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SUMMARY

This thesis develops a computer solution to the exhaust gas

reingestion problem for aircraft operating in the reverse thrust mode on a

crosswind-free runway. The computer program determines the location

of the inlet flow pattern, whether the exhaust efflux lies within the inlet

flow pattern or not, and if so, the approximate time before the reversed

flow reaches the engine inlet. The program is written so that the user

is free to select discrete runway speeds or to study the entire aircraft

deceleration process for both the farfield and cross-ingestion problems.

While developed with STOL applications in mind, the solution is equally

applicable to conventional designs.

The inlet and reversed jetflow fields involved in the problem are

assumed to be non-interacting. The nacelle model used in determining

the inlet flow field is generated using an iterative solution to the Neuman

Problem from potential flow theory while the reversed jet flow field is

adapted using an empirical correlation from the literature. Sample

results obtained using the program are included.
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NOMENCLATURE

Definition.

Area, ft 2

Nacelle length, ft

Normal velocity on the end cap

Normal velocity on the nacelle

Distance between two points, ft

Distance between a point of interest
on the engine inlet, ft

Distance between a point of interest
on the nacelle, ft

Distance between a point of interest
on the end cap, ft

in space and a point

in space and a point

in space and a point

Diameter of the reversed jet at the point of origin

Distance between points "a" and "b"

Nacelle generation no-flow criteria - a select percentage
of the freestream velocity

Number of singularities per unit area, ft 2

Strength of a singularity, ft 3 /sec

The "P" coordinate in the jet plane of the Maximum
Penetration Point of the reversed jet

lIn this work, primes indicate dimensional quantities while non-
primes indicate dimensionless quantities. Velocity and length terms are
non-dimensionalized by referring them, respectively, to the freestream
velocity U ' and to the nacelle radius R'. The product of U ' R' is used
to non-dimensionalize the velocity potential and stream function terms.

viii

Symbol

A' 1

AL'

CHEKX

CHEKR

D'

DI'

D2'

D3'

DIAJET

DSAB

EP

g!

m'

PMPP



Definition

3
Volumetric flow rate from a singularity, ft /sec

The "Q" coordinate in the jet plane of the Maximum
Penetration Point of the reversed jet.

3
The strength of the inlet sink, ft /sec

A radial space coordinate

A radial space coordinate on the model nacelle

Radius of point "a"

Radial distance between points "a" and' "'b"

Radius of point "b"

Radius of the Maximum Penetration Point of the reversed
jet of an adjacent engine on the coordinate system of
an engine under study

Radial coordinate of the Maximum Penetration Point of the
reversed jet

Radius of the pre-entry streamtube at an infinite axial
location upstream of the engine inlet

A velocity component of VELJET

The time required for a tracer particle to go between points
"a" and "b", (TAB')(Uco')/(R')

A velocity component associated with VELJET

Velocity

The average velocity of a tracer particle between points
"a" and "b"

A normal velocity produced by a singularity on the end cap

The axial velocity at any point in space

ix

Symbol

Q,

QMPP

qsl'

r

r3

RA

RAB

RB

RCROSS

RMPP

RPEST

sJ

TAB

uj

V

VAB

VAX

VAXY



Definition

The velocity of the reversed jet

The inlet-to-freestream velocity ratio,qs 1l'/(2 U ')

A normal surface velocity, ft/sec

Velocity at a point

Velocity at point "a"

Velocity at point "b"

The normal velocity produced by a singularity on the
nacelle

The radial velocity of any point in space

A velocity component of VELJET

An axial space coordinate

An axial space coordinate along the nacelle

The axial coordinate of point "a"

The axial distance between points "a" and "b"

The axial coordinate of point "b"

The axial coordinate of the reversed jet origin

The axial coordinate of the Maximum Penetration Point
of the reversed jet

The axial coordinate of the Maximum Penetration Point of
the reversed jet of an adjacent engine on the co-
ordinate system of an engine under study

The "x" component of the distance between the end cap
center points of two adjacent engines

A space coordinate

x

Symbol

VELIET

VELRAT

V '
n

VP

VPA

VPB

Vr

VRAD

w
J

x

xl

XA

XAB

XB
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Symbol Definitbn

yl A space coordinate on the nacelle

YJET A coordinate of the reversed jet exhaust origin

YMPP A coordinate of the Maximum Penetration Point of the
reversed jet

YOP A coordinate of the Maximum Penetration Point of the
reversed jet of an adjacent-engine on the coordinate
system of an engine under study.

YSPACE The "y" component of the distance between the end cap
center points of two adjacent engines

z A space coordinate

zl A space coordinate on the nacelle

ZJET A coordinate of the reversed jet exhaust origin

ZMPP A coordinate of the Maximum Penetration Point of the
reversed jet

ZOP A coordinate of the Maximum Penetration Point of the
reversed jet of an adjacent engine on the coordinate
system of an engine under study

ZSPACE The "z" component of the distance between the end cap
center points of two adjacent engines

all The exhaust jet pitch angle

a 2 The exhaust jet turning angle

Angle between the reversed jet and the x-y plane

o0 . The angle in the jet plane that the reversed jet makes with
the "P" axis

0)1 ~ Angular space coordinate

(p) ~ Velocity potential
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Symbol Definition

cD 1 Velocity potential associated with the freestream-inlet
combination

"CAX ~Velocity potential associated with the distributed
compensatory singularities on the end cap

TC~R Velocity potential associated with the distributed
compensatory singularities on the nacelle

PFS ~ Velocity potential induced by the freestream

Velocity potential induced by the inlet sink

Stream function
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CHAPTER I

INTRODUCTION

The forthcoming development of both military and commercial

short take-off and landing (STOL) aircraft will have a significant impact

on air transportation. Quiet, civil STOL aircraft will greatly diminish

city-to-city travel times and help relieve present airport congestion by

operating from short, inner city airstrips. Such airstrips will be in-

expensive enough that jet transportation can be extended to small

communities and underdeveloped countries alike. In military versions,

STOL transports will greatly improve the ability to supply remote regions.

But before such a family of aircraft can be put into service there

remain a number of problems to be resolved. One of the more important

areas is the need for better thrust reversers. Unlike conventional air-

craft, the normal means of stopping both military and commercial STOL's

will most likely be through the use of reversers alone. For the military,

the capability to brake with reversers alone will greatly enhance

operation from unprepared airstrips, by avoiding the rutting problem

associated with wheel braking. For the commercial user, efficient

reverse thrust braking is a matter of both economics and safety. The

high operating costs of such aircraft will demand maximum daily

utilization for profitable operation. Not only is brake maintainance a

i
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major operating expense, but brake cooling requirements play a

significant role in determining the aircraft turn-around time. From

safety considerations, the full reverser stopping capability will improve

operation from short, icy runways.

Though thrust reversers have been used on jet aircraft for years,

none have achieved the full stopping capability. There are several

reasons for this. First, unlike STOL aircraft, conventional aircraft do

not have sufficient thrust-to-weight ratios to stop within reasonable

distances without the simultaneous use of wheel brakes. Secondly, the

tendency of the engines to reingest their own reversed exhaust at low

speeds has demanded that reverse thrust operation be terminated long

before the aircraft has reached a halt. In addition to damaging parts,

reingestion can cause compressor surge and greatly diminish the

magnitude of the braking force. Thus any practical STOL aircraft must be

designed to operate in reverse thrust, free of exhaust gas reingestion

down to very low ground speeds.

The purpose of this thesis is to develop an analytical model of

the flow field near an aircraft engine operating in reverse thrust on a

crosswind-free runway and to predict whether exhaust gas reingestion

will occur. The study provides a tool, in the form of a computer program,

to be used in the design of engine-nacelle-reverser systems. The

designer is free to choose whatever dynamic and geometric conditions

he wishes and can then see how effective they are with regard to the
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reingestion problem.

The overall flow field in this problem can be divided into two

regimes:

1. the inlet flow field which is basically potential,

and

2. the reversed jet flow field which is highly

turbulent.

Ordinarily, the presence of two such diverse flow fields would make the

development of any single analytical model an enormously difficult task.

But in this investigation the two are mathematically uncoupled and

solved separately. This greatly simplifies the analysis.

There are several basic types of exhaust gas reingestion. The

first type is near-field reingestion which occurs when the exhaust efflux

passes too close to the nacelle. Because of the Coanda effect, the

reversed jet attaches to the nacelle and subsequently enters the engine

inlet. A second type is farfield reingestion where the jet penetrates the

engine inlet flow pattern. A third type is cross-ingestion, where the

reversed jet penetrates the inlet flow pattern of an adjacent engine.

The computer program presented here is designed to study the

latter two cases. It will not analyze the first case since no relavent

studies of nacelle attachment currently exist. Therefore all solutions

generated by this program are based on the assumption that the near-

field problem does not occur.
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The basic case under study is that of a turbofan engine installed

in a long-duct nacelle, with a target reverser simultaneously handling

the fan and core engine flows. One reason for selection of this con-

figuration is its superiority in reducing approach and sideline engine

noise. This currently is an important consideration since to receive

community acceptance STOL aircraft will have to be significantly quieter

than conventional aircraft.



CHAPTER II

PAST RESEARCH EFFORTS

A search of the literature failed to reveal a past analytical

solution to the thrust reverser reingestion problem. The solution

presented here is based on a method proposed by Tatom [1 . This

method employs an axisymmetric model of an engine nacelle discharging

2
round, turbulent, reversed jets and is described in detail in the next

chapter.

Because of the importance of mathematically uncoupling the

inlet and reversed-jet flow fields in Tatom's method, an investigation

of the validity of this simplification was first made. It appears that

the concept is well founded since there is ample evidence that:

1. The effect of the presence of the reversed jet

on the freestream is small (i.e., the freestream

flow near the jet is essentially the same with

and without the jet).

Numbers in brackets indicate references cited in the
Bibliography.

2
Jet effluxes from target type reversers tend to be approximately

round in cross-section.

5
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2. The effect of the engine inlet suction on the

reversed jet is small (i.e., the trajectory of

the jet is essentially the same with and without

the presence of the inlet).

Keffer and Baines [2 ] studied round turbulent jets introduced

normally into a freestream. It was observed that the freestream was

unaffected by the presence of the jet and that in the vicinity of the jet

the static pressure and mean velocity of the freestream could be con-

sidered constant. Additional evidence of non-interaction between the

jet and the freestream can be found in the report by Weiss and

McGuigan [3 ] . This paper contains oil-streak photographs of cold-

flow tests of a model reverser-nacelle configuration. In each of these

photographs the freestream is essentially parallel at a distance of less

than 2 jet diameters upstream of the deflected jet.

In each of the references cited above, the jets were discrete

and thus produced relatively small blockage of the freestream flow field.

The works of Cooper [4 ] and Hayden [5 ] are concerned with a two-

dimensional reverser model with a simulated engine inlet. In this study

the reversed jet blocked the entire freestream flow. Nowhere was the

inlet flow field far removed from the reverser flow field. Yet flow

visualization photographs of the reversed jet and temperature and velocity

data taken with and without inlet suction, show no significant differences.

These results further indicate that the freestream is almost unaffected
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by the presence of the jet. Thus the independence of the two flow fields

is verified. Since a round jet occupies much less volume in the region

of the inlet than a two-dimensional jet, it follows that the effect of the

inlet on a round jet will also be small.

With the uncoupling hypothesis justified, attention is turned to

previous efforts in the separate areas of inlet flow prediction and the

trajectories of turbulent transverse jets.

The inlet flow portion of the reingestion problem can be described

adequately from potential flow theory. The basic problem (the Neuman

Problem) involves generating a mathematical model of the flow near an

engine nacelle within a freestream. This could be done by employing

the Douglas-Neuman Potential Flow Computer Program developed by

A.M.O. Smith and J. Pierce [6]. This selection was not used in [1]

for several reasons. First, the program was unavailable at the Vanderbilt

University Computer Center and it was felt that adaptation of the program

both to the Center's machine and to the reingestion problem would pre-

sent as many difficulties as developing a new one. Secondly, it was

felt that a new program might offer simplifications over the Douglas

program and thus cost less to operate.

The remaining area to be discussed is concerned with studies of

jets penetrating into a freestream. Unfortunately, most of the available
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literature is of little valve for two reasons:

1. The studies are concerned with deflection of

and velocities along the jet centerline which

are of little importance here. The principle

area of concern in the reingestion problem is the

maximum penetration of the jet into the free-

stream.

2. The sutdies are concerned with jet-to-freestream

angles and velocity ratios considerably different

than those encountered in reverser applications.

Several analytical studies of opposing jets

exist [7, 8, 9], but these assume an

incompressible, irrotational flow field.

The engine-nacelle model proposed in [1 ] incorporates the

results of a Lockheed-Georgia study [10 ] to describe the reversed

jets. The study was concerned with a round, turbulent jet introduced

obliquely into an opposing freestream. Conducted in a low turbulence

wind tunnel the experiment allowed the Maximum Penetration Point of the

jet into the freestream to be photographically measured. The tests

employed a wide range of values for the jet exit diameter, the jet-to-

freestream velocity ratio, and the jet-to-freestream included angle.

The result of this study was the Lockheed jet penetration correlation as

presented in Figure 1, empirically relating the time averaged maximum
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penetration to the above menetioned variables. Additional data by

Margeson [II is also presented.

Figure 1 also shows a sketch of the reversed jet. Several

characteristics of this jet should be noted. First, photographs indicate

that the Maximum Penetration Point can be considered to lie approx-

imately on an extension of the jet centerline. Secondly, the jet should

not be considered as a fixed region in space. All flow visualization

studies report that the reversed jet is an area of violent turbulence.

Thus, the time-averaged Lockheed data does not show where the

Maximum Penetration Point lies at any instant, but where it is most

often found.



CHAPTER III

THEORY

An overall view of the flow field involved in the problem is

shown in Figure 2. As has already been noted, this flow field can be

divided into inlet and reversed-jet flow fields; these being respectively,

potential and turbulent in nature. The uncoupling hypothesis allows the

two to be treated as independent problems. Hence the inlet flow model

appears as a fictitious engine ingesting air but producing no exhaust,

while the exhaust flow model appears as an isolated turbulent jet dis-

charging obliquely into an opposing freestream.

The inlet flow field is represented in the figure by the presence

of the streamlines. Among these, the pre-entry streamtube is of special

importance. This is defined such that fluid lying inside of it enters the

engine while fluid lying outside of it travels past the nacelle.

The exhaust flow too, has an item of special importance: the

Maximum Penetration Point. At this point, the axial momentum of the jet

has been completely depleted so that additional axial travel is determined

by the opposing freestream. If the Maximum Penetration Point lies with-

in the pre-entry streamtube, exhaust gas will be carried into the engine

inlet. This is the cause of farfield reingestion. The primary task of this

investigation is to develop an analytical model capable of generating

11
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the pre-entry streamtube and the Maximum Penetration Point, and

determining whether or not the latter lies inside or outside of the

former. 1

The Inlet Flow Field Model

The inlet flow field solution is developed around a cylindrical

nacelle configuration, with an end cap at the rear and a full frontal

area inlet (Figure 2). This geometry differs somewhat from actual

engines. First, the inlet cannot fill the entire frontal area in a real

nacelle due to structural and aerodynamic considerations. Secondly,

nacelles are not cylindrical but are more streamlined bodies of

revolution. The approximate nacelle representation is used because

of the mathematical simplifications and resulting savings in computer

time it affords. These simplifications are not believed to decrease

significantly the accuracy of the solution since, in the farfield problem,

the area where reingestion begins is somewhat removed from the engine.

However, it must be recognized that near the inlet, the nacelle contour

materially influences the shape of the streamlines.

It should be noted that up to the Maximum Penetration Point the
jet is entraining, not releasing, fluid. Hence, it is premissible for the
reversed jet to lie within the pre-entry streamtube, as long as the
Maximum Penetration Point does not.

97
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Any exact mathematical model should acknowledge the rapid

deceleration involved in the reversing process. While a transient

description of the flow fields is desirable, a method for developing one

is unclear. Therefore, as a final simplification, it is assumed that the

aircraft passes continuously through a series of equilibrium flow fields

in coming to rest.

The purpose of the inlet flow field model is to generate the stream-

lines about the engine nacelle. The development of this model begins

by placing a potential flow freestream (alligned with the axis) on an

axisymmetric coordinate system to simulate the runway speed of the

aircraft. The engine nacelle is generated within this freestream.

Towards this end, an origin is established on the coordinate system

and at this origin a disk sink is added to simulate the engine inlet

(Figure 2).

In establishing the nacelle and end cap surfaces, a special set

of boundary conditions must be satisfied. Because a real nacelle

surface is solid, no fluid passes through it and hence the normal sur-

face velocities must vanish. The same boundary condition applies along

the end cap too, because the uncoupling assumption has removed the

exhaust flow from the inlet model. The boundary conditions are satisfied

by establishing a distributed system of compensatory singularities over

the nacelle and end cap surfaces.

II
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An iterative procedure is used to determine the singularity

strengths. Initially, each singularity strength is set opposite and

proportional to the normal velocity induced by the freestream-inlet

combination at the point. This would be sufficient for compensation at

isolated points. However, the presence of neighboring singularities

induces an additional normal velocity at each point. These velocity

components must also be cancelled and this is done by the iterative

2
adjustment scheme. Once the boundary conditions are satisfied the

inlet flow field model is capable of generating streamlines.

The Reversed Jet Model

The purpose of the reversed jet model is to locate the Maximum

Penetration Point of the exhaust flow. The geometry of the problem is

shown in Figure 3, with the nacelle outline included for clarity. The

centerline of the jet is considered to lie in a plane. This jet plane (the

P-Q coordinate system in the figure) is defined by the freestream and

reversed jet velocity vectors and has its origin (o') at the point of

reversed exhaust discharge. It is in this plane that the Lockheed

correlation applies.

2
The surface generation process discussed here and proposed in

[1 ] evolved from the analysis of [12 ]. The major computational differ-
ence between the two is that the latter makes no attempt at eliminating
the normal velocity component induced by the neighboring singularities.
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As the figure shows, the axisymmetric coordinate system of the

inlet flow field model has been superimposed with a three-dimensional

Cartesian system having the same origin. This new system is used to

properly locate the origin of the jet plane with respect to the engine

inlet. The angle between the freestream and the jet efflux in the P-Q

coordinate system (0) is defined in terms of the pitch angle (al) and

turning angle (a2). The P-Q coordinates of the Maximum Penetration

Point are found from the Lockheed correlation. Then, a multiple trans-

formation of coordinates is employed to establish the axial and radial

coordinates of the Maximum Penetration Point with respect to the

original axisymmetric coordinate system. This completes the reversed

jet flow field model.

The geometries of the two flow fields are now superimposed to

evaluate the likelihood of reingestion. If reingestion is predicted, the

computer program is designed to note this and to determine the approx-

imate time required for a fluid particle to travel from the Maximum

Penetration Point to the engine inlet.



CHAPTER IV

DEVELOPMENT OF THE MATHEMATICAL MODEL

The Initial Singularity Strengths

Before developing the inlet flow field model, it is useful to

determine the initial compensatory singularity strength used in the

iterative nacelle generation procedure.

Consider an isolated area A' containing a singularity of strength

mn'. The volumetric flowrate Q' associated with this surface can be

expressed as:

Q'= m'A'g'

where g' is the number of singularities per unit area and is equal to one

in this case. In general, however, volumetric flowrate can be expressed

as the product of a flow area and the velocity (V
n
' ) normal to it. For a

singularity, the flow area is twice the area in the above equation because

fluid simultaneously enters or leaves both sides. Hence:

Q' 2A' V'
n

Combining the two equations gives the singularity strength as a function

18
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of V', or:n

r' = 2V' (for g'= 1) (1)
n

Therefore, the initial step in the iterative procedure is to set

the strength of each singularity equal to twice the negative of the

normal velocity induced by the freestream-inlet combination at the

point to produce the cancelling normal velocity, V' .
n

The Inlet Flow Field Model

Let P in Figure 4 represent an arbitrary point in the flow field.

The velocity potential induced at point P by all of the elements of the

model can be described from potential flow theory as:

p' = S M'FS + CP + 'PR AX (2a)

where the terms on the right of the above expression represent the

contributions to the potential from the freestream, the inlet sink, the

distributed singularities on the nacelle, and the distributed singularities

on the end cap, respectively.

It is convenient to work with non-dimensional terms. Towards

this end, length terms are non-dimensionalized with respect to the

nacelle radius R', while velocity terms are divided by the freestream

velocity U'. The velocity potential terms are made dimensionless by
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referring them to the product of the freestream velocity and nacelle

radius. Equation 2a can thus be rewritten:

90 -° , , CPFS+ CPS+CPCP+CPCAX (2b)'P~~~ '~FS '
+

P9S + 9CR + 9CAXU' R'
co

It is also convenient to group ther terms associated with the

freestream and inlet sink together, or:

91cp = FS += 9S(3)

Hence, equation 2b becomes:

CP = cp + CPCR + CAX (4)

From potential flow theory, the radial and axial velocities at a

point can be determined by taking the appropriate partial derivatives

of equation 4; e.g.

aCp -cpl acR (CpCR 0CAX
VRAD= = + +r - (5)

2)~~ 8r +r br 

a ndand acn 6p 1· ap bA?
VAY'cB (6CAXVAXY = - x + Cx (6)ax ax ax Bx
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The four velocity potential terms in equation 2b are now to be

developed. From potential flow theory, a freestream can be described

as:

CPS = U' x'

or in non-dimensional terms:

cFS =x (7)
0FS=x

The remaining terms in equation 2b describe surfaces of

distributed singularities. Figure 5 shows an arbitrary surface divided

into subareas dA', each containing one singularity of strength i'.

The incremental velocity potential induced at a point P by any such

subarea, adistance D' away can be described by [13]:

1 n'dA'
4Tr D'

Hence, the velocity potential induced at P by all such subareas can

be written as:

1 fA m'dA'
c4p' - 4~ D'
CP 4 Tr JAD'

or in non-dimensional form:

C;) - m-'dA' (8)

4TT U' R' A D'
cooA n'A
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P

D

FIGURE 5. ARBITRARY SURFACE WITH DISTRIBUTED SINGULARITIES
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If, in Figure 5, point P lies on the surface, then the subarea con-

taining P must be excluded from the integration of equation 8.

Two of the components of the model to be described by equation

8 are disks. Hence as Figure 4 shows the area integral in equation 8 is

evaluated with respect to r3' and 01 and can be written:

dA' = r3' dr3' dOl

or
2

dA' = (R') r3 dr3 dOl (9)

The remaining component to be described by equation 8 is the cylinder

and hence the area integral is evaluated with respect to xl' and 01; or:

dA' = R' dxl' d0l

or
(R)2

dA' = (R') dxl d 01 (10)

With continuing reference to equation 8, Figure 4 shows that

there are three D' terms: one for the inlet (Di'), one for the cylinder

(D2') and one for the end cap (D3') . In general, the distance between

point P and any point on the nacelle can be written:

+ (y'-yl')2 + (z' - zl')2+ (y'-yl') + (z' - zl')



25

or

D'= (R')\/(x-xl)2 + (y-yl) + (z - zl)2 (11)

The terms x, y, and z, are the coordinates of point P from the

origin. The terms xl, yl, and zl, are the coordinates of any point on

the nacelle. Because the system under study is axisymmetric, reference

point P can be defined as always lying at z = 0.

In evaluating the Dl' and D3' expressions, the areas involved

are disks and hence the xl terms are zero for the former and AL for the

latter. In all the D' expressions, the values of yl and zI can be

written:

zI = r3 sin 0

and

yl = r3 cos 0

In the DI' and D3' expressions, r3 terms in the above pair of

equations remain as variables while in the D2' expression r3 is a

constant with a value of unity. The three distance equations can thus

be written, after simplification, as:

Di' (R') 2x 2 2
D1' = (RIV/x2 + r2 - 2r r3 cos 01 + r3 (12)

D2' = (R'V(x-xl)2 + r - 2r cos 01 + 1 (13)

and _ .
D3' = (R')\/(xAL) + r - 2r r3 cos 01 + r3 (14)
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The remaining term to be considered in equation 8 is the

singularity strength, mi'. For the case of the inlet sink, the strength

(qsl') is constant over the area and is a function of a particular engine

design and/or engine power setting. Thus it can be brought outside the

integral.

In the cases of the nacelle and end cap surfaces, rh' is a function

of axial position along the nacelle and radial position along the end

cap. Therefore in these cases m' must remain inside the integrals. As

mentioned in the previous section, the strength of each singularity on

these surfaces is initially set at twice the negative of the normal

velocity induced by the freestream-inlet combination at the

point.

All of the expressions necessary to describe the velocity poten-

tial at an arbitrary point can now be written. Combining equations 7,

8, 9, and 12 with equation 3 gives, after simplification, the potential

due to the freestream and inlet:

cpl= x + qsl F r3 dr3 d 01 (15)
472 2 2 1/25)

00 [ x +r - 2rr3 cos 81 +r32]

where the limits of integration in this and all of the velocity potential

expressions are those already noted for the surface areas under con-

s ideration.

An expression for the potential due to the nacelle can be obtained

by combining equations 1, 8, 10, and 13 and gives, after simplification:



27

_ 1 r AT Vr(xl) dxl del
qCR1 = . J 2 2 -

C o [(x-xl) + r - 2r cos 01 + 1 ] 1/2 (16)

And finally, combining equations 1, 8, 9, and 14 gives, upon

simplification, the potential due to the end cap:

1 2 1f VAX (r3) r3 dr3 d(Ol
"0CAx =-T 2~ 2 2 12(7o o [(x-AL)2 + r2 - 2r r3 cos 01 + r32]1/2

In order to evaluate equations 5 and 6 the partial derivatives of

the above three equations must be taken with respect to x and r.

Applying Leibnitz's rule [14] to equations 15, 16, and 17 gives, upon

simplification:

acpl - qsll 2 'n' 1 (r - r3 cos 01) r3 dr3 dOl (18)
4rr4Jrr 2 2 -23/2(18)o o. Ix2 +r - 2rr3 cos 0'1'+r3 ] 3 / 2

Cr1R 1 2TAL [Vr (xl)][r -cos 01]dxl dl01
6r =-x T ) 2 2 3/2(19)o o [(x-xl) + r - 2r cos 01 + 1 ]

8CPC1[VAX I (r3)][r - r3 cos Ol [r3] dr3 del (20)
br - 2- ~ 2 2(302o S [(x-AL) 2 + r2 - 2r r3 cos 01 + r3 ]/

2r 1~6p- 1 qsl.x 2 1 r3dr3 dl (21)
dx 47r of[x +r -2 3 01 32 3/2

o oE + r -2r r3 cos 8 1 + r32]
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cCR 1 f2 SAL [Vr (xl)]i[x-xl ]dxl dl 32 (22)
o o [(x-xl) +r 2 2rcos 01 + 1

CAX2_1rr 1 F[VAX (r3)]Ec-AL]Ir3] dr3 dOl (2bcCAX f _ ( f23) 
b x 2 17 J 2 2 23/23o a [(x-AL) + r - 2r r3 cos 01 + r3 ] 

The above equations must be integrated to obtain the six

velocity components. Integrations involving both variables of equations

19, 20, 22, and 23 must be performed numerically because of the

dependence of the singularity strengths on position. Equations 18 and

21, however, can be integrated in closed form with respect to r3, though

they must be integrated numerically with respect to 01. Performing the

cosed form integration gives:

bepl qsl 2 r _ (2B + 4A) 1
8o~r 4J 4A B 2 VA+ B + 1 -

O~~~

1 )(2B2 -4A + 2AB -2B )-coS 01 {( )2 2B\ )
4A-B -\/A+ B- +1

+ In Id }o 1 (24)
+ B/2

/
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and

2~6cpl qsl.x 2' 1 (2 B+ 4 A)_7

awl 1 q4x 4rr 04A+B 2 OVA +B +l d
1

i (25)

~2 2
where A=x +r (2 6)

and B= -2r cos l01 (27)

Numerical results using equations 5 and 6 can be obtained when

the singularity strengths have been evaluated.

Evaluation of the Singularity Strengths -
The Iterative Procedure

To satisfy the no-flow condition the normal velocity must vanish

at each nacelle and end cap singularity. As explained earlier, the first

step toward this end is to set the singularity strength at each location

equal to twice the negative of the normal velocity induced by the free-

stream-inlet combination. Consider any point P on the nacelle surface.

The normal velocity CHEKR at P is determined from the equation:

pl V ~cpCR PCAXCHEKR= Vr (28)
~br '~r bat P

In the above equation, the quantity Vr represents the velocity

produced by the singularity at P and is initially equal in magnitude to

The remaining terms are identical to the corresponding terms in

equation 5. However, because point P lies on the nacelle surface, the
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area containing P must be excluded from the numerical integration of

the aDCR term (equation 19).
br

The no-flow boundary condition is satisfied along the nacelle

when the velocity CHEKR vanishes at each singular point.

An equation analogous to equation 28 for the normal velocity at

any point P on the end cap is:

~cpl °CR aCAX
CHEKX = - VAX --+ (29);x ax bx (9

at P

The partial differential terms in the above equation are identical

to the corresponding terms in equation 6. The quantity VAX represents

the velocity produced by the singularity at P and is initially equal in

magnitude to acp 1 In performing the numerical integration of the

bCAX term, the area containing P must be excluded.
ax

The no-flow boundary condition is satisfied along the end cap

when the velocity CHEKX vanishes at each singular point.

The iterative procedure used in generating the nacelle and end

cap surfaces is as follows:

1. The normal velocity induced by the freestream-

inlet combination is calculated at each nacelle

bpi a and end cap ( a) singular point by

evaluating equations 24 and 25, respectively.
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2. At each nacelle singular point, Vr is set

equal to the negative of , while at
Br

each end cap singular point, VAX is set

equal to the negative of acp 
2)x'

3. The normal velocity CHEKR is determined at

each nacelle singular point by evaluating

equation 28 and the normal velocity CHEKX is

determined at each end cap singular point by

evaluating equation 29.

4. At each nacelle singular point where CHEKR

is non-zero, an adjustment scheme (to be

described below) resets Vr. Likewise, at

each end cap singular point where CHEKX is

non-zero, VAX is reset.

5. The procedure is repeated from STEP 3 until the

no-flow condition is met at all singular points

to some specified precision.

The adjustment procedure mentioned in STEP 4 is as follows.

Consider first equation 28, Figure 6 represents all of the velocity

components associated with this equation for a singular point P on

the nacelle surface. Let it be assumed that CHEKR at P is not zero

and hence Vr must be adjusted. The first step is to determine if
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CHEKR and Vr are of the same sign. If they are not, the magnitude

of Vr must be increased. This is done by employing the equation:

Vrnew Vrold - CHEKR/2 (30)

The choice of the correction term, CHEKR/2, in equation 30 is arbitrary.

If Vr and CHEKR are of opposite sign, the magnitude of Vr

must be decreased. The procedure for doing this depends on the value

of CHEKR/2. If the magnitude of CHEKR/2 is less than that of Vr

equation 30 is applied. However, if the magntide of CHEKR/2 is greater

than that of Vr, the new Vr is obtained from:

Vr Vr 2.00 (31)
-new old

Again, the choice of the correction is arbitrary.

An identical adjustment procedure is used along the end cap with

CHEKX (from equation 29) substituted for CHEKR and VAX substituted for

Vr in equations 30 and 31.

Generation of the Streamlines

Let a fluid particle be released from a point P in the flow field

with the object being to determine the path it follows. Since the flow

field is assumed to be in equilibrium, the fluid particle will travel

along a streamline. The value of the stream function along any
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streamline is constant and hence:

aT 0 ~~~~~~~~~~~~(32)a =|Along any streamline (32)

In an axisymmetric system, the stream function is a function of

x and r and hence:

T = Y (x,r)

Taking the derivative and applying it along a streamline gives:

b = 0 =- dr + - dx

or rearranging:

dr _{____

dx Y= Const. (33)

The radial and axial velocity at any point in an axisymmetric

system can be expressed from Stokes Stream Function [15] as:

1%~
VAXY= -a

r br

and

VRAD = -
r ;x

Rearranging the above two equations and combining them with

equation 33 gives, after simplification:

dr VRAD
jdX- VAXY
T = Const.
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With the coordinates of the release point known, the above

differential equation can be numerically solved using the Runge-

Kutta Method [16] to determine the radial and axial coordinates of

the points along the streamline which the fluid particle follows. The

velocities VRAD and VAXY needed in this solution are obtained by

evaluating equations 5 and 6, respectively.

The Reversed jet Flow Field Model

This section developes the axial and radial coordinates of the

Maximum Penetration Point of the reversed jet relative to the

axisymmetric coordinate system of the inlet flow field model. The

problem is defined in Figure 3.

The P coordinate of the Maximum Penetration Point in the jet

plane is found from the Lockheed correlation (Figure 1):

94 685
PMPP = 2.97 (DIAJET)(VELJET)' (1-.734SIN' 0) (35)

From Figure 3, the Q coordinate of the Maximum Penetration Point can

be written:

QMPP = PMPP tan 0 (36)

The axial coordinate of the Maximum Penetration Point with

respect to the axisymmetric coordinate system can be written from

Figure 3 as:

XMPP = XJET - PMPP (37)
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where PMPP is found from equation 35. An expression must now be

developed for the radial coordinate of the Maximum Penetraion Point

with respect to the axisymmetric coordinate system. From Figure 3:

RMPP =VYMPP + ZMPP (38)

where:
YMPP = YJET + QMPP cos (P)

and
ZMPP = ZJET + QMPP sin(P)

Substituting the above expressions into equation 38 gives,

upon simplification:

2 2 2
RMPP =VYJET + ZJET + 2 QMPP [YJET.cosO +ZJET sink'] + QMPP

(39)

Everything necessary to solve equation 39 has now been

developed except for the in-plane angles, 6and I. From Figure 3:

s = VELJET · cos al

or:
5

_- =cos al (40)
VELJET

Likewise, for u

u= s cos a2

or:
U
- _ cos a2 (41)
sj



37

From Figure 3:

cos 0 = u /VELJET (42)

Equation 42 can be rearranged as:

S u
cos 0=J J .

VELJET s

Combining equations 40 and 41 with the above gives:

cos 0= cos al cosa2

or:
O= cos [cos al .cos a2] (43)

Referring to Figure 3, the following can be written:

tan al = w /s (44)

and
sin a2 = v/s (45)

Also,
tan . = w /v (46)

Equation 46 can be rearranged as:

w s
tan 1 = -·

s v
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Combining equations 44 and 45 with the above gives:

tan 3 = tan al/sin a2

or: I TNal -1
~or: = TAN-1 [ TAN a2 (47)

With equations 43 and 47 complete, the location of the Maximum

Penetration Point with respect to the axisymmetric coordinate system

can be determined from equations 37 and 39.

Time Calculations

This section develops a method of approximating the time required

for a fluid particle to travel from the Maximum Penetration Point to the

engine inlet, for cases where reingestion occurs. Figure 3 shows two

points, A and B, on a streamline located within the pre-entry streamtube.

Equations have already been developed for finding both the radial and

axial velocitites at these points (equations 5 and 6), as well as the

locations of the points themselves, (equation 34). Let the quantity VAB

be defined as the average speed between points A and B. It follows

then, that:

VPA + VPB
VAB = + VPB (48)

2

where VPA and VPB are the speeds at points A and B, respectively.

These speeds can be determined from:

VP =V(VAXY) 2 + (VRAD) 2 (49)



39

Let XAB be the axial distance between the points and RAB be the radial

distance between the points. Then:

XAB=XA XB (5 Oa)

and
RAB = RA - RB (50Ob)

The approximate distance between the points, DSAB can be described as:

DSAB =V (XAB) +(RAB) (51)

From the elementary equation, distance equals speed times time,

DSAB can also be expressed as:

DSAB= (VAB)(TAB)

where TAB is the time required for the particle to travel the distance

DSAB at an average speed of VAB. The above equation can be rewritten

as:

DSABTAB =SAB (52)
VAB

By summing the TAB values between all of the points along the stream-

line from the Maximum Penetration Point to the inlet, the approximate

time involved in the reingestion process can be determined.

Cross Ingestion

Figure 7 shows a sketch of a four-engined jet transport with

wing-mounted engines. The quantities XOP and RCROSS are defined



MAXIMUM PENETRATION POINT

x O;XMPPXOP\ ~XSPACE r
r r

-! /~~+

FIGURE 7. THE CROSS INGESTION MODEL

40
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respectively as the axial and radial coordinates of the Maximum

Penetration Point of the reversed jet of the inboard engine relative to

the outboard engine coordinate system. Clearly cross ingestion occurs

if RCROSS lies within the outboard engine pre-entry streamtube at

XOP. With this in mind, expressions for these quantities are now

developed.

The first step is to establish the center point of the inboard

engine end cap relative to the same point on the outboard engine with

the quantities XSPACE, YSPACE, and ZSPACE. With this done, XOP can

be described as:

XOP = XMPP - XSPACE (53)

From Figure 7, the following expressions can also be written:

YOP = YSPACE - YMPP (54)

and
ZOP = ZSPACE + ZMPP (55)

From these two equations, RCROSS can be described as:

RCROSS /=VYOP2 + ZOP2 (56)

With XOP and RCROSS determined, the likelihood of cross

ingestion can be evaluated.
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The Pre-entry Streamtube Radius Equation

The most important streamtube is the pre-entry streamtube and

while the radius of this boundary cannot be analytically determined at

arbitrary axial locations, it can be determined at minus infinity (RPEST).

At minus infinity, the velocity within the pre-entry streamtube is the
U'

freestream velocity 1) . At the engine inlet, the velocity
co

within the pre-entry streamtube is the sum of the freestream and inlet

induced (VELRAT) velocities. The flow areas at these two axial locations

2 2
are rr . RPEST and · 1 , respectively. Since continuity is main-

tained within the pre-entry streamtube, the following can be written:

V *Ajlt -co= V * Alat Inlet

2 2
1 TTRPEST = (VELRAT + 1) r . 1

or:

RPEST =VVELRAT + 1 (57)



CHAPTER V .

THE COMPUTER PROGRAM

The statement listing of the computer program is presented in

Appendix I. The block diagram of this program is shown in Figure 8 and

for clarity, the step numbers in the figure are included in the statement

listing.

Referring to Figure 8, the initial step in the program is the

inputting of the geometric, dynamic, and program variables and selection

of the program options. The procedure for doing this is described in

Appendix II.

Program initialization for the first inlet-to-freestream velocity

ratio to be studied occurs in STEP 2.

In STEP 3, the normal velocities induced at each nacelle and end

cap singularity by the freestream-inlet combination are computed from

1
equations 24 and 25, respectively. In addition, the initial strength

settings of the compensatory singularities are assigned here.

The iterative nacelle generation procedure comprises STEPS 4, 5,

and 6. In STEP 4, the induced normal velocities at each nacelle and end

43

1 For programming convenience, the number of singularities on the
nacelle and end cap are equal.
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THE INPUT SECTION

PROGRAM INITIALIZATION i
'I t |~~

CALCULATION OF at AND b 
br ax

INITIAL STRENGTH SETTINGS OF
COMPENSATORY SINGULARITIES

I

CALCULATION OF CHEKR AND CHEKX

i4
J

ARE BOUNDARY CONDITIONS SATISFIED
AT ALL NACELLE AND END CAP POINTS?

1YES

THmE
NACELLE

HAS BEEN
GENERATED

NO

6 0ADJUST COMPENSATORY
SINGULARITIES

DETERMINE STARTING POINT COORDINATES.

4
COMPUTE THE PATH OF THE STREAMLINE I

WHAT DO THE CALCULATIONS SHOW?

i
HAVE ALL VELOCITY RATIOS

YES

[
ISToP 

FIGURE 8. FLOW CHART OF THE COMPUTER PROGRAM

x

0-i

0-f

04

GME

]

NO
BEEN STUDIED?| ~
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cap singularity due to all of the elements of the system are computed '

from equations 28 and 29, respectively. The purpose of STEP 5 is to

record in computer memory those points where the above normal

velocities have not vanished. At all such points the singularity

strengths are adjusted in STEP 6 using the procedure described in

Chapter IV. The degree of accuracy to which the no-flow condition is

established is controlled by the inputted quantity EP, which represents

a selected percentage of the freestream velocity.

The program proceeds to STEP 7 when the no-flow condition is

met at every singular point. Otherwise, control is returned to STEP 4.

The purpose of STEP 7 is to provide the coordinates of a starting

point for the streamline generation procedure of STEP 8. Two program

options are available here. With one option the coordinates of the

Maximum Penetration Point of the reversed jet are computed using the

Lockheed correlation. This option is employed to evaluate the likelihood

of reingestion. If the other option is chosen, the coordinates of an

inputted point are used. This option is employed for generating

selected streamlines.

With an initial point determined, the path of a streamline is

generated in STEP 8. Additionally, the time required for a fluid particle

to travel the streamline is determined here.

In STEP 9 the likelihood of reingestion is evaluated. Output

confirms whether or not exhaust efflux has entered the engine inlet. If
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reingestion occurs, the fluid particle time is also outputted. Addition-

ally, a program option is available to determine if the entraining portion

of the jet penetrates the pre-entry streamtube.

Program operation is terminated in STEP 10 unless further inlet-

to-freestream velocity ratios are to be studied. If this is the case,

control is transferred back to STEP 2.



CHAPTER VI

RESULTS AND DISCUSSION

Varification of the operationality of the computer program con-

sists of three steps:

1. Demonstration of the nacelle generation sections

of the program. This is accomplished by showing

that the inlet flow field model can be generated

over a wide range of geometric and dynamic

conditions, to any specified degree of accuracy.

2. Demonstration of the streamline computational

scheme. This is accomplished qualitatively by

plotting selected streamlines about a nacelle and

quantitatively by showing that continuity is

satisfied between adjacent streamlines.

3. Demonstration of the ability of the program to

analyze a realistic reingestion problem.

Nacelle Generation

Results from several nacelle generation studies are presented in

Tables 1 through 5. At each singularity, the tables note the normal

47
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TABLE 5. EFFECTS OF NO-FLOW CRITERIA

VELRAT = 5; ASPECT RATIO = 3

PART A
EP = 0.01

PART B
EP = 0.001

NO. OF ITERATIONS = 12 NO. OF ITERATIONS = 19
Singularity acpT CHEKR Vr Vr CHEKR
Location br

1 -2.42699 0.008 2.02155 2.01511 0.001
3 -1.17740 0.004 0.75460 0.75191 0.000
5 -0.47246 -0.002 0.20368 0.20418 -0.001
7 -0.22418 -0.007 0.06212 0.06643 -0.001
9 -0.11942 -0.006 0.02430 0.02711 -0.000

11 -0.06961 -0.007 0.01053 0.01485 -0.000
13 -0.04357 -0.004 0.01048 0.01265 -0.000
15 -0.02886 -0.001 0.01927 0.01931 0.000
17 -0.02001 -0.001 0.04803 0.04780 0.000
19 -0.01440 -0.006 0.16279 0.16727 -0.001
21 -0.01148 -0.008 0.64707 0.65953 -0.001

Singularity ~Singularity bcp CHEKX VAX VAX CHEKX
Location 2x

1 0.93197 0.007 -1.04498 -1.05467 0.001
3 0.93200 0.007 -1.04589 -1.05567 0.001
5 0.93208 0.007 -1.04870 -1.05890 0.001
7 0.93221 0.009 -1.05307 -1.06466 0.001
9 0.93240 0.010 -1.06097 -1.07378 0.001

11 0.93264 0.006 -1.07857 -1.08830 0.001
13 0.93293 0.009 -1.09704 -1.10979 0.001
15 0.93327 0.006 -1.13314 -1.14448 0.001
17 0.93366 0.009 -1.18730 -1.20247 0.001
19 0.93410 0.009 -1.29298 -1.30950 0.001
21 0.93446 0.006 -1.38476 -1.40059 0.001
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acl cpl 
velocity induced by the freestream-inlet combination ( Cpor I )or a

the normal velocity induced by all of the elements of the system

(CHEKR or CHEKX), the singularity-produced velocity (Vr or VAX), and the

number of iterations required to achieve the no-flow condition.

The singularity location numbering scheme used in the tables is

as follows. The equally spaced nacelle singularities begin with point 1

at the inlet plane and run axially to point 21 at the end cap plane.

Similarly, the equally spaced end cap singularities begin with point 1

on the nacelle centerline and run radially to point 21 at the nacelle

surface.

To establish the inlet flow field model, the nacelle generation

procedure must reduce the normal velocities CHEKR and CHEKX along

the nacelle and end cap, respectively, to an absolute value no greater

than the no-flow criteria, EP. A comparison of these normal velocities

to the selected value of EP (0.01) in Tables 1-SA clearly confirms the

generality of this procedure with respect to the inlet-to-freestream

velocity ratio (VELRAT) and the nacelle aspect ratio (AL'/2R').

The two cases presented in Tables 5A and SB have identical

dynamic and geometric conditions but differ by an order of magnitude in

EP. Table 5B shows that increased accuracy is readily obtainable, but

at the expense of additional iterations and consequently additional

computer time.
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At most of the singularity locations in Tables 1-5 the magnitude

of the singularity-produced velocity (Vr or VAX) required to establish

the no-flow condition differs substantially from that of the normal

velocity induced by the freestream-inlet combination \- or ax )'

This shows the importance of using a singularity strength adjustment

scheme to generate accurately the inlet flow field model.

The Streamline Computational Scheme

A series of streamlines generated using the computer program are

presented in Figures 9 and 10. The results in both figures were obtained

with a nacelle aspect ratio of 3 and an EP of 0.01.

The streamlines in Figure 9 were computed at a constant inlet-

to-freestream velocity ratio of 5. Curve 1 in this figure represents the

pre-entry streamtube. Moving progressively outward from curve 1,

curves 2, 3, and 4 exhibit the expected decreasing influence of the

nacelle's presence.

Figure 10 shows three pre-entry streamtubes, computed at inlet-

to-freestream velocity ratios of 5, 10, and 60. This figure illustrates

the increasing probability of exhaust gas reingestion with decreasing

aircraft speed, due to the larger size of the pre-entry streamtube.

An additional pre-entry streamtube was calculated using a 5/1

inlet-to-freestream velocity ratio but with a 2/1 nacelle aspect ratio.

The points on this curve were indistinguishable from the 3/1 nacelle



55

wcc c-nA
4

zHC
o

"o mH
:

U
l)

.a

i

A
:

E
d



56

x

0 
0

(0 
-

In

I! 
II 

II
I- 

I-, 
I-

4 
C

 
4

J 
J 

J
_1 

_1 
-I

w
 

w
 

w
 

W
>

 
>

 
>

16.

q
t. 

rt

U
)

mcoE
H

Htom p:L~

0w
I

.
w

!%
JI,q.IVI(Dl

6 
S

I! 

! .Di



57

aspect ratio case. This suggests that the path of the pre-entry

streamtube is not strongly dependent on the nacelle shape.

Table 6 presents the results of a check for continuity under-

taken at three axial locations between several adjacent streamtubes

in Figure 9. At each of the locations, the discharge (V.A) was found

by summing the V.A products of 20 subareas. The results of the check

show the discharge to be nearly constant between streamtubes. The

maximum variation of only 1.2% from the average clearly demonstrates

the precision of the streamline computational scheme.

TABLE 6. RESULTS OF CONTINUITY CHECK

DISCHARGE (V.A)
~AXIAL Between Between

LOCATION Streamtubes 2 & 3 Streamtubes 3 & 4

-5.100 2.57115 TTrr 4.81250 T

3.000 2.54358 rt 4.79576 TT

8.850 2.51183 TT 4.79334 Tr
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The Reingestion Example

The dynamic and geometric conditions of the example problem

are presented in Table 7. The example begins with the touchdown of a

four-engined (wing-mounted) STOL transport and continues through the

full deceleration process.

The results are included in Table 7 and Figure 11. In this

example, deceleration for the inboard engine occurs reingestion free.

Also, the entrainment portions of both reversed jets never penetrate the

pre-entry streamtubes of the engines discharging them. The aircraft

configuration, however, proves to be highly prone to cross ingestion of

the inboard engine exhaust to the outboard engine. Cross ingestion

begins at an aircraft speed of about 70 miles per hour and continues

through 50 miles per hour. Below this speed, the Maximum Penetration

Point of the reversed jet of the inboard engine lies outside of the inlet

flow field of the outboard engine. The entraining portion of the jet,

however, continues to lie in this flow field and thus the possibility of

further cross ingestion remains.

Table 7 also lists the fluid particle time for those speeds

where cross ingestion occurs.
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TABLE 7. EXAMPLE PROBLEM

DYNAMIC AND GEOMETRIC CONDITIONS

VELJET' =
INLET VELOCITY =
R' = 2.000
AL' = 22.6
XJET' = 20.
YJET' = 2.
ZIET' = 0.0
XSPACE' = 16.0
YSPACE' = 24.0
ZSPACE' = 0.0
DIAJET' = 2.30
CIRCLE' = 0.0

al
a2

880
440
Ft.
Ft.
Ft.
Ft.
Ft.
Ft.
Ft.
Ft.
Ft.
Ft.

Ft/Sec.
Ft/Sec.

= 0.00
= 40.0 °

RES U LTS
Aircraft Inlet-to- Was
Runway Freestream Cross Ingestion Fluid Particle
Speed Velocity Detected ? Time (Sec.)
m.p.h. Ratio

90* 3.33 No--
80 3.75 No ------
70 4.30 Yes .15903
60 5.00 Yes .21740
50 6.00 Yes .39996
40 7.50 No --

*Touchdown speed
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CHAPTER VII

CONCLUSIONS

This investigation succeeds in developing a method for analyzing

the crosswind-free exhaust gas reingestion problem. The cases pre-

sented cover a wide range of nacelle aspect ratios and inlet-to-freestream

velocity ratios and clearly demonstrate the generality of the computer

progra m.

Results show the importance of using some type of singularity

strength adjustment scheme in generating the inlet flow field model. At

most points, the magnitude of the singularity-produced velocity required

to establish the no-flow condition differs substantially from that of the

normal velocity induced by the freestream-inlet combination.

Additionally, data suggests that the shape of the pre-entry

streamtube is uninfluenced by the nacelle aspect ratio. It appears that

the accuracy of the method is independent of the nacelle shape, as is

assumed in the development of the inlet flow field model.
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APPENDIX I

THE COMPUTER PROGRAM
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0001 C
002 C
0003 C * STEP 1 I
0004 C
0005 C THE DIMENSIONING SECTION .*.+.*.+*+*+6++.+++.+6.+4+1*++.*++$s
0006 C DIMENSION VR(JY )VAXCJl);OPR(JX)jDPXCJ1),RADIAL$JX)jAXIAL4JX)
0007 DIMEtNSION VRi21I)VAXC2,};DPR{21)DPXt21)RADIAL(21}.AXIAL(21)
0006 0DIMESION KoN4C21),KUN3(21)
0009 DIMENSION CHEKRa21)oCHEKXCZ2)
0010 C
0011 C
0012 C THE INPUT SECTION *** *+ + +*+*+** ** **
0013 C PROGRAM UPTIUNS
0014 C LAST,NOJET;NOCROSQNSPEEODNOCARDNOPEST)
0015 LASTmZ
0016 NOJETmO
0017 NOCROSI
0018 NSPEEOO
0019 NOCAROuO
0020 NOPESTEO
0021 C
0022 C PROGRAM INPUTS
0023 C (EP,DUELTAX)
0024 EPs.01
0025 C INPVT DELTAX AS POSITIVE FOR FORWARD PLOTTINGC NEGATIVE FOR
0026 C REVERSEt
0027 DELTAX4O,300000000000000000000
0028 C
0029 C DYNAMIC INPUT
0030 C CUBA#VELRAToVELJET)
0031 UBA88.
0032 VELRAT'5.
0033 VELJET OOOOOOOOOOOOOO.0000000000000000
0034 C
0035 C GEOMETRIC INPUT
0036 C JRALAXJET·YJETEZJETDALPHA1,ALPHA2,XSPACE¢YSPACE,2SPACE,
0037 C DIAJET;CIRCLE)
0038 R42.000000000000000
0039 ALAw22s600000000000000000000000
0040 XJETS20,000000000000000000000000
0041 YJETU2.00000000000000000000000000
0042 2JET"00000000
0043 ALPHA1T7.50000000000000000
0044 ALPHA240.OOOOOOOoO o000000000000000000000000000
0045 XSPA'Ea16s000000000000000000
0046 YSPACEn24.000000000000000000
0047 ZSPACE0OOOOOOOOOOOoOo00000000000000000000000000
0048 DIAJETaZ.30000000000000000000000
0049 CIRCLE9OeOOOOOOOOOOOOOoOOooo
0050 C
00$1 C PROGRAM ADJUSTMENTS
0052 C (XCHEKSLOPEJ6,Jl KLASTDIVZODV4oN3STOPI)
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XCHEKp50#
SLOPE.,75
J6a5
11-21

KLASTu20
DIV2o4.000000000000000000000
D1V482.
NlSTqPw6

INZTIALIZATION I *+
DHOLODOELTAX
QSI.Z,*VELRAT*U8A
NSP.O
VELGET.VELJET
JLASTmJI 1
DOVIlJLAST
ALiALA/R
DXmAL/DIV1
DSRa.1/DIVI
ILASToJLAST
T071.0,28318/DIVI

1II AST*I
K71ILAST
K8-11
NORADO1
NOAXvl
OFF0,.
KTESTn4*Jl

7011 CONTINUE
OP5wI*/(4.*3,14159*U6A)
KONlwO
KON5l1
OUTPUT KONS

* STEP 2 *
$s4se*4 4*4

IF(NOCARDEQeO)GO TO 2
READ 5, 396VR
READtS.396)VAX
00 7006 Jol;Jl

7008 WRITE(6,383)VR(J)aJVAX(J)
00 TO0 7010

C
C
C

2 KONINKON141
IF(KONI.GT#KLAST)GO TO 1007
IF(LASTEQl}WRITE(6,304)KON%
JF(LASTEOQ,I)WRITE(6,3001
lP(LASTEO,1)WRtITE(6,305)
IF(LAST4EQ.I1WRlTE(6p3003

* STEP 3 *

IN I TI A LIZ AT I O N I t 4 4 4 4 4 4 4 4 4 4 4 4 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
KONXeO
KONRIO
00 3 Ju"1JL
AJ-J-1
XoAJ*DX
SRPAJ*DSR
jF(JGEJI)XmX-OX*,5
IPCFJGEJl)ISRmSR-OSR*.5
IP(KUNl,OTllGO TO 4

CALL COOPCXSRKON5;A4,64.A383,SUH2ZSUH3,SUM4*SUHM5,DOTlJOP14,TL.
9 RADNOAXl,;ALNZN4)

AXIAL(J)el.-QSL*DP5*AL*SUH3

C
C
C

0053
0054
005
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0066
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0064
0085
0066
0087
0088
0069
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118

C

C

-.- --- -.

C

C

C
C
C

I
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0o19 RADIAL(J)u-QSl*OPI*SUM2
0120 VAX(J)--AXIAL(J)
0121 VRJl.-RAOIAL(J)
0122 FIP(AXIAL(J))529,29
0123 5 WRZTE(6s307)
0124 00 TO 1007
0125 29 IF(LAST.EOQ.)WRtTE(6,3o6IJ;OFF;RADIALCJ)OFFjOFFiOFFjAXIAL(J)JO,
0126 C OFFOFF;UFF
0127 0GO TO 3
0128 C
0129 C * STEP 4 *
0130 C e$ **
0131 4 CALL STUFF(JJX;SRVAX;VRALDX#DSRoDTIXK7*K8aKON5aTRM33TfTRM34TI
0132 S5TRM36;NORAD;NOAXpNZ*N4)
0133 TRM3e,0.
0134 DPR(JI"TRM34*TRM35
0135 DPX(J)nTRM33*TRM36
0136 CHEKR(J)vDPR(J)+VR(J)+RADIALCJ)
0137 CHEKX(JI)uDPX(JI+VAX(JI)+AXAL(J)
0138 C
0139 C * STEP 5 *
0140 Ce$o
0141 IF(A5SCCHEKX(Jl))LEEP)GO TO 43
0142 53 KON4AJ)"I
0143 6O TO 44
0144 43 KON41J)P2
0145 44 IPF(ABS(CHEKRIJ)1eLE,EP)GO TO 45
0146 51 KON3(J)l-JGO TO 46
0147 45 KON3IJ),Z
0148 46 KONRBKONR*KON3(J)
0149 KONXeKONX*KONA(J)
0150 IFP(LAST,EQ,2GO TO 3
01S1 WRITE(6,306)JVR(J),RAOIAL(J)aTRMS4,TRM35,VAX(J),AXIAL(J).TRM33,
0152 A M36*CHEKR(J)¢CHEKX(J)
0153 3 CONTINUE
0154 KSUMaKONX*KONR
0155 IF(LAST,EQ.21GO TO 8000
0156 WRZTE(6,300)
0157 WRITE(6,301)KSUM
0158 WRITU(6,3031KONR
0159 WRITE(6,302)KONX
0160 WRITI(6,300)
0161 WRITM(6,300)
0162 6000 CONTINUE
0163 IP(KSUMGE.KTEST)GO TO 25
0164 IP(KONI,EQ.l)GO TO 2
0165 C
0166 C STEP 6 *
0167 C
0168 CALL STABLEtJlKDN4,KON3,CHEKXCHEKRVAXVR)
0169 O60 TO 2
0170 C
0171 28 WRITE(60,313)KON1
0172 IF(LASTGEe2)00 TO 7010
0173 GO TO 7007
0174 C eeeee
0175 C · STEP *
0176 C *esee
0177 7010 CONTINUE
0178 IP(NOPEST.GT,O)0O TO 1602
0179 FIP(NUJET.EQ,OoAND.NOCROSEQ.O)GO TO 1008
0180 1602 CONTINUE
0181 VELJETaVELGET
0182 CALL THEJET(NOCROS;YJETZJET;ALPHAIALPHA2,DOIAJETVELJETXJETXM
0183 ,RIMPPZSPACEYSPACE;XSPACEXOP;RCROSSU8ARTHEATANSP.RJET)
0184 C
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Oils 1008 KONS52
0186 OUTPVT KONM
0167 NI"O
0186 KOOPlaL
01.9 WRITE(6,314)
0190 NOPEuI
0191 NAL.O
0192 TIMEILO.
0193 ZFCNOJETEQ.1)GO TO 1437
0194 IP(NOCDOS,GTO)GO TO 1600
0195 IPNUPESTGTgO)GO TO 1437
0196 1603 CONTINUE
0197 REAOD(5308)X#SRajTME1
0198 GO TO 1438
0199 1437 X.XHPP
0200 5R*RMPP
0201 WRTE(6,397)X*SR
0202 SRSR.CIRCLE/2,
0203 .0203 SLOPt2(RJET-(DIAJET/2.)*COStTHEATA) SR)/XtJET-X)
0204 BEE5A-SLOPEZ*X
0205 FPCNOPESTCT,O)GO TO 1603
0206 GO TU 1601
0207 1600 X.XOP
0208 SRmRCROSS
0209 1601 CONTINUE
0210 NAL*AB5$X)/AL
0211 FP(NALoGT,0)GO TO 1439
0212 NALmI
0213 1419 RNALvNAL
0214 DELTAXe(AB5(X)J/(DVIV*RNAL)
0215 C
0216 C S STEP 8 *
0217 C
0216 1436 CONTINUE
0219 WRITE(6p308)X5SRjXCHEK
0220 KOOP2.XCHEK
0221 N2"1
0222 N30O
0223 N4-1
0224 LESSo1
0225 XXI.0,0000000000
0226 XX2D.OX
0227 NOGOol
0228 DDX.OO000000OOOOOO000000000
0229 J5-0
0230 NTIMPO
0231 NZ%1
0232 NSSUMwO
0233 NZER9I
0234 EP2ABS(DOELTAX)
0235 EP3-M-EP2/5.
0236 EP4-AL+EP2-EP-
0237 J3"10000
0238 IF(DELTAX11022,1023,1023
0239 1022 JwJ1+2
0240 42"-2
0241 IF(XvLTEP41LESSm2
0242 GO TO 1006
0243 1023 J.-ljJ2-2
0244 IF(XGT.EP3)NOPE-2
0245 1006 IF(DELTAX)1040o,10411041
0246 1040 IF(J3,EO,J)GO TO 1020
0247 IFCX.LEEP4iANDoLESSoEQ.1)GO TO 1042
0248 GO TU 1028
0249 1042 J3.JJGO TO 1028
0250 1041 IP(X.OE.EP3)GO TO o1020
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0251 GO TO 1028
0252 C
0253 1020 N2.2
0254 IF(J2)1025,1026,1026
0255 1025 XsALs 5*OXJJSTOPaIJDELTAX.-2 *DX
0256 43.1000
0257 00 TO 1024
0258 C
0259 1026 IF(NOPEEQ.2)GO TO 1502
0260 XO OOOOOOOOOOOOOOOOO.00000000O
0261 1502 JSTOPaJl
0262 J3,Jz-2
0263 J.0jNDIV2ZDIV2jNDIV3.oIV2I2.
0264 DELTAX.2#*DX/OIVZ
0265 NOGORZ
0266 Jd281
0267 G O TO 1065
0266 C
0269 1024 J"J.42
0270 IF(JEOQ.JSTOP)GO TO 1045
0271 00 TO 1028
0272 C
0273 1045 N2,3
0274 IF(JEQ.l)GO 70 1027
0275 XuAL-,5*DX
0276 J3"1000
0277 RN3STP"N3STOP-2
0278 OELTAXwOHOLO/RN3STP
0279 N2.4
0280 GO TO 1028
0281 C
0282 1027 DELTAXiOHOLD
0263 JO0
0284 X.O,0
0285 C
0286 1028 IF(SR.LEeO.)WRITE(6.386)
0287 JF(PCJEQ.1ANDSR.LE..00100 TO 1203
0288 CALL COOP(XSR KUN5oA4;841 A3283SSUMZ.SUM3;SUM4;SUMS5DTIODP14;T1j
0289 t RADONOAXI1,ALNZN4)
0290 IFCNORAD.EQ.2)GD TO 1048
0291 DPOTR*-QS1*OP9*SUM4
0292 1046 ZF(NOAXEO02JGO TO 1021
0293 DPOTXPI.-Q$1*OPS*X*SUM5
0294 C
0295 1021 CALL STUFFC(J;XSRVAXVR;ALoDX;DSROT1IK7,KBKONSTRM33,TRM34;Tf
0296 L 5#TRM3bjNORAONOAXoNZ*N4)
0297 IFCNURAO.EQ.2)GO TO 1049
0298 VRAD.DPOTR+TRM34+TRM35
0299 IF(NUGO.GT.2,ANO.VRAD.GEeo.)VRADOO.
0300 1049 IF(NUAXEQ,2)GO TO 1050
0301 VAXYaOPOTX+TRH33+TRH36
0302 1050 GO Tg0105o1051,10O66,1067?lO76)0N4
0303 1076 NORAOuI
0304 1051 IF(VAXYLE.O )WRJTE(6j387)
0305 DROX.VRAO/VAXY
0306 IF(ABS(VRAO)tLE.EP)DRDXmO.
0307 IP(NOPEEQ.1E GO TO 1500
0306 C
0309 IF(VAXYiGEeOJGO TO 1501
0310 NOPE"3
0311 GO TO 1101
0312 1501 NOPE"2
0313 1500 CONTINUE
0314 C
0315 C SLOPE CHECK SECTION *,e *,lme**$I,
0316 IP(NUGOgQ,0lGO TO 1096
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0317 IPF(ABSOROX)eLTjSLOPEMNSLOPGEI
036 IF(APS{DROXhoGE,.LOPEINSLOPE'2
0319 ZFCNSSUM,EQ.OO)GO TO 1430
0320 IFP(NZER.EQ,2*ANO.NI,GT,O)GO TO 1096
0321 PZF{NIeEQoO)GO TO 1432
0322 NSSUMPNS5UM*NSLOPE
0323 6O TO 1096
0324 1430 NSHOLOoNSLOPE
0325 NSSUHMNSLOPE
0326 JHOLO.DJ
0327 XX1HeXXI
0328 XX2HmXX2
0329 VRHOLODVRAO
0330 VXHOLOuVAXY
0331 OROXHmORDX
0332 NUMBEARI
0333 CO TO (1096O14021403j1404;1405j1406;1407);NOGO
0334 1402 IFCA8S(DROX}aGTSLOPE)GO TO 1408
OJ335 IF(JGEJ6)GO TO 1077
0336 GO TU 1096
0337 1403 IF(ABStOROX),LTSLOPE)GO TO 1082
0338 GO TO 1096
0339 1404 IF(ABS(OROX),OTeSLOPEIGO TO 1408
0340 GO TO 1096
0341 1405 IFP(ABS(DRDXILTeSLOPE)GO TO 1200
0342 GO TO 1096
0343 1406 PIF(ABS(DROX)oGTSLOPEIGO TO 1409
0344 0O TO 1096
0343 1407 IP(AiS(ROX)oGT.5LOPE)GO TO 1409
0346 00 TO 1096
0347 1432 IFP(NHOLD,EO,2)GO TO 1429
0348 IF(NSSUMLE,6)G0O TO 1430
0340 XOXHOLO
0350 SRuSRMOLO
0351 NSHOLOu2
0352 GO TO 1431
0353 1429 IF(CN5SUMGE,6)GO TO 1430
0354 GO TU 1436
0355 1431 NUMBER"O
0356 NZERvI
03S7 1416 XwSRHOLO
0358 SRXHOLO
0359 NSHOLONI
0360 VRAONVRHOLO
0361 VAXY"VXHOLD
0362 ORDDXDROXH
0363 1431 NIsO
0364 NSSUM*NSHOLO
0365 NUMBERNNUMBER4I
0366 IFCNUMBERoGE,3)GO TO 1433
0367 WRITI(6,399)
0368 WRITE(6,300!
0369 IF(JoEQoJHOLD)GO TO 1434
0370 XXI-XXIH
0371 XX2mXX2H

-0372 JNJHOLD
0373 1434 GO TU(1096;1408#10a8214086j12001409,1409),NOGO
0374 1433 WRITI(6,398)
0375 GO TU 1007
0376 C
D377 1096 CONTINUE
0378 CALL RUNGE(X;SRXHOLOJSRHOLODOROXOELTAX,J3,ALEKIjEK2,EK3,EK4,N
0379 C JDXjODXJ5,NOGOXXIVAXYjVRAO;EPNZER)
0380 IFCNZEREQ,2?0O TO 1435
0381 GO TO(1012,1O75o1075J1013),Nl
p302 1075 GO TU(g10281Q73,108a61080,1103,IO0sO1O73),NOGO
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0383 GO TO 10268
0384 1012 CONTINUE
03835 GO TO(1028;1073,1086;1080,1103,1O00,10731,NOGO
0366 GO TO 1028
0387 1013 WRITE(6,383)X#SR
0388 WRITIt6,300)
0369 NlO
0390 C
0391 IZF(NOJETGT,0oOR.NOCROS.GT.O)GO TO 1413
0392 IF(NUPEST.EOQO)GU TO 1097
0393 IF(NALEQ-10O)GO TO 7009
0394 &ORDEkwSLOPE2*X+8EE
0395 IF(SRoGTOBURDER)NAL-10
0396 JF(NALsEQ,-lO)WR1TEC6j3953
0397 1413 CALL TIMECNTIMXAXBRARB;VPA;VPBXSR;VAXYjVRAOTtZHEITIMHE2I
0398 7009 CONTINUE
0399 C
0400 1097 00 TO{1083s1062,1086,1062,1103JX062.1062),NOGO
0401 C
0402 1083 KOOPLaKOOPlI4
0403 IF(KOOPI-KOOP2)10Z9,1029,7007
0404 1029 GO TU(06,lO24,10Z81046),N2
0405 1046 NS.N3*1
0406 IF(N3,LTN3STOP)GO TO 1028
0407 DELTAX.OHOLD
0408 N2I3
0409 GO TO 1028
0410 C
0411 1065 o4,0
0412 1061 J5.O
0413 J.J*JZ8
0414 IF(J28.LTli)GO TO 1100
0415 IF(JQ,lI)GO TO 1094
0416 XX1IXX2
0417 IF(JEQl)XXlO*0o0o00o00000o
0418 XX2,XXI*DX
0419 1094 IF(N$O0,EQ,3)GO TO 1084
0420 GO TU 1074
0421 1100 XX2ZXXI
0422 XXl.XX2"-DX
0423 IF(JEQ,2)XXI.O.000000000000000000
0424 IF(J,LT.I.AND,NI.EQ.O)GO TO 1203
0425 IPF(NOGOQ,EQ,5GO TO 1084
0426 1074 N4w2
0427 IFCNOPE.EQ.1XGO TO 1028
0428 NTRYv2
0429 00 TO 1087
0430 1062 J4.J*41
0431 IF(J4.EQ,ND1V3.AND.NOGO.EQ.4)GO TO 1081
0432 IF(J4eEQNDIV2.ANO.NUGU.EQ.4)GO TO 1081
0433 1202 ZF(4.EOENODIV2.ANO.NOGO.EQ.6}GO TO 1201
0434 IF(J4,EQoNDIV3.AND,NOGU,EQ,6jGO TO 1201
0435 1092 IF(J4eEQINU1V3)GU TO 1061
0436 IF(J4,EQNDIV2)GO TO 1065
0437 1073 jF(J5,EQNDIV2)GO TO 1074
0438 GO TO 1080
0439 c
0440 1077 NOGOUI
0441 N4"1
0442 DELTAXw2,*DX
0443 GO TO 1096
0444 C
0445 1081 NOGOZ2
0446 OELTAX2.t*DX/DIV2
0447 J28.1
0448 GO TO 1092
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0449 C
04050 1408 NTRY I-
0451 1087 NOGO03
04052 XMAXN,999*X
0453 d28.1
0454 IF(J4,LENDIVI)GO TO 1093
0455 1105 J4m.NOV3
0456 OP1200--1,
0457 00GO TO 1106
0458 1093 d440
0459 OP1200I01
0460 C NEXT CARD GETS A DELTA R FOR THE FLIPPED RUNGE-KUTTA HETHOD
0461 1106 DELTAX-OX/CDZV4*01VZ)
0462 IF(NTRYEQ.1?GO TO 1410
0463 IFPtNOPE.EO.3)GO TO 1501
0404 JF(NUGO,EQ,5)GO TO 1103
0465 GO TO 1086
0466 10864 J4.J4,0Pl2OO*NDV3
0467 OP1200--OPl200
0408 IP(FNDOGOOEO,5)GO TO 1103
0469 1006 IFPCXOGE,XX2)GO TO 1061
.0470 IP(XLT,TXMAXeANONIlEQsO0)O TO 1426
0471 1425 XHAX=X
0472 GO TO 1107
0473 1427 IF(VAXY)1426;1426,o087
0474 1428 IF(VAXY)Il01i1425,1425
0475 1103 IF(X,LEXXI)GO TO 1061
0476 IF(XIGT.XMINAND.N.EOQ.0)0O TO 1427
0477 1426 XMINVX
0478 1107 IF(SR,GE.eOl0GD TO 1080
0479 WRITE(6,38)a
0480 GO TU 7007
04681 C
0482 1062 NOG0D4
0483 DELTAXZ2,*(XXZ.X)/DIV2
0484 M28a1
04805 S-0
04866 00 TO 1096
0407 C
0488 1409 NTRYwl
0489 1101 NOGO5
0490 XHMIN1,OO1*X
0491 J2aI
0492 IF(J4,GEeNOIV3)GO TO 1093
0493 GO TO 1105
0494 C
0495 1200 NOGOm"6
0496 DELTAX.-Z,*(X-XX1)/OIV2
0497 .5S.0
0498 J212-I
0499 GO TO 1096
0500 C
0501 1201 N0GOC7
0502 OELTAX-2.*DOX/D1V2
0503 428"'I
0504 GO TO 1092
0505 C
0506 1080 N4.3
0507 NOAX82
0506 XX3uX
0509 XvXXI
0510 GO TO 1026
0511 1066 N4-4
0512 XvXXZ
0513 VR1.VRAD
0514 00 TO 1096.
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1067 N45s
XiXXI
VR2ZVRAD
VRAD( (OX-DDX)/DX)*(VR1-VR2)+VR2
NOAX"1
NORADv2
00 TO 1028

1410 NTRYP2
0GO TQ 1096

1203 WRITE(6,390)
TIMES-TIMEX*R/USA
IF(NOJET.GT,0)WRITE(6,391X)TIHEl
IF(NUCROSGT.0)WRITE(6,392)THIMEI
IF(NOJET,EQO,AND.NOCROS.EQ.O)WRITE(6O,394)
GO TU 7007

T7007 IFCNSPEEDoEOOe)OO TO 1007
NSP.NSPl
IF(NSP9EQ.NSPEEO)O TO 1007
READ(5,396)USA
GO TO 7011

1007 STOP
300 FORHAT(,0O)
301 FORHAT('KSUMt;s15)
302 FORMAT(IKONX0 lX15)
303 FORMAT('KONRul;i5)
304 FORMAT('KON11fI51)
305 FORMATt J

t AX VAX AXIAL

306
307
308
313

314
353
386
387
386
390
391

392

394
395

396
397

398
399

* STEP 9 *

* STEP 10.*

VR RADIAL VR-RAO
VAX-RAD VAX-AX CHEKR CHE

FORMAT(2XIlOjS82XFPO10.5)a22(X;F6,3))
FORMAT(ITHE NACELLE CAN NOT BE GENERATEDI,
FORMAT(3F10.5)
FORMAT(ITHE INLET FLOW FIELD MODEL HAS BEEN GENERATEDe THE NUMB

C OF ITERATIONS REQUIRED WASI'IS)
FORMAT(I X SR XCHEK')
FORMAT(BF10.5)
FORMAT(ITHE RADIUS HAS BECOME NEGATIVEI)
FORMAT('THE AXIAL VELOCITY HERE S15 NEGATIVEI)
FORMAT(ITHE RADIUS HAS PENETRATEO THE NACELLEI)
FORMAT(ITHE STREAMLINE HAS ENTERED THE INLET')
FORMAT0IEXHAUST GAS RE-INJESTEO',FS.5, ISECONDS AFTER PENETP

C ION OF THE PRE-ENTRY STREAM TUBEI)
FORMAT(IEXHAUST GAS CROSS-INJESTEOD'FS.3, ISECONDS AFTER PEN

t RATIUN OF THE PRE-ENTRY STREAH TUBE')
FORMAT(IEXHAUST GAS INJESTION WAS NOT DETECTED'}
FORMATY(SECTIONS OF THE ENTRAINMENT PORTION OF THE JET LIE WITHI

C THE PRE-ENTRY STREAH TUBE')
FORMAT(BF10.5)
FORMAT(ITHE HAXIMUM PENETRATION POINT OCCURS AT;F10.5, 

& DII AXIALLY ANDFIO.,5, 'RADII RADIALLY')
FORMAT(ITHE POINT IS CURRENTLY UNUBTAINABLE')
FORMAT('PROCEDURE CHANGED AT THIS POINT. ABOVE NUMBERS ARE NO C

ENDEND

C

C
C
C

C
C
C

0,13
0516
0517
051e
0519
0520
0521
0522
0523
0524
0525
0526
0527
052B
0529
0530
0531
0532
0533
0534
0535
05)6
0537
0530
05S9
0540
0541
05942
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575

I -

v
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0001 SUBRQUTINE TIME(NTINHXAXB,RARBVPAVPS,;XSRVAXyDVRAD;TtME1*TI
0002 & 2)
0003 C THIS SUBROUTINE CALCULARES DIMENSIONLESS TIME

0004 FIP(NTIM,.EQOGOO TO I
0005 XA.XB
0006 RAPRB
0007 VPAxVPB
0005 I XBoX
0009 RBOSR 
0010 VPBs*QRTIVAXY**2*VRAO**2)
0011 IF(NTIMEQ,O)D TO 2
0012 GO TO 3
0013 2 NTIMv%
0014 00 TO 5000
0015 I VAB*IVPA*VPBI/2,
0016 XABmXA.XB
0017 RABwRA-RB
0018 D5A8.SQRTIXAB**2*RAB**2)
0019 TA8SOSAB/VAB
0020 TlMElmTIMEl+TAB
0021 5000 RETURN
0022 ENO

0001 SUBROUTINE RUNGE(X;SRXHOLDSRHOLDODRDXDOELTAX;J3,AL;EK1,EK2ZEKI
0002 C K4,NiJDXDDXJ5,NOGO,XXlVAXYVKAOEPNZER}
0003 C THIS SECTION CONTAINS THE RUNGE-KUTTA METHOD,

0004 NlmNil'
0005 IF(NUGOsEQ4O30R.NOGO.EQ.51GO TO 6
0006 o00 TU 1079
0007 6 NS"1
0008 IF(A5S(VRADl,LEEP)GO TO 7
0009 ORDXoVAXY/VRAO
0010 IP(ABS(VAXY)iLE#EP)DRDXsO.
0011 00 TO 2
0012 7 NZERG2
0013 GO TO 5000
0014 5 N5u3
001 G TO T 2
0016 4 J5gJ5+2
0017 3 0DDXX-XXI
0018 GO TO 5000
0019 1078 N5s2
0020 2 XSWAPGX
0021 RSWAP.SR
0022 XORSWAP
0023 SRuXSWAP
0024 GO TU(1079,5000,3),N5
0025 1079 GO TU(1016,1017,1016,10199)1N
0026 1016 EKImORDX*DELTAX
0027 IFP(J3,EQO1000)GO TO 1043
0028 1044 XHOLDvX
0029 SRHOLODPSR
0030 X.X+DELTAX/2,
0031 SRPSR*EK1/2,
0032 O T7O(5000,3,5,3,S,3;3I,NOGO
0033 1043 X.ALJJ3.10000JGO TO 1044
0034 1017 EK29OROX*DOELTAX
0035 SRwSKHOLD*EKZ/2.
0036 GO T0(5000S 5000OO17SOOO10750001765 5000,),NOGO
0037 o1018 EK3mDRDX*DELTAX
o003 XPXHOLD*DOELTAX
0039 IF(p.Eq,3))XuALt,*OX
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0040 SRwSRHOLO*EK3
0041 GO TO(5000i4#&5,4*554J&),NGO
0042 1019 EK4.0ROX*OELTAX
0043 OELRAOU(EKl*2,*EK2+2.*EK3*EK4)/6.
0044 X.XHOL+ODELTAX
0045 SRoSRHOLDO+DELRAD
0046 00 TQ(5000,5000,107 ,5000o7TozO85000ooOoO),NOGO
0047 5000 RETURN
00*48 END

0001 SUBROUTINE THEJET(NOCROS;YJETZJETALPHA1,ALPHA2ZDIAJETVELJET;X
0002 C TXMPPjRMPP;ZSPACE;YSPACE#xSPACEXOPRCROsS;UeARTHEATANSP.RJE
0003 C THIS SECTION CONTAINS THE LOCKHEEO CORRELATION.
0004 IF(NSPoGT.O)00 TO 200
0005 XJETYXJET/R
0006 YJETPYJET/R
0007 ZJiETpZJET/R
0008 DIAJET.DIAJET/R
0009 ALPHAImALPHAL/57,29578
0010 ALPHA2-ALPHAZ/57.29578
0011 zo200 CONTINUE
0012 VELJT.wVELJET/U8A
0013 RJETUSQRT(YJET**2*ZJET**2)
0014 IF{ALPHAZLT,.0)GO TO 1
0015 BETAOATAN(TANCALPHAI)/SINIALPHA2))
0016 IPF(ALPHAILT,.Ol)GETAO.000O0000000000
0017 G O TO 2
0018 1 BETA"90,000/57.29578
0019 a CONTINUE
0020 THEATAuAGOS(COS(ALPHAI)*COSCALPHA2))
0021 Au(C,.-734*S(IN(THEATA))**.685)
0022 PMPP.2.97*DOIAJET*A*(VELJET**e94)
0023 QHPPPPMPP*TAN(THEATA)
0024 XMPPPXJET-PMPP
0025 RMPPuSQRT(RJET**2+QMPP**22.*,QHPP*(YJET*COS(SETA)*ZJET*SINBtSETA)
0026 OUTPUT XHPPRMPP
0027 ZF(NOCROS.EQ,0)GO TO 5000
0026 IF(NbP.GT,O)GO TO 205
0029 XSPACEwXSPACE/R
0030 YSPACE-YSPACE/R
0031 ZSPACE-ZSPACE/R
0032 205 CONTINUE
0033 ZMPPwRMPP*SIN(BETA)
0034 ZOPPZSPACE+ZMPP
0035 YMPPeRHPP*COS(BETA)
0036 YOP"YSPACE-YMPP
0037 XOPmXMPP-XSPACE
0038 RCRDOSS.SQRT(yOP**2+ZOP**2)
0039 5000 RETURN
0040 END

0001 SUBROUTINE STAELE(JljKON4,KnN3,CHEKXCHEKRVAXVR)
0002 DIMENSION KON4(JI);KON3(JI),CHEKX(JI);CHEKRCJ1),VAX(JI)JVR(J1I
0003 C THIS SECTION ADJUSTS THE COMPENSATORY SINGULARITY STRENGTHS,
0004 40 DO 4Z l1.J,1
0005 IF(KON4(IZGE,2)GO TO 47
0006 A102CHEKX(II/2,
0007 IF(VAX(I1*CHEKX(I))64,646,82
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0006 62 iFtASiVAXiXIl)-.ABS(A1O2))63,63,64
0009 63 VAX(j)vVAX(I)/2.05
0010 GO TO 47
001Z 64 VAX(j)mVAXCZS-A102
0012 47 IF(KUN3(i),GE,2)GO TO 42
0013 A101OCHEKR(IU/2.
0014 IFCVR(I)*CHEKR(Z))61#61#56
o005 56 IFCABS(VR(I)}-ABS(A101l)6060,61
0016 60 VR(MilVRZ)/Z.05
0017 GO TO 42
0018 61 VR(I)}VRtl}-A101
0019 42 CONTINUE
0020 RETURN
0021 END

0001 SUBROUTINE STUFF(JXSRVAXVRtALDDX~OSRgDTIK7KBSKON5SATRM331TF
0002 & 4,TRM35,TRM36,NORADNOAXNZN4)
0003 C THIS SECTION COMPUTES THE COMPENSATORY TERMS USED IN EQS, 5 & 6.
0004 DIMENSION VR(21)oVAX(21)
0005 309 FORMATtODIV BY ZERO....,..OP74 AND OPe81 ZN STUFFI)
0006 310 FORMATtOIV BY ZERO.,...OP76 AND OP83 IN STUFF')
0007 311 FORMAT(tNEG SORT,,...0P74 AND OP81 IN STUFF')
000S 312 FORHATItNEG SORT.,,.. OP76 AND OPS3 IN STUFFI)
0009 TRM33sO.JTRM34eO.JTRM35O.JTRM36u0.
0010 OP30"(1./I2.*3.14159))*OTl
00ll OP3OAOP30*OX
0012 OP30B%0P30*D05R
0013 C
0014 00 2Z KllmleK8
0015 C
0016 IF(KlREQ..OR.KII.EQ.KB)0P71.0.5
0017 AK1IuK1I-1
0018 X1.DX*AKII
0019 SR3xDSR*AKll
0020 IF(Kl1.GE.KSX.XI"-OX*,5
0021 IF(K1.GE,KSSR3mSR3-DSR*,5
0022 OP77u0.JOP76"O.JOP84u0.J;OP8I0,
0024 DO 21 K9FlK7
0025 AK9.K9-1
0026 TlwOTI*AK9
0027 IF(KUN5.EQ.1)RSo1.
0028 IZF(KUN5.EOQ.2)RSSR
0029 OPlOOI((X-AL)**2+RS**2-2.*RSSR3*COS(T1)eSR3**2)**3
0030 IFCKON5sGT.1)GO TO 33
0031 IFMOP100)953;953#34
0032 33 IFtOPiOO0917#909a34
0033 34 OP730SQRT(OPLOO)
0034 IF(NURAD,EQ,2)GO TO 1
0035 OP74aVAX(KllJ*(R$-SR3*COS(Tl))*SR3/OP73
0036 G O TO 910
0037 953 OP74tOiGO TO 910
0038 917 OP74UO.JWRITE(6S311)JGO TO 910
0039 909 OP74.0,JWRITE(68309)
0040 9O10 OP77OP77+*0P74
0041X C
0042 C UNIT 1........OP-CAX/DX..........TR36. ... ,..** **
0043 IF(KQNY.kQ.alOU TO 938
0044 1 IF(NUAX,EQ.2)00 TO 32
0045 IF(OPlOOLE,O,)GO TO 911
0046 OPSBaVAX(Kll)*(X-AL)*SR3/OP73
0047 GO TO 912
0046 911 OPeloX,
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0049 912 OPss85OP85*0P1
0050 33 IF(KONS5GT,1lGO TO 32
0051 C
0052 C UNIT 3.,... ,.DP*CR/DX.***.. T M3 3 * ** " * *

+

*

+

0093 9S8 IPF(Xl.GEAL)GO TO 925Z
0054 OPe2,CCAL.Xl)**2+SR**2-2.S*R*CGS(Tl)*I.)**3

S0055 IP(COP82952#92,36 
0056 32 0P82{((X-Xl)**2+eSR**2-2.**SR*COS(T1lll.)**3
0057 PF(NOAX.EQ,2)GO TO 2
o005s IFZtOP82918,913,36
0059 36 OP75suSQRTo(0P82)
0060 IFPCKON5,LE.1)GO TO 937
0061 OP760VRCKIU)*(X-XI) / O P75
0062 00 TU 914
0003 937 OP76sVR(K11)*(AL-XlI)/OP75
0064 GO TO 914
0065 952 OP76so0.GO TO 914
0066 918 OP76m0.JWRITEC6i312)JGO TO 914
0067 913 OP760OJWRITE(63X10)
0068 914 OP78e0P7840P76
0069 IF(NQRAOEQ.21GO TO 21
0070 C
007T1 zP(KONS.LT.2)00 TO 919
0072 JFO(P62,LEO,)GO TO 915
0073 GO TO 5
0074 2 IF(OPZ)915,915,6
007T5 6 OP73SQRT(OP82)
0076 5 CONTINUE
0077 C UNIT 4.,,i,.tDP.CR/DR,,,,.,,,,TRH4,,, ,,,,,eie*e *

0076 OPE83VR(K1l)*(SR' COS{ Tl))/ OP7S
0079 GO TU 916
0080 919 OPE2e(CX-Xl)**2-2.eCOSCTl)2l)**3
0081 IF(OP82)915,915,O80
0082 s0 OP75USQRT(OP82)
0083 OPe3eVR(KILl)*e1-COS(T1))/OPT5
0084 GO TO 916
0085 915 OPe30O
006 916 OP6440P84O0P63
0087 C
00688 21 CONTINUE
0089 C
0090 IF(NORADOEQ,2)GO TO 3
0091 TRM34&TRM340OP71*OPs4
0092 TRM3SuTRM35+UP71*0P77
0093 3 IFCNOAXj.Q.2)GO TO 22
0094 TRM33uTRM33+OP71*0P78
0095 IFP(KON5.LT.2)GO TO 22
0096 TRM360TRM3bOP71*OPs85
0097 C
0098 22 OP71T1.
0099 C
0100 IF(NORAOEQZ}GO TO 4
0101 TRM34mTRM34*OP30A
0102 TRM30PTRM35*OP30O
0103 4 IF(NUAX,EQ.21GO TO 951
0104 TRM33uTRM33*OP30A
0105 IF(KON5.LT.21GO TO 951
0106 TRH30M TRM36*0P30B
0107 C
0108 951 RETURN
0109 END
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OL0001 SUBROUTINE COOP(X,SRKONK ,A4,B4,A3,B)3SUM2,SUM3,SUM4,SUM5,ODTIOP
0002 & ,T1;NORADaNOAXIlAL;NZN4)
0003 C THIS SECTION COMPUTES THE FREESTREAM-INLET INDUCED VELOCITY TERMS,
0004 307 FORMAT(ID1V BY ZERO....OP13 EQo....IN COOp')
0005 SUM2UOJSUM3OJSUH4wi 0J$.UM5OO.
0006 DO 6 1ll11
0007 AS-2-
0008 IF(IEQOR, IS EQ .I1)OP14pO,5
0009 TI"DTI*AI
0010 PF(KON5.,E0210O TO 2
0011 A4.AL**2*SR**2
0012 '&.-2.*SR*COS$TI)
0013 A3.X**2*1.
0014 J3-.2,*COS(TI)
0015 00GO TO 3
0016 2 A4mX**2+SR**2
0017 B4-.2,*SR*CODS(TI)
0018 AlvA4
0019 S33-4
0020 3 CONTINUE
0021 A1-A3JBIUB3JA2oA4J82.84
0022 IP(NOAXEQO.2)GO TO I
0023 929 A5U4&*A2-82**2
0024 IF(A5,EQ0.,)GO TO 933
0025 OPl3(leI/(4e*A2-82**2))*(4,*SQRT(A2)-(Z2,*B2+4*A2)/SQRTCA2+62+1
0026 ))
0027 OPl6oOP14*OP13*DOTl
0025 00 TO 935
0029 933 OP160.0JWRITE(68307)
0030 935 IF(KON5.GE.21GO TO 930
0031 SUM3wSUM3+OP16
0032 SRR,1,
0033 GO TO 931
0034 910 SUM50SUM56OP16
0035 1 IFCNORAD.EQOZIGO TO 939
0036 SRRmSR
0037 931 OP1.4.*A1-81**2
0038 IP(ABStOPI),LEO..O)OP1P OO.,0oooOOOO00000O00oo000 000o0
0039 IF(OPlEQO.dOGO TO 900
0040 OP9m.(,/(4,*aA-8B**2)3
0041 OPlOSCt2e*82*.2-4.*eAl2*.*AS*B)/SSQRT(AQl*llB,)).)-2tBBeSQRTCAU)
0042 OP7"OP9*(4.*S0RT(A1)-((2,*81*4.*AI)/(SQRTIAI*1+11.))))*SRR
0043 OPZO1uSQRT(All+8/,2
0044 IF(OP2011O900s9002001
0045 2001 DPIX"ALOGI(SQRT(Al+Bl*,)TBX1/2I.+. )/Op2o0I
0046 OPSwCOS(Tl)*(OP9*OPlO+CPII)
0047 OP12a0P7"OP8
0048 OP15aOP14*0P12*OT1
0049 GO TU 903
0050 900 OPiSO.0
0051 903 IF(KONS.GE.21)G0O TO 932
0052 SUM2'SUM2*0P13
0053 GO TO 939
0054 932 SUM4iSUM4*0P15
0053 939 CONTINUE
0056 6 OP14'l.
0057 3003 RETURN
0058 END
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The Progrtim Options

LAST - This quantity is inputted as 2 for normal operations and inputted

as 1 if only the nacelle generation sections of the program are

to be operated.

NOTET - Inputted as 1 if reingestion is to be studied; otherwise 0.

NOCROS - Inputted as 1 if cross-ingestion is to be studied, otherwise 0.

NSPEED - Inputted as 0 if only one aircraft speed is to be studied. Other-

wise the value of this quantity is the number of aircraft speeds

to be studied.

NOCARD - Inputted as 0 if nacelle generation sections are to be used.

If this quantity is set equal to 1, the singularity-produced

velocities are read in on computer cards, rather than determined

in the program.

NOPEST - Inputted as 1 if the program is to determine whether or not the

entraining portion of the reversed jet lies within the pre-entry

streamtube. Otherwise, inputted as 0.

Of the terms NOJET, NOCROS, and NOPEST, only one can be

non-zero during a particular study.

The Program Inputs

EP - The degree of accuracy to which the no-flow condition is satisfied.
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DELTAX - The dimensionless incremental value of x used in the

streamline computational section. If this quantity is inputted

as positive the streamlines will be calculated in the direction

of the freestream flow. If "DELTAX" is negative, the opposite

direction is used.

The Dynamic Input

U8A - The dimensional velocity of the aircraft. If more than one velocity

is to be studied, the highest velocity is inputted here.

VELRAT - The inlet-to-freestream velocity ratio. If more than one

velocity is to be studied, the lowest velocity ratio is inputted

here.

VELJET - The dimensional reversed jet velocity.

The Geometric Input

ALA - The dimensional nacelle length.

Circle - This quantity expands the concept of the Maximum

Penetration Point from a point to an area. "CIRCLE" is

inputted as the dimensionless diameter of a circle with the

center at the Maximum Penetration Point. If this concept is

not to be used, the quantity is inputted as zero.



80

The remaining terms in this section have the same meaning as in

the main body of this report, but must be inputted in dimensional form.
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