U.S. DEPARTMENT OF COMMERCE National Technical Information Service

N73-20045

OAO BATTERY DATA ANALYSIS

S. Gaston, et al

National Aeronautics and Space Administration Washington, D. C.

FEB 73

$$
N_{1}^{3} 3-20045
$$

OAO BAITERY DATA ANALYSIS
S. Gaston, M. Werthein, J. 0^{\prime} Rourke GRUMMAN AEROSPACE CORPORATION Bethpage, New York 11714

February 1973
Final Report

Prepared for

THITONAL AERONAUIICS AND SPACE ADMDIISTRATION GODDARD SPACE FLICHII CHTIER
Greenbelt, Maryland

NOTICE

This report was prepared as an account of government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:
(a) makes warranty of representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights;
(b) assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employees or contractor of NASA, or employee of such contractor to the extent that such contractor prepares, disseminates, or provides access to any information pursuant to his employment with such contractor.

[^0]
PREFACE

The material contained in this report sumarizes and consolidates pertinent information on specifications, manufacturing process and test controls, and performance results for QAO batteries. The 20 Ampere-hour sealed nickel cadmium cells for these batteries were manufactured and tested under the most stringent quality assurance requirements used to date, closely monitored by Grumman and NASA/GSFC engineering. The report relates changes in cell and battery performance to improvements in these controls. By updating the cell/battery computer model used in the OAO Fower Supply Simulation Program, this report also improve battery performance prediction capability significantly.

Applicability of regression analysis techniques to correlate process controls to cell performance proved to be somewhat limited. However, this effort showed several areas where further control imrpovements, especially in documentation and traceability improvements, would not only provide more uniform results, but would also enable more sharply defined correlations.

The cell data analyzed herein is taken from lots manufactured and tested for $O A O-2, O A O-B$, and $O A O-3$ flight and flight spare use. While trends and correlations were shown to exist on these data, the reader is cautioned in his interpretation of these results in application to other nickel cadmium cells.

The authors gratefully acknowledge the guidance, assistance, provision of data, patience and understanding of Messrs. Floyd E. Ford and Thomas J. Hennigan, Sr. of NASA/GSFC. Their helpfulness has been invaluable to the sucessful completion of this effort.

Gratitude is also hereby expressed to Messrs. E. E. Miller and F. Burgess of Grumman for their assistance in the preparation of this report, and to Messrs. I. Schulman and E. Kipp of Gulton Battery Corporation, for supplying required information.
SectionDescriptionreage
INTRODUCTION 1
1.0 PROCESS CONTROLS 4
1.1 Chronology of Process Controls and Cell 4
1.2 Pre-Cell Fabrication 4
1.2.1 Separator 4
1.2.2 Electrodes 16
1.2.3 Electrolyte 21
1.2.4 Cell Terminals 21
1.3 Cell Fabrication 24
2.0 INITIAL CELL FERFORMANCE- AT SELUER's 25
(CEIL MANUFACIURER'S) FACILITIY
2.1 Electrical Testing 25
2.1.1 Formation 25
2.1.2 Precharge 26
2.1.3 - Manufacturer's Electrical Testing 39.
2.1.4 Ratio Testing 44
2.1.5 Cell Selection 48
2.2 Multiple Regression Analysis 54
2.2.1 Description of Parametric Variables 55
2.2.2 Cell Voltage Divergence Analysis 56
2.2.3 Precharge Analysis 57
3.0 BATTIERY PERFOFMANCE EVALUATION 63
3.1 OAO Battery Model 63
3.2 Logical Operation 63
3.2.1 Discharge Model 63
3.2.2 The Charge Model 68
3.2.3 The Overcharge Model 72
3.2.4 The Efficiency Model 77
3.2.5 Thermal Section 88
3.2.6 Listing of Variable Names 82
3.3 Program Mechanics 86
3.3.1 Operating Procedure 86
3.3.2 Sample Output 87
3.4 Prediction Capability 88
4.0 OAO-2 FLICHT DATA SUMMARY 92
4.1 F1 rst Two-Week Summary - Batteries 93
4.2 30 Day OAO-2 Flight Summary 96
4.3 Flight Sumary - First 15,000 Orbits 105

Section	Description	Page
5.0	SPECIAL CELL TESTS	115
	5.1 Sumary of Test Regime for Pack 23B	116
	5.2 Summary of Test Regime for Pack 5	150
	5.3 Summary of Test Regime for Pack 6	158
	5.4 Summary of Test Regime for Pack 35B	162
	5.5 Summary of Test Regime for Pack 12E	171
	5.6 Special Tests on Battery Serial Numbers 30 and 31	176
	5.7 . $\begin{aligned} & \text { Summary of Test Regime for Packs 215A, } \\ & 216 \mathrm{~A}, 217 \mathrm{~A}\end{aligned}$	181
6.0	ONCLUSIONS	199
	6.1 Charge Control and the Third Electrode	200
	6.2 Operational Voltages and Reconditioning	200
	6.3 Multiple Regression Analysis	201
7.0	RECOMMETDATIONS	202
8.0	FUUTRE EFFORT	205
9.0	REFERENTCES	207
Appendix	Description	
A	PRINTOUTS FOR REGRESSION ANALYSIS	
B	OAO CELL SPECIFICATION AV252CS-25F (see Note \#1)	
C	HISTOGRAMS OF CELL VARTABLES	
D	RAW DATA LISSITIGS	
E	SUMMARY OF TEST RESUITS IN SPARE NICXEL-CADMIUM CELIS FROM QAO A-2 FLIGGIT BATIERIES	
F	LISTING, BATTEERY MODEL FLOW CBARIS, BATTERY MODEL	
Note \#	References to AV252CS-25P should read AV252cs-25G	

FIGURE	TITIE	PAGE
-	Photograph of Orbiting Astronomical Observatory Battery	2
1.2.1-1	Spectrogram of Pellion Lot No. 17160	11
2.1.1-1	Final Capacity Discharge During Formation Positive Plate Distribution - $\mathrm{S} / \mathrm{N} 32,33$ and S/N 34,35	27
2.1.1-2	Final Capacity Discharge During Formation Negative Plate Distribution - S/N 32, 33 and S/N 34, 35	28
2.1.1-3	Typical OAO Formation Discharge, Pack \#27, NB Formation - S/N 34,35	29
2.1.2-1	Precharge Setting on OAO Cells at Gulton Block Diagram	30
2.1.2-2	Precharge Apparatus Used to Measure Quantity of Gas Evolved During OAO Battery S/N 34, 35 Assembly	31
2.1.2-3	Pre-Charge Test of 7 Gulton/GAC Battery Cells Conducted by ITASA/GSFC at Gulton Industries	32
2.1.2-4	Gas Evolved (ml) vs. Time After Start of PreCharge - Precharge \#1	33
2.1.2-5	Gas Evolved (ml) vs. Time After Start of PreCharge - Precharge \#2	34
2.1.2-6	Gas Evolved (ml) vs. Time After Start of PreCharge - Precharge \#3	35
2.1.2-7	Gas Evolved (ml) vs. Time After Start of PreCharge \#4	36
2.1.2-8	Gas Generated During Precharge vs. Actual Precharged Ampere-Hours - Battery s/N 34, 35	37
2.1.2-9	Gas Evolution, Precharge No. 6 - Battery S/N 34, 35	40

LIST OF FIGURES AND IIUUSTRATIONS

(Cont 'd)

FIGURE	TMLE	PAGE
2.1.2-10	Time - Electrolyte Addition to Start of Precharge (lst. Electrical Operation) vs. Precharged Negative Capacity - Battery S/N 32, 33	41
2.1.2-11	Milliliters of Gas Evolved During S/N 34, 35 Precharge vs. Time	42
3.4 .1	Predicted vs. Actual Flight Data, OAO-2, Orbit \#14,427	89
3.4 .2	Predicted vs. Actual Flight Data, OAO-2, Orbit \#15,331	90
3.4 .3	Predicted vs. Actual Flight Data, OAO-2, Orbit \#9,732	91
4.1-1	OAO-2 BVLS Curves	94
4.1-2	Battery Temperature vs. Orbit Number	95
4.2-1	Battery Overcharge Current, Comparison of Flight Data with Predictions	97
4.2-2	Battery State-of-Charge Performance - Orbital Trend - Plot of Battery Temperature and End-ofDischarge Voltage	98
$4 \cdot 2 \cdot 3$	Battery Discharge Characteristics. Comparison of Representative Flight Data with Predicted Operation	99
4.2-4	Battery Charging Characteristics. Comparison of Representative Flight Data with Predicted Operation	100
$4 \cdot 2-5$	Battery End-of-Charge Performance. Orbital Trend Plot of Adhydrode Signal and Overcharge Current, Measured at End-of-Light	102
4.2-6	Battery Shunt - Charge Performance. Orbital Trend - Plot of Duration of Shunt-Charge Period	103

	IIST OF FIGURES AND ILLUSTRATIONS	
	(Cont'd)	
FIGURE	TITIE	PAGE
4.3-1	BVLS3, $B=90^{\circ}, 65 \%$ Sun-Temperature, End of Dark Battery Voltage and Minutes to Regulator On vs. Orbit Number	107
4.3-2	Ampere-Minutes Input During Shunt Charge Mode vs. Orbit Number - BVLS 3	110
4.3-3	Ampere Minutes Input During Shunt Charge Mode vs. Orbit Number - BVLS 2	111
4.3-4	Battery Temperature, Current and Voltage vs. Orbital Time for Orbit Numbers 6, 14, 259, 377 and 427 - BVLS 2	112
4.3-5	Battery Temperature, Current and Voltage vs. Orbital Time For Orbit Numbers 2, 7, 15, 126, 143 and 579 - BVLS 3	113
5.1.1-1	Initial Conditioning at NAD, Crane, Enve lope of Voltage Spread Among 10 Cellis in Pack - Pack 23B	119
5.1.2-1	Initial Taper Charge (1-30-71) - Pack 23B	122
5.1.2-2	$0^{\circ} \mathrm{C}$ Overcharge Test at Crane, Group I, (2-2-71) - Pack 23B	123
5.1.2-3	$0^{\circ} \mathrm{C}$ Overcharge Test at Crane, Group II, (2-2-71) - Pack 23B	124
5.1.2-4	Percent Recharge vs. Cycle Number - Pack 23B	125
5.1.2-5	End-Of-Charge Voltage Divergence vs. Cycle Number - Pack 23B	126
5.1.2-6	Capacity Discharge of Cell 8 at Cycle Number 1,509-Pack 23B	127
5.1.2-7	Capacity Discharge at Cycle Numbers 1,509 and 3,900 - Pack 23B	129
5.1.2-9	$0^{\circ} \mathrm{C}$ Overcharge Test at Crane (10-24-71), Group II - Pack 23B	131

LIST OF FIGURES AND ILLUSTRATIONS

(Cont'd)

FIGURE	TMLE	PAGE
5.1.2-10	$0^{\circ} \mathrm{C}$ Overcharge Test at Crane (10-24-71), Group II - Pack 23B	132
5.1.2-11	Current and Voltage Profiles vs. Time for Group I After Approx. 4,200 Cycles (10-1-71) - Pack 23B	133
5.1.2-12	Current and Voltage Profiles vs. Time for Group II After Approx. 4,200 Cycles (10-1-71) - Pack 23B	134
5.1.2-13	Special Test (2-1-72), Initial Capcity Discharge. Cell Voltage Profile - Pack 23B	137
5.1.2-14	Special Test (2-1-72), Initial Taper Charge. Cell Voltage Profile - Pack 23B	141
5.1.2-15	Special Test at Crane, $0^{\circ} \mathrm{C}$ Overcharge. Cell Voltage Profile - Pack 23B	142
5.1.2-16	Special Test (2/72), Second Capacity Discharge. Cell Voltage Profile - Pack 23B	143
5.1.2-17	Special Test (2/72), Third Capacity Discharge - Pack 23B	144
5.1.2-18	Special Test ($2 / 72$), Fourth Capacity Discharge - Pack 23B	145
5.1.2-19	Special Test ($2 / 72$), Conditioning Charge - Pack 23B	146
5.1.2-20	Special Test ($2 / 72$), Final Capacity Discharge	147
5.1.2-21	Capacity Discharge at Cycle No. 1,509 and 5,600. Voltage Profiles - Pack 23B	149
5.2.1-1	Sumary of Cycling Characteristics - Pack 5	153
5.2.1-2	Voltage Divergence vs. Cycle Number - Pack 5	$154+155$
5.3.1-1	Voltage Divergence vs. Cycle Number - Pack 6	160

LIST OF FIGURES AND IUUSTRATIONS

(Cont'd)

FIGURE	TITLE	PAGE
5.4.1-1	Initial Conditioning at NAD Crane (1-26-71). Envelope of Voltage Spread Among 5 Cells - Pack 35B	164
5.4.1-2	Initial $0^{\circ} \mathrm{C}$ Overcharge - Pack 35B	165
5.4.1-3	Cycle Number vs. Percent Recharge - Pack 35B	166
5.4.1-4	Cell Voltage and Current Profiles (10-1-71) Approx. 4,000 Cycles - Pack 35B	168
5.4.1-5	$0^{\circ} \mathrm{C}$ Overcharge Test at Crane (10-24-71) - Pack 35B	169
5.5.1-1	Percent Recharge vs. Cycle Number - Pack 12E	173
5.5.1-2	End-of-Charge Cell Voltage Divergence vs. Cycle Number - Pack $12 E$	174
5.6-1	Effects of Age on Low Temperature Overcharge Voltage - Cells S/N 698 and 733	178
5.6-2	Cell Voltage vs. Age For Low Temperature Overcharge - Test Cell Data from Battery $5 / \mathrm{N} 25 \mathrm{~A}, 26 \mathrm{~A}$ and 30,31 and 32,33 and 34, 35.	179
5.6-3	Low Temperature Overcharge Cell Voltage Spread vs. Age, OAO Battery S/N 30,31	180
5.7.2-1	Initial vs. Post-Storage Voltage During Taper Charge - Cell s/N 508 - Pack 215A	190
5.7.2-2	Initial vs. Post-Storage Voltage During Taper Charge - Cell S/N 1510 - Pack 216A	191
5.7.2-3	Initial vs. Post-Storage Voltage During Taper Charge - Cell s/is 522A - Pack 2l7A	192
5.7.2-4	Overcharge Voltage (Maximum Voltage Cell) Random Manipulation Storage - Pack 215A	193

LIST OF FIGURES AND IIUUSTRATIONS

(Cont'd)

FIGURE	TITLE	PAGE
5.7.2-5	Overcharge Voltage (Maximum Voltage Cell) Dead Short Storage - Pack 216A	194
5.7.2-6	Overcharge Voltage (Maximum Voltage Cell) Trickle Charge Storage	195

IIST OF TABLES

TABLE	TITLE	PAGE
1.1	Deviations Incorporated Into Battery Manufacture as Reflected in OAO Cell Specipication AV-252CS-25F	5
1.2.1-1	QAO Pellon Separator Analysis	8
1.2.1-2	OAO Cell Formation Separator Analysis-Dynel	9
1.2.1-3	OAO Cell Formation Separator Analybis-Viscon	10
1.2.1-4	Pellon Lot \#16015	12
1.2.1-5	Pellon Lot \#17160	13
1.2.1-6	Pellon Lot \#llo97 (Third Electrode Separator)	14
1.2.1-7	Notes on Separator Tests	15
1.2.2-1	Initial Plate Testing at Sa.F.T., Negative Plate Results	17
1.2.2-2	Initial Plate Tesing at SaA.F.T., Positive Plate Results	18
1.2.2-3	Results of Carbonate and Nitrate Analyses Performed at S.A.F.T and Gulton for Electrodes from OAO Battery S/N 36,37	19
1.2.2-4	Results of Chemical Analyses on Electrodes from OAO Cell $\mathrm{S} / \mathrm{N} 221$ as Taken from U. S. Government Memorandum \#3403	20
1.2.3-1	KOH Analysis	23
1.3	Effect of Plate Weight Screening (Plate Average Weight $\pm 3.5 \%$) on Cell Capacity	24
2.1 .3	Electrical Tests Performed at Gulton on OAO $20 \mathrm{~A}-\mathrm{Hr}$. Cells	43
2.1.4-1	Ratio Tests - Post Formation	45
2.1.4-2	Ratio Tests - Post Wash and Dry	46

2.1.4-3	Ratio Tests - Final Ratio Cells	47
2.1.4-4	Projected Positive Plate Capacity Compared to Results of SAFT Sample Capacity	49
2.1.4-5	Projected Negative Plate Capacity Compared to Results of SAFI Sample Capacity	50
2.1.4-6	Distribution of Measured Precharge on Various Battery Assemblies During Final Cell Ratio Tests	51
2.1.4-7	Summary of Ratioes Obtained for Various Battery Assemblies	52
2.1 .5	Tests Required by Grummen During Cell Selection Testing	53
2.2.2-1	Spare Cells from OAO Battery S/N 34, 35 on Cycling Tests	59
2.2.2-2	Variables in (Voltage-Divergence) Regression	60
2.2.3-1	Variable in Precharge Gas Evolution Regression	61
2.2.3-2	Variables Selected as Having the Largest Correlation with Amount of Gas Generated During the Precharge of OAO Battery S/5 34, 35	62
4.3-1	Summary Statistics - OAO-2 Flight Data	106
4.3-2	OAO-2 Flight Battery Performance	109
4.3-3	Battery Average Voltage During Start of Light (S.O.I.) for First Fifteen Minutes on Charge	114
5.1.2-1	Pack 23B Log	120
5.1.2-2	Capacity Data - Group I and II	121
5.1.2-3	Representative End-Of-Charge Voltages for Cycles 2,289 through 5,600-Pack 23B BVLS 4 Control	128
5.1.2-4	Comparison of Ampere-Hours Returned Between Cycle 3,900 and Cycle 1,509 - Pack 23B	130
5.1.2-5	Special Test on Cells C7 and C8 of Pack 23B During February 1972	136

TABLE	TITIE	PAGE
5.1.2-6	Capacity Comparison Between Cycle 5,600 and Cycle 1,509 - Pack 23B	135
5.1.2-7	Comparison of Watt-Minute Accumulations to +1.0 Volts for Cell 8, Pack 23B, at 1,509 Cycles and 5,600 Cycles.	138
5.1.2-8	End-Of-Charge Voltages for Pack 23B	148
5.1.2-9	Comparison of Ampere-Hour Capacity Data to +1.0 Volts and to to. 5 Volts for Cell 5 and 6 at Cycle 1,509 and Cycle 6,000-Pack 23B	140
5.2.1-1	Table of Events - Pack \#5	152
5.2.1-2	End-Of-Charge and Discharge Voltages, Pressure and Percent Recharge for Pack \#5	157
5.3.1-1	End-Of-Charge and Discharge Voltages, Pressure and Percent Recharge for Pack \#6	161
5.4.1-1	Representative End-Of-Charge Voltage from Cycles 2301 through 5600 with Pack at BVLS4 - Pack 35B	167
5.5.1-1	Precharged IFegative Capacity, and Capacity to +1.0 Volts, $+0.5 \mathrm{~V} ., 0.0 \mathrm{~V} .,-0.5 \mathrm{~V}_{.},-1.0 \mathrm{~V}$. , and -1.5V. For Cell $5 / \mathbb{N} 494$ After 2,477 Cycles Pack 12E	175
5.5.1-2	Single Electrode Capacity Tests from Cell S/N 494 after 2,47T Cycles - Pack 12E	175
5.5.1-3	Precharge Fegative Capacity, and Capacity to +1.0 Volts, $+0.5 \mathrm{~V} ., 0.0 \mathrm{~V} .,-0.5 \mathrm{~V} .,-1.0 \mathrm{~V}$. , and -1.5V. For Cell s/N 920 after 2,729 Cycles Pack 12E	176
5.7.1-1	Checkout Tests at NAD, Crane (Pack 215A)	183
5.7.1-2	Checkout Tests at NAD, Crane (Fack 216A)	184
5.7.1-3	Checkout Tests at NAD, Crane (Pack 217A)	185
5.7.2.1	Capacity Data - Pack 215A	186
5.7.2-2	24-Hr. Open-Ett. Voltage Recovery Test Pack 215A	186
5.7.2-3	Capacity Data - Pack 216A	187

TABLE TITLE PAGE
5.7.2-4 $24-\mathrm{Hr}$. Open-Ckt. Voltage Recovery Test - 187 Pack 216A
5.7.2-5 Capacity Data - Pack 217A 188
5.7.2-6 24-Hr. Open-Ckt. Voltage Recovery Test - 188 Pack 217A
5.7.2-7 Voltage Divergence On Low Temperature 196 Overcharge - Packs 215A, 216 A and 217A
5.7.2-8 Pressure Change on Low Temperature 197
Overcharge - Packs 215A, 216 and 217A

INIRODUCTION

The OAO (Orbiting Astronomical Observatory) spacecraft number 2 has successfully completed over three years and 16,000 orbits, powered by a solar array/nickel cadmium battery power source.

The battery assembly consiate of three parallel connected strings of 21 (OAO-2) or 22 (OAO-3 and following) series connected cells, divided into two sub-assemblies (battery stacks) as shown in photograph on page . Each stack has an assigned serial number, the higher of which contains the third electrode cells.

Each cell is insulated with Kapton film and potting compound (Dow-Corning number 325) and faces a $1 / 8^{\prime \prime}$ thick anodized aluminum heat fin. Each heat fin, in turn, is mounted against a thermally louvered heat sink. Quad-redundant temperature sensing resistors and thermostats are mounted directly against the coldest and hottest cell surfaces for thermal control. The total battery weight is about 165 pounds.

The primary charge mode is a voltage versus temperature charye control. Eight voltage/temperature (BVLS) levels are available for charge control. The charge backup mode consists of a preset trip level generated from the oxygen sensing auxiliary electrodes.

Prior to OAO-2 batteries, it was common practice for the user to specify a minimum of quality assurance and control provisions on the cell component level. A considerable amount of testing on flight cells was therefore required to obtain an acceptable reliability level. A different approach was taken here, starting from OAO-2 spacecraft flight units. Each component, material and manufacturing step was carefully and continuously reviewed by an engineering team with representation from NASA/GSFC, Grumman and the manufacturer. The results of these reviews were incorporated in parallel, and interactively, into the OAO cell specification and the NASA/GSFCIndustry interin high reliability cell specification (Reference 1). Total Gruman engineering and/or quality control coverage monitored and enforced the provisions thereby generated, sesessed the remult thereof it tem of cell and bettery perforinnce, life and reliability, and evaluated and analyzed cell test data to update and iuprove both specifications noted above. As a result, flight hardware for OAO-2 and on appears to represent the highest statemof-the-art to date.

The data presented herein has been taken from the four assemblies of OAO batteries constructed since the 0AO-2 flight set (S/N 25A and 26A). The list below shows these batteries, their production dates and vehicle assignments.

Battery Assembly G / N	Date of Mfg. (Filling with Electrolyte)	$\begin{aligned} & \text { No. of } \\ & \text { Cells/Batt. } \end{aligned}$	Vehicle Asbisnment
254 and 26A	August 28, 1968	21	OAO-2 Flight
30 and 31	October 9-16, 1968	21	OAO Backup, then
		22	OAO-B Flight
32 and 33	August-September 1969	- 22	OAO-B Flight
34 and 35	July-August 1970	22	OAO-B Backup, then
			OAO-3 Flight Backup
36 and $37^{* *}$	April 1972	22	OAO-3 Backup

NOTES:

* $\mathrm{S} / \mathrm{N} 30$ and 31 were not flown.
** $\mathrm{S} / \mathrm{N} 36$ and 37 were constructed during the writing of this report and limited data is available.

The amount of cell production data on these later assemblies will be enhanced by progressively increased efforts to control cell materials and manufacturing processes.

The report is divided into sections, each of which follows a particular phase of battery assembly from material selection through final battery performance in tests and flight.

SECTION 1.0

PROCESS CONTROLS

This section documents the controls employed during the manufacture or the OAO batteries. It includes data on physical and chemical analyses of those components intrinsic to the cell (separator, electrolyte and plates) as well as extrinsic factors (effect of plate weight screening).

1.1 CHRONOLOGY OF PROCESS CONTROLS AND CEHL SPECIFICATION DEVELOPMENT

During the fabrication of the subject batteries, frequent changes were made to the cell manufacturing process. Many of these changes were the result of increased understanding of the nickel-cadmium state-of-the-art. Others vere incorporated to increase reliability of the finished batteries.

Table 1.1 presents a summary of the cell process changes made during the subject battery builds. It is to be used in conjunction with OAO cell Specification No. AV-252CS-25F, Appendix B. The cell changes, the battery first affected, and the specification paragraph changed, are all listed in the table.

1.2 PRE-CETL FABRICATION

Included in this section are the results of many of the analyses performed on the subject battery cell components. These include separator, KOH and plate analyses from the four batteries manufactured, beginning with the batteries currently in the OAO-2 spacecraft (S/N 25A, 26A).

1.2.1 Separator

Effort here included analysis of and improvements to physical parameters (thickness, strength, porosity, wettability, ete.) chemical characteristics (purity), electrical parameters (resistivity, interference with electrochemical reactions, etc.) and handing requirements (lot control, washing and drying, etc.). The following sumarizes this work and its results.

Much controversy arose in the latter part of 1968 concerning the value of wetting agents in separator material. At that time, the batteries originally intended for the OAO-2 flight sets showed higher-than-expected cell voltages during spacecraft tests at Goddard space Flight Center, and it was speculated that the presence of wetting agents in the separators of those batteries could be causing the anomaly.

The addition of wetting agents to the separator was a result of requests by battery manufacturers to suppliers of nylon spearator materials for faster wetting times in commercial cells.

	3／7254，264， 30,31	S／172．33	5／8 34， 35
－Electiones	1．did not ineorporate para． $3.4 .5 .2(t),(1), \&(!)$ 2．Ir pare．इ．4．j．：（1）srack jefined differently 3．pers．3．4．5．？（1）（9）vas absest 4．para．3．4．5．3（1）（9）only applizable to positive plate 5．para．2．4．5．3（e）\＆（f）vere not applicable	1．para．3．4．5．3（d）（3）only applicable to positive plat： 2．Ald not incorporaze part．3．4．j．2 （a），（1）a（j） differe：tly t．para．3．4．5．3（e）\＆（ f ）vere not applicable	
－pormarton	1．para．3．4．5．4．e．3．j（a）end of first sentence vas 0.5 to． 1 \％1ts 2．para．3．4．5．4．2．8．3（ c ）-a in restistor vas used 3．para．3．4．5．4．2．9．3（1）－negative capacity curtofr was -0.20 volt，no sui group A \＆g 4．para．3．4．5．4．2．8．2（d）applice ble for $\mathrm{S} / \mathrm{n} 30,31$	1．para．3．4．5．4．2．3．3（b）\＆（a） changed from $0 . \sum \pm 0.1$ volt to 0.75 0.25 volts 2．para．3．4．5．4．2．3．3（c）－a 1 resistor vas used 3．pare．3．4．5．4．2．3．3（1）－negative capacity was－ 2.2 wolt and there was no sub group $: \pm E$	Worle
－strarator	1．para 3．4．3．1．7－target specification was less than 0.256 by weight	1．para．3．4．3．1．7－target apecification was lese than 0.254 by veight	nowe
－electrolytb	1．para．3．4．6．3．1（d）－the max．solids content mot	Hore	Hone
	hoir 此 1．para．3．4．6－5／4 $25 A$ ， 264 had only one 1nsulated		$\begin{aligned} & \substack{\begin{subarray}{c}{\text { nowe } \\ \text { NONE } \\ \text { NONE }} }} \end{aligned}$
	1．pare．3．4．5．4．2．13－redioqraphie examitiontion not pertormed 1．para．3．4．6．1．12．3（d）sub－coteguries（1），（2）， （3）added ror 30,31 end sub． 1．－PROPRIETAZX－ 2．para．3．4．5．4．2．16，last sentence－viliven were opened during this step 3．para．3．4．5．4．2．17．．absent i．pera．6．0，Appendix II（i）\＆（ J ）not 1 meluded 2．pars．6．0，Appendix II（k） 1Ω short vas for 16 hrs．minimm	1．Added rewori entegortes for x－ray rejects（this builid oniy） 1．－PRORRTEARY 2．paim． 3.4 .5 .4 .2 .16 ，lett serepnce－ valves were opened during this step 3．para．3．4．5．4．2．27．2 abaent 1．pera．6．0，mpendix $I I$（e）$\&(\mathrm{~s})$ not Included 2．para．6．0，Appericix II（k） 1 short vas for 16 hrs ． 11 rts 园	MONE HONE $\begin{aligned} & \text { - Cos eollected drorim peocharge ao } \\ & \text { deta! led in "procisarge" 三ection of } \\ & \text { this repor } \\ & \text { NORE } \end{aligned}$
－TEGIDU －Ratio Reproduced from best available copy．	1．para．3．4．j．5．1 sampling rate－only 1 gample ainiman from following stages：conclusion of elec－ trizai formation，conclusion of neutralization and drying，completion o：standard capacity test 2．para． $3.4 \cdot 5 \cdot 5 \cdot$ i $^{(A)}$（ was $75^{\circ} \mathrm{F}$ to $35^{\circ} \mathrm{F}$ TAGLE 1.1		Hone

A high voltage trend was observed by various aerospace cell users in those cells having separators with wetting agents. It was postulated that these wetting agents were interfering with the electrochemical reactions of the cell. Since there is no necessity for "quick-wets" in aerospace-grade sealed N1-Cd cells, it is generally felt that these agents should be absent from such cells. The NASA interim high-rellability cell specification incorporated this constraint, as aid the OAO cell specification, beginning with S/N 25A, 26A battery construction.

Not only wetting agents, but other possible mechanisms which could interfere with the electrochonical reactions of Ni-Cd cells causing abnormal cell performance, became the targets of extensive study and intensive investigation. By the time of the issuance of the NASA interim highreliability specification, numerous chemical and physical tests had been defined for separator quality assurance alone. Among the quality tests incorporated in the OAO cell spec were the following (see OAO cell spec AV 252-CS-25F, Appendix B - Paragraph 3.4.3):

- Name of separator material supplier
- Base material
- Fiber manufacturer
- part number
- lot number
- date of mfg.
- Separator suppliers style number
- lot number
- date of mfg.
o Material sllt by:
- Absence or presence of wetting agents added by separator supplier?
- Type of wash and number of times pogarator washed
- Nominal, maximum and minimum thickness
- Weight ($\mathrm{gm} / \mathrm{m}^{2}$) on three samples
- Dimensions and dimensional changes (width, length and thickness when wet and when dry)
o Percent thickness change
- Wet volume
- Electrolyte absorption
- Electrolyte retention
- Porosity
- Separator resistance
- Tensile strength and appearance of break
- Analysis of organic content
- Analysis of inorganic content
- Discoloration in electrolyte

The OAO cell manufacturer uses Pellon style 2505 separator* in the finished cell but uses Dynel and Viscon separator during plate formation. Pelion lot \#l 16015 was used for battery S / N^{\prime} 's 25A, 26A through 32, 33 while lot \#17160 was used for $S / N 34$, 35. Reither 10 contained wetting agents.

Included in Tables 2.2.1-1 through 1.2.1-3 are the results of the determination of the organic and inorganic content of the various separators. 2 The organic content was obtained by a method defined in paragraph 3.4.3.1.6 of the OAO cell specification (see Appendix B). The deternination of the inorganics was accomplished by the following analyses:

NITRATE	The Taylor method with phenoldisulfonic acid
SIIICA	The Taylor method using color reagent one and two
CARBONATE	The Barium-Chloride method
NICKEL	Atomic Absorption method
ZINC	Atomic Absorption method
TITANIUM	Sulfuric-Acid Peroxide Colordmetric method
CHIORIDE	The Mohr method
A sample of pelion (lot \#7760) was ashed and analyzed for inorganic	

Shown in Table l.2.1-1 is the specification target for total organics and inorganics. Although the target for total inorganics is less than 1.0% by weight, it was controlled tighter (leas than 0.25% by weight) for $Q A O$ battery S / N^{\prime} 's 25A, 26A through 32, 33.

Tables 1.2.1-4 through 1.2.1-6 11st results of the determination of the physical properties of the pellon separators. Table 1.2.1-7 is a liating of explanatory notes on how the tests were conducted and on which cell batches these separator lots were used.

* Formerly designated as 2505 ML
Table 1.2.1-1 OAO Pellon Separator Analysis

[^1]

Table 1.2.1-4 Pellon Lot \#16015

Test	Maximum	Minimum	Mean	\# Samples
Dimensional ${ }^{\text {e }}$				
$\begin{aligned} & \text { Thickness }(\mathrm{dry})(\mathrm{cm}) \\ &\text { (wet) } \mathrm{cm}) \end{aligned}$	0.042 0.095	0.041 0.088	$\begin{aligned} & 0.0458 \\ & 0.0915 \end{aligned}$	110
Electrolyte Absorption ${ }^{\text {e }}$				
Dry weight (gms)	0.5	0.5	0.5	4
Wet weight (gms)	4.7	4.7	4.7	4
Grams of electrolyte absorbed	4.2	4.2	4.2	-
Porosity	-	-	-	-
Resistance ${ }^{\text {a }}$				
Separator resistance (ohm-cm ${ }^{2}$) Tensile Strength at Break	0.069	0.060	0.065	-
(Ibs)	6.0	5.0	5.75	4
Air Permeability ${ }^{\text {a }}$				
(seconds to pass 300 cc)	2.5	2.5	2.5	-
$\underline{W e t t a b i l i t y ~}^{\text {a }}$				
(seconds to minimum resistance ${\underline{\text { Wicking }} \mathbf{- 3 5 \%} \mathrm{KOH}^{\mathrm{a}}}^{\mathrm{a}}$	80	66	72	-
Height (mm) @ 5 minutes	0	0		-
15 minutes	2.5	2	2.25	-
30 minutes	7.0	5.5	6.25	-

NOTE: See Table 1.2.1-7 for superscript explanations

Table 1.2.1-5 Pellon Lot \#17160

Test	Maximum	Minimum	Mean	* Samples
Dimensional $^{\text {e }}$				
Length wet (cm)	6.5	6.5	6.5	9
Length $\begin{aligned} & \text { wet (cm } \\ & \text { dry }\end{aligned}$	6.5	6.5	6.5	9
Width wet (cm)	2.5	2.5	2.5	9
Wry (cm)	2.5	2.5	2.5	9
Thickness wet (cm)	0.043	0.035	0.0395	9
dry (cm)	0.045	0.037	0.0413	9
\% thickness change	9.1\%	2.2\%	4.3\%	9
Electrolyte Absorption ${ }^{\text {e }}$				
	0.1076	0.0858	0.0984	9
Dry weight (gms) ${ }^{\text {Wet }}$	1.0250	0.7904	0.9605	9
Grams of electrolyte absorbed	0.9246	0.7046	0.8621	9
Grams of electrolyte retained	0.8359	0.6141 77%	$\begin{aligned} & 0.7450 \\ & 86.7 \% \end{aligned}$	9
\% electrolyte retained			86.7\%	
Porosity ${ }^{\text {d }}$				
Percent porosity	125\%	104\%	115\%	9
Resistance ${ }^{\text {c }}$				
Separator resistance (ohm-cm ${ }^{2}$)	0.0443	0.0081	0.0198	6
Specific resistivity (0 mm-cm)	0.969	0.177	0.433	6
Tensile Strength at Break				
(lbs)	6.5	5.0	5.75	4
Discoloration of Sample in		- NONE		

NOTE: See Table 1.2.1-7 for superscript explanations

Table 1.2.1-6 Pellon Lot \#11097
(Third Electrode Separator)

Test	Maximum	Minimum	Mean	\# Samples
Dimensional ${ }^{\text {e }}$				
Thickness wet (cm) dry (cm)	$\begin{aligned} & 0.038 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.025 \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.0312 \\ & 0.0295 \end{aligned}$	18 18
Electrolyte Absorption ${ }^{\text {e }}$				
Dry weight (gms)	0.1080	0.0770	0.0904	18
Wet weight (gms) ${ }^{2}$	1.0770	0.7460	0.8982	18
Grams of electrolyte absorbed	0.9730	0.6670	0.8079	18
Grams of electrolyte retained	0.8730	0.5940	0.7160	18
\% electrolyte retained	93\%	85\%	88.7\%	18
$\underline{\text { Porosity }}^{\mathrm{d}}$				
Percent porosity	148\%	97\%	115.1\%	18
$\text { Resistance }^{c}$				
Separator resistance (ohm-cm ${ }^{2}$)	0.258	0.080	0.185	3
Specific resistivity (ohm-cm)	0.0079	0.0016	0.0047	
Percent Elongation	1.230	0.625	0.928	-

FOTE: See Table 1.2.1-7 for superscript explanation
Superscript
Number
Table 1.2.1-7 Notes on Separator Tests
a. Data taken from E.S.B. report - "Fifth Quarterly Report on Alkaline
Battery Separator Studies (23 June 1968-23 September 1968) for Goddard Space Flight Center, Contract NAS 5-10418." (Reference 3). b. Wet weight before draining 15 ± 5 mimutes as defined in OAO cell Specification AV252CS-25F, Para. 3.4.3.1.2 (b).
Specification AV252CS-25F, Para. 3.4.3.1.2 (b).
AV252Cs-25F, Para. 3.4.3.1.3.
d. Porosity measured as defined in OAO cell Specification AV252CS-25F, Para. 3.4.3.1.2 (c).
e. Dimensional measurements, changes and electrolyte absorption,
 Para. 3.4.3.1.2.
1.2.1-4 Used in OAO battery $S / N ' s 25 A, 26 A, 30,31,32$ and 33.
1.2.1-5 Used in $O A O$ battery S / N in $O A O$ battery $S / N 32$, 33 (third electrode wrap only).

1.2.2 Electrodes

The OAO cell contains iline (9) positive and ten (10) negative sintered plaque electrodes. The elctrodes are rectangular, approximately $13 \mathrm{~cm} \times 7 \mathrm{~cm}$ and range in thickness from 0.081 cm to 0.095 cm (positive) and 0.079 cm to 0.087 cm (negative). An oxygen sensing electrode is included in some cells as a method of charge control. This electrode is U-shaped, located around the narrow sides and bottom of the cell pack, and measures approximately $36.8 \mathrm{~cm} \times 1.9 \mathrm{~cm} \times 0.07 \mathrm{~cm}$. It is also wrapped in Pellon separator, but one which is thinner than that used in plate separation. The plates are initially tested at the plate manufacturer's facility (Socie'te' des Accumulateurs Fixes et de Traction - S.A.F.T.) for the properties shown in Table 1.2.2-1 and Table 1.2.2-2. Also presented is the calculated plate utilization in ampere-hours per gram of active material, based on the hydrate loading and the results of the SAFT sample capacity test.

No information is available on the nitrate and carbonate content of the plates used in the subject batteries. However, subsequent to OAO battery $\mathrm{S} / \mathrm{N} 34,35$, the cell specification incorporated a requirement for the cell manufacturer to perform a determination of the electrode's nitrate and carbonate content. The results of the tests, as performed by Gulton Industries, are shown in Table 1.2.2-3 for OAO battery $S / N 36,37$. Also shown are the results of carbonate analyses performed at SAFT. The nitrate test employed the standard Kjeldahl method of nitrate determination, while the carbonate content was determined by a leaching/titration method. A modification to the carbonate determination is performed on the positive plate, by Gulton, in which acid is added to a pulverized plate sample and the quantity of CO_{2} gas evolved is measured. The current OAO cell specification (Appendix B, Paragraph $3.4 .5 \cdot 4.2 .8 .4 .3$) defines a nitrate maximum requirement of 330 micrograms per gram of active material, sinter and substrate on the nickel electrode and a maximum of 10 milligrams of carbonate per gram of active material, sinter and substrate, on the cadmium electrode. The design goal for the carbonate content is less than 5 milligrams per gram of electrode.

No additives were reported in the plates. However, at least one source has found cobalt present in the positive plate. ${ }^{4}$

A chemical analysis ${ }^{5}$ was performed in April, 1968, on an OAO cell ($\mathrm{S} / \mathrm{N} 221$) in which cobalt was also detected in the nickel electrode. Table 1.2.2-4
Table 1.2.2-1 Initial Plate Testing At S.A.F.T. Negative Plate Results

OAO Battery S/N	Saft Lot \#	Porosity (\%)	$\begin{gathered} \text { Hydrate } \\ \text { grams/dm } \end{gathered}$	$\begin{array}{r} \text { Capacity } \\ \mathrm{A}-\mathrm{hr} . / \mathrm{dm}^{2} \\ \hline \end{array}$	Utilization A-hr. /gram*
$\begin{aligned} & 25 \mathrm{~A}, 26 \mathrm{~A} \\ & \& 30,31 \end{aligned}$	33	65.82	16.66	4.20	0.252
	34	65.54	16.97	4.19	0.247
	35	65.18	16.41	4.12	0.251
	36	67.54	16.72	4.16	0.249
32, 33	98	64.50	16.70	4.17	0.250
34,35	103	66.80	16.00	4.00	0.250
	104	66.70	16.30	4.10	0.252
	105	66.90	16.10	4.10	0.255
Utilization $=\frac{\text { Capacity }}{\text { Hydrate }}$					

Table 1.2.2-2 Initial Plate Testing At S.A.F.T. Positive Plate Results

$\begin{gathered} \text { OAO Battery } \\ \text { S/N } \end{gathered}$	Saft Lot \#	Porosity (\%)	Impregnation grams/dm ${ }^{2}$	$\begin{gathered} \text { Hydrate } \\ \text { grams } / \mathrm{dm}^{2} \end{gathered}$	Nickel Attack grams $/ \mathrm{dm}^{2}$	$\begin{gathered} \text { Capacity } \\ \text { A-hr./ar } \\ \hline \end{gathered}$	Utilization A-hr.! gram*
$\begin{aligned} & 25 A, 26 A \\ & \& 30,31 \end{aligned}$	34	47.8	13.16	16.20	2.96	4.14	0.256
	35	46.7	13.52	17.06	3.53	4.25	0.249
	36	46.8	13.47	17.03	3.57	4.22	0.248
32, 33	106	45.5	14.32	17.15	3.48	4.27	0.249
	107	45.5	14.32	17.15	3.48	4.34	0.253
34,35	112	45.0	12.70	15.10	2.40	3.90	0.258
	113	45.4	13.20	15.70	2.50	4.00	0.255
	114	45.5	13.40	15.90	2.50	3.90	0.245
* Utilization $=\frac{\text { Capacity }}{\text { Hydrate }}$.	

Table 1.2.2-3
Results of Carbonate and Nitrate Analyses Performed at SAFT and GULTON for

$\dagger-て ゙ て ゙ さ$ әтqв

Cell Sample	Combined Spectrographic，X－Ray Diffraction and X－Ray Flourescence Results
Nickel Plate Active Material	$\begin{aligned} & \mathrm{Ni}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Cd}, \mathrm{~Pb}, \mathrm{Mg}, \mathrm{Na}, \mathrm{~K}, \mathrm{Ca}, \mathrm{Cr} \\ & (\text { trace }), \mathrm{Ni}(\mathrm{OH})_{2}, \mathrm{KHCO}_{3} \end{aligned}$
Nickel Plate Grid	$\mathrm{Ni}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ca}, \mathrm{Mn}, \mathrm{K}, \mathrm{Cd}, \mathrm{Na}$
Cadmium Plate Active Material	$\mathrm{Cd}, \mathrm{Ni}, \mathrm{K}, \mathrm{Pb}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Si}, \mathrm{Cr}, \mathrm{Fe}$, $\mathrm{Ni}(\mathrm{OH})_{2}, \mathrm{Cd}(\mathrm{OH})_{2}$
Cadmium Plate Grid	$\begin{aligned} & \mathrm{Cd}, \mathrm{Ni}, \mathrm{Mn}, \mathrm{~K}, \mathrm{Na}, \mathrm{Fe}, \mathrm{Co} \text { (small), } \mathrm{Cr} \\ & \text { (trace), } \mathrm{Ag} \text { (trace) } \end{aligned}$
Third Electrode Active Material	$\mathrm{Ni}, \mathrm{Si}, \mathrm{Mg}, \mathrm{Na}, \mathrm{K}$（large）， $\mathrm{Cd}, \mathrm{Pb}, \mathrm{B}$, Ag, Mn（trace）， Ca （trace）， Cu （trace）
Third Electrode Grid	$\mathrm{Ni}, \mathrm{Co}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{K}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Ag}, \mathrm{Si}, \mathrm{B}$, $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Cr}$（trace）， Zn （trace）， Ca （trace）

shows the results of the combined analyses on the negative and positive electrodes, as well as the third (adhydrode) electrode. It should be noted that silicon is present in oignificant amounts. However, the plates in this analysis were from an carlier assembly than $S / N 25 \mathrm{~A}, 26 \mathrm{~A}$, and at this time the silica content in the water used for rinaing plates was not controlled. Beginning with S/N 25A, 26A, the OAO cell specification required a maximum silica content in the water of 1 ppm .

1.2.3 Electrolyte

The OAO cell specification requires complete traceability of the electrolyte back to the manufacturers batch number, grade and analysis. The date the electrolyte is purchased as well as the date that the container is first opened is also recorded.

Potassium hydroxide "mercury cell" grade electrolyte is mixed with distilled water to the required concentration. The following specification requirements ensure a contamination-free electrolyte:

ITPEM
Distilled Water
SPECIFICATION

- silica content less than 1 gpm
- solids content less than 50 pm

Electrolyte - carbonate content less than $0.01 \mathrm{gm} / \mathrm{liter}$

- hydroxyl ion concentration held to $+20 \mathrm{mg} / \mathrm{cc}$
- nitrate content of $1 \mathrm{mg} /$ liter or less
- content of silver, cobalt, copper, iron, sulfur, zinc and any other impurities present in concentrations greater than 100 ppm shall be noted and reported

The spectrographic results for the electrolyte used in QAO battery S/N's 32; 33, $34 ; 35 ; 36$, and 37 are shown in Table 1.2.3-1.

1.2.4 Cell Terminals

All standard OAO cells for batteri es up to and including battery serial number 32 had one insulated (ceramic) terminal. The other terminal (negative) was welded directly to the case cover. All auxiliary electrode cells had two insulated terminals. The auxiliary electrode tab was welded to the underside of the cover.

The decision to use one insulated terminal on $O A O$ standard cell was made several years back when insuiated terminal soal inatage was the predominant echanism in cell failure.

Early in 1967, Gruman funded a otudy for a oermic seal improvement for the OAO cell. This atudy reaulted in the addition of a "stress relief collar"; the use of the silver-copper eutectic brase alloy to replace silver braze; and the addition of nickel plating over the braze material to the underside of the cover assembly. As a result of these terminal modifications, seal failures became rare as cell life determining factors. Hovever, some terminal corrosion (plating) problems vere observed whereby the braze material formed a "bridge" across the ceramic sleeve causing an internal cell obort. Also occasionally, during cell teating, when a voltage probe, or any other metal object touched both terminal stud and cover, the accident caused permanent damage to the seal.

To further improve cell performance reliability it was decided, in 1969, to change from one to two insuleted terminals. This decision was mainly based on the following 6 :

- Higher reliability for the insulated terminal was achieved by addition of the "stress rellef member (collar)" and change to the silver-copper braze alloy plus nickel plating.
- A slower plating (corrosion) rate of braze material across the ceramic was observed when two, rather than one, insiulated terminals are present. Now a total of two shorts (one across each ceramic) need to be present for a cell to fail electrically.
- Accidentelly induced external shorts between a terminal and the container will not support sufficient current to permanently damage the seal.
In November 1968 it was discovered that cells, constructed $9-12$ months earlier had developed leaks through the lower nickel-iron cup of the terminal.? It was determined that the acidic tinning flux ueed for the soldering operation was trapped in the terminal cavity causing stress corrosion. This problem was eliminated when the terminal cavity was blocked, using a silicone potting material (E.C. 1663) prior to the fluxing operation. This potting material was removed after completion of timing, and assuring that all flux traces were removed. In addition, precautionary instructions were added to the cell specification (see Appendix B, Paragraphs 3.4.6.2 and 4.5.15) and to all

Table 1.2.3-1 KOH Analysis

Element	S/N 32, 33	S/N 34,35	S/N 36, 37
Aluminum	vft	vft	vit.
Arsenic	ND	ND	N1)
Antimony	ND	ND	ND
Barium	ND	ND	ND
Boron	ND	ND	ND
Bismuth	ND	ND	ND
Cadmium	ND	ND	ND
Calcium	ND	ND	ND
Carbon	X	X	X
Chromium	ND	ND	ND
Cobalt	ND	ND	ND
Copper	vft	ND	ND
Iron	vft	ND	ND
Lead	ND	ND	ND
Lithium	ND	ND	ND
Magnesium	vft	ND	ND
Manganese	vft	ND	ND
Mercury	X	X	X
Molybdenum	ND	ND	ND
Niobium	ND	ND	ND
Nickel	ND	ND	ND
Phosphorus	X	X	X
Potassium	P	PH	P
Sodium	ND	ft	ND
Sulfur	X	X	X
Silicon	vft	ND	ND
Silver	vft	ND	ND
Tantalum	ND	ND	ND
Tellurium	X	X	X
Tin	ND	ND	ND
Titanium	ND	ND	ND
Tungsten	ND	ND	ND
Uranium	X	X	X
Vanadium	ND	ND	ND
Zinc	ND	ND	ND
Zirconium	ND	ND	ND
$\begin{aligned} & \text { P = } 10 \text { to } 100 \% \\ & \text { ND }- \text { Not Detected } \end{aligned}$	X - Not testedH - Upper half of range shown		s than 0.01
			faint tra

cell/battery operational instructions. These require a trorough cleaning and drying of the cavity after each phenolphthalein leak check.

1.3 CETL FABRICATION

Once the plates have been inspectod and approved, they are screened according to plate weight. This procedure was incofporated beginning with the assembly of battery $\mathrm{S} / \mathrm{N} 34,35$ and consists of first determinang the average weight of all the positive or negative electrodes and then rejecting any plates which fall outside $+3.5 \%$ of the average. The offect of plate weight screening is to inmprove capacity uniformity amon the celis in the battery. This was shown in an anelysis performed at Coddard Space Flight Center by G. Halpert. ${ }^{8}$

Table 1.3 shows how plate weight acreening reduced the spread in capacity among cells in battery $5 / \mathbb{N} 34,35$. The standard deriation of capacity in these cells ($\sigma=0.33$) is approxdmately half of that observed in cells without screening. Since the cells are designed to be positive limiting both on charge and discharge, the distributions reflect the correlation of positive plate weight with capacity and cannot reveal whether the negative capacity distribution is also tightened by velgat screening.

Battery S/IN	Flate Weight Screened?	$\begin{gathered} \text { Mean Capacity } \\ (A-\ln) \end{gathered}$	$\begin{aligned} & \text { Capacity std. } \\ & \text { Deviation (A-hr.) } \end{aligned}$	$\begin{aligned} & \text { Range } \\ & \left.(\mathrm{A}-\mathrm{hr},)^{2}\right) \end{aligned}$
S/N 25A, 26A	no	25.46	0.62	2.83
30,31	no	25.63	0.69	3.66
32, 33	no	26.22	0.51	3.68
34, 35	yes	23.27	0.33	1.50

table 1.3
Effect of Plate Weight Screening (Plate Average Weight $+3.5 \%$)
On Cell Capacity

SECTION 2.0
 INITIAL CELL PERFORMANCE AT SELLER'S (CELL MANUFACTURER'S) FACILITY

2.1 ETECTRICAL TESTING

This section summarizes the results of the inftial testing performed at the seller's facility on both the electrode packs and finished cells. included are (in the order of the cell fabrication):

- Formation
- Precharge
- Manufacturer's electrical testing
- GAC cell selection tests
- Ratio tests

2.1.1 Formation

The formation (electrochemical cleaning operation) is performed at Gulton on individual packs of nine positive and ten negative electrodes using a combination of Viscon and Dynel separator material and placed in open nylon containers. The packs are flooded to a minimum of $1 / 4$ inch above the separator with 34% potassium hydroxide solution. The packs soak at room temperature for a minimum of four hours and a maximum of twenty-four hours prior to the first electrical operation. All electrical connections to the pack or between the electrodes in the pack which are susceptible to attack by electrolyte are either of stainless steel or nickel plated materials. Electrolyte level is maintained throughout the operation at $1 / 4$ inch above the separator by adding $34 \% \mathrm{KOH}$ when necessary.

The electrical regime consists of a series of charge-discharge cycles (Gulton proprietary) followed by a $\mathrm{c} / 2$ discharge to 0.70 ± 0.1 volt to determine the positive electrode capacity. After a 0.1Ω drain on individual cells to 0.1 ± 0.1 volts, the total negative electrode capacity is determined by a_{1} additional 2.0 amp discharge to -0.25 volts.

Following the formation cycling and electrode capacity determination, the packs are disassembled, the positive and negative electrodes are separated and immediately submerged in separate de-ionized water baths. This rinsing operation is completed when the last drippings from the sample electrodes display a Ph reading of 6 to 8 . The plates are then air dried at $50 \pm 5^{\circ} \mathrm{C}$ for a $16-24$ hour period. The deionized water used to wash the plates must exhibit a
resistivity greater than 1.0 megohm- cm , a ailica content less than 1.0 ppm , and a solids content less than 50 ppm .

Figures 2.1.1-1 and 2.1.1-2 show the distribution of the positive and negative electrode capacities during the formation discharge. The effect of the plate weight screening shows as a tighter distribution for the positive plates on $\mathrm{S} / \mathrm{N} 34$, 35, although the negative capacity apread did not appreciably change. This suggests that the weight screening of the negative electrodes did not improve the apread of negative plate capacity. The point may be erroneous, however, since during the formation discharge the cell reverses to only -0.25 volts. Perhaps if the cell vere discharged down to -1.0 volts, the true value of the negative electrode capacity would be realized. The -0.25 volt interdept occurs at the beginning of the negative electrode discharge curve "knee" and hence is not completely representative of the total negative capacity (see figure 2.1.1~3). It has been determined, in fact, that a 10 amp discharge down to -1.0 volt consistently reveals an additional 10% negative capacity than is shown by a 2 amp discharge to -0.25 volts. Based on results from FASA/GSFC, ${ }^{8}$ showing a atrong correlation between negative plate veight and capacity, it is expected that, if the discharges had been made down to -1.0 volts, the distribution of negative capacity would be tighter for the $\mathrm{S} / \mathrm{N} 34,35$ cells then for the cells built previous to battery $\mathrm{S} / \mathrm{\pi} 34,35$. 2.1.2 Precharge

Precharging the negative electrode is desirable in sealed Ni-Cd cells to have a charged cadmium reserve to prevent a negative electrode capacity limiting condition during discharge in cycling. 9,10 It is deminable that a certain amount of precharge (usually a proportion of the total negative) existe, and that this amount be known and controllable. In reviewing the literaturg one can find a wide diveraity of precharging techniques, each with: its own dogree of uncertainty as to the inount of precharging which the cadnium electrode receives.

To resolve some of these uncertainties, MASA/GSFC and Gruman undertook steps during the construction of battery $\mathrm{S} / \mathrm{N} 34,35$ to measure and set the precharge on the negative electrode. Ftyare 2.1.2-1 shows, in diagram form, the Eulton precharge operation. Cells are charged in a rate/time mathod where most of the oxygen gas evolving from the fully charged niciel electrodes can escape, thereby minimizing the recombination at the negative electrode. Hence, the regatives will receive an additional charge over the positives, Opon discharge

S/N 32,33
FIGUEE 2.1.1-1

FIGRE 2.1.1-2

FIGURE 2.1.2-2

this will show up as a reserve supply of charged negative and thus ensure the cell to be positive limiting. Of course it is undesirable for the negatives to become fully charged at the end of charge as this could make the cell nega-tive-limiting on charge where hydrogen gas evolution would occur. It can be appreciated that this technique is valuable but can present difficulty if the negatives are charged too much or too little. To control this precharge setting it is essential to determine the negative electrode residual charge content (Cd) after the washing and drying operation. Figure 2.1.2-2 shows the apparatus used by GAC and NASA/GSFC to measure the precharge more reliably. It consists essentially of apparatus to collect the gas which evolves from the cell while it is on charge. The gas was analyzed and found to be essentiaily oxygen. The quantity of oxygen gas evolved can be considered as the equivalent amount of negative capacity stored in excess of the positive capacity when both electrodes were started on charge from the fully discharged state.

Figures 2.1.2-3 through 2.1.2-7 show plots of the gas evolution on charge as a function of time. A few items to be noted are that there is quite a spread in the final amount of gas generated during the period on charge and that each cell begins gassing slightly below nine hours. The cells appear to gas when the positive electrodes reach full charge which, for a positive plate capacity of about 27 A-hrs., should be around 8.7 hours at the 3.1 amp rate. Thus the onset of gassing is consistent with the expected. In this test the cells were found to evolve between 60 ml and 1600 ml of oxygen during the period, representing precharges ranging from $0.25 \mathrm{~A}-\mathrm{hr}$. to $7.2 \mathrm{~A}-\mathrm{hr}$., based on $1 \mathrm{~A}-\mathrm{hr}$. of precharge being equivalent to 220 ml of oxygen gas.

Some of the cells were later subjected to ratio tests where the actual precharge was measured. As Figure 2.1.2-8 shows, ${ }^{14}$ a strong correlation exists between the amount of gas collected and the measured precharge. The theoretical $220 \mathrm{ml} / \mathrm{A}-\mathrm{hr}$. line is also shown. It appears that the theoretical line has the correct slope but should be shifted to the right of the origin. In other words, the cells seem to exhibit a threshold (of about 300 ml) of gas which must evolve before any precharge is measurable on the cadmium plates. Shifting the theoretical line to the right by 300 ml fits the data nicely. Thus, the equation for determining precharge, based on gas measurements, can be written as:

$$
y_{A-h r}=\frac{x_{m 1}-300}{220}
$$

where

$$
X_{m z}=m l \text { of } O_{2} \text { evolved }
$$

$$
Y_{A-h r .}=p r e a b a r e ~ n e g a t i v e
$$

Some sources have indicated that more reliable precharge results may be obtained when an electrical cycle is executed firat, before the precharge operation. This was done on an experimental basis for a few cells in the OAO battery $\mathrm{S} / \mathrm{N} 34,35$ manufacture and the results are shown in Figure 2.1.2-9. Also tried was an incremental venting technique whereby the pressure was allowed to build up in cells to a pre-determined level and then the cell was partially evacuated, leaving a residual positive pressure. This was performed sequentially for the duration of the charge and the precharge calculatod as a function of the cell case volume and pressure relationship. Figure 2.1.2-9 shows that, not only did the cells which had received one electrical cycle prior to the precharge operation evolve gas earlier, but also there was a tighter range of gas quantity evolved as a function of time.

Another result of the precharge studies indicated that the cells vere receiving inadequate soaking before being placed on charge. Figures 2.1.2-10 and 2.1.2n show the effect of this inadequate soaking. In both curves, those cells which soaked for under ten hours showed both increased variability and increased precharge over those with longer soaks. It is postulated that the separator was not sufficiently wetted yielaing non-uniform electrode charge current densities. This results in poor charge acceptance and premature gassing on the positive electodes, and uncertain precharge on the negative electrodes.

As a result of these precharge studies, changes bave been incorporated into the $O A O$ cell specification. A minimum soaking time of twenty-four hours is now specified and the precharge is being controlled to a specific ampere-hour input based on the results of gas meesurement. The charge rate remains at 3.1 amps as before but the termination time is dependent on evolving sufficient oxygen to achieve the required precharge.

2.1.3 Manufacturer's Electrical Testing

Af'ter the pre-charge is adjusted, the cells undergo Gulton's standard electrical cycling. These teats are shown in Table 2.1.3. They

HOURS-FILL TO PRECHARGE
41

FIGURE 2.1.2-11
MILLILITIERS OF GAS EVOLVED DURING
S/N 34,35 PRECHARGE VS. TIME -
ELECTROLYTE ADDITION TO START OF
PRECHARGE (FIRST ELECTRICAL)
OPERATION)

ELECTRICAL TESTS PERFORMED AT GUITON

ON OAO $20 \mathrm{~A}-\mathrm{hr}$. CELIS*

Sequence	Operation	Measure
1	Charge C/10, 24 hours	Voltage, pressure, pheno ck.
2	Automatic (10) cycles: - Discharge c/2, 30 min. - Charge $\mathrm{C} / 5,90 \mathrm{~min}$.	Low pressure during last cycle
3	Overcharge $\mathrm{C} / 10,24$ hours	Voltage, pressure, pheno ck.
4	Discharge $\mathrm{C} / 2$ to 1.0 volts	. Capacity, pressure
5	Short $1 \Omega, 16$ hours	
6	Dead short one hour	
7	Charge c/10, 24 hours	Voltage, pressure, pheno ck.
8	Discharge $C / 2$ to 1.0 volts	Oapacity, pressure
9	Short 152,16 hours	-
10	Dead short one hour	

TABLE 2.1.3

* Manufacturers standard tests. Room temperature.
are decigned to show that the cells are capable of meeting the specified capacity at acceptable voltages and pressures and to screen out any cells which may have internal shorts, and/or leaks.

2.1.4 Ratio Testing

During cell manufacture, some cells are selected for destructive ratio tests after each of the following steps: formation cycles, drying operation, and completion of all selection testing. 9 Ratio tests determine total negative and positive electrode capacities, as well as the distribution of excess negative capacity on charge and discharge.

The first step is the determination of the amount of precharged negative capacity. After normal discharge to 1.0 volt, cells are flooded with a $34 \% \mathrm{KOH}$ solution and drained using a 1Ω resistor for 16 hours. They are then discharged at $c / 2$ rate to -1.0 volt. This discharges that portion of negative capacity set during precharge, and represents surplus ensuring positive limiting on discharge. In this way, the precharge is permanently removed.

The cells are then charged at a 2.0 ampere ($C / 10$) rate for a period of not less than 40 hours, and not more than 64 hours, to 1.51 volts. This assures both electrodes are fully charged, since no significant recombination can occur with the cells flooded. In the past it has often been necessary to utilize the full 64 hours to reach 1.51 volts. The cells are next discharged at a 10 ampere rate to -1.0 volt. Times to $+1.0 \mathrm{~V},+0.5 \mathrm{~V}, 0.0 \mathrm{~V},-0.5 \mathrm{~V}$, and -1.0 volt are recorded. Calculations may now be made of: total positive capacity, total negative capacity, excess discharged negative capacity, and excess charged negative capacity. These figures may then be used to compute precharge and negative to positive capacity ratios. Positive electrode capacity is defined as the discharge to to. 5 volts, and negative electrode capacity as the discharge to -1.0 V . A reference electrode Is used to determine which electrode is the limiting factor during any rapid change of cell voltage.

Earlier OAO specifications required minimum negative to positive capacity ratio to be 1.30 to 1.00 . Recently this was increased to a minimum of $1.40: 1.00$ to assure large enough reserve to correct for negative electrode inefficiencies (fading) during prolonged cycling.

Tables 2.1.4-1 through 2.1.4-3 show ratio test results for the various battery builds. Positive plate capacity appears to decrease steadily by about ten percent from post-formation to final cell. Negative plate capacity, however, shows a much smaller decrease -- approximately five percent -- from post-formation to final cell but shows an increase in the post-neutralization (drying operation) ratio. Thus, although ratios appeared low following formation, fingl ratios (finished cells) showed higher results and met specified requirements.
Table 2.1.4-1 Ratio Tests - Post Formation

Table 2.1.4-2 Ratio Tests - Post Wash and Dry

Table 2.1.4-3 Ratio Tests - Final Ratio Cells

OAO Battery Serial Number	Parameter	$\begin{gathered} \text { (A-hr.) } \\ \text { Amount } \\ \text { of } \\ \text { Precharge } \end{gathered}$	Capacity to the Following Voltages				
			-1.0 V	-0.5 V	-0.0 V	+0.5 V	$+1.0 \mathrm{~V}$
25A, 26A	Maximum Minimum Mean Range \# Samples	$\begin{aligned} & 5.4^{*} \\ & 3.5^{*} \\ & 4.45 \\ & 1.9 \\ & 2 \\ & \hline \end{aligned}$					
30, 31	Maximum Minimum Mean Range \# Samples	$\begin{aligned} & 0.030 \\ & 0.025 \\ & 0.028 \\ & 0.005 \\ & 2 \end{aligned}$	$\begin{gathered} 35.17 \\ 31.33 \\ 33.83 \\ 3.84 \\ 4 \end{gathered}$	$\begin{gathered} 34.83 \\ 31.00 \\ 33.33 \\ 3.83 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 32.00 \\ 27.67 \\ 29.35 \\ 4.33 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 31.67 \\ 27.50 \\ 29.12 \\ 4.17 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 30.83 \\ 27.33 \\ 28.70 \\ 3.50 \\ 4 \\ \hline \end{gathered}$
32, 33	Maximum Minimum Mean Range \# Samples	$\begin{aligned} & 3.16 \\ & 0 \\ & 0.54 \\ & 3.16 \\ & 30 \end{aligned}$	$\begin{gathered} 41.33 \\ 39.00 \\ 40.22 \\ 2.33 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 41.17 \\ 38.67 \\ 39.79 \\ 2.50 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 32.16 \\ 28.33 \\ 29.52 \\ 3.83 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 31.33 \\ 28.00 \\ 29.14 \\ 3.33 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 31.00 \\ 27.83 \\ 28.93 \\ 3.17 \\ 30 \\ \hline \end{gathered}$
34, 35	Maximum Minimum Mean Range \# Samples	$\begin{aligned} & 4.87 \\ & 0 \\ & 1.40 \\ & 4.87 \\ & 19 \end{aligned}$	$\begin{gathered} 41.83 \\ 38.83 \\ 40.28 \\ 3.00 \\ 19 \end{gathered}$	$\begin{gathered} 41.50 \\ 38.33 \\ 39.70 \\ 3.17 \\ 19 \end{gathered}$	$\begin{gathered} 28.83 \\ 26.00 \\ 27.58 \\ 2.83 \\ 19 \end{gathered}$	$\begin{gathered} 28.17 \\ 25.83 \\ 26.81 \\ 2.34 \\ 19 \end{gathered}$	$\begin{gathered} 28.00 \\ 25.67 \\ 26.55 \\ 2.33 \\ 19 \end{gathered}$

* Measured after cell hac completed 529 cycles

Apparent changes of electrode capacities through each processing step are seen more clearly in Tables 2.1.4-4 and 2.1.4-5. The SAFT figures are projected plate capacity based on results taken on a sample $1 \mathrm{dm}^{2}$ plate. This is taken as a baseline value. The percentage tange from baseline occurring in each operation is shown in parentheses. It can be readily seen that the final cell ratios are aignificantly higher than those from the formation step. These tables allow one to predict either final cell ratio or electrode capacities at intermediate steps in processing, based on initial SAFT sample capacity results for identical plate lots.

Table 2.1.4-6 shows the meanured prechargad hegative distributions an the subject battery builds. Although the amount of data for early builds is slight, that from two later builds indicate the majority of cells have low mearable precharges of less atan one ampere-hour. 12

Table 2.1.4-7 is a sumary of the ratios obtalned for the various battery assemblies. Battery $\mathrm{S} / \mathrm{N} 34,35$ had the highest values because positive plates contained much lass active material than previous builds (see Table 1.2.2-1 and 1.2.2-2). The range of $8 / \mathrm{N} 34,35$ ratios is narrowed, due to effects of plate weight screening.

2.1.5 Cell Selection

All cells selected for flight batteries muat come from an identical plate and separator lot and be constructed within a sbort time interval. Then, in addition to the standard seller's (Gulton) electrical tests, Gruman requires the cells to undergo a series of teats for thorough characterization of each cell's performance for selection purposes. The flight batteries require matching of cells with nearly identical electrical characteristics.

Table 2.1.5 lists the tests required during cell sedection. The regime consists of electrical tests designed to match cells with similar capacity, cycling perforwance and voltage/pressure response during overcharge. A low temperature ($4.4^{\circ} \mathrm{C} / 400 \mathrm{~F}$) overcharge is also performed to screen out potential negative-limiting cells. The cells are grouped based on the results of the third capacity cycle. A histogrem of the capacity distribution is drawn and cells are chosen for each battery such that the total amperehour spread in any single battery does not exceed one (1) ampere-hour. Traditionally the cells within the low third of the total capacity distidibution

	S/N 25A, 26A	32, 33	34, 35	A.t.s.
I. SAFT CAPACITY IN AMPERE-HOURS	(100\%)	(100\%)	(100\%)	(100\%)
(A-hr. $/ \mathrm{dm}^{2} \times .91 \mathrm{dm}^{2} / \mathrm{plate} \times 9$ plates/cell ${ }^{\text {a }}$)	34.40	35.25	31.94	35.00
II. FORMATION IV AMPERE-HOURS	(82.99\%)	(82.52\%)	(81.75\%)	(80.71\%)
(Final Discharge Capacity)	28.55	29.09	26.11	28.25
III. CAPACTTY OETAIN DURING RATIO TESTS IV AMPERE-HOURS	(90.12\%)	(91.63\%)	(92.05\%)	--
A. Post Formation	31.00	32.30	29.40	
B. Post Rinse	--	(88.51\%)	(87.66\%)	--
		31.20	28.00	
c. Final Cell	--	(82.78\%)	(83.90\%)	(88.00\%)
		29.18	26.80	30.82

TABLE 2.1.4-4
Projected Positive Plate Capacity Compared To
Results of SAFT Sample Capacity

	S/N 25A, 26A	32, 33	34, 35	A.t.s.
I. SAFT CAPACITY IN AMPERE-HOURS $\text { (A-hr. } / \mathrm{dm}^{2} \times .91 \mathrm{dm}^{2} / \text { plate } \times 10 \text { plates/cell) }$	$\begin{aligned} & (100 \%) \\ & 37.95 \end{aligned}$	$\begin{aligned} & (100 \%) \\ & 37.95 \end{aligned}$	$\begin{aligned} & (100 \%) \\ & 37.31 \end{aligned}$	$\begin{aligned} & (100 \%) \\ & 41.95 \end{aligned}$
II. FORMATION IN AMPERE-HOURS (Final Discharge Capacity)	--	$\begin{aligned} & \text { (97.25\%) } \\ & 36.91 \end{aligned}$	$\begin{aligned} & (97.07 \%) \\ & 36.22 \end{aligned}$	$\begin{aligned} & (98.18 \%) \\ & 41.19 \end{aligned}$
III. CAPACIITY OBIAINED DURING RATIO TESTIS IN A. Post Formation B. Post Rinse C. Final Cell AMPERE-HOURS	(113.83\%) 43.20 --	(111.98\%) 42.50 (112.258) 42.60 (106.06\%) 40.25	(114.44\%) 42.70 (117.39\%) 43.80 (107.96\%) 40.28	$\begin{aligned} & -- \\ & (105.00 \%) \\ & 44.05 \mathrm{AH} \end{aligned}$

> Projected Negative Plate Capacity Compared To
> Results of SAFT Sample Capacity

Table 2.1.4-6 Distribution of Measured Precharge on Various Battery Assemblies During Final

	S/N 25A, 26A	30, 31	32, 33	34, 35	36, 37
Maximum		1.591	1.367	1.631	
Minimum		1.445	1.351	1.491	
Mean		1.503	1.360	1.568	
Range		0.146	0.016	0.140	
\# Samples		6		10	
Post-Formation Ratios					
	S/N 25A, 26A	30,31	32, 33	34, 35	36, 37
Maximum			1.397	1.500	
Minimum			1.239	1.407	
Mean			1.307	1.453	
Range			0.158	0.093	
\# Samples			19	10	
Final Cell Ratios					
	S/N 25A, 26A	30, 31	32, 33	34, 35	36, 37
Maximum	1.39	1.279	1.476	1.559	
Minimum	1.22	1.074	1.287	1.414	
Mean	--	1.160	1.381	1.503	
Range	--	0.205	0.189	0.145	
\# Samples	--	4	30	19	

Summary of Ratios Obtained for
Various Battery Assemblies
Table 2.1.4-7
table 2.1 .5
Tests Required by Grumman During
Cell Selection Testine

Test Name

are designated as battery 1 , the middle third as battery 2 and the cells in the upper capacity distribution one-third are selected as battery 3. Ensuring that the total capacity spread in any single battery is within one anpere-bour reducers the chance of cell reversals during capacity run-down conditions and assures that all the cells will reach a full state-of-charge at approximately the same time. The third-electrode cell in each battery is chosen from this same capacity distribution. Third electrode cells are usually chosen to be the lowest capacity cell in each battery. This allows these cells to begin overcharge slightly before the rest of the cells in the battery, avoiding exceasive overcharge in the battery as a whole. The cell specification also imposes a provision that the three batteries in the assembly must be within ± 1.0 ampere-hours of each other on the average.

2.2 MUMIPLE REGRESSION ANAIYSIS

Knowledge of which processes and components have the greatest effect(s) on reliability (life) and performance is necessary to meet today's high standards for complex products for aerospace. While the sealed Ni-Cd cells used in OAO are produced under, perhaps, the tightest quality control in the industry, finished cells prior to the study and selection efforts reported herein displayed sufficient parametric variations to necessitate some compromises in specification Iimits. For such cells, key factors include the electrodes, separators, electrolyte and process time/temperature.

Another technique, useful to support and verify the type of result already obtained, for relating these factors to performance and reliability variables is that of multiple regression analysis, done on a computer. Such analysis has been successfully used on the Lunar Module (LM) program to predict primary (silver-zinc) battery capacity from manufacturing data, and in a NASA/GSFC sponsored study of the effects of various electrode process variables for nickel cadmium. 11

Normally regression analyses are based on data in which the parameters thought to have effects are deliberately varied over relatively wide ranges. The effects are called "response variables" or, simply, "variables". The analyses covered herein, however, were limited to data derived from routine manufacturing, and so are narrower in range than idealiy desirable. Further, some parametric information was not available (e.g.: plate thickness, postformation drying times and temperatures, etc.) Some parameters were constant for all cells (e.g.: separator, electrode and KOH analyses), and could not
be used. The manufacturing parameters available are only those found subsequent to assembly into cell stacks -- i.e.: traceability atarts at this point, and the plates maintain their identity through to the finished cell. It was thus necessary to rely heavily on electrical data saken at the seller's facility during early performance tests. The major value of these analyses, then, are in the tightening of electrical limits, and the ability to identify potentially poor risk cells without extensive and expensive tests.

2.2.1 Description of Parametric Variables

The parameters studied herein may be divided into two classes:

- Manufacturing/Processing variables
- Test data variables (early tests)

The former may be considered as independent quantities in that each may be altered more or less without regard to any of the others. Test data generaliy consists of effects, or response variables.

The variables listed in Tables 2.2.2-2 and 2.2.3-1 as used il the two analyses conducted for this program falls in the above noted categories as follows:

Manufacturing Processing

Dry Cell Weight
Wet Cell Weight
Cell Pack Weight (Total weight of plates and separator)
Positive Group Weight
Negative Group Weight
Time -- activation (filling) to start of precharge

Test Data

Pressure at end of cycle 1 of cell selection
Pressure at end of $90^{\circ} \mathrm{F}$ overcharge
Voltage at end of cell selection, $40^{\circ} \mathrm{F}$ overcharge
Electrical operation: $3^{\text {r }}$ cycle capacity in A-hr.
Cell selection: $3^{\text {rd }}$ cycle capacity in A-hr.
Pressure at end of $40^{\circ} \mathrm{F}$ overcharge
Pressure at end of room temp overcharge
Pressure at end of cycle 3 of cell selection
Pressure at end of cycle 3 of electrical operations
Gas evolved during precharge
Pressures at ends of cycles 1 and 2 of cell selection
Pressures at ends of cycles 1 and 2 of electrical operation

Each variable listed above was used in the analyses. Gas evolved during precharge was treated as input data in the voltage divergence analysis, and as the output (dependent variable) quantity in the precharge analysis. The purpoise of the analyses is to demonstrate one or more of the following:

1. The particular way in which an "input" (independently treated) quantity affects the "output" (dependent) quantity
2. The relative weight with which each input quantity affects the output quantity
3. Whether, in fact, a particular input bas any relation to the output.

The results are shown in "Beta" coefficients of each input quantity with respect to the output. These coefficients are mormalized values. The higher a Beta coefficient in numerical (absolute) value, the more significant the correlation to the output. Positive and negative values only signify the sense In which the effect occurs (e.g.: output increases with increasing input shows as a positive value). Anomalous results (see 2.2.2.1) either means that insufflcient data is available, or the particular parameters chosen have little or no effect on the output. Very small numerical results lead to essentially the same conclusion.

2.2.2 Cell Voltage Divergence Analysis

An attempt was made to correlate divergence among the end-of-overcharge voltages found in the spare cells of battery $\mathrm{S} / \mathrm{N} .34,35$ to initial electrical tests. Table 2.2.2-1 is a sumary of these diverged quantities after several thousand 100 -minute cycles; showing a range of 143 mV (Fack 23B Group I) to 29 mV (Pack 35B).

The cycling was done using 15% depth of discharge, and no constraining voltage limit during charge and overcharge. The latter feature allowed each cell to reach its natural potential for the rate and time of overcharge, inde. pendent of the pack and/or any other cell. Weighted values -- from 1 to 9 -were assigned to each cell, for the analysis, based on relative end-of-overcharge voltage. Weightings are described at the bottom of Table 2.2.2-2, which lists all the variables assigned.

Results (details in Appendix A) show relatively low overall correlation between divergence and the chosen parameters. Following are the five highost correlation factors (Beta coefficients) listed in descending order:

2.2.2.1 Discussion of Results

It is of interest to note that the cell weights show significantiy higher correlation to divergence than any other parameters. At the same time the two coefficients involved are opposite in sign, and nearly equal in value.

To understand the significance of the above, it must be noted that Wet Cell Weight consists of Dry Cell Weight plus electrolyte weight. Electrolyte weight is held very nearly constant by controlilng the volume (cm^{3}) of $34 \% \mathrm{KOH}$ solution used to fill the cells. The fact that opposite signs exist indicates opposite effects on cell divergence. It makes little sense to conclude that Dry Weight has one type effect, and Dry Weight plus a constant has the opposite effect. Some other cause for the opposite signs must be found.

A similar analysis of the other variables used in this regression shows similar results. Two possibilities exist:

- None of the variables chosen has any real effect on cell divergence
o The amount of divergence is too small to show any really aignificant effect from any source.
The smallness of divergence is somewhat overcome by use of weighted values (see Table 2.2.2-2) since these would tend to exaggerate effects rather than hide them. The first, then, seems the most reasonable. The regression analysis would also tend to show no correlation between cell divergence and the data taken in the early tests. In other words, use of any early test data 'to predict later divergence would be nearly impossible.

2.2.3 Precharge Analysis

Essentially the same data as above, plus some additional pressure information was used to attempt correlation with gas evolved during precharge - - see Table 2.2.3-1. A summery of the results - - printed in full in Appendix A -- is shown in Table 2.2.3-2 which lists the five largest corralations.

2.2.3.1 Discussion of Results

The results show little basic difference in principle from those found for cell divergence. What differences exist are in degree in that the correlations here are even less significant than before.

Perhaps the only variable showing even moderate strength is $V 9$, as expected (see Section 2.1.2). It has been found that soak times less than 10 hours caise
not only excess gas evolution, but large variability of actual precharge.
Accordingly, current $O A O$ specifications require soaks of 24 hours minimum prior to first electrical operation.

Epare Cells I'rom ()AO Battery

S/N 34,35 on Cycling Tests

Pack Number	Location	$\begin{aligned} & \text { Cell } \\ & \mathrm{S} / \mathrm{N} \\ & \hline \end{aligned}$	Overcharge Volts	Coded Vilue
5	GSFC	1514	1.442	5
		518A	1.453	7
		1526	1.425	3
		526A	1.455	7
		1531	1.456	7
6	GSFC	1542	1.420	5
		495A	1.401	2
		1554	1.424	5
		497A	1.381	1
		1575	1.422	5
23BGroup I	NAD, Crane	1494	1.510	4
		1517	1.380	1
		1546	1.516	5
		1588	1.520	5
		1591	1.523	5
23BGroup II	NAD, Crane	1499	1. 518	5
		1537	1.396	1
		1587	1.515	5
		1589	1.531	7
		1590	1.514	5
35B	NAD, Crane	1573	1.454	5
		512 A	1.452	5
		1578	1.448	5
		515A	1.474	8
		1492	1.445	4

TABLE 2.2.2-1

Variables in (Voltage-Divergence) Regression

Variable Number . Description

Variables in Precharge Gas Evolution Regression

Variable Number	Description
v1	Dry cell weight
v2	Wet cell weight
v3	End of precharge voltage
V4	$90^{\circ} \mathrm{F}$ overcharge pressure
V5	Cell pack weight
v6	Positive plate group weight
V7	Negative plate group weight
v8	Voltage at end of $40^{\circ} \mathrm{F}$ overcharge
v9	Time-filling to start of precharge
V10	Capacity - 3rd cycle elec. op. in A-hr.
VIl	Capacity - 3rd cycle cell selection in A-hr.
V12	$40^{\circ} \mathrm{F}$ overcharge pressure
v13	Cycle 1 2 Pressures at end
V14	Cycle 2$\}$ of each cycle of
V15	Cycle 3 Gulton's electrical operations
v16	Cycle 1) Pressures at end of each
V17	Cycle 2$\}$ cycle of cell selection.
v18	Cycle 3
V19	Room temperature overcharge pressure
v20 (dependent variable)	Gas (ml) evolved during precharge

Variables Selected as Having the Largest Correlation With the Amount of Gas Generated During the Precharge of OAO Battery S/N 34,35

Rank		Description	Beta Coefficient
1	V9	Time-fill to precharge	-0.944
2	V12	Pressure, end of 40° F overcharge	+0.849
3	V4	Pressure, end of $90^{\circ} \mathrm{F}$ overcharge	-0.709
4	V2	Wet cell weight	+0.583
5	V1	Dry cell weight	+0.416

TABLE 2.2.3-2

3.1 OAO BATLERY MODEL

A computer program has been developed to predict the performance of OAO batteries during acceptance teste and flight conditions. This program is written in Fortran IV language and has been modified for use on a 360/67 time-sharing system. It is capable of predicting instantaneous battery voltage and current at each orbital minute, with various charge-mode data inputted. Percent capacity returned, watt-minutes imput and output and efficiency are calculated and displayed at the end of each orbit. The model was based on 15% depth-of-discharge during the orbit. It does not presently update battery temperature at, each orbit although the amount of heat generated in the battery is predicted. Minor modification is necessery to enable utilization of predicted heat generation to update termparature. The voltage limit to which the battery is charged is a function of battery temperature. Since temperature remains constant in the program, the BVLS curves become single point values, initially established by inputting the constant temperature. The operator establishes battery rating (nameplate capacity) and specifies the number of cells in the battery, enabling the progrem to convert from cell voltage to battery voltage levels.

3.2 IOGICAL OPERATION

The model basically consists of five discrete sections, all appearing in subroutine BRR. These are the discharge model section, the charge model section, an overcharge model section an efficiency section and a thermal section.

3.2.1 The Discharge Model

The discharge model was developed from a series of parametric tests which characterized the discharge profile of a $\mathrm{Ni}-\mathrm{Ca}$ cell as functions of depth-ofdischarge, battery voltage, current and temperature. These tests yielded the following type curves:

The curves were developed for reasonable discharge currents at various temperatures and proceding charge cycle voltage limits. Shapes were determined by a least-squares fit of data for various temperatures and depths-of-discharge (DOD). Hence, the battery voltage can be characterized as a function of depth-of-discharge and the voltage limit of the preceding charge cycile. Notice that the curves are independent of temperature (normalized over the temperature range from $40^{\circ} \mathrm{F}$ trough $90^{\circ} \mathrm{F}$). These VBNTI vs. VIDNIT curves are assumed linear of the form $y=i n x+b$ where:

```
y = BIVL = Battery Voltage
m}=\mathrm{ RFRLD = Slope of Curve
```

```
x = BAIVI = Battery Voltage Limit
b=RFVID = Voltage Intercopt
```

The input data set consists of a set of six such curves, each at a particular depth-of-discharge. The indicator for the depth-of-diacharge is a variable labelled FFOUN. Thus, the input data set takes the form:

The test data was obtained under the condition AMDNT = AMMO, or, when the battery started into the discharge phase at 100% state-of-charge. In practice this is not always true so an adjustment must be made relating the input data to the actual state-of-charge of the cell. This is done by the function RBOUT where:

This equation takes the form of $y=m x+b$ where:
$y=$ RBOUT $=$ Adjustment Factor
$m=$ Scale Factor
$x=\operatorname{CTHR} / 60 *$ BPCAP
b $=$ Offset Factor
Notice that if AMINT = AM100 then both the scale factor (m) and the offset factor (b) equal zero. When we begin an orbit (if we assume the initial S.0.C. $=100 \%$) then:

CIOT $=\mathrm{BSOC} * \mathrm{AMLOO}=1.0 \times \mathrm{AMLOO}=\mathrm{AMIOO}$
AMINI $=$ CIOT
AMINI $=$ AM100
The value of RBOUT then reduces to:

$$
\text { RBOUI }=\frac{\text { CIHR }}{60 * \operatorname{BPCAP}}=0 \text { since } \operatorname{CIHR}=0
$$

The calculated RBOUT is compared to the values of RFOUF that were entered as input data. The relative position of RBOUT amongst the RFOUI curves is established by the DO loop (statement \#310-3).

When the value of statement \#310-1 becomes zero or positive then the true value of the line is found by interpolation between the FFOUT curves. This is accomplished by statement 320:

```
(320) RDSOC = - - RBOUN - RFOUT (NXSOC)
```

Having determined the location of the point between two input data. curves a slope and intercept of a line through the point and equiaistant from the input data curves can be determined:

```
            RFVD (Voltage Intercept) \(=(1-\mathrm{RDSOC}) *\) RFVID (NXSOC) +
                                    RDSOC * RFVLD (NXSOC + 1)
\(\operatorname{RFRD}\) (Slope) \(=(1=\operatorname{RDSOC}) * \operatorname{RFRLD}(\) NXSOC \()+\) RDSOC \(* \operatorname{RFRLD~(NXSOC~}+1\) )
```


BAIVL

From this curve, the battery voltage can be determined for a particular $\nabla_{\text {I }}$ (Voltage Limit from preceding cycle). The voltage intercept (CFK) is ad.justed for the number of cells in the battery and modified by the tolerance of the input data set:

CFCR (Slope) $=0$ since we assume a constant discharge current

The calculated instantaneous battery voltage and current are therefore:

$$
\begin{aligned}
& \text { BIVL }=\text { CFK }=\text { Voltage } \\
& \text { BICR }=\text { CNEG }=\text { Current }
\end{aligned}
$$

3.2.2 The Charge Model

The input data set for the charge model is developed in a similar manner to that for the discharge model data set; i.e.: as a function of depth of discharge and battery voltage limit from the preceding orbit. One important difference, however, is that whereas the discharge data is defined for "reasonable current rates", the charge model data is particular to two discrete rates, namely, a $C / 2$ and a $c / 4$ charge. In similar " manner to the discharge section, a set of curves were developed relating battery voltage to the voltage limit of the preceding orbit, at the

These curves, again a Inear, least-squares interpolation over the temperature range $40^{\circ} \mathrm{F} \leq \mathrm{x} \leq 90^{\circ} \mathrm{F}$, are each characterized by a state-of-charge indicator RFIN; a slope RFRLC; and a voltage intercept, RFVLC. They are inputted in this form for the two charge rates. The input data set was derived from data on cells which were cycled. to 15% D.O.D. In any particular orbital regime the discharge depth may exceed or be less than 15% of rated capacity. Therefore a scale and offset factor adjusts the imput data set to comply with particular usage restraints. Statement 400 is the offset factor:
(400) $\mathrm{PBSDL}=.300 * \log _{10}\left[\operatorname{Max} \cdot \operatorname{of}\left(\frac{\mathrm{AMLO}-\mathrm{AMDL}}{9 * \operatorname{BPCAP}}\right) \operatorname{or}\left(10-9\left(\frac{\mathrm{AMDL}}{\mathrm{AMIOO}-9 * \mathrm{BPCAP}}\right)\right)\right]$ where the factor $(9 * B P C A P)$ is the number of ampere-minutes corresponding to a 15% D.O.D. relative to the nameplate capacity at 100% S.O.C. Therefore this equation, in effect, compares the number of ampere-minutes out of the battery at the end of the discharge (eclipse) period to the actual (AM1OO) capacity the cell can contain, and determines whether it is: less than or greater than a 15% depth-of-discharge $(9 * \operatorname{BPCAP})$.

It then adjusts the data accordingly.

The scale factor is given by:

CIHR

If the cell is not in the overcharge region, the next atep is to locate the position of the instantaneous data point amongst the imput data curves. This is done by a "do loop". (as it was in the discharge model) and the exact location calculated by:
(520) \quad RCSOC $=\frac{(\text { RBIN }-(\text { RFIN }(N X S O C)+R B S D L))}{R F I N(N X S O C+1)-R F I N(N X S O C)}$

(IXXSOO) itand REIN (IXSOC it.izu
Having defined the locus of the point between two imput data curves, a slope and intercept of a line through this point and equidistant from each input data line is found by:

RFVVL (NCR) $=(1-\operatorname{RCSOC}) *$ RFVLC (NXSOC, NCR) + RCSOC $*$ RFVLC
(NXSOC $+1, \mathrm{NCR}$)
RFRL (NCR) $=(1-\operatorname{RCSOC}) *$ RFRLC (NXSOC, NCR) + RCSOC * RFRLC
(NXSOC +1 , NCR)
where $\mathrm{KFVL}=$ Voltage Intercept RFRL = Slope of Line

These factors are detemined for the two values of current ($c / 2$ and $c / 4$) where NCR $=1$ to 2 giving:

Using this curve, two points can be determined for a given voltage limit (of the preceding orbit), shown here as RFV (1) and FFV (2) and defined mathematically as:
(530-1) RFV (NCR) = BCEL * RFVL (NCR) + BATVL * RFRL (NCR)
Again, the "BCEL" factor adjusts the value of RFV to account for the inmber of series-connected cells in the battery while BATVL adjusts the voltage limit intercept.

Replotting the points on a general V-I curve gives the following relationship:

The slope of this curve can be defined mathematically as:

$$
\mathrm{CFCR}=\frac{\mathrm{RFV}(1)-\mathrm{FFV}(2)}{\mathrm{BPCAP} / 4} \quad(\mathrm{C}=\mathrm{BPCAP})
$$

The voltage intercept can be defined by:

$$
\mathrm{CFK}=(1-.003 * \operatorname{BIOL})\left(\mathrm{RFV}(2)-\frac{\mathrm{BPCAP} * \mathrm{CFCR}}{4}\right)
$$

where the factor ($1-.003$ * BIOL)
accounts for the tolerance of the input data curves.

At this point the pmogram returns to EPBAT (the main) and the calculation
of the instantaneous battery voltage and current proceeds:

```
BTCR = (. 50 XSYS) CPOS (Current)
Note that since the cell is not in overcharge then:
        NXSYS = 2
        XSYS = NXSYS -2 = 2-2 = 0
        BICR = (.50})\textrm{CPOS}=\textrm{CPOS
    BTVL = CFK + CTCR (CFCR) (Voltage)
```


BICR

3.2.3 The Overcharge Model

Overcharge; in subroutine BTR, begins at statement label number 600 , with NXSYS now at a value of 3 or greater. At statement number 520 (in the "DO" loop or the charge model) the value of NXSOC will become equal to 5 on overcharge, fryplying thet interpolation will begin from the topmost curve in the input (charge) data set. The two curves defined with IXSOC =5 are obtained identically to the method described for the charge model:

Again two points, here labelled A and B, can be defined for any voltage limit of the preceding orbit.

Another set of curves can be derived as a function of charging temperature, the data having been derived at two overcharge rates: $C / 10$ and $c / 40$. The curves assume the form:

For a given T, therefore, two points (voltages) can be derived; vBOCL and $V B O C H$, defined by:
@ $C / 40$ rate: $\operatorname{VEOCL}=$ BCEJ $*(8.060872-.43429 * \operatorname{LOG}(B I E M P)) / 4.471236$
@ C/10 rate: VBOCH $=$ BCHL * $(7.397980-.43429 * \operatorname{LOG}($ BIENP $)) / 3.842047$
where: BCED is the factor relating the voltage of s ingle cell to the number of series-connected cells in this batitery

BIFMP is the battery tamperature and
the coefficients are least-squares fits of test data in linear $(y=$ $m x+b)$ form.

Re-plotting on semi-logarithmic paper gives:

On linear graph paper this looks like:

For a given voltage limit, V_{L}, a tangent to the curve can be constructed, the equation of which is:

$$
\begin{aligned}
& \text { CFCR2 }=\left(\frac{10}{\text { BPCAP }}\right) *\left(\frac{\text { VEOCH }- \text { VEOCL }}{.43429 ~} 2 N(4)\right) *\left(\frac{\text { VBOCH }- \text { BATVL }}{V E 0 C H-V E D C L}\right) \text { (Slope) } \\
& \text { CFK2 }=(1 .-(.015381 * .434292 N(B T E M P)-.023575) * \text { BIOL }) \\
& \text { * (BATVL } \left.-\left(\frac{\text { VEOCH }- \text { VBOCL }}{.434291 N(4)}\right)\right) \text { (Current Intercept) }
\end{aligned}
$$

Using the values of CFFK2 and CFCR2, the $\%$ return can be calculated as a function of the voltage limit:

$$
\text { PCRIN }=(1+.013 \text { EIOL })\left(.923263+.222928\left(\frac{20}{\mathrm{BPCAP}}\right)\right) *\left(\frac{\text { BATVL }- \text { CFK2 }}{\mathrm{CFCR} 2}\right)
$$

Notice that the factor $\frac{\text { BAIVL - CFK2 }}{\text { CFCR2 }}$ is a current,
the factor $(.923263+.222928(20 / B P C A P)$ normalize
the data to a $20 \mathrm{~A} . \mathrm{H}$. cell and
the factor ($1+.013$ HIOL) is a tolerance on the imput data curve.

Since this data was for continuous overcharge, it can be expressed in the following graphical form:

Next, an interpolation factor has to be calculated to determine the locus of the line between the two V-I curves (the one temperaturebased; the other voltage-limit-based). This is accomplished by the factor RSO:

$$
\mathrm{RSO}=\left(\frac{\mathrm{CIOT}}{\mathrm{AMDOD}}\right)^{4}\left(\frac{\mathrm{RBIN}-\operatorname{RFIN}(5)+\mathrm{RBSDL}}{\text { PCRN }-\operatorname{RFIN}(5)+\mathrm{RBSDI}}\right)
$$

Notice that if AMIOO $=100 \%$ and CIOT $=95 \%$ S.O.C. then

$$
\left(\frac{\text { CIOT }}{\text { AM1OO }}\right)^{4}=(.95)^{4}=: 6
$$

$$
\text { if AMIOO }=100 \% \text { and CIOT }=97 \% \text { S.O.C. then }
$$

$$
\left(\frac{\text { CIOT }}{\text { AMIOO }}\right)^{4}=(.97)^{4}=.88
$$

Thus, for a 2% increase in the state-of-charge, the interpolation factor is increased by 28%, resulting in unequal increments for ampere-minutes returned.

By combining the scaling factors, we can derive the equation of the current line as a function of charging voltage:

Expressed mathematically:

$$
\begin{aligned}
& \text { CFCR }=(1-\mathrm{RSO})(\text { CFCRI })+\mathrm{RSO} \text { (CFCR2) } \\
& \text { CFK }=(1-\mathrm{RSO})(\text { CFKI })+\mathrm{RSO} \text { (CFK2) }
\end{aligned}
$$

At this point control is passed back to the main program. The new charging current and voltage is defined by:
(1) BIVL $=$ VREG
Taper Charge: (Mode 1)
$\mathrm{BICR}=(\mathrm{BIVL}-\mathrm{CFK}) / \mathrm{CFCR}$.
(2) $\mathrm{BTCR}=\left(.50^{\mathrm{XSYS}}\right) * \operatorname{CPOS} \quad$ Step Charge (Mode 0)
BIVL $=$ CFK + BICR $*$ CFCR

In (1), the taper charge, the battery voltage is locked at the voltage limit and a new, reduced, current value is calculated.

In (2), the step charge, the battery current is reduced by 50% each time the voltage of the battery hits the limiting voltage. The new, reduced, voltage is then calculated accordingly.

3.2.4 The BPPiciency Model

The discharge efficiency is set at a constant $=1.0$ by definition. When on charge or overcharge, efficiency is a function of temperature, charge rate and state-of-charge.

From emipirical (test) data, a family of curves was generated relating efficiency to state-of-charge, for various rates and temperatures. The curves were reduced mathematically to equation form nad then coollt cients read in as input data. Temperature ranges of $40^{\circ}, 35^{\circ}, 70^{\circ}$ and $90^{\circ} \mathrm{F}$ were employed and at each temperature, four charge currents were utilized; 1, 2, 5 and 10 amps. The input data looks thus, in graphical form:

$$
\text { where PNPR }=100 . \times \frac{C T O T-A M D L}{A M 1 O D-A M D L}=C A D D
$$

PNPR determines the relative number of ampere-minutes from the start of the light period to the end of the light period.

By knowing the battery temperature, a certain family of input data curves is selected by the factor KT.

$$
K I=1+4 *\left(\frac{\operatorname{IIP}}{55 I}\right)+4 *\left(\frac{\operatorname{ITP}}{70 I}\right)
$$

and $\operatorname{IIP}=10$. * BITEMP
Thus, if the battery temperature is less than $55^{\circ} \mathrm{F}$, KT will have the integer value of 1 ; if the tenperature is greater than 55° yet less than 70°, KT will have the integer value of 5 ; etc.. An extrapolation between two temperature sets of data (values of KTP) is then performed to determine the exact temperature locus relative to the discrete input
levels. This factor is calculated to be:
$\mathrm{RTE}=\mathrm{BTEMP}-\mathrm{RFSE}(\mathrm{KT})$ RFSE (KIT + 4) - RFSE (KT)
for $\operatorname{BTEMP}<110^{\circ} \mathrm{F}$
where RFSE is the input data indicator (= Rate x Temperature)

A current extrapolation is performed next to determine the relative location of a given point between the various efficiency curves.

$$
K I C=K I+\frac{I B T C R}{201}-\frac{\text { IBICR }-297}{2 O H}+\frac{\text { IBICR }}{501}-\frac{I B I C R-501}{501}
$$

where $\operatorname{IBTCR}=100 . *\left(\frac{20 .}{\mathrm{BPCAP}}\right)(\mathrm{BICR})$
This establishes the rehative position of the point between two charge curves. The exact locus can be found via extrapolation by:
$\mathrm{RCE}=\frac{((20 . / \mathrm{BPCAP}) * \text { BICR } * \mathrm{RFSE}(\mathrm{KT})-\mathrm{RFSE}(\mathrm{KTC}))}{(\mathrm{RFSF})}$ (RFSE (KIC + 1) - RFSE (KIC))

Now knowing the relative location of the curves relating to temperature and current, the exact locus of the curve can be found by extrapolation. This will yield three points on the efficiency vs. S.O.C. curve:

PNPR

Where:

```
EP (IEP) \(=(1 .-\operatorname{RIE}) *((1 .-\operatorname{RCE}) * \operatorname{RFEP}\) (KTC, IEP) + RCE * FFEP
        \((\mathrm{KIC}+1, \mathrm{IEP}))+\mathrm{FITE} *((1 .-\mathrm{RCE}) * \mathrm{RFEP}(\mathrm{KIC}+4, \mathrm{IEP})+\)
    RCE * RFEP (KTC + 5, IEP)
```

The equation of the exponential fit through these three points
is given by

$$
\mathrm{EFFC}=\mathrm{EP}(1) * 1.0-\left[\mathrm{Cl} \epsilon^{\left(\frac{\mathrm{PNPR}}{\mathrm{C} 2 * E P(4)}\right)}-1.0\right]
$$

where:

$$
\begin{aligned}
& \mathrm{CI}=\left(1 .-\frac{E P(2)}{E P(1)}\right) * \epsilon^{\frac{-E P(3)}{\mathrm{C} 2 \mathrm{EPP}(4)}} \\
& \mathrm{C} 2=\left(\frac{E P(3)}{E P(4)}-1 .\right) / \mathrm{ALOG}\left(1 .-\frac{E P(2)}{E P(1)}\right)
\end{aligned}
$$

Limits are now set on the curve; a maximum efficiency value given by EFMAX - RFEP (KT + 3, 1) and a minimum value given by EFFMIN $=.01-.0001$ * CADD. Graphically this can be shown as:

Thus the efficiency at a given state of charge is defined by the locus of the line EFFC up to point where it is then defined as (.01 - .0001 * CADD).

3.2.5 Thermal Section

The present OAO battery model has shown close correlation with actual data although it does not incrementally update the battery temperature at the end of each orbital minute. However, the heat generation is calculated and updated at each minute interval. Essentially two thermal models are employed and the average of these two
used for the heat generation rate.

BHCMM (Model l) is defined as:
BHGMI $=\frac{(\text { WMIN }- \text { WMOUI })+(A M I N T-A M F I N)(B C E L)(1.48)}{\text { TORB }}$

BHGM2 (Model 2) is given as: BHGM2 $=\frac{(.13)(\text { WMOUT })+\text { WDCHG }}{\text { TORB }}$

They are then averaged to give
$\mathrm{BHGM}=\frac{\text { BHGMI }+ \text { BHGM2 }}{2}$

3.2.6 Iisting of Varlable Names (Label Table)

- A -

AMAXI	Function for Determining the Maximum of Two Variables
AMOL	Ampere Minute Capacity at E.O.D./S.O.I.
AMFIN	Aupere Minute Capacity at E.O.L
AMINI	Function for Determining the Minimum Value of Two Variables
AMINT	Ampere Minute Capacity at S.O.D.
AM100	Theoretical Capacity in Ampere Minutee

- B -

BAIVL Battery Voltage Limit on Charge
BCEI
BCRITN
BHCM
bHGMI
BHGC2
BSOC
BICR
BIEMP
BIOL
EITR
BIVL
EVLS

CADD
CAP-FIN
CFCR
CFK
CTEG
CPOS
CTHR
CHOT
Cl
C2 $\}$
Number of Series-Oonnected Cells in Battery
Capacity Returned at End of Orbit
Battery Average Heat Generated in Watts
Heat Generation Model \#l for Battery
Heat Generation Model HP for Battery
Initial Battery Itate-of-Charge (x 200)
Battery Current Pate
Battery Temperature
Tolerance of Ingut Data Curves (Uevally taken as zero)
Subroutine for Calculation of Instartaneous Battery Parameters
Battery Voltage LAvit on Charge
Charging Voltage Limit Based on Tomperature

- C -

Relative Charge Indication
Capacity Returned at End of Orbit
Slope of General V-I Curve
Voltage Intercept of General V-I Curve
Discharge Rate in Auperes
Charge Rate in Amperes
Instantaneous Summation of Ampere-Minutes to a Paxticular Time
Actual Energy Content in Amp-Mnutes (Theoretical x State-of-Charge)
Coefficients of Determined Efficiency Curve

- D -
- E -

EDBV	Battery Voltage at E.O.D.
ExFTC	Efflciency Coefficient (x 100\%)
Emphx	Line Defining Maximm Theoretical Erficiency
EMIN	Minimum Realizabie Efflciency
EOD-VOL	Battery Voltage at E.O.D.
EOLTCUR	Battery Current at E.O.L.
EOLmEFF	Battery Efficiency at E.O.L.
EOL-VOL	Battery Voltage at E.O.L
EPPAT	Dafines a Point on the Efficiency Curve Main Progrem

- F -
- G -
- H -
- I -

IBICR	Battery charge rate normalized from 20 AH NiCd data
ITAY	Records day of month of user run
IGOIO	Decides to stop program or read in new orbit parameters
IONIH	Records month of user run
IREG	Is zero if regulator is off; is one if resulator is on
ISERTI	Argument of BIR; allows program to read in model coefficients only when it is the first minute of discharge, otherwise it skips the reading section and begins processing
ITIME	Integer count for mech mimute of orbit
IIP	10. x battery terperature
IYEAR	Year of user run

- J -
- K -

Teuperature index to locate battery temperature relative to input data set
Index relating charge rate to terperature

- L-

Becomes positive only when not in eclipse portion of orbit Total orbit time in mimutes

- M -

Method of charge control (" 0 " = step, " 1 " = taper)

- N -

Integer value of orbit number

NSIT
hsuir
HIO
FIORB
NXSYS
" 0 " means no printout at end of orbit
" 1 " means print peremeters at end of orbit
Mumber of minutes into the eclipse (discharge) region Fumber of minutes into the light region Integer value of orbit mumber Total number of orbits
Has the value " 1 " when sy日tem is on discharge
Has the value " 2 " when system is on charge
Has the value " 3 " or greater when the system is in overcharge

- 0 -

RAD
RBIN
RBOI
RBOUT
RBSDL
RCE
BC:30C
RDPOC
RFEP
RFIT KIFOUT
EFFRD
RFFTL
RFRLC
FFFRLD
RFSE
RFV
RFVL FiPVLC
FrVID
RSO
RIE

TSUN

VEOCH
VEOCL
VREG

WATOT
WDCEG

PCRIN	Per-cent capacity returned
FHPR	Relative charge indication

QBAY "Q" value of battery heat sink

- R -

Per-cent capacity returned
Relative charge indication

- Q -
"Q" value of battery heat sink

Capacity returned at end of orbit
Scale factor for charge model curves
Scale and offset factor for diacharge model curves
Scale and offset factor for disolinge model curves
Offset factor for charge model curves
Relates rate difference between dita set and actual battery current
Location of instantaneous charge ourve between inpurt data curves
Location of instantaneous discharge curve between input data curves
Coefficients for efficiency model on input cata set
Indicator for input charge model data set
Indicator for input discharge mode data set
Slope of voltage vi. voltage limit curve for diacharge model
Slope of voltage vs. voltage limit curve for charge model
Slope of charge model on input data set Slope of diacharge model on input data set
Rate/temperature index for inplat efficiency model curves
Point on charge curve relating battery roltage to voltage linit
for two charge rates
Voltage intercept on charge model curve
Voltage intercept on charge model input data set
Voltage intercept on discharge model input data set
Relative location of overcharge curve on I-v plot
Relative temperature difference between battery and input data

- S -
- T -

Dumay variable, not presently used in program

- U -
- V -

End of charge voltage for $\mathrm{C} / 40$ rate at opecific temperature Find of charge voltare for $\mathrm{c} / 10$ rate at apecific teaperature Mardmum allowable voltage on charge

- W -

Sumation of watt-minutes
Updates watt-mimutes on charge

WMIN	Sumation of watt-minutes
WMOUT	Sumation of watt-minutes out of battery during discharge
	- X -
XSYS	Becomes positive when system is in overcharge
	- \mathbf{Y} -
	- 2 -

3.3 PROGRAM MECHANICS

3.3.1 Operating Procedure

The execution begins with raw data being printed out. The program asks the operator if the data is correct. If the answer is no, the program returns to the step in which the charge time (NSUNT). etc. are entered. In so doing, incorrect data is erased and the new input parameters are accepted. The operator selects the number of orbits next and tells the program to print the output on a minute-by-minute basis by the command $\underline{N R I T E}=1$. If a minute-by-minute output is not desired NRITE is set equal to zero. NIORB is the number of orbits through which the batteries cycle. If the operator wishes to print the output onto a disk the program has the capability to do so. The output is printed onto the disk in 4 F10.3 format, the data consisting of the efficiency, battery state-of-charge, battery voltage and current at a time interval specified by the next statement. The output is also printed onto the console (see sample output) at a time interval specified by the final statement, e.g. - every "I" minutes.

The example given herein was executed for ; orbits with the printed output appearing at 1 minute intervals. Summaries are given for the first three orbits consisting of the following:

EODV - the battery voltage at the end of the discharge
EOLV - the battery voltage at the end of the charge period
EDIF - the efficiency at the end of light
CRTN - \% capacity returned
AMINT - A.MIN capacity at start of the dark period
AMOL - A.MIN capacity at E.O.D./S.O.L.
AMFIN - A.MIN capacity at end of the light period
WMO - watt-minutes out this discharge
WMIN - watt-minutes in this charge.
Below this output are three numbers representing the thermal coefficients. The first two are heat generation rates for the orbit; the third is an average of these two. The fourth (0.0) is a constant, not presently used.

Upon exceution of the final (4th) orbit, the data is printed at the apreified interval, in this case each minute. Reading from left to right, the output data consists of the following: TIME (orbital minute), REGUATOR STATUS ("O" = OFF, "1" = ON), RBOI, CFK, CFCR, CTHR, WATOT, EFFF, CTOT, BSOC, BTVL and BICR. The interpretation of each of these variable names is listed in the Label Table (Section 3.2.6).

The program terminates by asking the operator if he wishes to stop (program execution), loop or start again. By looping, the operator returns to the statement asking him to specify the number of orbits and if a print-out is desired. By starting again the operator returns to the beginning of the program and may read in new battery input parameters
(state-of-charge, BVLS, temperature, etc.).

3.3.2 Sample Output

The OAO battery model was used to predict the performance of the spacecraft A-2 batteries during orbit 14, 427. The parameters were inputted into the model in the following order:

- Date of prograin execution in month, day, year
- inputted as 012172 (21 January 1972)
- Time in sun (charge time) of 65 minutes

Total orbital time of 101 minutes
Nameplate capacity equal to 20.0 AH
Number of cells in battery (21)
Mode (of charge), in this case " 1 " which means taper charge after voltage limit.

- Initial state of charge inputted as $1.0,01,100 \%$

BVIS = 2
Battery temperature (a constant) of $50.0^{\circ} \mathrm{F}$
BIOL, the curve tolerance, usually set at zero
CNEG, the discharge rate, equal to -4.6 amps
$C P O S$, the charge rate, equal to +4.8 amps.
A copy of the computer output is shown in Appendix Fs and Figure 3.4-1
3.4 PREDICIION CAPABIITIY

A comparison of the predicted and actual flight data is given in Figures 3.4-1, 3.4-2, and 3.4-3. As can be seen the computer model satisfactorily predicts the battery charge and discharge response at each BVLS level. Predictions comply best with actual data in the end-of-dark battery voltages, time in shunt mode and end-of-light battery currents. The largest difference between actual and predicted data appears in the: ahape of the charge voltage curve during the unregulated portion. In each case the model predicts a lower voltage than is realized in filght. Some difference also appears in tie regulated battery voltage parameter. This difference is probably caused by the inability of the model to relate thermal sbanges in the battery back to changes in the charging voltage limit. Nevertheless, the model does predict battery operation, when operating in a power system having known characteristics, quite well despite the thermal inflexdbility.

SECTION 4.0

OAO-2 FLIGHT DATA SUMMARY

4.1 OAO-2 FLIGHT PERFORMANCE - FIRST TWO-KEEK SUMMARY

Batteries

Battery operation has proceeded under the Pover Charge Controller (PCU) BVLS control (levels shown in Figure 4.1-1) for the entire mission. Battery cool-down following separation was as expected. (see Figure 4.1-2). The batteries have been in a high state of charge for the entire misaion, as evidenced by the high adhydrode voltages at the end of light.

Thus far there have been three BVLS levels used:

1. Launch to QIO-5: BVIS 4 - Under this level of control the adhydrodes were reaching into the $450-500$ millivolt range at end of light. While this is not dangerous, it was considered to be desirable to lower the level.
2. QIO-5 to MAD-146: BVLS 3 - Under this level of control the adhydrodes were reaching 350 to h 25 millivolts at end of light. This was comfortable but still on the high side.
3. MAD-146 to present: BVLS 3 - This change in BVLS level was made in order to establish a new battery operational regime. Under this operation, the bettery temperature has lowered to about $50^{\circ} \mathrm{F}$, from the more or less typical value of $54-550 \mathrm{~F}$ above. In addition end of light adhydrode voltages are now in the 315 to 385 mv region.
Overall battery performance is excellent.
Major Indicators of System Performance
Specific comments are as follows:
4. Battery temperature - presently holding steady in low 50's for past 100 orbits.
5. End of light adhydrode voltages - consistently high indicating overcharge in every light period, except for flip maneuver.
6. End of light charge currents - holding ateady at reasonable values, no evidence of irising.
7. Find of dark battery voltages - holding steady in the area of 26 to 26.5 volts. (Under-Voltage Regulation-Generator (URG) activates at 25.2 volts).
8. Minutes of shunt charge - opacecraft orientation (beta angle) dependent to a large degree, but for a given attitude it holds steady in 10-20 minute region.

4.2 30-DAY OAO-2 FLIGFTT SUMMARY

Battery perforwance was excellent with no problems of any sort. Specifically there was no evidence of the problem observed during the vehicle acceptance thermal vacurum test.

MOTE: : The batteries on board during the test had become negative $11 m i t e d$, causing potential gassing problems, and reducing effective power utilization. For this reason, they were deemed umworthy for flight, and a new set of batteries was built, tested and flown.
Battery overcharge characteristics appeared satisfactory. In general, end-ofcharge currents were in the anticipated range, (see Figure 4.2-1), and were high enough to verify that the battery was not negative limited. (It should be noted that, if the batteries were negative limiting, battery voltage would normally tend to rise sharply, and hydrogen evolution would ensue. In a voltagerregulated charge, as used on $O A O$, the effect would be that of a relatively sharp reduction in end-ofcharge trickle current due to the batteries' higher back EMF. Hence, the preceding statement). Lack of telemetry resolution presented a problem in a detailed analysis.

Battery temperature decreased from the launch level of 78°, as expected. After the initial cool-down, the teryerature remained in the range of $50-60^{\circ} \mathrm{F}$ (see Figure 4.1-2).

Battery internal impedance was as anticipated, with voltage decreasing to 26-26.5V by the end of the dark period (see Figure 4.2-2). Matching of the batteries was adequate, evidenced by typical current sharing as follows: Dark - 33, $34,35 \%$, shunt charge - $32,34,34 \%$. Comparisons of flight data points with preflight predictions of charge and discharge performance are shown in Figure 4.2-3 and 4.2-4. Comparisons are quite good, considering errors and uncertainties in telemetry interpretation.

Adhydrode performance was consistent, and, as anticipated, the actual operating range imediately after launch confirmed that batteries were receiving the high degree of overcharge demonstrated in the thermal vacum acceptance test.

Battery Recharge and Ioad Support

The solar array output was entirely adequate to provide supficient battery recharge and support the vehicle load requirements. Since there is no known way of directly monitoring battery state-of-charge, the inference that the battery was consistently fully recharged was drawn from the performance of the following parameters:
a. Adhydrode voltages at the end-of-1ight
b. Battery charge currents at the end-of-light
c. Battery discharge voltages at the end-of-dari
d. Battery temperature
e. Duration of short charge (battery charging until regulator turn-on)

Stability of the above parameters over many orbits is the characteristic performance which indicates full battery recharge. Conversely, if the batteries were not being fully recharged, the resultant orbit-to-orbit loss of capacity would be evident from orbital trends showing the parameters to be unstable in the following manner*:
a. End-of-light adhydrode voltages, end-of-dark battery voltages, and battery temperature would gradually decrease;
b. End-of-light charging currents, and shunt-charge duration would gradually increase.
As can be seen from Figures 4.2-2, 4.2-5 and 4.2-6, the parameters were very stable (except for the predictable effects of BVL, load, and/or attitude changes - see discussion below). Over many orbits, there is no tendency toward the stability trends discussed above. On this basis it was concluded that the battery was consistently fully recharged. The correlation among flight data, prediction, and pre-flight tests will be discussed below in this report.

* NOTE: The characteristic relationship of stability of these parameters with sufficient battery recharge and instability with insufficient recharge had been demonstrated and verified in pre-flight subsystem tests.

Effects of Changes in BVL 2 Load, Attitude

Twice during the early orbital life of the spacecraft, the BVL was deliberately lowered by command. In both cases it was done because end-of-light adhydrode voltages showed that the battery was receiving a higher degree of overcharge than was necessary. In neither case was there any immediate danger to battery operation, but it was felt that a reduced amount of overcharge would be more conducive to battery longevity.

Prior to launch, the BVL had been pre-set to level 4 (nominal) as the optimum level for safe battery recharge considering the uncertainly range in Solar Array performance predictions. Pre-flight battery and subsystem tests had demonstrated that an end-of-light adhydrode voltage of 300 mV , If stable from orbit to orbit, was indicative of full recharge, and also that values well above 300 mV - indicative of a high degree of overcharge could be expected if Solar Array performance should be substantially above the worst-case minimum performance prediction.

During the first five orbits after launch, it was observed that:
a. Overall subsystem performance was good;
b. Solar array performance was within predicted limits and well above the worst-case minimum prediction;
c. End-of-lieht adhydrode voltages were conalutently in the ruwe of $400-460 \mathrm{mV}$, verifying the high degree of overcharge expected from b..
Based on the above observations, and the decision to reduce the amount of battery overcharge, the BVL was commanded from level 4 to level 3. The command was executed properly and, as expected, had the following effects (see Figure 4.2-5):
a. Adhydrode voltages decreased by $20-40 \mathrm{mV}$,
b. Battery overcharge currents decreased to 0.6-1.0 A.

Vehicle loads were gradually increased during the checkout period and into Coarse Fointing and Experimenting, with resultant increased battery depth-of-discharge and reduced charge current availability. As expected, the following effects were observed (see F1gures 4.2-2, 4.2-5 and 4.2-6):
a. Further decrease of end-of-light adhydrode voltages into the range of $320-430 \mathrm{mV}$;
b. Slightly higher overcharge currents (still stable over many orbits) in the range of 0.7-1.0 A;
c. Increased shunt-charge duration to the range of $11-16$ minutes (stable, except for the few orbits at 80 B-side with its poor solar array attitude);
d. Decreased end-of-dark battery voltages in the range of 26.026.5V.

In addition (see Figure 4.1-2), battery temperature decreased as predicted during this period to a stable level of approximately $55^{\circ} \mathrm{F}$. As shown in Figures 4.2-2, 4.2-5 and 4.2-6, the flight data corresponded well with pre-flight preaictions.

Observation of end-of-light adhydrode voltages through orbit 145 indicated that the batteries were still being overcharged more than was necessary, and the BVL was therefore comanded from level 3 to level 2. As expected, the following effects were observed (see Figures 4.2-5 and 4.2-2):
a. end-of-light adhydrode voltages decreased into the range of 305-390 mV;
b. overcharge currents decreased into the range of 0.6-0.9 A;
c. battery temperature decreased to approximately $50^{\circ} \mathrm{F}$.

Continued monitoring demonstrated stability over many orbits and verified optimization of subsystem performance.

Comparigon with Predictions

Subsystem and component performance correlated very well with prefilght predictions and tests, as shown in the figures throughout the previous sections of this report. The flight battery T/V test, which was the final and most representative pre-flight demonstration of subsystem performance, has been emphasized in the comparisons of Figures 4.2-5, 4.2-2, and 4.2-6. It must be especially noted that the obvious differences in performance of adhydrode signals, overcharge currents, and shunt-charge duration are entirely explicable and anticipated, in that the T / V test was conducted with simulation of nominal solar Array performance, while actual flight performance was above nominal.

4.3 FLIGHT SUMMARY - FIRST 15,000 ORBITS

The battery assemblies aboard the OAO-2 spacecraft ($\mathrm{S} / \mathrm{N} 25 \mathrm{~A}$ and 26A) have successfully delivered power to the vehicle for over three years so far, with no indications of major degradation. Battery end-of-light currents, end-of-dark voltages and charge time in shunt (unregulated) mode have changed little since orbit \#2000. No thermal problems have been encountered although there has been some indicated rise in end-of-light battery temperatures recently. Operation has been largely confined to low recharges (BVL 2 or 3) to minimize overcharging the cells and, thus, to lengthen useful life. 12

Table 4.3-1 gives the summary statistics for representative orbits at a 90° beta angle orientation, 65 minute charge time and BVLS 3 for orbits 2,143 through 15,126. Temperatures varied between $45-55^{\circ} \mathrm{F}$, consistent with acceptance test data. End-of-light charging currents remained uniform at about 0.7-0.9 amps. End-of-dark voltages ranged between 25.6-26.5 volts, slightly lower than early orbital data indicated. However, the voltages appear uniform and any differences appear to be correlated to temperature which causes the charging voltage limit (BVL) to shift accordingly (see Figure 4.3-1, top and midale curves). The time in unregulated
SUMMARY STATITSIICS - OAO-2 FLTCPIT DATA

ORBIT \#	TIME TO REG. ON	ETID OF LITE CURREATT	END OF DAFK VOIMAGE	TEMPYRATURE
2, 143	17 min .	0.8A	26.26-26.32 V	$50.3^{\circ}-54.6{ }^{\circ} \mathrm{F}$
3, 676	23 min 。	0.8A	25.93 V	$46.6^{\circ}-50.9{ }^{\circ} \mathrm{F}$
4, 922	21 min .	0.8A	25.86-25.99 V	$45.4^{\circ}-50.3{ }^{\circ} \mathrm{F}$
6, 402	20 min .	0.7 A	25.86-25.93 V	$46.0^{\circ}-50.9^{\circ} \mathrm{F}$
6, 781	20 min .	0.7A-0.8A	25.66-25.80 V	$49.0^{\circ}-53.49 \mathrm{~F}$
7, 579	26 min.	0.7 A	25.86-25.93 V	$42.4{ }^{\circ}-47.8{ }^{\circ} \mathrm{F}$
8, 814	21 min .	0.6A-0.7A	25.93 V	$44.8{ }^{\circ}-50.3^{\circ} \mathrm{F}$
9, 266	21 min.	0.6A-0.7A	25.53 V	$45.4^{\circ}-50.9{ }^{\text {a }}$
11, 625	21 min.	0.6A-0.7A	25.80-25.86 V	$47.2^{\circ}-52.7^{\circ} \mathrm{F}$
12, 741	26 min .	0.6A-0.9A	25.80 V	$46.0^{\circ}-51.5^{\circ} \mathrm{F}$
12, 745	27 min .	0.7A00.SA	25.60-25.86 V	$45.4^{6}-50.9^{\circ} \mathrm{F}$
75, 126	20 min .	0.7A-0.9A	26.32-26.45 V	$51.5^{\circ}-56.5^{\circ} \mathrm{F}$

BVLS 2 $\beta=90^{\circ} \quad 65 \%$ Suntime $\quad 101$ Minute Orbit
 TARTE 4.3-1

(shunt) charge mode held steady at $20-27$ minutes, this value being somehwat higher than early plight data but close to the T / V teat data (see Figure 4.2-6). Early data (orbits 0 to 3000) showed lower duration snunt charges of $10-20 \mathrm{minutes}$. Over 3000 orbits the time to regulator turn-on has been consistently staying about 20-27 minutes. Fquivaient data at BVLS 2 are shown in the lower tabulation of Table 4.3-1. Again the time to regulator turn-on shows a signtificant increase over carly orbital data. End-of-light charge currents and ond-of-dark battery voltages remained consistent throughout. Table 4.3-2 shows a sumary of orbital characteristics for BVLS 2 and 3 at 30 days and after three years of flight. As can be seen, the only appreciable change is in the time to regulator turn-on. All other pramoters indicate ilttle or no battery degredation.

No date is available on percent return for each orbit. However, the parameters studied are indicative of a battery receiving a full charge with each orbit. Firave 4.3-2 and 4.3-3 nhow the number of ampere minutes being put imto the battery during the unregulated (ahunt) charge portion. An average vilue of 120 A-min. ($2 \mathrm{~A}-\mathrm{br}$.) appeers to be returned at BLVS 2 and allghtly lower vaivas for ENLS 3.

The plot of battery ilage en frombien of orbital time is given in Figures 4.3-4 and 4.3-5. The curves show good consistency between early and recent orbits except for differences in shunt charge time. The uniformity in battery charsing reaponse is seen clearly in Table 4.3-3 where the average bettery voltage during the first fifteen minutes on charge is given for orbits 2,143 through 15,126.
QAO-2 FLITGFT BATTEEY RERFOFMANCE
Comparison of Recent (3 year) and Initial (30 day) Data

	30 Day Data	3 Year Data
BVLS Level	3	3
Orbit Number	100-150	15, 126
Beta Angle	90°	90°
\% Sun	65\%	68\%
Total Orbit time	101 min .	101 min ,
Battery Teuperature	$55^{\circ} \mathrm{F}$	51.50-56.5\%
End-of-Dark Battery Voltage	26.0-26.5 V	26.32-26.45 v
End-of-Light Pattery Current	$0.7 \mathrm{~A}-1.0 \mathrm{~A}$	$0.7 \mathrm{~A}-0.9 \mathrm{~A}$
Time in Shunt Mode	12-15 min.	20 min .
bVIS Level	2	2
Orbit Mumber	175-200	14, 427
Beta Angle	90°	90°
\% Sun	65\%	65\%
Total Orbit Time	101 min .	101 min .
Battery Temperature	$55^{\circ} \mathrm{F}$	$46.0^{\circ}-52.1{ }^{\circ} \mathrm{F}$
End-of-Dark Battery Voltage	26.0-26.5 v	26.06-26.12 v
End-of-Light Battery Current	$0.6 \mathrm{~A}-0.9 \mathrm{~A}$	$0.6 \mathrm{~A}-0.8 \mathrm{~A}$
TMe in Shunt Mode	11-15 min.	27 min .

table 4.3-2

BATTERY AVERAGE VOITAGE DURIVG START OF LICHT (S.O.L) FOR FIRST FIFTEEEN MINUTES OF CHARGE

Orbit \#	Avg. Temp.	Start of Light (S.O.L)	S.O.L. +	Min. S.O.L + 6	Min. S.O.L. +15 Min .
2,143	530F	27.50	28.12	28.62	29.98
3,676	490\%	27.18	28.03	28.34	29.54
4,922	$48^{\circ} \mathrm{F}$	27.24	27.70	28.03	29.50
6,402	490\%	27.18	27.90	28.47	29.61
7,579	$46^{\circ} \mathrm{F}$	27.11	27.90	28.16	29.17
8,814	$48^{\circ} \mathrm{F}$	27.20	28.20	28.58	29.67
9,266	$49^{\circ} \mathrm{F}$	27.18	27.95	28.36	29.59
11,625	$51^{\circ} \mathrm{F}$	27.35	28.08	28.56	29.48
12,741	490F	27.18	27.80	28.20	29.12
15,126	$54{ }^{\circ} \mathrm{F}$	27.60	28.60	28.85	29.76

1. All data at bVLS $3, \beta=900,65 \%$ suntime
2. Telemetry data accurate to $\pm 2 \%$ (battery woltages and currents)
TABLE 4.3-3.

SECTION 5.0

SPECIAL CELL TESTS

5.1 SUMMARY OF TEST REGIME FOR PACK 23B

o .No. of series connected sells in pack: 10
o. Cells from OAO battery $\mathrm{S} / \mathrm{N} 34,35$ spare lot

- Cell serial nos.:

Cl	C2	C3	Cl_{4}	C5	C6	C7	C8	c9	C10
1494	1517	1546	1588	1591	1499	1537	1587	1589	1590

o On test at:
NAD, Crane (X) Goddard Space Flight Center \bigcirc

- Depth of discharge: 15%
- Temperature: $10^{\circ} \mathrm{C}$
- Cycle Period: 90 minutes
- Charge Rate: 8 amp
- Discharge Rate: 6 amp
- Date Test Began: 1/26/71
- Type of Charge Control: BVLS 4 with periodic switches to BVLS 8 and BVIS 1 for 100 cycle periods.

TEST DETAIIS -

- This pack received a controlled precharge (3.5 A-hr.) based on gas measuring techniques.
- Periodic capacity discharges on two cells at a time are made every 88 days. - Cell S/N 1494 failed at 7800 cycles.

PACK 23B

5.1.1 Pack Description and Teat Regime

Pack 23B consists of two 5 -cell groups of series-connected cells from OAO battery $\mathrm{S} / \mathrm{N} 34,35$ assembly. These cells received a modifyed Gulton precharge adjustment wherein the gas generated during the precharge operation was collected and recorded. The cells from group A were charged with their vent valves closed, being opened to evacuate the accumulated oyygen only when a pre-determined pressure had built up in the cells. The group B cells were charged with their valves opened and the gas which evolved was collected into the gas-measuring apparatus described in Figire 2.1.2-2. Both groups had the precharge terminated then each cell received an equivalent $3.5 \mathrm{~A}-\mathrm{hr}$. of precharge. Following the precharge and routine electrical characterization cycles at the seller facility, the cells were sent to NAD_{2} Crane for additional testing in January 1971.

Upon arrival at Grape the cells first received a $\mathrm{c} / 20,48$-hour conditioning cycle (see Figure 5.1.1-1). From $1 / 26 / 71$ to $2 / 4 / 7$ they underwent various tests including capacity checks, low temperature overcharges $\left(0^{\circ} \mathrm{C}\right)$ and open-circuit recovery tests. On $2 / 4 / 7$ the pack was placed on $10^{\circ} \mathrm{C}$ life cycling, the 100 minute cycle consiating of an 8.0 amp charge to 1.457 volts/cell (BVLS 4) followed by a 6.0 anp, 15% depth discharge. Every twelve-hundred cycles a capacity check is performed on two cells. Prior to the capacity check the pack receives a aignificant overcharge by charging to a higher voltage limit (1.505 volts/cell or BVLS 8) for 100 cycles, followed by a reduced charge to 1.420 volts/cell (BVLS 1) for an additional hundred cycles. Finally the pack is returned to BVIS 4 for another hundred cycles after which the capacity check is run. Since only two cells at a time receive a capacity check (to +0.5 volts), the remaining cells in the pack will continue to accumulate additional cycles, uninterrupted by a low discharge. It has been demonstrated (see "Summary of Test Results on Spare Nickel-Cadmium Cells from OAO-2 Flight Batteries," in Appendix E) that cells which accumulate large numbers of uninterrupted cycles without a low discharge (below 1.00 volts) show a "double-plateau" voltage profile on discharge. Thie higher, stable plateau occurs in the vicinity of 1.181.19 volts while a second, lower, plateau occurs at an average level of approximately 1.05 volts. By staggering the capacity checks on pack 23B by two cells every 1200 cycles, a family of curves is generated showing the discharge voltage profile at 1200 cycle intervals. Thus the rate at which the double-plateau inflection point moves along the x-axis can be defined as a function of cycle life. As of completion of this report, four cells have received capacity checks. Cells Cl and C 2 received a check after 3,900 cycles and cells C 5 and C 6 received
a capacity check after 5,600 cycles. Cells $C 7$ and $C 8$ also received capacity checks at around 5,600 cycles during a special test on these two cells in February, 1972. Full details of this test are given herein.

5.1.2 Test Results

A summary of the test events for pack $23 B$ is shown in Table 5.1.2-1. Initial capacity to to. 5 volts is given in Table 5.1.2-2. During the first two taper charges* on $1 / 30 / 71$, high pressures developed during the 5 amp charge and the taper charges had to be terminated prematurely (see Figure 5.1.2-1). The cells hit a maximum voltage about 20 minutes into the $C / 4$ charge. Cell voltage thereafter steadily decreased, show ing overcharge, and charge was terminated due to the high pressure after about 1 hour, 10 minutes at $c / 4$. After each taper charge the pack was discharged at $c / 2$ until the first cell reached to. 500 volts. In each case the pressures dropped to zero or a vacuum resulted. On the third taper charge, cells $C 9$ and ClO reached the limiting volt. age after 18 minutes at $c / 4$. The rate was then changed to 2.6 amps for five hours and the end-of-charge pressures ranged from +19 to +36 psig. The pack was overcharged at $0^{\circ} \mathrm{C}$ on $2 / 2 / 71$; a profile of the charge voltage is shown in Figures 5.1.2-2 and 5.1.2-3. Pressures at the end of the overcharge ranged from a low of +22 psig for cell C 5 to a high of +38 psig for cells C 7 and C8. The maximum voltage reached was 1.559 volts on cell C 9 after 45 minutes on charge. At that time the voltage spread was about 10 millivolts. Following another capacity discharge, the pack received two $10^{\circ} \mathrm{C}$ taper charges during which no abnormal voltages or pressures developed.

The pack began active cycling at $10^{\circ} \mathrm{C}$ to BVIS 4 (voltage limit $=1.457 \mathrm{~V} / \mathrm{cell}$) on $2 / 4 / 71$. Percent recharge throughout the first thousand cycles was about 108%. When the voltage limit was lowered to BVLS 1 ($1.420 \mathrm{~V} / \mathrm{cell}$) the percent recharge fell to about 102\%; when raised to BVIS 8 ($1.505 \mathrm{~V} /$ cell) the recharge increased to $130-140 \%$ (see Figure 5.1.2-4). End-of-charge voltages were very uniform amongst the ten cells; the average divergence was less than 25 mV (see Figure 5.1.2-5).

After 1,509 cycles the entire pack was given a capacity check (6 amp rate until first cell reached +0.500 volts). Cell C8 was the low capacity cell, delivering 22.1 A-hrs. This represents a slight decrease from its initial capacity of 23.8-24.3 A-hr. A plot of its discharge curve is shown in Figure 5.1.2-6. No double plateau is evident from this curve.

After approximately 2700 cycles cell C2 began to show a decrease in end-ofcharge voltage. Table 5.1.2-3 shows typical end-of-charge voltages for the BVLS 4 cycling between cycles 2,289 and 5,600. Cell C 2 (S / N 1517) remained, on the

* Taper charge is defined as follows: C/2 (10 Amp.) until first cell reaches 1.496 V ; then $\mathrm{C} / 4$ (5 Amp) until first cell reaches 1.496 V ; then 1.6 Amp for 4 hours.

PACK 23B Log

Date

Event

1/26/T1 Cells received at NAD, Crane
1/26 to 2/4/7

Initial characterization tests
2/4/71 Start cycling © BVLS 4
2/10/T1 Change from BVLS 4 to BVIS 8 NONE: This type of awitching 2/17/71 Change from BVLS 8 to BVLS 1$\}$
2/23/71 Change from BVLS 1 to BVLS $4 \int$ from BVIS 4 to BVLS 8 to EVLS 1 was performed every 100 cycles although it is not shown.

5/10/71 Capacity check - entire pack

- Discharge entire pack until first cell reaches 0.5 volts
- Taper charge entire pack
- Resume cycling © BVLS 4

10/4/71 Capacity check - Cl and C2 only

- Discharge Cl and C 2 cach to 0.5 volt
- Taper charge Cl and C2
- Resume cycling © BVLS 4

10/24/71 Overcharge test ($0^{\circ} \mathrm{C}$) - entire pack

- Discharge 6 amp for 5 min .
- Charge 1.0 amp for 5 hours © $0^{\circ} \mathrm{C}$
- Resume cycling @ BVLS 4

2/1/72 Special test on C7 and C8 (See Table 5.1.2-5)
2/23/72 Capacity check - C5 and C6 only

- Discharge C5 and C6 each ito 0.5 volt
- Taper charge C5 and C6
- Resume cycling

TABLE 5.1.2-1
CAPACITY DATA - GROUP I
CAPACITY DATA CAPACITY DATA - GROUP I
CAPACITY DATA

Test Date	A-hr. In . Previous Charge	Type of Previous Chg.	A-hr. Out This Discharge
1/28/71	48 AH	c/20 for 48 hours	23.8, 24.1, 24.3, 24.3, 24.1
1/30/71	28.8, 29.2, 29.5, 29.8,	$\mathrm{c} / 2$ to +20 psig	23.3, 23.6, 23.8, 24.0, 23.8

[^2]TABLE 5.1.2-2
eutene dietzeen co.
(

(.

TABIE 5.1.2-3

\[

$$
\begin{aligned}
& \text { PACK } 23 B \\
& \text { CAPABITY DISCHARGE } \\
& (-6.0 A \text { to O.500v) } \\
& \text { AT } 1,509 \text { CYCEES ANd } \\
& 3,900 \text { cYCLES }
\end{aligned}
$$
\]

average, about 70 mV lower then the other nine cells in the pack for about 1000 cycles. By cycle 3,710 cell $C 7$ ($S / N 1537$) had also fallen in end-of-discharge voltage to approximately 60 mV lower than the rest of the pack. Cycling continued and these two cells, C 2 and C 7 , remained consistently lower than the remainder of the pack.

During cycle 3,900 cells $C 1$ and $C 2$ were given a capacity discharge to +0.500 volts while the remainder of the pack continued on cycling. Figure 5.1.2-7 shows the voltage profile of the cells on discharge. Although both Cl and C2 had accumulated an equal number of cycles (3,900) without a low discharge (to +0. 500 volts), it is apparent that $C 2$ has a lower second voltage plateau than Cl , and it reaches this plateau sooner in the discharge. A comparison of the ampere-hours returned during this discharge with that returned during an earlier cycle ($\# 1,509$) is shown in Table 5.1.2-4.

Cycle\#	Cell No.	Capacity to +1.0 Volts	Capacity to to. 5 Volts
Cycle 1,509	Cl	22.1	
	C 2	22.0	
		19.0	18.3
Cycle 3,900	Cl	16.5	
	C 2		

TABLE 5.1.2-4
It was decided that a low temperature overcharge be given the entire pack to determine how $C 2$ and $C 7$ would behave if they were charged without being tied to a voltage limit. The overcharge was performed on 10/24/71 at approximately cycle \#4,000. Figures 5.1.2-9 and 5.1.2-10 show the voltage profile during the test. As can be seen, both C2 and C7 failed to come up in voltage with the other cells in the groups. Likewise their pressures barely increased during the 5-hour overcharge. Cell C2 increased from -6" at start-of-overcharge to -4" upon completion of the five hours, while $C 7$ changed from $-5^{\prime \prime}$ to -4 ". The other cells in the pack started into the overcharge with slightly positive pressures (+6 psig to +11 psig) and ended with pressures ranging from +22 psig to +31 psig. The positive electrodes in $C 2$ and $C 7$ were either not gassing or else the negative electrodes were recombining the oxygen as fast as it was evolving. Following the overcharge the pack was again placed on $10^{\circ} \mathrm{C}$ cycling. Figures 5.1.2-11 and 5.1.2-12 show a typical charge cycle approximately 200 cycles after the overcharge test. The peculiar behavior of C2 and C7 is still

apparent.
A special test was performed in February, 1972, on two cells which exhibited a large voltage difference at the end of each charge cycle. Just prior to the test these cells (C7 and C8) had acquired a total of approximately 5600 cycles without a deep discharge and the total pack was receiving a recharge of 135.6%. The voltages at this time were as follows:

	CI	C2	C3	C4	C5	C6	C7	C8	C9	C10
E.O.C.V.	1.400	1.408	1.508	1.488	1.508	1.388	1.362	1.496	1.499	1.476
E.O.D.V.	1.196	1.249	1.200	1.214	1.218	1.200	1.120	2.208	2.212	2.208

Cells $C 7(S / N 2537)$ and $C 8(S / N I 587)$ were selected for the special tests based on their end-of-charge voltage difference (134 mV). The test regime shown in Table 5.1.2-5, was coulucted with the intent to perform a chemical/ physical analysis afterwards to see if the voltage divergence had any physical manifestations in the cells. It was found, however, that both cells appeared "normal" upon completion of the electrical tests. The chemical/physical analyses, therefore, were not performed on these two cells as had been planned. The initial discharge of $C 7$ and $C 8$ after they had been removed from pack $23 B$ is shown in Figure 5.1.2-13. Both cells to this point had received 5,600 cycles without receiving a deep discharge yet, as in the case of $C 1$ and $C 2$, their voltage profiles are not the same. Cell C8 has two definite plateaus; the higher at around 1.18 volts (the OAO spacecraft URG level) and the lower around 1.051.07 volts. Cell C7, on the other hand, shows only a single, lower, plateau and falls below +1.00 volts much sooner than C8. The capacity to +1.00 volts and to. 5 volts shows a marked reduction from the original capacity measured for cell $C 7$ while C8 shows little difference.

Cycle \#	Cell No.	Capacity to +1.0 Volts	Capacity to +0.5 Volts
	C7	22.2	
	C8	21.0	22.1
Cycle 5,600	C7	17.0	17.7
	C8	22.0	23.5

TABLE 5.1.2-6
Although, as Table 5.1.2-6 indicates, cell C8 shows an increase of only about one ampere hour of capacity, a comparison of Figurea $5.1 .2-6$ and $5.1 .2-13$ shows that

Special Test on Celli C7 \& C3 of

TABLE OF EVENTL;

Step Number

Step Description

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16. (a) (b) (c) (d) $\begin{aligned} & \text { overcharge test } @ 0^{\circ} \mathrm{C} \text { followed by leak test and gas } \\ & \text { sample. }\end{aligned}$

Run pack 23B on tally prior to removing C7 and C8.
Remove C7 and C8 from pack. Place pack back on life cycling.

Run 10 life-cycles on C7 and C8 as a pack using the OAO test regime with a voltage limit of 1.403 v / c.

Discharge each cell @ 6.0 amps to +0.5 volts.
Taper charge each cell. sample.

Discharge at $C / 2$ rate to +0.5 volts per cell.
Taper charge each cell.
Run 10 life-cycles.
Discharge @ C/2 rate to +0.5 V per cell. Place 1Ω resistors across cells for 16 hours. Remove resistor and read $0 C V$ for 24 hours.

Charge each cell for 48 hours © c/20 rate.
Perform leak test at end of 48 hour charge
Discharge @ $\mathrm{C} / 2$ rate to +0.5 V each cell.
Taper charge each cell.
Run 10 life cycles.
Discharge e c/2 rate to +0.5 V per cell. Place 1Ω resistors across cell when discharge is complete. End of test.

the discharge profile of C8 has changed significantly. Upon closer inspection we see that the average wattage is lower for cycle 5,600 from about ninety minutes until completion of the cycle. Table 5.1.2-7 shows the watt-minute accumulation to +1.0 volts for $C 8$ at 1,509 cycles and 5,600 cycles.

Time Interval	Cycle 1,509					Cycle 5,600	
	T	Avg. Volt.	Avg. Watt.	Accumulated Watt-Min.	Avg. Volt.	Avg. Watt	Accumulated Watt-Min
$0-10$ min.	10	1.32	7.92	79.2	1.29	7.74	77.4
$10-30 \mathrm{~min}$.	20	1.25	7.50	229.2	1.23	7.38	225.0
$30-60 \mathrm{~min}$.	30	1.20	7.20	445.2	1.19	7.14	439.2
60-100 min.	40	1.19	7.14	730.8	1.18	7.08	722.4
100-150 min.	50	1.18	7.08	1084.0	1.13	6.78	1061.4
$150-180 \mathrm{~min}$.	30	1.15	6.90	1291.8	1.07	6.42	1254.0
180-200 min.	20	1.10	6.60	1423.8	1.05	6.30	1380.0
200-210 min.	10	1.03	6.18	1485.6	1.04	6.24	1442.4
210-220 min.	10	--	--	--	1.02	6.12	1503.6
	TOTAL WAIT'-MINUTES TO$+1.0 \mathrm{~V}$			1,485.6		1,503.6	

TABLE 5.1.2-7

We see from Table 5.1.2-7 that the total watt-minutes delivered from c8 i: nearly the same in both cases although the average voltage delivered by $C 8$ is lower during the later cycle.

C8 thus appears to perform in a manner typical of the OAO flight and test cells generally. C7, on the other hand, (and C2 as heretofore noted) seems to have experienced an exceptionally accelerated degradation of some kind. Not only was discharge voltage significantly lower, but ampere-hour capacity was also severely reduced (see Figure 5.1.2-13). At the same time, the prior $0^{\circ} \mathrm{C}$ overcharge test data showed both a much lower voltage for $C 7$ than the rest of the group, and a rising characteristic rather than a falling one (see Figure 5.1.2-10). These two sets of observations lead to the questions of how well C7 was accepting and storing charge, and what the possible causes may be. Since a few cells in this lot exhibited similar characteristics, answers to these questions are important. Accordingly, investigations are ongoing at this time.

Following the discharge, the two cells were recharged via a taper charge.
Ac Figure 5.1.2-14 shows, both cells reached the limiting voltage (1.496 volt::) after approximately 130 minutes on the 10 amp rate. This compures favumbily with the taper charge a 1,509 cycles when $C 7$ and $C 8$ hit the limiling vilitro at :uvumi 128 minutes on the 10 amp rate. Notice, however, that the end-of-charer voltage of $\mathrm{C8}$ is 27 mV lower than $\mathrm{C7}$. In the overcharge test which followed, cell C7 became the higher voitage cell of the two (see Figure 5.1.2-15). This is contrary to what would be expected since earlier tests had shown that the cells which exhibited low end-of-charge voltages on cycling also showed low voltages during overcharges. When the cells were discharged (Figure 5.1.2-16) the profile does not show a dcuble-plateau as it had earlier. Ampere hour capacity to +1.0 volts on C 7 and C 8 was $22.8 \mathrm{~A}-\mathrm{hr}$. and $21.0 \mathrm{~A}-\mathrm{hr}$. respectively, and to to. 5 volts was 23.6 A-hr., and $21.8 \mathrm{~A}-\mathrm{hr}$. respectively. All indications were that the low voltage cell had been "conditioned" and no longer displayed the low end-of-charge voltages or lower discharge plateau voltage that it had previously shown. The conditioning was probably due to the low discharge (to to. 5 volts) incurred durins, step No. 4. The ability of deep discharges to eradicate the double plateau effect has been demonstrated elsewhere (see Appendix E) although it was not previously known if a deep discharge would bring a low voltage cell on charge up to a nominal end-of-charge voltage. Subsequent discharges (Figures 5.1.2-17 through 5.1.2-20) show that the capacity of the two cells remained fairly uniform throughout the remainder of the tests.

On $2 / 23 / 72$, another 88 day capacity check was performed on two cells from pack 23B. The cells selected for this capacity check were C5 ($\mathrm{S} / \mathrm{N} 1591$) and C 6 (S / N 1499). Table 5.1.2-8 shows the end-of-charge voltages before and after the capacity check as well as the percent recharge. It is apparent that the capacity discharge improved the voltage of C 6 and brought it from $30-40 \mathrm{mV}$ lower than C 5 to less than 20 mV lower than C5. Cells C 7 and $C 8$ are displaying voltages approximately 30 mV higher than other cells in the pack. Apparently the series of charges and discharges encountered during the special test of February 1972, conditioned these cells so well that they now respond better than the other pack cells. Cells Cl and C 2 are lower by $60-70 \mathrm{mV}$ than the pack average. Cell C 2 has remained low since approximately cycle 2,400 or so, while $C l$ has exhibited a divergence only after about 5000 cycles. Figure 5.1.2-2l shows the capacity discharge of C5 and C6 at 6,000 cycles. As Table 5.1.2-9 indicates there is no appreciable capacity
change in $C 5$ from 1,509 to 5,600 cycles. However, $C 5$ shows a decrease of $6 \mathrm{~A}-\mathrm{hr}$. in the later cycles. This is verified from Figure 5.1.2-2l. We can see, furthermore, that although $C S$ delivered the same capacity to +1.0 vultn, it dues bo at. a lower voltage. Therefore, it shows a net decrease in watt-hours returned uver the earlier cycles.

Cell No.	Cycle 1,509		Cycle 6,000	
	Cap. to +1.0 V	e-Hour Cap. to +0.5 V	Cap. to +1.0 V	-Hour Cap. to +0.5 V
C5	22.1	--	20.8	23.3
c6	22.1	--	16.2	18.7

Following the capacity check of $C 5$ and $C 6$, cells $C 7$ and $C 8$ were reunited into the pack. All four cells received a taper charge first before being placed into the pack. Cycling was continued on BVLS 4 until $3 / 2 / 72$, when the voltage limit was lowered to BVLS 1.

142

143

Date	Cycle	C1	C2	C3	C4	jc5	c6	C7	C8	c9	C10	\% Recharge
2/21/72	5950	1.424	1.420	1.469	1.469	1.465	1.436	*	*	1.468	1.460	120.7\%
2/23/72	6000	1.436	1.404	1.474	1.474	1.474	1.432	*	*	1.474	1.464	119.5\%
2/23/72	6000	capactity check on C5 \& C6; 77 \& C8 PUT BACK in Pack after										
2/24/72	6000	1.388	1.376	1.466	1.461	1.478	1.460	1.489	1.484	1.454	1.548	. 127.5%
2/29/72	6100	1.420	1.388	1.464	1.456	1.466	1.449	1.498	1.484	1.454	1.448	--
3/2/72	6100	1.410	1.396	1.468	1.464	1.468	1.452	1.480	1.480	1.460	1.448	121.0\%
3/2/72	6100				PACK LOWERED TO BVIS 1							

* Cells removed for
End of Charge Voltages for Pack 23B
TABLE 5.1.2-8

- No. of series connected cells in pack: 5
- Cells from OAO battery S/N 34, 35 spare lot
- Cell serial nos.:

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1514	518A	1526	526A	1531	-	-	-	-	-

- On test at: NAD, Crane \bigcirc Goddard Space Flight Center (X)
- Depth of discharge: 15%
- Temperature: $12-13^{\circ} \mathrm{C}$
- Cycle Period: 100 min .
- Charge Rate: 8A
- Discharge Rate: 5A
- Date Test Began: 7/7
- Type of Charge Control: BVLS 4

TEST DETAILS -

- This pack underwent approximately 1200 cycles of cell verification testing under BVLS control before beginning these life cycidng tests.

5.2.1 Pack Description and Test Results

Pack 5 consists of five, series-connected cells from the spare lot of OAO battery $\dot{S} / \mathrm{N} 34,35$. The pack underwent 1200 cyclos during cell verification testing before being placed on life cycling at Goddard Bpace Flight Center in July of 197. The cycling regime consists of a 6 amp, 15% depth discharge and an 8 amp, charge to BVLS 4 , at $13^{\circ} \mathrm{C}$.

Table 5.2.1-1 lists the events that the pack has experienced to date. Initial end-of-charge voltage divergence was low, about five milivolts. Percent recharge stabilized to approximately 122% in the flrst 120 days and remained at that level until day 250. At this time (cycle 1608) an overcharge test at $0^{\circ} \mathrm{C}$ was performed. Following this overcharge the pack showed a dramatic increease in end-of-charge voltage divergence, paralleled with a rise in end-of-charge pressure and percent recharge (see Figure 5.2.1-1). This rise in voltage divergence is shown in Figure 5.2.1-2. A capacity check performed at cycle 2,408 temporarily reduced this divergence but the end-of-charge voltage spread quickly returned to its pre-discharge conditions.

In an attempt to check the ateady rise in voltage divergence, pressure and percent return, it was decided to lower the voltage charge level from BVLS 4 to BVLS 3. This was performed at cycle 2,785 and, after a few hundred cycles, the pack showed favorable performance changes. By cycle 3000 the end-of-charge voltage spread among the cells had decreased from 130 mV at the peak (cycle 2,800) to nearly 65 mV . Percent recharge had dropped from 175% to 162% with an accompanying 10 psia decrease in end-of-charge pressures. At cycle 3000 the voltage charge level was again lowered, this time from BVLS 3 to BVLS 2. Again the cycles imediately following the change showed a rise in divergence followed by another decrease in divergence, recharge and pressure. The charge voltage level was finally reduced to the lowest level, BVLS 1 , at cycle 3,158 . This had the effect of reducing the voltage divergence to about 35 mV at which value it levelled off and remained. Percent recharge stabilized at 110-115\% and cell end-of-charge pressure converged at around $5-15$ psia.

By cycle 4000 cell voltage divergence had again appeared and therefore an attempt was made to control the divergence by lovering the input charge.rate. On cycle 3,996 the rate was reduced from an 8 amp to a 4 amp charge and 88 cycles later it was reduced further to 3 amps. This had the effect of lowering the percent recharge into the pack while maintaining the cells at a full state-of-charge at each cycle. The voltage divergence, however, did not decrease significantly as seen in Figure 5.2.1-2. A precharge ad justment was made on

Cycle No.
1,606
2,408
2,785
2,918 to 2,973
2,973
3,015
3,158
3,996
4,084
4,250

Event

Performed low temperature ($0^{\circ} \mathrm{C}$) overcharge test Capacity discharge to $+1.0 \mathrm{~V} /$ cell
From bVLS 4 to BVLS 3
Temperature rise to $20^{\circ} \mathrm{C}$
Temperature return to $13^{\circ} \mathrm{C}$
From BVLS 3 to BVLS 2
From BVLS 2 to BVLS 1
Charge rate lowered from .8A to 4 A
Charge rate lowered from 4 A to 3 A
Removed $2 \mathrm{~A}-\mathrm{hr}$. oxygen gas (precharge adjustment) Prom cell \#5

TABLE 5.2.1-1

one cell in the pack (\#5) by charging the pack until a positive pressure existed and then venting it to remove oxygen gas in the equivalent amount of 2 A-hr. This was performed at cycle 4,250. As seen from Figure 5.2.1-2 the adjustment was followed by an imediate rise in voltage divergence followed by a decrease to preadjustment levels. Subsequent to cycle 4,500 , the end-of-charge voltage spread in the pack again increased and reached a 81 mV peak about a thousand cycles after the adjustment was made. Beyond cycle 5,000, end-of-charge voltages again converged to a minimum of 24 mV by cycle 5,800. This reduction in divergence was paralled by a reduction in percent recharge as shown in Table 5.2.1-2. Although energy balance is shown to be maintained at low recharge levels (less than 110\%), the table seems to indicate that the recharge is running down but at a very slow rate. However, end-of-discharge voltages are not showing any consistent degradation, indicating that changes in end-of-charge voltage and recharge do not seem to impair the ability of the cells to function normally.

End-of-Charge and Discharge Voltages
Pressures and Percent Recharge for Pack \#5
NOTES:
All voltages (V) in volts
All pressures (P) in psia
Cell S / N shown in parenthesis
All cycles to BVLS 1 e +3 amp charge rate

TABLIE 5.2.1-2

5.3 SUMMARY OF TEST REGIME FOR PACK 6

o No. of series connected cells in pack: 5

- Cells from OAO battery $5 / \mathrm{N} 34,35$ spare lot
o Cell serial nos.:

$\mathrm{C1}$	$\frac{\mathrm{C} 2}{}$	$\mathrm{C3}$	C 4	C 5	C 6	C 7	CB	C 9	C 10
1542	495 A	2554	497 A	1575	-	-	-	-	-

- On test at:
NAD, Crane O
Goddard Space Flight Center (X)
- Depth of discharge: 15%
- Temperature: $12-13^{\circ} \mathrm{C}$
- Cycle Period: 100 min .
- Charge Rate: 8A
- Discharge Rate: 5A
- Date Test Began: 7/71
- Type of Charge Control: BVLS 4, except between cycles 1501-2360 and 3650-5900 when BVLS 1 was applied.

TEST DETATLS -

o This pack had received approximately 1200 cycles of cell verification teating at BVLS 8 combined with third electrode control before boginning these life cycle tests. Third electrode control involved a bi-level decrease to BVLS J.. when auxiliary signal reached its limit.

PACK 6

5.3.1 Test Description and Results

Pack number 6 consists of five (5) series connected cells taken from OAO battery lot S/N 34 and 35 . These cells had flrat received cell verification testing at NASA/GSFC where they were cycled at BVLS 8 in combination with third electrode control. ${ }^{14}$

Following this test, in July 197, this pack was placed on life test at BVLS 4 at $13^{\circ} \mathrm{F}$ temperature. Figure 5.3.1-1 shows an end of charge voltage divergence of 65 mV , observed after, 1500 orbital cycles. The limit was reduced to BVLS 1 from cycles 1501 through 2360. This resulted in a smaller divergence -- about 30 mV -- by cycle 2360. The test was then returned to BVLS 4 to determine if a return to the original divergence value would occur. Slowly, an increase was noted, and by cycle 3400 it had reached a value of 47 mV . At cycle 3,413 the charger malfunctioned, exceeding its preset voltage. Cell \#5 in the pack reached 1.573 volts, and total divergence was 112 mV . Three cycles later the mishap was corrected. Then, with the voltage controlled at BVLS 4 on all subsequent cycles, another 112 mV divergence occurred at cycle 3,480 .

The direct relationship between voltage divergence and BVLS level (as the control of charge regime) has been previously noted. Generally, divergence value seems nearly linear function of BVLS level for any given group of cells.

Prior to cycle 3,400 , pressures in the pack were about 10 psia, except cell 3 (closer to 20 psia). During those cycles without current cutback, cell 3 reached 82 psia. Later, pressures returned to normal.

Table 5.3.1-1 shows the charge/discharge parameters found in cycles 5000 through 5900. Voltage divergence was low -- 10 to 30 mV . Despite a faling recharge percentage, these cycles demonstrate that 3 amp charge rate at BVIS 1 is sufficient to maintain energy balance for more than 1000 cycles. This is identical to the findings from pack 5 tests.

End-of-Charge and Discharge Voltages,
Pressures and Percent Recharge for Pack \#6
table 5.3.1-1

5.4 SUMMARY OF TEST REGIME FOR PACK 35B

- No. of series connected cells in pack: 5
- Cells from OAO battery S/N 34, 35 spare lot
- Cell serial nos.:

Cl	C 2	C3	Cl_{4}	C5	C6	C7	C8	C9	C10
1573	512A	1578	515A	1492	-	-	-	-	-

- On test at:

NAD, Crane X Goddard Space Flight Center O

- Depth of discharge: 15%
- Temperature: $10^{\circ} \mathrm{C}$
- Cycle period: 90 minutes
- Charge rate: 8 amp
- Discharge rate: 6 amp
- Date test began: $1 / 26 / 71$
- Type of charge control: BVLS 4 cycling
tesi delails -
- This pack is similar to pack 23B except for the following details:
- Has two third-electrode cells (512A and 515A)
- Has not received any capacity checks
- Has not received any overcharges greater than the BVLS 4 cyciing.
- The cells received an umodified Gulton precharge.

PACK 35B

5.4.1 Pack Description and Test Results

Pack 35B consists of five series-connected cells from the spare lot of OAO battery $\mathrm{S} / \mathrm{N} 34,35$. Unlike pack 23 B , these cells received an unmodified Gulton precharge. However, the gas vented from each cell was collected and is given in the precharge section of this report. Following the routine electrical testing at the seller facility, the cells were sent to NAD, Crane for adaitional testing in January 1971.

Upon arrival at $N A D$, Crane the cells received a $C / 20,48$-hour conditioning cycle (see Figure 5.4.1-1). Following the conditioning, the pack was discharged at $c / 2$ rate to +0.5 volts each cell. Capacities vere as follows:

*
During two taper chargee which followed, the cells developed high pressures in the 5 amp portion of charge since they did not reach the voltage limit $=1.496$ volts -- resulting in an overcharge. The maximum voltage during the first taper charge was 1.487 V (C5) after twenty minutes. In the second, cell C5 was again just short of the voltage limit 1.491 volts after twenty-five minutes at 5 Amp rate. (A similar occurrence was observed on pack 23B.) During the third taper charge, cell C5 reached 1.496 volts at 5 Amp rate after seventeen minutes and no hjgh pressures occurred.

On 2/1/7 a $0^{\circ} \mathrm{C}$ overcharge test was performed on 35B. Figure 5.4.1-2 shows the results of this test. Cell voltages remained fairly close throughout the overcharge; divergence at the voltage peak was 15 mV while at the end of the charge it was only 11 mV .

After two more taper charges the pack was placed on automatic cycling at BVLS 4. Initial recharge ranged between 108 and 110 percent as shown in Fofure 5.4.1-3. Although this pack never displayed the extent of voltage divergence that pack 23B did, by cycle 2300 cell CH ($\mathrm{S} / \mathrm{N} 515 \mathrm{~A}$) was beginning to show higher voltages than the others. Table 5.4.1-1 shows representative end-of-charge voltages from cycles 2301 through 5600 with the pack at BVLS 4:

* Taper charge is defined as follows: C/2 (10 Amp) until first cell reaches 1.496 V ; then $\mathrm{C} / 4$ (5 Amp) until first cell reaches 1.496 V ; then 1.6 Amp for 4 hours.

Cycle	C1	C2	C3	C4	C5
2301	1.44	1.43	1.43	1.45	1.42
2477	1.44	1.43	1.43	1.45	1.43
2567	1.44	1.43	1.43	1.45	1.43
2827	1.44	1.45	1.44	1.46	1.45
3336	1.44	1.44	1.43	1.46	1.43
3752	1.44	1.44	1.44	1.46	1.44
4000	1.45	1.45	1.45	1.47	1.45
5600	1.45	1.46	1.45	1.48	1.45

TABLE 5.4.1-1
As can be seen, cell C4 is $20-30 \mathrm{mV}$ higher than the rest by cycle \#5600. Pack 23B had a divergence of 150 mV by cycle 5600. A typical charge, around cycle \# 4000 , is shown in Figure 5.4.1-4. The peculiar voltage profile of cell C, with respect to the rest of the pack, is obvious.

On $10 / 24 / 7$, at cycle 4200 , the pack received a $0^{\circ} \mathrm{C}$ overcharge to see how cell C4 would behave if not tied to a voltage limit. The results, shown in Figure 5.4.1-5, demonstrate that $C 4$ is truly exhibiting a higher voltage than the rest of the pack for the same charge current.

On $2 / 23 / 72$, at cycle 5600 , the cells exhibited the following end of charge voltages: $\mathrm{Cl}=1.450 \mathrm{~V}, \mathrm{C} 2=1.455 \mathrm{~V}, \mathrm{C} 3=1.447 \mathrm{~V}, \mathrm{C} 4=1.475 \mathrm{~V}$, and $C 5=1.451 \mathrm{~V}$. Aside from cell $C 4$, which has a divergence of nearly 30 mV , the rest of the pack shows remarkably close voltages. If we compare this to pack 23B after the same number of cycles, we see that 35B shows much better voltage uniformity. It is not believed the special precharge performed on 23B accounts for its greater voltage divergence since similar divergences have occurred on other cells with the standard precharge adjustment, and from this same battery lot. However, inspection of the cycling regimes of the various packs shows that pack 35B received jower total overcharges in ampere-hours than the other packs. Overcharging seems to cause certain stresses in the cell which may be manifested as voltage divergence. The nature of these stresses are, as yet, unknown, although they have appeared frequently. In an attempt to assess reduction techniques for divergence, the pack was placed on a lower limit (BVLS 1) on $2 / 24 / 72$ at approximately cycle 5610. This should have the effect of limiting the overcharge each cell would experience since the current is exponentially decreased earlier in the charge period. By 3/17/72 -approximately three weeks (300 cycles) later -- cell C4 was only 16 mV higher

than the lowest cell in the pack. Voltages at end-of-charge were as follows: $\mathrm{Cl}-1.415 \mathrm{~V}, \mathrm{C} 2^{2}=1.423 \mathrm{~V}, \mathrm{C} 3=1.423 \mathrm{~V}, \mathrm{C} 4=1.431 \mathrm{~V}, \mathrm{C} 5=1.419 \mathrm{~V}$. Thus it appears that lowering the degree of overcharge (percent recharge) controls and minimizes voltage divergence. Additional evidence for this is shown for packs 5 and 6 on cycling test at Goddard (see 5.2 and 5.3).

5.5 SUMMARY OF TEST REGIME FOR PACK 12E

- No of series connected cells in pack: 5
- Cells from OAO battery $\mathrm{S} / \mathrm{N} 32,33$ spare lot
c Cell aerial nob.:

$\frac{C 1}{494 A}$	$\frac{C 2}{916}$	$\frac{C 3}{954}$	$\frac{C 4}{920}$	$\frac{C 5}{955}$	-	$C 6$	$C 8$	$C 2$	$C 10$

- On test at:

NAD, Crane (X) Goddard Space Flight Center \bigcirc

- Depth of discharge: 15\%
- Temperature: $20^{\circ} \mathrm{C}$
- Cycle Period: 90 minutes
- Charge Rate: 8 amp
- Discharge Rate: 6 amp
- Date Test Began: 5/5/70
- Type of Charge Control

TEST DETAILS -

- This pack was on the same regime as pack 35 B , except at higher temperature $\left(20^{\circ} \mathrm{C}\right.$ instead of $\left.10^{\circ} \mathrm{C}\right)$
- This pack was previously tested for 800 cycles at Goddard on various BVLS levels. It was designated Pack \#l at GSFC.

5.5.1 Pack Description and Test Results

Pack 12 E is a five (5)-cell pack on $20^{\circ} \mathrm{C}$ life cycling at NAD, Crane. The cells, from the spare lot of OAO battery $\mathrm{S} / \mathrm{N} 32,33$ cells were tested for 800 cycles at GSFC on various BVLS levels before being sent to Crane. It began $20^{\circ} \mathrm{C}$ life cycling in May of 1970.

Upon receipt at NAD, Crane, the pack was given a $\mathrm{C} / 10$, $16-\mathrm{hr}$. conditioning charge after which a $C / 2$ capacity discharge to +0.5 volts was performed. Capacities ranged as follows: $\mathrm{Cl}=29.3 \mathrm{~A}-\mathrm{hr} ., \mathrm{CL}=28.0 \mathrm{~A}-\mathrm{hr} ., \mathrm{C}=28.5 \mathrm{~A}-\mathrm{hr}$. , $\mathrm{C} 4=27.1 \mathrm{~A}-\mathrm{hr}$. and $\mathrm{C} 5=27.5 \mathrm{~A}-\mathrm{hr}$. . The pack was then shorted, and a following open circuit recovery test revealed no shorts. Following a taper charge*, another capacity discharge at $C / 2$ to +0.5 volts gave the following capacities: $\mathrm{Cl}=27.3 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 2=27.8 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 3=28.1 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 4=27.8 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 5=27.1$ A-hr.. A slight decrease in capacity is seen in a few of the cells. After another taper charge the cells were again discharged, this time at the cycle rate (6 amps) to +0.5 volts. Capacities were lower: $\mathrm{Cl}=25.26 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 2=$ $25.38 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 3=25.38 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 4=24.96 \mathrm{~A}-\mathrm{hr} ., \mathrm{C} 5=25.56 \mathrm{~A}-\mathrm{hr} .$. The pack began active cycling on $5 / 13 /$ to. Percent recharge for the first thousand cycles remained at 107-108\% (Figure 5.5.1-1). The end-of-charge voltages among the cells ranged from 1.42-1.44 volts during this period, a divergence of $15-20 \mathrm{mV}$. Figure 5.5.1-2 shows the voltage spread between the cells for the first 9000 cycles.

In July of 1970 , pack $12 E$ was subjected to its first $0^{\circ} \mathrm{C}$ overcharge test at approximately cycle 917. During the charge, cell Cl reached a high voltage (over 1.55 volts). The discharge following the overcharge revealed that Cl was the highest capacity cell ($\mathrm{c} / 2$ to +1.0 V):

$$
\begin{aligned}
& \mathrm{Cl}=29.00 \mathrm{~A}-\mathrm{hr} . \\
& \mathrm{C} 2=27.60 \mathrm{~A}-\mathrm{hr} . \\
& \mathrm{C} 3=26.80 \mathrm{~A}-\mathrm{hr} . \\
& \mathrm{C} 4=25.80 \mathrm{~A}-\mathrm{hr} . \\
& \mathrm{C} 5=27.10 \mathrm{~A}-\mathrm{hr} .
\end{aligned}
$$

Following the capacity check the pack was taper charged and returned to cycling. On $10 / 19 / 70$ after 2,477 cycles, the pack was again subjected to $0^{\circ} \mathrm{C}$ overcharge tests. Cell Cl reached very high voltages during the first overcharge (a maximum of 1.621 volts). The cell was shorted and reversed by 2

[^3]

A-hr. to discharge the negative electrodes by that amount. The overcharge tests were repeated. Once again cell Cl exhibited high voltage on charge, about 1.612 volts at the peak. At this point it was decided to remove Cl from the pack and perform electrode capacity teats to determine the ratio and distribution of the electrode capacities.

On 10/26/70 this cell ($\mathrm{S} / \mathrm{N} 494$) was renoved from pack l2E and discharged at 6.0 amps to +0.5 volts. Capacity to +1.0 volt was 28.8 AH and to +0.5 volt was $29.22 \mathrm{~A}-\mathrm{hr} . . \mathrm{A} 1 \Omega$ resistor drained the cell for 16 hours prior to performing the electrode capacity ratio tetts. The ceil was reversed to -1.0 volts to determine the amount of precharged negative capacity. It was then flooded with electrolyte, charged at $C / 40$ for 48 hours, and discharged at a $\mathrm{C} / 2$ rate to -1.5 volts. Table $5.5 .1-1$ shows the results given in amperehours:

Precharged Negative Capacity in A-hr.	Capacity to the Following Voltages in A-hr.:						
+1.0							
7.23	29.50	29.80	30.02	34.90	35.10	35.40	

TABLE 5.5.1-1

As indicated, little or no excess negative capacity exists at the charged end; the total excess being in the form of precharged negative. The cell was again charged for 48 hours at $c / 10$ and then discharged at $c / 2$. The results from +1.0 volts to -1.5 volts were: $27.83 \mathrm{~A}-\mathrm{hr} ., 28.17 \mathrm{~A}-\mathrm{hr} ., 29.00 \mathrm{~A}-\mathrm{hr} ., 32.50$ A-hr., $82.70 \mathrm{~A}-\mathrm{hr}$. and $32.80 \mathrm{~A}-\mathrm{hr} .$, respectively. Additional tests were performed on individual electrodes removed from the cell case. The nickel and camium plates were charged at a 0.222 ampere rate each for 16 to 20 hours. Discharges were performed at a 1.11 amp rate on each plate. The results of tests on two cadmium and two nickel plates from Cl are given in Table 5.5.1-2.

Sample	Type	E.O.C.V.	Capacity (A-hr.)
P1	Cadmium	1.633 V	3.02
P2	Cadmium	1.632 V	3.13
P1	Nickel	--	3.42
P2	Nickel	--	3.25

TABLE 5.5.1-2
We see from Table 5.5.1-2 that the positive capacities exceed the negatives
by as much as 12%. Crane reported that the separator "showed excess migration and moderate separator deterioration." It appears that the high voltages experienced during the low temperature overcharges were the result of negative limiting on charge. This should have the effect of establishing high pressures within the cell since the negatives would gas hydrogen with each overcharge. However, no high pressures were indicated.

On $11 / 10 / 70$ at cycle 2729 , cell C 4 ($\mathrm{S} / \mathrm{N} 920$) was removed from the pack, also due to high voltages. The cell was discharged at $c / 2$ to 0.0 volts and then reversed at $C / 10$ to -1.0 volts to determine the amount of negative precharged capacity. Table 5.5.1-3 gives the results of this precharge measurement as well as a subsequent capacity discharge at $c / 2$ to -1.5 volts.

Precharged Negative Capacity in $\mathrm{A}-\mathrm{hr}$.	Capacity		to the F	Following Voltages in A-hr.		
	$+1.0 \mathrm{~V}$	+0.5 V	+0.0 V	$\mathrm{V}-0.5 \mathrm{~V}$	-1.0 V	-1.5 V
10.6 A-hr.	24.33	26.83	28.50	--	--	--
	28.00	28.20	29.00	37.70	38.50	38.50

TABLE 5.5.1-3
Table 5.5.1-3 shows essentially the same results as Table 5.5.1-2 showed for cell Cl. About 10.6 ampere-hours of precharged negative capacity exists in the cell, representing all of the excess. This cell, like Cl, was probably negative limiting on charge, resulting in high voltages and hydrogen gas evolution.

The other three cells in the pack remained on cycling after Cl and C4 were removed. Percent recharge remained about 107% until cycle 4500 after which it dropped to lower than 104\%. Divergence in the three-cell pack showed a slight rise after the two cells were removed, but remained less than 100 mV through cycle 9000 . End-of-charge voltages at cycle 9042 ranged from 1.403 volts to 1.460 volts. It is likely, in view of the high amount of precharge measured on the two cells removed, that the remaining three cells are also negative limiting on charge. A gas sample taken on $9 / 1 / 7$, at cycle 7400 , revealed $100 \% \mathrm{H}_{2}$ gas in cell 3.

5.6 SPECIAL TESTS ON BAITHERY SERTAL NUMBERS 30 ARD 31

Nickel-Cadmium Aerospace batteries are rarely used immediately after manufacture. Generally, there are several weeks of pre-flight checkouts, each separated by periods of inactive storage. A prerequisite for maintaining
quality battery performance, therefore, is a proper storage mode prior to flight use.

Data on OAO battery $\mathrm{S} / \mathrm{N} 30,31$ indicated that a high voltage divergence among the cells was occurring, and that this was corralatable to the time the battery stood open-circuited. Other data indicated that divergence could be significantly reduced by keeping the batteries short-circuited when not in use.

Figure 5.6-1 shows the overcharge voltage profile of two cells in battery $\mathrm{S} / \mathrm{N} 30,31$ as a function of battery age*. The charge at 15 and 185 days shows no appreciable rise or divergence in voltage. However, after 500 days cell $\mathrm{s} / \mathrm{N} 698$ reached the hydrogen evolution voltage limit before three hours into the charge and the current had to be reduced. Even at this reduced rate (0.5 amp) it again reached the hydrogen evolution voltage limit and current had to be further reduced. The trend after 750 days (bottom curve) is similar although the voltage limit was reached even sooner.

Figure $5.6-2$ shows the rise in cell voltage with age. As seen, those test cells from the battery $\mathrm{S} / \mathrm{N} 30,31$ which were stored in a shorted condition since they left the seller's facility immediately following their manufacture and test showed neither high overcharge voltage nor a large divergence at over 500 days of age.

Figure $5.6-3$ presents the maximum cell voltage spread on low temperature overcharge as a function of the cell's age. Again, the general diverging trend is readily observed.

Voltage rise with age has been attributed to negative electrode capacity loss through a mechanism reducing the amount of active cadmium available for electrochemical reaction. Charging the cell at low temperatures imposes more of a stress on the cadmium electrode than on the nickel electrode. Unless there is a sufficient excess of $\mathrm{Cd}(\mathrm{OH})_{2}$ at the charged end, the cell could become negative limiting, evolving hydrogen. Battery $\mathrm{S} / \mathrm{N} 30$, 31 had a low final ratio of nagative to positive capacities (1.074-1.279 based on four sample cells from that assembly). Later batteries have been fabricated with higher ratios to ensure sufficient negative excess.

Carbonate in the electrolyte has also been shown to cause an increase in cell voltage, but the amount of carbonate in those cells was not measured and the extent to which carbonate can raise cell voltage is not well known.

[^4]EFFECTS OF AGE ON LOW TEMPERATURE OVERCHARGE VOLTAGE

- No. of series connected cells in pack: 5 per pack
- Cells from OAO battery S/N 34, 35 spare lot
- Cell serial nos.:

215A	$216 A$	217 A
$C 1=508 \mathrm{~A}$	$C 1=525 A$	$C 1=521 A$
$\mathrm{C} 2=1560$	$\mathrm{C} 2=1555$	$C 2=1473$
$C 3=1523$	$C 3=1478$	$C 3=917$
C4 $=1509$	$\mathrm{C}_{4}=1510$	$C 4=1484$
$C 5=520 A$	$C 5=523 \mathrm{~A}$	$C 5=522 \mathrm{~A}$

o On test at:
NAD, Crane X Goddard Space Flight Center

- Temperature: R.T.
- Date Test Began: 4/14/T1
- Depth of Discharge:
- Cycle Period:
- Charge Fate:
- Discharge Rate:
- Type of Charge Control:

TEST DETAILS -
These three packs underwent six-month storage periods in various modes. Pack 215A received a random electrical manipulation to duplicate the conditions which $O A O$ batteries experience during their pre-flight vehicle integration.

Pack 216A was shorted for the full six months while Pack 217A received a continuous trickle-charge for the duration of the storage period. Afterwards, the packs were tested to determine the effects the various storage modes had on their performance. Following these tests all three packs were placed back in their respective storage modes for another six-month period.

5.7.1 Test Results

The packs were stored in various modes for a six month period. Pack 215A underwent a random electrical regime to simulate the type of treatment an OAO battery would receive during the spacecraft integration and checkout period. Fack 216A was kept electrically shorted for the entire six month period, the mode. presently used when the OAO batteries are in inactive storage. Pack 217A was on trickle-charge (500 ma) throughout the period. All three packs received electrical characterization cycles upon termination of the storage test period to determine what, if any, changes had occurred in their performance. The results which follow are for the end of the first six month storage. Upon completion of the electrical re-characterization regime the cells were placed back in their respective storage configuration for testing at six month intervals. Tables 5.7.1-1 through 5.7.1-3 list the checkout tests performed on the packs before and after they were stored for the six months.

5.7.2 Analysis of Results
 Tables $5.7 .2-1,5.7 .2-3$ and $5.7 .2-5$ show the capacity measurements

 made before and after the storage period. Before the storage period, all packs showed similar capacities; the cells ranging from 23.3 A-hr. to 25.2 A-hr.. Following the storage, pack 215A (Table 9.7.2. -1) ahowed a sight increase in capacity while the other two packs ahowed slight decreases. It is interesting to notice the large increases in capacity which occurred on packs 215 A and 217 A : on 10/24/71. These two packs received an 11 hour, 1 amp, charge prior to being taper charged. This low rate charge before the taper charge may be responsible for the increased capacity since pack 216A, taper charged without first having the 1 amp charge, did not show any capacity increase. All three packs had been sufficiently overcharged prior to this capacity check and the A-hr. input was similar on all the packs (36.3 AH to 41.6 AH). If the 10 w rate charge is, in fact, responsible for the capacity increase, the mechanism causing the greater return is unknown, although it may "condition" the cell to take the higher rate charge more efficiently. No shorts of any kind seem to have occurred as a result of the storage as evidenced by the open-circuit recovery results shown in Tables 5.7.2-2, 5.7.2-4 and 5.7.2-6.Of prime interest in these tests was to see how the cells reacted to a low temperature overcharge following storage. Recall that it was the

TABLE 5.7.1-1
CHECKOUT TESTS AT NAD, CRANE (PACK 215A)

DATE	TEST	COMMENSIS
4/9/71	c/20 for 48 hours	Initial conditioning charge
4/9/71	Capacity discharge $\mathrm{C} / 2$ to 0.5 V each taper charge	Capacity data given in Table 5.7.2-1
4/11/71	Taper charge	See variation of cell voltage on taper charge in Figure 5.7.2-1.
4/12/71	c/2 dischg. until first cell reaches 0.5 V	C5 flrat to reach 0.5 V after 2 hr . 25 minutes. (24.10 A-hr.)
4/12/71	$16 \mathrm{hr} ., 1 \Omega$-short	
4/12/71	$24-\mathrm{hr}$. open ckt. stand	Open-circuit voltages Table $5.7 .2-2$
$\begin{aligned} & 4 / 13 / 71 \\ & 4 / 14 / 71 \end{aligned}$	Taper charge $4-\mathrm{hr}$. stabilization in $0^{\circ} \mathrm{C}$ chamber © 0.5 amp	
4/14/71	Dischg. 6.0 A, 5 minutes	
4/14/71	Overcharge c/20 for 5 hours	See variation of cell voltage in overcharge, Fig. 5.7.2-4
4/14/71	Capacity discharge $\mathrm{C} / 2$ to 0.5 V (lst cell)	C5 first to reach 0.5 V after 2 hr .24 minutes ($24.00 \mathrm{~A}-\mathrm{hr}$.)
4/14/71	Taper charge	
	STORAGE TEST	
$\begin{aligned} & 10 / 19 / 71 \\ & 10 / 21 / 71 \end{aligned}$	$4-\mathrm{hr}$. stabilization in $0^{\circ} \mathrm{C}$ chamber, (e) 0.5 amp	
10/21/71	Dischg. 6.0 A, 5 minutes	
10/21/71	Overchg. c/20 for 5 hours	See Figure 5.7.2-4
10/22/71	Capacity discharg. $\mathrm{C} / 2$ to 0.5 V ea.	See Table 5.7.2-1
10/22/71	$16 \mathrm{hr}, 1 \Omega$ short	See Table 5.7.2-2
10/23/71	1 amp charge for 10.5 hours	S/B taper (10A) charge instead of (1A) charge rate
10/24/71	Taper charge	
10/24/71	c/2 to 0.5 volt ea.	See Table 5.7.2-1
10/24/71	Taper charge	(NOTE: terminated after 10 minutes on 1.6 A due to high cell pressure on cell \#508 = +76 psig and ce.il $\# 520=+82$ psig
$\begin{gathered} 10 / 24 / 71 \\ \text { to } \end{gathered}$	OPEN CIRCUIT	\square
$\begin{aligned} & 10 / 27 / 71 \\ & 10 / 27 / 7 \end{aligned}$	4 hr . stabilization in $0^{\circ} \mathrm{C}$ chamber (e) 0.5 amp	
10/27/71	Dischg. 6.0 A, 5 minutes	
10/27/71.	Overcharge c/20 for 5 hours	See Figure 5.7.2-4 (NOTE: overcharge terminated after 2 hr., 15 minutes © $0^{\circ} \mathrm{C}$ © 1 amp due to high voltage on cell \#508 $=1.553 \mathrm{v}$).
10/27/71	Capacity dischg. (c/2 to 0.5 volt ea.)	See Table 5.7.2-1 (NOTE: cells discharged past 0.5 V - cell \#530 down to 0.171 volts)
10/28/71	Taper charge	See Figure 5.7:2-1 (FOTE: 1.6A rate terminated after 1 hr : 47 min . due to high cell pressure on cell \#508 $=+64$ psig and cell \#520 = +75 psig.

TABTE 5.7.1-2
CHECKOUT THSTS AT TAD; CRANE (PACK 216A)

DATE

4/7/71	c/20 for 48 hrs .	Initial conditioning eycle
4/9/71	Capacity dischg. $\mathrm{c} / 2$ to 0.5 V ea.	Capecity deta given in table 5.7.2-3
4/21/7	Taper charge	Soe variation of cell voitage on taper charge, Figure 5.7.2-2
4/12/71	C/2 dischg. until lat cell reaches	C3 first to reach 0.5 V after 2 hr .
	$0.5 \mathrm{~V}$	27 min. (24.5 A-hr.)
$\begin{aligned} & 4 / 12 / 71 \\ & 4 / 12 / 71 \end{aligned}$	16 hr . 1Ω short 24 hr . open-ckt. sta	open-ckt. voltages Table 5.7.2-4
4/13/71	Taper charge	
4/14/7	4 hr . stabilization in $0^{\circ} \mathrm{C}$ chamber © $0.5 \operatorname{amp}$	
4/14/7	Dischg. 6.0 A, 5 min . ${ }^{\circ} \mathrm{C}$	
4/14/7	Overchg. $\mathrm{C} / 20$ for 5 hre. in $0^{\circ} \mathrm{C}$ chamber	See variation of cell voltage in overcharge, Figure 5.7.2-5
4/14/71	Capactty dischg. $\mathrm{C} / 2$ to 0.5 V (lst cell)	C3 flret to reach 0.5 volts after $2 \mathrm{hr} .20 \mathrm{~min} .(23.33 \mathrm{~A}-\mathrm{hr}$.
4/14/71	Taper charge	
4/15/71	Dischs. $\mathrm{C} / 2$ to 0.5 V (lat cell)	C3 first to reach 0.5 volts after $2 \mathrm{hr} .15^{\circ} \mathrm{min} .(22.50 \mathrm{~A}-\mathrm{hr}$.

$4 / 15 / 7 \quad 1 \Omega$ short, 16 hrs .
4/15/7 Dead short each cell
4/15/7
to
10/20/71
10/20/71
SIORAGE TEST

10/22/7
$\mathrm{C} / 20$ for 48 hrs
Temp. stabilization $4 \mathrm{hrs} .$, $0^{\circ} \mathrm{C}$ © 0.5 amp
10/22/71 Dischg. 6.0 A, 5.min.
10/22/71 Overchg. $\mathrm{C} / 20$ for 5 hrs .
ee Figure 5.7.2-5
10/22/71 Capacity dischg. to 0.5 V ea.
$10 / 22 / 716 \mathrm{hr} .1 \Omega$ short
10/23/7 24 hr . open ckt. stand
to
10/24/71 24 hr . open ckt. stand
10/24/7 Taper charge
10/26/7 Capacity dischg, to 0.5 v ea
10/27/7 Taper charge
10/27/71 4 hr . stabilization in $0^{\circ} \mathrm{C}$ chamber (8) 0.5 amp
10/28/7 Dischg. 6.0 A, 5 min.
10/28/71 Overchg. C/20 for $5 \mathrm{hrs}$. HOTE: Terminated after 45 min . due to high voltages on cells 1.543 V to 1.556 V , all cells). See Table 5.7.2-3
See Figure 5,7.2-2
C2 Firgt to reach 0.5 V after 2 hr .24 min. (22.33 AH)

TABLE 5.7.1-3
CHECKOUT TESTS AT NAD, CRANE (PACK 217A)

DATE		
4/7/71	c/20 for 48 hours	Initial conditioning cycle
4/9/71	Capacity dischg. $\mathrm{C} / 2$ to 0.5 V ea.	Capacity data given in Table 5.7.2-5
4/11/71	Taper charge	See variation of cell voltage on taper charge, Figure 5.7.2-3
4/12/71	C/2 dischg. until first cell reaches 0.5 V	C5 first to reach 0.5 volts after $2 \mathrm{hr} .21 \mathrm{~min} .(23.50 \mathrm{~A}-\mathrm{hr}$.
4/12/71	$16 \mathrm{hr} ., 1 \Omega \text { short }$ 24 hr . open-ckt. stand	Open-ckt. voltages, Table 5.7.2-6
$\begin{aligned} & 4 / 12 / 71 \\ & 4 / 13 / 71 \end{aligned}$	24 hr . open-ckt. stand Taper charge	Open-ckt. voltages, Iable 5.7.2-6 .
4/14/71	4 hr . stabilization in $0^{\circ} \mathrm{C}$ chamber (C) 0.5 mmp	
$\begin{aligned} & 4 / 14 / 71 \\ & 4 / 14 / 71 \end{aligned}$	Dischg. 6.0 A, 5 minutes Overchg. $\mathrm{C} / 20$ for 5 hrs . in $0^{\circ} \mathrm{C}$ chamber	See variation of cell voltage in overchg., Figure 5.7.2-6
4/14/7	Capacity dischg. C/2 to 0.5 V (lst cell)	C5 first to reach 0.5 volts after 2 hr .20 min . (23.30 A-hr.)
4/14/7	Taper charge	
4/15/71	Trickle charge (500 MA)	
$\begin{gathered} 4 / 15 / 71 \\ \text { to } \end{gathered}$	STORAGE TEST	
10/21/71		
10/21/7	Temp. stabilization $4 \mathrm{hr} . \mathrm{O}^{\circ} \mathrm{C}$ © 0.5 mmp	
10/21/71	Dischg. $6.0 \mathrm{amp}, 5 \mathrm{~min}$.	
10/21/71	Overchg. C/20 for 5 hours in $0^{\circ} \mathrm{C}$ chamber	See Figure 5.7.2-6
10/22/71	Capacity dischg. $\mathrm{C} / 2$ to 0.5 V ea.	See Table 5.7.2-5
10/22/71	16 hr .1 תshort	
10/23/71	24 hr . open ckt. stand	See Table 5.7.2-6
10/23/71	1 amp charge for 11 hrs .	S/B taper (10A)
10/24/71	Capacity dischg. $\mathrm{C} / 2$ to 0.5 V ea.	
10/25/71	Taper charge	See Table 5.7.2-5
10/27/7	Temp. stabilization $4 \mathrm{hr} ., 0^{\circ} \mathrm{C}$ @ 0.5 amp	
10/27/71	Dischg. 6.0 A, 5 min.	
10/27/71	Overchg. $\mathrm{C} / 20$ for 5 hrs . in $0^{\circ} \mathrm{C}$ chamber	See Figure 5.7.2-6
10/27/7	Capacity dischg. C/2 to lower than 0.5 V	C5 discharged down to 0.195 volt
10/28/71	Taper charge	See Figure 5.7.2-3
10/29/71	Placed back on trickle charge (500 ma).	

table 5.7.2-1

Date of Test	Temperature	AHin Prior Cycles	Type of Prior Charge	$\mathrm{AH}_{\text {Out }}$ this Cycle
4/9/7	Fm. Ambient	48 AH	c/20 for 48 hours	24.3,24.3,24.7,25.2,24.2
10/22/71	" "	?	$\mathrm{c} / 20$ for 5 hrs . © $0^{\circ} \mathrm{C}$	24.5,22.1,23.0,23.8,24.7
10/24/7	" "	37.6 А	1 amp 10.5 hr . then taper charge	27.5,26.7,26.5,25.7,26.8
10/27/7	" "	33.25 Af	$\mathrm{c} / 20$ for 5 hrs . © $0^{\circ} \mathrm{C}$	24.2,23.5,23.7,24.2,23.3

[^5] .035,0.025,0.025,0.024,0.035 (

[^6]TABLE $5.7 .2-5$
$\frac{\text { CAPAGITY DATA }}{(\mathrm{C} / 2 \text { to }+1.0 \mathrm{~V})}-$ PACX 217A

Date of Test	Temperature	AHin Prior Cycles	Type of Prior Charge	AHout this Cycle
4/9/7	Fm, Ambient	48 AH	$\mathrm{c} / 20$ for 48 hrs .	23.7,23.8,24.7,24.0,23.3
10/22/7	" "	2,268 AH	39.7 (taper)	
			+2,268 (trickle)	24.3,24.3,28.1,24.7,24.8
			+21.5 (overcharge)	
10/24/T	" "	41.6 AH	$\begin{aligned} & 11 \mathrm{hr} \text {. © } 1 \text { amp then } \\ & \text { taper } \end{aligned}$	29.7,29.8,30.8,30.0,29.8
10/27/7	" "	46.3 АН	39.8 (taper)	
			6.5 (overcharge)	24.0,24.8,24.84, 24.3,23.
	-	table 5.7.		
	24 -HR. OPEN-CKT. VOIMAAE RECOVERY TEST - PACK 217 A			
Date of Test	Temperature	Start of 24	Test (volts) End of	Hr. OCV Test (volts)
4/12/71	Fm. Temp.	0.444,0.152,0.	6,0.392 1.152,1	58,1.192,1.143,1.128
10/23/71	" "	$0.241,0.149,0$.	9,0.292 1.182,1	79,1.174,1.183,1.185

Low temperature overcharge tests on OAO battery $S / \mathrm{N} 30,31$ that revealed a rising end-of-charge voltage trend with age. Low temperature is known to place a stress on the cadmium electrode making it perform poorly on charge. It has been surgested that some undefined mechanism operates to reduce the amount of active cadmium in a cell as a function of age. One such might be growth of the cadmium hydroxide crystal size with age, with the concomitant effect of reducing overall active surface area on the negative electrode. Whatever is occurring, the possibility of negative limiting could be detected in advance by running low temperature overcharge. A cell whose negative-to-positive ratio is approaching unity due to age should become negative limiting under the stresses imposed on the cadmium electrode by the low temperature. On $4 / 14 / 7$ a $0^{\circ} \mathrm{C}$ overcharge was performed on the three packs. Before this the cells were charged fully by a taper charge. Figures 5.7.2-1 through 5.7.2-3 show proflles of the three pack voltages during taper charge before and after atorage. Before the storage period, all three packs exhibited similar voltages on charge. Each pack reached a maximum of about 1.490 volts while in the 5 amp portion of the charge and did not have to be cut back further in current. In the taper charge following storage, the current for packs 215 A and 216 A had to be reduced to the lowest rate (1.6A) or some cells would have exceeded the voltage limit in the 5 amp portion. Pack 217 A did not exhibit this sharp voltage rise. Pack 215 A had to be terminated early into its 1.6 amp charge due to high pressure. A gas sample was not taken.

Figures 5.7.2-4 through 5.7.2-6 show overcharge results for two tests after storage compared to a pre-storage test. Pacir 215A again exhibited high pressures as it did during taper charges. On a later overcharge it had to be terminated due to high voltages, another possible indication of a negative-limiting cell. Pack 216A did not appear very different on the first overcharge following the storage period, but had to be prematurely terninated on a later overcharge due to high voltage indications. Pack 217A performed nearly identically both before and after the storage period as can be seen in Figure 5.7.2-6. No evidence is shown that the storage period had any adverse effects.on the paik. Although pack 217 A did not reach high voltages on overcharge, it exhibited an increase in voltage divergence with storage, as did both the others. Table.5.7.2-7 is a sumary of the high and low voltages reached during overcharge tests. The increasing spread in voltage at the

PACK:19

Test Date	Max. V	Min. V	Time	Delta (Max.-Min.) (mV)
$4 / 14 / 71$	$1.532 \mathrm{~V}(1)$	$1.525 \mathrm{~V}(3)$	$0+45 \mathrm{~min}$.	7.0
$10 / 21 / 71$	$1.580 \vee(1)$	$1.541 \mathrm{~V}(3)$	$0+90 \mathrm{~min}$.	39.0
$10 / 27 / 71$	$1.553 \mathrm{~V} \cdot(1)$	$1.522 \mathrm{~V}(3)$	$0+135 \mathrm{~min} . *$	$31.0 *$

PACK 216A

| Test Date | Max. V | Min. V | Time | Delta (Max.-Min.) (mV) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4 / 14 / 71$ | $1.528 \mathrm{~V}(3)$ | $1.522(1,4,5)$ | $0+45 \mathrm{~min}$. | 6.0 |
| $10 / 22 / 71$ | $1.549 \mathrm{~V}(5)$ | $1.536(4)$ | $0+45 \mathrm{~min}$. | 13.0 |
| $10 / 28 / 71$ | $1.556 \mathrm{~V}(4)$ | $1.543(1)$ | $0+45 \mathrm{~min} . *$ | $13.0 *$ |

PACK 217A

| Test Date | Max. V | Min. V | Time Deita (Max.aMin. \dot{y} (mV) | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4 / 14 / 71$ | $1.530 \mathrm{~V}(5)$ | $1.523(1,3)$ | $0+45 \mathrm{~min}$. | 7.0 |
| $10 / 21 / 71$ | $1.541 \mathrm{~V}(3)$ | $1.522(2)$ | $0+45 \mathrm{~min}$. | 19.0 |
| $10 / 27 / 71$ | $1.535 \mathrm{~V}(3)$ | $1.506(1)$ | $0+45 \mathrm{~min}$. | 29.0 |

* Charge terminated, voltages were stulu increasing

TABLE 5.7.2-7

PRESSURE CHANGE ON IOW TEMPERATURE OVERCHARGE
PACK 215A-CELL S/N 508

Tlest Date	Initial Pressure	End-Of-Charge Pressure	Delta Prescure
$4 / 14 / 71$	-03 psig	+07 psig	+15 psig
$10 / 21 / 71$	+22 psig	+76 psig	+54 psig
$10 / 27 / 71$	+15 psig	+44 psig	+29 psig
		PACK 216A - CESI S/N 525	

Test Date	Initial Pressure	End-Of-Charge Pressure	Delta Pressure
$4 / 14 / 71$	-04 psig	+09 psig	+13 psig
$10 / 22 / 71$	+02 psig	+10 psig	+8 psig
$10 / 28 / 71$	+01 psig	+00 psig	$-1 \mathrm{psig} *$

PACK 217 A - CETL S/N 521

Test Date	Initial Pressure	End-Of-Charge Pressure	Delta Pressure.
$4 / 14 / 71$	-07 psig	+08 psig	+15 psig
$10 / 21 / 7$	-11 psig	+03 psig	+14 psig
$10 / 27 / 71$	-09 psig	+18 psig	+27 psig

[^7]TABLE 5.7.2-8
maximum point during the charge is evident. The voltage values are generally lowest for pack 217A and highest for pack 215A. The pressure data is given in Table 5.7.2-8. Packs 215 A and 216 A had to be terminated prematurely during the third overcharge and therefore the end-of-charge pressure shown is lower than it might have reached. In general it appears that pack 215 A gassed the most during the overcharges with packs 216 A and 217 A probably gassing similar amounts. Notice, too, that the three packs gassed very similarly during the pre-storage overcharge test (+13 psig to +15 psig).

SECTION 6.0

CONCLUSIONS
This study demonstrates that the OAO design program has indeed improved the quality and lengthened the life of aerospace-grade $\mathrm{Ni}-\mathrm{Cd}$ cells and batteries. Further, ability to understand and predict performance of these devices under actual operating conditions has been enhanced considerably. It can safely be said that $\mathrm{Ni}-\mathrm{Cd}$ batteries are now moving from the "art" stage into an engineering phase. Quantitative data to support these statements are contained in this report.

Specific conclusions to be drawn and findings include:
o Improved operating life - shown by $3 \frac{1}{2}$ years of successful OAO-2 operation without single cell failure

- Capability to provide flexible full charge control without excessive overcharge - shown by results of using eight (8) BVLS levels and a sensitive third electrode signal
o Necessity to design future spacecraft equipment to accept lower discharge voltages due to "double plateau" effect
- Ability to predict battery performance using a computer model with adequate cell characterization data
- Improvement of cell characterization techniques
- Cell storage - long term - under about $C / 40$ trickle charge may result in less performance degradation due to apparently negligible parameter changes compared to other techniques (if it can be shown that excessive component degradation will not thereby ensue)
o OAO-2 battery thermal design amply adequate to retain maximum life and performance characteristics - shown by spacecraft data
- Low temperature spread (cell-to-cell) results in small, negligivie characteristic differences
- Temperature regime safely below nylon separator hydrolysis degradation point
- Cell processing and screening techniques lead to greater uniformity, both intially and after prolonged cycling. Among the items contributing are:
- Plate weight screening
- Minimum 24-hour soak after activation
- Controlled technique for negative precharge adjustment
- Careful ratio testing as a verification test
- Capacity predictions from sample plate data
- Specification of single lots for a build
- Plates
- Separatore
- Electrolyte
- Cell selection testing

- Pressure measurement

- Imitation of overcharge in early tests
- Adequate quality assurance provisions
- Radiography
- Terminal inspection

This study also raised some specific questions, and pointed up areas in which more information is required. These are discussed briefly below.

6.1 CHARGE CONTROL AND THE THIRD ELECTRODE

The muiti-level voltage vs. temperature limit (BVLS) charge control is now a proven technique. OAO-2 amply demonstrates its viability.. The third electrode experiment also seems to have been successful in that a signal sensitive to state-of-charge was found, and its time of appearance was representative of how much overcharge would occur at any BVLS level. In flight, this fact was used by operations personnel to modify BVLS levels by ground command. What remains, then, are the following questions:

- How should future spacecraft designers best integrate third electrode with BVLS control?
- What factors affect third electrode signal performance (e.g.: hydrogen evolution, cell reversal, loading, etc.)?

6.2 OPERATIONAL VOLTAGES AND RECONDITIONING

It has been found that the "double plateau" effect in discharge (i.e.: the tendency for cell:; and batterjes in extended cycling to expend large,increasing portions of their :toret merry nt low voltage - ahout 1.05 volts per cell) can be reversed by subjecting the cells to "deep" discharge - to 1.0 volte per cell or less. Ford (Reference 14) and others have determined this "reconditioning" is a temporary effect. Test data taken for this and other recent programs show that recharge rates and/or techniques (up to at least $c / 2$) following deep discharge have no effect on either dicappearance of double plateau or the duration of the "reconditioning" effect. These conclusions are borne out by the data presented herein. Several points, however, remain unclear:

- What phenomena are responsible for "double plateau"?
o Why does "reconditioning" work at all, and why is it temporary?
- What is the exact relationship between the lowered discharge voltage of "double plateau" and end-of-charge voltage performance?
o Is there a relationship between "double plateau" and either or both of oxygen and hydrogen evolution?
- Is there a way to utilize third electrode signal to minimize "double plateau" effects?
- Is it necessary to have either pressure relief or pressure cut-off' for cells and batteries subject to prolonged cycle life?
- Can voltage divergence (cell-to-cell in a battery) be predicted and/or controlled for either charge or discharge?
- What, if any, are the relationships of divergence to any of the above?
- Are there maximum divergence limits? Based on what criteria?

Answers to the above and corollery questions would contribute much to understanding the flight performance of batteries, and to the ability to predict and control this performance over long periods of time.

6.3 MUITIPLE REGRESSION ANALYSIS

In the program of which reference 11 is a report, it has been shown that Ni-Cd cell parameters can be related to manufacturing processes and control by means of a mathematical technique called multiple regression analysis. To a limited extent, this program has established the same principle - analysis confirmed observation that a minimum soak time is required after activation to assure stable, predictable precharge adjustment. Other attempts to achieve correlation were less than fruitfui. It was concluded that insufficient data were available. This fact, rather than an inherent weakness in the analysis technique, accounts for lack of useful results.

The program reported on by reference 11 relied heavily on electrode processing and construction data - material which was lacking here. Should such information become available, cells be fabricated from the plates reported on, and these cells be subjected to adequate testing, regression analyses would show their usefulness.

SECTION 7.0
 RECOMMENDATIONS

7.1 MANUFACIURING AND PROCESS CONTROLS

The material manufacturing and process controls covered herein should be applied to all future builds of aerospace-grade cells and batteries. Plateprocessing and manufacturing variables should also be included (Section 7.7). Performance and long-life reliability will thereby be enhanced without any necessity to incur increased cost. Ultimately standardization and lower reject rate, along with reduced screening requirements, will result in \cdot cost savings.

7.2 NEGATIVE/POSIMIVE RATIO

To insure good performance over long-life, minimum excess negative capacity is required. Actual values may be application oriented. Up to the last battery build, OAO required minimum ratios of 1.30:1.00. For the last build, this was increased to $1.40: 1.00$. It is recommended that standard minima be established to improve life characteristics, and that adequate sample test requirements be imposed. These should be based on as complete as possible an understanding of negative-limit phenomena for both charge and discharge.

7.3 PRECHARGE

Along with sufficient negative/positive ratio, it is necessary to have proper balance of the excess negative capacity. This can be achieved by a controlled negative precharge adjustment. Wherever possible the gas (oxygen) collection technique should be used since it appears to be the most accurate and reliable method devised to date.

7.4 QUALIITY ASSURANCE

To insure cell reliability, battery performance and iong life, strictly, but intelligently, enforced quality control should be imposed from the raw material stage through to the finished product. This includes insistence on adequate analysis and lot sample data of all materials and components (e.g. electrodes, separators, electrolyte, etc.), and sufficient in-process inspection and test to assure both good procedures and traceability.

7.5 CELL SELECTION

Adequate criteria should be established for each cell and battery design to assure battery performance in flight systems. Similar requirements to those shown in Appendix B should be used to match cells, with specific items based on known characteristics of the cells.

7.6 CEL工 CHARACTERTZATION

From each lot of cells built for flight use, a sufficiently large sample should be taken and subjected to prescribed characterization and life tests. These tests would:

- Provide data to verify cell selection
- Update the cell performance prediction model
- Verify spacecraft power system design
- Provide data for analytic process/performance studies Further suggestions for these efforts include a test facility capable of:
- Automatic cycling simulating predicted orbital, charge and load parameters
- Data format directly compatible with computer programs
- Safe operation against cell or test equipment failure
- Overpressure
- Over/under voltage
- Power faults

Such capability makes this kind of teating economical since it allows for repetitive use of the same equipment and data reduction software, and avoids excesaive use of personnel for continuous 24-hour, 7-day testing.

7.7 ANALYTIC SIUDIES

It is recommended that the work begun hers to relate early test data to actual cell performance and life be extended. An attempt should be made to achieve correlation among early tests, performance and life on one hand, and component characteristics on the other. Such elements as electrode parameters (utilization, strength, active material purity, etc.), separator types and construction, electrolyte concentration and the like should be
7.7 (CONTINUED)
studied from the point of each one's impact on cell results. This effort would require cooperation of the component suppliers, but would eventually lead to greater understanding of nickel-cadmium technology (see ref. 11). Similar work should be undertaken on design and use of oxygen-sensing (adsorbed hydrogen) and fuel-cell electrodes for state-of-charge sensors.

7.8 BATTERY VOITAGE REGUTATION/"DOUBLE PLATEAU" EFFECT

For long-lived systems, especially in low-earth orbit, other on-board equipment should be designed to operate safely, and within normal. performance limits, over a voltage range wide enough to include a mininum discharge voltage of 1.05 volts/cell. The "double plateau" effect found in extended cycling does not represent a real capacity loss as previously thought, but is due to the tendency of nickel-cadmium cells to release stored energy at lower voltage spread, requiring using and power conditioning equipment to accept a wider range. Where 0A0-2 was specified at 24-35 volts for a 21-cell battery, future designs should reduce the lower figure to approximately 20.75 volts (includes diode drop).

7.9 PRE-FLICHT TESTS/STORAGE $\quad \because$

Batteries designated for flight or flight spares usage should receive a minimum of systems test before launch. At all other times, they should be stored in the recomended manner to avoid excessive component degradation and concomitant shortening of life. Storage techniques should be studied to determine optimum method(s) (e.g. shorted vs. low trickle charge - see 6.0).

SECTION 8.0

FUTURE EFFORT

8.1 PRESENI PROGRAM EXTENSION

An extension of this program should be made to record, analyze and codify the following material:

- Cell and battery data for batteries $S / \mathrm{N} 36$ and 37, now being constructed for use as OAO-4 flight spares.
- Addition of data on extra cells of batteries 34, 35 lot; and batteries 36, 37 lot
- Characterization tests
- Life tests
- Storage tests
- Review and include OAO-2 flight data past end of this program
- Include OAO-4 flight data -- launch scheduled for August 1972
- Include storage test results, second six-month period, packs 215A, 216A, 217A.

8.2 BASIC COMPONENT STUDIES

The following component studies should be undertaken:

- Effects of adding cobalt to positive electrodes
- Electrode parameters
- Initial cell performance
- Long term cycling performance
- Life
- Establishment, with plate manufacturer's cooperation, of manufacturing and process controls.
- Quality assurance povisions
- Detailed plate data requirėments
o Plate chemical analysis

8.3 CELL EFFORTS

The following work should be started to increase knowledge of cell performance and characteristics:

- Investigation to determine capacity retention enhancement by starting charge at low rate
- Initial (Conditioning) charge only
- Cyclic charges
- Investigation of storage techniques at less than room temperature ($<20^{\circ} \mathrm{C}$)
- Reduction of all cell and component data to computer format
- Economical bookkeeping, storage
- Easier to use for analytic purposes
- Continue analytic effort to relate manufacturing, process and early test parameters and data to cell and battery performance
- Improve controls
- Improve cell prediction model
- Optimize early test techniques

REFFERENCES

1. NASA/GSFC - Aerospace Industry Bettery Committee, "Interim Model Specification for High Reliability Nickel-Cadmium Spacecraft Celis", 5-716-p-23, 30 April 1969.
2. Gaston, S. J., "Organic and Inorganic Impurities in Pellon, Dynel and Viscon Separators used for OAO Cells", Transcript: Proceedings of the NASA/ GSFC Battery Workshop, 17 November 1970, pp. 285-291.
3. Kelley, J. "Alkaline Battery Separator Characterization Studies", Fifth Quarterly Report, 23 June 1968-23 September 1968, Contract NAS 5-10418, ESB Incorporated, Yardley, Pennsylvania.
4. Hughes Aircraft Company, "Low Earth Orbit Battery Development Project" Monthly Progress Report No. T1(41)-08266/C12T8-002, 15 July 1971, AFAPL Contract F 33615-70-C-1710.
5. Naval Aumunition Depot, Quality Evaluation Iaboratory, Crane, Indiana, U.S. Govermment Memorandum Number 3403, 8 May 1968.
6. Gaston, S. J. "OAO Battery - Single Insulated Terminal Seal vs. Two Insulated Cell Terminal Seals for Batteries for Spacecraft Numbers 3 and $4^{\prime \prime}$, Grumman Aircraft Engineering Corporation Project Memorandum, PM-3/4-8-023, 9 July 1968.
7. Grumman Aircraft Engineering Corporation, Bethpage, New York. Engineering Materials Section Report Number 1474, 6 November 1968.
8. Halpert, G., NASA/GSFC Report Number X-735-70-225, April 1970.
9. Ford, F. E. and Hennigan, T. J., "Nickel-Cadmium Batteries for the Orbiting Astronomical Observatory Spacecraft-II (OAO)", Proceedings of the 24 th Power Sources Symposium, 19-21 May 1970.
10. O'Rourke, J., "Precharge Technique on OAO Cells", Transcript: Proceeaings of the NASA/GSFC Battery Workshop, pp. 406-410, 18 November 1971.
11. Harsch, W.C. and Doan, D.J.; "Study of Process Variables Asbociated with Manufacturing Hermetically-Sealed Nickel-Cadmium Cells", First Quarterly Report, Eagle-Picher Industries, Joplin, Missouri, September 1970.
12. Ford, F. E., "Flight Performance of Mickel-Cadmium Batteries with Third Electrodes for OAO-2". Proceedings of the 25th Power Sources Symposium, (Not Yet Published), May 1972.
13. Gaston, S. J., "Low Temperature Overcharge on the OAO battery and Cells", Transcript: Proceedings of the NASA/GSFC Battery Workshop pp. 134-137, 16 November 1970.
14. Ford, F. E., "Characterization of the 20 A-hr. Nickel-Cadmium Cell Used for Energy Storage on the Orbiting Astronomical Observatory", (Unpublished) 1972.
15. Dunlop, J., Paper on Precharge Measurement, Transcript: Proceedings of NASA/GSFC Battery Workshop, pp. 377-389, 18 Hovember 1971.

APPENDIX A

Print-Outs for Regression Analyses
 Described in Section
 Voltage (Divergence) Regression
 Precharge (Gas Evolution) Regression

FOW ANOVA, TOTAL SUM OF SOUARES

Reproduced from
Rest available copy.
-

APPENDIX B

QAO Cell SPECIFICATION

AV 252CS-25G

GRUDGAN ABCRAPT RNGNEERNG COMPGATION

Eas 200.11 5.66
\qquad

GRUMMAN AEROSPACE CORPORATION

Dachpage L. I. N. Y.
Code Weent. No. 26512

Eos 200.3 5.66
\qquad

SPECIFICATION

No. AV-252CS-25G
2.1 (Continued)

LSP-14-142010

GSS 7011
Safety Solvents - Cleaning

Federal
205-766

Military

MIL-B-7883-1	Brazing of Steels, Copper, Copper Alloys and Nickel Alloys
MIL-W-8611A	Welding, Metal Arc and Gas, Steels, and Corrosion and Heat Resistant Alloys, Process for
MLI-F-14072	Finishes for Ground Signal Equipment
STANDARDS	
Military	
MIL-STD-202C	Military Standard, Test Methods for Electronic and Electrical Component Parts

DRAWINGS
Grumman
252SCAV110

252SCAV113

HANDBOOKS
Aero Propulsion Lab, Wright Patterson AFB, Ohio

Screening Method,	Cherecteristics of Separators for
Edited by: J.E. Cooper	Alksline Silver Oxide-Zinc Seconderk
and A. Fleischer	Betteries

\qquad

GRUMMAN AEROSPACE CORPORATION

Bechpape L. I. N. Y
Code Kent. No. 26512
SPECIFICATION
No. AV-252CS-25G
2.2 Precedence. - When the requirements of the purchase order, this specification or subsidiary specifications are in conflict, the following precedence shall apply:
(a) Purchase Order - The Purchase Order shall have precedence over any specification.
(b) This Specification - This specification shall have precedence over all referenced subsidiary specifications.
2.3

Availability of Documents. - Copies of this specification and other specifications and documents referenced herein may be obtained, upon request from Grumman Aircraft Engineering Corporation, Bethpage, Long Island, New York, 11714 ; Attention: OAO Specifications Group. Requests for Military Documents listed herein should be addressed to the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

3 REQUIREMENTS

3.1 Qualification. - The cells furnished under this specification shall be products which have been tested and have passed the Qualification Tests listed in Section 4.
3.2 Reliability and Operating Life. -
3.2.1 Reliability. - Each storage cell shall be designed and constructed so that a 99.8 percent probability of successful operation during the launch and orbital lifetime (See Note) is achieved. The achievement of the specified reliability shall be assured by the implementation of a comprehensive subcontractor reliability program in accordance with Specification RC-252CS-14C.

NOTE: Orbital Lifetime $=$ Minimum of 5200 orbital cyclings during a minimum operating period of one (1) year.
3.2 .2

Operating Life. - All components and component parts shall have a minimum operating life of 26,250 (See Note) hours as well as a charge-discharge capability of 10,000 cycles during this period. The operating life shall be defined as wearout or deterioration to an extent which causes the equipment to deviate from the performance limits specified herein. Environmental test conditions representative of ground operations, launch and orbit shall be as specified in ET-252CS-39C, except as otherwise specified herein.

NOTE: 17,500 hours to be electrically active and balance in electrically drained and shorted (inactive) condition.
\qquad

GRUMMAN AFROSPACE CORPORATION

Bathparte, L. I., N. Y,
Code Ident. No. 26512

SPECIFICATION

No. AV-252CS-25G
3.3 Materiais. - Materials used in the manufacture of storage cells shall of high quality, suitable for the purpose intended, and shall be selected in accordance with the requirements of SP-252-38C. Plates, separator and electrolyte are the only items to be installed in a cell. All materials mast be approved by Gruman prior to their being used. A list of materials shall be supplied by seller.
3.4 Design and Construction. - Individual cells shail be hermetically sealed to permit operation within the environmental requirements of this specification. Cells shall contain the necessary plates and terminal posts and shall be secured so that no motion of the plates, relative to the container or hold-dow arrangement, can occur. The detailed mechanical and electrical design of the nickel-cadmium storage cells shall be accomplished by the Seller subject to the requirements of this specification.
3.4.1 Interchangeability. - All cells of a given Seller's part number shall be dimensionally and functionally interchangeable with each other. The Seller's part number shall be identical with the Seller's drawing number for the same cells.
3.4.2 Cell Lot. - Cells purchased under one lot shall use components from one specific batch only and shall be assembled as one batch under identical production techniques. This requirement shall be further defined as follow:

Components from one batch are mandatory for all active components such as; separator material, electrolyte, plates (one batch = ne melange or 2 randomized melanges*). For all other cell components, one batch is desirable. This requirement must be strictly adhered to. Complete records must be kept of each component batch and be made available to Grumman upon request. Each cell shall be serialized with a non-recurring number.

* A melange shall be used to fabricate the cell order. In the event one melange is not adequate to manufacture the cell order, two or more melanges may be used if mixed and randamized prior to cell production.

GRUMMAN AEROSPACE CORPORATION
 Bexthpare, L. I. N. Y.
 Code Ident. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.3 Separators. - Separators shall be of a Gruman approved

 type, free from flaws, cracks, contamination and/or other imperfections likely to permit short circuits and/or other failure mechanisms. They shall be fabricated from materials which are physically and chemically stable in the presence of potassium hydroxide. (Materials shall be selected in accordance with SP-252CS-38C). They shall have a low electrical resistance and shall be capable of absorbing and retaining large quantities of potassium hydroxide elentrolyte when subjected to the environmental conditions given in Tables I and II of Specifications ET-252CS-39C: Separators shall also be capable of withstanding without damage the thermal tests (See paragraphs 4.5.11, 4.5.12. and 4.5 .13) which are representative of environmental conditions anticipated during the two years of dinimum battery life.3.4.3.1 Separator Quality Assurance Provisions. - The following tests shall be conducted on the separator and is to be used for cells purchased under this specification. Sample Data Sheets as shown in the attached (Appendix 1 and Appendix 3) shall be prepared by the seller. Two copies of each Data Sheet and a separator sample of 100 sq . in. minimum size shall be furnished to Grumman for approval prior to start of further processing. Material traceability shall be required.
3.4.3.1.1 Separator Manufacturer's Information. - Fecord all information requested under 1.0 on sample Data Sheets of Appendix 1.
3.4.3.1.2 Electrolyte Absorption, Dimensional Change, Electrolyte Retention and Porosity. - Six samples of each material shall be cut (in the machine direction) to 6.50 cm . by 2.50 cm . and individually measured using a standard die. The thickness of each sample shall be measured using an Ames gauge Model 262 platform dial micrometer with a 0.5 in. diameter stainless steel anvil. The dial shall be graduated in 0.001 mm . An equivalent thickness measurement system is acceptable. Each sample shall be weighed to the nearest one milligram on an analytical balance and then immersed in approximately 100 cc of aqueous potassium hydroxide (KOH) solution in non-corrosive containers with air tight covers. The concentration of the $K O H$ solution shall be the same percent as used in the cell filling and shall be of the same

GRUMMAN AEROSPACE CORPORATION

Bechpage, L. I., N. Y.
Code Idear. No. 26512

SPECIFICATION

No. AV-252CS-25 G

3.4.3.1.2 (Continued)

quality. Dimensional changes shall be measured after three hours of equilibration. The samples shall be returned to their individual containers for an additional hour. At the end of one hour, the equilibrated samples shall be wiped across a clean lucite plate until no droplets are left on the plate. Then re-weigh the sample.
(a) Electrolyte Absorption - Electrolyte absorption is the difference between the wet equilibrated samples and the dry sample weights. Record data on dimensions, dimensional changes and absorption in a manner similar to that delineated under 2.1 on the Sample Data Sheets of Appendix 1.
(b) Electrolyte Retention - Electrolyte retention shall be measured on the same samples after draining for 15 ± 5 minutes on a clean lucite plate positioned at a 45 ± 2 degree angle. The samples shall be re-weighted. During draining, the samples shall be enclosed in an inert atmosphere. Record data on electrolyte retention in a manner similar to that delineated under 2.2 on Sample Data Sheets of Appendix 1.
(r) Porosity - Porosity shall be calculated in a manner similar to that delineated under 2.3 on the Sample Data Sheets of Appendix 1.
3.4.3.1.3 Separator Resistance - DC Method. - The resistance of three samples of separator material shall be measured. Each sample shall be cut from a different roll. This method is essentially that described by Lander in Chapter $6 a$ of the Cooper-Fleischer Handbook.

The cell used is a modification of that used in the AC method. The platinized platinum current electrodes are replaced by disc cadmium electrodes (capacity 0.7 A-hr) which are maintained in a partially discharged state. The voltage drop across the membrane is measured using two $\mathrm{Hg} / \mathrm{Hg} 0$ reference electrodes which fit into ports in either cell half. The bottom of each port is connected by a diagonally drilled capillary to the membrane surface.

GRUMMAN AEROSPACE CORPORATION

Bechpage, L. I., N. Y.
Code Ident. No. 26512

SPECIFICATION

No. AV -252CS-25G

3.4.3.1.3 (Continued)

Equilibration technique and sample size are the same as in the AC method. The sample is introduced between the cell halves and the cell promptly filled with electrolyte and the reference electrodes placed. Current is passed by means of a constant current source to give $50 \mathrm{ma} / \mathrm{cm}^{2}$. The voltage drop is measured between the two reference electrodes using either an electrometer or a potentiometer. A blank determination is made and subtracted from the cell resistance with the membrane in the path.
(a) Calculations -
(1) Separator Resistance
$R^{\prime \prime}=\frac{E_{r}-E_{b} A}{I}$
$\mathrm{R}^{\prime \prime}=$ Separator resistance ohm- cm^{2}
$E_{r}=$ Voltage drop between $\mathrm{Hg} / \mathrm{Hg}$ O electrodes with separator in path - volts
$\mathrm{E}_{\mathrm{b}}=$ Voltage drop between $\mathrm{Hg} / \mathrm{HgO}$ electrodes with separator out of path - volts
$I=$ Current - amperes
$A=$ Separator area exposed cm^{2}
(b) Separator Specific Resistivity -
$P^{\prime \prime}=\frac{R^{\prime \prime}}{t_{w}}$
$\mathrm{P}^{\prime \prime}=$ Separator specific resistivity ohm-cm
$\mathrm{R}^{\prime \prime}=$ Separator resistance ohm- cm^{2}
$t_{w}=$ Equilibrated separator thickness cm
Perform calculations above and record data in a manner similar to that delineated under 3.1 on the Sample Data Sheets of Appendix 1.

GRUMMAN AEROSPACE CORPORATION

Berhpage, L. I., N. Y
Code Ident. No. 26512

SPECIFICATION

No. AV-252CS-25G
3.4.3.1.4 Separator Wettability. - Separator wettability of three samples of separator material shall be measured. Each sample shall be cut from a different roll. Separator wettability shall be measured by placing the dry separator sample in the resistivity cell, filling the cell with electrolyte and recording the time required to attain a stable resistance. Measurements shall be made at five second intervals. Plot the data of the three determinations on one graph, 10×10 to the inch.
3.4.3.1.5 Tensile Strength at Break. - Tensile strength at break shall be measured on at least six samples, each two samples cut from a different roll. Separator tensile strength measurements shall be made on die cut specimens 12.7 cm by 2.5 cm , cut in the roll direction, each of which must be carefully examined for flaws. Samples containing cracks, nicks or inclusions must be discarded. At least five samples of each material shall be run and the mean value reported. The tensile strength at break shall be measured on samples which are conditioned both at $75 \pm 5^{\circ} \mathrm{F}$, TBD $\pm 5 \%$ relative humidity for 24 hours, and after 24 hour immersion in $34 \% \mathrm{KOH}$. A cross head speed of 2 inches per minute shall be used and the specimens positioned in rubber faced jaws so that the grip separation is 3 in . Elongation measurements can be obtained by measuring the grip separation as the test progresses using the value at break to calculate $\%$ elongation. For the tensile measurement, the load in pounds shall be measured at the breaking point. Samples breaking outside the area between the jaws are not included.

Temperature and humidity at test site shall be recorded
on data sheet. Perform calculations as follows:

Calculations -

Tensile Strength at Break $=$ Breaking Load Ibs. C.S.A.
C.S.A $=$ sample cross sectional area
\% Elongation $=\frac{L-L_{0} \times 100}{I_{0}}$
$\mathrm{L}=$ Sample length at break
$L_{0}=$ Original length

GRUMMAN AEROSPACE (ORPORATION

Bectpage, LI. N. N. Y
Code Ident. No. 26512

SPECIFICATION

No. AV-252CS-256

3.4.3.1.5 (Continued)

Record data in a manner similar to that delineated under 5.1 on the Sample Data Sheets of Appendix 1. Also record the appearance of break, (i.e., clean or fuzzy). Repeat the test on six samples that have been stored for 24 hours at $70^{\circ} \mathrm{C}$ in celi electrolyte CO_{2} free atmosphere. Recora data in a manner similar to that delineated under 5.2 on the Sample Data Sheets of Appendix 1. The seller may suggest alternate methods to Grummen for approval.

> 3.4.3.1.6 Extractable Organic Content. - At least three samples, each from a different roll shall be analyzed for soluble organic material. The sample size shall be a 10 cm . square. The following method of extraction of organics is recommended. If a different method is used, it shall be submitted to Grumman for approval.
(a) Weigh the separator sample on an analytical balance.
(b) Determine volume of separator sample.
(c) Put the sample in a weighed container with methanol, reagent grade. Use a volume ratio of 20 solvent to one of separator, cover container.
(d) Stir with a magnetic stirrer for a minimum of 16 and a maximum of 24 hours.
(e) Remove separator sample and weigh after drying.
(f) Evaporate solvent.
(g) Determine weight of residue and weight loss of separator.
(h) Perform IR analysis of residue. Submit copy of IR trace to Gruman and indicate major organic constituents. (If a larger residue sample is required to perform this task, a proportionally larger sample is permissible).
(i) Record data in a manner similar to that delineated on the Sample Data Sheets of Appendix 1.

NOTE: Target Specification - Less than 2.0% by weight of total organics.

GRUMMAN AEROSPACE CORPORATION

Buchpage, L 1, Code Ident. No. 26512

SPECIFICATION
No. $\mathrm{AV}-252 \mathrm{CS}-25 \mathrm{G}$
3.4.3.1.7 Inorganic Content. - At least three samples, each from a different roll, shall be analyzed for inorganic materials. The sample size from which inorganics are to be extracted shall be a 10 cm . square. Quantitative analysis of the following will be determined: Carbonate, silica, zinc, chloride, nitrate and nickel titanium. Submit a description to Grumman of the method used. Fecord data in a manner similar to that delineated under 7.1 on the Sample Data Sheets of Appendix 1.

NOTE: Target Specification - Less than 1.0% by weight of total inorganics as determined by ignition residue.
3.4.3.1.8 Discoloration of Samples in Electrolyte. - During testing of samples requiring equilibration in electrolyte, report any discoloration of the sample in a manner similar to that delineated under 8.1 on the Sample Data Sheets of Appendix 1.
3.4.3.1.9 Thickness Variation. - The separator thickness shall be measured at minimum intervals of one measurement for each 20 cells constructed. Each measurement shall be made on samples of two feet in length, taking 10 thickness readings at approximately two inch intervals. The gauge described in 3.4 .3 .1 .2 shall be used. Record data in a manner similar th that delineated under 9.1 on Sample Data Sheets of Appendix 1.
3.4.3.1.10 Materials Used In Cell Formation. - Apply the sampling criteria and test procedures specified in 3.4.3.1.6 and 3.4.3.1.7 for the separator used in cell formation. Record data in a manner similar to that delineated under 6.0 and 7.1 on the Sample Data Sheets of Appendix 1 . Where applicable, furnish information in a manner similar to that delineated on Sample Data Sheet 1 of Appendix 1.
3.4.4 Cell Container. -
3.4.4.1 Cell Case. - The cell case shall be Type 304L stainless steel, condition A per Specification QQS -766. Material thickness shall be 0.030 inch stock. Electric are welding using inert gas shielding per Specification MIL-W-86ll shall be used. All welded areas shall be passivated in accordance with Specification MIL-F-14072, Finish E-300.

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

Bethpage, L. I., N. Y.
Code Indent. No. 26512

SPECIFICATION

No. AV-252CS-25G
3.4.4.2 Cover. - The cell cover shall be made from class 304L stainless steel, condition A, in accordance with Specification Cas-766.

3.4.4.3

Metal Container Quality Assurance Provision. - The
seller must supply with every order, the supplier, name, alloy designation, batch number and chemical composition of raw material with certified analysis. Two copies of this information shall be furnished to Grumman prior to further processing. The tolerances on the cell case wall thickness shall be within $\pm 1.9 \mathrm{mil}$. The completed cell must conform to Grumman Drawing 252SCAVIIO. Each can shall be visually examine for blemishes, pits, cuts, cracks, burrs, file marks, weak points, incomplete weld penetration and/or any other defects. Metal containers not meeting these requirements shall be rejected.
3.4.5 Electrodes and Electrode Aeacmblies. -
3.4.5.1 General. - The electrode materials shall be identical to those used in cells for the cell qualification Program as stated herein. No changes in material quality, contents and mamiacturing technique shall be made without prior written approval by Grumman.
3.4.5.2 Electrode Quality Assurance Provisions. - Two copies of either the electrode purchasing specifications andor the manufacturing process specifications delineating the process from raw materials through impregnation and storage for use on cells as specified herein shall be furnished to Grumman prior to start of further processing. Two copies of the electrode suppliers certification for both positive and negative electrodes used herein shall be furnished to Grumman prior to start of further processing. This certification shall contain the following minimum information:
(a) Assigned plate batch number (melange)
(b) Spiral number
(c) Dates of impregnation
(d) Percent porosity

GRUMMAN AEROSPACE CORPORATION

Bethpage, I. In, N. Y.
Code Ident. No. 26512

SPECIFICATION

No. $\mathrm{AV}-252 \mathrm{CS}-25 \mathrm{G}$

3.4.5.2 (Continued)

(e) Weight of active material per plate.
(f) Positive capacity obtained.
(g) Negative capacity obtained.
(h) Plate thickness.
(i) Maximum Plate Compression
(j) Hydrate totals ($\mathrm{gm} / \mathrm{dm}^{2}$)
(1) Average
(2) Range

NOTE: Sample results based on a reasonable sample from each positive and negative spiral are acceptable for items (α) through (j) above. Tolerances are to be supplied by seller.
3.4.5.3 Electrode Assembly Quality Assurance Provisions.

Manufacturing and inspection operations on completed positive and negative plates shall be controlled as follows prior to their formation:
(a) Inspection of cutting, coining and other operations affecting the integrity of the sinter and grid.
(b) Edges shall be coined to prevent flaking of sinter material.
(c) Visual inspection of plates. (100 percent inspection on positive and negative plates prior to assembly into formation pack).

NCIE: Inspection criteria will be established by the seller reflecting items listed in paragraph (d) (1) through (9) and (e). Sample plates showing each type defect shall be posted at inspection station.

241

Fing $200.3 \quad 5.66$

GRUMMAN AEROSPACE CORPORATION

Becthpage, L. I., N. Y.
Code Idear. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.3 (Continued)

(e) Plate Weight Screening - Establish the average weight of the positive electrode and negative electrode by a screening method. Then each plate shall be screened by a GO-NO-GO technique. Each plate weight shall be within 3.5% of the average established plate weight (i.e., $+3.5 \%$). The seller shall establish detail procedures and submit to Gruman for approval prior to start of task. Weigh and record each auxiliary electrode strip. The Seller shall establish an acceptance procedure and furnish information to Grumman.
(f) Plate Samples - The seller shall supply Grumman with 10 unformed acceptable positive electrodes and 10 unformed acceptable negative electrodes and 5 auxiliary electrode strips from each plate lot (melange) used in the production of this cell lot. Each electrode type shall be placed in a polyethylene bag, heat sealed, and permanently marked with the plate lot (melange) number.
3.4.5.3.1 Auxiliary Electrode Construction. - The auxiliary electrode shall be made of sintered nickel plaque which contains a pure nickel grid or substrate. The electrode shall be free of noble metals such as gold, platinum, etc. The auxiliary electrode tab: shall be pure nickel and an integral part of the substrate. Location of the auxiliary electrode within a cell shall be such as to minimize the possibility of shorting to the cell plates, with specific emphasis on preventing shorting to the positive plates. Details of location and procedure are subject to Grumman approval. The completed cell must conform to Grumman Drawing 252SCAV113.
3.4.5.3.2 Auxiliary Electrode Signal Requirements. - The auxiliary electrode signal voltage shall start to increase when the cell is at approximately 80% state-of-charge. The signal voltage shall reach its end-ofcharge value when the cell is fully charged (100% state-of-charge). The signal voltage shall decrease to 70% of its end-of-charge value within the first ten (10) minutes of discharge and continue to decrease for the remainder of the discharge.
(a) The end-of-charge value shall be 200 millivolts minimum when the auxiliary electrode is externally loaded by a forty seven (47) ohm resistor.
(b) The end-of-charge value shall remain constant within $\pm 10 \%$ over the operational life of the battery 10,000 cycles.

Bas 2003 S .66
\qquad

GRUMMAN AEROSPACE CORPORATION
 Bexhpape L. 1, N. Y.
 Code Ideas. No. 26512

SPECIFICATION

No. AV-252CS-25G
3.4.5.3.3 Auxiliary Electrode Characteristics. - The auxiliary electrode signal characteristics shall be established for each cell. It shall be shown that each auxiliary electrode signal is continuous. Auxiliary electrode signal characteristics as a function of pressure shall be established when cell is charged at the $\mathrm{c} / 2$ (10 ampere) rate and a 47 ohm resistor is connected between the negative terminal and the auxiliary electrode terminal. For continuous overcharge currents up to the limits shown in Figure 4, the auxiliary electrode signal, (when discharged through a 47 ohm resistor), shall not exceed those values shown in Figure 7.
3.4.5.4 Quality Assurance Provisions for Production Processing of Electrode Assemblies. - Production processing and test operations on cell electrode assemblies consisting of initial inspection of plates, through formation, addition of KOH and sealing of cell with gauge assembly shall be controlled as follows.
3.4.5.4.1 General. -
3.4.5.4.1.1 Atmospheric Environment. - The environment of the formation facility shall be monitored with respect to humidity and femperature.
3.4.5.4.1.2 Handling of Materials. - All plates, separators and materials shall be handled with gloves and shall be sealed in clean room grade plastic bags when not being processed.
3.4.5.4.2 Operational Conditions. - The following conditions shall be observed during operations associated with 3.4.5.4:
(a) KOH level in formation container shall be maintained above top of plate stack.
(b) Charge and discharge times shall be maintained as specified by seller within $\pm 4 \%$ of designated time periods.

NOTE: (1) Exact time of each charge and each discharge shall be recorded to nearest minute. Deviation from periods specified shall be subject to immediate Grumman notification and joint material review board action.

GRUMMAN AEROSPACE CORPORATION

Bechpace LI. N. Y

Code Inept. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.2 (Continued)

NOTE: (Continued)
(2) In case of power failure, a notation shall be made and shall be clearly visible in a manner similar to that delineated on the Sample Data Sheets.
(c) Where constant currents for charge or discharge are specified, and/or current measurements are used for calculations of ampere hour capacity, currents shall be regulated within ± 2.0 percent of specified value.
(d) Positive and negative current leads of each formation series circuit shall have an ammeter inserted in series with each lead. One ammeter shall be marked "control"; the second ammeter marked "monitor". Readings of two meters shall always be within $\pm 2.0 \%$.
(e) Voltage of each formation cell, and current of series formation circuit measurements shall be made not more than five minutes prior to end of all charge or end of all discharge periods.

3.4.5.4.3 Electrode Formation. -

3.4.5.4.3.1 Formation Pack Identification. - Sufficient numbers of previously inspected positive and negative electrodes constituting a cell pack shall hove a formation pack identification number assigned. Formation pack identification numbers shall be referred to for all data recording during formation. Numbers shall be visible on each formation pack.
3.4.5.4.3.2 Separator Material (or Materials). - Separator material or inaterials used to wrap plate groups for formation shall be inserted such that the outside surface of the two outer electrodes is covered with separator material.
3.4.5.4.3.3 Formation Cell Fabrication. - All formation packs shall be fabricated from alkali resistant materials such as nylon, plexiglass, etc. The adhesive or epoxy used to assemble the containers shall also be alkali resistant.
\qquad

SPECIFICATION

No. AV-252CS-25G
3.4.5.4.3.4 Electrical Clips and Leads. - Electrical clips and leads must be stainless steel, nickel or nickel plated steel. Means for attaching leads to clips must be alkali resistant.
3.4.5.4.3.5 Formation Pack Connectors. - The connectors holding the plates together in the formation pecks shall be constructed of 316 or 304 stainless alloy, and shall be washed and rinsed in deionized water prior to installation.
3.4.5.4.3.6 Addition of Electrolyte and Water to Formation Packs. Electrolyte bubbling out of the pack during formation shell be avoided. At the end of the first formation cycle, electrolyte shall be added to a preset mark. Use $34 \% \mathrm{KOH}$ to maintain preset mark.
3.4.5.4.3.7 Assembled Formation Packs. - Assembled formation packs shall be soaked in $\overline{\mathrm{KOH}} 36 \pm 0.5^{\circ} \mathrm{Be}$, for a minimum of 16 hours and a maximum of 24 hours prior to the first electrical operation of formation.
3.4.5.4.3.8 Pack Formation. - Formation shall be performed in accordance with sellers schedule. Exceptions to certain operations are listed below and apply to all cells manufactured herein. The following steps shall be adhered to during the final capacity determination of positive and negative electrodes. The cell pack shall consist of 10 negative and 9 positive electrodes:
(a) Last formation discharge to determine capacity of positive electrodes shall be made at the $\mathrm{C} / 2$ constant current rate (10.0 Amps) to a cell voltage of 0.70 ± 0.1 volt. The time for each pack to reach 0.70 ± 0.1 volt shall be recorded.
(b) Voltage of each pack and discharge current shall be recorded at 15 minute intervals during capacity discharge. More frequent voltage monitoring is required to obtain a discharge time to an accuracy of one minute.
(c) Each pack shall be removed from the discharge circuit at the specified voltage and individually placed under a 0.1 ohm $\pm 10 \%$ resistive load such that the voltage decreases to $0.1 \pm 0 . \bar{I}$ volt. The resistor may be removed from the pack as soon as it reaches its specified voltage range.

GRUMMAN AEROSPACE CORPORATION

Pwhpare, L. I. N. Y.
Code rIdent. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.3.8 (Continued)

(d) Ampere hour capacity of positive electrodes as determined in paragraph (a) shall be eminem of 24.0 ampere hours to a maximum of 30.0 ampere hours. Any pack exhibiting capacities outside this range shall be permanently rejected.
(e) Formation discharge shall be continued at 2.0 ampere rate when all pack voltages in a series formation circuit are less than $+0.1 \pm 0.1$ volt. Each pack voltage shall be recorded before starting the 2 ampere discharge.
(f) Positive electrodes shall be verified as limiting electrodes by sampling one pack from each series formation circuit. Series formation circuit consists of up to 26 pecks.
(g) Discharge time at the 2 amp rate shall be such that the negative plate capacity of packs in the series formation circuit are discharge by a minimum of 1.3 times the average of the positive plate capacity of the packs in the series formation circuit as determine \ddagger in paragraph (a), and each pack shall be discharged to $-0.20=: 88$ volt. Any pack to be acceptable must show a minimum capacity ratio of $1.3: 1.00$. This capacity ratio is defined as the ratio of the negative ampere hour capacity obtained, divided by the positive ampere hour capacity obtained for each respective pack.
(h) Pack voltage and series string current shall be recorded at least every 15 minutes during the 2 ampere discharge. More frequent voltage monitoring is required to obtain a discharge time to accuracy of one minute. Total time that each pack is on 2 ampere discharge shell be recorded.
3.4.5.4.4 Wash, Rinse and Drying of Plates. -
3.4.5.4.4.1 Plate Stacks, - Plate stacks shell be removed from formetion packs and immediately submerged in deionized water having the initial required resistivity measurement per 3.4.6.3.1. Plates from a series

Ease 200.3

GRUMMAN AEROSPACE CORPORATION

Bechpage. L. I, N. Y.
Code Rem. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.4.1 (Contimed)

formation circuit shall not be mixed with plates from other circuits. Wash and rinse shall be completed when a Ph reading of 8.0 or less is demonstrated from the last dripping taken from plate samples pulled from wash container. Ph reading shall be recorded.
3.4.5.4.4.2 Drying. - Drying of plates shall be accomplished in air at $50+5^{\circ} \mathrm{C}$. Drying time shall be a minimum of 16 hours and a maximum of 24 hours. Oven temperature not exceeding the maximum limit specified during drying operation shall be demonstrated. "Time-in" and "time out", of oven on each group of plates shall be recorded.

NOTE :
All internal cell components shall be handled with lint-free cotton gloves in an area designated for aerospace cells. Good housekeeping procedures are required.
3.4.5.4.4.3 Carbonate and Nitrate Tests. - The carbonate and nitrate content of the negative and positive electrodes respectively shall be measured by the Seller. The nitrate content of the positive (Ni) electrode shall not exceed 330 micrograms per gram of the active material, sinter and substrate. The carbonate content of the negative (Cd) electrode shall not exceed 10 milligrams per gram of the active material, sinter and substrate. Design goal carbonate content is less than 5 milligrams per gram of electrode. The test procedure for determining these contaminant contents shall be submitted for Grumman approval.
3.4.5.4.5 Assembly of Cells. -
3.4.5.4.5.1 Inspection and Weighing of Electrode Assemblies. Inspection on each electrode shall be performed in accordance with 3.4.5.3. Particular attention shall be given to bent corners on grid and blisters on sintered material. Positive, negative and auxiliary electrodes for each cell shall be grouped and their weight per cell shall be recorded to the nearest 0.1 gram .
3.4.5.4.5.2 Weld Plates to Combs. - Plates shall be stacked and welded. Welds shall be in accordance with Specification MIL-W-8611 as applicable and shall be reasonably free of oxidation upon visual inspection. Welds shall be inspected for burn through of plate grid or comb and inspected for loose materials. Plate edge alignment shall be maintained

Bose $200.3 \quad 5.66$

GRUMMAN AEROSPACE CORPORATION

Bechpage, L. I, N. Y.
Code dent. No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.5.2 (Continued)

during welding by use of an alignment fixture. The seller shall supply weld procedures used and rejection criterial to Grumman for approval prior to start of task.
3.4.5.4.5.3 Plate Stack Wrap (Separator Material). - Separator material shall be tested in accordance with 3.4.3.1. Lot number and type of separator material shall be recorded on cell data sheets. Alignment of plate edges utilizing an alignment gage shall be performed.
3.4.5.4.5.4 Resistance Test of Plate Stack Assembly. - Electrode assemblies shall be compressed to the minimum equivalent final stack thickness of 0.724 ± 0.005 inches.

NOTE: Controlled periodic calibration required if conducted on a test jig.

While under compression, minimum resistance, (at 50 VDC) shall be tested. Cells with less than 100 megohms shall be identified. One rework cycle is allowed for cells not meeting the 100 megohms minimum requirement during the first test. Subsequent failures are cause for rejections.

- 3.4.5.4.5.5 Radiographic Examination. - Radiographs shall be taken of each unit for inspection of workmanship, foreign metallic particles and drawing compliance. Three radiographic views shall be provided for each cell. Prior to welding the cover to case, one edge view along the Ic axis (as defined in Figure 6) and one flat view along the Kc axis (as defined in Figure 6) shall be provided. After welding of cover to case and pinchoff, one flat view along the Xc axis shall be provided. No more than three cells shall be included in each radiograph taken of the flat view and no more than four cells shall be included in each radiograph taken of the edge view. As a minimum, each radiograph shall contain, cell serial number, positive or negative terminal location, view number, suitable control number, date radiograph was taken and an image quality indicator. All radiographs shall have good clarity. Prior to the performance of this task, the seller shall submit to Grumman for review and approval a Radiographic Examination Procedure. Radiographs of all cells purchased herein shell be submitted to Grumman prior to shipment of the cells.

Ens 200.3 S.66

GRUMMAN AEROSPACE CORPORATION

Beth papa, I In. N. Y.
Code Indent. No. 26512

SPECIFICATION

No. AV-252CS-25G
3.4.5.4.5.5.1 Rejection Criteria. - Cells shall be rejected if the following is observed:
(a) Foreign particles greater than 0.010 inch in any direction (*).
(b) Tab bends greater than 90 degrees.
(c) Poor Workmanship and non-conformance to drawings.

* The exception shall be those cells which have completed one rework cycle and still show foreign particles greater than 0.010 inch in any direction. These cells are permissible for use as test cells, provided that they can successfully pass all electrical and mechanical requirements specified herein. These cells shall be tagged and prior to shipment they shall be marked FOR TEST USE ONLY.
3.4.5.4.5.5.2 Rework. - One rework cycle on defects detected prior to welding of cover to case is permissible. Additional rework requirements are:
(a) Workmanship - Each cell tack shall be closely reexamined, prior and during reinsertion in the container, for quality workmanship standards. Any degradation in workmanship standards, after or during rework, from those existing at the time of original manufactire shall be cause for rejection.
(b) Complete replacement of the stack wrapper is required if the stack was completely removed from its container during the rework.
(c) Each cell, if the stack was completely removed from its container during the rework, shall be subjected to the resistance test requirements of para. $3 \cdot 4 \cdot 5 \cdot 4 \cdot 5 \cdot 4$ and shall meet the requirements specified therein.
(d) A complete rework log shall be maintained and submitted to Grumman.
(e) A complete radiographic re-examination shall be conducted on the reworked unit.
(f) No rework shall be permitted on units where defects are detected after cover weld and/or pinch-off is completed.
\qquad

GRUMMAN AEROSPACE CORPORATION

Bertpage L. 1., N. Y.
Code That. No. 26512

SPECIFICATION

No. AV-252CS-25 G

3.4.5.4.6 Activation of Cells. -

3.4.5.4.6.1 KOH Fill. - KOH shall be prepared and tested in accordance with $3 \cdot 4 \cdot 6 \cdot 3.3$. Data from batch card on cell data sheet shall be recorded. Each cell with dust cap shall be weighed to the nearest 0.1 gram before KOH is added. Contamination of KOH shall be prevented by utilizing burets while filling and by minimizing KOH exposure to atmospheric conditions. The amount of $K O H$ shall be specified by the seller subject to Grumman approval.
3.4.5.4.6.1.1 Wet Stand Time. - Subsequent to KOH filling each cell is required to meet a Wet Stand Time of 24 hours minimum before any alectrical operations are performed on the cell.
3.4.5.4.6.2 Cell Weight. - Each cell shall be weighed immediately after fill and the dust cap installed to fill tube. Cell weight with dust cap shall be recorded to the nearest 0.1 gram. Weight gain must be within $+3 \%$ of nominal value specified by seller. Pretested gage assemblies shall be installed within 10 minutes of filling operation. Cells left unsealed longer than 10 minutes shall be rejected. Immediately after installation of gage assembly, cells shall be evacuated to 25 inches minimum gage vacuum. All fittings, gazes and associated components of the gage assembly shall be of non-corrosive material in a KOH environment. Jacket must be put on cells to assure surface of plates are parallel then torqued to a specified value.
3.4.5.4.6.3 Leak Test of Cell and Gage Assembly. - If a cell reaches 20 inches minimum gage vacuum prior to the Deco leak test from the original 25 inches minimum gage vacuum, it shall be permanently rejected. The leak rate of the completed assembly shall be established prior to further processing. The cell shall be backfilled with helium at $0.0+2.0$ prig and placed in a veeco to measure its leak rate. The leak rate shall be recorded and shall not exceed $10-5 \mathrm{cc} / \mathrm{sec}$. If minimum rate cannot be established, a repeat of test with another gage assembly is permitted provided care is exercised in refitting gage assembly. The cell shall be evacuated to a 25 inch vacuum or greater and the valve closed as soon as vacuum is obtained.

GRUMMAN AEROSPACE CORPORATION

Bechpart L. I. N. Y.
Code Idept. Na. 26512

SPECIFICATION

No. AV-252CS-25

3.4.5.4.6.3 (Continued)

The integrity of this seal condition is to be maintained through all tests prior to pinch of the fill tube. Any intentional or accidental opening of the valve assembly without Grumman approval is reason for rejection of the cell. During the State of Charge Adjustment, as specified in para. $3 \cdot 4 \cdot 5 \cdot 4.7$ the gage valve may be opened.
3.4.5.4.7 State of Charge Adjustment. - The Seller shall provide a procedure to adjust the charge on the negative electrodes of each cell. The procedure used shall include sufficient quantitative measurement of each cell parameter such that calculations can be made to determine exact charge adjustment on negative electrodes. The procedure shall be as noted in para. 3.4.5.4.7.1 and shall be submitted for Gruman approval.

The State-of-Charge adjustment shall yield a precharged excess negative capacity (I_{0} (TNI) of 1.0 to 3.15 ampere-hours. TN-1 shall be verified on sampling basis in accordance with para. 3.4.5.4.8.
3.4.5.4.7.1 State-of-Charge (SOC) Adjustment. - The SOC of the negative electrode shall be adjusted in accordance with the following:
(a) Connect cells in series.
(b) Charge each cell at 3.1 amp until it reaches the equivalent of $4.6 \pm .1$ Amphours precharge.
(c) Open vents when each cell pressure reaches $2-5 \mathrm{psi}$.
(d) Measure and record the gas evolved from each cell. (Note: total gas is $\approx 1050 \mathrm{cc}$.)
(e) Record end of charge voltage.
(f) Close cell vent at charge completion.
(g) Remove cell from charge circuit.
(h) Allow cell to remain open circuit for two hours minimum.
(i) Evacuate to $25^{\prime \prime}$ Hig.
\qquad

GRUMMAN AEROSPACE CORPORATION

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.7.1 (Continued)

(j) Discharge at 10 amp . to 1.0 volt per cell.
(k) Record time and capacity.
(1) Short with one ohm resistor for 4 hours minimum and until each cell is cool.
(m) All test data shall be recorded on data sheets.
3.4.5.4.8 Quality Assurance Provisions for Electrode Capacity Test (Ratio Test). - The Electrode Capacity, or Ratio Test, shall measure the individual discharge capacities of the positive and negative electrodes. The test shall be conducted on sampling basis as specified by para. 3.4.5.4.8.2. The sample cells represent specific production lots which are constrained by successful completion of the Ratio tests. The Ratio test shall determine the excess negative capacity beyond complete discharge of the positive (or excess positive beyond the negative if the cell is negative limited on discharge) in addition to determining total electrode capacities. Failure of the Ratio tests shall be cause for rejection of the cell lot represented by the samples. The data shall be used to determine the following:
(a) Range and distribution of positive capacities. ($I_{0}\left(\mathrm{TP}_{3}\right)$
(b) Range and distribution of negative capacities. ($\mathrm{I}_{0}\left(\mathrm{TN}_{3}\right)$
(c) Difference between and/or ratio of total negative and positive capacities.
(d) Excess negative (or positive) on discharge. ($I_{0}\left(\mathrm{TN}_{1}\right)$
3.4.5.4.8.1 Ratio Test Requirements. - The average of the Retio Test cells from each lot shall successfully meet the following criteria:
(a) Post-Formation Samples.

1. Negative to Positive Ratio - 1.30:1.00
2. TN1 - (Information Only)

GRUMMAN AEROSPACE CORPORATE

Coder in L. I. N. Y.

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.8.1 (Continued)

(b) Post Rinse and Dry Sample
(1) Negative to Positive Ratio - 1.35:1.00 (design goal); $1.30: 1.00$ minimum
(2) TNI - (Information Only)
(c) Finished Cell
(1) Negative to Positive Ratio - 1.40:1.00
(2) $\mathrm{TN}_{1}-\begin{gathered}-1.0 \text { to } 3.1 \mathrm{~A}-\mathrm{H} \text { (design goal, } \\ \text { only })\end{gathered}$

3.4.5.4.8.2 Ratio Test Sampling Rate. -

(a) Two cells from each formation group of 52 cells (or less) shall be randomly selected at the conclusion of the electrical formation cycles. The test cell (s) shall be selected prior to further processing. Electrolyte level shall be adjusted to a minimum of $1 / 4$ inch above the separator. Tests shall start as soon as possible but bot to exceed 2 days.
(b) A minimum of one cell from each formation group of 52 cells (or less) shall be randomly selected at the conclusion of the plate neutralization and drying operation. The test cell shall be fabricated with formation hardware to a standard cell core configuration (i.e., 9 positive and 10 negative electrodes). The cell shall be flooded with $34 \% \mathrm{KOH}$ solution to a level $1 / 4$ inch minimum above the separator. Tests shall be performed as soon as possible but prior to activation of cells of this particular formation lot.
(c) Two cells from each formation group of 52 cells (or less) shall be randomly selected at the completion of the standard capacity test. (Discharge capacity immediately prior to pinch tube closure). Following the standard one-ohm short period, the test sample (s) shall be opened by removal of the gage assembly and flooded with $34 \% \mathrm{KOH}$.

GRUMMAN AEROSPACE CORPORATION

Bechpape, L. I. N. Y.
Code 13ter. No. 26512

SPECIFICATION

No. AV-252CS-25.G

3.4.5.4.8.2 (Continued)

NOTE: Cells rejected for cosmetic or radiographic reasons only may be used for this test; provided each cell meets insulation resistance and electrical test requirements.
3.4.5.4.8.3 Ratio Test Applicable Conditions. - The following conditions are applicable:
(a) Cell temperature shall be between $75 \pm 5^{\circ} \mathrm{F}$.
(b) Cell terminal voltage shall be recorded.
(c) Voltage from both positive and negative terminals to the reference electrode shall be recorded continuously or at intervals not to exceed 15 minutes.

NOTE: Since the cell is in a stainless steel container, and both electrode terminals are insulated from the container, the container itself may be used as a rough substitute for a reference electrode. Even though the container potential is a function of the pressure O_{2} or H_{2} in the cell, the changes in electrode voltage at end of capacity are relatively large and usually can be clearly identified using the container as a reference.

3.4.5.4.8.4 Ratio Test Procedures. -

3.4.5.4.8.4.1 Residual Negative Electrode Capacity. I (IN $)$ - A one ohm resistor shall be placed across the cell terminals for 16 hours. Then discharge at 10.0 eaperes until terminal voltage indicates -1.0 volt. Terminal (cell voltage and voltage from both positive and negative terminais to reference electrode shall be recorded.
3.4.5.4.8.4.2 Filling. - Cells shall be filled until flooded with $34 \% \mathrm{KOH}$ solution. KOH quantity required and additional electrolyte added during entire test sholl be recorded.

GRUMMAN AEROSPACE CORPORATION

SPECIFICATION
No. AV-252cs-2rg
3.4.5.4.8.4.3 Charge. - Cells shall be charged at 2.0 amperes for a minimum period of 40 hours. The charge is completed when a minimum cell voltage of 1.51 or a 64 hour charge period 18 obtained. Cell and reference cell voltages shall be recorded continously or at intervals not to exceed 1 hour.
3.4.5.4.8.4.4 Discharge. - Cells shall be discharged at 10.0 amperes until terminal voltage indicates -1.0 volt. Positive and negative terminal to reference voltages shall be time recorded when the cells' terminals reach:
(a) +1.0 volt
(b) +0.5 volt $\left(\mathrm{TP}_{3}\right)$
(c) 0.0 volt
(d) -0.5 volt
(e) -1.0 volt $\left(\mathrm{TN}_{3}\right)$

NOTE: The cells shall be protected from further contact with the atmosphere in the event further testing is required.

> 3.4.5.4.8.5 Ratio Test Calculations. -

Let

$\left(\mathrm{TN}_{1}\right)=$	time to -1.0 v (as delineated in 3.4 .5 .4 .8 .4 .1)
$=$	time to discharge precharged negative
$\left(\mathrm{TP}_{3}\right)=$	time from start of discharge (full charge) to +0.5 v
	(as delineated in $3.4 .5 .4 .8 .4 .4(\mathrm{~b}))$
$=$	time to discharge positive electrode
$\left(\mathrm{TN}_{3}\right)=$	time to -1.0 v as delineated in $3.4 .5 \cdot 4.8 .4 .4(\mathrm{e})$)
$=$	time to discharge total negative electrode
$I_{0}=$	discharge current $=10.0$ amps.

\qquad

GRUMMAN AEROSPACE CORPORATION

Badprge, L 1. N. Y.
Code Rump No. 26512

SPECIFICATION

No. AV-252CS-25G

3.4.5.4.8.5 (Continued)

3.4.5.4.8.6 Submittal of Data. - Two copies of all information obtained shall be submitted to Grumman prior to further processing.
3.4.6 Terminals. - Terminals provided for positive and negative electrodes shall be rated at not less then 35 amperes continuous duty. The terminals shall be made from 304 stainless steel, condition A, complying with Specification $Q \sin$. Both terminals shall be insulated from the cell cover by means of a ceramic insulator having an alumina content of not less than 99.4 percent. The insulator-to-cover junction shall employ a stress-relief configuration such that relative motion between the terminal assembly and the cover applies minimum stress to the insulator and to the metal-to-insulator bonds. The collar-to-insulator and insulator-to-terminal bonds shall be made using a metal-to-ceramic bonding process subject to approval by Grumman. Any silver containing braze materials used for metal-to-ceramic bonding or elsewhere in the cell shall be nickel plated to a minimum thickness of 0.00015 inches. A dullmatte nickel plating process shall be used and the process specification shall be subject to approval by Grumman. The cell terminals shall be constructed as shown in Figure 5.

SPECIFICATION
No. AV-252CS-25.6
3.4.6.1 Control and Testing of Feedthrough Turainals and Seals. - Materials, mamiacturing and test operations on the cell feedthrough terminals, ceals and related handware shall be controlled by the following criteria. Two copies of all data obtained berein shall be furnished to Gruman prior to further procesaing.
3.4.6.1.1 Cerpaic, Yaterial - ceranic material ohail be alumina of 99.4 percent purity einimam.
3.4.6.1.2 Nechanioal Inapection. -
(a) Dimensions -
(b) Chips, cracks, erain structive (uniform density), voils - $\quad 100 \%$ inspection
3.4.6.1.3 Gleaning. - Components chall be cleaned by ultraconic bath unders treon.
3.4.6.1.4 Lot Tensile Test, Each new lot of active metal and each new lot of ceramic shall be subjected to an ASIM tensile specimen test. A minimum of three sets shall be treated identieal to standard production processes, then vacuum brazed using an iron-nickel alloy 42 washer. Sample tensile strength must exceed 6000 psi . The seller may propose an alternate test, subject to approval by Gruman.

> 3.4.6.1.5 Braze Alloy. - An alloy with a mininum of carbon contents shall be used. Each new lot of active metal shall be mbjected to a semi-quantititive apectoeraphic analyais. In adaition to the expected elements, the carbon content shall be measured. Allowable impurity limits shall be established by the cell seller and made available to Grumman. A. braze flas test shall be run on each lot to deteraine solidus and liquidus points, or supplier's certification on each lot used herein ahall be furnished to Gruman. Imediately after completion, a 2% sample of brazed hosders shail be aupplied to Gruman for metellurgical studies.

Eng $200.3 \quad 5-66$
\qquad

SPECIFICATION

No. - AV-252C8-25, G

3.4.6.1.6 Cover Angembly. -

3.4.6.1.6.1 Metal Parts. - Motal parts shall be inspected for conformance to drawings, phytioal dimenaiona, eurface dofects, and burre that may interfere with intended function.
3.4.6.1.6.2 Cleaning. - Chanical eleaning shall be utillsed on all parts and a cembination of chamieal eleaning and furnace firing ahall be utilized on cup and collar to prepare then for vacula brazing.
3.4.6.1.6.3 Weloing of Pineh Tube to Cover. - Welding of pineh tube to cover shall be controlled by a process specification to inpure adoouate veld atrength and seal integrity. The weld shall also be tested as an integral part.of the cover.
3.4.6.1.7 Inspection. - Cracks, porosity, excessive burning, oxidation and foreign inclusions shall be inspected 100%. 100% inspection shall be performed on all pineh tube cover welds and they shall be capable of passing a helium leak test (leak rate $1 \times 10^{-8} \mathrm{std} \mathrm{cc} / \mathrm{sec}$). Samples shall be tested periodically for reld quality ty matallurgical eactioning.
3.4.6.1.7.1 Aseanbly Fixturing. - Mechanical fixturing shall be adequate to insure maintainance of part positions during brezing operation. Self-jigging features shall be included where possible. Particular attention shall be paid to allement of terainal post and ceramic to maintain concentricity. Provision for periodic cleaning of fixture shall be made.
3.4.6.1.8 Vacuum Braze Operationg. - Processes shall be establishod which ensure clean handing of parts and fixtures. A brazing inespection plan shall be submitted by seller subject to mutual approval.
3.4.6.1.9 Visual Inspection. - All units shall receive inspection of terminal location, seal junction continuity, braze joint quality, pinholes, and plowout shall be visually inspected using magnification aids where required.
3.4.6.1.10 Insulator Resistance. - All units shall receive an insulation resistance -check. Each unit must exhibit reaistance above 100 megohms at 50 vDC .

GRUMMAN AEROSPACE CORPORATION

Bert page, L. I. N. Y.
Code Idem. No. 26512

SPECIFICATION

No. AV-252CS-25
3.4.6.1.11 Leak Check. -The complete cover assembly shall pass a 100% sample leak check of $1 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$ of helium.
3.4.6.1.12 Nickel Plating. -
3.4.6.1.12.1 Fixture. - The cover assembly shall be mounted in a fixture designated to prevent access of plating solutions to ceramic-metal terminal well.
3.4.6.1.12.2 Cover Assembly Preparation. - Cover assembly preparation shall consist of hydrohone and wash in water.

3.4.6.1.12.3 Inspection Criteria. -

(a) Plating Thickness - Plating thickness shall be checked by 2.5 AQL sampling. Thickness shall be measured with magnagage or equivalent. Any part outside of limits shall be rejected.
(b) Plating Quality - Blisters shall be checked by 100% sampling. Adhesion shall be checked by 2.5 AQL sampling using test tape.
(c) Corrosion - Corrosion shall be checked by 100% sampling. All cover assemblies shall be checked for evidence of plating solution leakage following removal of the fixture. Any stains or evidence of wetness on the cover surface in the vicinity of the ceramicterminal post seal shall be cause for rejection. A 5\% sample of finished assemblies shall be subjected to a halide test. Any evidence of halide shall cause 100% of the lot to be subjected to the test. All samples showing positive halide shall be rejected.
(d) Insulator Resistance - Insulator resistance shall be tested by by 100% sampling. The resistance across each insulator shall exceed 100 megohms when 50 VDC is applied. After completion of cell assembly the resistance shall be measured, using a megohmeter applying 50 VDC as follows:
(1) (+) terminal to (-) terminal, resistance shall be 100 megohms or greater.
(2) (+) terminal to case
(3) (-) terminal to case $\} \begin{aligned} & \text { Res } \\ & \text { er. }\end{aligned}$
3.4.6.2 Tinning of Terminals. - The negative and positive terminals shall be cleaned, tinned and inspected to the following requirements.
3.4.6.2.1 Pre-Tin Cleaning. - The terminals shall be cleaned prior to tinning in accordance with the requirements of Grumman procedure AV-252-I-88.

GRUMMAN AEROSPACE CORPORATION

Bectpags, LI, N. Y.
Code Indent. No. 26512
SPECIFICATION
No. $A V-252 C \mathrm{~S}-25 \mathrm{G}$
3.4.6.2.2 Tinning of Terminals. - Both positive and negative terminals shall be tinned after cell container closure. Prevention of flux from entering the terminal pockets shall be accomplished by applying EC1663(*) between post and ceramic. Terminal pockets area shall be inspected to assure complete coverage with EC1663 material prior to flux application. During the dip in flux (Type LA-CO-N12A), the cell container shall be inverted (terminals facing down).
(*)Components as specified in Grumman Specification LSP-14-14201D, (EC1663A, EC1663B and Nuocure 28 in ratios of $2.5 \mathrm{~g} ; 25 \mathrm{~g}$ and 4 drops respectively).

3.4.6.2.3 Cleaning of Terminals After Tinning. -

(a) After pre-tinning, posts shall be washed with running hot water ($110^{\circ} \mathrm{F}$) and scrubbed thoroughly during this wash for a minimum of 30 seconds using a nylon tooth brush or test tube brush.
(b) Terminal area shall be dipped in a solution of 5% Ammonium Hydroxide and posts immersed for a minimum of 10 seconds.
(c) Rinse terminal area with water.
(d) Rinse terminal area in acetone.
(e) Place cell under a minimum vacuum of $25^{\prime \prime} \mathrm{Hg}$.
3.4.6.2.4 Analytical Check For Flux Traces. - A standard fluoridechloride vest (silver nitrate) shall be conducted as follows:
(a) Pour 40 cc of boiling distilled water over the terminal areas and collect water in a beaker.
(b) Conduct a standard fluoride-chloride test on this collected water.
(c) If the analytical check is negative (showing absence of fluoridechloride traces), the ECl663 potting can be removed and the cell can go to the next production step.
(d) If the analytical check is positive (showing presence of fluoridechloride traces), repeat steps (a) through (e) of 3.4.6.2.1.
3.4.6.3 Control and Testing of Water and Electrolyte. - The electrolyte solutions and wash water used for cells specified herein shall be of high purity. Two copies of all data obtained herein shall be submitted to Grumman prior to further processing.

GRUMMAN AEROSPACE CORPORATION

Bechpage, LI, N. Y.
Code Ideas. No. 26512

SPECIFICATION

No. AV-252CS-256

3.4.6.3.1 Deionized Water. - Deionized water used in all wash

 water, dilatant, or additive shall have a resistivity of greater than 1.0 megohm-cil. In the event the resistivity drops below 1.0 megohn-cm the process shall be stopped until the resistivity is restored to the specified limits. The resistivity is to be determined prior to each operation in which the water is used. A suitable conductivity cell calibrated less than two weeks prior to start of water requirement tests used on cells constructed under this specification shall be used. Criteria for calibration shall be as follows:(a) The conductivity cell shall be re-calibrated at two week intervals (maximum) until completion of the water requirement tasks.
(b) The calibration shall be conducted in a 0 . If potassium chloride solution and shall record a conductivity of 1410 ± 20 micromhos at $25^{\circ} \mathrm{C}$ (a temperature correction as per the handbook of Chemistry and Physics may be used). If conductivity is not within these tolerances, the conductivity cell must be replaced or replatinized.
(c) The silica content in the water shall not exceed 1 ppm .
(d) The solids content of the water must be determined by the seller. The maximum solids content shall not exceed 50 PPM.
3.4.3.6.2 Distilled Water. - Distilled water used either as wash water, dilutant or additive shall be tested and shall meet the requirements of 3.4.6.3.1(c) and (d) above.

> 3.4.6.3.3 Electrolyte. - The supplier, batch number, grade, analy- sis, date of purchase and date container is opened must be recorded. The potassium hydroxide "mercury cell" grade electrolyte concentrate as defined by Allied Chemical Company or equivalent, shall. be mixed with the distilled water to makeup a solution with a tolerance of ± 0.5 Baum. Each batch of electrolyte shall be analyzed for carbonate content and hydroxyl ion concerntration using the double titration method of phenolphthalein end point followed by methyl purple or orange end point. Carbonate concentration must be less than $0.01 \mathrm{gm} / \mathrm{liter}$. The hydroxyl ion concentration shall be determined by analytical methods. The concentration tolerance of KOH shall be $\pm 20 \mathrm{mg} / \mathrm{cc}$. The electrolyte shall be analyzed for nitrate content. The tolerable level is $1 \mathrm{mg} / \mathrm{liter}$ nitrate or less, using a colorimetric analysis technique. The Seller shall prepare procedure details and submit them to Grumman for approval. The shelf life of the standard acid used in the titration shall not have been exceeded.

Becthpage, L. I., N. Y.
Code Indent. No. 26512

SPECIFICATION

No. AV-250Cs-ir,
3.4.6.3.3.1 Sample. - The seller shall supply Grumman with an electroflyte sample of each electrolyte batch (after dilution to the proper concerntration) used in the cell construction. The quantity of electrolyte sample shall be approximately 1 oz . It shall be supplied in capped polyethylene bottle (s) permanently marked to identify the cell serial numbers this electrolate batch was used for.
3.4.6.3.4 Spectrochemical Analysis. - A spectrouhemical analysis shall be performed on the electrolyte from each batch used for cells. The content of the following impurities shall be determined and reported:
(a) Silver
(b) Cobalt
(c) Copper
(d) Iron
(e) Sulfur
(f) Zinc

Any other impurity found to be present in concentrations greater than 100 ppm shall also be reported.
3.4 .7

Cover-to-Case Junction. - The cover shall be electricarc welded to the container using inert gas shielding. No welds beyond dimensional limits shall be permitted. Weld joints shall not be ground or polished. Weld beads shall be smooth and free of folds. Porosity, cracks, and excessive oxidation are not acceptable. Prior to case to cover weld and prior to complete insertion of the cell stack, the exterior of the cell container shall be permanently serialized. Any technique other than electroetch requires prior Grumman approval.
3.4.8 Electrolyte Leakage. - The cell shall show no evidence of electrolyte leakage whenever subjected to the test of 4.5 . 15 after a two (2) year period.

Eat 200.3 5-66

GRUMDAN ARRCRAFT ENGINEERING CORPORATION
 Beachpate, L. In. N. Y.
 Code Iteok. No. 26512

SPECIFICATION

No. AV-252CS-25 G
3.4.9 Size and Weight. - The size and weight of the storage cell shall not exceed the linitations specified in Specifications Control Drawing 252SCAVilo. The Seller shall establish such weight control procedures as are necessary to insure meeting this guarantee.
3.4.10 Operating Bosition. - The cell shall operate normally in any position ad. under any gravity conditions from zero "g" to 11.3 " g ". (See paragraphs 4.5.7 and 4.5.9).
3.4.11 Operating Temperature. - The cell shall be capable of functioning normally, shall have dimensional stability, and shall deliver at heast 80 percent of the respective rated capacities within the specified voltages, when operating at temperature extremes of $30^{\circ} \mathrm{F}$ and $120^{\circ} \%$.
3.4.12 . Thermal Vacuum. - The cell shall be capable of operating in a pressure or If Wh without edidence of mehmacel or electrical failure or electrolyte leakage.
3.4.13 Vibration. - The cell shall be capable of operating under vibration as specifiedin paragraph 4.5 .8 without internal cell mechanical failure or leakage.
3.4.14 Mechanical Shock. - The cell shall be capable of operating under aheek as specified in paragraph 4.5 .10 without showing evidence of mechanical or electrical failure.
3.4.15 Gas Tightness of Cells. - The cell shall be hermetically sealed and shall be capgble of withstanding an internal ges pressure of at leant 225 psia at 145 F without leakage for 30 minutes at any ambient pressure from one atmosphere down to a vacuum of $9 \times 10^{-6} \mathrm{Torr}$ mercury or better. In order to permit satiafactarymieak deteotion procedures to be used on sealed equipment, all such items shall contain between 2 percent and 5 percent of helium gas by volume. The design objective for each item shall be zero leakage at the expected pressure differential. The maximum allowable leak-rate of the sealed cell shail be 10^{-6} atmosphere ce of helium per second per atmasphere of helium in the cell.

SPECIFICATION

No. $\mathrm{AV}-252 \mathrm{CB}-25 \mathrm{C}$
3.4.16 Acceleration. - The cell shall be capable of with standing aceelerations as specified in paragraph 4.5 .9 without mechanical or electrical failure.
3.4.17 Container Finish. - The cell container shall be made of an alkaline resistant material or thoroughly covered with an alkaline resistant material. It shall be capable of withstending 1.33 specific gravity potassium hyaroxide (KOH) for at least 168 hours at any temperature from $-37^{\circ} \mathrm{F}$ to $+182^{\circ} \mathrm{F}$ without penetration of electrolyte, whitening, checking, blistering, or showing any trace of corresion or appreciable change in hardness. This finish shgll also withstand a test for flexibility after heat treatment of $200{ }^{\circ} \mathrm{F}$. The interior of the cell container shall be constructed and the applicable parts lined with an alraline resistant material so that it will be capable of withstanding 1.33 specific gravity KOH for a period of 150 hours at 200 F without physical change in the lining material such as bilstering, agging, ehecking, or breallown in dielectric atrength.
3.4.18 Identification of Product. - The manfacturer shall identify each cell by branding or stiping serial number plus date of activation on an accessible area. In addition, cells that are delivered to Grumman shall be stamped or tagged as follows:

Weight \qquad A.H. at l-hour Rate \qquad
Date of Activation \qquad Type

Manufecturer Model No. \qquad
Manufacturer Serial No. \qquad
GAEC Specification Control Drawing No and Dash No.
3.4.19 Polarity Markings. . - The polarity of the positive terminal
shall be plainly indicated on the container by electroletch.

SPECIFICATION

No. AV -252CS-25 ..
3.4.20 Manufacturing Data. - The manufacturer shall maintain a. log on the history of each cell by recording the following data:
(1) Serial number of cell
(2) Date of manufacture (date of pinch-off)
(3) Date of activation (addition of electrolyte)
(4) Type and duration of electrical tests performed on cells
(5) Charge and discharge method and rate used in electrical tests
(6) End of charge and discharge voltages
(7) Test conditions
(8) Test results including failures
(9) Material traceability (consisting of complete records of cell components including batch numbers and components).

This log shall be maintained on all cells manufactured for the OAO program and shall be available to Gruman on request.
3.4.21 Workmanship. - The cells, including all parts and accessories, shall be manufactured in a thereagh workmanlike manner. Particular attention shall be paid to neatness and cleanliness.
3.4.21.1 Neatness. - To include thoroughness of soldering, wiring, impregnation of coils, potting, conformal coating, marking of parts, and assemblies, plating, painting, riveting, machine screw assemblage, welding, brazing and freedom of parts fra burrs and sharp edges.
3.4.21.2 Cleanliness. - Each part, component of the equipment shall be free from residual contaminants such as corrosion inhibiting oils, cutting oils, forming oil lubricants, greases, dyes, wire clippings, solder balls, non-metallic shim stock, extraneous debris and dirt.

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

Becthpage, LI, N. Y.
Code Ideas. No. 26512

SPECIFICATION

No. AV -252CS-25G

3.4.21.2 (Continued)

Precautions shall be taken to prevent contamination of the equipment during manufacturing, handing, and shipping. The seller shall maintain adequate controls to assure consistency in maintaining acceptable workmanship and cleanliness levels. Quality workmanship and cleanliness standards, including any required visual aids, shall be established and submitted to Truman for approval.

```
3.5 Performance. -
3.5.1 Capacity. - The cell shall meet the following capacity
```

tests:

1	75 ± 3	10	2 hrs.	1.00	$>100 \%$
2	75 ± 3	20	1 hr.	1.00	100%
3	75 ± 3	60	5 min.	1.00	-
4	75 ± 3	70	3 min.	1.00	-

3.5.2 Life. - The cell shall be capable of withstanding a 10,000 cycle charge-discharge test as specified in paragraph 4.5.3.
3.5 .3

Retention of Capacity. - The cell shall be designed to meet the retention of capacity after tests specified in 4.5.4.

SPECIFICATION No. AV-252CS-25a
3.5 .4 日terrege. - 3.5.4.1 In Dry (Unfilied) Copdition. - The fully acsembled, dry (unfilled) cell, when stored for periods up to three (3) years, shall show no detrimental performance effects. After activation, the cell shail be capable of meeting all performace requirments stated herein and shall show no performance deviations. 3.5.4.2 In Filled (Sealed) Condition. - The cell in filled (sealed) condition shail be designed to meet the etorage test of paragraph 4.5.5. 3.5 .5 Thermal Requirements. - The thermal requirements for the nickelcadriinn cells are based on a semi-aetive temperature control system which is dependent on the battery container therwal design. (See Gruman Specification AV-252CS-26D.3. Specific operating temperatures will vary depending on an observatory orientation in a circular orbit of 500 statato miles with the observatory in the sun from 65 percent to 83 percent of the orbital time. Since the cell operating temperatures are depenient on battery container design, the maximum and minimum cell temperatures to be used for cell qualification tests are as apecified by the battery case thermal design. Specific thermal design criteria for the nickel-cadmium cells are as follows: (a) The semi-sctive cooling systen depends on radiating the heat generated in the battery container to the skin of the observatory. The thermal design of the cells shall be such that satisfactory operation of the cells is assured under all operating conditions (including overcharge) when the battery container heat sink surface tempersture is $35^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$. The Seller's thereal design shall include provision for comducting or radiating the heat generated in the cells to the battery container heat sink surface, and radiating that heat to the obsermatory skin.

Eag $200.3 \quad 5.66$
\qquad

GRUMMMAN ARRCRAFT ENGINEERING CORPORATION
 Bechpage, L. I. N. Y.
 Code Idenc. No. 26512

SPECIFICATION
No. AV-252cs-25G

3.5.5 (ContImued)

(b) The observatory will have an outer akin ebsorptivity to cojar rediation of 0.18 and an emiasivity of 0.70 . Grusman approval of the packaging and tharmal analysis of the equipenent is required to insure adequacy of the seller thermal design as well as compatibility with the overell observatory thermal design.
(c) The Seller shall make prooision in the thermal design for maintaining the cell container in good thermal contact with the battery container.
(d) The temperature range specified in 3.5.6(a) is the anticapmated operational temperature range that the heat sink surface of the bettery will be expected to experience in orbit. All equipment operation, performance and reliability requiremata must be met within these extremes. The qualification temperature extremes of 16 to 1290 provide for satisfactory operation outside the anticipated orbital extremes.
3.5.5.1 In view of the stringent requirements placed on the thermal design by the semi-active cooling arramgenent, the theral analysis and the dessgn of the cell mast be submitted to Gruman for review to insure its compatibility with the overell thermal design of the OAO. Gruman will work in close cooperation withethe Seller to deteraine surface properties and materials that will be suitable for application to the surface of the Seller's equipwent.

3.5.6 Cbarging. - All cells ahall be capable of being

 charged at a maximun charge rate of 30 amperes. Charging shall be accomplished within the maximum limiting voltage constraint specified in Figure 1. Bach cell shall be capable ar being. fully charged trian 65 percent to 100 percent state of charge in a maximum of 65 mimutes without exceeding the limiting voltage value spocified in Figure 1. (This charge shall include the overcharge necesaary to account for the ampere-hour efficiency value of the cell at a particular temperature.) (Bee Figare 2.)Bas 200.3 5-66

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

Bechpape, L. I., N. Y.
Code Ideas. No. 26512

SPECIFICATION

No. AV -252CS-25G
3.5.6 (Continued)

All cells shell be capable of accepting contimuons overcharge currents up to the maximum values shewn in Figure 4 without exceeding 75 pig internal cell gas pressures and the 11 inditing voltage value specified on the lowest curve in Figure 1.
3.5.7 Retention of Charge. - Bach cell shall be free of abort circuiting paths between negative and positive terminals and shall maintain an open circuit voltage of no less than 1.15 volt. when tested in accordance with the provisions of 4.5.16.
3.5.8 Internal Impedance. - Each cell shall have an internal impedance not greater than 0.010 ohm when measured in accordance with the specified teat of 4.5.1.3.

4 QUALITY ASSURANCE PROVISIONS
4.1 Clempifsentin of Testee. . The inspection and testing of the Nickel-Codmium etherize cells and component parts shall be classified es follows:
(a) Development Tests
(b) Qualification Tests
(c) Quality Assurance Tests
4.2 Development Tests. - Development Tests are those tests conducted at the discretion of the Seller for the purpose of providing data to be used in the design of the Nickel-Cadaium Storage Cells.
4.3 Qualification Tests. - qualification Tests are those tests conducted on prototype units of the Iickel-Cadrium Storage Cells. The units are "prototype" only in the sense that they are intended for evaluation and teat purposes; they are to be identical in manufacture to production units. Qualification teats shall consist of two (2) parts:
(a) Performance Tests
(b) Enviroreentel Teats

Eat 200.3 5-66
\qquad

GRUMAMAN ARRCRAFT ENGINEERING CORPORATION

Bentperge, L 1, N. Y
Code Ident. No. 26512

SPECIFICATION

No. AV-252CS-256
4.3.1 Performance Thats. - Performance Tests shall be conducted under laboratory condition for the purpose of demonstrating that the electrical performace and container characterintice of the Nickel-Cadmin Ftorage Cells meet the requaressats of thic apecifieation. Performance tents shall iroiule but not neoscarily be linited to the following:
(a) Branination of product
(b) Capactty
(c) Life-eycling
(d) Retentive of Cepaeity
(e) Storage
(f) Modified constant potential
(g) operating position
(b) Electrolytic leakage test
(i) Retention of charge

Brec, Pantray

4.5.1
4.5 .2
4.5 .3
4.5.4
4.5 .5
4.5 .6
4.5 .7
4.5.15
4.5 .16
 conducted in accordance with the requirements of 8pecirication ET-252cs-39C, except as noted berein, for the purpese of demonstrating that the Nickel-Cadmium Storage Cells can withatand the enviromental requirements specified for the ONO. Bince the Fiekel-Gadium Storago Cells are required to operate during launch, they shell be operated during all mairocmental tests as ifileated merein. Enviromantal mets omil include but not necescarily be lianthe to the following:

\qquad

GRUMMMAN ARRCQAFT ENGINEERING CORPORATION

Bexhpags L. I., N. Y.
SPECIFICATION
No. AV-252CS-25G
4.3.3.1 Gampling Instructions. - Quailication teat aamples shall consist of a specified number of cells identical in manufacture to production units. Bamples shall be identified as such and they shall be used as follows:
(a) A specified number of celle shall be subjected to Capacity and Life tests.
(b) A specified number of cells shall be subjected to all the qualification cell tests of this specification except Life tests.

HOTE: The purchase order will specify the number of test samples to be used for each test.
4.4 Quality Assurance Tests. - The Seller shall conduct a performance test on each production unit of the Nickel-Cadmiun Storage Cell to demonstrate the continuance of quality of each unit intended for orbit.

> 4.4.1 Ferformance Teste. - Performance tests shall be conducted under laboratory conditions for the purpose of demonetrating that the electrical performance of the Hickel-Cadilum 8torage Celle meets the requirements of this specification. Performance tests bill include but not necescarily be liaited to the following:

Spec. Paragreph

(a) Examination of product	4.5 .1
(b) Leak Detection	4.5 .14
(c) Electrolyte leakage test	4.5 .15
(a) Fetention of charge	4.5 .16
(e) Cell electrical operations requirements	6.0.

\qquad

SPECIFICATION

No. AV -252CS-256
 to further processing.
4.5 Test Methods. -
4.5.1 Erenination of Product. - Each complete cell, submitted for qualification and acceptance under contract, shall be inspected as Grumman my deem necessary to determine compliance with this mpecipication and the applicable drawing with respect to werkmanip, construction, interchangeability, sewing, dell container, weight, dimensions, identification marking, packaging and packing, and terminals.
4.5.1.1 Inspection of Coll Assembly. - The final cell esembly shall be witnessed by a Grum an quality assurance representative to verify the integrity of internal and external component parts.
4.5.1.2 Hermetic Seal. - The cell shall be tested for seal leakage (Helium) in accordance with Standard MIL-SID-202C, Method 112, Test Condition C, Procedure IV, at a chamber pressure no grader than 10^{-5} millimeters of mercury maintained until the leak rate stabilizes. The hermetic seal shall meet the requirements of 3.4 .15 .
4.5.1.3 Internal Impedance. - The cell impedance shall be measured between the positive and negative terminals at 60 cycles/sec. The impedance shall be measured by passing a known AC current through the cell and measuring the $A C$ voltage developed. The circuit som in Figure 3, or its equivalent, shall be used. The impedance shall be measured when the cell is charged to a minimum of 10 percent of full charge.
\qquad
\qquad

SPECIFICATION

No. AV-252CS-25G
4.5 .2

Capacity. - Uniess otherwise specified, capacity tests shall be run at $75 \pm 3^{\circ} \mathrm{F}$ anfient temperature. Ampere hour capacities shall be measured to the Cutoff voltages given for the rates specified and shall not be less than the capabilities specified in 3.5.1. Capacity measurements shall be made by sequentially charging and discharging the cell a total of six cycles, a cycle being deflned as one charge-diacharge routine.

Two cycles are allowed for capaeity development at the cells maximum charge rate. A "tapered charge" (see note 2) may be utilized. The maximum capacity returned to the Cell for cycles 1,2 and 3 shall be 33 AH . On the third discharge, the Cell shall develop more than 20 AH at the 2 -hour discharge rate (10 amps). The Cells shall then be charged, thereafter, and discharged at the l-hour rate (20 amps) and shall deliver a minimum of 20 AH (cycle 4). The Cells shall then be recharged and deliver a minimum of 60 anperes for 5 minutes, and 70 amperes for 3 minutes, in cycles 5 and 6 respectively. At no time shall the voltage at charge exceed the specifled maximum Cell voltage shown in Figure 1, and at no time shail the discharge voltage fall below 1.00 volts. (or 1.00 volts for 60 to 70 amps).

NOTES: (1) The voltage at charge shall never exceed the specifled maximum cell voltage shown in Figure 1.
(2) A tapered charge is defined as follows:
10.0 amperes to voltage in Figure $1,5.0$ amperes to voltage in Figure 1, 2.0 ampere for either 1.0 hour or maximum cell voltage in Figure 4 whatever occurs first.
(3) Each cell voltage, cell pressure and external cell case temperature (a minimum of two temperature sensors for a group of 26 cells is permissible) shall be recorded as follows:
(a) Immediately prior and after start of each charge or discharge step
(b) At one hour maximum intervals during all charges
(c) At 15 minute maximum intervals during all discharges.

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

Beth page, I. I. N. Y.
Code Ideat. No. 26512
SPECIFICATION
No. AV-252CS-250
4.5.3 Life. - All cells shall have a minimum operational life of 10,000 cycles of charge and discharge. The life tests shall be at temperatures and charge rates specified by Grumman. All cells shall be discharged at 5.0 ± 1 amperes for 36 minutes. The cutoff voltage shall not be less than 1.10 volts. At all temperature, the cells shall be exposed to ambient air on all four sides and top.
4.5.3.1 Cycling. - The 101-minute orbit time of the $O A Q$ shall be simulated in cycling tests. Each cycle shall consist of 65 minutes of charge, followed by 36 minutes of discharge. Cycling shall be continuous for 10,000 cycles, all of which shall be counted as life cycles.

> 4.5.4 Retention of Capacity, - The test cells shall be fully charged during each cycle of the life test. After every louth charge cycle, one cell at the low temperature and one cell at the high temperature specified in 4.5 .3 shall be disconnected from the charge/ discharge circuitry and immediately discharged at the 2 -hour rate to end voltage of 1.0 volts. Both cells shall deliver a minimum of 80 percent of their l-hour rated capacity. The same cells selected from each respective temperature value shall always be used during this test. Thereafter, the cells shall be recharged and placed back in the life test.
4.5.5 Storage Tests. - Two cells shall be stored in a discharged and shorted condition for at least 12 months but not more than 24 months from the date of manufacture at a temperature of 60 to $80^{\circ} \mathrm{F}$. At the end of this time, each cell shall be charged at the 2 -hour rate (*) to a voltage not to exceed that specified in Figure 1, and shall be capable of deliverying 100 percent of its rated capacity at its l-hour rate. Three charge-discharge cycles shall be allowed for capacity buildup.
4.5.6 Modified Constant Potential Charge. - A cell which
is in a discharged condition shall be charted at its highest charging rate per 3.5.6 for 1 -hour to a voltage not to exceed that specified in Figure 1. (Three cycles of charge and discharge are allowed for capacity buildup.) The cell shall then deliver not less than 85 percent of the 2 -hour rated capacity if discharged immediately.
(*) After reconditioning
\qquad

SPECIFICATION

No. AV-252CS-259
4.5.7 Operating Position. - A normal discharge shall be made on the fully charged cell at the highest continuous test rate at $73 \pm 3^{\circ} \mathrm{F}$ and to the corresponding cutoff voltage specifled in Specification Control Drawing 252scavilo. After 1.2 mimutes of discharge the cell shall be inverted without interrupting the diseharge, and arter 1.2 sdaitional minutes, the cell shall be returned to the normal operating position. The voltage records shall include readings, taken 5 seconds before and 5 seconds after each change in the position to the cell. The cell shall deliver full rated capacity in this diacharge, and the voltage change as a result of the inversion shall not exceed 0.025 volt. There chall be no leakage of electrolyte when the cell is in any porition.
4.5 .8

Vibration. - Qualification Test cells shall be subjected to the sinusoidal and random vibration requirewents specified in rables I and II. During these vibration tests, test cells shall be discharged at frequent intervals at the one-hour rate for periods of 30 seconds. The current and voltage values observed during these discharges shall show no fluctations, and visual inspection of the cells, upon completion of the test, shall show no mechanical failure. This cell shail be under a "clamp up" load of 2500 pounds applied through a stiff metal plate.
4.5.9 Acceleration, Centrifugal. - Qualification Test cells shall be mounted on the test apparatus (centrifuge) in the applicable positions deflned in Table I of ET-252CS-39C to produce the required acceleration in the direction apecified. The centrifuge shall be brought up to the rotational speed required to produce the radial aeceleration specified. Longitudinal and lateral accelerations shail be combined to occur simultaneously for the durations indicated. This may be accouplished by four orthogonal tests for each basis longitudinal direction, or by rotating the test unit 360° about $x-x$ acis during a period of nine minutes. During the above test, for each direction indiaated, the test cells shall be discharged at frequent intervals at the l-hour rate for periods of 30 seconds. The acceleration gredient acrose the cell ahall not exceed 15%. The current and voltage values observed during these discharges shall show no fluctuations, and visual inspection of the cells upon completion of the test shail show no mechanical railure.

SPECIFICATION
No. AV-252CS-250
4.5.10 Shock. - Qualification Test cells shall be subjected to the Shock Test indieated in Table I of Specification ET-252CS-39C. The cell shall be discharged at the l-hour rate and the diecharge voltage shall be recorded by a recording voltmeter, such as a Mano-acope. Buring, the period of each Shock Teat, any checontiadty in the voitage reaulting from a shoek in any direction shall be cause for rejection.
4.5.11 High Temperature Operation. - A Alliy charged cell shall be discharged at the 1 -hour rate at 73 ± 3 F, recharged and then placed in an oven at a high temperature of $110 \pm \mathbf{5 0}^{\circ} \mathrm{F}$. This teaperature shall be maintained for 24.5 hours. . The cell Ghall then be disebarged at this temperature at the 2 -hour rate and its capacity meesured to 1.0 volts. The cell shall then be returned to rom touperature and charged at the $2-h o u r$. rete. Following this charge, the colls shall again be discharged at the 2-hour rate. The eapacity of this second dscoharge shall be 100 percent of the cappeity specified in Drawing $252 s c a n 110$.

$$
4.5 .12
$$

Low Temperature Operation. - A fully charged cell shall be discharged at the l-hour rete at $73^{\circ} \pm 30 \mathrm{~F}$, recharged and then placed in a chamber at a low temperature of $30^{-} \pm 5^{\circ} \mathrm{F}$. .This terperatare shall be maintained for 24.5 hours. . The cell shall be discharged at this temperature at the 2 -hour rate and its capacity meanured to 1.0 volts. The cell shall then be returned to rocm temperature and then charged at the 2-hour rate. Following this charge, the cells shall again be discharged at the 2-hour rate. The capacity of this second discharge

4.5.13 Thermal Vecuum. - Tvo fully chargod cells ahall be discharged at the 1 -hour rate at $79^{\circ} \pm 3^{\circ} \mathrm{F}$, reeharged and then placed in a vacuum chamber. One surface of each cell mball be adjusted to a high temperature of $110 \pm 20 \%$ and the chamber shall be exchausted to $9 \times 10^{-6} \mathrm{Torr}$. This conditions shaII be mantain for a period of 24.5 hour. . Deering this period each cell ahall be cycid eetuatinlily for a alnimin of me cycle of charge and diacharge as apecified in 4.5.3. The above procedure shall be repeated except that one cell auriace mall be maintained at a low temperature of $30+5^{\circ} \mathrm{F}$. -The above procedure shall be repented a a third time at $75 \pm 5 \sigma_{p}$ exeept that the teat time ohail be for four hours. The cells shail show no orrames of fuilure dollaning these tents.
4.5.14 Leak Detection. - To permit satisfactory leakage detection, all cells shall be sealed with 5 percent of hellum gas by volume. A fully charged cell shall be allowed to cool to $73 \pm 3^{\circ} \mathrm{F}$, at which time a leakage test shall be made. Cells shall have a leakage rate of less than the limits specified in Specificetion ET-252CS-39C.

Enge 200.3 5-66

SPECIFICATION

No. AV-252CS-2g
4.5.15 Electrolyte Leakage. - This test shall occur immediately after completion of charge, during which cell must have received some overcharge to assure a positive cell pressure with respect to atmospheric pressure. The cell shail be thoroughly cleaned with distilled water and alcohol prior to start of charge. All mechanically eealed areas on the cell cover shalf be swabbed with phenolphthalein solution.* A redindication on the swab is evidence of electrolyte leakage. In the event of a positive indication, the cell shall be again cleaned and the test repeated. If a positive indication of leakage is present during the second test, the cell shall be rejected.
4.5.16 Retention of Cherge. - This test shall occur if the cell was discharged to 1.00 volt. Drain cell for 16 ± 1 hours at $73 \pm 3^{\circ} \mathrm{F}$ ambient temperature using a one (1) ahm resistor. Let cell. stand at open circuit for 24 ± 0.5 hours at $73 \pm 3^{\circ} \mathrm{F}$ anblent temperature. The cell voltage at the end of this open-circuit stand shall be 1.15 volts or higher.
4.6

Rejection and Retest. - When any test sample fails to meet the requirement soutlined herein, the product ohall be rejected. If for any reason the cells of the lot represented have already left the contractor's plant, they shall be subject to return to correct the defects and resubmitted for all the specified tests. Before resubmitting, full particulars concerning previous rejection and the action taken to correct the original defects shall be furnished to Gruman. Units rejected after retest shall not be resubmitted without the specific approval of Gruman. This retest, however, is only permissible if doubt exists with respect to the test eauipment employed, test procedure applied or imcomplete cell conditioning is suspected.
4.6.1 Failure Reporting and Analysis. - When failures occur during test operations, the procedures of paragraph 3.9 of Gruman specification RC-252CS-14C shall apply.
(*): 0.5% phenolphthalein in 50% alcohol and 50% distilled water solution. All areas where phenolphthalein was applied shall be subsequently rinsed with distilled water; then all areas shall be rinsed with acetone and cell shail be placed in a vacuum chamber for one hour at a pressure of 1 mm mg or less.

(*) Except for qual. Units where the temperature extremes specified herein shall be considered the permissible temperature range.
\qquad

SPECIFICATION
No. AV -252CS-25G

5.2

(Continued)
(c) Each unit shall be placed in a polyethlene bag and an inert drying agent shall be added to exclude moisture. Bag shall be heat sealed.

NOTE: Cell serial number shall be clearly visible from the outside of the bag.
(d) Each unit shall be packaged in a manner to avoid damage during shipment.
5.3 Marking of Shipments. - Interior packages and exterior shipping containers shall be marked in accordance with Grumman instructions. 6 NOTES
6.1 Intended Use. - The cells covered by this upecification are intended for continuous duty in electrical systems of satellites. They will be used in combination with a solar cell array to provide energy storage and furnish peak power demands. (See Specification AV-252CS-26C for storage battery design.)
6.2 Storage Conditions for Cells. - All cells which are kept on long term storage (periods in excess of one week) shall be stored as follows:
(a) Same as 5.2(a)
(b) Same as $5.2(\mathrm{~b})$
(c) Same as 5.2(c)
(d) Same ass 5.2(d)
(e) Each unit shall be stored in a clean dry area at a temperature between 59 to $85{ }^{\circ} \mathrm{F}$.

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
 Bethpage, L. 1., N. Y.
 Code Indent. No. 26512

SPECIFICATION

No. AV-252ess-25:

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
Berhpege, L. I., N. Y.
Code Ident. No. 26512

-56

Internal impedance circuit

FTGURE 3

AXES FOR VIBRATION - STORAGE CELLS

FIGURE 6

GRUMMAN ARCRAFT BNGINEERING CORPORATION

Bathpege, L. I., N. Y.
Code Ident. No. 26512
SPECIFICATION
No. $\xrightarrow{\text { AV-252CS-25G_ }}$

TABLE II (Continued)

(b) The level at any inpurt location is within $\pm 4 \mathrm{db}$ of the requirements at the test frequency.
(c) The average of all inputs at the test frequency is within $\pm 2 \mathrm{db}$ of the requirements.

Exceeding the lower limits of the above toleranoes shall be cause for rejection of the delinquent portion of the test and shall necessitate rerunning only that portion of the vibration test. Selection of the control point shall be subject to Gruman approval.

Random Vibration. - The vibration input for this test shall be controlled from the same accelerometer as uned to control the sinusoidal vibration test.

Vibration Fixtures. - The fixture, and its connection to the shaker head, shall be capable of transmitting the vibrations specified berein. It shall be a design objective that the fixture be free of resonances within the test frequencies. In any event, the fumamental resonance of the fixture compensated for test unit mass shall be above 750 Hz . The transverse motion (crosstalk) in any direction preduced by these fixtures shall not exceed the Fibration levels in the transverse direction specified herein. The requirements outlined above shall be verified by a sinusoidal vibration sweep at test fraquencies using a mass simulated dumuy test item. The vibration input for this meep shall be monitored with tri-axial accelerometers.

X-Y Plots. - X-Y plots of vibration test control accelerometers shall be made and included in the test report. For sinusoidal vibration tests, the following ground rules shall be used:
a. The control signal ahail be filtered if harmonic distortion is evident. This can be determined by viewing the contrel signal on an oscilloscope during the fixture survey.

SPECIFICATION

No. AV-252CS-256

TABLE II (Continued)

b. If a filtered control signal is used, then the $X-Y$ plots shall be filtered.
$X-Y$ plots for sinusoidal tests shall show peak " g " vs Hz . For random tests, the plots shall show the Spectral Density (PSD) analysis in g^{2} / Hz vs Hz . Parallel filter or tracking filter analysis can be used. Both sinusoidal and randan $X-Y$ plots should be made using on-line or taped signals from the control accelerameter and reduced using automatic X-Y plotters. Plotting of meter readings by hand is not acceptable.

NOTE: If track filter PSD analysis is used, the onslyzing filter bandwidths should not exceed 20 Hz for frequencies below 200 Hz and should not exceed 50 Hz for frequencies between 200 and 2000 Hz . Analyzing constants such as averaging time, sweep rate and tape loop length should be consistent with good analysis practice. It is recomended that the statistical quality of the analysis be equivalent to 60 degrees of freedom minimum.

A copy of the $x-y$ vibration test plots shall be submitted to Grumman within 5 days of the completion of the vibration portion of the environmental test.

SPECIFICATION

No. $\frac{\text { AV-252CS-25 }}{\text { Appendix I }}$
BANPIE DATA SHEET I

APPENDIX I

SEPARATOA TE8F PROC. DURE

NOTE: The following information is to be sumplied on each cell lot produetion.

Separator Naterial Supplier:
Base Material:
Fiber Manufacturer:
Purt No.
Lot No.
Dat of Mfg. (mo/yr)
Separator Suppliers Styin No.
Lot No.
Date of Mfg.
Material Slitted By:
(Do Not Use Anti-Static Agent)
Finishes or Wetting Agents Added By Separator Supplier
Yes \qquad
No \qquad
Finishes or Wetting Agents Added By Cell Manufecturer
Yes
No \qquad
State type of wash and number of tines separator wanhed

Applicable Gruman P.O. \# \qquad
Prepared by \qquad date \qquad

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
Bethpage, L 1., N. Y.
Code Ideat. No. 26512

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
Bechpage, L. I., N. Y.
Code Ident. No. 26512
SPECIFICATION
No. AV-252CS-25G
Appandix I (Continued)
Serele Date Sheet 7

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

Beehpage, L. I., N. Y.
Code Ident. No. 26512
SPECIFICATION
No. $\frac{A V-252 C S-2 S G}{A p p e n d 1 x ~ I ~(C e n t i m u a d) ~}$
Sample Data Shoot 9

Sample 1
2
3
4
5
6
\% Change In Thickness Wet Volume (V_{V})
Sample 1
2

3

4
5
6
Electrolyte Absorption

Sample 1

2
Applicable Grumman P.). \# \qquad
Above tests conducted by \qquad date \qquad
Prepared by \qquad date \qquad

Applicable Grumman P.O. \# \qquad
Above tests conducted by \qquad date \qquad
Prepared by \qquad date \qquad

GRUMMAN AIRCRAFT ENGINEERING CORPORATION
 Bechpage, L. I., N. Y

Code Ident. No. 26512
SPECIFICATION
No. AV-252Cs-250

APPEADIX II

NOTE: This appendix establishes the requirements for the electrical operations of Nicisel-Cadium Storage Cells for OAO applieations.
1.0 General. All cells shall cone from one cell lot, constructed at the same time using identical assembly techniquen and using components from one single bateh.
2.0 Temperature Requirements. - During the cell electrical operation process, the average cell temperature shall be between 70 and $80 \% \mathrm{~F}$. Once the average cell temperature has been initially detemined, it shall not vary more than $+3^{\circ}{ }^{5}$ during the entire electricial operation except during overcharge. The maxdmum temperature gradient across the cell groups mall be less than $6^{\circ} \mathrm{F}$. Thernocouples ghall be used as neceseary to monitor terperature and temperature gradients every hour during the selection procelure. Thernocouple.installation shall be oubject to Griman approval. If mecessary, the cells charge voltage may be adfucted to mintain the cells tramernture ithin
 those specified on Figure 1 of Specification AV-252CS-25.
3.0 Technical Data. - Technical data shall be recorded as specified in the text of this appendix. The recorded data shall be submitted to Grumman.
4.0 Gruman Representatives. - Gruman shall be advised when the electrical operation procedures are to be conducted so that OAO Fingineering and Quality Assurance representatives may be deaignated to witness the electrical operation procedures.
5.0 Test Equiraent. - Test equipment and autonatic recording equipment, of sufficient response to obtain continuous records, shall be used to obtain continuous current readings in each circuit.
\qquad

GRUMMAN AIRCRAFT ENGINEERING CORPORATION

> SPECIFICATION No. $-\frac{\text { AV- } 2525 \mathrm{SP}-25 \mathrm{G}}{\text { Append1x II (Continued) }}$
6.0 Cell Eleetrical Operation Requirements. - All cells shall be electrically operated in accordance with the following procedures. Any retest or deviation from this procedure shall be subject to funediate Gruman notification. Information hall be recertied as shom on attached Sample Date Sheeta (Appendix 3).
(a) Charge each cell at 2.0 amps for 24 hours minimuan. At the end of the charge, record the voltage, the pressure and the results of an Alkali Leak Detection, hereafter referred to as Phenolphthalein or phenol check which shall show no red indioation.
(1) Maximum voltage shall be 1.50 V
(2) Maxdmam pressure nhall be 50 pai
(b) Connect the eslls to autematic cycle. Discharge at 10 ampe for 30 minutes and charge at 4 amp for 90 minutes. Perform 10 eycles minimum starting with the discharge. Record low pressure during last cyele.
(c) Remove from autowatic cycle and place on overcharge at 2.0 amps. Keep on overcharge for 24 hours. At the end of overcharge, record the voltage, the pressure and result of phenol check:
(1) Maximum Voltage shall be 1.50 V
(2) Maximum Pressure shall be 50 psi
(d) Discharge at 10.0 amps to 1.0 velt per cell. Record time, pressure and capacity:
(1) Minimum capacity shall be 20.0 ampere hours.
(2) Pressure shall be equal to or less than 0 psi.
(e) Short each cell with one (1) ohm resistor for 16 hours minimum.
(f) Dead short for one (1) hour minimum.

GRUMMAN AEROSPACE CORPORATION

Bethpage, L. I, N. Y.
Code Idenr. No. 26512

SPECIFICATION

No. $A V-252 C S-25 G$
6.0
(Continued)
(g) Place on charge at 2.0 amps for 24 hours. At the end of overcharge, record the voltage, the pressure and result of phenol check:
(1) Maximum cell voltage shall be 1.50 V .
(2) Maximum cell pressure shall be 50 psi.
(h) Lischarge at 10.0 amps to 1.0 volt per cell. Record time, pressure and capacity:
(1) Minimum capacity shall be 20 ampere hours.
(2) Pressure shall be equal to or less than 0 psi.
(i) Charge at 2.0 amps for 2 hours. Retord cell viltage and pressire just prior to charge termination.
(j) Measure internal cell impedance per 4.5.1.3.
(k) Short each cell with one (I) ohm resistor for 20 hours minimun.
(1) Dead short for one (1) hour minimum.
(m) Review all recorded data.
6.1 Auxiliary Cell Electrical Operation Requirements. - All cells shall be electrically operated in accordance with the following procedures. Any retest or deviation from this procedure shall be subject to im: merliate Grimman notification. Information shall be recorded as shown on attarhed Sample Data Sheets (Appendix 3).
(a) Charge each cell at 2.0 amps for 24 hours minimum. At the end of the charge, record the voltage, the pressure and the results of an Alkali Leak Detection, hereafter referred to as Phenolphthalein or phenol check which shall show red indication.

GRUMMAN AEROSPACE CORPORATION

Bechpage. L. I., N. Y
Code Ident. No. 26512

SPECIFICATION

No. AV-252C.S-:55G
6.1
(Continued)
(a) (Continued)
(1) Maximum voltage shall be 1.50 V
(2) Maximum pressure shall be 50 psi
(b) Connect the cells to automatic cycle. Discharge at 10 amps for 30 minutes and charge at 4 amps for 90 minutes. Perform 10 cycles minimum starting with the discharge. Record low pressure during last cycle.
(c) Remove from atuomatic cycle and place on overcharge at 2.0 amps . Keep on overcharge for 24 hours. At the end of overcharge, record the voltage, the pressure and result of phenol check:
(1) Maximum Voltage shall be 1.50 V
(2) Maximum Pressure shall be 50 psi
(a) Discharge at 10.0 amps to 1.0 volt per cell. Record time, pressure and sapacity:
(1) Minimum capacity shall be 20.0 ampere hours.
(2) Pressure shall be equal to or less than 0 psi.
(e) Short ea:ch cell with one (1) ohm resistor for 16 hours minimum.
(f) Dead short for one (1) hour minimum.
(g) Place on charge at 2.0 amps for 24 hours. At the end of overcharge. record the voltage, the pressure and result of phenol check:
(1) Maximum cell voltage shall be 1.50 V .
(2) Maximum cell pressure shall be 50 psi.

GRUMMAN AEROSPACE CORPORATION

Banpage. L. I. N. Y. Y.
Code Idens. No. 26512

SPECIFICATION

No. AV-252CS-25G

6.1 (Continued)

(h) Discharge at 10.0 amps to 1.0 volt per cell. Record time, pressure and capacity:
(1) Minimum capacity shall be 20 ampere hours
(2) Pressure shall be equal to or less than 0 psi.
(i) Short each cell with one (1) ohm resistor for 16 hours minimum.
(j) Dead short for one (1) hour minimum.
(k) Charge at the 10.0 Amps to 0 psig. Record cell voltage, auxiliary electrode voltage current, and pressure every 15 minutes. Record the time for the pressure to reach O psig to an accuracy of one minute.
(1) All auxiliary electrode signals will be within +50 mv of the average auxiliary electrode signal at 0 psig.
(1) Continue charge to 20 psig. Record cell voltage, auxiliary electrode voltage, and cell pressure every 15 minutes. Record the time, to an accuracy of one minute, for the pressure to reach 20 psig.
(1) All auxiliary electrode signals will be within $\pm 50 \mathrm{mv}$ of the average auxiliary electrode signal at $20 \mathrm{psin} g$.
(m) Discharge each cell at the 10.0 Amps to 1.0 volts. Record cell voltage, auxiliary electrode voltage current, and cell pressure every 15 minutes.
(n) Short each cell with a one (1) ohm resistor for 16 hours minimum.
(0) Remove the one (1) ohm resistor and charge at the 10.0 Amps to 20 psig. Record auxiliary electrode voltage, current, cell voltage, and pressure on either continuous recorders or at 5 minute intervals. Record the time to the nearest minute for cells to reach 0,10 , and 20 psig.
(1) All auxiliary electrode signals shall be within +50 mv of the average auxiliary electrode signal at 0,10 , and 20 psig.

GRUMMAN AEROSPACE CORPORATION

Eathpare, L. In N. Y.
Code ldent. No. 26512

SPECIFICATION

No. AV-252CS-25G
6.1 (Continued)
(p) Place each cell on open circuit for a minimum of one hour. Within 5 minutes after the beginning of the open circuit stand and after one hour ± 5 minutes record pressure, auxiliary electrode voltage, $\overline{\text { current, }}$, and cell voltage.
(q) Discharge each cell at the 10.0 Amps to 1.0 volts. Record cell voltage, auxiliary electrode voltage, current, and pressure every 15 minutes.
(1) Short each cell with (1) ohm resistor for 16 hours minimum.
a. Maximum pressure at end of 16 hours shall not exceed 20 inches of $\mathrm{Hg} . "$
(r) Dead short for one (1) hour minimum.
(s) Review all recorded data.

NOTE: Auxiliary Electrode Resistor and Measurements. -
All third electrode cells shall heve 47 ohm resistors connected to the auxiliary electrode and negative terminals for all test,s. The third electrode voltages shall be recorded at the same intervals required for cell voltage and pressure data unless otherwise specified.
7.0 Cell Selection Requirements. - All cells purchased herein are surject to cell selection criteria as specified in Appendix A of Specification AV-252cS-26. Whenever cells are purchased as single units in contrast to complete batteries, the applicable capacity selection criteria are hereby modified as follows:
(a) The total number of cells purchased shall be considered as one battery assembly (± 1.0 ampere hour) for capacity matching criteris.
(b) Approximately $1 / 3$ of the total number of cells purchased must meet the capacity matching criteria for each battery (± 0.5 ampere hour).

No．AV－252CS－25．G
APPESTDIX III
ELECTRICAL OPRRATIONE－FIOW CHART
CUSTOMER
FACTORY ORDER NO． \qquad
DELIVERY SCHEDULE

	1	2			$3-4$			－－． 6		
		$\begin{aligned} & \text { At ond of aharge, take voltage, } \\ & \text { prossure and pheno :cheok. } \end{aligned}$								
$\begin{gathered} \mathrm{Call} \\ \# \\ \hline \end{gathered}$		VOLT	PRESS	PHIENO		PRESS		VOLT	PRESS	PHENC
1 Date										
Time										
\bar{i}										
Insp． By					－84					312

Sample Data Sheet 2
APPMTDIX III (Continued)
CUSTOMER \qquad
FACTORY ORDER NO.
DELIVERY SCHEDULE \qquad

APPENDIX C

Histograms of Cell Variables

HISTOGRAMS OF CELL VARIABLES

In this section are computer-drawn, histogram plots of the intrinsic cell variables for the subject batteries. Presented with the plots are the various statistical parameters associated with the distributions. These include the mean, standard deviation (sigma), the range, the maxdmum (VMAX) and minimum (VMIN) values of the data points in the distribution, as well as the total number of data points (NV). The variable number corresponds to the parameters listed in Table XX. A sumary of the averages and standard deviations is presented in Table XXI.
gintisicil sumatton of C:E varuales

M 1 STOGBAAM

-

11
14
14
$14 * * * * * * * * * * * * * * *$
*
$*$
$*$

321

DEAN= A. 1203 B Sthiaz

MI STOG日RAM

001

$$
\text { vMIN= } 522.39985
$$

$$
\text { vmax } 531.5998 \text { NV= } 17
$$

MISTARAM
MSTOGRAM

RISTOGRAM

326
-
 H 1 S T O G R A M MEAN= B .ODSA

 328

1

4

$$
92 \ldots=A n
$$

VAFIABLE Ve 3)
VNIN=

$$
1 . \overline{4440} \overline{0}
$$

 $\because *$
$\therefore \because+$
$\therefore \because$
\therefore

[^8]
$H I S T O G O$
$-N$
i

RANĠE= 7.7OQOI

.

$\begin{array}{ll}1 & * \\ 0 & \\ 3 & * \\ 6 & * * \\ 5 & * * \\ 4 & * *\end{array}$
$-3_{0}^{3}+$
U"
RANGE

- DiNTK

\vdots
-

vafiable vilil
$27.67000 \mathrm{NV}=-\quad 26$
1
\vdots
n
**
$2 * *$
$2 *$
$2 \quad 0095$
i:

nvávels

334

vafiarle viles
4151060.4

vafiame velui
-

$$
\text { - } 6 \tau-
$$

VAFIAPLE V(AB)
se

[^9]

Histngrav

4 t stacram
vaFIABLE V(20)

1336

MEAN= 17.69228
9.00000

$0_{n}^{*}{ }_{0}^{*}$

HistのriRAM

1
24-

$$
\begin{aligned}
& \text { **************** }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1.480 n \\
1.4929 \\
1.4954 \\
1.4844 \\
1.4912 \\
1.4940 \\
1.4968 \\
1.4998 \\
1.5024 \\
1.4049
\end{array}
\end{aligned}
$$

341

.

\qquad

HistnGRA

[^10]

H15TOGRAM

| H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$$
\begin{aligned}
& \text { H ISTMGOAM } \\
& \text { MFANZ2ain onask }
\end{aligned}
$$

[^11]variamle vize)
RANGE $=83.00000$
22.86407
जEAN $=50.73182 \quad$ STGMA $=$

$-$

Nve=
-a....9....100日5.-. 90... $95 \cdot \mathrm{c} 00$.

$$
31
$$
--uo.

[^12]

FREQ.1.

HiStCGKMM
StGMA=
MEAN $=? 58.50292$
RTNGE

- R AN GE
Hex

HIS TOGRAM

349

variable vi9)

.-..........-.
-- -.................

ISTOG RAM

- ISTAGRAM

1
0
0
0
0 -1 - $10.0000-1 .-1-0.0000$

H1stobon

$$
-37-
$$

+1stogaaM
variable v(22)
VMIN= 6.70000

MEAN $=12.25900 \quad$ SIGMA $=5.34065 \quad$ RANGE $=16.49908$
Vmax $=23.2 n 000 \quad$ NV $=$

-

$-38=$

- STRGRAM

VARIABLE V(2B)
VMIN = 105.00000

$\begin{array}{ll}\vdots & 1 \\ & 1\end{array}$
\square
\rightarrow

 ค ******** ค ******** aco
-

[^13]нtstngoá

…-..............-.

[^14]
VARIABLE VI 91

357

MEAN = 24304IAS \quad SIGMA $=$

358

H I S T O G R A M
vartarle vitity
5.00000

 - - $_{2}$ ***

$* * * * * * * * * *$
$* * * * * * * * *$
$* *$
$* * *$
0 O.
O.
-

 $\overline{\mathrm{NV}}=-108$

1
0
0
0
0
0
0

 UEAN=31.47174

APPENDIX D

Kaw Data Listing

Presented herein is a listing of the data for the cells constructed during the subject battery builds. This data is listed as it appeared on IEM cards used for the regressions carried out under this contract. The data is in F6.2 format with variable V1 through V12 appearing on the first card, variables V13 through V24 appearing on the second card, and variables V25 through V28 on the third card. The cell serial mumber and card number is indicated on the extreme right. Card data is read consecutively from left to right.

774.5863 .3	526.9	1.483	25.51	$\begin{aligned} & 663-1 \\ & 663-2 \end{aligned}$
				663-3
770.7860 .3	519.7	1.475	24.34	$664-1$ 6×4.2
$1.779 .7869 .8$		6.0		$664-2$ $+64-3$
	528.9	1.482	26.00	$\begin{aligned} & 65-1 \\ & 065-2 \end{aligned}$
				665-3
788.8886 .1	537.4	1.479	27.34	666-1
		20.0		$666-2$ $666-3$
780.8870 .2	530.5	1.485	25.68	$667-1$
				667-2
780.9869 .7	529.1	1.477	26.85	$667-3$ $688-1$
	529.1	$\frac{1.477}{6.0}$	26.85	668-2
-7781.7870.6				668-3
	530.4	1.484	25.85	$\begin{aligned} & 669-1 \\ & 669-2 \end{aligned}$
				669-3
774.8864.?	522.6	1.486	26.00	670-1
779.7869 .0$\cdots$$\cdots 78.8864 .8$				670-3
	527.6	1.480	25.17	671-1
				$671-2$ $671-3$
	527.9	1.480	25.34	672-1
				672-3
(780.1860 .1	532.2	1.477	26.68	673-1
$\underline{\sim}$		6.0	---	
784.6874 .6	530.8	1.482	27.51	674-1
		6.0		674-?
-776.5 864.3	529.1	1.482	25.51	675-1
				675-2
781.3870 .4				675-3
	528.9	1.490	25.85	676-1
776.6864 .3	526.4			$67 A-3$
		1.484	25.85	$\begin{aligned} & 677-1 \\ & 677-2 \end{aligned}$
				677-3
--783.987?.?	531.8	1.486	25.85	678-1
				6780
778.6963 .7	526.8	1.469	24.85	679-1.
		8.0		679-2
778.3866 .7	528.0	1.478	25.17	680-1
780.4964 .4				
	529.6	1.458	25.85	6:31-1
				63il-
7 7,				$681-3$
-781.1.871.?	531.9	1.479	25.34	$\begin{aligned} & 682-1 \\ & 682-2 \end{aligned}$
	529.6			¢ 0 - 3
779.0247.n		1.485	25.85	683-1
.... -. ...		----	--.. .-...	-
				\bullet

a 4 1-i
4い2-1
!!4-
$4+i 3-\dot{z}$
$494-1$
494-7.
494-3

99.5891 .4 .445
$3.7537 .1257 .3275 .31 .47548 .00^{-74.17} 23.34$
4R-1
19:1-:
$408-2$
4 49-1

494-
$40-3$
$5011-1$
 … . . 1090.

505-3

111.11_
\qquad
i
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\square
392

APPENDIX E

Summary of Test Results in

Spare Nicirel-Cadmium Cells From
OAO A-2 Flight Batteries

By: Floyd Ford
Engineering Fhysics Division
Goddard Space Flight Center
Greenbelt, Maryland

393

SUMMARY OF TEST RESULTS ON SPARE NICKEL-CADMIUM CELLS FROM OAO-A-2 FLIGHT BATTERIES

Floyd E. Ford

April 1971

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

SUMMARY OF TEST RESULTS ON SPARE NICKEL-CADMIUM CELLS FROM OAO-A-2 FLIGHT BATTERIES

Floyd Ford
Engineering Physics Division

Abstract

Five cells from the production lot for OAO flight batteries for the A-2 spacecraft were subjected to 6091 orbital cycles simulating some of the various electrical conditions the spacecraft battery experiences in flight. It was shown that the undervoltage cut-off of 1.18 volts per cell would yield over 85% of the battery's ampere-hour capacity to 1.00 volts average when new, but provided less than 65% after extended periods of orbital cycling. The loss of discharge voltage with cycling is attributed to the onset of a "double plateau" effect observed after extended periods of repetitive cycling. Partial improvement in the discharge voltage was obtaine by allowing the battery to "run down" in ampere-hour capacity; however, the voltage was enhanced only to the depth-of-discharge the battery experienced during the "run down." A like "new" discharge voltage profile can be obtained only if the deep discharge is conducted to 1.0 volts per cell average, or below the voltage exhibited on the lower plateau.

Low temperature ($0^{\circ} \mathrm{C}$) tests conducted at various cycle intervals revealed an increase in each cell voltage of approximately 0.020 volts. One cell exhibited an abnormal voltage increase (above 1.55 volts) and was shown to be generating hydrogen gas during the overcharge test. After reverse charging the cell to remove 3.0 ampere-hours of perecharge, the overcharge voltage decreased to the values exhibited by the other four cells. All cells operated satisfactorily after 450 days of test and delivered 23.0 ampere-hours after completing 6091 cycles.

The test results have demonstrated that cells with apparently "normal" characteristics when new may exhibit "abnormal" changes in overcharge characteristics with cycling. Change in overcharge voltage for one cell is attributed to excessive precharge combined with the effects of "negalive capacity fading" with cycling. The importance of rigid controls during the manufacturing of nickel-cadmium aerospace cells is shown through correlation of cell test results to the manufacturing process.

CONTENTS

Page
INTRODUCTION 1
CYCLING TESTS 1
OVERCHARGE TESTS 9
DISCUSSION OF RESULTS 13
CONCLUSIONS 16
RECOMMENDATIONS 16
APPENDIX A: SEQUENCE OF EVENTS IN RECHARGE TESTS 18
APPENDIX B: CHEMICAL ANALYSIS OF CELL \#602 19
APPENDIX C: PHYSICAL DESCRIPTION OF CELL \#477 AFTER RATIO TEST 20
APPENDIX D: PHYSICAL DESCRIPTION OF CELL \#588 AFTER CYCLING TEST 26
APPENDIX E: PHYSICAL PROPERTIES OF SEPARATOR MATERIAL 34
ILLUSTRATIONS
Figure
Page
Recharge Percentage for Voltage-Limit Charging ofOAO-A-2 Flight Cells2
2 Voltage Profile for 10-Ampere Discharge 4
3 Voltage Profile for 6-Ampere Discharge After Various Numbers of Consecutive Cycles 5
4 Voltage Profile for 6-Ampere Discharge, Showing the Effectof Continuous Cycling7

ILLUSTRATIONS (Continued)

Figure "аде
$5 \quad$ Voltage Profile for Cycle 5642 11
$6 \quad$ Voltage Profile During Overcharge Test 12
7 Voltage Profile for Cycle 5687 14
C-1 Nylon Cover for Plate and Third Electrode Assembly of Cell \#477 as Removed From Case 21
C-2 Opposite Side of Nylon Cover Shown in Figure C-1 21
C-3 View of Cell \#477 as Removed From Cell Case 22
C-4 View of Cell \#477 as Removed From Cell Case (45° View) 22
C-5 View of Cell with First Negative Plate Lifted 23
C-6 Separator Removed From First Positive Plate 23
C-7 Positive Plate, Showing Small Pinhole 25
C-8 Dark Spots in Separator, Resulting From Positive Plates 25
D-1 View of Cell \#588 as Removed From Case 27
D-2 Close-Up of Seal, Showing Condition of Ceramic 27
D-3 Close-Up of Seal, Showing Condition of Ceramic 28
D-4 View Showing Separator Under First Negative Plate 28
D-5 Close-Up View of Separator Under First Negative Plate 29
D-6 Negative Plate, with Separator Fibers Adhered to Surface 29
D-7 Separator Area From Around Positive Plate Tab (Top), Showing Discoloration (Brown) 30
397

ILLUSTRATIONS (Continued)

Figure Page
D-8 Positive Plate with Dark Spots 30
D-9 CloseUp of Positive Plate, Showing Small Blisters and Dark Spots 32
D-10 Positive Plate, Showing Small Pimples or Blisters Around Top Edge of Plate 32
D-11 Positive Plate, Showing Flaking of Material Around Edge of Plate 33
TABLES
Table Page
1 Comparison of Discharge Voltage to Capacity for Two Cycles 6
2 Overcharge Voltages for A-2 Flight Cells 10
3 Pre-Charges of A-2 Flight Cells 15
E-1 Properties of Pellon 16015 Separator Material 34
E-2 Properties of Separator Material 37

SUMMARY OF TEST RESULTS ON SPARE NICKEL-CADMIUM CELLS FROM OAO-A-2 FLIGHT BATTERIES

INTRODUCTION

Five cells from the group of cells manufactured by Gulton Industries for Orbitin; Astronomical Observatory (OAO) battery assemblies 25 A and 26 A were tested at Goddard Space Flight Center from September 16, 1968 to December 12, 1969. These cells are identified by the serial numbers $424 \mathrm{~A}, 602,588,603$, and 639. These cells were tested as a 5-cell pack. The exact details of each test sequence and cycle condition are beyond the scope of this document: however, the general test conditions are as follows:

Cycle: 90 minutes (60 -minute charge, 30 -minute discharge)
Depth of Discharge: 15%
Charge Rate: 5 and 8 amperes
Temperature: $0^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}$, and $32^{\circ} \mathrm{C}$ (two test conditions at $40^{\circ} \mathrm{C}$)
The temperature was $10^{\circ} \mathrm{C}$ or lower for over 70% of the total test period (6091 90 -minute cycles during 450 days). To observe changes in overcharge voltage, the pack was subjected to a $\mathrm{C} / 20$ (1.0 amperes) overcharge at $0^{\circ} \mathrm{C}$ after various cycle conditions. The effects of continuous cycling on battery discharge voltage and capacity were also observed. Findings and observations from the test on the A2 flight cells are summarized below.

CYCLING TESTS

Figure 1 is a summary of the results obtained while cycling with various voltage limits as controls. Charge rates of 5 amperes (lower curve) and 8.0 amperes (upper curve) were used throughout the series of tests. The test temperatures were $0^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}$, and $32^{\circ} \mathrm{C}$. Also shown (along the ordinate) are the minimum values for percent recharge at these temperatures. It is noted that, using the nominal battery voltage limit system (BVLS), level four, the percent recharge increases with decreasing temperature. Because of the slope of the BVLS curves, the battery overcharge exceeds the minimum requirements at low temperatures in order to meet the minimum requirements at high temperatures. This design characteristic was implemented to minimize the possibility of thermal run-a-way.

$=400$

At various intervals during the cycling test, the pack was discharged to determine the cell ampere-hour capacity and to observe the effects of continuous cycling on the discharge voltage. Note that on some data sheets and/or curves two cycle numbers are given. The larger number is the number of accumulative charge-discharge cycles, while the smaller one is the number of chargedischarge cycles completed since the previous capacity discharge of the pack.

Figure 2 is a comparison of the ampere-hour capacity from pre-cycling test with the capacity after 627 continuous cycles (1437 total cycles). The 627 continuous cycles were completed at the three test temperatures previously given and under conditions simulating the various BVLS limits. The characteristic observed on discharge after 627 continuous cycles, where the voltage decreases from approximately 1.16 volts per cell to just above 1.0 volts per cell, is observed throughout the test program on these cells.

Figure 3 illustrates the voltage for a 6-ampere discharge after varying numbers of uninterrupted cycles. Curve 1 is used as the reference for discussion because it represents 1636 continuous cycles. It is from this data that the "double" or "two-plateau" voltage can be positively identified for the first time during this test. It is noted that for curve 1 after 1636 continuous cycles at 15% depth of discharge, the end of dark voltage is 1.22 volts/cell (25.62 volts for 21 cells). This value was consistent with the end of dark voltage from several previous cycles. The first stable plateau on discharge occurs at approximately 1.18 to 1.19 volts/cell (24.78 to 24.99 volts for 21 cells), which is very close to URG (undervoltage restabilization generator) level for the A-2 spacecraft. The reason for the change in voltage from the upper plateau to the lower plateau is not fully understood. This change is sometimes referred to as "memory." The maximum and minimum cell voltage during the transition between voltage plateaus is shown to illustrate that all cells do not respond identically. It is noted that on this pack the first cell to decrease in voltage to the lower plateau is the highest capacity cell in terms of ampere-hours to 1.0 volt per cell.

Following the discharge shown by curve 1, the battery was returned to cycling for recharge. After 28 cycles, a capacity discharge was made to assess any change in the discharge voltage characteristics. It is readily apparent from Figure 3 that the discharge voltage (curve 2) is significantly improved by the previous discharge illustrated by curve 1. A comparison of ampere-hours to a specific discharge voltage for cycles 3074 and 3101 is given in Table 1.

The ampere-hour capacity to 1.0 volts is greater after extended cycling than after the discharge following the capacity cycle. Contrary to this finding, the capacity to other voltages listed is always greater on the discharge following the capacity cycle shown in curve 1. It is obvious that the ampere-hour limitation of a battery after extended cycling is primarily dependent on the definition

402

Table 1
Comparison of Discharge Voltage to Capacity for Two Cycles

Discharge Voltage per Cell	Voltage for 21 Cells	Voltage for 22 Cells	Ampere-Hour Capacity	
	21.00	22.00	24.3	22.3
1.00	23.10	24.20	15.5	21.5
1.10	24.15	25.30	13.0	20.3
1.15	25.20	26.40	4.0	14.0
1.20				Cycle 3101

of undervoltage. It can be concluded that a safe undervoltage cut-off (1.10 to 1.15 volts/cell) for "new" or reconditioned batteries will result in a severe capacity penalty for batteries that have experienced extended cycling under the OAO cycle conditions. Data taken after 110 cycles (curve 3) show that the discharge voltage has decreased slightly below that for the previous discharge (curve 2). The steady-state percent recharge for the 110 cycles prior to the discharge shown in curve 3 was 107%.

Because actual use of the battery in orbit does not provide for continuous discharge as performed in the preceding test, it was decided to simulate a "rundown" in battery capacity such as would be caused by reduction of the available charging current during the sunlit portion of the orbit. A total of 1003 cycles was accumulated before the run-down was initiated. Curve 4 of Figure 3 illustrates the results. The depth of discharge was 15% (3.0 ampere-hours per shadow period) and the recharge was 0.8 ampere-hours per sunlit period, causing a loss of approximately 2.2 ampere-hours per orbit. The similarity of the voltage profile of curve 1 for the constant current discharge, and curve 4 for the cyclic run-down, leads to the conclusion that the double-plateau voltage has reappeared. The voltage profile obtained for the cyclic run-down was very similar to that for the constant current discharge. Following the cyclic rundown, the pack was allowed to recharge for 13 cycles by increasing the charge rate to 5.0 amperes. The pack was again discharged by using a constant current (6.0 amperes). Data for this discharge are illustrated in Figure 4 for comparison with previous discharge data.

The voltage profile for this discharge (cycle 4134) is very significant in that it reveals two distinct characteristics: (1) The discharge voltage, up to 140

minutes of discharge, is higher than that obtained during the same period in a cyclic rundown, and (2) The two-plateau effect was not eliminated by the cyclic run-down to 1.1 volts per cell. It is noted that the increase in capacity to 1.18 volts per cell after cyclic run-down is approximately 1.5 ampere-hours.

A comparison of discharge voltage vs. state-of-charge for three conditions reveal the following:

Condition	Percent of total capacity* to 1.18 volts/cell
Prior to Cycling	86% (10.0 amperes)
After 1636 Continuous Cycles	$62 \%(6.0$ amperes)
Post Cycling Capacity (after cyclic recharge)	$96 \%(6.0$ amperes)

*Total capacity is that obtained for discharge to 1.0 volt per cell.
It is noted that the capacity obtained when discharging the pack at $15^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ to 1.0 volts/cell was always greater than the rated value of 20 ampere-hours. The final discharge after 6091 cycles resulted in 23.1 ampere-hours. It can be concluded that the capacity obtained to any voltage between 1.30 and 1.0 is very dependent on the cycle history of the cells or battery. The present URG level of 1.18 volts per cell yields over 85% of the battery's total capacity when new, but provides less than 65% after extended periods of orbital use. It has been further demonstrated that allowing the battery to run down to URG in orbit provides for only a slight improvement in battery discharge voltage. To improve effectively the discharge voltage to near "new" condition, a discharge well into the second voltage plateau is required.

Additional work is needed to determine the exact cause of the two-plateau voltage and just how it can be prevented. One solution that seems feasible is to require the manufacturer to use more electrolyte (KOH) in the cells. An examination of components from cell \#588 of this test group revealed two problems: the cell was extremely dry, and cadmium migration had taken its toll on the separator. The components from this cell were compared with the components of a cell from three-year storage. There was no apparent degradation of the cell taken from storage. Just how great an increase in KOH is necessary above the amount now used is not known for the 20 ampere-hour cell. Tests at GSFC on the Fulton 6.0 ampere-hour cell revealed that up to 20% increase in KOH quantity did not cause any significant increase in cell pressure. The long-term effect was not determined because of separator contamination. A proposed test to investigate the addition of KOH to OAO cells is currently underway.

OVERCHARGE TESTS

One reason for conducting the extended cycling test on these cells was to determine if any change in voltage characteristics occurred during the life of the cell. Because the cell voltage is sensitive to temperature, the test was conducted at $0^{\circ} \mathrm{C}$, using a $\mathrm{C} / 20$ charge rate. The data obtained at various intervals during the 6091 cycles were compared with those measured by the manufacturer at $5^{\circ} \mathrm{C}$ using the $\mathrm{C} / 20$ charge rate. The lower temperature of $0^{\circ} \mathrm{C}$ was used because all previous overcharge tests at GSFC had been conducted at this temperature.

Table 2 summarizes the results. The first overcharge test was conducted after 2538 cycles. The voltage of each cell at this time was slightly higher than the voltage obtained during test by the manufacturer and may be attributed to the $5^{\circ} \mathrm{C}$ difference in temperature. Cell \#424 exhibited slightly higher voltage than the other four cells. During the overcharge test after 4577 cycles, all cells exhibited an increase in voltage; however, cell \#424 showed a significant increase when compared with the other four cells. It was at this point that the trend of increasing voltage was established on cell \#424. During the overcharge test following cycle 5438 , the voltage of cell \#424 was approximately 50 millivolts higher than that of any other cell.

During cycle 5595 (1.51 volts/cell limit), a gas sample was extracted from cell \#424 and analyzed. Of the 38 PSIG pressure, 70% was hydrogen and 30% was oxygen. Cycling was continued, and the pressure trend was observed. By cycle 5642 , the end of charge pressure was at 37 PSIG (increased from 32 PSIG after the sample of cycle 5595 was extracted), while the end of charge pressure of the other four cells remained stable during this period. Data for a typical cycle (5642) are shown in Figure 5, illustrating the cell voltage divergence during charge. The voltage of cell \#424 never reached 1.55 volts during the cycling test.

Immediately following cycle 5642 , the overcharge test was repeated. Results from this test are illustrated in Figure 6. After two hours at $\mathrm{C} / 20\left(0^{\circ} \mathrm{C}\right)$, the current was reduced to 0.5 amperes to bring the voltage of cell \#424 below 1.55 volts. The voltage of cell \#424 was allowed to exceed the 1.55 volt limit for just over 75 minutes in order to observe the cell pressure change. During the two-hour period, the pressure increased from 37 to 43 PSIG.

The condition of this cell prohibited further cycling and overcharge tests at $0^{\circ} \mathrm{C}$, and it was decided to adjust the pre-charge on the cadmium plates. Upon discharging the pack, cell \#424 was reverse-charged at 2.0 amperes for 90 min utes. During the 3.0 ampere-hour reverse-charge, a gas sample was taken to determine the gas content of this cell. (The cell had been evacuated before reverse-charging.) The sample, which contained more than 97% hydrogen,
Table 2

Test Date	Cycles* Completed	Serial Numbers					Comments**
		424	602	588	603	639	
		Voltage					
9-9-68	-	1.472	1.474	1.463	1.477	1.482	Test conducted by manufacturer $4^{\circ} \mathrm{C} @ \mathrm{C} / 20$
4-8-69	2538	1.491	1.485	1.482	1.486	1.483	
8-15-69	4577	1.543	1.500	1.512	1.504	1.497	
10-28-69	5438	1.546	1.500	1.510	1.497	1.499	
11-7-69	5595	-	-	-	-	-	Gas Sample: 70\% Hydrogen, 30\% Oxygen
11-10-69	5642	1.576	1.503	1.530	1.506	1.506	Test terminated after 2 hours
11-12-69	-	-	-	-	-	-	Capacity discharge: Cell \#424 reversed charge @ C/10-3.0AH
11-14-69	5687	1.519	1.537	1.532	1.536	1.516	
11-21-69	5792	1.518	1.508	1.506	1.509	1.495	
12-5-69	6014	1.513	1.512	1.503	1.523	1.503	

verified that this cell was positive (limited on discharge-the normal condition). The pressure at the 2.0 ampere rate was observed to increase at approximately 2.5 PSI per minute.

Upon recharging the pack and completing 19 cycles, the overcharge test was repeated. The voltages at the end of 4 hours are listed in Table 2. Voltage data for the four hours of overcharge are shown in Figure 6, and are compared with the voltages obtained from the test prior to the charge adjustment on cell \#424. Two facts are obvious: (1) The overcharge voltage of cell \#424 was decreased by the charge adjustment of the negative electrode, and (2) the overcharge voltages of all other cells were slightly higher than those obtained on previous tests. This latter result is attributed to the cell's having been completely discharged only 19 cycles before the overcharge test was conducted.

The voltage data for cycle 5687 (19 cycles after charge adjustment) are shown in Figure 7. Cell divergence still exists but is less than 0.030 volts, as compared with cycle 5642 where the divergence was greater than 0.050 volts. Even though the control voltage for the two cycles was the same, there is a difference in end-of-light current of over 0.2 amperes.

Additional overcharge tests were conducted prior to terminating the test on this pack. Cell\#603 approached, but never exceeded, the 1.55 volt limit. All cells were operating satisfactorily when the pack was subjected to the final capacity discharge, at which time a total energy of 23.0 ampere-hours was measured. The total test time was 450 days. Cells completed the open circuit voltage (OCV) test with the following results:

Cell \#	OCV (after 450 days)
424	1.179
602	1.191
588	1.181
603	1.193
639	1.192

DISCUSSION OF RESULTS

From the information presented about the overcharge tests, two conclusions can be drawn: (1) The overcharge voltage during the 450 days of test increased

by over 0.020 volts on all cells, and (2) The overcharge voltage of one cell increased to an intolerable degree that could have resulted in cell failure due to overpressure. It was further shown that discharging the cadmium plates of cell \# 424 by 3.0 ampere-hours could reduce the cell voltage to that of the other test cells.

To understand the problem encountered during the cycling test of the A-2 cells, it is necessary to examine other data on these cells and also on cells from battery assemblies 30 and 31. Cells from the A-2 production lot (includes assemblies $25 \mathrm{~A}, 26 \mathrm{~A}, 30$, and 31) were found to have pre-charges of 3.5 to 6.1 amperehours. The pre-charge was measured by oxygen recombination methods, and the results are as follows (Table 3):

Table 3
Pre-Charges of A-2 Cells

Cell \#	OAO Battery \#	Pre-Charge (ampere-hours)	Comments
603	$25 \mathrm{~A} \& 26 \mathrm{~A}$	5.4	Cell had completed 529 cycles
639	$25 \mathrm{~A} \& 26 \mathrm{~A}$	3.5	Cell had completed 529 cycles
666	$30 \& 31$	6.1	Completed cell selection for battery
668	$30 \& 31$	3.4	Completed cell selection for battery
674	$30 \& 31$	4.0	Completed cell selection for battery
762	$30 \& 31$	1.0	KOH added at GSFC
429	$30 \& 31$	1.3	Charge adjustment not made by manufacturer

Negative-to-positive capacity ratios for the production lot of cells for batteries 25A and 26A were 1.22 to 1.39. During formation of the cells by the manufacturer, some cells were found with positive plate capacities of up to 30 amperehours (those over 30 were rejected). With a required ratio of 1.30 , the minimum negative plate capacity had to be 35.1 ampere-hours. Since the manufacturer destroys the integrity of cells after formation and mixes the positive plates as well as the negative plates, it is possible that a cell can be assembled with high capacity positive plates and low capacity negative plates. Such a cell would have
a difference between positive and negative capacity of 5.1 (35.1-30.0) amperehours. It is apparent that 5.4 ampere-hours (cell \#603) of pre-charge would result in a negative limited cell. This situation would be "worst case" and not very likely. The concern is with cells that have high pre-charge which could result in high cell voltage with cycling, and are not found by the $5^{\circ} \mathrm{C}$ overcharge test required in the battery specification. Cell \#424 is apparently such a cell. The fact that the overcharge voltage did not increase significantly until more than 4,000 test cycles were completed typifies the problem with nickel-cadmium batteries, and illustrates the need for very rigid controls by the manufacturer when making sealed cells.

CONCLUSIONS

From the test results reported herein and from recent tests at Naval Ammunition Depot (NAD)-Crane on cells with known pre-charge levels, it has been demonstrated that cells with perfectly normal characteristics when new may show up deficient after extended cycling. In both cases (GSFC and NAD-Crane) an increase in overcharge voltage at $0^{\circ} \mathrm{C}$ was directly attributed to excessive precharge level. In both cases the overcharge voltage was decreased by reducing the pre-charge. These results illustrate the effects of "negative capacity fading" during the life of the cell, and the impact on cell operation. The importance of rigid controls at the manufacturer's facility is emphasized. Extended testing, such as was completed on these cells, is not only impossible on flight batteries, but it is not feasible from a cell lifetime consideration.

RECOMMENDATIONS

The results of this test should have no immediate impact on the use of the A-2 flight batteries since the cycle regime for the test cells has been somewhat more rigorous than the orbital conditions experienced by the batteries in the A-2 spacecraft. Based on the results of more than a year of testing on the flight cells, it is predicted that some change in battery characteristics will be experienced. The magnitude of this change, and the rate of its occurrence, are not predictable. An increase in the overcharge voltage for cells in the flight battery will effectively reduce the percent of recharge per orbit for a given battery voltage control level. Also, the third electrode will show a decrease in the end-of-light readings. In all probability, it will be required to increase the battery voltage control level above that used early in the flight. One point should be emphasized - the increase in overcharge voltage on the test cells was determined at $0^{\circ} \mathrm{C}$. The spacecraft battery temperature is approximately 10° to $15^{\circ} \mathrm{C}$ above this temperature. Consequently the change should be less significant, and not obvious as early in the battery life as it was during the cell tests.

$$
414
$$

To overcome the problem of increasing over-charge voltage with cycling as identified during this test, two solutions are recommended: (1) Impose a requirement on the manufacturer to control pre-charge on each cell, and (2) Increase the negative-to-positive ratio requirement from 1.30 to a minimum of 1.50.

It is recommended that 30 to 35% of the 50 -percent excess negative capacity be utilized as pre-charge. It is noted that although zero pre-charge is thought to be undesirable, tests on OAO cells at NAD-Crane with zero pre-charge have not shown any degradation relative to cells with pre-charge. The consequence of excessive pre-charge in flight cells can be premature battery failure, either during ground test or in flight. Spacecraft batteries are usually made of many series-connected cells. Each cell is a distinct and separate unit; consequently, a battery is only as good as any single cell.

Cycling tests on the A-2 cells were terminated after 6091 cycles. Cells were removed from the pack for physical and chemical analysis, including extraction of KOH , measurement of pre-charge after cycling, and analysis of the separator material.

Test results and data related to the analysis are given in the appendices.

$$
4 / 5
$$

APPENDIX A

SEQUENCE OF EVENTS IN RECHARGE TEST

Date		Event 	
		Ampere-Hour Equivalent	
	Cell \# 603	Cell \# 639	
Nov. 1968	Backfilled with O_{2} to remove precharge.	5.3	3.6
	Vented O_{2} to restore precharge.	2.6	2.8
Feb. 1970	Backfilled with O_{2} to measure precharge (completion of electrical test).	5.1	5.2

416

APPENDIX B

CHEMICAL ANALYSIS OF CELL \#602

During the soxhlet extractor washing procedure, a precipitate of grey particles was washed off the 20 AH plate stack from OAO Cell 602 and deposited in the extractor. The wash water became cloudy.

The solid precipitate was filtered from the water, which became quite clear. The solid was enmeshed in the filter paper and no attempt was made to scrape it off because filter paper can be used as a sample matrix. The grey solid was then analyzed in its filter paper matrix by X-ray fluorescence. The analysis indicated that $\mathrm{Cd}, \mathrm{Ni}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Ba}$ and Cl were present. Note: C, H and O, although not detectable by X-rays, could be present (and probably are) in combination with the metals that were detected (as $\mathrm{CO}_{3}{ }^{=}, \mathrm{OH}^{-}$or oxides).

The sample (in its filter paper matrix) was also analyzed by X-ray diffraction. (Fluorescence determines the component elements; diffraction determines the crystal structure, and therefore compounds or molecules). Because of a samplemounting difficulty, the results of this analysis were somewhat difficult to interpret, but evidence was rather strong that $\mathrm{Cd}(\mathrm{OH})_{2}$, was present. Somewhat less reliably indicated were nickel metal (Ni°), cadmium carbonate (CdCO_{3}), gamma ferric oxide ($\gamma \mathrm{FE}_{2} \mathrm{O}_{3}$), and barium metal (Ba^{0}).

These two X-ray analyses were qualitative, but gave a rough indication of the relative amounts of the component substances. Apparently a preponderance of $\mathrm{Cd}(\mathrm{OH})$ is indicated in the diffraction pattern. In the fluorescence plotout, the $\mathrm{Ba} \mathrm{La}, \mathrm{Fe} \mathrm{Ka}, \mathrm{Ni} \mathrm{Ka} \& \mathrm{~K} \beta, \mathrm{Cu} \mathrm{K} a$, and Cd Ka peaks all went off scale ($2 \mathrm{X} 10^{\text {s}}$ counts per minute full scale), and this probably means that $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Cd}$ and Ba are present in more than trace amounts.

APPENDIX C

PHYSICAL DESCRIPTION OF CELI, \#477 AFTER RA'TO TNST

BRIEF HISTORY

Cell \#477 was manufactured by Gulton Industries for OAO battery assemblies 32 and 33. The cell completed all phases of the Gulton process as per specification AV-252CS-89A and was subjected to the cell selection procedure of specification AV-252CS-26D. The cell met all requirements and was then tested to determine the total negative-to-positive capacity ratio.

During the ratio test, the cell received a 10 -ampere discharge from full charged condition to a reverse voltage of $\mathbf{- 1 . 5}$ volts. Prior to the full charge, the cell was reverse charged from 0.0 volts to -1.5 volts to measure the precharge of the cadmium electrodes. The total time of reversal was over two hours. The main difference between this cell and those of batteries 30 and 31 is that during the reverse charge the cell is flooded with electrolyte. This cell, along with five flight quality cells, was delivered to GSFC late in November 1969.

ANALYSIS AND DESCRIPTION

On January 12, 1970, the cell was opened and extracted from the case for examination. Even though this cell was flooded by Gulton for the ratio test, no residual KOH was found in the cell case. The separator material was found to be saturated with KOH . When the nylon cover for the cell plate stack was removed from the case, reddish brown residue was found between the cell case and the nylon cover. An analysis (X-ray fluorescence) revealed that the residue consisted primarily of iron oxide, with some nickel. Figures $\mathrm{C}-1$ and $\mathrm{C}-2$ show the nylon liner.

Photographs were taken of the cell as it was disassembled. Figure C-3 shows the cell, with the third electrode attached, as removed from the case. Figure $\mathrm{C}-4$ shows the same cell at a 45° angle. In general, the condition of the plates was from good to excellent. Some localized dark spots, observed on the separator, may be attributed to blisters. A close examination of the positive plates revealed only a slight indication of blistering. Few if any pimples were found on the plates. Figure C-5 shows the separator with the first negative plate lifted. The dark spot in the lower left portion of the plate was caused by the positive plate next to the separator. This is better illustrated in Figure C-6, where the separator has been folded away from the plate. The area immediately under the dark spot can best be described as a hole that had apparently emitted a solution - probably due to gassing. This could not be classified as a blister
Cover

Figure C-2. Opposite Side of Nylon
Shown in Figure C-1.

419 Figure C-1. Nylon Cover for Plare and Third

and was in Liquid Form when Removed.

420

since no material was found in the area or imbedded in the separator. Figure $C-7$ shows a larger pinhole, similar to that described previously. There was also a darkening of the separator material over this hole. Figure C-8 shows another area where the separator was darkened although there was no hole in the plate under the dark spots.

It is my conclusion that this cell showed no physical deterioration that could be related to the 10 -ampere reverse charging. Features found in this cell were no worse than would be expected on other cells that had received similar electrical tests (not reversed). It is noted that there was no apparent degradation of separator material. It was very easy to remove the separators from the negative as well as from the positive plates.

422

423

APPENDLX D

PHYSICAL DESCRIPTION OF CELL \#588 AFTER CYCLING TEST

BRIEF HISTORY

Cell \#588 was a flight spare cell for the OAO A-2 batteries. It was activated with KOH by Gulton in August 1968, and received at GSFC for test in early September 1968. The cell completed over 6,000 cycles as part of GSFC's fivecell test pack (designated A-2 Flight Pack 2). Total test time was 15 months. Although the temperature range extended from 0° to $32^{\circ} \mathrm{C}$, over 70% of the 15 months of testing was conducted at $15^{\circ} \mathrm{C}$ and below. Just before the end of testing on this cell, the pack delivered 23.0 ampere-hours. Upon completion of the discharge, an open circuit stand test was conducted, and cell \#588 recovered to 1.18 volts. This cell showed no unusual characteristics during the 15 months of testing.

ANALYSIS
On January 13,1970 , this cell was opened for physical examination. There were no signs of leaking around the positive terminal. A photograph of the cell plate stack as removed from the cell case is shown in Figure D-1. Because this cell had only one ceramic seal, particular attention was given the ceramic portion of the seal. As can be seen from Figures D-2 and D-3, there is no evidence of silver migration or other discoloration on the ceramic.

The effects of the 15 months of testing became evident upon lifting the first negative plate. Figure D-4 shows the separator under the outermost plate (negative) after this plate was lifted. The grayish-black material is a form of cadmium. Figure D-5 shows a close-up of the top portion of the separator. Note the fibers that were pulled from the separator as they adhered to the negative plate. It was observed that a gray dust could very easily be rubbed off the negative plate or separator. In all case's where the separator touched the negative plates, an effort was required to remove the separator. This resulted in the tearing and pulling of separator fibers as they adhered to the negative plate. Figure D-6 illustrates a typical condition. Figure D-7 shows the brown discoloration found around the positive plate tabs of the top of the separator. Several layers of separator had the spot around the positive tabs. The probable cause is excessive heat, from either a short circuit (burnt open) or overheating of terminals during soldering.

Another observation made during this inspection was the dryness of the separator. When it was squeezed between the thumb and forefinger, no evidence of

Figure D-2. Close-Up of Seal, Showing
Condition of Ceramic.

Reproduced from
best available copy.

425

$$
126
$$

427

moisture was found. The significance of this finding is that the 65 to 70 cc of KOH used by the manufacturer is based on optimizing the parameters on a new cell. In every case experienced by the writer, this quantity of KOH appears to be much less than the amount the cell should have for long life performance. Other cells from the test pack will be subjected to more detailed analysis.

Of particular interest were the small blisters (or pimples) found on the positive plates. Some plates were in worse condition than others, but all positive plates had some blisters. Figure D-8 shows a typical positive plate with the separator folded away. It is noted that the dark spots on the positive plate resulted in similar dark spots on the separator. The exact cause of these spots is not known, but it is suspected that they are caused by the bursting of blisters (caused by gas escaping from below the surface). Figure D-9 shows a close-up of a posifive plate and reveals small blisters (more like pimples) distributed over the surface of the plate, with large concentrations at the left edge. Figure D-10 shows another positive plate with blistering along the top portion. Figure D-11 shows the only case observed where flaking had occurred on the positive plate. The small piece of material at the top corner is active positive material.

In conclusion, the most significant observance of deterioration in this cell was due to migration of cadmium into the separator. Considering the length and conditions of the test, this migration was more severe than had been expected. The ceramic seal was in good condition, with practically no signs of silver migration. Separator material outside the areas between the plates appeared to be in very good condition. There was no tendency for the separator to adhere to the positive plates, only to the negative plates. There were blisters or pinples, to varying degrees, on each positive plate. It was observed that the blistering was concentrated around the edges of the positive plates, with few blisters distributed across the plate surface.

Figure D-11. Positive Plate, Showing Flaking of Material Around Edge of Plate. Negative Plate (Top) with Separator Fibers Adhered to Surface.

APPENDIX E

PHYSICAL PROPERTIES OF SEPARATOR MATERIAL*

Felon Type 2505 (Formerly 2505ML)

FELON 1605 SEPARATOR MATERIAL

The separator material used in the OAO-A-2 cells was tested to determine its wetting- and physical characteristics. The Pellon 16015 separator material was removed from the cell plates with difficulty, and it retained considerable cadmum metal. Part of the sample was washed according to the following shedule: De-ionized (D. I.) $\mathrm{H}_{2} \mathrm{O}, 1 / 2$ hour; 5\% HOAc, 2 hours; D.I. $\mathrm{H}_{2} \mathrm{O}, 1$ hour; $3 \% \mathrm{NH}_{4} \mathrm{OH}, 1$ hour, followed by three 1-hour washes with D.I. $\mathrm{H}_{2} \mathrm{O}$. A final, 15 -hour water wash was followed by vacuum drying at ambient temperature. Tests on the wetting- and physical properties of washed, unwashed and stock materials in $31 \% \mathrm{KOH}$ were run concurrently, and the resulting data are given in Table E-1.

Table E-1
Properties of Pellon 16015 Separator Material

[^15]Thickness measurements reflect adhesion of the separator material to the negative plate. The observed changes in specific resistance and tensile strength are slight, and the latter can be attributed to damage resulting from "pecling" the material from the negrative plates, but the 10% decrease in viscosity molecular weight indicates degraded material. The increase in specific resistance is apparently real.

Ratio of viscoisty molecular weight ($15 \mathrm{mg} / \mathrm{cc}$ sample in m -cresol):

$$
\frac{\text { Washed }}{\text { Stock }}=0.92
$$

Migration of metallic cadmium, though detrimental to cycle life, seems to offer greatly enhanced wettability. This conclusion is based on the assumption that cadmium is the only KOH -wettable material removed in the wash cycle.

PELLON 2505 SEPARATOR MATERIAL

Additional tests were performed on Pellon 2505 separator material. The results of these tests are given in Table E-1. For quick reference, a copy of Table 4 of the ESB, Inc., 5th Quarterly Report (NAS 5-10418) is also given (Table E-2).

Sufficient material to perform all tests on lot 16015 in both 31 percent- and 34 percent KOH was not available. However, the A.C. resistance of sample 16015 B in 34 percent KOH was determined, and is shown below along with the wet thickness.

A.C. Resistance	$1.80 \Omega-\mathrm{cm}$
	$0.066 \Omega-\mathrm{cm}^{2}$
Wet Thickness	$36.6 \times 10^{-3} \mathrm{~cm}$.
	14.4×10^{-3} inch

These data agree well with previously reported data on sample 16015B in 34 percent KOH . Furthermore, the data for lots \# 14000 and 12777 in 31 percent KOH are comparable to those reported in 34 percent KOH , allowing for variations in the material and experimental technic. Note that the 31 percent KOH wicking tests for the latter two materials were done open to the atmosphere.

This same configuration was used during the fifth quarter*. The only significant difference between the data of the fifth quarter and those measured recently is the thickness of lot \#12777. At present, the only explanation is a typographical error in Table 4 of the Fifth Quarterly Report.

In view of these tests, we can safely say that our previous conclusions about wettability and molecular weight are valid. The extraordinary wettability of the unwashed 16015 sample can best be explained by the presence of cadmium metal. This explanation is supported by the superior wicking ability of the used, unwashed material over the original separator. Note also that the 8 percent loss of viscosity molecular weight is accompanied by a 13 percent loss in tensile strength.

[^16]Table E-2
Properties* of Separator Material

APPENDIX F

1) Listing, Battery Model
2) Flow Charts, Battery Model

CALLDATA TIME - SHARING

439
fileo battery fortan pi
CALLOATA TIME - SHARING

c $\begin{aligned} & 310 \\ & 320 \end{aligned}$	```continue QOSOC=(-RBOUT-RFOUT(NXSOC))/(RFOUT(NXSOC+1)-RFOUT&NXSOC)I RFVD=(1,-DDSOC)*RFYLD(NXSOC)+ROSOC*RFVLO(NXSOC+1) RERO=(1.-RDSOC) &RFRLO(NXSOC 1+RDSOC*RFRLO(NXSOC+1) CFK={1.*+.00 3**TRLI &(BCEL*RFVD*BATVL *RFRD) CFCR=0. GO TO 2800 gegin chapge model section```
C 400	
	1110.-9.*(AMDL/(AM100-9.*BPCAP) \|l)
	```NXSOC=5 IF(RGIN-IREIN(NXSOCI +RESDC)I500.500.600```
500	DO $510 \mathrm{NX}=1.4$
	NXSOC=NR IF CRSIN-(RFIN(NXP
$\begin{aligned} & 510 \\ & 520 \end{aligned}$	CONTINUE
	OO 530 NCR=1.2
	RFVL(NCR) =(1.-RCSOC) \#RFVLC(NXSOC.NCR) +RCSOC *RFVLC RFRL(NCR) =(1.-RCSOC) \#RFRLC(NXSOC.NCR) +RCSOC *RFRLC(NXSOC + 1 , NCR)
	PFV (NCR ) = BCEL \#RFVL ( NCR ) + BA TVL *RFRL (NCR)
530	CONTINUE.   CFCR=(RFVI:)-RFV(2)
	60 T0 2800
C 600	begin overchange model section
	CONTIMUE
$\pm 600$	
1-(APCAP/4.) +CFCR1)	
	VEOCL \#SCEL (9.080872--434294ALOG(BTEMP ) / /4.471236
	L日ATVL)/CVEOCH-VEOCLI)
2800 CONTINUE	
2900	continue
	GO TO 9000
C DETERMINE EFFICIENCY	
3000	continue
	EFFC=1.
	IFIBTCRI3200.3200.3110
3110	CADO = 100 - ( (CTOT-AMDL)/(AmI 00-AMOL) $)$
	PNPR = CADO
	ITP=10.*BTEMP



```
PAgE 007

\section*{444}

446
\(-10-\)
. Jubroutine BTR (ISERT, ITEST)

1
\[
447
\]

THERMAL

- 13 -

FUNCTIO AMAX: \((D, B)\)

FUNCTION \(\operatorname{AONL}(A, B)\)
```


[^0]:    -For sale by the Clearinghouse for Federal Scientific and Technical loformation, Springfield, Virginia 22151.

[^1]:    NOTES:

    1. Style 2505 was formerly designated 2505 ML
    2. "N/D" indicates "not detected".
[^2]:    capacity data - group il
    A-hr. ${ }^{\text {Out }}$ This Discharge $24.3,24.1,23.8,24.3,25.0$
    $23.8,23.6,23.3,23.8,24.3$

    | Test Date | A-hr.In Previous Charge | Type of Previous Charge | A-hr. ${ }^{\text {Out }}$ This Discharge |
    | :---: | :---: | :---: | :---: | :---: |
    | $1 / 28 / 71$ | 48 AH | $\mathrm{C} / 20$ for 48 hours | $24.3,24.1,23.8,24.3,25.0$ |
    | $1 / 30 / 71$ | $29.7,29.3,29.0,29.8,30.2$ | $\mathrm{C} / 2$ to +20 psig | $23.8,23.6,23.3,23.8,24.3$ |

[^3]:    * For this pack taper charges were $c / 2$ to voltage limit then
    $c / 4$ to voltage limit then
    c/10 for one hour

[^4]:    * Age is defined as the time from cell activation to test date.

[^5]:    TABLE 5:7.2-2

    | Date of Test | Temperature | Start of 24-Hr. OCV Test (volts) | End of $24-\mathrm{Hr}$. OCV Test (volts) |  |
    | :---: | :---: | :---: | :---: | :---: |
    | $4 / 12 / 71$ | Fm. Ambient | $0.148,0.249,0.072,0.062,0.173$ | $1.161,1.167,1.179,1.179,1.173$ |  |
    | $10 / 22 / 7$ | $"$ | $"$ | $0.035,0.025,0.025,0.024,0.035$ | $1.182,1.175,1.166,1.169,1.188$ |

    ## 24-AR, OHEN-CKT, VOITAGE RECOVEFY TEST - PACX 215A

    
    
    ?
    

[^6]:    table 5.7.2-4
    24-HR. OPEN-CKT. VOITAGE RECOVERY TEST - PACK 216A
    > $\begin{array}{ll}0.391,0.166,0.089,0.093,0.317 & 1.140,1.158,1.187,1.187,1.136 \\ 0.591,0.430 ; 0.413,0.390,0.130 & 1.202,1.202,1.217,1.215,1.204\end{array}$

    > | Date of Test | Temperature |
    | :---: | :---: |
    | $4 / 12 / 71$ | Fm. Ambient |
    | $10 / 2371$ | $"$ |

[^7]:    * Charge tefminated eariy due to higi voirages

[^8]:    
    
    
    
    
    VAFIABLE V 7 ).

[^9]:    品

[^10]:    

[^11]:    
    
    
    
     His T OGQAM
    *****

[^12]:    - 

[^13]:    
    
     4 ****
    3 ***
    2 *****
    

[^14]:    

    $$
    -1+2+2+2
    $$

    91
    
    

[^15]:    ${ }^{*}$ In its original form, the material in this Appendix was transmitted by Mr. S. Orenstein of ESB, Inc., Yardley, Pa., in a letter to Mr. T. Hennigan, Space Power Technology Branch, GSFC, in 1970. This work was done under NASA Contract NAS 5-10418.

[^16]:    *Fifth Quarter Report, Contract NAS5-10418.

