0125	29		
0126		6	OFF，OFF，UFF
0127			60 YO 3
0128	c		中＊＊＊＊＊＊＊＊＊＊
0129	6		＊STEP 4
0130	c		＊＊＊＊＊＊＊＊＊＊
0131	4		
0132		4	5，TRM36，NORAD，NOAX，N2，N4）
0133			fRM3000．
0134			
0135			DPX（J）＝TRM33＊TRA36
0136			CHEKR（J）＝DPR（J）＋VR（J）＋RADIAC（J）
0137			
0138	c		＊＊＊＊＊＊＊＊＊＊＊
0139	6		－STEP 5 －
0140	c		
0141			1F（ABS（CHEKX（J））．，LE．EP）GD TO 43
0142	53		KONASJiel
0143			609044
0144	43		KDN4（J）＝2
0145	44		1F（ABS（CHEKR（J）），LE，EP）GO TO 45
0146	81		KON3（J）＝1j60 90 46
0167	45		KON3（J）${ }^{\text {2 }}$
0148	40		KONREKONRAKON3（J）
0149			KONXEKONX＊KONG（J）
0150			IFLLAST，EQ，2） 00 T0 3
0151			WRITE（0，300）J，VR（J），RADIAL（J），TRM34，TRH35，VAX（J），AXIAL（J），TRM33，
0152		ℓ	M36，CHEKR（J），CHEKX（J）
0153	3		CONTINUE
0156			KSUMOKONXAKONR
0155			1F（LAST．E日，2）GO TO 8000
0150			WRITE $(6,300)$
0157			WRITE（6，301）KSUM
0158			WRITE 6,303 ）KDNR
0159			WRITE（6，302 IKONX
0160			WRITE 16,300$)$
0161			WRITE（6，300）
0162	8000		CONTINUE KTESTICO
0163			！${ }^{\text {a }}$（KSUM，GE，KTEST）GO PO 20
0164			
0165			
0166 0167	${ }_{c}^{6}$		＊STEP ${ }_{\text {－}}$
0168			CALL STABLE（J1，KON4，KON3，CHEKX，CHEXR，VAX，VR）
0169			60 P0 2
0170	628		
0171 0172	28		
0172 0173	－		IPRLAST，GE．2才00 TO 7010 GO TO 7007
0174			＊＊＊＊＊＊＊＊＊＊＊
0175	c		－STEP 7
0176			＊＊＊＊＊＊＊＊＊＊＊
0177	7010		continue
0178			IPSNOPEST．GT．0）60 TO 1602
0179			IP（NUJEY，EQ，O，AND．NOCROS，EQ，01GO TO 1000
0180	1602		CONTJNUE
0181			YELJETPVELGET
0182 0188			CALG YHEJET NOCROS，YJET，ZJET，ALPHAL，ALPHA2，OIAJEY，VELJET，XJET，XM
O188	c	8	，RMPP，2SPACE，YSPACE，XSPACE，XOP，RCROSS，U8A，R，THEATA，NSP，RJET）

```
\begin{tabular}{|c|c|c|}
\hline 0185
0186 & 1008 & KONS 2 OUTPUT KONS \\
\hline 0187 & & N2=0 \\
\hline 0188 & & KOOP14 1 \\
\hline 0189 & & WRITE 6 ,324) \\
\hline 0190 & & NOPE:I \\
\hline 0191 & & NALEO \\
\hline 0192 & & TIMEIAO. \\
\hline 0193 & & 1F(NOJET,EQ, 1) G0 TO 1437 \\
\hline 0194 & & JFSNOCROS.GT.O)GO TO 1600 \\
\hline 0195 & & IP(NUPEST,GT,O)GO TO 1437 \\
\hline 0196 & 1603 & CONTINUE \\
\hline 0197 & & REAOIS, 308)X, SR, TIME1 \\
\hline 0198 & & C0 T0 1638 \\
\hline 0199 & 1487 & X X XMPP \\
\hline 0200 & & SRGRMPP \\
\hline 0201 & & HRITE(6, 397)X, SR \\
\hline 0202 & & SRESR-CIRCLE/2. \\
\hline 0203 & & S6OPE2- (RJET-(D)AJET/2.) \#COS(THEATA)-SR)/(XJEP-X) \\
\hline 0204 & & 8EEOSROSGOPE2\#X \\
\hline 0203 & & IFSNOPEST,GT,O)CO TO 1603 \\
\hline 0206 & & CO TU 1601 \\
\hline 0207 & 1600 & \(\mathrm{X} \times \mathrm{XOP}\) \\
\hline 0208 & & SRuRCROSS \\
\hline 0209 & 1001 & CONT / NUE \\
\hline 0210 & & NAL®ABS(X)/AL \\
\hline 0211 & & \$P(NAL,GT,O)G0 T0 1439 \\
\hline 0212 & & NAbel \\
\hline 0213 & 1439 & RNAL NAL \\
\hline 0214 & &  \\
\hline 0215 & 5 & \\
\hline 0216 & C & \\
\hline 0217 & & \\
\hline 0216 & 1436 & CONTINUE \\
\hline 0210 & & WRITE(0,308)X,SR, XCHEK \\
\hline 0220 & & KODP 2 EXCHEK \\
\hline 0221 & . & N2M1 \\
\hline 0222 & & N3-0 \\
\hline 0223 & & N6:1 \\
\hline 0224 & & bessal \\
\hline 0225 & & \(x x_{1}=0,0000000000\) \\
\hline 0226 & & X \(\times 2=0 \mathrm{x}\) \\
\hline 0227 & & NOGOE! \\
\hline 0228 & & DOX \(=0,000000000000000000000\) \\
\hline 0229 & & J5=0 \\
\hline 0230 & & NTIMPO \\
\hline 0231 & & N2:! \\
\hline 0232 & & NS SUMs 0 \\
\hline 0233 & & N2EATL \\
\hline 0234 & & EP2-ABS (DELTAX) \\
\hline 0235 & & EP3=-EP2/5. \\
\hline 0236 & & \(E P 4=A L+E P 2=E P 3\) \\
\hline 0237 & & 13n10000 \\
\hline 0238 & & \&F\{DELTAX \(11022,1023,1023\) \\
\hline 0239 & 1022 & JWJd+2 \\
\hline 0240 & & d2m-2 \\
\hline 0241 & & 1F(X,LT,EP4)LESSM2 \\
\hline 0242 & & CO 701006 \\
\hline 0243 & 1023 & de-1jJ2=2 \\
\hline 0244 & & \&F( \(\mathrm{X}, \mathrm{GT,EP3}\) )NOPE-2 \\
\hline 0245 & 1006 & 1P(DELTAX)1040:1041:1041 \\
\hline 0246 & 1040 & 1F(J3.EQ, J)GO TO 1020 \\
\hline 0247 & & IF (X,GE,EP4,AND.LESS,EQ, 1) GO TO 1042 \\
\hline 0248 & & CO TO 1028 \\
\hline 0249 & 1042 & 13-JJCO T0 1028 \\
\hline 0250 & 8048 & 1P(X,OE, EP3)GOTO 1020 \\
\hline
\end{tabular}
```



```
                                    - STEP8 8
```

```
                                    - STEP8 8
```



```
    CONTINUE
        (0,300)
        N2m!
        N2=O
        bessas
        xX1=0,00000000000
        x\times2=0x
        ODX=0,0000000000000000000000
        J5=0
        NTIMMO
        NSSUMEO
        NLEAEL
        EP2=ABS(DELTAX)
        EP3=-RP2/5
        d3n10000
        &F{DELTAX\1022,1023,1023
        M=-2
        ff(X,LT,EP4)LESS=2
        CO TO 1006
        N-1JJ2-2
    EP3)NOPE=2
    1F(J3-EOJ)EO TOM0.0
    IF(X,LE,EP4,AND.LESS,EQ./IGO TO $042
    CO TO }102
    IP(X,OE,EPS)GO TO 1020
```

```
llol
```

```
0317
0329
0320
0322
0322
0323
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0135
0336
0337
0338
0340
0341
0342
0344
0343
0346
0348
0349
0350
0352
0353
0354
0355
0357
0358
0359
0360
0361
0362
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0377
0378
0379
0300
0382
0382 1075
    1P(ABSS(OROX),LT;SLOPESNSLOPEEI
    SF(ABS(DROX),GE.SLOPEINSLOPE.Z
    IF(NSSUM,EQ,O)GO TO 1430
    IF(NSSUM,EQ,O)GNO.NS,GY,O)GO TO 1090
    IF(NL,EQ,O)CU TO 1432
    NSSUMANSSUM+NSLOPE
    GO TO 1096
    1430 NSHOLDMNSLOPE
    NSHOLDNNSLDPPE
        JHOLOMN
        XX{HOXXI
        XX$HOXXI
        YRHOLDEVRAD
        YXHOLOEVAXY
        OROXHaDROX
        OROXHADRO
        GO TU (1096,1402,1403,1404,1405,1406,1407),NOEO
        IF(ABS(ORDX),OT,SLOPE)GO TO 1408
        |P(J,GE,J6)GO TO 1077
        00 YO }209
        IF(ASS(DROX).LT.SLOPE)GD YO }108
        GO TO 1096
        GO TO $090
        IPSABSSORDX
        GOTO 1096 (HAST,LT.SLOPESGO TO }120
        CO TO 1096
        IF(ABS(OROX),GT.SLOPE)GO FO }140
        GO T0 }109
        &F(AOS(DRDX),GT.SLOPESGO TO &AOO
        GO TO 1096
        IFSNSNOLD,EQ.2IGDTO $429
        IF(NSSUM,bE.O)CO TO 1630
        X:XHOLD
        SR|SRHOLO
        SNRSRHOLO
        NSHOLO=2
        GO TO 1431
        IFINSSUM&GE.GICO PO 1430
        GO TU 1436
        NUMBERMO
        NZERO!
        X=SRHOLO
        SREXHOLO
        NSHOLD:1
        VRAOMVRHOLD
        VAXYEVXHOLD
        ORDX•ORDXK
        ORDX=DROXK
        NSSUMINSHOLD
        NUMBER=NUMBER+1
        $F{NUMBER,GE,3\GD TO $433
        IF(NUMBER,GE,
        WRITE{6,399)
        WRITE (6,300)
        &P{J,EO,JHDLD)GO TO 1434
        XX1=XX1H
        XX2=XX2H
        JaJHOLD
        GO TH(1096,1408,1082,1408,1200,1409,1409),NOCO
        WRITE(0,398)
        GO YO }100
        CONTINUE
        CALL RUNGE(X,SR, XHOLO,SRHOLO,OROX,DELTAX,J3,AL,EKI,EK2,EK3,EKK,N
        l J,OX,ODX,JS,NOGD,XXI,VAXY,VRAD,EP,NZER)
            IF(NZER,EQ.2ICO TO 1435
            CO YO(1012,1075,1075,1013),N1
```

0383		60 PO 1028
0384	1012	CONTINUE
0385		GO POP $1028,1073,1086,1080,1103,1080,10731, N 060$
0386		60 Y0 1028
0307	1013	WRITE(6,383) W, $^{\text {SR }}$
0388		WRITE(6,300)
0389		N $1=0$
0390	6	
0391		\$F(NQJET,GT, O,OR,NOCROS,GT.0)60 70 1613
0392		IP(NUPEST,EQ,O)GU TO 1097
0393		IFINAL, EQ, -10)G0 TD 7009
0394		BORDERUSLOPE2由X + EEE
0895		\$F(SR,GY, BURDER)NAL $=10$
0396		IF (NAL, EQ, -10)WRITE (6,395)
0397	1413	CALL TIME (NTIM, XA, X , RA, RB, VPA,VPB, X,SR,VAXY,VRAD, TIMES, TIMER)
0398	7009	CONTINUE
0399		
0400	1097	GO POS1083,1062,1086,1062:1103,1062,1062),N0GO
0401		
0402	1083	KOOP 1aKOOP $1+1$
0403		8F(KOOP1-K00P2)1029,1029,7007
0404	1029	CO TU(1006,1024,1028,1046),N2
0405	1046	N3-N3+1
0406		IF(N3.6T:N3STOP) 60 T0 1028
0407		DELTAXEDHOLD
0408		N2-3
0409		G0 101028
0410	6	
0411	1065	14.0
0412	1061	J500
0483		Jnd* 28
0414		1F(J28.LT.1) 00 P0 1100
0415		1F(J, eq. 1)GO YO 1094
0416		
0417		IF(J.EQ. 1) \times X $1=0.0000000000$
0428		X $\times 2 \sim \times \times 1+0 \times$
0419	1094	1F(NDCO.EQ,3)ED TO 1084
0420		60 90 1074
0421	1100	$\times \times 2=\times \times 1$
0422		XX10xx2=0x
0423		\&F\{J,EQ,2)XX1\%0,0000000000000000000
0424		[F(J,LT, 1,AND,N1,EQ,O)GD TO 1203
0425		IF(NOCO,EQ,SICO TO 1084
0426	1074	N4. 2
0427		IFINDPE.EQ, I/GO TO 1028
0428		NTRYM2
0429		GO PO 1087
0430	1062	$\sqrt{4}=\sqrt{ }+1$
0431		IF(J4,EQ,NDIV3, AND, NOCO, EQ, 4)G0 T0 1081
0432		IFIJ4,EQ, NOIV2.AND, NUGU.EQ.4)GD TO 1081
0433	1202	IP(J4,EQ,NOIV2, ANO.NOGO, EQ, 6) 60 TO 1201
0434		IF (J4,EQ,NDIV3, AND, NOEU, EQ,6)GO YO 1201
0435	1092	IF(J4,EQ,NDIV3)GU TO 1001
0436	-	IF(J4,EQ,NDIV2)GO YO 1065
0437	1073	IF (J5,EQ,NDIV2)GD TO 1074
0438		60101080
0439	C	
0440	1097	NOGOEI
0441		N4*!
0462		
0443		60 T0 1096
0444		
0445	1081	NDGO:2
0446		DELTAX=2,*DX/DIV2
0447		J28日 ${ }^{\text {d }}$
0448		60701092

```
0449
0430
0451
0451
0454
045S
0456
0457
0459
0459 <
0461
0462
0463
0464
0465
0466
0467
0448
0470
0471
0472
0473
0475
0476
0477
0476
0480
0488
0482
0483
0484
0485
0486
0487
0486 C
0489
0490
0491
0492
0493
0494
0495
0490
0497
0498
0499
0500
0501
0502
0503
0504
0505 c
0506
0506
0507
0508
0509
0510
0511
0512
0514
C
    $408
    NTRY=1
    1087 NOGO#3
    1105 JAmNOIV3
        J2Ba!
    J4ENDIV3
        OP1200-ad.
        OP1200=-1.:
    1093 J4=0
    1093 J4=0
    C NEXT CARD GETS A DELTA R FOR THE F&IPPEO RUNGE-KUTTA METHDO
    1106 DELTAX=-DX/(DIV4*DIV2)
            DELTAX=OOX/IDIV4#DIV2)
            IFINTRY,EQ.:1GO TO 1410
            $F(NDPE,EQ.3)CD TO 1501
            IFINOGO,EQ.SIGO TO $103
            CFINOG,EQ
```



```
    $084 \
    1084 \ JAEJ4&OD&200WNDIV3
    2086 IF(X,OE,XX2)GO TO 1O61
            If(X,GF,XMAX,ANO,N2,EQ,O)60 TO 1428
    1425 位AXEX GOPO 1107
    1425 隹 GOXEX 
    1427 IF(VAXY)$426,$426,1087
    $428 IF(VAXYiliO1,1425,1425
    1103 IF(X,WE,XXI)GD 70 1061
    IF(X,GE,XXI)GO
        IF!X:G
    2426
    XM{N:X 
    $107 WP(SR,GE,&,O
    COTO 7007
    C
    1082
    NOGO-G
    DELTAX=2; # (XX2-X)/D:V2
    J28%j
    J28md
    G0 10 1096
    C
    IP(SR,GE,I.OL)GO TO }208
    1409 NTRYMI
    ilO1 NOGOES
    NOGOES
    J28-=!
    \28=m&
    \FIJA,GE,ND
    C
    1200
    NOGO*6
```



```
    DELTA
    J5=0
    J28=ml
    C
    1201 NOGOE7
    60 10 }209
    NOGO-7
    DEGTAX|-2,*DX/OIV2
    \28-m1
    N28N"l
    C
    1080
    N4:3
        NOAX=2
        xx3=x
        X0x\times1
        GO TO }202
    1066
    N4-4
    N4=4
    VRI汭AO
    60 10 1028
```


1067		```NG-5 XaxXZ VR2#VRAO VRAD=((DX=ODX)/DX)\|(VRI-VR2)+VR2 NOAX"! NORAD.2 C0 TO }202```
C1480		NTRYE 2 GO YQ 1096
C C C		
2203		```WRITE (6,390) TIMEI-TIME\#R/UBA IF(NOJET,GT,O)WRITE(6,391)TIMEI IF(NUCROS,GT,O)WWITE (0,392)TIME\ &F(NDJET,EQ,O,AND.NOGROS,EQ,O)WR&TE(6,304) GO TU 7007```
6 C C		
7007		```IFINSPEED.EQ.OJGO TO 1007 NSP-NSP+1 &F(NSP.EQ.NSPEEDSED TO }100 REAO(5,396)U8A GO TO 701d```
1007		SPOP
300		FORMAT(101)
301		FORMAT ('KSUMM 1, \%5)
302		FORMAT (1KONX=1, :5)
303		FORMAT(IKONREI, 5)
304		FCRMAY(IKON: 5 ISS) VR YRERAO
305		FORMATI yAX J AXIAL VR VAXMRAD RADIAL VAX-AX VRERAO EHEKR CHE
	4	AX VAX AXIAL VAXMRAD VAX-AX CHEKR CRE
306		FORMAT $2 \mathrm{~L}, 110,8(2 \mathrm{P}, \mathrm{F}$ (0,5),2(2X,F0,3)
307		FORMAT(ITHE NACELLE CAN NOT BE GENERATEDI)
308		FORMAT(3F10.5) THE NUME
313 314	t	formatitite inlet flow fiego model has been generated. the nume OF ITERATIONS REQUIRED WASI, IS) FDRMAT(1 X SR XCHEK')
383		FORMAT (SFIO.5)
386		FORMAT(1THE RADIUS HAS BECOME NEGATIVEI)
387		FORMAT ['THE AXIAL VELOCITY HERE IS NEGATIVEI)
388		FDRMAY(ITHE RADIUS HAS PENETRAYEO THE NACELLEI)
390		FORMAT(ITHE STREAMLINE HAS ENTERED THE INLET')
391	t	formatilexhaust gas re-injestedirfegs, iseconds after peneta ION OF THE PRE-ENTRY STREAM TUBEI)
392	6	FORMATI'EXHAUST GAS CROSS-INJESTEDI,FB.S. iseconds after pen RATIUN OF THE PRE-ENTRY STREAM TURE!)
394		FORMAT(IEXHAUST GAS INJESTION WAS NUT DETECTEDI)
395	t	format (isections of the entrainment portion of the jet lie withi the pre-entry stream tubely
396		FORMAT(BF10.5) FORMATGITEE MAXIMUM PENETRATION PDINT OCCURS ATI,FIO.5,
397	ℓ	FORMAT(ITHE MAXIMUM PENETRATION PDINT OCCURS ATI;FるO.S, OII AXIAGLY ANOI:F10,5, IRAOI: RADIALLYI)
898		FORMAT(ITHE POINT IS CURRENTLY UNDBTAINABLEI' FORMAYY(IPRDCEDURE CHANGED AT YHIS POINT. ABDVE NUMBERS ARE NO ©
8	ℓ	$\begin{aligned} & \text { DI } \\ & \text { ENO } \end{aligned}$

```
```

 SUBROUTINE TIME\NTIM,XA,XB,RA,RB,VPA,VPB,X, SR,VAXY,VRAD,TIMEI,TI
    ```
```

 SUBROUTINE TIME\NTIM,XA,XB,RA,RB,VPA,VPB,X, SR,VAXY,VRAD,TIMEI,TI
 & 2!
 & 2!
 c THIS SUBROUTINE CALCULARES DIMENSIONLESS TIME
c THIS SUBROUTINE CALCULARES DIMENSIONLESS TIME
IFINTIM,GQ,O\C0 TOL
IFINTIM,GQ,O\C0 TOL
XA@XB
XA@XB
RA|RB
RA|RB
VPAEVAB
VPAEVAB
VPAEV
VPAEV
RB=SR
RB=SR
VPB|SQRT{VAXY\#\#2*VRAD*由2}
VPB|SQRT{VAXY\#\#2*VRAD*由2}
IP(NTIM,EQ,O100 TO 2
IP(NTIM,EQ,O100 TO 2
CO %O 3
CO %O 3
NT\ME\&
NT\ME\&
CO TO 5000
CO TO 5000
VABa{YPA\&VPB|/2.
VABa{YPA\&VPB|/2.
XAB=XA=XB
XAB=XA=XB
RAB=RA=RB
RAB=RA=RB
OSABASQRT(XAB**2+RAB**2)
OSABASQRT(XAB**2+RAB**2)
TABEDSAB/VAB
TABEDSAB/VAB
TIMEIGTIMEI+TAB
TIMEIGTIMEI+TAB
RETURN
RETURN
ENO

```
```

 ENO
    ```
```

0001
0002
0003
0004
0005
0000
0007
0008
0009
0010
0011
0012
0013
0014
0016
0017
0018
0019
0020
0021
0022
0023
0023
0024
0026
0027
0028
0029
0030
0031
0032
0032
0034
0035
0036
0037
0038
0039
SUBRDUTINE RUNGE\{X,SR,XHOLO,SRKOLD, ORDX, DELYAX,J3,AL,EK1,EK2,EK:
\& KA,NX,J,DX, DDX, JS, NOGD, XXI, VAXY, VRAO,EP,NZER
C THIS SECTION CONTAINS THE RUNGENKUTTA METHOD.
NlaNjol
IF (NOGO,EQ,3,OR,NOGD,EQ.5)GO TO 6
00 Y 41079
N5- \downarrow
IF(ABS (VRAD),LE,EP)CO TO 7
DRDXEVAXY/VRAO
IP(ABS (VAXY), LE, EP) ORDX=O.
00102
N2ERW2
GO TO 5000
N5:3
N5:3
60 TO
60 FO 2
$15=35+2$
$00 \times 1 \times \times \times 1$
GO TO 5000
GO TO
NS 2
XSWAPIX
RSHAPESR
XORSHAP
XORSNAP
SREXSWAP
GO TU(1079,5000,3),N5
GO TU(1016,1017,1018,10191, N1
$\begin{array}{ll}1079 & \text { GO TUPLO16,1017 } \\ 1016 & E K I O D D X O E L T A X ~\end{array}$
$E K I=D R D X W D E L T A X$
IP (J3,EQ, 1000$) G O$ TO 1043
IP(J3,EQ.
XHOLD:X
SRHOLOWSR
SRMOLOELTAX/2.
SR=SR+EKl/2.
CO $70(5000,3,5,3,5,3,3)$, NDGO
1043 XのALJJ3a10000;60 PO 1044

EK2=DRDX DELTAX
$S R=S K H O L D+E K 2 / 2$.
GO TO (5000,5000, 1078, 5000, 1070, 5000,5000), NOGO
1018 EK3 2 ORDX*DELTAX
XRXHDLD*DELTAX
IF(J.BQ:J3)XMA6=.5*OX

```
    SRMSRHDLD&EK3
    CO TO(5000,4,3,4,5,4,4),NOGD
1089 EK4nDROX*OELTAX
    OELRAO=(EK! +2, WEK2+2,由EK3&EK4)/6,
            X=XHDLD+DELTAX
            SRaSRHOLD+DELRAD
            00 TO(5000,5000,1078,5000,1078,5000,5000),NOGO
    RETURN
    END
```

```
            Subroutine thejetinocros,yJET,ZJET,alPhai,ALPHA2, ojAJET,VELJET,X
            T, XMPP,RMPP,2SPACE,YSPACE,XSPACE, XOP,RCROSS,UAA,R,THEATA,NSP,RJE
C THIS SECTION CONTAINS THE LOCKHEED CDRRELATION.
    &F(NSP.GT,O)GD TO 200
    XJETMXJET/R
    YJETOYJET/R
    ZJETEZJET/R
    diajef=diajet/R
    ALPHAI=ALPHA1/57.29578
    ALPHA2=ALPHA2/57.29578
    contINUE
    VELJETGVELJET/UBA
    RJETESQRT(YJET**2*ZJET**2)
        &F{ALPHAZ,LT0.01)CO 901
        bETAFATAN(TAN(ALPHA1)/SIN(ALPHAZ))
        IF(ALPHAL,LT,.O1)BEYA=0,0000000000000000
        CO TO 2
        BETA=90.000/59.29578
        CONTINUE
        THEATANACOS(CDS(ALPHAI)*COS(ALPHAZ))
        A=(1,0,734*(SIN(THEATA))**.685)
        PMPP|2,97*O1AJET*A*(VELJET**&94)
        QMPPMPMPP#TAN(THEATA)
        XMPP暞ET-PMPD
        RMPPSQRT(RJET**2+QMPP**2*2,*OMPP*(YJET*COS(SETA)+2JET*SIN(BETA)
        OUTPUT XMPP,RMPD
        IF(NOCROS,EQ.O)GO TO 5000
        &FNNP,GT,OIGO TO 205
        XSPACEEXSPACE/R
        YSPACEYYSACE/R
        ZSPACE=2SPACE/R
        CONTINUE
        ZMPP~RMPP*SIN(BETA)
        2OP#2SPACE +2MPP
        YMPP~RMPP*COS(BETA)
        YOPロYSPACEOYMPP
        XOPEXMPP=XSPACE
        RCRRSS#SQRT(YOP**2+ZOP**2)
        RETURN
        END
```

```
            SUBROUTINE STABLE{J},KDN4,KON3, CHEKX,CHEKR,VAX,VR)
            OIMENSION KON4(J1),KON3(J1), CHEKX(J1),CHEKR(N1),VAX(J1),VR(J1)
        C THIS SECTION ADJUSTS THE COMPENSATORY SINGULARITY STRENGTHS,
        40 DD 42 I=l,J!
            IF(KONA(f).GE,2)GO TO 47
            A102=CHEKX{1)/2.
            A102ECHEKX(IHEKi!)164,64,02
```

0008
0008
0009
0010
0011
0012
0013
0014
0015
0010
0017
0018
0018
0020
0021

0001 0002 0003	c	SUBRDUTINE STUFF(J,X,SR,VAX,VR,AG,DX,DSR, DT1,K7,KB,KONS, TRA33, TF 8 4, TRM 35 , TRM 36, NORAD,NOAX,NZ,N4) this sectian computes the compensatcry terms useo in eqs. 5 c b.
0006		DIMENSION VR(21),VAX(21) 0074 ANO OPA IN STUFFI)
0005	309	FORMAT(10IV BY ZERO.,......OP74 AND OPad IN STUFFI)
0006	310	
0007	311	FORMAT NEE SOR' OP76 ANO OPE3 IN STUFFII
0008	312	FRRMATINE
0009 0010		
0018		OP30A40P30*DX
0012		OP30B-DP30*DSR
0013	c	
0014		0022 Kldad KB
0015	c	
0016		AKII0KII-!
0018		
0019		SRIADSR*AK1
0020		
0022		
0024		$0021 \mathrm{KgElok7}$
0025		AK9 $\mathrm{KK9-1}$
0026		
0027		IF (KUNS.EQ,IRSS.
0028		8F(KUNS,EQ, 2iRSnSR
0029		OP 100 E ($1 \times \mathrm{X}=\mathrm{AL}$
0030		if (0P)00)953,953,34
0032	33	1F10P1001917,909,34
0033	34	OP73050RT(09100)
0034		
0035		
0036		G0 90 910 090
0037 0038	953 917	
0038 0039	9	OP7400.JWRITE $(0,309)$
0040	910	DP77ロ0P7740P74
0041		
0042	6	
0043 0044	1	
0045		
0046		
0047 0048		60 0 ¢0, 912
0048	91.	Qp8\%o.

0049
0050
0051
0052
0043
0054
0053
0056
0057
0058
0059
0060
0062
0062
0064
0065
0067
0068
0069
0071
0072
0074
0076 0077 0078 0079 0080 0001 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093
0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109
O\&2 OP85e0p\&5*OP8\&
O\&2 OP85e0p\&5*OP8\&
8F(KONS.GT.L)CD TO 32
8F(KONS.GT.L)CD TO 32
C
C
UNIT 3........DP.CR/OX............TRM33..................t+***+*****
UNIT 3........DP.CR/OX............TRM33..................t+***+*****
Q38 1F(Xl.GE,AL)G0 TO 952
Q38 1F(Xl.GE,AL)G0 TO 952
OPA2-((AL-XL)**2+5R**2-2.*SR*COS(TA)+10)**3
OPA2-((AL-XL)**2+5R**2-2.*SR*COS(TA)+10)**3
fP(OYO2)952,952,36
fP(OYO2)952,952,36
OPE2=((x-x) ***2+5R**2-2,**SR*COS(TI)*1,)***)
OPE2=((x-x) ***2+5R**2-2,**SR*COS(TI)*1,)***)
fP(NDAX,EQ,2)GD TO 2
fP(NDAX,EQ,2)GD TO 2
{F(OP82)918,913,36
{F(OP82)918,913,36
OP75RSQRT(OP82)
OP75RSQRT(OP82)
IF(KDNS.6E.1)ED T0 937
IF(KDNS.6E.1)ED T0 937
OP760VR(KL1)\#(X-X1)/0P75
OP760VR(KL1)\#(X-X1)/0P75
G0 F0 914
G0 F0 914
gP76-VR(K11)*(AL-X1)/OP7S
gP76-VR(K11)*(AL-X1)/OP7S
CO 90 914
CO 90 914
OP76.0.jGO TO 914
OP76.0.jGO TO 914
OP70RO.1WR!TE{0;312)]GO TO 914
OP70RO.1WR!TE{0;312)]GO TO 914
OP76=0,JWRITE(6,310)
OP76=0,JWRITE(6,310)
DP78:0P78+0P76
DP78:0P78+0P76
\&F(NOQRAD,EQ,ZIGO TO 2l
\&F(NOQRAD,EQ,ZIGO TO 2l
IF(KONS.LT,2)CO TO 919
IF(KONS.LT,2)CO TO 919
IFCOP82.6E,0.1GO TD 915
IFCOP82.6E,0.1GO TD 915
COTOS
COTOS
IF(OPB2)915,915,6
IF(OPB2)915,915,6
OP7SESQRT(OPE2)
OP7SESQRT(OPE2)
cont/NUE
cont/NUE

OP83OVR(K\1)*(SR-COS(T1))/0P75
OP83OVR(K\1)*(SR-COS(T1))/0P75
G0 FUY 916
G0 FUY 916
OP82\#((x-X1)**2-2.*CDS(T1)*2.)**3
OP82\#((x-X1)**2-2.*CDS(T1)*2.)**3
1F(0P82)915,913,40
1F(0P82)915,913,40
OP7SNSQRTOPB2)
OP7SNSQRTOPB2)
OPG3GVR(K\1)|(2,-COS(T1)/IOP75
OPG3GVR(K\1)|(2,-COS(T1)/IOP75
G0 90 916
G0 90 916
OP83:O.
OP83:O.
OP84MOP84\&OP 83
OP84MOP84\&OP 83
c
c
21 CONT{NUE
21 CONT{NUE
IF(NORAD,EQ,2ICO TO 3
IF(NORAD,EQ,2ICO TO 3
TRM34-TRM34*DP71*OP84
TRM34-TRM34*DP71*OP84
TRM35*TRM35+OP71*OP77
TRM35*TRM35+OP71*OP77
IF(NOAX,EQ,2)GO TO 22
IF(NOAX,EQ,2)GO TO 22
TRM33-TRM33+DP71*DP78
TRM33-TRM33+DP71*DP78
IP(KONS,LT,2)00 10 22
IP(KONS,LT,2)00 10 22
TRM36-TRM30+DP71*OP89
TRM36-TRM30+DP71*OP89
C
C
22 DP71*1.
22 DP71*1.
C
C
IFINORAD,EQ,2)GOTO 4
IFINORAD,EQ,2)GOTO 4
TRM34-TRM34*OP30A
TRM34-TRM34*OP30A
TRM3F-TRM35*OP30日
TRM3F-TRM35*OP30日
IFINUAX,EQ,2jG0 TO 951
IFINUAX,EQ,2jG0 TO 951
TRM33-TRM33*OP30A
TRM33-TRM33*OP30A
IF(KON5.6T.2)00 TO 951
IF(KON5.6T.2)00 TO 951
FRH36nTRM36\#OP30B
FRH36nTRM36\#OP30B
RETURN
RETURN
END
END

```
0001
0002
0003
0004
0005
0006
0007
0008
0009
0 0 1 0
0011
0012
0013
0014
0015
0016
0018
0019
0020
0023
0022
0023
0024
0025
0026
0027
0028
0029
0030
0 0 3 8
0032
0033
0034
0035
0036
0037
0038
0 0 3 9
0040
0041
048
042
0043
0044
0045
0046
0046
0047
0048
0 0 4 9
0050
0050
00S2
0053
0054
0054
0056
0057
```

```
C
```

C
307
307
\& TLPNORAD,NDAX, (L)AL,NZ;N4)
\& TLPNORAD,NDAX, (L)AL,NZ;N4)
thIS SECTIDN CDMPUTES THE fREESTREAM-INLET INDUCED VELOCJTY TERMS.
thIS SECTIDN CDMPUTES THE fREESTREAM-INLET INDUCED VELOCJTY TERMS.
307 FORMAT(IOIV \&Y 2ERO....OP13 EQ....IN COOPI)
307 FORMAT(IOIV \&Y 2ERO....OP13 EQ....IN COOPI)
SUM2-0.1SUM3=0.15UM4=0.2SUMS:O.
SUM2-0.1SUM3=0.15UM4=0.2SUMS:O.
00 6 101,8d
00 6 101,8d
Al-I=!
Al-I=!
AI={=1
AI={=1
IFII,EQ.d.
IFII,EQ.d.
\&F(KONS.EQ.2)EO TO 2
\&F(KONS.EQ.2)EO TO 2
A\&RAG**2*SR**2
A\&RAG**2*SR**2
A\&FAG**2\&SR**2
A\&FAG**2\&SR**2
84m"2,*SR*CO
84m"2,*SR*CO
A3mx*+2\&1;
A3mx*+2\&1;
GO TO 3
GO TO 3
A40x**2+5R**2
A40x**2+5R**2
84=-2.\phiSR*COS(Tl)
84=-2.\phiSR*COS(Tl)
A3-14
A3-14
B3084
B3084
CONTINUE
CONTINUE
A1=A3;BINB3;A2NA4;B2nB4
A1=A3;BINB3;A2NA4;B2nB4
IF{NOAX,EQ.2)GOTO \
IF{NOAX,EQ.2)GOTO \
929 ASmA,*A2-82**2
929 ASmA,*A2-82**2
ASmA,*AZ=82**2
ASmA,*AZ=82**2
\F(AS,EQ,O,)GO TO Q33 (H)
\F(AS,EQ,O,)GO TO Q33 (H)
| II
| II
OP16=OP14*OP13*OT\&
OP16=OP14*OP13*OT\&
C0 %O 935
C0 %O 935
OPI6a0.JWRITE(6,307)
OPI6a0.JWRITE(6,307)
\&P(KONS,GE,2)ED TO 930
\&P(KONS,GE,2)ED TO 930
SUM3:SUM3+OPI6
SUM3:SUM3+OPI6
SRR=1.
SRR=1.
COTO'93!
COTO'93!
SUMSOSUMS+DP16
SUMSOSUMS+DP16
IF(NDRAD,EQ,Z)CO TO 930
IF(NDRAD,EQ,Z)CO TO 930
SRROSR
SRROSR
OP1=4.*A\&-BI**2
OP1=4.*A\&-BI**2
IP(ABS(OPI),GE,.OOL)OPIQ,000000000000000000000000000000
IP(ABS(OPI),GE,.OOL)OPIQ,000000000000000000000000000000
IFSDPL,EQ,O,160TO 900
IFSDPL,EQ,O,160TO 900
l
l
l
l
OP2OL|SORT(AL)+BS/2.
OP2OL|SORT(AL)+BS/2.
OP201NSQRT(AL)+81/2.
OP201NSQRT(AL)+81/2.
IF(OP20I)900,900,200\
IF(OP20I)900,900,200\
OPB=COS(Tl)*(OPQ*OP10+DP11)
OPB=COS(Tl)*(OPQ*OP10+DP11)
OP12NOP7m098
OP12NOP7m098
OP12=OPY=OP8
OP12=OPY=OP8
OP25NOP14**
OP25NOP14**
60 TO 903
60 TO 903
OP15=0,
OP15=0,
IF{KONS,GE,2)CO TO 932
IF{KONS,GE,2)CO TO 932
IF(KONS,GE,2)GO
IF(KONS,GE,2)GO
SUM2NSUM2+
SUM2NSUM2+

```
SUBROUTINE COOP{X,SR,KONS,A4,B4,A3,B3,SUM2,SUM3,SUM4,SUM5,DT1,DP
```

SUBROUTINE COOP{X,SR,KONS,A4,B4,A3,B3,SUM2,SUM3,SUM4,SUM5,DT1,DP
SUM4}\mp@subsup{\}{}{\prime\prime}\mathrm{ SUM44DP15
SUM4}\mp@subsup{\}{}{\prime\prime}\mathrm{ SUM44DP15
CONTINUE
CONTINUE
OPI4El.
OPI4El.
RETURN
RETURN
END

```
    END
```

APPENDIX II

PROCEDURE FOR INPUTTING COMPUTER PROGRAM VARIABLES

The Program Options

LAST - This quantity is inputted as 2 for normal operations and inputted as 1 if only the nacelle generation sections of the program are to be operated.

NOIET - Inputted as 1 if reingestion is to be studied; otherwise 0. NOCROS - Inputted as 1 if cross-ingestion is to be studied, otherwise 0. NSPEED - Inputted as 0 if only one aircraft speed is to be studied. Otherwise the value of this quantity is the number of aircraft speeds to be studied.

NOCARD - Inputted as 0 if nacelle generation sections are to be used. If this quantity is set equal to 1 , the singularity-produced velocities are read in on computer cards, rather than determined in the program.

NOPEST - Inputted as 1 if the program is to determine whether or not the entraining portion of the reversed jet lies within the pre-entry streamtube. Otherwise, inputted as 0.

Of the terms NOJET, NOCROS, and NOPEST, only one can be non-zero during a particular study.

The Program Inputs

EP - The degree of accuracy to which the no-flow condition is satisfied.

DELTAX - The dimensionless incremental value of x used in the streamline computational section. If this quantity is inputted as positive the streamlines will be calculated in the direction of the freestream flow. If "DELTAX" is negative, the opposite direction is used.

The Dynamic Input

U8A - The dimensional velocity of the aircraft. If more than one velocity is to be studied; the highest velocity is inputted here.

VELRAT - The inlet-to-freestream velocity ratio. If more than one velocity is to be studied, the lowest velocity ratio is inputted here.

VELJET - The dimensional reversed jet velocity.

The Geometric Input

ALA - The dimensional nacelle length.
Circle - This quantity expands the concept of the Maximum Penetration Point from a point to an area. "CIRCLE" is inputted as the dimensionless diameter of a circle with the center at the Maximum Penetration Point. If this concept is not to be used, the quantity is inputted as zero.

The remaining terms in this section have the same meaning as in the main body of this report, but must be inputted in dimensional form.

BIBLIOGRAPHY

1. Tatom, J. W., et al. "A Study of Jet Impingement on Curved Surfaces Followed by Oblique Introduction Into a Freestream Flow," lst Annual Progress Report under NASA Grant NGR 43-002-034, Vanderbilt University, December, 1971.
2. Keffler, J. F., and Baines, W. D. "The Round Turbulent Jet in a Cross-Wind," Iournal of Fluid Mechanics, Vol. 15, part 4, pp. 481-496, 1968.
3. Weiss, D. C. and McGuigan, W. M. "In-Flight Thrust Control for Fighter Aircraft," AIAA Paper 70-513, 1970.
4. Cooper, M. A. Temperature Field of the Two-Dimensional Transverse Hot Air Jet In a Freestream Flow, Masters Thesis, Vanderbilt University, January, 1972.
5. Hayden, T. K. Velocity Field of the Two-Dimensional Transverse Hot Air Jet In a Freestream Flow, Masters Thesis, Vanderbilt University, May, 1972.
6. Smith, A.M.O., and Pierce, J. "Exact Solution of the Neuman Problem Calculation of Non-Circulatory Plane and Axial Symmetric Flows About or Within Arbitrary Bodies," Douglas Aircraft Report No. ES 26988, 1958.
7. Hopkins, D. F., and Robertson, J. M. "Two-Dimensional Incompressible Fluid Jet Penetration," I. Fluid Mech., Vol. 29, Part 2, pp. 273-287, 1967.
8. Strand, T., and Wei, M.H.Y. "Linearized Inviscid Flow Theory of Two-Dimensional Thin Jet Penetration Into a Stream," AIAA I. of Aircraft, 1968 .
9. Ehrich, F. F., "Penetration and Deflection of Jets Oblique to a General Stream," I. of Aero. Sciences, February, 1953.
10. Tatom, J. W., and Searle, N. Development Authorization 4-7131-1006, "Thrust Reverser Positive Pitch," Lockheed-Georgia Company, April 3, 1968.
11. Margason, R. J. "The Path of a Jet Directed at Large Angles to a Subsonic Freestream," NASA TND-4919, November, 1968.
12. Tatom, F. B., et al. "Study Effect of Engine Ignition on Airflow Over Vehicle," Northrop Space Laboratories, Research and Analysis Section Tech. Memo \#43, December, 1964.
13. Robertson, J. M. Hydrodynamics in Theory and Application, Prentice-Hall, Englewood Cliffs, 1965.
14. Wylie, Jr., C. R. Advanced Engineering Mathematics, McGrawHill, New York, 1951.
15. Valentine, H. R. Applied Hydrodynamics, 2nd Edition, Plenum Press, New York, 1967.
16. Scarbourough, J. B. Numerical Mathematical Analysis, 6th Edition, John Hopkins Press, Baltimore, 1966.

[^0]: ${ }^{l}$ Numbers in brackets indicate references cited in the Bibliography.

 2
 Jet effluxes from target type reversers tend to be approximately round in cross-section.

