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PREFACE

The Langley Working ConferenCe on Free Turbulent Shear Flows was held at NASA

Langley Research Center July 20-21, 1972. The general format for this conference was

based on the 1968 AFOSR-IFP-Stanford Conference on the "Computation of Turbulent

Boundary Layers." There were, however, some major differences, primarily in the

range and quality of the data used. The objectives of the Langley conference were

(1) To collect and process a set of reliable data for a variety of free mixing

problems

(2) To assess the present theoretical capability for predicting mean velocity, con-

centration, and temperature distributions in free turbulent flows and to identify those

methods which hold the most promise for future development
/

(3) To identify and recommend future experimental studies which might significantly

advance the knowledge of free shear flows and, if possible, to assign a priority to these

experiments

(4) To increase the understanding of the basic turbulent mixing process for applica-

tion to free shear flows

In order to accomplish these objectives, the available prediction methods for free

shear flows were confronted with a set of standardized data. The resulting computations

together with the discussions and the reports of the conference committees constitute

Volume I of these proceedings. The standardized data, which were used as test cases,
0

are given in Volume II. A short introductory paper by James M. Eggers and Stanley F.

Birch which summarizes the data and outlines the selection procedure used is also

included in Volume H.

Virtually all the discussion which followed the papers has been retained with mini_

mal editing. Transcripts of the discussions were sent to the speakers only when the ses-

sion chairmen or the conference committee believed that this was desirable to improve

clarity. The Langley personnel responsible for editing the discussion and prediction

papers in Volume I for technical clarity were Stanley F. Birch, David H. Rudy, and

Dennis M. Bushnell. Those responsible for compiling the data of Volume II were

Stanley F. Birch and James M. Eggers.
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CALCULATION OF TURBULENT FREE MIXING

STATUS AND PROBLEMS

By Dennis M. Bushnell

NASA Langley Research Center

INTRODUCTION

The first impulse when compiling an introductory paper to a conference such as

the present one is to provide a review or overview of the research in the subject area.

However, since several fairly recent reviews are already available (refs. 1 to 4), some

background on the motivation in organizing this conference and one view of the status

and problems of turbulent free mixing calculations will be presented. The other

attendees at the conference have their own views of the present status in this area,

and indeed, the major purpose of this conference is to ascertain the present capability

to predict several of the simpler turbulent free mixing flows. It is hoped that each

attendee will air his views in the papers to be presented and in the discussions which

follow - both formal and informal.

The motivation behind much of the turbulent shear layer research is one or more

of the large number of possible applications. Some of these applications are given in

the following list, which is obviously biased toward aerospace:

Propulsion

Shock interference heating

Noise

Tangential slot injection (film cooling)

Pollution

Wakes

Augmenters and ejectors

Separated flows

Nuclear rockets

V/STOL high-lift devices

At the Langley Research Center (LaRC) free mixing in practically all the areas

shown has been an important concern, with the most effort involved in slot injection,

V/STOL, noise, and propulsion. In other industrial fields there are many more appli-

cations of turbulent free mixing research which could be listed. Therefore, even in

the present climate of applied technology over basic research there is still a strong

mandate to develop accurate calculation schemes for free mixing.



In the present conferenceonly the basic mixing problems of free shear layers,
jets, andwakesare considered. However, within these basic flows there is included
a considerablerange of conditions including nonsimilarity, compressibility, and secon-
dary and heterogeneousflows. A brief outline of the various combinations included in
the present conferenceis given in the following list:

Free shearlayers:
Similar
Nonsimilar
L-.compressib!e
Compressible

Jets:
Similar
Nonsimilar
Incompressible
Compressible
Single
Coaxial
Axisymmetric
Two dimensional
Homogeneous
Heterogeneous

Wakes:
Similar
Nonsimilar
Incompressible
Compressible
Axisymmetric
Two dimensional

Paper no. 2 by Stanley F. Birch and James M. Eggers will discuss further details con-

cerning the data chosen as test cases. This is a formidable set of conditions with which

to confront a calculation method. Most of the published-procedures were generally applie,

to only a few of the test cases to be considered by the predictors at this conference.

This fairly complete confrontation of turbulence closure method with basic data

should give a clearer picture of which method works where and which approaches deserve

further development. By "further development" is meant application to some of the

important "real life" effects which are not specifically included in the basic data con-

sidered for this conference. Several of these effects will be briefly discussed.



FREE MIXING PHENOMENANOTCONSIDEREDIN PRESENTCONFERENCE

Transverse Pressure Gradients

Several authors (e.g., refs. 5 and 6) have indicated that the common assumption of

constant static pressure across a free mixing layer is not borne out by the available data.

This assumption becomes increasingly suspect as Much number increases (ref. 5), and the

fact that the static pressure is variable may have a profound effect on turbu___lence spread-

ing rates. The probable cause of this static pressure variation, is the _V '2 (_ is den-

sity, V'-''_ is mean-square transverse turbulence velocity) term in the normal momentum

equation (ref. 7). There are also more complicated flows where a static-pressure vari-

ation occurs because of outside influences (such as shock interactions). In paper no. 4

David H. Rudy and Dennis M. Bushnell discuss transverse pressure gradients in free

turbulent flows in more detail.

Longitudinal Pressure Gradients

Longitudinal pressure gradients can occur quite often, especially in cumbustors,

interactions between shock waves and shear layers, and separated flows. Very little is

presently known, either experimentally or theoretically, concerning the influence of lon-

gitudinal pressure gradients on turbulent free mixing. Ferri (ref. 8) indicates a large

effect on wake mixing due to the passage of a weak shock. Detailed data are necessary

in this case before the turbulence closure models can be adequately tested for application

to combustor design and so forth.

Transitional and Low Reynolds Number Turbulence

Transitional and low Reynolds number turbulence can be quite important in many

applications, especially at low unit Reynolds numbers. Recent experience in calculations

of turbulent boundary layer (refs. 9 to 12) indicates a pronounced increase in turbulent

shear stress near the end of transition and beginning of turbulent flow. This high shear

condition is aggravated at high Much number and can occur for quite large Reynolds num-

bers (Re, 0- 104 at high Much number (Re, 0 is momentum-thickness Reynolds number)).

This low Reynolds number effect may also occur in free shear flows (ref. 13) and indeed

may account for some of the anomalies present in the available data for these flows. In

any event, a viable calculation method should have the capability of computing through

transition. Again, further detailed experimental data are necessary to calibrate the cal-

culation methods for. this effect.



Longitudinal Curvature

It is well knownin boundary-layer flows that concavelongitudinal curvature can
significantly increase the level of turbulent shear stress (e.g., ref. 14). In addition, con-
cave curvature cantrigger embeddedlongitudinal GSrtler vortices, even in nominally
two-dimensional flows (refs. 15and 16). Free mixing flows with longitudinal curvature
occur in actual applications (e.g., Coandaeffect, shear layer near attachment), and sev-
eral investigators have consideredthis problem (e.g., refs. 17, 18, and 19),but further
detailed dataare needed,especially in the compressible case, before the'turbulence
closure modelscanbe seriously confronted with the influences of longitudinal curvature.

Chemical Reactions

The possibility of an increase in turbulent shear dueto density andpressure fluc-
tuation terms associatedwith chemical reactions has beenpostulatedby several authors
(e.g., refs. 20 and 21) and is currently under investigation theoretically (ref. 22). How-

ever, for a low speed combusting boundary-layer flow (ref. 23), calculations using a

"conventional" eddy viscosity model were found to provide good prediction of the data

when the temperature dependence of the mean properties was taken into account. The

possibility of using "conventional" turbulence closure techniques in combusting flows

must be investigated further.

Nonparallel Flows and Confined Mixing

For the general case of nonparallel flows or confined mixing, the problem is no

longer parabolic and the formation of regions of separated and secondary flow is certainl

a possibility. Efficient numerical methods are becoming available to handle these cases

(using the two-dimensional Navier-Stokes equations, refs. 24 to 27). The problem is one

of developing adequate turbulence models to handle the three-dimensional nature of the

shear flow (refs. 28, 29, and 30). Again, further detailed data are necessary.

There is also the possible effect of acoustical feedback; the paper of Glass (ref. 31)

is a very chastising experience and is a warning of the sensitivity of free turbulence

spreading rate not only to outside influences but to self-induced effects as well.

MOTIVATION FOR PRESENT CONFERENCE

The motivation for holding the present conference stems from recent work at LaRC

on free shear layers and jets by members of the LaRC conference committee. In the

course of their research several anomalies appeared, which are included in the following

list:



1. Nonuntquevariation of cr (spreading rate) with Machnumber for shear layers

2. Question of density difference versus density level viscosity models

3. Appearancein the literature of different predictions from the same turbulence
model

4. Apparent nonuniversality of manyof theavailable methods

5. Available turbulent boundary-layer expertise (nonsimilar scale adjustments,
low Reynoldsnumber effects) shouldbeapplied to the free-mixing problem

6. Comprehensive review and comparisonswith data neededfor latest models -
particularly to indicate the efficacy of turbulent kinetic energy approaches

The _ (spreading rate) variations and the problems associated therewith are discussed

in paper no. 2 and also in paper no. 4. The questionof density difference versus density
level models is an old problem in that a model which relies on an eddy viscosity propor-

tional to the mass flow difference across the mixing zone does not predict the correct

behavior when the velocity and density are not equal across the layer, but the mass flow

is (ref. 32). Therefore, the use of this model is questionable when compared with the

extrapolation of boundary-layer viscosity models which are proportional to the local

density.

Another problem was the appearance of different predictions in the literature where

supposedly the same viscosity model was employed. Was this due to a difference in

numerical techniques? If so, which result was correct? Also, several of the models

(and numerical methods)were developed for a particular class of flows (e.g., coaxial

jets, wakes), and the range of application of several of the available closure assumptions

was therefore in some doubt.

It was felt that a confrontation of as many of the methods as possible with a broad

data base would tend to resolve some of these questions. This approach is similar to

that employed by Harsha (ref. 4).

HEIRARCHY OF CLOSURE SCHEMES

A brief sketch of the various computational (closure) techniques is given below,

along with their approximate representation at the present conference:



Method

Integral

Differential-mean field

Differential-mean turbulence

field without length-scale equation

Differential-mean turbulence

field with length-scale equation

Statistical fluid mechanical

approaches

Approximate representation

6

Prime usage

Equilibrium flows

Near-equilibriurn, _

nonequilibrium

flows

Nonequilibrium flows,

especially mixing

of flows with dif-

fering scales

To be determined;

should be more

accurate for a

wider range of tur-

bulent shear flows

At the Stanford Conference (ref. 33), the integral methods outnumbered the differ-

ential approaches more than 2 to 1, whereas in the present conference practically all the

methods are numerical (differential). This is probably due in part to a bias on the part

of the conference committee, but it also indicates a continuing shift in the last 4 years

toward more fundamental closure techniques. This was, of course, made possible by

large digital computers and numerical solutions to highly nonlinear partial differential

equations (ref. 34).

In the near future, for nonequilibrium and general turbulent flows the most promis-

ing methods (based on the author's experience) are probably those which include some

length-scale equation in a so-called mean turbulent field approach. Several investigators

are developing this type of method (refs. 35 to 39). Of these approaches, reference 39

presents the most complete study of free-mixing applications.

The last category in the heirarchy of closure methods is the possibility of applying

statistical fluid mechanical approaches to the calculation of "practical" shear flows.

J. R. Herring comments on this in paper no. 3, but mention should be made of recent

unpublished work by Dr. A. B. Huang at Georgia Institute of Technology. His distribution

function approach is essentially that of Lundgren (ref. 40) and seems to hold some prom-

ise of significantly reducing the empirical input generally involved in the development

of a closure model. In this regard a quote from Kraichnan (ref. 41) seems appropriate:

"... the variables in the direct-interaction equations are statistical averages. They

can be expected to vary smoothly with their arguments and therefore can be adequately

represented by relatively few numbers. At turbulent Reynolds numbers, the individual

6



velocity fields vary jaggedly and unpredictably with distance and time and require rela-

tively many numbers for a good description."

For compressible applications eddy-viscosity models may be the only viable

methods until several questions are settled. Some of these are indicated in the following

list:

1. Additional input (kinetic energy or Reynolds stress) is required (ref. 4).

2. Highly nonequilibrium flows require a length-scale equation; approximately six

"constants" must be evaluated and optimized (functions of Reynolds number ?).

3. Rigorous application to compressible cases is difficult because of lack of detailed

turbulence data, especially for p' (pressure fluctuation) terms (which could be large).

4. Compressible application also entails additional equations for second-order cor-

relations involving temperature fluctuations with more constants.

The most serious problem is probably the question of just what influence do the

p' terms (which can be quite large) have on the shear stress in compressible flows.

Recent work (ref. 9) indicates that for boundary-layer flows with quite large density

ratios (up to 140) the Reynolds stress can be modeled with low speed eddy-viscosity

approaches once the low Reynolds number effect is recognized. Does this mean that the

p' terms are small even though p' itself is quite large (I/p'2/_ up to 20 percent (_p,2
\v "w/ ,\ \v - w

is root-mean-square wall pressure fluctuation, _ is mean static pressure))? This

question requires considerable research including very difficult p' correlation mea-
/J

surements before compressible flows can be confidently modeled by using mean turbulent

field approaches.
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A CRITICAL REVIEWOF THE EXPERIMENTAL DATA FOR

DEVELOPED FREE TURBULENTSHEARLAYERS

By Stanley F. Birch* andJamesM. Eggers
NASALangley ResearchCenter

INTRODUC TION

In selecting test cases for use in this conference, both the Langley Conference

Committee and the Data Selection Committee recognized the need to include shear lay-

ers among the selected test cases. However, because of the confusion and apparent

contradictions which existed in the interpretation of the experimental data, three of the

five shear-layer test cases were specified without reference to any particular data.

The primary purpose of this paper is to review the relevant data and to present the

results in a convenient form for comparison with the numerical predictions for these

three test cases (test cases 1, 2, and 3). Since these flows were specified to be devel-

oped turbulent flows, this will be the primary concern of the present paper. Some men-

tion will be made of transitional flow, but only to differentiate it from developed turbu-

lent flow. This is not intended to be a detailed study of the transition process itself.

SYMBOLS

b

b °

b
C = --

X

d,k

_I,_2

m

R

width of shear layer

spreading rate of shear layer

constants

lengths

density ratio, p2/p 1

Reynolds number

UlX
= --_--, where x is the farthest downstream station surveyed

*NRC-NASA Resident Research Associate.
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r velocity ratio, u2/u1

u velocity

x,y Cartesian coordinates

e eddy viscosity

u 1 - u 2

u 1 + u 2

momentum thickness

kinematic viscosity

similarity parameter, cry/x

p density

fir constant in similarity parameter 4, also called spreading parameter

Subscripts:

O

1,2

value when u 2=0

conditions on high- and low-velocity side of shear layer, respectively

Primes denote fluctuating quantities.

ANALYTIC SOLUTIONS

The analytic solution of the boundary-layer equations generally used to compare

with experimental data for the two-dimensional shear layer (fig. 1) was first derived by

GSrtler in 1942 (ref. 1). This solution is well known and, since details of its derivation

are readily available (ref. 2, pp. 689-690), the results will only be briefly summarized

here.

It is assumed that the effective kinematic viscosity is given by

e= kb(u 1 - u2) (1)
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where k is a constant, b is the width of the shear layer, and u 1 and u 2 are the

velocities on both sides of the shear layer. The adoption of a stream function and the

assumption of similarity automatically satisfy the continuity equation and reduce the

boundary-layer equations to a simple third-order differential equation

F'"(_) + 2a2F(_)F"(_) = 0 (2)

aywhere _ = x with boundary conditions F'(_) = 1 ± k at _ = +_ where

u 1 - u 2

u 1 + u 2

This leads to the general series solution in powers of

Ul +u2_ ._u = 2 + _ erf(_ + d) + . (3)

leaving two constants, a and d, to be determined. The constant a, which is a mea-

sure of the spreading rate of the shear layer, depends on the magnitude of the eddy vis-

cosity and must be determined experimentally. The second constant d appears because

only two of the three required boundary conditions have been specified. Note that this

constant merely deflects the mixing region and has no direct influence on a.

There has been considerable discussion in the literature on the correct third bound-

ary condition (refs. 3, 4, and 5), but this relates primarily to the theoretical problem of

semi-infinite streams. In practice the flow is always bounded. Experimentally and

numerically the shear layer is generally approximated by the near field of a jet, and the

requirement that au/ay be zero, on the line or plane of symmetry, is employed as the

third boundary condition; thus the problem of indeterminancy is eliminated.

EFFECTS OF LOW REYNOLDS NUMBER

Before discussing the spreading rate in a developed turbulent shear layer, it is

important to define what is meant by the term "developed." From an experimental point

of view, it is seldom sufficient to require simply that the mean flow be self-similar, since

it is often extremely difficult to establish when this has been achieved. This is especially

true if only mean velocity measurements are available. The turbulence components are

a much more sensitive indication of similarity, and it is strongly recommended that they

be measured whenever possible. For present purposes the term "developed" will be

used to refer to shear layers for which the data indicate that the turbulent and mean

velocity components have achieved self-similarity and the maximum shear stress
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has reacheda constant value. However, it should be emphasized that this is no guarantee

that the flow is truly developed. Some examples will be given of flows which appear to

be self-similar, on the basis of mean and fluctuating velocity data, but which still do not

seem to have reached their asymptotic spreading rate.

The variation of the center-line shear stress with downstream distance in a sub-

sonic shear layer with zero velocity ratio is show schematically in figure 2. When the

boundary layer is laminar at the point of separation, the near field can be divided into

two more or less distinct regions. The first region E 1 is shown here as the distance

from the point of separation to the point of maximum shear stress. This region is some-

times defined as the distance to the point at which the fluctuating velocity component is a

maximum (ref. 6) or as the distance to transition (ref. 7). The second region _2 is the

subsequent distance to developed flow. The distance _1 has been reported to be vir-

tually independent of Reynolds number (refs. 6 and 7), depending only on the initial

boundary-layer thickness, but it is important to remember that E1 is a strong func-

tion of the initial disturbance level. This disturbance level will, in general, be differ-

ent for different apparatuses and may also vary with Reynolds number for the same

apparatus.

The second region _2 is much less sensitive to initial conditions, and at least
Ul0

for the range 500 < _ < 1000, Bradshaw (ref. 6) found that the Reynolds number basedv
on _2 was nearly constant. Since for a typical laboratory experiment _2 is 5 or

10 times fl' it is generally sufficiently accurate to quote a combined length

v (4)
_i + _2 _ 7.0 x 105 u-_

as the length required for both the mean and the fluctuating velocity components to become

similar, while the mean velocity profiles alone appear to be similar at about

v (5)
_1 + _2 = 4.0 X 105 u-_

a

Recent results by Spencer (ref.8) indicate that ifthe fluctuatingpressures are consid-

ered, true similarity may require a Reynolds number, based on shear layer length,of

about 1.3 × 106. When the boundary layer is turbulent at the point of separation, the

shear stress rises slowly and the maximum again becomes approximately constant at

x = 7.0 × 105 u_" However, itsvalue is higher than that produced by a laminar boundary

layer (refs.6, 9, and I0). This suggests that one or perhaps both of these flows are not

truly fullydeveloped and that a constant value of the peak shear stress, independent of

initialconditions,is only achieved far downstream. At present there are no experimental

results to confirm this conclusion. The available results all show that the shear stress
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in a shear layer depends on initial conditions, even in regions of the flow which otherwise

appear to be developed. (See table 1, refs. 8 to 18.)

For velocity ratios u2/u 1 greater than zero, the situation becomes very complex.

The flow now develops from two boundary layers which will in general have different

momentum thicknesses. Both boundary layers may be laminar or turbulent or one may

be laminar and the other turbulent. It seems very unlikely that the developing region of

such flows can be accurately characterized by any simple criteria, but, in general, the

length required for the flow to become fully developed will increase with velocity ratio.

These results are based on a fairly limited range of conditions, but they do give a

simple and useful guide for the design of experiments and provide an excellent first check

on experimental data for which no turbulence measurements are available. To put it

another way, failure to satisfy Bradshaw's criteria (eq. (4)) may not prove that a flow is

transitional but it does place a burden on the experimenter to demonstrate that his flow

is developed. Simply showing that the mean velocity data can be collapsed on a similar-

ity plot is not good enough.

Data taken in low Reynolds number shear layers generally yield low values of a,

if the boundary layer was laminar before separation. This effect is believed to be simi-

lar to that described in references 19, 20, 21, and 22 for low Reynolds number boundary

layers. The difference between the values of a computed over the developing region of

the flow and in the developed region is seldom more than 20 to 30 percent in subsonic

flows with low velocity ratios. However, the peak shear stress can reach twice its

developed value (ref. 6) and the difference does appear to increase with Mach number

in supersonic flows.

I

VARIATION OF c_ WITH u2/u 1

So far discussion has been restricted mainly to shear layers with a velocity ratio

u 2
E = 0. In 1962 Golik (ref. 23) proposed the relation
u 1

% Ul - u 2_ = (6)
u 1

based on data by Szablewski (ref. 24), for the variation of a with u2/u 1. The following

year Sabin (refs. 25 and 26) and Abramovich (ref. 27, pp. 36-42) independently published

the relation

Cro Ul_ u2 = 1- r
-ff-=u 1 + u 2 1+-'-_ =

and supported their theoretical arguments with new experimental data.

Shih (ref. 28) proposed the relation

(7)

In 1968 Miles and
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(8)

and in 1972 Yule (refs. 29 and 30) proposed

%_ l-r
(Y

(1 + r) 1/2

(9)

All these relations were supported by experimental data. These four relations are shown

in figure 3, and obviously predict different variations of _o/_ with r. However, the

situation is not as bad as it might seem at first sight. Golik's result can probably be

discounted since it was based on very limited data which were not supported by later

experimental results. Yule's relation appears to be based on only two new data points,

and this does not seem to be sufficient to establish any relation between a and r. In

any case, these new data by Yule differ only slightly from the data obtained by Miles and

Shill. However, equations (8) and (9) do differ significantly. In particular, note that equa-

tion (9) unlike equation (8) predicts that 1 _ 0 as r - 1.0, which seems to be required

theoretically.

Before discussing the experimental data in detail, it is important to emphasize that

the expression for eddy viscosity and the variation of _ and r are directly related and

cannot be specified independently. Sabin characterized equation (7) as "a plausible func-

tional relation between these two quantities." This statement is certainly true, but it has

led to some confusion since it seems to imply that the result cannot be formally derived

from GSrtler's theory.

Consider GSrtler's expression for e

where c

and

or

kcx(ul- u2)
is a constant defined by

b= CX

l(kc_)-l/2
_=2

(IO)

(11)

If the width of the mixing layer is defined as

b = Ya - Yb = cx (12)

16



where Ya is the value of y where _= 1 and Yb is the value of y where _ =0,

it follows since

or

then

1
C _

C

In general, for any consistent definition of

Inserting this into equation (11) gives

b, ccc 1
c"

or

% =x (13)
C

Therefore, if Prandtl's hypothesis is used in the form

e =kb(u 1 - u2)

where the viscosity is based on the actual width of the mixing region, as is usual in

numerical solutions, it is not necessary to use equation (13) explicitly. If the resulting

solution is self-similar, it will automatically satisfy equation (13).

The available experimental values of _ are shown in fi_dre 3 as a function of the

velocity ratio r. The data from reference 27 (pp. 36-42) were given in nondimensional

form, and other values of (_ (refs. 9, 12 to 14, 17, and 25 to 33) have been normalized

by using a value of % = 11. Although this is common practice, it is an unsatisfactory

method of illustrating the variation of c with r for a number of reasons. First, it

gives equal weight to all data points (some of which were measured in transitional flows).

Second, the variation in % mentioned earlier tends to exaggerate the scatter in the data.

(See tables 1 and 2.) It is not possible to establish the variation of c with r by com-

paring values of a taken in different apparatuses at different velocity ratios unless the

corresponding values of ao are known and in many experiments % was not measured.

If the variation in _ is to be determined separately from each set of experiments, then

it is suggested that c be measured for at least four different values of r. Of the six

sets of data which satisfy this requirement, one (ref. 31) must be discarded because of low
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Reynolds numbereffects. Of the remaining five sets of data (fig. 4), three include deter-
minations of ao, but in only one case (ref. 34)* is the numerical value of _o given; in
the other two cases, the data are given in nondimensionalform (ref. 27, pp. 36-42). This

leaves two sets of data for which no values of _o are given. For thesedata a value of
_o was chosenwhich best collapsed the data. A value of _o = 11 was used to normal-

ize Sabin's data, which is the value originally used in references 25 and 26, while ao = 9.3

was found to be best for the data published by Miles and Shih, compared with ao = 12

which they used in reference 28. This last set of data was also modified slightly. As

originally reported (ref. 35), mean velocity profiles were taken at five x stations for

each value of r. The spreading parameter _ was then computed for each velocity pro-

file, and the resulting five values of _ were averaged. The value of x used in the cal-

culations was the actual distance from the end of the splitter plate rather than the distance

from the virtual origin of mixing. This led to some error in the calculated values of

which increased with velocity ratio r and with initial boundary-layer thickness but

decreased with increasing x. Since two sets of data were given for different initial

boundary-layer thicknesses, it was possible to partially compensate for these errors

without repeating the calculations. First, the values of a computed for the two sta-

tions closest to the origin were dropped, and a new average was calculated. Then, a

linear extrapolation through these two sets of data was used to estimate the values of

which would correspond to a flow with zero initial boundary-layer thickness. This

resulted in no change in _ for velocity ratios less than 0.3, but the correction increased

for higher velocity ratios, resulting in a maximum increase in _ of about 20 percent

for a velocity ratio of 0.83. The resulting data were then normalized by using a value

of _o = 9.3. It is not clear why these data required a lower value of (_o to bring them

into correspondence with the data from the other experiments, but it seems possible that

the boundary layers may have been turbulent before separation. The agreement between

these data and those reported in reference 29 seems to support this conclusion, since the

boundary layers in the latter experiment were turbulent.

As can be seen in figure 4, the data from the five experiments, normalized as

described previously, are all in good agreement with the prediction of equation (7). Note

that the data points corresponding to the highest velocity ratio for each of the two experi-

ments reported in reference 27 (pp. 36-42) have been omitted from figure 4. These data

points deviate significantly from the rest of the data and obviously do not correspond to

the mixing rates in fully developed shear layers. This deviation is discussed in refer-

ence 27 (pp. 36-42) and is attributed to the increased influence of free-stream turbulence

on mixing rate at high velocity ratios.

The authors would like to thank B. G. Jones for pointing out that the
reference 34 was a measured value.
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It is perhapsworth emphasizing at this point that while the data in figure 4 seem
to confirm the predictions of GSrtler's simple theory, the result is, for many practical
problems, rather academic. GSrtler's theory is only valid for regions of the flow which
are sufficiently far downstreamthat the effects of initial conditions can be ignored and
the flow hasbecomeself-similar. This distance increases quickly with velocity ratio,
and much of the available experimental data and manypractical problems do not satisfy
these criteria. For such flows the mixing rates will be affected by the initial conditions
and may differ significantly from the prediction of equation(7).

StephenJ. Kline of Stanford University recently suggesteda newmethodof plotting

the data shownin figure 4. If ao/g is plotted against _, the result is a straight line

passing through the origin and the point (1,1). This method of plotting the data seems to

offer some advantages over other methods: It simplifies the selection of a _o to opti-

mize the fit between theory and experiment, and it may also be very useful for studying

flows in which the velocity ratio r is varying. The data plotted in this form are shown

in figure 5.

VARIATION OF cr WITH MACH NUMBER

Figure 6 shows experimental values of (r for zero-velocity-ratio shear layers as

a function of Mach number. This includes a determination of (r at a Mach number of 5

recently obtained at the NASA Langley Research Center (LaRC). The total temperature

in each of these flows was approximately constant. Again some selection was involved in

the presentation of these data in that not all the available data listed in table 3 (refs. 16,

36 to 44) are shown in figure 6. To present all the available results would lead to a scat-

ter of data, matched only by the attempts to correlate them (refs. 27 (pp. 293-302), 45 to

53), and would tend to mask any real experimental trend which may be indicated. It seems

reasonable to discount Johannesen's early results (ref. 39) since the author himself sug-

gested that the mixing rate was affected by shock waves in the nozzle, and he later

repeated the experiment with a new nozzle (ref. 40). The discrepancy between Cary's

data (ref. 38) and those obtained by other workers over the same Mach number range is

not as easy to explain. It is pointed out in reference 16 that the data, which were obtained

by using an interferometer, would have limited accuracy especially for the lower Mach

number flows. Although this is true, the discrepancy appears to be larger than can be

explained as a simple experimental error and probably indicates some difference in the

actual flows. While the present authors can offer no clear explanation for the difference,

it does seem that the preponderance of data, which indicate lower values of g for this

Mach number range, is more representative of the mixing in a developed shear layer.

Therefore, to illustrate the general experimental trend more clcar!y_ Cary's data have

been omitted from figure 6.
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The remaining dataseem to follow two more or less distinct curves. For clarity,
these two sets of data havebeenmarked by openand solid symbols in the supersonic
region. Oneset of data, marked by opensymbols, indicates a sharp increase in _ with
Mach number as the flow becomessupersonic with a tendencyto level out again for hyper-
sonic velocities. The secondset of data, marked by solid symbols, showslittle or no
variation with Mach number. At a Machnumber of 5 the two sets of data differ by about
a factor of 3, and this difference appears to be increasing with further increases in Mach
number. The only obvious significant difference betweenthese two sets of data is in the
Reynolds number, the data marked by solid symbols generally having a lower value of
Rx. Note that the Reynoldsnumber for the Mach4 and the Mach8 data (ref. 41) is con-
siderably lower than the Rx of at least 4 x 106required to achieve fully developedmean
profiles for the Langley Mach 5 shear layer. The data from reference 44 refer specifi-
cally to the developing region of a shear layer and extendonly about 10 to 15 initial
boundary-layer thicknesses downstreamfrom the separation point. There is no reason
to believe that the mixing rates calculated for these flows will equal the mixing rates in
developedturbulent flows. It is therefore suggestedthat on the basis of the data availa-
ble at present, the faired line shownin figure 6 best represents the variation of _ with
Mach numberfor developedshear layers. However, becauseof the limited dataavail-
able at present andbecauseeffects of initial conditions are still poorly understood, some
uncertainty must exist as to the absolute accuracy of thesedata, and further high Reynolds
number data for supersonic andhypersonic shear layers are very desirable.

Interest in the effects of Reynoldsnumber on the turbulence levels in supersonic
and hypersonic free shear flows hasbeenheightenedby a recent paper by Finson (ref. 54).
In this paper Finson draws attention to the significant differences betweenthe turbulence
levels in high and low Reynoldsnumber hypersonic wakes. While the flow in a hypersonic
wake is considerably more complex than the mixing in a simple shear layer, the Reynolds
number effects described in reference 54seemto be at least qualitatively similar to those
discussed previously in this paper.

VARIATIONOF _ WITH DENSITYRATIO

Althougha numberof correlations of the variation of _ with Mach number have
been proposed,the authors know of no publishededdy viscosity model, applicable to a
wide rangeof free turbulent flows, which includes a specific Machnumber effect. Most
models assumethat the changein _ is dueto the associated changein density ratio
across the shear layer andthat for a given velocity and density distribution, the mixing
rate is independentof whether the density distribution is dueto changesin temperature,
composition, or Machnumber. This conclusion has recently beenchallenged by Brown
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and Roshko(ref. 32), who claim that density differences in subsonic flows have relatively

small effect on the turbulent mixing rate.

The spreading rate in a developed turbulent shear layer appears to be linear with

x for both homogeneous and heterogeneous flows at all velocity ratios, and conditions on

both sides of the mixing layer do not change with distance downstream. This would seem

to make the shear layer an ideal flow in which to study the effects of density ratio on the

turbulent mixing rate. Although this is probably true, the design of a suitable apparatus

poses a number of serious problems. It is no coincidence that most of the detailed stu-

dies of the mixing in homogeneous shear layers employed rather large apparatuses

(refs. 8, 9, and 14). This may have been due in part to a desire to generate a shear

layer which was large enough to allow detailed measurements t_o_be made, but more

important, it was necessary to employ a large apparatus or a high unit Reynolds number

(ref. 6) to insure that the flow would be developed. To achieve suitably high Reynolds

numbers in a heterogeneous experiment can be quite difficult. The experimenter finds

that in selecting a suitable gas combination which will give the required large density dif-

ference, he often must season his selection with considerations of expense and danger.

As a result of these difficulties there are little data available for the mixing in heteroge-

neous shear layers, and in none of these experiments is the flow clearly developed.

Of the four available experimental studies, three list values of a (table 4). Values

of a are not available for the fourth (ref. 55), but the variation in spreading rate with

density ratio m is given. These experiments cover approximately the same density

ratio and Reynolds number range as those described in reference 32. Although there

are insufficient data at any one velocity ratio for a meaningful plot of the variation of

a with m, it is obvious that there is considerable disagreement between the four sets

of experimental results. There is good agreement between the measured values of

in references 18 and 33 for a density ratio of 4.0 and a velocity ratio of about 0.25, but

the results differ by nearly a factor of 2 at a velocity ratio of approximately 0.5. At a

velocity ratio of 0.377 Brown and Roshko found that a varied by only about 60 percent

when the density ratio was changed by a factor of 49; Abramovich et al. found that the

spreading rate changed by nearly a factor of 4 over the same range of density ratios. In

all these experiments R x was less than that generally required to give developed flow

in a homogeneous shear layer. It is difficult to draw any definite conclusion from these

results except that most of the data are probably influenced by low Reynolds number

effects. A comparison of the measured values of a in the homogeneous mixing exper-

iments from references 18, 30, and 33 with those from references 8 and 25, tends to

_ort this conclusion. (See fig. 3.)

The turbulent mixing in heterogeneous shear flows has been studied for more than

and it is surprising and disappointing to find that one of the most fundamental
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questionsstill remains unanswered: Does density ratio have any significant effect on the
mixing rate ? This question is important and must be answeredbefore we can claim any
real understandingof the turbulent mixing in supersonic or variable-density free shear
flows.

Although the absolutevalues of _ from these heterogeneousmixing experiments
are of questionablevalue for determining the effect of density ratio on mixing rate, the
reported variation of _ with velocity ratio is still of some interest. This is due to the
widely different predictions of available eddy viscosity models. Thesedata plotted as a
function of velocity ratio r are shownin figure 7. Except for the experiments from
reference 55, where the spreading rates at r = 0 are given, the data have been normal-

ized by using a value of ao, which fits the points corresponding to the lowest velocity
%

ratios to the curve _- = _. Note that in spite of the expected scatter most of the data

fall close to the curve. This suggests that the variation of Cro/Cr with r is not strongly

dependent on the density ratio across the shear layer. In contrast to this, many eddy vis-

cosity models show a strong dependence on density ratio. For example, a simple mass

flow difference model of the form

{
= kb{(pu)I - (_u)2

predicts a variation given by

(14)

go {1-mr I
"6-= { l+r { (15)

Equation (15) is plotted in figure 8, and it can be seen that it predicts a strong dependence

on m. For values of m > 5.0 and r > 0.2, _o/Cr increased with r, and in some

cases, values of go//g were nearly an order of magnitude greater than those found

experimentally. It should also be noted that equation (14), unlike Prandtl's constant

exchange hypothesis, is not invariant with respect to a Galilean transformation.

CONCLUSIONS

One of the most important conclusions of this study must be that many, if not most,

of the apparent inconsistencies which exist in the interpretation of the experimental data

for free shear layers result from confusing data taken in developed turbulent flows with

those taken in transitional or developing flows. Only a small fraction of the flows studied

thus far appear to be developed, and many workers are apparently unaware that the effects

of the initial conditions can persist far downstream. The present authors are not sug-

gesting that experimental studies of developing flows are unimportant. On the contrary
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many flows of practical importance are not developed,and one of the major advantagesof
the better turbulence models is their potential ability to predict such flows. However, as
the authors have attempted to showin this review, experimental studies in developing
flows can lead to erroneous conclusions if the mixing rates in the corresponding devel-
opedflows are not known.

The conclusions of this study as they relate to the first three conferencetest cases
are as follows:

1. The variation of _o/a with r in a developed subsonic homogeneous shear

layer is best represented by

(_o=1- r
l+r

u 2

where r = u-_' _ is the spreading parameter, % is the spreading parameter at

u 2 = 0, and u 1 and u 2 are velocities on high- and low-velocity side of shear layer,

respectively. Although some of the data do not support this relation, the discrepancies

appear to be satisfactorily explained as low Reynolds number effects or the effects of

initial conditions.

2. The effects of Mach number are more uncertain primarily because of limited

data and the absence of any turbulence measurements for supersonic shear layers. On

the basis of the data available at present, the faired line shown in figure 6 seems to best

represent the variation of the spreading parameter with Mach number for a developed

supersonic shear layer.

3. The data available for heterogeneous shear layers are not sufficient to clearly

establish the effect of density ratio on mixing rate. Although there is little experimental

evidence to suggest that variations in the density ratio across a shear layer will greatly

change its mixing rate, it appears to the present authors to be more appropriate at this

time to emphasize the need for better data at high Reynolds number than to speculate on

the absolute accuracy of the available data.
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TABLE 2.- EXPERIMENTAL VALUES OF a FOR VARIOUS VALUES OF u2/u I IN SUBSONIC SHEAR LAYERS

30
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27 (pp. 36-42)

27 (pp. 36-42)
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.6 27.9
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9 x 104
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8 × 104
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8 x 105



_3

r..d

r_3

0
r_

0_3

15

bo

0
r_

o

Z

r_
I

I:n
.,<

o 0

o

×

f_

o

X

¢o

o o o o _ _ oo_ooo oooo o oo

0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X

._ ,_ 00 ,-.; ,-, d d ,..-, _ _ o

0 0 0 0 0

X X X X X

[...,, [.,.,. [,..,. ,¢_ q_ _
0 0 0 0 0 0 0

X X X X X X X

0 0 "_ [""

[''- ["-'- ,M) t,.,0
0 0 0 0 0

X X X X X

0 0 0 0 0 0 0

X X X X X X X

°F-I

o-,-, o "_

,!

.,=

0_,,,,,I

•.1= ;'4 b_ .,-4 0

"0

°_,-_

.m

c_

°_,-¢

o

0

,gl

r.j

4_

e_
°_-,I

o

4.a

31



r_

r_

r._

©

Z

b

0

E_
Z

I

b o

b

Q.

',_ o o

o 0
X "_ "_

_!1 0 0

t._
o

X

o

o

×

L'-

L_

0

O_ CO

0

L"_ CO b"
L"" _ L"-- _0 I._

0
b"* D"

o __._ ,_ o o o
L"- _ L"- ,m"_

CO
b"- L"-

°_

(D

(D

0

0

0

"0

0

0

.._
0

O0

X

0_

(I.)

o

0

(I,)

%1%°

32



SPLITTER

PLATE
u 2 -----).

P2
Figure 1.- Free shear layer.

2.0

_: 1.5

1.0

0

I I

_ LAMINAR B.L. I

I I
i i i i i i i I i

1 2 3 4 5 6 7 8 XIO 5

XU I /v
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DISCUSSION

S. J. Kline: I merely want to comment in respect to Sabin's theory that the curve of

_o/_ versus velocity ratio was not fitted. Itwas derived before there were any data,

and he derived it in a different way than you suggested - he derived iton the basis of

the assumption that the transverse velocity component is a function of velocity ratio

only. Itdoes not require anything but that, and the answer pops out and then the data

were subsequently plotted on, so the theory was never fitted to the data.

S. F. Birch: No, the point I was trying to make was that in his paper he was somewhat

modest on this point. He characterized itas a plausible functional relation between the

two quantities. I believe this has been confusing to a number of people, in the sense that

he did not emphasize the fact that this was derived directly from Prandtl's constant

exchange hypothesis. It does follow directly. One method has been indicated by

Professor Kline, and there is a second way of doing it, described in my paper. We

have also checked the result numerically.

M. V. Morkovin: What flows do you feel are good touchstones for the theories that we

are going to hear, and will the audience know "what flow is what number" when they are

discussed ?

S. F. Birch: Everyone was sent a list of the test cases with the letter of invitation. Is

this what you are referring to ?

M. V. Morkovin: Everyone in the audience or just the predictors ?

S. F. Birch: No, everyone who received an invitation got a list of the test cases. If they

have not brought them with them, we can supply some extra copies.

M. V. Morkovin: The question was also which are good touchstones ?

S. F. Birch: Well, we believe that the shear layers (or near field region of jets) are

more sensitive than some of the coaxial downstream mixing regions to such things as

density ratio and Mach number ratio. This was the reason they were included in the

flow test cases. To a certain extent itwill be up to the committees, in general, to

decide whether or not this is correct.

A. Roshko: I have a comment on a remark made toward the end of your talk. I am not

sure I understood you correctly - did you say, or imply, that you would want Galilean

invariance for an eddy-viscosity model?

S. F. Birch: I think it is possible to model some flows with a model which is not invari-

ant. However, if it is not invariant, you do restrict yourself in its application or range

of application.

A. Roshko: But, ifyou require Galilean invariance, then you are immediately requiring

that the effect of p2/Pl be the same as that of pl/P2.
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S. F. Birch: The ratio pl/p 2 is not changed by Galilean transformation.

A. Roshko: Well, that is what I mean. For example, let us say you have the low density

on the high-speed side, that will have one effect on the spreading rate, but if you require

that the model be Galilean invariant, then you could reverse the velocities without revers-

ing the densities. Then you ought to expect the same spreading rate on the requirement

that it be Galilean invariant. I do not think that for the steady flows you can require them

to be Galilean invariant, or equivalent to a nonsteady flow, say an infinite sheet spreading

simply in a transverse direction.

S. F. Birch: I am not sure that I really follow your remarks. It seems to me that the

shear stress must be invariant with respect to Galilean transformation in the full equa-

tions. Perhaps, I do not understand your point.

A. Roshko: Possibly we could take it up separately.

S. F. Birch: Yes, certainly.

I. E. Alber: I do not know if you have considered the parameter which describes the

effect of the initial turbulent boundary layer or whether you have reached a similarity

state or not, but some earlier calculations show that you have to go a distance of at least

about 100 initial momentum thicknesses before you have essentially washed out the char-

acter of the initial boundary layer, at least in terms of its scale and this increase signifi-

cantly with Mach number as well, so that, in fact, many of these cases at higher Mach

numbers may not really be similar.

S. F. Birch: Yes, this is a point which perhaps I did not emphasize enough in my talk.

In the experiments which were run here at Langley at Mach 5, we found that the Reynolds

number required to get what looked like fully developed flow was 5 to 10 times higher than

would have been required for a subsonic flow. Therefore, apparently this distance does

increase with Mach number. I am not absolutely certain that our Reynolds numbers were

high enough, in spite of the fact that we did get good similarity behavior for the mean pro-

files. The data reported here were for the highest Reynolds number test run so far, so

presumably it best represents the fully developed spreading rate.

The following comments were submitted in writing before the conference and are included

here because of their relevance to the discussion:

P. Bradshaw: It seems just possible that Brown and Roshko's 1 "two-dimensional large

eddies" are the same as the posttransitional disturbances that delayed the onset of self-

preservation in my experiments. 2 However, I am not confident about the use of my sim-

1 Brown, Garry; and Roshko, Anatol: The Effect of Density Difference on the Turbulent
Mixing Layer. Turbulent Shear Flows, AGARD-CP-93, Jan. 1972, pp. 23-1 - 23-12.

2
Bradshaw, P.: _,,_ ...._L of Irdtial Cu._,.t_un_ on the Development of a Free Shear

Layer. J. Fluid Mech., vol. 26, pt. 2, Oct. 1966, pp. 225-236.
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(x )ple Reynolds number criterion for self-preservation u 1 _ > 7 × 10 5 at exit boundary-

layer Reynolds numbers very different from the range I used. Certainly my results

indicated a Reynolds number criterion rather than an x/0 o criterion but it is not

obvious physically why the viscosity should matter to the posttransitional decay. As

usual we need more data. It would be very helpful to have measurements of velocity

or density fluctuations in Brown and Roshko's rig to see if rms values (p' or u') are

self-preserving.

I don't think the uncertainties about self-preservation are strong enough to invali-

date the conclusion that density ratio has little effect on spreading rate. We can take

Brown and Roshko's order-of-magnitude arguments a little further and examine the Mach

number fluctuation, which Morkovin's hypothesis requires to be small. For simplicity

look at Mr = _h-VI. in a mixing layer at M = 1 (about the Mach number at which the
a

spreading rate starts to change significantly) we have M%max = 0.1. In a boundary

layer at M 1 = 4 with cf = 0.001, we again have M%max = M 1 = 0.1. Therefore,

if the Morkovin limit is roughly M 1 = 4 in a boundary layer, it is plausible that it

should be only M 1 = 1 in a jet. Of course, the insensitivity to density ratio implies

that Morkovin's hypothesis breaks down because of the effect of pressure fluctuations

on the turbulence (if rmspcc0u--v, rms P-'-_'-ccTM_-2)"pabs This deserves further thought,

but will cheer the people who are interested in large density ratios at low speeds.
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STATISTICAL TURBULENCETHEORYAND

TURBULENCEPHENOMENOLOGY

By J. R. Herring
National Center for Atmospheric Research*

SUMMARY

The question considered here is how deductiveturbulence theory can shed light
on the validity of turbulence phenomenologyat the level of second-order, single-point
moments. Chosenfor particular consideration are the phenomenologicalformula
relating the dissipation to the turbulence energy andthe Rotta-type formula for the
return to isotropy. First, methodswhich deal directly with most or all of the scales
of motion explicitly are reviewed briefly. The two discussedhere are the spectral
techniqueof Orszag and Patterson (ref. 1) and thesubgrid scale parameterization of
Smagorinsky (ref. 2) and Lilly (ref. 3). It appearsthat, at present, the spectral tech-
nique candeal with homogeneousturbulence with satisfactory accuracy up to a (micro)
Reynoldsnumber of 45. The virtues and faults of the subgrid scale methodare
briefly pointed out.

The statistical theory of turbulence is presentedhere as an expansionabout
randomness. Two conceptsare involved: (1) a modeling of the turbulence as nearly
multipoint Gaussianand (2) a simultaneous introduction of a generalized eddyviscos-
ity operator. In this context, the direct interaction approximation (DIA) of Kraichnan
(ref. 4) and a more recent theory, the test field model (TFM) of Kraichnan (ref. 5),
are discussedbriefly.

Someresults obtainedby using the DIA andTFM to predict the energy dissipa-
tion relation and the return to isotropy are next presented. For self-similar free
decay, the theory gives anenergy-dissipation relationship in qualitative agreement
with the phenomenology;but the numerical coefficient appears, at large Reynolds
numbers, to be about 40percent smaller than that used, for example, by Donaldson
(ref. 6). This result is considered an indication of a lack of universality of the phe-
nomenological formula in question. For the return to isotropy, the results are in
satisfactory accord with the phenomenology,but here again there are symptoms of
lack of universality of the phenomenology.

Finally, it is observed that the structure of the phenomenologyclosely resem-
bles, in some respects, the large Reynoldsnumber limiting form of the DIA equations.

*The National Center for ^*.... _^-'__t,,u_,,_, _ Research is sponsored by the National
Science Foundation.
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This observation is illustrated by the form of the triple momentused by Hanjalic and
Launder (ref. 7), which may be obtained as a limiting form of the DIA equation for the
same third-order moment.

INTRODUCTION

The past few years have seen great advances in numerical computations of turbulent

flows around a variety of complicated geometrical shapes. One has to be impressed by

the volume of these calculations and by their success in predicting mean velocity profiles,

etc., as witnessed, for example, by the compilation of comparisons of test calculations

with experiments by Reynolds (ref. 8), and as will undoubtedly be demonstrated again at

the present conference. Although the general outlook engendered by these calculations is

optimistic, the flourishing of empirical constants, which must be determined by appeals to

experiments, is somewhat disturbing. This state of affairs should not be indefinitely tol-

erated; somehow, a "deductive turbulence theory," free of empiricism, can be brought to

bear on these problems, and at the very least can determine the phenomenological con-

stants for the present models. Of course, a deductive theory probably will determine

much more than is now contained in the phenomenology - for example, the two-point cor-

relation functions.

This paper will describe how statistical turbulence theory can be brought to bear on

the problem of determining the parameters of turbulent flow models and how such a theory

could help evaluate several of the phenomenological constants entering the treatment of

homogeneous flows. The basic philosophy here is that an understanding of turbulence for

relatively simple geometries will shed light on the correctness of the phenomenological

equations used in the more interesting and complicated flow geometries. In developing

such an approach it may be appropriate to alter (or even give up part of) the empiricism.

The word statistical is used here in the sense of statistical mechanics. Several

such theories have been offered, most notably Kraichnan's direct interaction approxima-

tion (ref. 9) which will be discussed in more detail later. These theories offer closed

deductive equations for the statistical parameters of the flow field (that is, the mean value

of the velocity field, and the covariance). Alternatively, some procedures employ the dis-

tribution function of the velocity (Lundgren, ref. 10) or the distribution for its Fourier

transform (Herring, refs. 11 and 12). The theories may be described as expansions about

a type of randomness, which in some sense is supposed to be close to turbulence. Most

are free of empirical parameters but make somewhat arbitrary assumptions about the

statistics of the flow.

Consider some of the equations used to treat turbulent flows. (Symbols are defined

in the appendix of this paper.) The equation for the mean Reynolds stress, Rij = <vivj> ,
is
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(i)

Here Ui is the mean velocity field and p is the pressure field. The (constant) ambient

fluid density Po has been set at 1, restricting the discussion to incompressible flows.

The angle brackets denote an average about the instantaneous velocity field, v. Equa-
m

tion (1) is needed to "close" the equation for the mean velocity field Ui, which is not given

here (see, for example, Reynolds, ref. 8, p. 9). Before closed equations for U and R

can be written, the third, fourth, and sixth terms on the right-hand side of equation (1)

must be related back to U and R. Here attention will be restricted to the fifth and

seventh terms (underlined), which alone survive for homogeneous flows. The fifth term

is responsible for the return of an initially nonisotropic flow field to isotropy. It is

usually modeled by an equation of the form (Rotta, ref. 13):

(2)

Here E =-IR..
2 ll

viscosity:

is the total turbulent kinetic energy and e is the energy dissipated by

For e it is customary to take

°_ n

e = AE3/2/L (3)
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The seventhterm on the right-hand side of equation (1) is usually modeledin either of
two ways:

or

2v v i _x vj _x =3

The first, which seems more appropriate for large Reynolds number flow, will be used

here. In equation (3), L is a length scale associated with the large-scale part of the

turbulence. In the following discussion, L is taken to be the longitudinal integral scale,

following Batchelor (ref. 14, p. 105, Eq. 6.1.2). The quantity A is supposed to be a con-

stant of order unity; A = 0.707 according to Donaldson (ref. 6). Note that equation (2)

in conjunction with equation (1) (suppressing temporarily the viscous term) states that

2 5ijE exponentially if C and the turbulence decayRij relaxes to its isotropic value -_
rate e/E are constants.

The immediate goal is to see what statistical turbulence theory can reveal about the

universality (or, indeed, validity) of equations (2) and (3). This question is explored for

the restricted case of homogeneous flows. It is admittedly a very restricted context, but

by no means an empty question, as shall be demonstrated.

The most direct method of assessing equations (2) and (3) by a turbulence theory is

to set up a decay calculation to be done by the particular theory in question, march the

theory's covariance equations forward in time, and compare the results of the calculation

with equations (2) and (3). The generality of equation (3) could be tested by varying the

initial energy spectral shape (or equivalently, the initial shape of _v(x,0)v(x',0)_), and

perhaps by driving the system at low wave number to simulate the destabilizing effects of

shear instability. The same procedure could be used to test equation (3), with the addi-

tional freedom of varying the degree and spectral shape of the initial anisotropy. At best,

a reliable statistical theory would pin down universal values for A and C; at worst, it

would reveal that A and C as defined by equations (2) and (3) are time and context

dependent, so that the equations are useless as universal closure prescriptions. Even if

these equations are found to be justified for homogeneous flows, there remains the prob-

lem of explaining how they could be valid (with the same values of A and C) for non-

homogeneous flows. The success of the models may be taken as some indication of the

universality of the equations.
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Before proceeding with this task, two methods which are capable (with a large

enough computer) of answering these questions directly will be reviewed briefly. These

are methods which directly integrate the Navier-Stokes equations. They will have an

important role in the next few years in understanding turbulence. A comparison of their

predictions at low Reynolds numbers for good statistical initial data will help select the

correct statistical theory. Wind-tunnel data is not very helpful here because of the lack

of statistical initial data at t = 0 (just after the grid bars have generated the turbulence).

Moreover, the statistical theories are most easily studied if the initial state of the veloc-

ity field is random; this "statistical aspect" of the initial data cannot be matched by wind-

tunnel experiments. As these methods are improved, they will replace wind-tunnel data

as reliable data for low Reynolds number flow. In addition, they provide much more

detail than wind-tunnel data; the numerical integrations have enormous amounts of data

concerning the flow. These data can be stored on tapes, and interrogated as desired.

DIRECT INTEGRATION OF NAVIER-STOKES EQUATIONS

The simplest turbulence theory is just the Navier-Stokes equations; since most tur-

bulence calculations are numerical anyway, no insight is lost by considering direct inte-

gration of the Navier-Stokes equations forward in time, starting from some suitable ini-

tial data (for example, data generated by random numbers). Several years ago, this

approach appeared much too time consuming to be feasible. It still is not feasible for the

sort of problems considered at this conference. However, for simple boundaries and for

moderate Reynolds numbers (Rk = 30 or 40), it is now possible to do a creditable job of

treating turbulence, including all relevant scales of motion, directly by computer. Orszag

and Patterson (ref. 1), using the spectral technique, ha_e succeeded in simulating homo-

geneous turbulence in a periodic cubical box, with good numerical accuracy, up to a

Reynolds number R X of 45. Their results, I believe, will soon replace wind-tunnel data

in accuracy for the case of homogeneous turbulence. As mentioned, this method employed

a spectral technique; the velocity field was Fourier analyzed and each Fourier mode was

assigned an initial value according to a set of Gaussian random numbers. These were

generated so as to yield a statistically Gaussian, homogeneous, isotropic initial spatial

velocity field. They then integrated the equations of motion forward in time, allowing the

dynamics to build up correlations out of the initial state of chaos. Of course, the realiza-

tion of complete initial chaos (and isotropy) is limited by the finite number of degrees of

freedom that can be handled by a computer. At present, Orszag and Patterson treat one

time step of a (32)3-mode decay calculation in 7.5 sec of CDC 7600 time, and abouf 100

time steps are required to evolve the system significantly.

It may appear somewhat surprising that Orszag and Patterson resort to Fourier

modes in a day when finite mesh methods have all but taken over as a rapid numerical
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integration techniquefor the Navier-Stokes equations. There are three points, however,
which make their method competitive with the grid-point method, especially for problems
with simple geometry. First, the estimates of derivatives madeby the Fourier transform
methodare muchsuperior to those madeby the finite spatial grid method. Second,the
finite trigonometric series approximation to the velocity field (sometimes called an infi-

nite order approximation) converges uniformly and very rapidly to the exact solution as

the order of the approximation is increased. Such convergence is not obtained for an

arbitrary polynomial or piecewise-polynomial approximation to the flow field, as is, for

example, used in ordinary finite mesh or finite element schemes. The third point is that

the fast Fourier transform technique can be successfully implemented for this problem

so as to greatly speed up the calculation (the evaluation of convolution sums). Orszag

estimates that for the same given accuracy, the "Galerkin-Fourier" method is faster by

a factor of 3 (for a three-dimensional cubic box of turbulence) than the Arakawa stag-

gered mesh differencing scheme.

So far, the main use of these simulations has been to develop insight into the nature

of the turbulence and to check the statistical approximations, such as the direct interaction

approximation of Kraichnan, which will be discussed subsequently. One simple turbulence

parameter pinned down by these calculations is the (differential) skewness, defined by

S _

It measures the strength of nonlinear transfer in the turbulence microscale region. The

simulations give a value for s of =0.47 (for 20 <=R}, <_50), whereas the experimental

value in this range is more nearly 0.43 (Frenkiel and Klebanoff, ref. 15).

One present problem with the wave-number spectral technique lies in the difficulty

of obtaining good statistical information at low wave numbers without using a formidable

number of wave-number points. The method uses a grid of equally spaced points, and in

three dimensions the density of such points is proportional to k 2, so there are problems

in accurately representing the large-scale features of the flow. At present, this causes

difficulties in simulating free, moderate RX, turbulence decay if the initial energy spec-

trum to be simulated has too much energy at small k (that is, E(k) cc k, k - 0). The

problem is that as the spectrum decays, the larger k regions decay out faster because
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viscosity acts on them more strongly, leaving only the low k region excited at later
times, andthis region has poor statistics. At present no self-similar calculations (which
are necessary to obtain eqs. (1) and (2)) have beendonebecauseof the problem at low
wave numbers. According to Leith (ref. 16), a self-similar spectrum whosedecay law is
E cct-1 requires E(k) cck at small k.

Another methodwhich shouldbe mentionedat this point is the "subgrid scale closure
approximation," to which Smagorinsky (ref. 2), Lilly (ref. 3), andDeardorff (refs. 17

and 18) have made substantial contributions. The method is really a phenomenological

closure scheme, but the logistics of the approximation is such that as computers become

larger the phenomenology can be phased out, leaving in the limit only the exact numerical

procedure. The procedure is, very briefly, to average the Navier-Stokes equations over

a cubical box of dimensions 5 (5 is actually the grid size of the calculation). The

dimensions of this box determine the "subgrid scale." Roughly speaking, any scale larger

than 5 is treated explicitly , and any scale of motion smaller than 5 is not treated

explicitly but is represented in the averaged equations of motion by mixing-length-type

terms. More precisely, the averages of products of fluctuating terms are approximated

by suitable functions of average field quantities. The particular functional forms are

chosen in accordance with eddy viscosity ideas and are consistent with Kolmogoroff's

inertial range assumption (the eddy coefficients are proportional to a scale length 5 and

to the dissipation rate only). The logic of the procedure implies that the scale size 5 is

at least as small as the scale sizes in the inertial range. Hence, in using this method, one

must be prepared to treat explicitly all scale sizes larger than the scales in the inertial

range. As mentioned, the method does contain an empirical constant, but Lilly has shown

how it is related in a simple way to Kolmogoroff's constant. The procedure has been

applied successfully to thermal convection and shear flow by Deardorff (refs. 17 and 18).

More recently, Lilly (ref. 3) has made an analogous closure for third-order

moments. The idea here is to again form averages of the equations of motion over the

grid size 5. Now, however, instead of relating the averaged Reynolds stresses to mean

gradients, equations of motion for 'the Reynolds stresses themselves are sought by suit-

able manipulation of the equations of motion. In this way a relationship is obtained

between the time derivatives of the Reynolds stresses and their local sources and sinks

which include the averaged triple moments. The latter are then "approximated" by

mixing-length-like terms involving the mean gradients of the velocity field and the

Reynolds stresses themselves.

The equations obtained this way for the subgrid scale parameterization are very

similar to those obtained from other closure procedures (cf. Hanjali_ and Launder, ref. 7)

with the obvious difference in interpreting and computing the mean fields.
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Onevirtue of the subgrid scale methodnot possessedby methods parameterizing all
scales of motion is that a parameterization of only those scales much smaller than the
energy-containing range give the theory a universality not possessedby the other methods.
For example, it is hard to accept that Le/E3/2 is the same for any type of flow, regard-
less of howthe turbulence is generated, if E and L pertain to the energy-containing
region. Onehas much less difficulty here if the scales and energy involved are in the
inertial range.

Another virtue of the methodis its ability to assess its own accuracy. If the actual
explicitly treated flux of momentum, for example, turns out to be much larger than that
estimated bythe subgrid scale closure procedure, the total flux calculation may safely be
consideredaccurate, regardless of the accuracy of the subgrid scale procedure.
Deardorff (ref. 18)has foundthis to be essentially the case for a calculation of a buoyantly
active shear layer at heights greater than oneor two 5.

One difficulty with this approach,appreciated by Fox and Lilly (ref. 19), is that
there appears to be no strictly deductiveway whereby scales of motion less than a certain
scale size maybe treated as statistical and scales larger than this size may be treated
deterministically. Becauseof the nonlinearity of the Navier-Stokes equations, small-
scale uncertainties will in time penetrate the large-scale region, thereby contradicting
the logical framework of the theory. This difficulty may be cast in terms of statistical
turbulence theory by considering a staUstical initial value problem in which scales larger
than 5 are identical from ensemblemember to ensemblemember but scale sizes less
than 5 are knownonly statistically (varying in amplitude andphasefrom ensemble
member to ensemblemember). This initial specification corresponds to the logical
framework of the "subgrid scale" closure approximation. As Ume passes, however,

destabilizing nonlinear terms in the equations of moUon cause the scale sizes larger than

5 to be contaminated with that uncertainty initially residing at scale less than 5. This

mixing transforms the initial "mean" (or certain) field into an eventual "fluctuation" (or

uncertain) field. Of course, the closure procedure takes no cognizance of this fact, and

therein lies a problem in calculations of the evolution of a flow. As long as the errors do

not penetrate the large-scale energy-containing region, it may safely be assumed that the

predicted values of these large scales are correct. However, once the errors penetrate

the large-scale region, the solutions of the subgrid scale procedure must be interpreted

as a "typical" flow field, and the logical connection with the initial flow field is obscure.

It is of some interest in this connection to have estimates of error-growth Ume scales.

A theory for error growth has recently been developed by Leith and Kraichnan

(ref. 20). These investigators use the "test-field approximation," which is a type of sta-

tistical approximation that will be discussed subsequently. Their conclusion is that
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errors initially confined to infinitely small scales grow and saturate a region of scale
sizes 5 within a time =9.5e-1/352/3, which is 11 times the eddy circulation time for

length scales 5. Their analysis was limited to the limit of infinite Reynolds number and

to 5 in the inertial range. Whether or not the errors grow until they penetrate the

energy-containing range is not yet known, although if 5 is initially sufficiently large,

there seems little doubt that the energy region would be contaminated by error.

STATISTICAL TURBULENCE THEORY

The original objective of applying statistical turbulence theory to the practical prob-

lems of determining turbulence parameters is pursued next. The physical content of sev-

eral of the theories is discussed briefly, but the equations are not derived. As mentioned

in the introduction, these theories are pivoted on the idea that turbulence is, in some

sense, close to a state of randomness. "Completely random" would mean, here, that the

averages of products of the velocity field at different space-time points y =(:_,t) are

joint normal. (A space-time point is indicated by y, the spatial components by ]7, and

the time component by t._ For the third- and fourth-order moments, in particular,
/

•<vicy vk  ivJ  

• •

(4)

where the dots indicate omitted terms in which the indices 1, 2, 3, and 4 are permuted.

Here the property of randomness is expressed in terms of two-point (and three-point)

functions like (vi(Y)vj(y')), which are more general covariances than those used in

equation (1). For deductive turbulence theories the two-point correlation functions are

indispensable. It is noted, in this connection, that the problem of viscous decay (flow at

very low Reynolds number) is closed with respect to the two-point functions Rij(x,x',t )

= \v j_ )/ °.-_,-=-_' ...... _,............ ,_.,_.,w, hence Lhei_.,t)v X ,t but not with respect to the o_1_ _..._.+ _.... ,_..... ,:, iv .. +_.1j
need for the ....... -.-. • .... ,- .... • ,L^LW U--_I.JU.LI J,t
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The hypothetical consequences of complete randomness for the Navier-Stokes equa-

tions are examined now. These equations are written in a compact notation (summation

convention understood):

_in(Y)Un(Y) = Pij /uj - lu
(5)

where the operator _(_o is

_(_in° = 5"_aLlnt- vV2) - Pin(:_')U/(Y) _--_-"- PiJ(_ 8UJs_l

and the operator Pij(_ ) is specified by

82

=

Here, u is the departure of v from its ensemble mean, U = (v). To obtain Pij
Poisson's equation must be inverted for the boundary conditions appropriate to the prob-

lem at hand (a cubic box of homogeneous turbulence). The operator P(_) simply sup-

the compressible part of (v. V)v, so that V. vlx,t/ = 0, and results\! from
/

presses an
\ ]

elimination of the pressure term from the equations of motion.

In equation (5) the terms which give rise to the closure problem are isolated on the

right-hand side. These are the terms that may build up multipoint non-joint-normal cor-

relations out of multipoint normal initial data. That is to say, relations (4) are consistent

with the Navier-Stokes equations if the right-hand side of equation (5) is suppressed. The

simplest nontrivial closure procedure is to discard the right-hand side of equation (5)

entirely. Such a theory, sometimes called the quasi-linear or mean-field theory (also

called by Deissler "weak turbulence" approximation in ref. 21), has met with some suc-

cess for thermal convection (Herring, refs. 22 and 23). It has also been applied to shear

flows by Deissler (ref. 21).

First the assumption of complete randomness, as embodied by equations (4), is

tried on equation (5). Closed equations for ----_ui(Y)uj(y')_ are then obtained simply by

multiplying equation (5) evaluated at y by itself at y'. The result is
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0 0 ' U U , '
°_in(Y)o_i,n,(Y )_ n(Y) n (Y))

-F ii,(y,y) (6a)

It is convenient to rewrite equation (6a) as a first-order equation in time by multiplying

it by (£o)-1(y), with the result

_°n(Y)<Un(Y)Un,(y)_ = _ G°,i,(y',z)dzFii,(y,z) (6b)

where

_(_in(Y)~o G onp(y,y,) = PiplYjS(y\] " y')

Here, =3d is the adjoint of _(_.

The dz-integration here is over all the spatial part of z, but the time integration

extends only over the past up to the time argument of y',t'. It is recalled here that basic

interest is in the simultaneous moments, <vi(Y)vj(y) >. An equation of motion for these

may be obtained from equation (6b) by forming the limit,

yliy, _°n'Y)<Un(Y ')ui (Y> + _(_°n(Y') <Un(Y')Ui (Y>I -= N(Y)
(7)

There is a fundamental difficulty with equations (6a) and (6b); namely, they do not conserve

kinetic energy (for closed systems N ¢ 0). This difficulty stems from the fact that the

"turbulence force" P(v • V_v has been assumed to be a completely random stirring

force, and random forces are known to increase the kinetic energy of systems to which

they are applied. Hence, the assumption of complete randomness must be abandoned.
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The statistical theories modify _O(y) used in equations (6a) and (6b) to a new

operator _(y) so as to restore energy conservation. The modification consists of

including on the left-hand side of equations (6) a generalized eddy viscosity term so as to

make N=0 for closed systems. Formally, o(_°(y) is replaced by _(_(y), and G°(y,z)

(-(o(_°)-l)by G(y,z)(=(_-1). The modified equations are

_°n(Y)<Un(Y) Un, (Y')_ + _ T/in(Y,z)dz <Un(Z)Un, (Y')_ =

where Fij(Y,Z ) is defined by equation (6a). The operator

- pij(y)! p_.(z)! G/p(y,z)<Us(Z)uj(y)
8_ l wo Ozn

Gn,j(y',z)dz Fij(Y,Z) (8a)

7/(y,z) is defined by

(8b)

The new term on the left-hand side of equation (8a) cancels the right-hand side upon form-

ing the equation for the total energy, N = 0.

Equations (8a) and (8b) constitute a complete statistical theory for the two-point con-

variances (v(y)v(y')). The ingredients embodied in it are: (1) the modeling of the tur-

bulence force P(_l(v • X_v as Gaussian-multivariate and (2)the simultaneous introduction
#

of a generalized eddy viscosity operator T/(y,z), so that energy is conserved within the

context of the Gaussian assumption. The type of "modeling" done here involves a qualita-

tive characterization of the statistics of the flow rather than any explicit quantitative

assumption about relationships between the various terms in the theory.

Still to be specified is G(y,z). On this point the theories differ. Generally G(y,z)

specifies the mechanisms whereby the flow at different space-time points becomes decor-

related and decays away under the joint action of viscosity and turbulence. At very low

Reynolds numbers G is expected to be entirely viscous, so that

_(_°n(Y)Gnj (y,y')= Pij(_)5(y - y') (R_. - 0) (9a)
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At larger Reynolds numbers the turbulence itself contributes an eddy viscosity, so that in

the determination of G(y,z) the generalized eddy viscosity operator _(y,z) is included:

 °n(Y)Gnj(y,y')÷ G,j(,.,y') : Pij( )8(Y- Y') (gb)

The choice of equation (9a) is sometimes called the "two-time quasi-normal approxima-

" (R < 10). The choice oftion, and is sensible only at very small Reynolds numbers k =

equation (gb) together with equation (8a) constitutes the direct interaction approximation

(Kraichnan, ref. 4). Note that equation (gb) lapses over into equation (9a) for small

Reynolds number flow.

Another approach in determining G(y,y') is to select the most appropriate phys-

ical mechanism responsible for producing decorrelation, work out the corresponding

G-function, and use it in equations (8a) and (8b). Such a procedure was used by Kraichnan

(ref. 5) in deriving the test-field model, a theory which uses a G-function that incorpo-

rates "pressure scrambling" and viscous effects alone. The test-field model also makes

the more severe approximation of modeling the turbulence force on white noise, which is

a simplification introduced to avoid the time-history integrals in equations (8a) and (8b).

Yet another method (to my knowledge yet untried) is to base G on the evolution of a pair

of particles whose relative position at t = t' is __ - __'.

At this point the objection may be raised that the comments of the last paragraph

have introduced an arbitrariness into the theory, which was to be avoided. Expressed

differently, why worry about specific physical mechanisms for decorrelating the flow, if

the DIA is a complete theory. The answer is that the DIA, though complete, cannot be

correct at large Reynolds numbers because it does not behave properly under random

uniform velocity translation (Kralchnan, ref. 24). As a consequence, it does not have a

proper inertial range (E(k) cc k-3/2 instead of E(k) cc k-5/3). On the other hand, the

two mechanisms mentioned above do produce a properly invariant theory.

The arbitrariness alluded to in discussing the test-field model is just the (arbitrar-

ily assumed) strength parameter which couples the "test field" to the actual velocity field.

The (statistical) deviation of this (compressive) test field from the actual velocity field

measures the decorrelation effects expressed by g. This theory, with a single adjust-

able parameter, is capable of treating nonlsotropic and nonhomogeneous flows.

The accuracy of the direct interaction and test-field models has recently been

assessed by comparing their predictions with the Orszag-Patterson type of simulations

at low to moderate Reynolds numbers (Herring and Kralchnan, ref. 25). These compar-

isons were made for _............. A _o,,+_,,,,_ flow fi _la_ with R < 50. A detailed
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comparison was made for the Fourier transform of the two-point function Rij(x,x,,t), as
well as for the total energy decay and skewness. The direct interaction approximation
gave entirely satisfactory results for all the abovespectra, including the dissipation and
energy transfer spectra. The test-field model gave satisfactory results for all the above
spectra if the parameter mentionedpreviously was adjusted so that the predicted and
simulated skewnessagreed. At much larger R the test-field model with the same
parameter gavethe Kolmogoroff spectrum, with the Kolmogoroff constant C = 1.8.

COMPARISON OF STATISTICAL THEORY WITH

PARAMETERIZED EQUATIONS

Assuming that they are valid, what do these theories indicate about the universality

of equations (2) and (3)? Consider first equation (3), which may be examined within the

context of homogeneous, isotropic flows. On general grounds, an equation like (3) can be

expected if the decay is self-similar; that is, if

v. _x ,t v.]_x -x_, = Rij ,t = Function of (x/_,x'/_,t)

where _ is the Taylor microscale. Equivalently, the energy spectrum E(k), defined to

be the Fourier transform of Rii with respect to x - x', should be of the form F(kk,t)

for k in both the energy containing range and the dissipation range. Figure 1 shows

eL/E 3/2 as a function of t for such a self-similar calculation. Here the initial energy

spectrum is that found experimentally by Ling and Huang (ref. 26). The theory, inciden-

tally, does not confirm that this initial spectrum is self-similar during the decay; the

spectrum predicted by the theory is a good deal more peaked (especially at large R_)

than this. The final asymptotic values of R_ label the curves. In all cases studied, it

was found that R_(t) became independent of t for t =>1 and that the E(k), k2E(k),

and energy transfer spectrum became self-similar. (Note that E (l_(t))/Eo_(t) is a

R_ and 1_.) For a given initial R_, A = eL/E3/2 becomesuniversal function of

very nearly constant at large t, but the value of A appears to be a function of Rk. At

the larger values of R_, A = 0.5 is indicated. This may be compared to the value

A = 0.7 (Donaldson, ref. 6), used in the phenomenological approach.

The difference (=40 percent) between the computed value of A and the phenome-

nological value of =0.7 probably indicates the kind of departure from universality to be

expected in using the phenomenological approach. The lack of universality in the value

of A probably is due to the lack of universality in the spectral shape of E(k) in the

energy containing region.
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Consider next equation (2) for the deviation of Rij from its isotropic value,

2E6ij/3. The statistical theories may also be applied to this case. To solve this prob-
lem requires an order of magnitude more work than the homogeneous isotropic problem,

even for the homogeneous case. This is because the energy-correlation lunction must be

specified at all angles. The simplest way to do this is to assume that departures from

isotropy may be parameterized by El(k) and E2(k),where E 1 and E 2 are the

energy perpendicular and parallel to the axis of symmetry. The departure from isotropy

is then represented simply by Z_ = E 1 - E2, and the phenomenology of equation (2) is

d_/dt = -C(E/e)_

where

A = A(k)dk

An application of the DIA theory to homogeneous, axisymmetric turbulence has been

completed, the details of which will be published elsewhere. Only those points bearing on

the phenomenology (that is, eq. (2)) are reported here.

In general, the DIA theory gives equations for dA(k)/dt and dE(k)/dt -_t(El(k)

E2(k)) , which quadratically couple A(k) and E(k) for all wave numbers k with the4-

corresponding G-functions. A careful examination of these equations, which are similar

to the Fourier transform of equations (7) and (8), shows that the equation for _(k) is

nearly linear. This result is, a priori, somewhat surprising since terms contributing to

dA(k)/dt proportional to A(p)A(k-p / are not easily seen to be small. This result tends

to lend credence to equation (2). A particularly simple equation results if the energy and
# \

Z_(k) spectrum may be regarded as very sharp (E(k) and A(k)cc 6(k- k0) )
and if "mem-

ory effects" are neglected. In this case,

dA (k,t)/dt = - 277(k) A (k)

For the case in which E(k) is sharply peaked about k0, it may be shown, under the

restrictions stated above, that

3---E-_ _/(k0_' =
L=4ko \ ,

0.858E01/2

L
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which gives

dA/dt = - 1.71E 12A/ (10)
L

where 7/ is the eddy viscosity coefficient, which is just the "Fourier representative" of

the operator 77(y,z) as given by equation (8b).

Equation (10) should not be taken too seriously, especially in view of the rather

restrictive assumptions involved in its derivation. It is, nevertheless, an equation agree-

ing with the phenomenology as to type and order of magnitude and originating in a deduc-

tive theory.

Of course, for a particular initial value problem it is possible to do much better

than equation (10) by constructing numerical solutions for the direct interaction approxi-

mation. Such results are presented in figure 2. Thisshows C=(E/e)(dlnlE 1 - E21/dt )

as a function of t for the case El(k ) = 27rk2exp(-2k) E2(k) = 0, initially, and R)_(0)
k+0.5 '

= 47.6. It can be seen that C levels off for the later stages of decay, and then begins to

decrease slowly. The initial value of this spectrum was chosen because for isotropic tur-

bulence at the same value of R}, the decay of E(k) appeared to be self-similar. The

values of C(t) appear consistent with Rotta's suggested value (ref. 27). This compari-

son should not, however, lead to any generalizations since different initial spectral shapes

give somewhat different values for C and since the computed values here are not strictly

constant. For example, if the deviation of E 1 from E 2 is made more pronounced at

larger k than in the above example, larger values of C result.

So far in confronting statistical theory with phenomenology, certain terms contrib-

uting to the evolution of the Reynolds stress have been dealt with in isolation, and only for

homogeneous flows. Although such calculations are instructive, they can hardly be thought

adequate to deal with shear flow in which mean fields U as well as boundaries are pres-

ent. In my opinion, it will be a few (2 or 3) years before direct computation using the DIA

on simple geometries at very large Reynolds numbers will be done. David Leslie, in his

forthcoming book '_Developments in the Theory of Turbulence," estimates that it would

take about 10 man-years to program DIA equations like equations (8a) and (Sb) to deal

realistically with large R}, shear flows. I think this estimate is a bit pessimistic, but

of the correct order of magnitude.
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An alternate to a frontal attack is to try to simplify the DIA equationsanalytically,
using asymptotic functional forms appropriate to large Reynolds numbers, and perhaps
large distances from boundaries. Someprogress that has already been madein this
direction by Leslie (ref. 28) is described in detail in Chapter 15 of his book cited above.

Perhaps the severe analytic complexities of the DIA can be in some sense reduced so as

to approach the complication level of phenomenological theories discussed at this con-

ference. Consider, for example, the triple moment term in equation (2). Hanjalid and

Launder (ref. 7) approximate this term by

where

_Um(Y)u/(y)uj(Y)) =Cs- _ js_Rlm
aY s

The DIA equation for equation (ll) is

\

a a _I (11)+ R/s --=- Rim + Rms _ R/
aYs aYs 1

_Um(Y)u/(y)uj(y) _ = lim f dZ{Gmp(Y',Z)Ppr(Z)-z_s_/r(y,z)Rjs(y,z ) + R/s(y,z)Rjs(Y,Z _y'--y

+ G/p(Y,Z)Ppr(Z)_-Z_s _ms(Y,Z)Rrj(Z,Y)+ Rmr(Y,Z)Rsj(Z,Y_

+ Gjp(Y,Z)Ppr(Z)_+sIRmr(Y',z)R/s(Y',Z)+ Rms(Y',z)R/r(Y,Z_}

Equation (12) reduces to equation (ll) if (arbitrarily)

1 E 8(t-t')5(y- y')SijGij(Y'Y') = 2 Cs T

(12)

Pij = 6ij

No claim is made here that these expressions for G and P become valid at very large

Reynolds numbers and fai _ from boundaries. In fact, tiu_t_....... ul_.......... " ....... *^_uuliu. _J. _¢ iS
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anexamination of the G-equation. However, perhapsan examination of the complete equa-
tions (8a)and(8b), along lines begunby Leslie (ref. 28), will show whether anything close
to these canbe valid or, better yet, will suggesthow to improve equation ill), especially
near boundariesand at moderateReynolds numbers. Onepoint that is clear from even a
cursory examinationof equations(11)and (12) is that equation (12) is nonlocal in both
spaceand time, whereas equationill) is not.

Of course the preceding discussion presumes that the statistical theory discussed
here is valid. On this point, the reader may examine the comparison of theory with sim-
ulation (for isotropic flow) by Herring and Kraichnan (ref. 25)and judge for himself. It
is hopedthat a more detailed comparison of theory with computer experiment for more
general types of flow will soontell whether this type of theory is on the right track.

LIMITATIONS OF THEORY

In closing, someof the limitations and defects of the statistical moment theory dis-
cussedhere will be pointedout. First, there are limitations connectedwith the fact that
the theory is statistical. In comparing theory with experiment, this leads to problems of
how to specify initial data. Suppose,for example, the decayof turbulence generatedby a
wind-tunnel grid is to be predicted. The two-point velocity correlation just behind the
grid bars canbe measured, andfrom this dataan energy spectrum can be obtainedwhich
the statistical theory uses as E(k,0). However, the use of this spectrum alone as initial
data in the statistical theory cannotproduce the observed subsequentdecay evenif the
theory usedis exact. This is becausethe experiment (or, ideally, an ensembleof experi-
ments) hashigher order (statistical) correlations built up at the initial time, whereas the
theory presumesthese to bezero. Therefore, if only the energy spectrum canbe speci-
fied initially, the theory canbe expectedto deviate from experiment while the higher order
momentsin the statistical theory are being built up from zero. The theory could be
worked out for specified initial values for higher order moments, but I do not know that
these are measurable. The samedilemma may also afflict the phenomenologicaltheories
also in connectingthe meanvelocity and Reynolds stresses to the "preturbulent state."

That theDIA does not give the proper inertial range has already beenmentioned. It
is not known,however, how serious this is with regard to the behavior of the single-point
Reynoldsstresses, even at large Reynoldsnumbers. In this connection, it may be shown-
under rather weakassumptions - that anequation like equation (3) is obtainedfor the DIA
at large R_. The value of A has, however, not been computed. In any case the test-
field model couldbeused, but it is a less complete theory than the DIA. Alternatively,
there is the Lagrangianhistory direct interaction theory (Kraichnan, ref. 9), which com-
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pares very well indeed with large Reynolds number flows; but this is a very complicated

theory, whose logical foundations, in my opinion, are not as secure as those of the DIA.

Finally, there are problems for which the statistical-moment approach discussed

here is not very profitable; that is, extremely intermittent flows consisting of very small

regions of intense shear separated by quiescent volumes. In this case, the statistical

moment theory requires a specification of very high order moments to adequately describe

the physics of the problem. Hence, closure at low order moments would be inappropriate.
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APPENDIX

DEFINITIONS OF SYMBOLS

empirical constant relating energy integral scale and energy dissipation

(see eq. (3))

constant

triple moment constant introduced by Hanjalid and Launder (ref. 7, eq. (2.3))

total turbulent kinetic energy, l<u2>

turbulent functional defined in equation (6a)

k

Green's function which includes eddy viscosity effects (see eq. (9b))

Green's function which does not include eddy viscosity effects (see eq. (6b))

dimensionless scaling parameter entering test field model (see ref. 25 for

further details)

wave number

L longitudinal integral scale

_O

N

P

P

R

operator (see eq. (5))

defined by equation (7)

pressure "projection" operator, defined just after equation (5)

pressure field

ensemble mean Reynolds stress tensor

ensemble mean Reynolds stress tensor components
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R_

S

Ui

U

U

V
m

X
m

Y

Taylor microscale Reynolds number

_a 2\3/2
Vl/OXl) _

time

ith component of ensemble mean velocity field _U

ensemble mean velocity field

deviation of velocity field from its ensemble mean

instantaneous velocity field vector

vector coordinate

three-vector part of space=time point

space-time point (g,t)

A(k)

s2A = A (k)clk

6ij

5{5 = y')

Y

three=vector part of space=time point z

deviation from isotropy spectrum, = 2rrk2(_3(k,t)12 = [Ul(_k,t)12 )

grid-scale length in subgrid=scale method

Kronecker delta (= 0 if i $ j; = 1 if i = j)

Dirac 5-function

energy dissipaLion rate, - =2u{/v.V2v_
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7?

PO

T

Subscripts:

i,j,k,l,_

m,n,p,s_

eddy viscosity operator (see eq. (8b))

Taylor microscale

kinematic viscosity coefficient

constant fluid density, set equal to 1

used to distinguish one space point from another

indicates ensemble mean

vector indices (= 1, 2, 3); summation convention holds, unless otherwise stated
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A RATIONAL APPROACH TO THE USE OF PRANDTL'S MIXING

LENGTH MODEL IN FREE TURBULENT

SHEAR FLOW CALCULATIONS

By David H. Rudy and Dennis M. Bushnell

NASA Langley Research Center

SUMMARY

Prandtl's basic mixing length model was used to compute 22 of the 24 test cases

for the Langley Working Conference on Free Turbulent Shear Flows. The calculations

employed appropriate algebraic length scale equations and single values of mixing

length constant for planar and axisymmetric flows, respectively. Good agreement with

data was obtained except for flows, such as supersonic free shear layers, where large

sustained density changes occur. The inability to predict the more gradual mixing in

these flows is tentatively ascribed to the presence of a significant turbulence-induced

transverse static-pressure gradient which is neglected in conventional solution pro-

cedures. Some type of an equation for length scale development was found to be nec-

essary for successful computation of highly nonsimilar flow regions such as jet or

wake development from thick wall flows.

SYMBOLS

Cp

Cp

Cp = CP, e

D

k

l sd

specific heat at constant pressure

nozzle diameter

geometry parameter, 0 or 1 for two-dimensional or axisymmetric flow,

respectively

thermal conductivity

mixing length

mixing length associated with second-derivative term in equation (5)
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l/5 mixing length constant

M Mach number

Npr Prandtl number, /.tcp/k

NSc Schmidt number

P static pressure

/Xp static-pressure difference across shear layer

R constant in equation of state for a perfect gas

Rb Reynolds number based on characteristic body dimension, _eUerb/Pe

radial coordinate

_= r

r b

r b characteristic body dimension

T static temperature

-- T
W =_

Te

U mean velocity in streamwise direction

UD

Ue

uv turbulent shear stress

V mean velocity in transverse direction

t

V fluctuating velocity in transverse direction

w=l_ u
U e
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X

_=x
r b

Y

r b

Y.99'Y.995

5

rb

0

_e

0

Pe

ff

streamwise coordinate in physical plane

transverse coordinate in physical plane

value of _ where
U - U__

ue - u¢_
-- = 0.01, 0.05, 0.95, 0.99, 0.995, respectively

concentration

mixing angle in wake flows

ratio of specific heats

width of mixing region

eddy kinematic viscosity

streamwise Von Mises coordinate

momentum thickness

dynamic viscosity

density

spreading parameter
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T

÷

spreading parameter when
u 2
J=0

u 1
and M - 0

transverse Von Mises coordinate; or shear stress

nondimensional transverse Von Mises coordinate,

mixing angle for jet flows

Peue)l/l+Jrb

Subscripts:

C end of potential core

center line

external stream

i initial

ip inflection point

jet exit plane

laminar

n nth species

P primary flow

S secondary flow

turbulent

high-velocity side of shear layer

I,II

HI
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low-velocity side of shear layer

regions I and II in jet flows (figs. 2 and 4) and wake flows (fig. 3)

region III in jet flows (figs. 2 and 4)



Superscript:

j geometry parameter where j = 0 in two-dimensional flows and j = 1 in

axisymmetric flows

THE MIXING LENGTH CONCEPT

The classic phenomenological model for the turbulent shear stress is the mixing

length theory (refs. 1 and 2) developed by L. Prandtl in 1925. Although the model lacks a

rigorous physical basis, it has nonetheless proved to be quite successful in both boundary-

layer and free shear flow calculations.

In formulating his model, Prandtl assumed that the Reynolds stres_ -s produced by

momentum transfer normal to the mean flow direction from regions of high momentum to

regions of low momentum. The mixing length l is then defined (in rough analogy to the

mean free path of a molecule) to be the average distance over which a fluid element trans-

fers momentum. A detailed description of the model's theoretical development is avail-

able in many texts (e.g., ref. 3, p. 277 and ref. 4, p. 545).

Mathematically, for quasi-parallel shear flows the eddy viscosity is expressed as

the product of the square of the mixing length and the absolute value of the local mean

velocity gradient, that is,

Therefore, the turbulent shear stress for two-dimensional or axisymmetric flow becomes

Ou 20u _u (2)

where the mixing length is generally taken to be the product of an empirically determined

constant and some characteristic scale of the mixing region, that is,

or

l = Constant x 6

Constant =/-- (3)
6
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Thus,

_/l \2°2} _u _u (4)

Equation (4) has been widely used in the calculation of a variety of flows with both

analytical and numerical solution methods. After early use in pipe flow and flat-plate

boundary-layer analytical solutions, the mixing length model has been particularly suc-

cessful in the numerical computations of both incompressible (e.g., refs. 5 and 6) and

compressible (e.g., refs. 7 and 8) turbulent boundary-layer flows with appropriate defini-

tions of the mixing length specified for the "wall" and "wake" regions. For example,

Patankar and Spalding (ref. 7) defined the mixing length as a numerical function of the

distance from the wall and the boundary-layer thickness. Bushnell and Beckwith (ref. 9)

then extended the use of the mixing length model to include the compressible nonequilib-

rium case.

A number of well-known approximate analytic solutions were developed for low-

speed free flows by using Prandtl's mixing length model. Prandtl studied the smoothing

of a velocity discontinuity (ref. 4, p. 687) and assumed similar velocity profiles. Tollmien

assumed similarity and presented solutions for both the circular jet (ref. 4, p. 699) and the

two-dimensional jet (ref. 4, p. 696) issuing into still surroundings as well as the two-

dimensional two-stream mixing layer (ref. 4, p. 689). Schlichting (ref. 4, p. 691) in his

thesis first examined the two-dimensional wake. Using measurements in the wake of a

circular cylinder, he found l/5 to be 0.18. Kuethe (ref. 10) extended Tollmien's solu-

tion for the mixing region of a plane jet to the general case of the mixing of two parallel

streams with different velocities. Kuethe also solved the problem of the mixing region

surrounding an axisymmetric jet issuing into still surroundings by assuming local simi-

larity. Using experimental measurements and taking the mixing length to be proportional

to the width of the mixing region, he obtained l/5 = 0.0705. Squire and Trouncer (ref. 11)

considered axisymmetric coaxial jets and used l/5 = 0.082.

Several objections to the mixing length concept have been raised. For instance,

according to equation (2) the eddy kinematic viscosity e always vanishes at points of

zero velocity gradient, a condition which is physically unrealistic (e.g., the center line of

a jet or wake). Prandtl (ref. 1) recognized this difficulty and proposed that e be con-

sidered proportional to a statistical mean of _u/ay in the vicinity of a velocity maximum.

The mixing length model for shear stress thus becomes

,5,
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where lsd is an additional length which must be determined experimentally. Equa-

tion (5) has seldom been used in analytical solutions because of the mathematical diffi-

culties of including its more complex form. (There is no such problem if numerical

solutions are employed.)

Another deficiency of the model given by equation (4) becomes evident in the study

of the two-stream mixing layers. In this case the analytic solution exhibits a discontinu-

ity in a2u/0y 2 at the mixing region boundaries instead of predicting the expected asymp-

totic approach of the mixing region velocity to the two free-stream values. Equation (5)

is free of this problem.

In addition, the original assumption of constant mixing length across the mixing

region has led to inaccurate predictions of the fluctuating components, according to

IAepmann and Laufer (ref. 12), despite generally good agreement of the mean velocity

profiles with experimental data.

Later Alexander,Baron, and Comings (ref. 13) demonstrated that Prandtl's original

development required the assumption that the turbulence intensity and mixing length be

isotropie. They concluded, however, that this first-order assumption did not seriously

limit the application of the model. The original physical concept of a mixing length seem-

ingly requires that its magnitude be small in comparison With mean flow dimensions.

Howe,/er, the fact that it has been found experimentally (ref. 14) that the mixing length is

not small in comparison with mean flow dimensions is often considered a basic defect of

the mixing length theory.

Recently several authors (e.g., ref. 15) have shown, by means of the turbulent kinetic

energy approach, that the mixing length hypothesis implies that production equals dissipa-

tion of turbulence energy. Comparison of figures 6-9 and 7-44 in Hinze (ref. 3) shows

that this assumption is much more defensible in boundary layers than in free shear flows.

Most investigators abandoned the mixing length in favor of Prandtl's later constant

exchange coefficient eddy viscosity model (ref. 16), whose mathematical definiUon was

more easily incorporated into analytical solutions. This "new" model overcame some of

the difficulties of the mixing length model and gave slightly better agreement with experi-

mental data. It has become historically the most widely used incompressible model.

Recently Elassar and Pandolfini (ref. 17) numerically investigated the compressible

free shear layer in a backstep region and conchided that l/8 must have different values

in the similar and nonsimilar regions. Wagner (ref. 18) used the mixing length model with

the second-derivative term (eq. (5)) and / = lsd = 0.08 to correctly predict the develop-
5 6

ment of the hypersonic turbulent wake produced by a wedge.

The _.-_*attempt ,n _,y_,,_,_o÷_on,,_n.1,,the mixing length ,_nt1,_1,n _ _ignlflr_nt

range of free turbulent flows was llarsha's study (ref.19) of eddy viscosity models.
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Harsha applied a single mixing length constant, 0.082 (the value used by Squire and

Trouncer (ref. 11)), to both compressible and incompressible flows. Apparently, for all

regions except the potential core of a jet, he defined the width parameter to be twice the

half-velocity radius (the radius for which u=(uc+Ue)/2). In the shear-layer region of

jets he used the width of the mixing region. This approach led to poor overall agreement

with the selected experimental data although he obtained good prediction of the velocity

potential core length for the subsonic circular jet and the subsonic coaxial air-air mixing

cases. His predicted potential core was too short for the compressible jet issuing into

still air and too long for hydrogen-air coaxial mixing flows with mass flow ratio PeUe/pjuj

greater than 2.0. For all these calculations, the asymptotic slope and the center-line

velocity decay curve was underpredicted. However, the mixing length model did predict

the early center-line velocity increase for both an axisymmetric and a two-dimensional

subsonic wake very satisfactorily, although the downstream values were underpredicted

in both cases.

THE "RATIONAL" APPROACH

The present effort was the result of a desire on the part of the conference organiz-

ers to have the mixing length eddy viscosity model compared with newer formulations.

Recent success (refs. 9, 20, and 21) at Langley in the use of Prandtl's model in high-

speed boundary layers indicated that the model should be given further consideration in

free shear flows as well. Rather than repeat the Harsha approach (ref. 19) with the 24

conference test cases, an approach which might be termed a more "rational" approach

was selected in which each class of flows would be given individual consideration. The

designation "rational" merely indicates that the approach was designed to better repre-

sent the actual physics of free mixing than can be accomplished by conventional use of

the basic model.

On the basis of boundary-layer experience, the so-called "rational" approach was,

at the beginning of the investigation, visualized as the inclusion of the following modifi-

cations in the basic mixing length model (eq. (2)):

(1) A consistent set of values for the proportionality constant l/5 were to be used.

Originally it seemed that this might involve a different constant for each region of a jet

or wake. However, the results to be presented in this paper indicate a single value of

l/5 for all two-dimensional flows and a single value for all axisymmetric flows, a con-

clusion in agreement with the experience of Spalding's group at Imperial College (refs. 15

and 22 and paper 11 of this compilation).
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(2) Most importantly, a simple length scale equationwould be included to provide a
reasonable transition from the relatively small scale of turbulent motion in the shear
layer of a jet to the larger scales of turbulence in the far field. Similar consideration
would be given to wake and coaxial flows developingfrom wall flows. This approachhad
beensuccessfully used in the slot injection studies of references 20and 21.

(3) Recentexperience (ref. 23) in turbulent-boundary-layer calculations has shown
a pronouncedincrease in turbulent shear stress near the end of transition and the begin-
ning of turbulent flow. This "low Reynoldsnumber effect" was to be investigated for any
relevant free shear flow test cases. However, for the test casesconsidered herein this
effect was not included due to the lack of information concerning possible magnitudesand
variations of the "low Reynoldsnumber effect" in free turbulent flows.

(4) The use of an intermittency factor in the calculation procedure was to be
explored. Wagner (ref. 18)had previously usedintermittency in his hypersonic wake
calculations.

(5) The effect of including the second-derivative term in the mixing length model
(i.e., eq. (5)) would be studied for someof the test cases.

SOLUTIONPROCEDUREANDTURBULENCEMODELS

Basic Equations

Solutionswere obtainedby using a computer codedevelopedby Sinha, Fox, and
Weinberger (refs. 24 and 25) for chemically nonreacting, quasi-parallel shear flows.

The boundary-layer equationswith suitable boundary conditions are assumedto
describe the motion of free shear flows. Only quasi-parallel flows are considered.
Effects of longitudinal curvature andtransverse pressure gradient are not included.
the mixing of dissimilar ideal gasesthe governing equationsare as follows:

Conservation of mass

For

(6a)

Conservation of streamwise momentum

pu 8____u+ pv 8.._u= %Pe +
8X _,7 _v

j v_x yj YJ
(6b)
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Conservation of energy

aT 0T u 8Pe +--I _IkY" B_y?I] + G10ul2 _ _n Ic+ p,n 8°in a_y_laypUCp_x÷pvcp_ : _x yj \_/ Nsc
(6c)

Conservation of nth species

_n _n 1 _ ___ 0_/
+ pv - yJ

pU_x _y yJ_ sc _y)
(6d)

where j = 0 or 1 for two-dimensional or axisymmetric flow, respectively.

ated boundary conditions are as follows:

At the center line (y = 0),

The associ-

Ou = aT =--=O°tn 0
ay ay ay

(6e)

for all values of x.

At the edge of the mixing region,

lim u(x,y) = u e
y-_

lim T(x,y) = T e
y_oo

lim an(X,y ) = an, e

..J

(6f)

Equations (6a) to (6f) are solved in the modified Von Mises plane defined by the fol-

lowing transformation:

(1 + j)TJ 0"r = puyJ (Ta)
ay
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and

._ d.,x= (l+j)-2
i

(8)

In the transformed plane only the momentum, energy, and species equations are

needed since the continuity equation is inherently satisfied in the definition of the trans-

formation. The transformed equations are then nondimensionalized with respect to

external stream conditions and rb, a characteristic length. It should be noted that

Wagner (ref. 18) has shown the analysis of references 24 and 25 to be incorrect for longi-

tudinal pressure gradient flows since the continuity equation was not satisfied by the non-

dimensional Von Mises transformation used in that analysis. The correctly transformed

equations of motion are as follows:

Momentum

Ou_ _ 1 2_d(lnue) su /___ -_d(lnue)_.r.___lxu _2j B_/o:+-:I (9a)

Energy

_ y2j _= 8:/ 1)Me2 d/lnue)/" p)
8T _ (1 Me2)d(lnue)8_+_-J _--_.P_ _ +
"_"=l+j d'_ 8-_ _ i_Tt'N-'-p'_pr _.j P'_"_) ('Ye- d_ C- 1

+

-- _ 2j _ 8_
(PP' -'_',_l u O'T_cp,n n

tN'_c_p)\_'l 8"-_- n 07
(9b)

Species

(i 21d(Inuel 8_n
8_n_ [ _ M e ..

8_ 1 + j d_ 8_
(9c)

Equations (9a) to (9c) were applied to turbulent flow by assuming that

(I0)
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and by using turbulent Schmidt and Prandtl numbers. Suitable expressions were used for

the laminar viscosity of the various gases used.

The flow was computed by using an implicit finite-difference technique (which is

described in detail in refs. 24 and 25) to march downstream from the initial input profile.

Use of Von Mises Transformation

Apparently, most of the available computer codes for quasi-parallel free viscous

flow solutions (e.g., refs. 7, 24, and 26) solve the boundary-layer equations in a Von Mises

plane rather than the physical plane. For programing simplicity, a constant step size in

the direction normal to the flow is usually assumed as in the procedure of reference 24.

From equation (Ta) this radial coordinate _" in the method of reference 24 is defined by

1/l+j

7-= /_ _ ts_Jd_/ (11)

Equation (11) shows that specifying equal _ steps implies specifying equal increments

of axial-direction mass flow across the computed region. Thus, larger steps (in terms

of the physical plane) are located in regions of relatively low velocity (with respect to the

free-stream or jet center-line velocity); this significantly reduces the accuracy in the

crucial mixing regions. This problem is particularly evident in the calculation of com-

pressible flows, especially the shear-layer calculations. As an example, in a typical

Mach 5 two-dimensional shear-layer calculation with u2/u 1 = 0.05, 49 of the 90 points

across the mixing region profile are located in the region where u is approximately

constant (U/Ul >--0.90).

Turbulence Models

In accordance with the "rational approach" previously outlined, a conceptually sim-

ple (i.e., first order) model for the length scale variation in the streamwise direction was

formulated for each of the major classes of flows. Thermal transport and mass transport

were related to the momentum transport through the use of constant values of the turbulent

Prandtl number and Schmidt number, respectively.

Two-dimensional shear layers.- Figure 1 shows the initial velocity profile used to

generate the two-dimensional shear layers of test cases 1, 2, and 3. The same type of

step profile was used for both the initial temperature and initial concentration profiles.

Because of the inaccuracies introduced by the Von Mises transformation at the edge of the

mixing region, the following definition for the width 5 of the region was necessary:

5 = (Scaling factor)(_.95 - _.05 ) (12)
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where Y.95 indicates the point in the mixing layer where u - u¢_) e - u¢_)= 0.95. The

scaling factor is necessary to obtain the "true" value of 5 _i.e., Y.99- Y.01) and was

taken to be 1.425 from the mean fit curve to the experimental data for two-stream mixing

given by Halleen (ref. 27). This definition of width was used also for test case 5 and in

the potential core region of all jet flows.

Since the initial boundary-layer profiles were given for test case 4, the two-

dimensional version of the "coaxial jet length scale model" was applied to that case.

Jets into still air.- Figure 2 shows the length scale model developed for jets issuing

into still air. The nondimensional mixing region width _ is partially defined by the mix-

ing angle _b. This definition allows a smooth transition between the relatively small mix-

ing scale at the end of the potential core (which is designated region I) and the large scale

turbulence downstream (region III).

For region I, 5I is given by equation (12); for region II,

5H = (Scaling factor)(_.95 - _¢_)+(_-_c)tan _b (13)

where _c is the location of the end of the potential core. Region II extends to the point

downstream at which 5II becomes 2(Scaling factor)(_.95 - __). Finally, in region IH,

5III = 2(Scaiing factor)(_.95 - __) (14)

The scaling factor for regions II and HI was taken to be 1.2 from the similarity profile for

a self-preserving jet given by Wygnanski and Fiedler (ref. 28).

Since the governing equations were nondimensionalized with respect to the external

streams, some small arbitrary edge velocity was necessary. However, the velocity ratio

Uc_/Ue at the initial profile had to be large enough to reasonably represent the physical

problem being studied but not so large that the accuracy on the low-velocity site would be

limited by the peculiarities of the Von Mises transformation discussed previously. The

values of u__/u e used in the initial profiles for the jets issuing into still air are listed in
the following table:

Test case Initial uC_/u e

6

7

8

18

19

34.65

35.37

41.80

70.0

55.30
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This lengthscale model was also usedto computetest case 13, a two-dimensional
jet in a moving stream.

Wakes.- Figure 3 showsthe length scale model employedin wakeflows. Again, a
linear variation definedby the angle /_ is assumed to approximate the increased scale

of turbulent motion when the boundary layers on the wake-generating body mix in the ini-

tial wake region. For region I in figure 3, the width 6 is given by

6i = (Scaling factor)(_.95 - _¢_) + (._ - _i)tan /3 (15)

where _i is the location of the start of region I which is usually the trailing edge of the

body. Region I terminates when the two terms in equation (15) are of equal magnitude.

The width 6 in region II is then given by

5II = 2(Scaling factor)(Y.95 - y¢_) (16)

The same scaling factor, 1.2, utilized in the jet flows downstream of the potential core

was also used for wake flows.

Coaxial jets.- The model shown in figure 4(a) was employed for coaxial jet flows.

The primary jet flow is assumed to mix with the initial boundary-layer flow in a region

whose growth is characterized by mixing angles _bl, _b2, and _b3. In all calculations

these angles were assumed to be equal. This model results in a radial distribution of 6,

such as the one shown in figure 4(b), and features two overlapping scales of turbulent

motion, 6Outer and 6Inner' given by

6inner = 6p,i + 2(x - xi)tan _ (17)

6Outer = (_.995 - _j)+(_-_i)tan _b (18)

where :_i is measured from the exit plane of the primary jet nozzle. In the calculations,

is 6Inner for _< _p and 6Outer for Y >rs" Between _p and rs, 6 is found

by a linear interpolation between 6Inner and 6Outer" The nondimensional radii _p

and _s are defined by

_p = l_j + (_ - :_i}tan _ (19)
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and

rs --

1 6s,i

{_j +6s,i+(x-xi)tan_b]

for x --<

for _ > Xc

(20)

where rj is the inner nozzle radius, Xc is the location of the end of the core region,

and 6s, i is the initial thickness of the external boundary layer. This length scale

modeling allows (to zeroth order) for the orderly growth of the initial boundary layer (or

shear layer) scales. Far downstream the more conventional approach of a single large

scale for the entire flow is recovered.

A differential equation for the local length scale would obviously be better than the

present approach just outlined. The purpose here is simply to point out that if the physics

of scale development is taken into account, predictions are considerably improved. In the

present approach, this scale development is handled in the simplest manner possible.

POSSIBLE INFLUENCE OF TRANSVERSE STATIC-PRESSURE

GRADIENT ON TURBULENT FREE MIXING

The conventional approach to turbulent free mixing calculations (the approach used

in the present paper) involves solving the boundary-layer equations with some turbulence

closure model. On the basis of an order of magnitude analysis, the normal (or trans-

verse) static-pressure gradient is assumed to be quite small in the basic boundary-layer

equations. By assuming constant static pressure in the transverse direction, the solution

of the normal momentum equation is unnecessary. Recent studies (refs. 29 and 30) indi-

cate that this assumption of constant static pressure is not correct in boundary layers

where there are large density changes across the layer. Changes in static pressure of

10 to 30 percent have been observed in nominally two-dimensional, high Mach number

(M > 6) boundary layers.

The normal momentum equation for two-dimensional turbulent quasi-parallel shear

flows takes the form

Oy _y
(21)
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where density fluctuations have beenneglectedin an order of magnitudeanalysis. Hinze
(ref. 3) notesthat for low-speed flows the normal static-pressure changesinduced by the
turbulence (from eq. (21))were 2 orders of magnitudelarger than the static-pressure
changesinducedby the meanflow. The basic question is whether or not the normal
static-pressure gradient inducedby the turbulence (eq. (21)) canbecomesufficiently
large to affect the spreading rate andturbulence structure of a free turbulent mixing
flow. The successof various calculation methods (turbulence closure models) in low-
speedflows indicates that the influence is most likely negligible in these flows. However,
large density changeswould presumably increase the magnitudeof the turbulence-induced
normal static-pressure gradient (from eq. (21)); therefore, the answer to the basic ques-
tion may well be that the spreading rate andturbulence structure are in fact affected
where large density changesoccur.

Estimates were madeof the probable static-pressure changefor an M1 = 5 free

shear layer obtained recently in the nozzle test apparatus at the Langley Research Center.

(These data are discussed in paper 2 by Birch and Eggers.) By using the integrated form

of equation (21) and estimates of v '2 from the subsonic shear layer of Liepmann and

Laufer (ref. 12), the change in static pressure for this flow would be of the order of a

100-percent decrease near the maximum shear region. Obviously v '2 and perhaps the

Reynolds stress must be lower than the normalized values of reference 12 for this M 1 = 5

case, since such a transverse static-pressure gradient would not be tolerated by the flow.

There are at least two possible mechanisms connected with a turbulence-induced

8p/By which could affect the spreading rate of a free turbulent shear flow:

(1) Direct influence of turbulence-induced 8p/_y upon the normal mean velocity v

and hence directly upon the spreading rate (refs. 31 and 32). A pressure gradient dp/dx

is imposed within the shear flow.

(2) Indirect influence of turbulence-induced 8p/_y upon v '2 and u'v' by means

of a turbulence field adjustment to decrease 8p/_y until a balance is achieved.

Obviously both of these mechanisms as well as others could be operating simultaneously.

The important point is that as the density change across a turbulent free mixing region

increases, the influence of the turbulence-induced 8p/By may become increasingly more

important, especially in determining the absolute physical dimensions of the flow field

(i.e., the entrainment rate).

Transverse static-pressure data for free shear layers are available in references 32

to 34. For low-speed flows the data indicate a minimum pressure of the order of 2 per-

cent near the inflection point in the velocity profile. The low-speed data of Lee (ref. 35)

and Jones and Spencer (ref. 36) indicate small static-pressure changes (less than 1 per-
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u2
cent) for shear layers with -- = 0.35 and 0.30, respectively. Further data for the trans-

u 1

verse static-pressure distribution in jets are available in references 31 and 37 and some

data for wakes are found in reference 38. The available data do seem to indicate an

increase of transverse static-pressure gradient with increasing Mach number across the

shear layer.

It is interesting to note that the integrated form of equation (21) is

or

u¢_2 ?'ip M¢-2 Rip Tip
(22)

where the subscript ip indicates the inflection point in the shear-layer profile. There-

fore, Mach number may well have an effect greater than simple density changes (caused

by gas composition) upon possible changes in entrainment rate due to 0p/_y.

The possibility that static-pressure variation may be responsible for the rather

large changes in spreading rate with Mach number noted in connection with test case 2 in

the present paper is entirely speculative at this point. There are several possible

approaches that could be used to investigate this possibility. One such method would be

to incorporate the complete normal momentum equation in a method such as Donaldson's

(ref. 39) where v '2 is directly computed. If an equation for v '2 is lacking, it could be

related to the Reynolds stress by some constant or function. Again, it would be necessary

to solve the normal momentum equation (including the convective terms). The best method

(i.e., most correct) of including the normal momentum equation would be a full field

Navier-Stokes solution with turbulence terms included. However, if molecular diffusion

of momentum is neglected in the normal momentum equation, a first-order solution may

be obtained numerically by including the equation in a streamwise iteration loop with the

usual boundary-layer equations.

There are, of course, other mechanisms which could also account for the disagree-

ment between experiment and theory for case 2. These possibilities include the increased

influence of p'v' and other terms in the second-order correlation equations. These
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terms are usually negligible at low speeds but presumably become more important at

high speeds. Currently there are no available models or data for these terms in high-

speed flows which could be used to check this hypothesis.

RESULTS AND DISCUSSION

Solutions were obtained for all 17 of the primary test cases and for five of the seven

optional cases. The two cases omitted were case 22, a hydrogen-air coaxial jet flow, and

case 23, a subsonic compound coaxial air jet. These cases were omitted because of

numerical and programing difficulties encountered rather than failure of the basic turbu-

lence models being used.

During the investigation it was found that l/5 could be considered a function only

of flow geometry. A value of 0.07 was used in all two-dimensional flows and 0.05 was

used in all axisymmetric flows including the shear-layer region of jets.

In general, for constant density subsonic flows the turbulent Prandtl and Schmidt

numbers were taken to be 1.0. For variable-density flows either 0.7 or 0.8 was used,

with the Prandtl number assumed equal to the Schmidt number in all cases.

Two-Dimensional Shear Layers

Test case 1.- Two-dimensional subsonic constant-density free shear layers were

computed for velocity ratios u2/u 1 of 0.05, 0.2, 0.4, 0.6, and 0.8 by using "step" input

profiles for velocity and temperature as previously described. Since the equations were

normalized with respect to the secondary stream, a nominally zero value of u 2 was not

possible in the present program; u2 = 0.05 was used in both test cases 1 and 2. The
Ul

results from the computations of test case 1 are shown in figure 5. The spreading

parameter a is defined by the following relationship:

_-1.8 5(x - XA) (23)
YB - YA

u - u 2

where YA and YB are the lateral distances between points at which Ul _ u2 is 0.1

and 0.9 at longitudinal stations X A and XB, respectively. The spreading parameter

is thus the reciprocal of the spreading rate of the shear layer.

Equation (12) was used to define the width 5, and l/t_ was taken to be 0.07. By

extrapolating the computed values of a to the case where u2/u 1 is zero, % was
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found to be 11.4. This value wasused to normalize the computedvalues of a. As shown
in figure 6, the results agree with the well-known relationship (from ref. 40)

ao u - u 2

a Ul + u2

Test case 2.- Two-dimensional shear layers were computed for five values of M 1

to determine the effect of Mach number on the spreading rate (test case 2). The results

are shown in figure 6 along with experimental data from references 12, 28, 31, 34, and 41

to 50 as well as the unpublished data recently obtained at the Langley Research Center at

M 1 = 5.0. These shear-layer data have been adjudged the most reliable by Birch and

Eggers in paper 2 of this compilation.

Equation (12) was used to define the width 6. With an l/6 of 0.07, only a slight

increase in a is predicted for increasing values of M 1 in striking contrast to much of

the available data. At M 1 = 5.0, the effect of decreasing the mixing rate by lowering l/6

is shown. The cause underlying the inability of the mixing length model to predict the

spreading rate of supersonic shear layers is perhaps directly related to the validity of

the fundamental assumptions inherent in the boundary-layer approach to free mixing prob-

lems. One possible explanation is the existence of a transverse static-pressure gradient

which could affect the turbulence spreading rate. The effect of such a pressure gradient

was previously discussed in detail in this paper. There is also the possible influence of

"low Reynolds number effects" as discussed by Birch and Eggers in paper 2. The data

that may be influenced by such effects are indicated in figure 6. It should also be noted
u 2 u2

that the values of a computed with u"l = 0.05 were scaled to correspond to u"l = 0

(using fig. 5).

Test case 3.- Test case 3 was designed to determine the effect of density ratio on

of fully developed two-dimensional shear layers. With _ = 0.2, calculationsthe growth

were made for shear layers with density ratio pl/P2 of approximately 1/14, 2, 7, and 14.
Pl 1

For all but the J = m shear layer, the density difference was accounted for in the pro-
P2 14

gram by two methods: the subsonic mixing of gases with different molecular weights, and

the mixing of two air streams with supersonic or hypersonic velocity in the primary
Pl 1

stream. The m = m shear layer was obtained by mixing hydrogen in the primary
P2 14

Pl
stream with air in the secondary stream. The J = 2, 7, and 14 shear layers were the

P2

result of mixing hydrogen and helium, helium and air, and air and hydrogen; the corre-
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sponding air into air equivalent density ratios were computed by using M 1 = 2.24, 5.48,

and 8.06, respectively. Turbulent Prandtl numbers of 0.7 and 0.8 were used for the dis-

similar gas and supersonic flows, respectively; the turbulent Schmidt numbers were also

0.7 and 0.8, respectively. Appropriate input profiles of the type shown in figure 1 were

used in each instance. The results, shown in figure 7, indicate that a is a similar func-

tion of density differences irrespective of the mechanism producing that difference. How-

ever, it should be remembered that in test case 2 the supersonic results were greatly in

error when compared with the data.

Test case 4.- Test case 4 considers the subsonic mixing of two streams initially

developed on a symmetric airfoil with a 10 ° trailing edge. The coaxial jet length scale

model was used for this calculation. A representative small angle of 8 ° (the value used

in the slot injection studies of refs. 20 and 21) was used. The predicted profiles at two

locations, x = 12.7 cm and x = 76.2 cm, are compared with Lee's experimental mea-

surements (ref. 35) in figures 8(a) and 8(b), respectively. For this test case and test

case 5, the computed profiles are matched with the experimental profiles at the point

where u = (u 1 - u2)/2 since the numerical calculation does not satisfy the proper bound-

ary conditions (ref. 51). The predicted profile at x = 12.7 cm indicates only slightly

more mixing than the experimental data. Much farther downstream at 76.2 cm the pre-

diction indicates significantly more mixing. Better agreement could have been achieved

by adjusting the angles _1, _2, and _b3 but such manipulation was beyond the intent of

the current investigation. It should be noted that the streams mix with a fairly large ini-

tial angle (10°).

Test case 5.- The Hill and Page (ref. 50) supersonic (M 1 = 2.09) shear layer (test

case 5) was computed with l/5 = 0.07, where 5 was defined by equation (12). Computed

profiles at two stations are shown in figure 9. The effect of the different boundary condi-

tions used in the computations is evident on the low-velocity side of the shear layer. The

data were obtained in a cavity-type flow and may be influenced by the "low Reynolds num-

ber effects." Both calculated profiles indicate more rapid mixing than the experimental

data, which is the expected behavior from the results of test case 2. (See section entitled

"Possible Influence of Transverse Static-Pressure Gradient on Turbulent Free Mixing.")

Jets Issuing Into Still Air

For all flows of this type the length scale model of figure 2 was employed. An 1/5

of 0.05 was used in all three regions of the axisymmetric jets including region I. The

value of l/5 should actually be varied from 0.07 at the nozzle exit where the shear layer

is thin and essentially two-dimensional to 0.05 at the end of the core where the flow is

fully axisymmetric. Hence, for flows with relatively short potential cores (e.g., test

cases 6 and 8) the use of a single value lower than the average value through the core
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results in less mixing and hencetoo long a potential case. The present model predicted
the decayof the center-line velocity remarkably well by using an angle ¢ of 8°.

Test case 6.- Figure 10 shows the results of the computation of the Maestrello and

McDaid subsonic jet (ref. 52). The potential core is longer than indicated by the experi-

mental data but the decay rate of the center-line velocity in regions II and III is well pre-

dicted. Test case 6 is an example of a jet for which l/5 must have a value near 0.07 in

the shear-layer region to correctly predict the core length.

Test case 7.- For the Eggers Mach 2.22 jet (ref. 49), the potential core length is

well predicted, but the agreement with the center-line velocity decay curve using q_ = 8 °

is not as good as the corresponding comparison in the previous subsonic jet flow in test

case 6. The prediction for test case q is shown in figure ll(a) with a _b = 89 ° calcula-

t.ion which corresponds to an immediate jump in length scale at the end of the core to the

region III value. This represents the usual method of applying the mixing length model to

jet flows (e.g., Harsha, ref. 19). Obviously the prediction of the center-line velocity

decay as the far field is approached is significantly improved by using a "length scale

equation" between the near field and far field. A prediction with _b = 0 ° is also shown.

Velocity profiles at three locations are shown in figures ll(b) and ll(c). These results

indicate that the correct profile is obtained when the center-line value is correctly

predicted.

Test case 8.- A value of 1/5 of 0.05 and mixing angle of 8 ° were used to predict

the high-temperature subsonic data of Heck (ref. 53). The center-line distributions of

velocity and temperature for test case 8 are given in figures 12(a) and 12(b), respectively.

As shown in these figures, the velocity potential core length is again incorrect although

the velocity decay rate outside the core is well matched. A turbulent Prandtl number of

0.7 predicts the temperature decay rate correctly.

Test case 18.- The fully developed axisymmetric jet data of Wygnanski and Fiedler

(ref. 28) provided a test of the far field length scale model in a subsonic flow (test case 18).

Starting with the given similarity profile at x/D = 60, a location in the self-preserving

region, the solution was obtained with l/5 = 0.05. With an initial velocity ratio Uc_/Ue

of q0, the computed spreading rate of the jet was found to be linear and in excellent agree-

ment with the data. Figure 13(a) shows the center-line velocity prediction over the range

of the data. The similarity of the data was retained in the calculations as shown in fig-

ure 13(b) where Xvo indicates the streamwise distance from the virtual origin of the jet.

Equation (14) was used to define 5.

Test case 19.- Test case 19 is a supersonic high-temperature jet (ref. 53) similar

to the subsonic jet of test case 8. The turbulent Prandtl number was assumed to be 0.7

and i/5 = 0.05 and _ = 8°. Fig-re !4(a) shows that the predicted potential core is too

long; however, the correct velocity decay rate is predicted as the far field is approached.
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Figure 14(b) indicates tha_ similar conclusions apply to the center-line temperature dis-

tribution. If the core length problem could be remedied for compressible shear-layer

mixing, the center-line variation would then probably be correctly predicted for the entire

flow field.

In all the compressible jet cases it should be noted that the near field (where the

present calculations give least accurate agreement with data) is the only region where

large density gradients occur. It is speculated that the mechanism responsible for the

disagreement in this region is the same mechanism operative in the supersonic free shear

layers. In the present paper it is suggested that this mechanism is related to turbulence-

induced static-pressure gradients. Other possible mechanisms operable in this region

are the "low Reynolds number effect" discussed by Birch and Eggers in paper 2 and the

l/5 adjustment from two-dimensional to axisymmetric.

Plane Jet in a Moving Stream

Test case 13.- The length scale model shown in figure 2 was used to predict subsonic

test case 13. No initial profile data were available other than the experimentally deter-

mined momentum thickness and uj/u e. A step velocity profile was selected so that

uj/u e was matched. Value of l/5 of 0.07 and a mixing angle of 8° gave an excellent

prediction of the center-line velocity distribution as shown in figure 15. Since the exter-

nal stream had a constant nonzero velocity, the experimental velocity ratio Uc_/Ue could
be accurately represented numerically, unlike the previously discussed jets issuing into
still air.

Coaxial Jet Flows

The length scale model shown in figure 4 was used for all flows of this type. A

value of l/5 of 0.05 was used in regions I and II. All solutions were started at the noz-

zle exit with the initial boundary-layer profiles. For the AEDC experimental data (test

cases 10, 20, and 21) these profiles were approximated by using the estimates of boundary-

layer thicknesses given in reference 54. The mixing angles q_l, _2, and @3 were
taken to be equal in all cases.

Test case 9.- Test case 9 represents the data of Forstall and Shapiro (ref. 55). The

suggested initial profile, which was adjusted to account for probable pitot probe positioning

errors, was used to start the solution. The results of the computation using l/5 = 0.05

and all mixing angles equal to 8 ° are shown in figure 16. The experimental center-line

velocity decay in region II is well predicted by using angles of 8 ° although the potential

core length is unpredicted. However, it should be noted that the core length is a function

of _b3 for a given l/5. As discussed previously, a larger average l/5 is needed in

the core.
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Test case 10.- Figure 17 shows the results of applying the coaxial jet length scale

model to the subsonic hydrogen-air data of Chriss (ref. 56). Both the center-line velocity

and center-line hydrogen concentration variations for test case 10 are well predicted with

l/5 = 0.05 and mixing angles of 8°.

Test case 11.- Figure 18 shows the computational results for test case 11 which

represents an inner subsonic air jet mixing with an outer Mach 1.30 air jet studied by

Eggers and Torrence (ref. 57). Mixing angles of 2° gave better predictions of the center-

line velocity variation than did angles of 8 °. However, neither calculation predicted as

large a drop in center-line velocity as the data indicate and neither calculation correctly

predicted the rate of velocity increase as the far field is approached.

Test case 12.- Good prediction of the center-line velocity decrease for the hydrogen-

air data of Eggers (ref. 58) was obtained for test case 12 with l/5 = 0.05 and mixing

angles of 8 ° even though this choice of angle resulted in an underprediction of the potential

core length. The center-line velocity distribution is shown in figure 19(a). The same

prediction trend is also observed in the center-line hydrogen concentration variation as

shown in figure 19(b). The turbulent Schmidt and Prandtl numbers were both 0.8.

Test case 20.- Test case 20 represents the mixing of subsonic coaxial jets as mea-

sured by Chriss and Paulk (ref. 54). The best overall prediction with the coaxial length

scale model was achieved with mixing angles of 6o as shown in figure 20. The calcula-

tions with angles of 6 ° and 8 ° are shown for comparison; however, as discussed previously,

l/5 should actually have had a larger average value through the core region.

Test case 21.- As shown in figure 21(a) the coaxial model again predicted the cor-

rect center-line velocity decay rate for the subsonic hydrogen-air data of Chriss (ref. 56).

However, a value of l/6 of 0.05 gave an overprediction of the potential core length for a

mixing angle of 8°. An l/6 of 0.07 with all angles _ (i.e., _bl,_b2,_b3) equal to 8°

gives a better core length prediction. The concentration profile prediction for test case 21

is given in figure 21(b).

Wake Flows

The length scale model shown in figure 3 was used in computing all wake flows. In

addition, the effect of including the second-derivative term (eq. (5)) was investigated for

some of these wakes.

Test case 14.- The predicted center-line velocity distribution is shown in figure 22

for the two-dimensional wake data (test case 14) of Chevray and Kovasznay (ref. 59). By

using a value of l/5 of 0.07 and a mixing angle B of 8 °, a reasonably accurate overall

\/ /sd /)prediction is obtained. As expected, addition of the second-derivative term _with
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results in an increase in the mixing rate, the increase giving a more accurate velocity

rise in the near wake region while overpredicting the data as the far field is approached.

A calculation with _ = 89 °, which corresponds to using no linear variation in length scale

downstream of the body, is shown to demonstrate the improved prediction in the near wake

region with the present linear variation. The effect of the angle disappears as the asymp-

totic region is approached. A calculation with _ = 4 ° and no second-derivative term is

also shown for comparison.

The deviation between prediction and experiment in the far field is emphasized when

the data is plotted in terms of 1/w 2 where w__ is the center-line velocity defect.

Test case 15.- Computations of Chevray's axisymmetric wake (ref. 60) with /= 0.05
5

and /_ = 8° are shown in figure 23. The initial rapid increase of the center-line velocity

(due in part to the pressure gradient just behind the body) is not predicted even when the

second-derivative term ith --_ = is included. The second-derivative model, how-

ever, gives better downstream agreement than the basic model. Test ease 15 is an exam-

pie of a flow in which the vMue of _ probably should be high initially and lowered to 8 °

a few diameters downstream (as is done automatically by the method of ref. 20), but such

optimization was beyond the present intent.

Test case 16.- The asymptotic region of the plane supersonic wake of Demetriades

(ref. 61) is well predicted with / = 0.07 and /_ = 8 °. (See fig. 24.) The second deriva-
5

tive increases the mixing rate only slightly for test case 16.

Test case 17.- The supersonic (M = 3.0) axisymmetric wake data of Demetriades

(ref. 62) is underpredicted for test case 17 with / = 0.05 and /_ = 8 ° even though the
5

second-derivative term is included. (See fig. 25.) The calculation was started at x = 17,
D

a location actually near the end of the transition region; hence these data may be influ-

enced by the "low Reynolds number effects." Assuming turbulent flow at x = 17 results
D

] \

in an underprediction of the data in the turbulent region(D> 20).

Test case 24.- The two-dimensional supersonic wake data of Demetriades (ref. 63)

include data in the transiti°n regi°n (602"9 = x -< 938"4) "D The wake-generating wedge was

heated so that transition would occur far downstream of the model. The calculation for

test case 24 was started in the laminar region at x = 183.7. In reference 64 Demetriades
D
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gives the experimental streamwise distribution of the intermittency factor on the wake
center line for the corresponding unheatedflow. This distribution wasused to compute
throughthe given region of transitional flow. Suchan approachhad previously been
employedby Harris (ref. 65)who usedthe streamwise intermittency function of Dhawan
and Narasimha (ref. 66)in the computationof compressible boundarylayers. The results
shownin figure 26 indicate that the datawere slightly underpredicted in the laminar and
transitional regions with improved agreement in thefully turbulent region. A wake flow
mixing angleof 8° was used.

CONCLUDINGREMARKS

Prandtl's mixing length model hasbeenapplied in a consistent manner to compute
the wide range of free turbulent mixing flows selectedas test casesin this compilation.
On the basis of these computations, the following concludingremarks canbe made.

The mixing length constant 1/5 was found to be lower in axisymmetric flows than

in planar flows. With 1/5 = 0.05 in axisymmetric flows and 0.07 in two-dimensional

flows, the calculations compare very favorably with the data for jets downstream of the

core, wake flows, and low-speed shear layers.

For the mixing of flows with differing or developing turbulent length scales (such as

near field to far field transition region in a jet and wake flows developing from boundary

layers), some method of correctly determining the local length scale should be used. In

the present paper, a linear algebraic function based on modeling the physical spreading of

the turbulence was used. Perhaps a more satisfactory approach would be the use of one

of the various "two-equation" turbulence models of Spalding's group (paper 11 of this com-

pilation) where a differential length scale equation is solved.

The mixing length model was unable to successfully compute the spreading rates of

free shear layers with large sustained density differences. This inability is tentatively

ascribed to the assumption of constant static pressure in the transverse direction (the

conventional quasi-parallel flow assumption). Therefore, a successful calculation method

for this class of flows (free turbulent mixing flows with sustained large density changes o___r

differences) may necessitate including equations for the mean normal momentum and v '2.

As discussed by Birch and Eggers in paper 2 of this compilation, there seems to be

an important "low Reynolds number effect" in some of the available data. However, fur-

ther analysis of the data is needed before this effect can be incorporated into prediction

methods.
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DISC USSION

H. McDonald: Can we regard this paper as a yardstick by which to judge the other pre-

dictions; in other words, if you cannot do any better than Prandtl's mixing length, then

why bother? That is the first question I would like for you to try and answer. The sec-

ond one is, are you advocating a development of Prandtl's mixing length and should this

work be pursued, or do you think that this is the point at which to abandon the specific

concept of mean field-direct relation with the turbulence and go on perhaps to the turbu-

lence kinetic energy equation and multiequation models of turbulence?

D. H. Rudy: Since a length scale equation has been added to the basic mixing length

model, the calculations cannot be regarded as baseline calculations in the classical sense.

The Imperial College paper has that type of mixing length calculation. Our use of the

mixing length is merely an attempt to better represent the physics of turbulent mixing in

nonequilibrium flows. The Conference Evaluation Committee is of course best qualified

to determine what this approach means in terms of other prediction methods. Personally,

I think that approaches like the various "two-equation" models which incorporate a length

scale equation appear promising.

D. M. Bushnell: We use this thing just as a tool to analyze the flows. We've used other

tools before and the mixing length is a convenient handle to put on the flow to find out if

it is doing anything surprising. I think it is obvious that you want to continue development

and each method in the hierarchy has its own application, and I think I'll leave it at that.

V. W. Goldschmidt: I guess I have a similar question: What is the basis for determining

whether the model works or not? Is it strictly a comparison with mean velocity or are

we going to try to look at turbulence stresses as well? I think if we take that daring step

your conclusions would have to be rephrased a little bit differently. Am I correct?

D. H. Rudy: Yes, we have examined only mean flow quantities and not the details of the

turbulence which are of course more sensitive to modeling. Perhaps the Evaluation

Committee will comment on this but I do agree with your observation.

H. McDonald: I'm sorry our time doesn't permit any more questions. I'd like to proceed

if I may.

Written Comments

S. J. Kline: For many decades most workers, including the discussor, have had the idea

that the mixing length and eddy viscosity were fundamentally different assumptions. How-

ever, recent developments suggest this is not so; there are two points. First, both are

closures which depend only on the local mean strain and scaling on the layer width. Sec-

ond, it follows from this that whenever one is used, there exists an equivalent formulation
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which is wholly consistent and equivalent within the accuracy of this level <_f approxima-

tion. In the case of Rudy and Bushnell's formulation, for example, one can write

(1)

If we also write

and equate

ay

in equation (1) and equation (2), we have

(2)

e = l 2 _.._u_. l 2 A.._UU
ay 6

and, since l is scaled on 6 (//6 = Constant), this is equivalent to e = k6 AU. Thus,

the differences observed in the two cases should arise from the forms and values taken

for the constants, and not from a fundamental difference between mixing length and eddy

viscosity formulations.

P. J. Ortwerth: The measured static-pressure defects which concern the authors have

been analyzed by myself prior to the formulation of my model. An order of magnitude

analysis shows that to first order the proper integration of the radial momentum equation

becomes

+ (pv)'v' = Pe (1)

and the normal velocity component remains a second-order term - that is,

<< (pv)'v' (2)

Further, equation (1) has been subsequently verified by Roger Craig in our laboratory by

comparing pv '2 measured with a hot wire anemometer, Thermo Systems model 1100,

and measured static pressure on jets.
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A KINEMATIC EDDY VISCOSITY MODEL INCLUDING THE INFLUENCE

OF DENSITY VARIATIONS AND PRETURBULENCE

By Leonard S. Cohen

United Aircraft Research Laboratories

SUMMARY

A model for the kinematic eddy viscosity has been developed which accounts for

the turbulence produced as a result of jet interactions between adjacent streams as

well as the turbulence initially present in the streams. In order to describe the turbu-

lence contribution from jet interaction, the eddy viscosity suggested by Prandtl has

been adopted, and a modification has been introduced to account for the effect of den-

sity variation through the mixing layer. The form of the modification was ascertained

from a study of the compressible turbulent boundary layer on a flat plate. A kinematic

eddy viscosity relation which corresponds to the initial turbulence contribution has been

derived by employing arguments used by Prandtl in his mixing length hypothesis. The

resulting expression for self-preserving .flow is similar to that which describes the

mixing of a submerged jet.

Application of the model has led to analytical predictions which are in good agree-

ment with available turbulent mixing experimental data.

INTRODUC TION

In the analytical treatment of turbulent shear flows, the local shear stress may be

expressed as the product of an eddy viscosity and the local velocity gradient by analogy

with the laminar flow representation. However, while the molecular viscosity for lami-

nar flow depends only on the fluid properties, the eddy viscosity is related to the struc-

ture of the turbulence in the shear flow. At present, turbulent flow phenomena are not

well understood, so that empirical hypotheses are utilized to create a mathematical

basis for the investigation of turbulent motion. These phenomenological theories lead

to a formulation of the kinematic eddy viscosity (eddy viscosity divided by local density)

which may be used with the equations of motion and a suitable equation of state to deter-

mine the local time-average conditions throughout a flow field.

The constant exchange coefficient hypothesis for the kinematic eddy viscosity sug-

gested by Prandtl is widely used in analytical studies of the mixing layer formed at the

boundary between adjacent fluid streams. In this hypothesis the kinematic eddy viscos-

ity is taken to be proportional to the product of the mixing-layer width and the difference

between the velocities at the edges of the mixing layer. Application of this formulation
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to the investigation of the mixing of incompressible streams of the same fluid, for exam-

ple, the classical analysis conducted by C-Srtler (ref. 1), has yielded results which have

been verified experimentally. Recent studies of compressible jet mixing (refs. 2 and 3),

however, have shown that Prandtl's relationship is not valid when the fluid density varies

through the mixing layer. Moreover, the prediction that turbulent transport will cease

when there is no velocity gradient in the flow is inconsistent with the experimental evi-

dence (refs. 4 and 5). In this case, it appears that the initial turbulence of the fluid

streams plays an important role in jet mixing. As a result of these findings several

new formulations of the kinematic eddy viscosity or equivalent mixing parameter have

been recommended (refs. 5 to 9). Unfortunately, the general validity of these new

expressions has not been satisfactorily demonstrated.

The present investigation was performed to resolve the discrepancies regarding

the effect of density on the kinematic eddy viscosity and the influence of initial jet turbu-

lence. Prandtl's hypothesis is adopted to describe the mixing of isothermal, incompres-

sible streams of the same fluid which results from the turbulence produced by interac-

tions between the streams. The hypothesis is modified to account for density variations

through the mixing layer by making use of flat-plate, compressible turbulent boundary-

layer information. The contribution of initial stream turbulence to the kinematic eddy

viscosity is investigated for a constant turbulent intensity and an intensity which decays

in the flow direction. In the latter case, use is made of the initial period decay law

which characterizes turbulent flow downstream of grids.

SYMBOLS

a constant

b transverse extent of mixing layer, m (ft)

C1,C2,C3 constants

C D drag coefficient

D diameter, m (ft)

d characteristic dimension of jet nozzle, m (ft)

e exponent for two-dimensional (e = 0) or axisymmetric (e = 1) flow

gc conversion factor, 32.2 lbm-ft/lbf-sec2
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j_t

M

m

ml

N

n

n 1

Re

rl/2

T

U

U

U T

U T

V T

X

intensity of turbulence defined by equation (33)

mixing length, m (ft) (see eq. (2))

fluctuating mean free path of fluid particles, m (ft)

Mach number

ratio of external stream velocity to centerline velocity

velocity ratio fixed by turbulence level

characteristic dimension of grid, m (ft)

ratio of external stream density to centerline density

density ratio fixed by turbulence level

Reynolds number

distance from tube centerline, m (ft) (except where indicated)

half thickness of jet, m (ft)

temperature, K (degree R)

velocity of stream approaching grid, m/sec (ft/sec)

velocity in longitudinal direction, m/sec (ft/sec)

longitudinal velocity fluctuation, m/sec (ft/sec)

friction velocity, m/sec (ft/sec) (see eq. (7))

average velocity defined in equation (24), m/sec (ft/sec)

transverse velocity fluctuation, m/sec (ft/sec)

axial distance, m (ft)
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X c

x 1

Y

7i

7

Subscripts:

e
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length of core region, m

axial distance at which

transverse distance, m

(ft)

m = m 1, m (ft)

(ft) (except where indicated)

transverse distance from centerline to inner boundary of mixing layer, m

distance from wall, m (ft) (except where indicated)

constants in equations (15) and (16)

constant in equation (41)

ratio of specific heats

boundary-layer thickness, m (ft)

kinematic eddy viscosity, m2/sec

mass fraction of species j

centerline decay exponent

constant in equation (3)

parameter defined by equation (13)

density, kg/m3 (lbm/ft 3)

spreading parameter (see eq. (22))

shear stress, N/m2 (lbf/ft2)

(ft2/sec)

centerline

external stream

(ft)



r

jet stream

denotes value for incompressible submerged jet

reference

totalcondition

w wall

asymptotic value

KINEMATIC EDDY VISCOSITY MODEL

When a jet discharges into a quiescent or flowing external stream, a distinctive

flow field develops which may be divided into two principal regions. (See fig. 1.) In the

initial region or "core" region, a mixing layer of finite thickness with a continuous dis-

tribution of velocity, temperature, and species concentration forms at the boundary between

the two streams. For the idealized system shown in figure 1, the velocities of the jet and

external streams uj and ue are uniform, the jet nozzle with characteristic dimension

d has infinitesimally thin walls, and the pressure is constant throughout the flow. The

mixing layer gradually broadens in the direction of flow and ultimately extends to the

centerline of the jet at x = Xc, which marks the end of the initial region. In the devel-

oped region, the velocity on the centerline u¢_ decreases while the width of the layer

continues to increase.

The equations of motion, modified according to the usual boundary-layer assump-

tions (ref. 10), are used in the analytical treatment of jet mixing. For turbulent jets, the

local shear stress is related to a kinematic eddy viscosity E according to the Boussinesq

hypothesis

_i (I)
gc T = p_ 3Y

Thus, once the kinematic eddy viscosity is specified,all local conditions throughout the

flow fieldmay be determined for selected boundary conditions.

Prandtl proposed two formulations to characterize the rate of mixing resultingfrom

jet-induced turbulence. In the earlier mixing-length hypothesis, Prandtl suggested the

relation

.91 ou I (2)
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in which the mixing length _ may be thought of as the transverse extent of an identifi-

able lump of fluid (i.e., an eddy). In Prandtl's new theory, referred to as the constant

exchange coefficient hypothesis, it is assumed that the kinematic eddy viscosity varies

in the axial direction only. From considerations of flow similarity, for example, that the

ratio of the mixing length to the transverse extent of the mixing layer b is constant

throughout the flow, it can be shown that

e= e(x) = Kblu¢ - Ue] (3)

where K is a universal constant in each region of the jet for a given geometry. Analyt-

ical studies conducted by Tollmien (ref. 11) with equation (2) and GSrtler (ref. 1) with

equation (3) produced the velocity distributions through a mixing layer presented in fig-

ure 2. As very little difference between the profiles can be discerned, the formulations

of equations (2) and (3) can be considered to be equivalent for practical purposes, and

hence the ratio of _/b may be considered to be a constant in an incompressible free

jet mixing layer. Equation (3) is simpler to use, however, and for this reason it is

adopted as the basic relation in the present model.

In any general formulation of the kinematic eddy viscosity it is necessary to con-

sider the turbulence initially present in the streams, that is, the "preturbulence," as

well as the turbulence produced as a result of the interactions between the streams.
u e

When the velocity ratio m - _ differs significantly from unity, the growth of the
mixing layer is controlled by jet interaction since shearing stresses of large magnitude

occur, which induce high-intensity turbulent activity. As m approaches unity, how-

ever, the preturbulence contribution may become the dominant factor. Thus, in a jet

mixing situation where mx= 0 << 1, the initial spread of the mixing layer depends on jet-

induced turbulence, while far downstream, after appreciable decay of the centerline veloc-

ity, the effect of preturbulence may become important. It should be noted, however, that

when mixing aids such as vortex generators or mixing "fingers" are present in the noz-

zle supplying the fluids or when the fluids to be mixed are introduced into the main flow

through angled injectors, the preturbulence contribution to the eddy diffusivity might pre-

dominate even for m << 1. Two classes of mixing phenomena may therefore be consid-

ered to stem from the two sources of turbulence identified above: (1) The turbulence

level is initially set by the jet turbulence and then gradually decays to the background or

"preturbulence" level; (2) the jet turbulence level is below the background level at x = 0

and the "preturbulence" is the controlling parameter over the full extent of the mixing

region.

Effect of Density Variation

As noted in the introduction, the results presented in references 2 and 3 indicate

that equation (3) is not suitable when there is a significant density variation in the mixing
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layer. Unfortunately, the available compressible mixing layer data are not sufficiently

extensive or reliable to indicate how equation (3) should be modified for this effect. How-

ever, since the free-shear mixing layer and the wake or outer region of the turbulent

boundary layer are described by the same system of equations, it is suggested that the

influence of compressibility for zero pressure gradient can be ascertained by examining

the behavior of the compressible boundary layer on a flat plate for which comprehensive

information exists. In order to implement this approach, an expression must be obtained

which relates e to parameters which characterize the boundary layer. Thus, if equa-

tions (1) and (2) are combined to eliminate the velocity gradient, the result is

e = _ (4)

which may be written in the expanded form

In equation (5) 5 is the boundary-layer thickness and the subscript w denotes condi-

tions at the plate surface. It was shown in reference 12 that neither the ratio of the local

shear stress to wall shear stress nor the parameter f/5 displays a great sensitivity to

either the Mach number or the Reynolds number. Therefore, it may be concluded that

e = f(y/5) (6)

where the friction velocity u_ is given by

(7)

Equation (6) implies that the normalization of the kinem_ttic eddy viscosity with the pro-

duct 5uT(pw/p)l/2 results in a universal parameter, which is a function of only the

dimensionless transverse distance through the boundary layer. This has been verified

by using the calculation procedure described in reference 12, with the exception that a

value for the exponent on the density ratio pw/p of 0.4 fits the data better than the
derived value of 0.50. Results of the calculation are given in figure 3 for Mach numbers

of 0, 2.0, and 5.0.

By applying the analogy between the wake region of the turbulent boundary layer and

the turbulent mLxing layer, _+._is _..._-_ +h_t_..__equation (a_,v,may _ -_ ....... _++_-._.._""_..._h_ mixing

layer in the following form:
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e = f 1(Y/b)

where Pr and U%r are jet reference conditions and b is the extent of the mixing

layer in the direction normal to the jet axis. Furthermore, since the kinematic eddy

viscosity is independent of y for an incompressible jet, or shear layer, the form of

fl is then known and the relation may be written as

e = Constant

buT,r(Pr/P) 0"4

(8)

for both compressible and incompressible mixing layers. Assuming the existence of

velocity and temperature profile similarity, it may be deduced that

U2,r :_gcTr =e au I ~e luc-- uel
Pr _YYr b

(9)

Thus,

/p \0.8

= bluc--Ue{ (10)

which generalizes equation (3) to include density variations. It still remains, however,

to specify the ratio pr/p. It should be noted that this ratio must reduce to unity when
there is no density variation through the mixing layer and that it must reflect the experi-

mentally observed decrease in the mixing rate when the Mach number of a supersonic,

submerged jet is increased at constant static temperature (refs. 13 and 14). A possible

representation is

Pr = f. PC_+ Pe (11)

P 2pc-

where f* is an empirical parameter equal to unity for incompressible jet mixing, which

may vary with Mach number for example (ref. 15). Introducing equation (11) into equa-

tion (10) leads to

K[., pc-+ pe_0.8
E= (12)
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Comparison of Modified Formulation With Experimental Jet SpreadingData

The spreading parameter a is usually reported in the results of jet mixing stud-

ies. This parameter may be thought of as a scaling factor in the transformation from the

x-y physical coordinate system into a system with the single independent variable

defined as

m

= a Y - Y (13)
X

Under conditions of profile similarity, there is a value of

profiles

that will allow all velocity

u - u e
= (14)

u¢_ - u e

to be collapsed to a single curve.

Another consequence of profile similarity is the existence of a unique relationship

between the spreading parameter a and the extent of the mixing region b for a given

flow situation. The extent of the mixing region may be defined as the transverse distance

between the points at which

and

u - u e = (_l(U¢_- Ue)= u 1 - u e (15)

u- u e=ot2(uc_-ue) =u 2-u e

where a 1 and ol2 are arbitrary but universal constants and U 1

velocities at the extrema of the mixing region located at Yl and

From equation (14) (the similarity law) it follows that

=F( I) --F

and

_2 = F(_2)= F(aY2x-Y)

(16)

and U 2 are the

Y2' respectively.

(17)

(18)

From the definition of the extent of the mixing region,

b=Yl- Y2 =(Yl - Y")- (Y2 - Y') (19)
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and hence

 Yi-Y Y2-Y"
T = x _ _ = _1 _2 (20)

Therefore, for any arbitrary nondimensional profile function F, it is seen that

ab:x F-l(°ll) - F-l(a2): Constant (21)

where F-1 is the inverse of the profile function of equation (14) and the constant depends

only on the form of the profile function once the values of al and _2 have been chosen.

Hence, it is seen that the spreading parameter is proportional to the cotangent of the

spreading angle of the mixing region, and if a is a constant, then b must vary lin-

early with x.

Investigations of incompressible jet mixing systems have shown that the lateral

extent of the mixing region b does vary linearly with x, for example, in the core

region, or in a fully developed region, where the external stream is quiescent. It may

be further shown that in this case the kinematic eddy viscosity is related to the spreading

parameter by the equation

and hence the spreading parameter is proportional to the square root of the turbulent

Reynolds number of the jet, which is also a constant. In equation (22) e = 0 for a two-

dimensional jet, e = 1 for an axisymmetric jet, and _ is the characteristic velocity

given as

(22)

= uc- + u e
2 (23)

For the present consideration of density variation through the mixing layer, it is reason-

able to extend the validity of equation (22), at least for moderate variations in density, by

employing a suitable definition of the characteristic velocity, and the kinematic eddy vis-

cosity determined in equation (12). The following expression for the characteristic veloc-

ity proposed by Yakovlevskiy (ref. 16) for the range of 0.3 __<Pe-- -<2 will be adopted:
PC_-

= PeUe + pc-uc- (24)

Pe + PC-
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u e
Then, introducing equations (12) and (24) into equation (22) and defining m -- --

uc-Pen ------ result in
PC_'

and

I (1 + mn)(_._/- 1"8 11/2

which pertains to compressible jet mixing flows in which b/x is constant.

Typical experimental velocity profiles for incompressible and compressible jets

mixing with quiescent and moving external stream are plotted from references 13, 17,

and 18 in figure 4. The values of a used in figure 4 were determined by matching the

slopes of the experimental velocity profiles with the slope of the profile for the incom-

pressible submerged jet at u - ue = 0.5. As can be seen, the choice of a suitable value
uc-- ue

of _ for each mixing flow system results in essentially exact coincidence of all velocity

profiles, thus lending validity to the similarity assumption of equation (14) upon which the

validity of equation (25) rests. Equation (25) may be put into a more useful form by form-

ing the ratio _/#o, where _o is the spreading parameter for an incompressible, sub-

merged jet (i.e., m = 0, n = 1) having a value of approximately 11.0 in the core region

(ref. 17). This results in the expression

___ = (1 + mn) (26)

°'° (1___q)1"811 " mlf *0"8

For an incompressible jet discharging into a moving external stream,

f* = 1, and hence equation (26) reduces to

n = 1 and

cr = 1 + m (27)
% II-ml

which is in general agreement with experimental measurements taken from references 16,

17, 19, and 20. (See fig. 5.) For compressible submerged jets (i.e., m = 0),

o" (1 + nl- 1"8(f,/-0'8
\-y-) , (28)
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which may be written as

Ii y¢-- IM_21''8

a =(f.) -0.8 ____+'--2--

+ 4 M_-2/

(29)

for constant static pressure and molecular weight throughout the mixing layer. Equa-

tion (29) is compared with data from references 11, 13, 14, 17, and 21 to 27 in figure 6

for various assumed variations of f* with jet Mach number. A value of unity for f*

over the Mach number range 0 to 3.0 appears to result in fair agreement with most of

the data points. In particular, the choice of f* = 1 is predictive of the comprehensive

experimental studies of Maydew and Reed (ref. 13) and Olson and Miller (ref. 14).

Accordingly, the parameter f* will be taken as unity in the remainder of this work.

Experimental data from two-stream mixing studies in which there exists a density

variation through the mixing layer provide the most important test of equation (26). Such

data, obtained from references 28 and 29, are compared with equation (26) in figure 7.

The agreement between measured and calculated values is very satisfactory except for

velocity ratios greater than about 0.50. This discrepancy will be investigated in some

detail in subsequent sections. A listing of the test conditions and jet widths from refer-

ences 29 and 30 as well as the calculated results from equation (26) is also given in

table I.

Effect of Initial Turbulence

As a result of recent experimental studies, it has been suggested (ref. 5) that initial

turbulence becomes the controlling factor in jet mixing at values of the velocity ratio m

near unity. This breakdown of the jet interaction mechanism, exemplified by equation (12),

is also apparent from some of the data presented in figures 5 and 7 for m > 0.4, which

deviate from the analytical result (eq. (26)). When preturbulence controls, it appears

that the spreading parameter becomes independent of m, at least for n = 1.0, so that

equation (26) is no longer valid.

For the purpose of developing a formulation of the kinematic eddy viscosity for the

preturbulence mechanism, it is convenient to begin with the basic expression (ref. 30)

e = -v'_--r (30)

Equation (30) relates the kinematic eddy viscosity to a parameter associated with the eddy

size of the turbulence field _' and the transverse velocity fluctuation v'. In the spirit
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of Prandtl's mixing length hypothesis (ref. 20), it is assumed that the mean of the product

of fluctuating quantities is proportional to the product of the means of the absolute values

of these quantities, that is,

"with 0 < a < 1 (a ¢ 0). Although nothing is known about the numerical parameter a, it

may be inferred that it is related to a correlation factor which is descriptive of the tur-

bulent field. As shown in reference 30, [_7[ may be taken to be proportional to the mix-

ing length, which for similar flows is also proportional to the width of the mixing region.

Hence,

e ~ bI_ (32)

in which the turbulent intensity I is defined as

which for situations involving isotropic turbulence is identical with the conventional defi-

nition of intensity and where _ is given by equation (23). Noting that the longitudinal

gradient of the mixing layer width varies directly with the turbulent intensity (ref. 20),

as in the case of jet-induced turbulence, then,

px

b=b i+C lj. Idx (34)
x i

It follows from equation (32) that

(35)

where C2 is a constant.

In general, the turbulence will decay from some initial value starting a small dis-

tance downstream from x = 0. The decay will continue with distance in the flow direc-

tion until a value of intensity commensurate with the background turbulence level is

attained.

An interesting special case of equation (35) results if it is assumed that the mean

absobate value of the transverse velocity fluctuation always varies in direct proportion to

the average flow velocity. In this event, that is,
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it follows that

and

~_

I = Ix= 0

b_x

for b i = 0 at x = 0. Introduction of this assumption implies that the shear flow induced

by the preturbulence is self-preserving, in that the distribution of the nondimensional tur-

bulent shear stress across the shear region is similar at any cross section. The turbu-

lent (Reynolds) stress is given by

but

gc__Z= _u,v--=~
_2 _-2 _2

following Prandtl (ref. 31). Therefore,

gc _" ~ 1x'2=0

as required. Verification of this behavior for plane jets in most of the developed region

is provided by measurements presented in reference 32.

The spreading parameter for a constant turbulent intensity is obtained by taking

I = Ix= 0 and combining equations (22) and (35) with the result

P (l-e) F_ + -_- 1/2

which is independent of the local velocity ratio. For a free jet where the mixing is ini-

tially controlled by jet-induced turbulence, there must exist some distance x = Xl, at

which the velocity ratio attains a value m 1 and the spreading parameters given by

equations (25) and (36) must coincide. Thus,
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I1- ll(1 +.i)11+ °'8
C2 x=O= i (37)

so that the appropriate value of the velocity ratio m 1 at which the mixing becomes con-

trolled by the preturbulence mechanism may be obtained, in principle, from the main-

stream turbulence level. The mixing downstream of the position x 1 is controlled by

the preturbulence mechanism, and the appropriate kinematic eddy viscosity relation is

obtained by combining equations (35) and (37), that is,

K(12_nl)0"Sbll m lu _l++nl_{l+n]\l + mn _1
e = - 1{ _L\ 1 mlnl]j (38)

It is interesting to note that equation (38) corresponds to the expression describing the

mixing of an incompressible submerged jet since the factor in the brackets is only a

slowly varying function of m and n.

Far downstream from the origin of jet mixing, m and n approach unity and the

asymptotic kinematic eddy viscosity for the turbulent jet becomes

/1 1+ nl l/1+ n1/0"8en=m= I =eoo = Kb[l- ml[u__ + mlnl]\------_--- ]
(39)

This expression may be compared with the asymptotic relation given in reference 2, that

is,

%o = 0"04r 1/2u__ (40)

which was used to correlate data from a study involving the mixing of coflowing hydrogen

and air at nearly equal stream velocities. In equation (40)

the jet centerline and the transverse position at which

b _- 2rl/2, equation (40) may be rewritten as

e_ _ 0.02but_

which is identical in form to equation (39).

Initial turbulence levels are generally low in jets which are produced by expanding

a gas through a nozzle. However, if there are blockages inthe flow as in the case of a

ducted fan engine or if mixing aids such as vortex generators are deliberately introduced

into the flow, high levels of turbulence can result. In these cases, the initial turbulence

rl/2 is the distance between

u- u e=0.5(uc_-ue). Since
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level cannot be sustained in the jet flow, and it is expected that [_[ will-decay with dis-

tance downstream. Although the nature of this decay is not known, it is of interest to

apply the initial period decay law found for isotropic turbulence downstream of grids to

the present problem. The decay law

v,2

has been verified by a number of authors including Batchelor and Townsend (ref. 33) for

grid Reynolds numbers from 640 to 5600, Webb (ref. 34) for grid Reynolds numbers from

2000 to 12 000 at various pressures with argon, helium, and air, and Kistler (ref. 35) for

high Reynolds numbers. In equation (41) fl is an absolute constant, 1 pU2CD is the

drag of unit cross-sectional area of the grid, and N is an effective unit of length, which

depends on the spacing of the grid elements. The ratio Xo/N , which has a value between

5 and 15, corresponds to the station at which the decay begins.

In order to adapt the decay law for use in equation (35), it is convenient touse the

following modified form of equation (41):

1 1 /3x

Vx2=0= U-_CDN
(42)

or

-1

l1 _v'2\

2 v" x=N/Y'
(43)

Furthermore, by assuming that

v,2 2
(44)

the eddy diffusivity for the preturbulence mech_nJ.sm following the decay law of equa-

tion (42) takes the form

__NU2C _(1 + 0) 1/2

e=C4\ _ i1: 0) 1/2
(45)
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where b i has been taken to be equal to zero, and

0 - _xvx2=0

U2CD N
(46)

The integral in equation (45) may be evaluated immediately to yield

o>- (47)

for the core and asymptotic regions, as _ is constant for these cases. Moreover,

since /7 = 100 and C D _ 1 (ref. 33) and expected turbulence levels are such that

v,2
0.05 - m < 1.0, 0 becomes large relative to unity a small number of grid spacings

U 2=

downstream of the initial station. In this event,

e= 2C3_ _- 7 = Constant (48)

in the core region, while far downstream of the initial station

2C (NU2CD_

The kinematic eddy viscosity formulations derived above cannot be verified at this time

since pertinent experimental information does not exist. It is interesting to note with

respect to equation (48), however, that a constant kinematic eddy viscosity often success-

fully correlates experimental mixing data (ref. 4).

Application of the Model

The principal results of the preceding analysis are embodied in the three expres-

sions for the kinematic eddy viscosity, equations (12), (38), and (47). The choice of

which form to use in a particular mixing study depends on the expected value of ml

and whether the turbulent intensity in the jet streams decays or remains approximately

constant with distance downstream. While a value of m 1 close to unity may be obtained,

in theory, in a very carefully designed experiment, values of m 1 between 0.4 and 0.5

are found to be representative of a major portion of the existing mixing data (ref. 20, also

figs. 5 and 7).
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Somecaution shouldbeexercised in the application of the model to flows in which

the ratio of external to centerline density is very large compared with unity, for example,

the mixing of a central hydrogen jet with an outer air stream when the static temperatures

of the two streams are not too different. As the density ratio increases and/or the veloc-

ity ratio increases above unity, the rate of mixing increases and ultimately leads to the

generation of a significant positive pressure gradient in the initial mixing region and flow

reversal of the inner jet (refs. 36 and 37). According to the data presented in refer-

ence 38, a back-flow vortex is formed at a momentum flux ratio nm2 of 169. Further-

more, characteristics of wakelike flow, for example, centerline velocity initially decreas-

ing, then increasing, are observed for momentum flux ratios greater than about 4. Use of

the models for momentum flux ratios much in excess of 4, therefore, is not recommended.

In summary, when the ratio of velocities at the edges of the mixing layer is less

than ml, equation (12) is used; otherwise, equation (38) or (47) is used. It is recom-

mended that equation (47) be used only in studies in which artificially high levels of tur-

bulence are present because of the introduction of mixing aids into the flow field.

DISCUSSION OF RESULTS - COMPARISON OF THEORY

WITH EXPERIMENTAL DATA

The kinematic eddy viscosity model developed in the preceding sections was used

with the United Aircraft Research Laboratories mixing-combustion computer program

(ref. 38) to generate flow-field information which could be compared with available mea-

surements. A value of ml, treated as a program input, indicated that the kinematic eddy

viscosity was to be calculated from equation (12) for m = m 1 and from equation (38) for

m > m 1. The value of n 1 was calculated in the program at the longitudinal station where

m = m 1. If the initial velocity ratio exceeded ml, n 1 was taken as the ratio of the

external stream density to the initial jet density. For the results discussed below, m 1

was taken to be equal to 0.40. The transverse extent of the mixing zone b was calcu-

lated according to the method discussed earlier (eqs. (15) and (16)) with a 1 = 0.95 and

a2 = 0.05 in the core region. Values of K which were employed are given in table H

(refs. 39 and 40).

The Two-Dimensional Shear Layer

Computed velocity profiles at two axial stations for m = 0.01 and m = 0.10 are

compared with GSrtler's theoretical profile (ref. 1) in figure 8. The excellent agreement

obtained is an indication that the computer program is operating properly.
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Mixing of Coaxial Incompressible Jets

Landis (ref. 28) investigated the mixing of a 0.64-cm-diameter (0.25-in.) heated

air jet with a coflowing annular air stream at room temperature. In certain tests, small

amounts of helium or carbon dioxide were also metered into the central jet. The velocity

of the central jet was about 60 m/sec (200 ft/sec) while the velocity of the external

stream was varied from 15 to 41 m/sec (50 to 135 ft/sec) to change m. The largest

temperature difference between the streams was 180 K (325 ° R).

Measurements of the longitudinal variation of the centerline velocity ratio for vari-

ous tests are compared with calculated results in figures 9 and 10. For the data pre-

sented in figures 9(a) and (b), the initial velocity ratio is 0.25 and the eddy diffusivity is

calculated from equation (12) until m =>0.4. In figure 9(c) and figures 10(a) and (b), the

initial velocity ratio exceeds ml, and equation (38) of the model is employed throughout.

Although the initial values of m and n are identical for both parts of figure 10, the

nonunity value of n for figure 10(a) resulted from a temperature difference of 58 K

(105 ° R) between the jet and external streams, while that in figure 10(b) was caused

principally by the addition of helium to the jet. Thus, the use of a density correction to

account for temperature and/or concentration variations through the mixing layer appears

to be justified.

Subsonic Mixing in a 53-cm-Diameter (21-in.) Tube

In the experiments of reference 41, a Mach 0.3 jet at 733 K (1320 ° R) was brought

into contact with a cold, Mach 0.1 external stream in a duct. The measure of agreement

between calculated and experimental velocity and temperature profiles at two axial sta-

tions is shown in figures 11 and 12. Both magnitudes and trends are seen to be repro-

duced accurately.

Mixing of a Submerged Supersonic Free Jet

Eggers (ref. 42) conducted an analytical and experimental study of the mixing of a

Mach 2.22 air jet with quiescent air. The axisymmetric jet which issued from a 2.56-cm-

diameter (1.00q-in.) nozzle was probed at seven axial stations in the core region and 23

axial stations in the developed region.

Predicted and experimental profiles at three stations are shown in figure 13. In

order to treat this problem with the existing mixing analysis, it was necessary to assume

that the external stream had some velocity. The chosen value of u e = 30 m/sec

(100 ft/sec) is thought to be sufficiently small relative to the jet velocity so as not to

invalidate the comparison. The predicted mixing region is seen to spread somewhat

more rapidly than is indicated by the measurements but the agreement is still consid-

ered to be good.
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Ducted Mixing of a Supersonic Jet With an Annular Subsonic Jet

Isoenergetic mixing of a central Mach 2.6 air jet with a low-velocity external air

stream was investigated in reference 43. Mach number profiles from the cited reference

are shown with the computed results in figures 14 and 15. The effect of a shock system

on the profile at x/D = 2.5 should be noted. Good agreement is obtained at the four

axial locations shown over most of the duct cross section. The lower predicted values

in the vicinity of the pipe centerline in the downstream profiles are to be expected inas-

much as the wall boundary layer was not accounted for. The analytical results and the

data show the interesting phenomenon of the acceleration of the subsonic external stream

to supersonic Mach numbers.

Other Examples

The models presented in this paper have been applied extensively so that numerous

other comparisons with data are available in the literature. Groves (ref. 44) and Cohen

and Guile (ref. 45) have utilized the recommended kinematic eddy viscosity formulations

in a treatment of the mixing and combustion of a supersonic central hydrogen jet with an

outer supersonic vitiated air stream. The momentum flux ratio of the jet mixing system

studied was approximately 1.5. Eggers (ref. 46) studied supersonic hydrogen-air mixing

(nm2 = 2.2 and 7.7) and found that a kinematic eddy viscosity of the form given by equa-

tion (12) satisfactorily correlated his data.

CORRELATION OF EXPERIMENTAL CENTERLINE DECAY RATES

The decay of centerline concentration is generally presented in the form

where x c is the core length. A correlation of existing data (including that from refs. 47,

48, and 49) emerges within the framework of the ideas presented in this paper, when the

observed values of 0 are plotted against the initial jet velocity ratio mx= 0. It is found

from figure 16 that 0 is approximately unity over the range of velocity ratios where

preturbulence predominates independent of density ratio. Over the range of velocity

ratios where jet interactions constitute the dominant turbulence producing mechanism,

is larger than unity and depends on both m and n. These findings are consistent

with the jet spreading data of reference 50.
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CONCLUSIONS

On the basis of the analysis presented herein and comparison between the analysis

and existing data, it may be stated that

1. The proposed model for the kinematic eddy viscosity, involving an extension of

Prandtl's constant exchange coefficient hypothesis to account for the effect of density var-

iation through the mixing layer, yields good agreement with measured jet spreading

parameters.

2. Transport of heat and mass can occur when the velocities of the jet and external

streams are equal as a result of initial turbulence.

3. Additional mixing data are required to provide verification of the kinematic eddy

viscosity model. In particular, information concerning the rate of mixing of jets at sev-

eral different initial turbulence levels would be of value.
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TABLE I.- COMPARISON OF EXPERIMENTAL AND PREDICTED

SPREADING PARAMETERS

m

0.25

.25

.46

.50

0

.382

.678

0

.279

n

1.300

1.087

1.087

1.300

a (b/x) experimental

Landis (ref. 28)

0.185

.165

.095

.106

(o'/a o)experimental

Willis and Glassman (ref. 29)

1.372

1.540

2.680

2.40

( / O)calculated

1.37

1.57

2.57

2.57

.496

.319

.567

.234

.415

0.915

.927

.952

.842

.852

.876

1.324

1.361

1.218

1.251

0.216

.1298

.0759

.1968

.1421

.0986

.1403

.0836

.1655

.1266

a (b/X)o determined

(ref. 20) is 0.270.

1.18

1.96

3.35

1.29

1.79

2.57

1.81

3.04

1.53

2.00

to be 0.254 from data. Value suggested by

1.08

2.34

5.30

1.16

1.97

3.20

1.60

3.04

1.394

2.10

Abramovich
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TABLE II.- SPREADING PARAMETERS FOR CONSTANT DENSITY JET MIXING

(7 a K

Core region (e = 0) ....................... 11.0 (ref. 17) 0.00764

Developed region:

Axisymmetric (e = 1.0) ................... 22.6 (ref. 39) 0.0089

Two-dimensional (e -- 0) ................... 9.1 (ref. 40) 0.0136

acalculated from equations (3) and (22) with (b/x) o = 0.27 in the core region and

(b/X)o = 0.22 in the developed region as suggested in reference 20.
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DISCUSSION

M. V. Morkovin: Will you ask the awkward question or will IT

H. McDonald: I think Dr. Cohen made it quite clear as to how he viewed the present pro-

cedure, that is a pragmatic industrial procedure which is designed to effect some calcu-

lations, and as he points out, that any developed turbulence model, I don't want to put

words in Dr. Cohen's mouth - any developed turbulence model will have to take certain

effects into account before they can be of use to people like the propulsion group at United

Aircraft Corporation and in addition will have to explain certain things which the present

model does in an albeit empirical manner. Is that correct, Dr. Cohen?

L. S. Cohen: Yes.

M. V. Morkovin: You talk about these preturbulent mechanisms. Well, how many param-

eters do you really have for the preturbulent mechanism - how do you choose for a given

situation? What is the upstream boundary-layer effect or what ? I mean, is it just

because you have seen it before and you know you are a good cook, or do you have some
real mechanisms in mind ?

L. S. Cohen: Well I think your comment about being a good cook is part of it, certainly.

As I mentioned, it turns out accidently the only thing you really have to select in the model

is the ml parameter.

M. V. Morkovin: Look, what is the mechanism - you said the mechanism ?

L. S. Cohen: I am sorry, I did not mean to imply that what I am calling preturbulence is

just a pot into which I am throwing all of my ignorance. What I am saying is, there is

some initial turbulence level which, I suppose if we were wise enough, we would go in and

measure in all of these difficult cases. In deriving this model, we simply assumed that

this initial turbulence level could be sustained somehow in the flow and that this m 1

parameter is directly relatable to this initial turbulence level. The mechanism by which

this initial turbulence is produced, I have no idea how it is produced initially. I just think

we do not know what the causes are but the effect is a particular initial turbulence level so

that no mechanism is put forth for the production of this initial turbulence level.

S. W. Zelazny: I have a comment concerning your second slide and that was the mass

fraction decay exponent. You had shown a plot and the plot showed a definite dip in that

decay exponent for velocity ratios near unity. I think maybe you might be putting a little

bit more into the data interpretation than we have a right to expect, primarily because if

you look at the data that are available that enable us to calculate that decay exponent, you

will find that most of the data are restricted to about 20 diameters downstream. Some

of the data that you used, for example Alpineri's data, did show a decay exponent in the

182



ballpark of unity. I do not think 20 diameters is sufficiently far downstream to really

call it an asymptotic decay and that is what we are looking for.

L. S. Cohen: I guess I agree with what you are saying, but I really do not have any com-

ment on it, I think that your point is well taken.
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ANALYSIS OF FREE TURBULENT SHEAR FLOWS

BY NUMERICAL METHODS*

By H. H. Korst, W. L. Chow,

University of Illinois at Urbana- Champaign

R. F. Hurt,

Bradley University

R. A. White, and A. L. Addy

University of Illinois at Urbana-Champaign

SUMMARY

Analysis of free turbulent shear flows inherently requires the utilizationof con-

ceptual and quantitativeformulations concerning the exchange mechanisms. The effort

has essentiallybeen directed to classes of problems where the phenomenologically

interpreted effectivetransport coefficientscould be absorbed by, and subsequently

extracted from (by comparison with experimental data),appropriate coordinate trans-

formations. The transformed system of differentialequations could then be solved

without further specificationsor assumptions by numerical integrationprocedures.

An attempt has been made to delineate differentregimes for which specific eddy

viscosity models can be formulated. In particular,thiswill account for the carryover

of turbulence from attached boundary layers, the transitory adjustment, and the asymp-

toticbehavior of initiallydisturbed mixing regions. Such models have subsequently

been used in seeking solutionsfor the prescribed two-dimensional test cases yielding

apparently a better insightinto overall aspects of the exchange mechanisms.

Considerable difficultyhas been encountered in the utilizationof computer

programs dealing with axiallysymmetric geometry as they presently exist at the

University of Illinoisat Urbana-Champaign. Consequently, only a brief account of

these methods and programs has been included - mainly in the form of references.

INTRODUCTION

Much progress in understanding flow separation, separated flows, and wakes

has been made since the mutual dependence between viscid and inviscid flow regions

has been properly recognized. Development of an attached boundary layer, its sepa-

ration from solid boundaries fcrming a free shear layer capable of mass entrainment

*This work was partially supported by NASA through Research Grant
No. NsG- 13- 59 and subsequently through NGL- 14-005-140.
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from the wake, and energy transfer to and across individual streamlines have been

related to the recompression process at the ehd of the wake and thus have allowed the

analysis of previously not understood flow problems of practical importance.

Over more than a decade, work at the University of Illinois at Urbana-Champaign

has been focused on propulsion problems relating to base pressure, base heating, and

ejector nozzles for thrust augmentation, and so forth. In support of a comprehensive

systems approach (based on the understanding of constituent flow components) much

attention had to be given to free shear layers which has resulted in both analytical and

experimental programs. These efforts have, however, been clearly guided by, and sub-

ordinated to, practical objectives.

When called to the task of participating in the present effort, the authors were

restricted, naturally, to what had already been developed for serving their own programs.

The response is, therefore, selective inasmuch as some of their computer programs have

not been found flexible enough to handle all the cases submitted to the predictors.

SYMBOLS

C concentration of species

Cp specific heat at constant pressure

C Crocco number

d viscosity index

D energy defect thickness

dimensionless stream function (similarity solution)

function of transformed x-coordinate

h enthalpy

k

integrals defined in reference 6

thermal conductivity

L reference length
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M molecular weight or Mach number

Prt

r

R

Re x

Sc t

T

U

W

X

X o

Y

77

turbulent Prandtl number

radius

gas constant

Reynolds number based on x, UaX/v a

turbulent Schmidt number

temperature

longitudinal velocity component

transverse velocity component

dimensionless center-line velocity defect

longitudinal coordinate

shifted origin position

transverse coordinate

boundary-layer thickness

momentum thickness of boundary layer

energy thickness of boundary layer

eddy diffusivity

where r a is the radius of the central jet

similarity variable

static temperature ratio
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A stagnation temperature ratio

dynamic viscosity

laminar kinematic viscosity

dimensionless x- coordinate

transformed coordinate

P density

spread rate parameter

spread rate parameter for incompressible flow

dimensionless velocity

stream function

dimensionless stream function

Subscripts:

a faster free stream

asy asymptotic condition

b slower free stream

center-line value

d particular viscosity index value, or the dividing streamline

error function

laminar state

stagnation state
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RA large value of

turbulent or transitional state

1,2,4 integrals in reference 6

ANALYSIS

This analysis is restricted at the outset to constant-pressure mixing. Any addi-

tional assumptions, as they will affect the mathematical rigor or impose physical restric-

tions on the solution, will be discussed as they are introduced.

It will be useful to differentiate between kinematic and dynamic similarity when

single-independent-variable solutions are utilized. The former refers to nonasymptotic

mixing profiles which can be related to similarity profiles by accounting for initial dis-

turbances through appropriate coordinate shifts. Normally, such profiles will not exhibit

dynamic similarity as the initial exchange mechanism is not consistent with that of the

"matched" solution. On the other hand, when the initial profile of the mixing region

results from a strong expansion of an attached boundary layer, there may be nearly

dynamic similarity within a newly started shear region at the very edge of the expanded

profile, while the growth of the dissipative shear regions occurs within a vortex layer

and thus does not exhibit kinematic similarity.

TWO-DIMENSIONAL MIXING

Fundamental Equations

The conservation equations for a pure substance 1 are

8 (_V _

tp

pUcpST 8T 8_ 8a_yy) _2_- + pVCp ay = _'_ t + _t

The stream function is now introduced

og, a-k =--P-v
0"7 = + _a u 0x Pa

(1)

(2)

(3)

1An extension for gas mixtures
account, see Hurt (ref. 1).

is discussed subsequently. For a more detailed
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and new dimensionless variables defined

gb= u x _=_ 8- T _Pa (4)
_aa _ = E uaL T a P

where _, related to the stream function @, is to be used as an independent variable in

the Von Mises plane. Accordingly, after introducing the free-stream Crocco number,

Ca 2 - Ua 2
2CpTo a

and accounting for the transport mechanisms by the kinematic viscosity

effective Prandtl number Prt, the following equations are obtained:

(5)

et = _t and the
P

(6)

A far

7 2c 2_'_ _ _ rtLua _ + L"_al-Cq20-_-_/

reaching simplification of the analysis can be achieved by setting (ref. 2)

(v)

gt p(1-d) = f(_) (8)

where d = 1 - w (w being the exponent of the Sutherland equation for the dynamic vis-

cosity of a gas) corresponds to the laminar mixing problem.

The transformation

d_= 1 et d} (9)

ReL u _o2-d

then produces a pair of parabolic simultaneous partial differential equations which can be

solved without reference to any specific assumption concerning exchange mechanisms

(except d and Pr O. These equations are

1 8 (_._ ___) 2Ca 2 ___/_8_._2_= P-rt _ +1-Ca 2 0--_8-_)
(11)

190



For given initial conditions, step-by-step integrations using implicit iterative pro-
ceduresfor better convergence(see ref. 3) canbe carried out with the help of high-speed
digital computers.

in the form of _(_,_) and 0(_,_) and the coordinate y/L isResults appear

found from

(12)

Similarity Solutions

"Exact solutions".- By starting with equation (10) and following the development for

nonisoenergetic mixing of two uniform streams having identical compositions (ref. 4), an

effective Prandtl number of unity, and satisfying the boundary conditions

leads to

y -*-_, u - Ub, TO - Tob

y -* +_, u --Ua, T O --Ton

f'" IA- Ca2f'2_d ff"- d(A'- 2Ca2f'f '') f" -0 (13)
+L1- J A-ca2,'2

-_,
where f(7/) - g-_ f'0/) = _,

77 is the independent similarity variable defined by

_] -- -_g' (14)
_1 rg

and primes

From the assumption of similarity, it follows that one may set

so that

_ = _ (15)

indicate differentiation with respect to the respective independent variable.

gg' = 1 _,

g(_')= _2"_ (16)
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and the transformation to physical coordinates canbe accomplishedwith

1

By adoptingC_ertler's formulation (ref. 5) of

(17)

et _ 1 Re L _ (18)
v_ 2"d 4ad 2

one obtains

2a d Y =,_" _ d_ (19)

where the origin of y is placed at the zero streamline where f(l)rT}" = 0. aThe notation
ad has been introduced to stress the fact that the similarity paramet= depends not

only on the procedure of matching between an experimental and an analytical profile but

also on the choice (if one is needed or indicated) of the analytical formulation (ref. 4).

An extension to analyze the mixing of two streams having different gas constants

R a and Rb is easily accomplished for Prandtl and Lewis numbers of unity by the

expression

Pa=p 1-1Ca2 _ Tv/2 _2C a (20)

(See discussion of test case 3, also.)

Error function solution.- Proposed as a first-order approximation for solving equa-

tion (10) under the conditions of incompressible flow with d = 0 by GSertler (ref. 5), the

error function distribution for the velocity profile is

1 - q_b err 7? (21)_b = 1(1+ _bb)+ m

where _ = ae(Y ). The error function solution has been widely used for momentum inte-

gral methods devised to deal with compressible, diabatic (ref. 6), and even reactive

(ref. 7) free shear layers. Auxiliary integrals for determining mass, momentum, and

energy transfer, as well as shear stress, dissipation rates, and property distributions,

have been tabulated (ref. 6) or made subroutines of more comprehensive programs deal-

ing with propulsion problems (ref. 8). A discussion of differences between spread rate

parameters (_e, ad, etc.) has been included in reference 4.
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Initially Disturbed Mixing Region

Similarity solutions are reachedasymptotically as the influence of initial distur-
bances (in velocity andproperty profiles andin the exchangemechanism)decreases.
The gradual approachto similarity profiles canbe represented in its latest stagesby a
lateral shift of mixing profiles, that is, by satisfying the momentumintegrals. This still
leaves openthe questionof how to interpret properly similarity parameters suchas a
whenthe exchangemechanism is to be evaluatedat other than far-downstream locations.
Attention will be givento the latter problem in the section on "Eddy Viscosity Concepts."

Origin-shift methods.- Utilization of similarity solutions for initially disturbed

profiles by origin-shift methods has been suggested in different forms by various authors,

and the work of Hill and Page (ref. 9) and Kessler (ref. 10) may be consulted for further

details. Use of the momentum integral for determining lateral and longitudinal coordi-

nate shifts will, however, become unfeasible when wakes or mixing between streams of

nearly equal velocity in the presence of relatively large initial disturbances have to be

considered. It should be noted that virtual origins for exchange coefficient growth have

been found useful in connection with eddy viscosity models employed in finite-difference

integrations of the fundamental equations (see the section "Eddy Viscosity Concepts").

Local similarity.- The restriction on the type of viscosity models consistent with

the longitudinal coordinate transformation expressed by equation (9) will be found most

unrealistic for cases where a relatively thick boundary layer undergoes a rapid expan-

sion (such as in base flows) before the onset of constant-pressure mixing. This can lead

to effective quenching of the turbulence level in the expanded profile (which is then rota-

tional but not strongly dissipative) while the dissipative exchange mechanism remains

confined to a much narrower shear region (refs. 11 and 12). This shear region exhibits

features of local similarity and is initially laminar before undergoing transition. Growth

of such transitional shear regions, for single-stream mixing, has been analyzed in some

detail by Gerhart (ref. 13), and there seems to be confirmation that the similarity param-

eter _ retains its qualitative relevance and quantitative value. Since turbulent mixing

now appears to originate well downstream of the "expansion corner," agreement with

origin-shift methods concerning the energy levels of the dividing streamline is surprising

but can be supported by detailed calculations.

Numerical integrations.- Computer programs have been developed to perform the

step-by-step numerical integration of the system of equations (refs. 1 and 2), and an

implicit iterative method of integration is utilized which improves the economy of the

calculations while retaining accuracy and assuring numerical stability.

The integration uses initial and boundary conditions given in physical coordinates

x and y b,,t proceeds with calculations in the transformed _h-plane. Dimensionless

velocity (_P = _a), temperature (O = _-a), or density (p//Pa) distributions are then found as
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functions of _ (or y/L) for parametric values of the variable 7. Location of the

value with the x-scale depends upon the viscosity law as contained in the transforming

equation (eq. (9)) which can be written

- 1 f e d x
= Re---_ v_82-d L

Attempts have been made to gain information on the integrand by matching of calculated

and experimentally determined profiles, for example, by the dissipation integral (ref. 2)

or other unique features (such as minimum velocity in wakes). (See section concerned

with determination of the eddy viscosity.)

_o_- t.ke problems at hand, however, one needs this information as input, and cer-

tain speculative assumptions on the behavior of the turbulent eddy viscosity still are to

be specified in the section "Eddy Viscosity Concepts" in order to explain their use for

obtaining solutions to the test cases.

AXIALLY SYMMETRIC MIXING REGIONS

An extension of the theoretical analysis and the resulting computer program for jet

mixing dealing with axisymmetric geometries and nonhomogeneous gases has been made

by Hurt (ref. 1). Like many others (e.g., refs. 14 and 15), he utilizes the system of global

conservation equations as well as conservation of species without chemical reactions.

The simplifying assumptions are consistent with boundary-layer approximations but, in

addition, he assumes a turbulent Lewis number of unity which implies that the turbulent

Schmidt and Prandtl numbers are equal to each other yet not necessarily equal to unity

individually. Also, specific heats at constant pressures are assumed to be functions of

concentrations but not of temperature, which limits his analysis to moderate temperature

variations even though it attempts to cope with compressibility. In this sense, and with

regard to improved numerical integration procedures, Hurt's work is an extension of that

by Donovan and Todd (ref. 15). The resulting set of equations is in analogy with those of

the preceding sections except for the accounting for species and the use of a dimensionless

enthalpy rather than temperature in the energy equations:

0 _ 8c.i_l
= _"_.F_';:'_.L'''t _2_:2_

a4 _-Ji=l (22)

ah = _2_a.._..._L_ a_

a_ a5 rt
+

,N

1 - Ca 2
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Here,
m n

_u 1 _ v__= la_
P Waa= _ _ _ Ua - _"o"_"

C a is the Crocco number of the internal stream, and _ = _ were r a is a reference.Uara

radius of the coaxial stream, _ = p_ and h = h, ha"

In addition, the perfect gas law for isobaric mixing of a multispecies mixture

= ! _ (23)
yT

was utilized, where

N

N

i_l ca_i•= Mi

T = m.T The static temperature
Ta

m

M i is the molecular weight of the ith species, and

ratio T was evaluated from the energy equation and then the stagnation temperature

ratio was found by using the following formulation developed from the relationship

between stagnation and static enthalpy:

(24)

(25)

where

N

_ CiCpi

_= i=l (26)
N

CaiCpa i
i=l

and A is the local stagnation temperature ratio. In contrast to the two-dimensional

case, the transformation of the streamwise coordinate _ (to eliminate the eddy viscosity

from the equation) was not included in Hurt's analysis. This was due to evidence that the

effective turbulent exchange coefficient could not be considered, with sufficient accuracy,

to be a L,.,ct .... of the streamw_,_ rnordinate only. His n_'n_rrnrn, thu_, can n.e.enmmodate

as input suitable eddy viscosity models. At this stage, however, there do not appear to be
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sufficient experimental data and insight into controlling mechanisms to expect a simple

yet universal formulation for a phenomenological eddy viscosity model.

It is of interest to note the efforts of Spalding and his coworkers at Imperial College

(e.g., ref. 16) and others to gain a better insight into turbulent exchange mechanisms by

use of multiparameter models involving the kinetic energy of turbulent motion.

EDDY VISCOSITY CONCE PTS

Within the restrictions imposed by the coordinate transformation (eq. (9)) and the

resulting coupling of the viscosity to the density for two-dimensional mixing problems,

there is still the possibility of coping with fully laminar, fully turbulent, and transitional

cases. The initial conditions have first to be examined.

INITIAL CONDITIONS RELATED TO APPROACHING BOUNDARY LAYER

A mixing region can be the result of flow separation associated with

(i) Constant pressure (wake behind a flat plate)

(ii) An acceleration (as in the supersonic base pressure problem)

(iii) A pressure rise (due to an adverse pressure gradient)

In any one of these cases, the attached boundary layer will cause an initial disturbance

for the mixing region. Each case, however, will be different in its kinematic and dynamic

effects.

The constant-pressure case appears to be the simplest. One would expect that both

the flow profile and the viscous structure remain virtually unchanged. The acceleration

causes a change in the velocity profile (which could possibly be accounted for by a stream-

line expansion method), but it also tends to quench the turbulent mechanism (refs. 11

and 12). This can lead to the situation discussed in the section "Local Similarity" which

produces a transitional problem in a "mixing sublayer" imbedded in a vortex layer.

Separation associated with a pressure rise presents the most complicated problem

and points to the need for a momentum integral approach (ref. 17) and origin-shift treat-

ment of the mixing zone (e.g., ref. 10).

INITIAL EXCHANGE MECHANISMS

It is evident that a mere description of velocity, temperature, and concentration pro-

files will, in the turbulent case, generally not be sufficient to solve the problem of comput-

ing the development of the mixing region. What is missing could be most important - at

196



least for the early stagesof the mixing process - namely, its initial mechanisms. Only
case (i) does provide such information if one usesthe work of Maise and McDonald
(ref. 18). Case (ii), on the other hand, generates local similarity - provided the expan-

sion is sufficiently "strong" - first in the laminar (or "laminarized") mixing sublayer

and then in its turbulent continuation where one depends on information on transition

Reynolds numbers, such as given by Chapman, Kuehn, and Larson (ref. 19). Case (iii),

because of its complexity, raises special interest for exploring how quickly initial condi-

tions become submerged in the mechanisms generated by the mixing process itself. In

the next section a tentative model for developing turbulent shear layers is projected.

FULLY TURBULENT MIXING BETWEEN TWO STREAMS ORIGINALLY

SEPARATED BY A FLAT PLATE

As each stream approaches the trailing edge of the plate, it possesses its individual

boundary layers having thickness, momentum thickness, and energy thickness, the corre-

sponding shape factors, and an eddy viscosity distribution as given by Maise and McDonald

(ref. 18) or determined with more precision by extensions of their method (e.g., to account

for heat transfer).

Initial Level of Eddy Viscosity

If conditions in the two streams are very dissimilar, the eddy viscosity level in one

of them may be dominating at the point of confluence. As the restraint on fluctuations

imposed by the wall is removed, it seems logical to assume that the peak value of the

eddy viscosity will originally prevail. It is of interest to note that such peak values can

be correlated, for a wide range of Mach numbers, by the simple relation

et I Re50"896 (27)
F peak = 120

Filling of the Wake

Breakup of the laminar sublayer and the large velocity gradient generated in the

attached boundary layer control the next phase. If this process can be considered Cat

least for that portion of the profile where the mixing mechanism is most effective) to be

reasonably close to the asymptotic single-stream jet mixing condition,

f-=4-_ReL_v (28)

may be selected where a is related to the flow conditions in the faster stream, and the

origin for x is at the point of confluence. (This scheme is akin to the concept of local

similarity.)
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Approachingthe Asymptotic Solution

With the jet mixing mechanismthus building up, it will eventually approach the
asymptotic case for both the kinematic and dynamic aspects.

At thematching conditions, after selecting anappropriate similarity profile, one
has to accountfor both the momentumand energy defects at x = 0.

This can be achieved by applying an origin shift x o and by utilizing the concept

of equivalent bleed (ref. 6). By using the integrals defined and tabulated in reference 6

for the error function profile, one relates the mechanical energy defect in the approach-

6a*** + _bb35b***
ing streams at x = 0, D = 2 through

(-Xo)Ua3pa2_D= _I(_/RA)- ii@d_(1 - _b2) - I4(_RA )
(29)

while the momentum defect is accommodated through the concept of equivalent bleed

which determines

where

I1( d)1 (30)

5b**
Ab = p_ _b 2 (-Xo)

and

Combining equations (29) and (30) yields, for the origin shift,

The similarity parameter _ refers here to the two-stream case (ref. 6).

It is necessary to comment on the manner in which the asymptotic case is

"approached." If the "filling of the wake" (in the sense of the preceding section) becomes

pronounced due to _b > 0, the increase in eddy viscosity described by equation (28) will

initially prevail over that related to the asymptotic solution. Hence, an overshoot will be
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experienced so that the approach to the asymptotic profile occurs in the sense of relaxa-

tion rather than amplification of the mixing mechanism.

For the case where _b = 0, such an overshoot should be less pronounced. The

energy defect integral, as utilized for determining the origin shift Xo, differs from the

dissipation integrals defined in reference 2)

or

j.+o DI = (1- ¢)C_b- _bb)d_ (33)

only by a constant value (due to the fact that the momentum of the mixing streams is pre-

served once external forces such as wall shear friction are not present). The dissipation

integral has been evaluated and presented in graphical form as shown in figure 1 for a

variety of flow conditions.

Use of both forms (eq. (32) for the experimental profile and eq. (33) for the analyti-

cal solution) is then convenient for establishing the relation between x/L and [ and

E/v(x/L).

Wake Problem - Both Streams Having Identical Velocities

and Initial Boundary Layers

For wake flows, the asymptotic solution shall be represented by a constant level of

the eddy viscosity (Schlichting (ref. 5)) so that, with reference to the momentum thickness

of one approaching boundary layer,

6a**
_-v= 0"0888ReL L (34)

Proposed Models for Turbulent Eddy Diffusivity

A schematic presentation of eddy viscosity models as used in the present study is

shown in figure 2.

RELATION BETWEEN THE STREAMWISE COORDINATES x AND

The proposed eddy viscosity model establishes a relation between the transformed

coordinate _ and the physical coordinate x, and thus allows identification and location

of the calculated mixing profiles
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_=_ e 1 d(__)+Constant (35)
v82-d Re L

DETERMINATION OF THE EDDY VISCOSITY FROM MATCHING OF

EXPERIMENTAL AND ANALYTICAL PROFILES

The concepts developed for e/v in the preceding sections are essentially conjec-

tures. Indeed, the analytical model and the calculation procedures have been worked out

in such a way as to remove the need for depending on a specific viscosity law. Actually,

one can utilize equation (9) for determining the viscosity law.

To accomplish this, it is necessary to define the matching of profiles for value

pairs of x and _, which leads to a unique "_ = :_(x) relationship which then can yield,

for d = 2

_'=-_]vd( x ReL (36)
Ex

Obviously, only single parameters can be matched for both the calculated and the experi-

mental profiles.

Two possible choices are

(i) The minimum velocity, as it is well defined in wake problems

(ii) The dissipation integral given by equations (29), (32), and (33)

An illustration of this procedure is given in the section "Test Case - Solutions."

EDDY VISCOSITY IN AXIALLY SYMMETRIC MIXING REGIONS

Much uncertainty exists concerning suitable turbulent exchange coefficient formula-

tions for axially symmetric flow. The appearance of the transverse coordinate r in the

conservation equations also complicates the situation since it would restrict the possibili-

ties of a transformation (e.g., eq. (9) for the two-dimensional case) to the unattractive

form where a singularity in the exchange coefficient could occur as r -- 0. Empirical

relations, therefore, still are favored in dealing with individual cases (ref. 1) but appar-

ently cannot be expected to give satisfactory results when applied to widely different flow

conditions. (See discussion of test case 11.)
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TEST CASE - SOLUTIONS 2

TEST CASE 1: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Incompressible Free Shear

Layer (Influence of _b)

The effect of the free-stream velocity ratio ub = the spreading parameter
Ua 4_o on

for similarity mixing profiles has recently been reviewed by Yule (ref. 20). Shown in

figure 3 is the relation

as presently used in computer programs at the University of Illinois and which also has

been utilized for calculations of asymptotic mixing regions in the discussion of test

case 4.

TEST CASE 2: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameters for a Fully Developed Turbulent Free Shear Layer With

Zero Velocity Ratio (Influence of Mach Number)

Much uncertainty exists as to the effects of Mach number on the mixing mechanism,

as can be illustrated by the large discrepancies for observed or predicted values for a

(ref. 9). Shown in figure 4 is the simple linear relationship

a=12 +2.76M a

as proposed for use in the lower Mach number range Ma < 3 (ref. 6).

TEST CASE 3: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Low-Speed Free Shear Layer With

a Velocity Ratio of 0.2 and Density ratios pb/p a o£ 14, 1/2, 1/7, and 1/14

It is the judgment of the authors that conclusions concerning spread parameters

must be based on more extensive and reliable experimental data than appears to be pres-

ently available. Evaluation of earlier experiments by Pabst (ref. 21) conducted for a sin-

gle temperature ratio of 2.3 did not show an appreciable effect on a. To facilitate future

correlations, theoretical calculations for ad(AY/X) based on the procedure outlined in

the section "Similarity Solutions" with a selected value for d = 2 are presented in fig-

ure 5. The abscissa in figure 5 represents either the ratio of Tb/T a or pa/p b since

2 d = 2 for all calculations presented.
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low-speed flows are being considered. According to equation (20), the effects of the

stagnation temperature ratio and gas constant ratio should be equivalent.

TEST CASE 4: TWO-DIMENSIONAL SHEAR LAYER

Influence of Initial Boundary Layers, Incompressible Flow, (bb = 0.35

As requested, results of theoretical calculations for the velocity profiles are shown

in figure 6. The corresponding shear stress distributions are given in figure 7. The

correlation procedure between the physical and transformed dimensionless streamwise

coordinates x/L and _ is illustrated by the use of the dissipation integrals according

to equations (32) and (33) in figures 8 and 9. The extracted information on the effective

turbulent eddy viscosity e/v is shown in figure 10.

This figure also compares these viscosity coefficients with those resulting from

the concepts developed in the section "Eddy Viscosity Concepts." A strong overshoot as

a continuation of the wake-filling mechanism over the asymptotic solution is clearly
evidenced.

TEST CASE 5: TWO-DIMENSIONAL SHEAR LAYER

Initial Development of a Turbulent Compressible Free Shear Layer

The requested theoretically calculated velocity profiles are shown in figure 11.

One must note that the y-scale in figure 11 reflects conservation of momentum, while

the experimental data require a translation to satisfy this physical constraint. Fig-

ures 12 and 13 have been added to show the degree of agreement between the eddy vis-

cosity distributions based on the dissipation integral correlation and the concepts pro-

posed in the section "Eddy Viscosity Concepts." Again, an overshoot is noted, but it is

rather moderate since no wakelike contribution exists for _bb = 0.

TEST CASES 6 TO 13, 15, AND 17 TO 23: AXIALLY

SYMMETRIC FLOW CASES

Considerable difficulty has been encountered in attempts to obtain numerical com-

puter solutions by using the approach and programs of reference 1. This situation has

been caused primarily by communication problems (Dr. Hurt had left the University of

Illinois) and by difficulties encountered in switching to a different computer system with

limited storage capacity. Consequently, attention is directed to reference 1 as containing

specific examples for program capabilities. In addition, calculated center-line velocity

distributions as they apply to test case 11 are shown in figure 14.
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TEST CASE14: TWO-DIMENSIONALWAKE - LOWSPEED

Shownin figure 15 is the center-line velocity developmentas a function of the
transformed coordinate _. Figure 16 illustrates the use of the presently proposed
viscosity model for the three regimes described previously. This produces the plot
of 1/W2 as a function of X/Sa** (fig. 17),which is the required answer to this test
case. Agreement with experimental datawas foundto be reasonably good.

TEST CASE 16: TWO-DIMENSIONAL WAKE - SUPERSONIC

ADIABATIC FLOW

With transition at station 1, the present viscosity model assumes the form shown

in figure 18 with experimental e/v values (obtained with the help of dissipation function

correlation) also presented. A strong overshoot along the trough-concept-rise is noticed

with subsequent relaxation towards the asymptotic (constant e) solution. It must be noted

that the theoretical calculations for 1/W 2 as a function of x/D (fig. 19 (required))

and Tc/T a as a function of x (fig. 20) have been obtained by following the trough-rise

portion. The difference between the "relaxing" and the "rising" e/v branch should, how-

ever, not produce significant differences, especially in view of the rather large scatter of

experimental data. Overshoot and subsequent relaxation of e/v is experimentally -

albeit indirectly - evidenced by figure 1 of reference 22. Computer results (_bc and

Tc/T a as a function of _) are presented in figure 21.

TEST CASE 24: TWO-DIMENSIONAL WAKE - COMPRESSIBLE

DIABATIC FLOW (TRANSITIONAL)

Prandtl number for this case has been selected as 0.72 throughout. This is con-

sistent with the expectation of a significantly long laminar mixing region followed by

transition and turbulent mixing for which Pr t = 0.72 is incidentally a reasonable

approximation. Based on theoretical calculations, and with the use of information on

transition in free shear layers (ref. 19), one arrives at a transition location of 7.01 cm

(2.76 in.) corresponding to Re x = 180000 where

Re x = ReL(Xt/L)t

The resulting relation between e/v and

between

lations (_c,

x/L is shown in figure 22. Correlation

and x/L by the integration of equation (9) and the finite-difference calcu-

function of _ in fig. 23') then produce figure 24 which showsTc/Ta as a
/
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1/W2 as a function of x/D and figure 25which is a comparison of calculated and mea-
sured center-line temperature ratios. It is of interest to note the effects of transition
as they appear in both the calculated and experimentally determined data.
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Shifted jet mixing
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(a) Turbulent free jet mixing.

--Trough-Concept-Rise

f Fully developed wake

Wall boundary layer

(b) Turbulent wake flow.

Figure 2.- Viscosity model.
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DISCUSSION

Professor Goldschmidt: I am sorry, I must not have understood very well. How did you

define your shift in the origin - this x o - is it completely arbitrary or is it computed

somehow?

W. L. Chow: No, first I said it is a matching of energy defect of the mean flow of the

actual mixing profile to a fictitious one with a shifted origin, and meanwhile we have to

also apply an equivalent bleed concept. In other words, if we have an initial boundary-

layer flow, we always have a developing flow even far downstream. The flow looks sim-

ilar, still shifted somewhat, so we have to use the initial boundary-layer effect to corre-

late it and we call that an equivalent bleed concept. It is described in the paper and it is

long so I would rather not go into it at this time. If you would like to discuss anything

else I would be glad to answer your question in detail, in private.
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THE RELATIONSHIP BETWEEN EDDY-TRANSPORT

AND SECOND-ORDER CLOSURE MODELS FOR

STRATIFIED MEDIA AND FOR VORTICES*

By Coleman duP. Donaldson

Aeronautical Research Associates of Princeton, Inc.

INTRODUCTION

A question which invariably arises when one considers the calculationof turbu-

lent shear flows is, "How complex a model should be used to calculate such motions?"

Available at the present time are models varying in complexity from very simple

eddy-transport models to models in which all the equations for the nonzero second-

order correlations are solved simultaneously with the equations for the mean vari-

ables. For this reason, itmight be instructiveto present a discussion of the rela-

tionship between these two models of turbulent shear flow. Two types of motion will

be discussed: first,turbulent shear flow in a stratifiedmedium and, second, the

motion in a turbulent linevortex. These two cases are instructivebecause in the

firstexample eddy-transport methods have proven reasonably effective,whereas in

the second, they have led to erroneous conclusions.

R is not generally appreciated thatthe simplest form of eddy-transport theory

can be derived from second-order closure models of turbulent flow by a suitably lim-

itingprocess. This paper will discuss this limRing process and the suitabilityof

eddy-transport modeling for stratifiedmedia and line vortices.

SYMBOLS

a_b model parameters

Cp specific heat at constant pressure

D operator

g gravitationalacceleration

gi' gk general acceleration vectors

* This work was supported in part by the Air Force Office of Scientific Research
(AFSC), under Contract F44620-69-C-0089; and in part by NASA, under Contract
NASw- 1868.
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i, j,k indices

man

N

proportionality constants

stability parameter (eq. (90))

NRi

P

Richardson number

parameter (eq. (49))

Q

q

r,q_,z

r e

T

pressure

turbulent energy, (UU + W + WW) 1/2

scalar velocity, [(ui)'u_ 1/2

cylindrical coordinates

vortex core radius _ig. 7)

temperature

t time

U,V,W nondimensional second-order velocity correlations

U,V,W mean velocity in r-, _b-, z-direction, respectively, for two-dimensional line

vortex; mean velocity in x-, y-, z-direction, respectively, for atmospheric

motion

X, y, Z Cartesian coordinates

Ct length scale proportionality constant

F vortex strength

A difference

breadth of layer under consideration
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6ik Kronecker delta

local deformation in vortex

K Yon K_m_.n's constant

A1,A2,A3 length scales

dissipative scale

viscosity

P kinematic viscosity

P density

"rij

rt

Subscripts:

stress tensor

turbulent shear stress

char characteristic

crit critical

max maximum

o undisturbed, adiabatic atmosphere

Bars over a quantity indicate mean values.

fluctuation of the quantity from its mean value.

Primes indicate the instantaneous

A SECOND-ORDER CLOSURE MODEL FOR TURBULENT SHEAR FLOW

In reference 1 the author presented a discussion of the development of an invariant

second-order closure model for turbulent shear flow in an incompressible medium. The

basic equations of this model are
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m=0

oxj

o_ i •
0-t-- + uJui, j = _1 P,i

(1)

(2)

-Uik ,, "7-7 8 0 ,, 8
+ _J = -uju k +,j _- ujui_ 2q uiuk+_ uiul

8 "7-7 _ ++ + _
8-_k ujui _k 3q _xj ) axj /

"-7"-7"

_(_ _) _ u_u__ __ +_::_u_u_-_ (3)

with

(4)

and

q E_] 1/2 (5)

In this model, the length scales A1, A2, and

another. The dissipative scale _ is given by

_2: AI2 (6)
+(bpqA1/_)

From a rather lengthy parameter search to determine the values of the quantities a, b,

A1, A2, and A 3 that are to be used in the calculations, it was found that good results

were obtained by using

A 3 are assumed to be proportional to one

a=2.5

b = 0. 125

A2 0.1
A1

A_3 = 0.1
A1

(7)
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It was further found that the remaining free parameter A 1 was approximately equal to

0.6 times the longitudinal integral scale of the motions studied in the parameter search.

In reference 2, this model was extended to the case of turbulent motion and trans-

port in the earth's boundary layer. The case considered is that when the scales of the

mean distributions of velocity and temperature are not greatly different and the Prandtl

and Schmidt numbers are 1. The resulting equations, written in Cartesian tensor nota-

tion, are

aUi
--=0

Oxi
(8)

% _ _ (__i_j_ _uiuj1 -
D_=-_x_÷_oN\N +N/ _xj +%g_T

(9)

DT 02T 0uiT'

D-Y"= Vo ax 2 axj

Dub,i< --_,_ _,<+,(,,, ,,) o _A/_
=-ujul_- ujui _x_ _ iuk'r+gkui'r +_ L2q\

(10)

+ :?-:t"u'-

+%
i f

uiuk
(11)

ouT/<,--_x__<'_x_/-<u__'+_o_x_
u_T'

2VO
(12)

D(-_ 2_ 8_T__+ a__.lA2q a(_l a2(T.___')2

- J _xj %L % ] +v° ox_
(13)
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In these equations,

D a L (14)
]5"[= 8-_ + uJ axj

T o and vo are the local temperature and kinematic viscosity, respectively, in an undis-

turbed adiabatic atmosphere; T is the departure of the mean temperature from the

adiabatic temperature To; and T' is the instantaneous fluctuation of the temperature

about its mean.

For the two cases of motion considered herein, equations (1) to (14) reduce to the

following:

For the case of a two-dimensional line vortex in cylindrical coordinates r,_,z

with velocities u,v,w, equations (2) and (3) result in

--.... Ja2V 1 8V (15)OF 8U'V' 2 U'V' + +

8t ar r \Sr 2 r 8r

Ou'u' 4V u'v' + 3 8 2A2q OV'V' +
0t =_-- _-r\--2 q 0r ]- r 0r r 0r

4 A2q (v-";_'v' u-'_u' )
+ -_\

(_ _) _(_P) °(_P) _._Avvuu)

+_'_ _)_ _1_ __ r2 _ k-2
(16)

3A2q ov-_v' 2 °(A2qv-_v')0vv- OF"-- =- +_] +O 2q Or / r Or r Or

+F + +T + -Or -_-_u u - Or

(17)
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_°_ _qo_/ _--

,,f_a2_-'_' 1_w'w--_ 2_-_'_ (18)

aU'V--"T rV---(2v-';_'v' u--V_u')- _ _ +2 _r/A2 q au-'_'v'/at = - ar / - r ar

8A2q IA au-_v' _r'_" _+_ 3q ar /

,._(_3q_) A_ o_ _3_u'v_
+

r ar r ar r 2_

- v a2u-_Tv' 1 au'v-'_
qu--q-rv'+ lo-_-_ +A I r or

(19)

For the atmospheric motion considered herein, in which only a mean velocity _ in

the horizontal direction x exists and in which the mean lateral and vertical velocities

V and W in the directions y and z, respectively, are zero, the appropriate equations

derived from equations (8) to (13) are

_" = - _x Vo az 2 az (20)

oT a2T
aT'w (21)

aT = Vo az2 az

ou,u =-2u'w'_+_-z 2q az /" - +v°_- 2Vo7 (22)

a"_--:a'_ 2qaz ]-A_ - +VOaz-'_--- (23)

_";WTW'/ + 2..-_-..._ oA3q a-_-..-.. /2--_-gw--'_+3a#'_ 2qaz / PoOf'---- = T o

/ _i °2w--_w' 2% w'w'-'--r-q(w-_w'-., ,+_o_. -7 (_.4_
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-- -_+To +2_z 2 q az /+_oo oA3q

q u,w'---T a2u-T_W' u'w'
- A1 + vo 2v oaz 2 X2

au'T' _ -u-'_w' aY _ w'T' a5
at _'Z "_ +a'z 2q az ]- A_U-_+v o Oz--_

M

u'T'

2Vo X2

- G G )aw'T' _ -w'w' a_ g._g_(T,)2 a _v'T'_ 1 8 8w'T'
at -_-+To +2_-_ 2qa--E-----/ +Voo_- _ oA3qa--_ -----

(25)

(26)

w'W___L'a2w-_'T' 2v o (27)
- A_l w'T' + Po az 2 X2

a(T') 2 _2w,T---'78T O a(T') a2(T') 2 (T') 2
at = _" + "_z 2q a-'_'---J+ Vo -- 2vo -- (28)az 2 X2

For most people who practice the art of predicting turbulent flows, the equations

for the line vortex (eqs. (15) to (19)) and for the flow in the atmospheric boundary layer

(eqs. (20) to (28)) are of a familiar form. If distributions on the dependent variables are

given at time t = 0, the development of the motion at subsequent times can be computed

by simultaneous solution of the appropriate coupled sets of partial differential equations.

This is the general approach of second-order modeling.

The older and still widely used method of treating these problems is to consider

only the equations for the mean variables and to assume that the second-order correla-

tions which appear in them might be represented by empirically determined eddy-transport

models patterned after the transport of the appropriate quantity by molecular means. The

section which follows will examine what information can be gleaned from the equations for

the second-order correlations about the nature of such eddy-transport models.

SUPEREQUILIBRIUM MODELS

To determine how to obtain information about the nature of eddy-transport models

from the model or rate equations for the appropriate second-order correlations, one must

consider what is implied when it is assumed that a turbulent flow can exhibit an eddy vis-

cosity or an eddy diffusivity.

240



First, it is apparent that if the turbulent transport of a quantity depends only on the

local gradient of that quantity and a scale length associated with the mean flows at the

location under consideration, the turbulent transport cannot have a "memory" of its past

history along the streamline. This is tantamount to the assumption that at each point in

the flow the turbulent-transport correlations can track their local equilibrium values.

These local equilibrium values can be obtained from the rate equations for the correla-

tions by setting the left-hand sides of the equations, as they are given in the preceding

section, equal to zero. Thus it is assumed that the rate of change of a transport correla-

tion as it follows the mean motion is small compared with the production, dissipation, and

diffusion terms which occur at the point in question.

Second, the notion of an eddy-transport coefficient is one which does not allow the

behavior of the turbulent transport at one point in the flow to affect directly the turbulent

transport at another point. This notion is equivalent to the neglect of the diffusion terms

in the equations for the second-order correlations, for it is these terms which link the

generation of transport correlations at one point in the flow to the transport correlations

at another point.

Finally, the use of an eddy-transport model is a practice generally restricted to

flows with high Reynolds numbers. Therefore, the high Reynolds number limit of the

equations for the second-order correlations can be taken if it is desired to derive a sim-

ple form of eddy-transport model from these equations.

If the three rules set forth above are followed, it should be possible to derive from

the equations for the second-order correlations a simple theory of eddy transport. As

discussed above, this theory represents the equilibrium, nondiffusive, high Reynolds num-

ber limit of a second-order closure model. For reasons of brevity, this limit has for

some time been referred to by the author as the "superequilibrium" limit.

By following the three rules set forth, the following equations are found to be the

superequilibrium equations for a line vortex:

0-- ÷ ÷

/ rV)-O= -2 O_'+ u'v' - (1+2b) _+T

q w--'_'w' q30 -- -(1 + 2b) + -_-

(30)

(31)
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For atmospheric motion, onefinds

q { ) q3 (33)= -2u'w' af 1 + 2b u-'_u' + -A-0
0z

q3
0 = - q (1 + 2b)v-_Tv' + -_ (34)

q3
2g w'T' - q(1 + 2b)w'w' +-_ (35)

0 = -w'w' _'z +T-ooaf g u'T' - q (1 + 2b)u'w' (36)

m

0 = -uw' ' _-0T _ w'T' 0-'_0__ q(1 + 2b)u'T' (37)

0=-ww' ' _'z-+_oo0Tg (T') 2 - q(1 + 2b)w'T' (38)

m

0T q(T,)20 = -2w'T' -_- - 2b (39)

In writing these equations, A 1 was taken equal to A.

EDDY TRANSPORT IN THE ATMOSPHERE

It is instructive to carry out the solution of equations (33) to (39). These equations

are algebraic for all the nonzero correlations. The solution of equations (33) to (39) can

be obtained if the following definitions are introduced: Let (for 0fi/0z > 0)

= UUA12\0z/

= VVA12 \0z /

w'w' = WWAI 2 \0z/

UWAI 2 _.0f_ 2

u,T''"_ = UTA12 _)5 OTOz 0z

w'T' = WTA12
Off oT
0z 0z

(T,)-----2= TTA12 _OT/2
_z /

q2 = QQA12 \oz/

(40)

and note that

QQ=Q2=UU+VV+WW (41)
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Substitution of the definitions given in equations (40)and (41) into equations (33) to (39)
results in

Q(I+2b)UU= 3_-- 2UW

Q3
Q(I + 2b)VV = -_-

Q(I + 2b)UW = -WW + NRiUT

Q(I + 2b)UT = -UW - WT

Q(1 + 2b)WT = -WW + NRiTT

Q(2b)TT = -WT

(42)

(43)

(44)

(45)

(46)

(47)

In these equations, NRi is the Richardson number given by

m

g aT
T O 8z

NRi= (48)
\_z/

It is immediately obvious from equations (42) to (47) that all the nondimensional second-

order correlations are a function only of the Richardson number and the parameter b

from the second-order closure model. It will be remembered that the value of b deter-

mined in the parameter search reported previously is 0. 125.

It is convenient to express the solution of equations (42) to (47) in terms of the

)211/21 - (4 + 15b)NRi + + 2(2 - 9b)NRi + (4 + 9b)2(NRi

P = 6 (49)

parameter

In terms of this parameter, the various correlations may be written

Q2= 1 p

b(1 + 2b) 2
(50)

243



UU =
(P÷ +(1+4b NR +2b +(1+

3(1,2b)(P,bNRi)EP*(1*4b)NR_
Q2 (51)

VV= 1 Q2
3(1 + 25)

(52)

WW = P + (I + 2b)NRi Q2

3(1 + 2b)EP + (1 + 4b)NRi_

(53)

UW = _b P + (1 + b)NRi Q3 (54)

+

UT = b 2P + (1 + 2b)NRi Q2 (55)

WT = - b Q3 (56)

3_, (1,4b)NR_

TT = 1 Q2 (57)

3[P. (1,4b)NRi_

It is clear from these equations that when the parameter P = 0, there is no turbu-

lence (Q2 = 0) and all the second-order correlations vanish. The critical value of the

Richardson number for which this occurs is a function of b and is given by

( ) 1 + b (58)NRi crit = 4b(1 + 3b)

For b = 0.125, the critical Richardson number is

(NRi)cri t = 1.636 (59)

All the nondimensional second-order correlations as functions of the Richardson

number are plotted in figures 1 to 5. From these figures, the profound difference between

turbulence and turbulent transport in stable and unstable atmospheres is obvious. Note

particularly that the nondimensional vertical transport of matter and heat falls off far

more rapidly than do the nondimensional turbulent energy components when a stable

atmospheric situation is approached. In fact, above a Richardson number of 1, vertical

turbulent transport has almost ceased to exist although there is still some atmospheric

turbulence.
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It shouldbe noted that the superequilibrium results just obtained specify the non-

dimensional values of second-order correlations. For example, if the value of b = 0.125

is assumed to be correct, a Richardson number of 0.10 would give

uw = -0.2 t2 (60)

WT = -0.2631 (61)

The transports of momentum and heat would then be given by (for

-PoU-'_'rw' = 0.2712PoA2(0_)2

a /oz > o)

(62)

m

,-"--7 0.2631PoA2 0F ST-Po(CP)o w T = az 8z
(63)

It is clear from these expressions that the actual transport is not defined until the length

scale A is known. This is a difficulty with atmospheric flows, for unless A is deter-

mined at a given altitude and the local Richardson number specified there, the transports

are not known. In general, A will depend at a given altitude on the Richardson number

but can assume a range of values depending on the past history of the motion. Although

this range of values is limited so that the order of magnitude of the transport might be

determined, there will always be a variation in transport proportional to the square of the

variation in A at any fixed Richardson number.

For classical laboratory flows, this problem does not exist. In this case, it is gen-

erally found that A is proportional to the characteristic breadth of the layer under con-

sideration while the gradients are proportional to a characteristic velocity, temperature,

or concentration difference divided by this characteristic breadth. Thus, for the classi-

cal shear flows,

A12\Sz] : _') = Const(A_char) 2

and, likewise,

(64)

I

A12 a_sT Const - ---_ -_- = &Uchar ATchar (65)

For each type of flow, these constants are well defined. This type of simplicity is, alas,

not true of the atmosphere.
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It is instructive to compare the results of superequilibrium theory with certain

well-known results from classical turbulent-transport theory for the case when no grav-

itational effects are involved. To do this, the Richardson number is placed equal to zero

in the expressions given in equations (49) to (57), and for b = 0.125, the following expres-

sions are obtained:

P = 0.3333 (66)

Q2_ 1 = 1.7066 (67)
3b(1 + 2b) 2

UU = 1 + 6b = 0.7964 (68)
9b(1 + 2b) 3

VV = WW = 1 = 0.4551 (69)
9b(1 + 2b) 3

UW = TW=

9(1 + 2b) 3
= -0.2786 (70)

UT = 2 = 0.3413 (71)
3(1 + 2b) 3

TT- 1 = 1.7066 (72)
3b(1 + 2b) 2

Some interesting results are noted from the above comparison. First, superequi-

librium theory indicates that v'v' = w'w' and, further, that

u'u' _ u'u' =U--U-U= U..__U_U= 1 +6b= 1.75 (73)
v'v"'-;" w'w''-v VV WW

Second, the value of -u'w'/q2,-j which Bradshaw, Ferriss, and Atwell (ref. 3) assume to

be a constant equal to 0.15, is defined by superequilibrium theory to be

=0.163 (74)
q2

This is a rather surprisingly accurate result in view of the fact that the value of b was

determined from very different considerations in the development of the second-order

closure model.
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The value of Von _rm_n's constant

near a surface may also be derived from superequilibrium theory:

_t-- "Pu'w''-r= PK2Z2(_) 2

From the present results,

K in his expression for the turbulent shear

(_2 3V_ pA12(a_2
vt=-pUWAI2_oz/"9(1:_)3 _'z/

In reference 1 it was found that near a surface, A is of the form

the parameter search is found to be 0.7. Letting

A = 0.7z

equation (76) gives

rt = 9(1 + 2b) 3 pz2

Comparison of equations (75) and (78) reveals that

__0.49 _0.137
9(1 + 2b)3

(75)

or

(76)

A = olz, where _ in

(77)

(78)

(79)

K = 0.37 (80)

The value of Von K_rm_.n's constant is actually 0.4. Again, the agreement between results

obtained by taking the equilibrium, nondiffusive limit of the present second-order closure

model of turbulent shear flow and the classical mixing-length theory is rather remarkable.

EDDY TRANSPORT IN A VORTEX?

If a scheme such as that pursued in the previous section for the superequilibrium

equation for a line vortex is followed, the following definitions are introduced into equa-

tions (29) to (32):
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uuA2 rV--)2

2 oV

_,v---_=UVA2__ _ _._ v--)

(81)

(82)

(83)

(84)

(85)

From this substitution,the following equations are obtained:

Q3
Q(1 + 2b)UU = -_- + 4UVN

Q3
Q(1 + 2b)W = -_- - 2UV - 4UVN

Q(1 + 2b)WW : QA
3

Q(1 + 2D)UV = -UU + 2(VV - UU)N

(86)

(87)

(88)

(89)

In these equations N is a stability number defined as

V/r
OV V

_r r

(90)
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The solutionof equations (86)to (89)in terms of the parameters

Q2 {.1 _ 4bN)

Q2 _1 N)VV = __ + 2b + 4b

WW= Q2
3(1 + 2b)

b and N is

(91)

(92)

(93)



UV = -bQ 3 (94)

wRh

Q2=UU+W+WW= 11_ 21b(1 + 2b) 2 - 8bN - 16bN
(95)

R is clear, since Q2 is positive definite, that under the assumptions made here

turbulence is impossible if

(96)

or if

For the value of b used herein (0. 125), these limits become

Figure 6 shows the behavior of the quantities UU, VV,

(97)

N<-0.729 and N>0.229.

WW, UV, and Q2 with

variations of the stability parameter N for b = 0. 125. The results are plotted in terms

of the ratios of the quantities to their values for N = 0, namely, (UU)o, (W)o , and so

forth. Thus, figure 6 shows the ratios of u'u', v'v', w'w', u'v', and q2 in a vortex

to these quantities in a parallel shearing motion having the same mean deformation rate

and scale.

It may be seen from figure 6 that the turbulent energy and shear have the same

value for N=-1/2 as they do for N=0. Between N=-1/2 and N=0, the turbulent

energy and shear are larger than they are in a parallel shearing motion. For N < -0.729

and N > 0.229, as mentioned previously, no locally sustained turbulent flow is possible.

Thus, for -0.729 < N < -0.5, locally self-sustained turbulence is possible, although the

turbulence is damped by centrifugal effects. For 0 < N < 0.229, turbulence is also pos-

sible, but here again it is damped by the action of centrifugal forces.

What sort of flows does each of these regions represent? First, note that when

8V/Or = 0, N = -1. Thus at the core radius of a vortex (defined here as the radius where

8V/Sr = 0), a turbulent vortex is stable. Near the center of a free vortex, the tangential

velocity V is of the form V=mr - 2nr 2 so that as r-0, N--_. Also, for afree

vortex, V - r/2_r as r -* _ and one finds then that as r -* % N -* -1/2. Thus for

the classical vortex distribution,
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(98)

The flow in the outer regions of the vortex exhibits an eddy diffusivity similar to a par-

allel flow. As the core of the vortex is approached, the flow becomes more and more

stable. It becomes completely stable somewhat outside the core of the vortex. Indeed,

the flow is stable at the point of maximum deformation 0V V This behavior of the
Or r"

stability parameter N for the classical vortex is shown in figure 7.

The region of increased turbulence and shear between N = -1/2 and N = 0 can

be understood if it is noted that the stability parameter may be written

N = V/r (99)
1 OF 2V
2_ 0r r

Thus the region -1/2 < N < 0 represents flows for which dF/dr is negative. These

are, of course, flows which exhibit the well-known Taylor instability (ref. 4).

The region 0 < N < 0.229 is representative of flows occurring between two cylin-

ders rotating in the same direction, so that F at the outer cylinder is larger than F

at the inner cylinder when the centrifugal forces due to the general level rotation cannot

completely stabilize the flow.

For a free vortex, it may be surmised from this analysis that the core regions of

vortices are locally stable. Regions outside the core are unstable and can generate tur-

bulence. If the core regions of vortices are to exhibit a turbulent shear, this must be

caused by turbulence which has diffused into the core region from outer regions which

are unstable or by turbulence which has been generated by a shear in the axial direction

that is not considered in this analysis. This fact, namely, that the turbulent shear -pu'v

in a vortex is not directly related to the local deformation Ov v0r r' would lead one to

believe that it would be impossible to establish any general rules for determining an eddy

viscosity for a vortex. To calculate such flows reliably, it will probably be necessary

to use the full power of second-order closure methods.

It might be noted, in this connection, that if one were to use an energy method on

such flows, much of the physics of the problem would be lost. This may be seen by con-

sidering the sum of equations (86) to (89) with UU = VV as the governing equation of the

flow. In this case, the parameter N disappears from the equations and the essential

physics of the problem have been lost.
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CONCLUDING REMARKS

This short paper has tried to exhibit the relationship between a full second-order

closure model for turbulent flow and the older eddy-viscosity models of such flows. It

has been shown that classical eddy-transport theory can be obtained from a consideration

of the equilibrium, nondiffusive, high Reynolds number limit of the equations of a second-

order closure model.

The nature of such limits has bee n discussed for the flow in sheared stratified

media and for a line vortex. The limitations of an eddy-transport model of turbulence

in a line vortex have been discussed through the use of the equations derived by the lim-

iting process described herein.
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DISCUSSION

G. L. Mellor: We just finished an experiment at Princeton a year or so ago which is a

boundary layer on a flat wall followed by a curved wall and we did a complete set of tur-

bulent measurements. It was very dramatic indeed; we could see the turbulence nearly

shut off on the convex side of the wall. And then we did try to develop an expression for

the eddy viscosity by balancing production with dissipation using these equations. You

can, as you did, find a correction for the eddy viscosity in terms of the proper curvature

parameter and it works very well. So I'll just put in two cents here that it seems to work

well and it seems to compare with the rather dramatic measurements that we've devel-

oped in the last couple of years.

C. duP. Donaldson: One of the points to be made here is that if you are going to do some

trick flow like this, it is best not to shortcut and just use, say, the energy and stress

equations with some trick for guessing what is missing because you may overlook the

physics of the problem. If you use all the equations, you get the physics right.

S. I. Pal: I notice that you assume the mixing lengths for velocity and for temperature

are the same. My questions are (1) Do you make this assumption to simplify the analysis

and to obtain some essential features of this problem? and (2) If these mixing lengths are

different, would you expect that your results would be modified considerably?

C. duP. Donaldson: Yes, the same lengths were chosen to simplify the analysis. In this

case, which is the superequilibrium limit, you will begin to see the nature of the problem.

No matter what you choose for your eddy-viscosity model, if you want to see whether you

should really use such a model or not, you can make this kind of limiting argument. It is

true that if you have vastly different scales of the temperature and velocity fields, you

are going to have to do something different. As an example, take a large turbulent pipe

flow in which you know all the pertinent mean quantities, and with the turbulence model

you have, compute all the turbulent characteristics in this flow. Then, if you assume a

tiny pencil of heated air is placed in the center of the tube so as to form a very thin hot

jet in that region and you use the same scale in the ui"7_ and (T') 2 equations as you

use in the u_u_ equation, you will find a remarkable result. The general spread of the

hot material is about as it should be, but a hot spot stays near the center of the tube.

This is a result of using the wrong scale in the u'T'''_ and (T') 2 equations. When the

scales of the mean temperature and mean velocity fields are so disparate, one may not

use the same scales in the equations for the various second-order correlations.

S. C. Lee: I have two questions. First, I haven't seen any of your models compared with

the suggested cases. My question is, have you compared any, and if you did, would we be

able to see any of your comparisons?
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C. duP. Donaldson: The only comparisons made to date were for the cases which were

used to construct the model. In these cases, model parameter searches were made to

try to obtain a best fit to the existing data for a free jet, a two-dimensional shear layer,

and a flat-plate boundary layer. The model was determined to be that one that gave the

best fit to all three cases.

I think I should point out here something that I've said ever since I started making such

calculations; namely, it's pretty hard to calculate better at first blush something that

somebody has been calculating empirically for the last 20 years. That really wasn't my

reason for getting into these second-order closure methods - my real reason was to get

at the calculation of some problem which just can't be done by conventional methods and

for which you just don't known what the answer is at all, such as the vortex and the behav-

ior of turbulence in stratified media.

S. C. Lee: My second question is related to your particular model with which you are

interested in atmospheric conditions for stable and unstable atmospheric conditions.

Have you calculated any of those?

C. duP. Donaldson: Yes.

S. C. Lee: Would those be in the paper?

C. duP. Donaldson: Not in the paper to be published in these proceedings. Some results

have been published elsewhere. I have just finished writing a paper which is to be mailed

out soon to many of the people at this meeting. I think you are on the list.

S. Corrsin: You have identified one necessary condition for the use of an eddy-viscosity

model and you of course know that also there is another kind of necessary condition; that

is, the characteristics length of the mechanism transporting the property you are inter-

ested in must be very small compared with any distance over which the mean property

changes appreciably and this is violated by almost all flows that we ever talk about. So

there is quite a different class of reasons why eddy-viscosity models may be wrong in

principle but work in practice.

C. duP. Donaldson: I understand - valid comment.

G. L. Mellor: I ask Stan, who states this necessary condition - I know it has something

to do with kinetic theory but who states it for turbulent?

S. Corrsin: Well as far as ordinary transport models go there's a book on Transport by

a fellow named Bosworth 1 that was published in the 1940's which is the only textbook I

have seen that actually mentions it. But as far as turbulence phenomena go, in general the

gradient transport term is the first term in an infinite-series approximation and this is

1 Bosworth, Richard Charles Leslie: Heat Transfer Phenomena - The Flow of Heat in
Physical _-'_'_'_........ John Wiley & Sons, L-.c., Fl_5_]u.v_j.

25'7



why, for instance,the Prandtl modified-mixing-length theory with the second-order term

could be better. In fact,ifyour computers get big enough, itmay be better to just put on

higher and higher derivatives in an attempt to make something which is physically mean-

ingfulas well as computable.

C. duP. Donaldson: Yes, that'scertainly true for those cases that you can do likethat.

When, indeed, the flow is completely stable in the superequilibrium sense in the region

where the deformations are largest, you can't do that.
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FREE TURBULENT MIXING IN A COFLOWING STREAM*

By Joseph A. Schetz

Virginia Polytechnic Institute and State University

DEVELOPMENT OF THE MODEL

The turbulent transport model used here is of the classical, gradient transport,

eddy viscosity type; that is, it is based upon

_U
-r = (1)

where e is to be expressed in terms of mean flow quantities. (Symbols are defined

at the end of the text.) Thus, no turbulence information is used in the functional

expression for the eddy viscosity; however, recent work in extending the model has

employed turbulence information in the proportionality constant. This work will be

discussed further in a later section. The development of the model is described in

references 1 to 4, but a short summary of the major points is included here for

convenience.

This work grew out of an inquiry into the relation, if any, between various more

or less successful eddy viscosity models, each developed for a different flow situation.

Consider the following three planar examples:

Prandtl (jet mixing) model (ref. 5)

e I = 0.037bl/2 IUmax - Umin[ (2)

Schlichting (wake) model (ref. 6)

e 2 = 0"022CDDUe (3)

Clauser (boundary-layer) model (ref. 7)

e 3 = 0.01SUe6* (4)

These apparently bear no direct relation to each other, even though they are all

intended to model rather similar flow problems. It is very useful to examine the

Schlichting wake model more closely. First,

CDD - 20 (5)

*This work was supported in part by the Hypersonic Propulsion Branch, Langley
Research Center, NASA.
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so that equation(3) becomes

e 2 = 0.044U e 8 (6)

Now, equations (4) and (6) appear in actual contradiction, but this discrepancy quickly

vanishes when it is observed that Schlichting used a linearized "far wake" analysis in

developing his model, where the integrand in the momentum thickness 0 was approxi-

mated as

1 (7)Ue

which makes it the same as that for the displacement thickness 5". Thus, the Clauser

boundary-layer model and the Schlichting wake model, in reality, differ only in the value

of the proportionality constant. This too can be explained, as will be shown later.

A study of the Prandtl jet model in relation to the Clauser model showed that they

could not be reduced to the same functional form. However, a simple numerical exercise

demonstrates that the actual values of e predicted by each model for a series of rea-

sonable profile shapes (variation of U with y) are virtually identical. This comparison

requires a generalization of the Clauser model to let the displacement thickness measure

a mass-flow excess with respect to the free stream as well as the more usual mass-flow

defect. Also, since a wake or jet has two sides to the mixing layer as opposed to a one-

sided boundary layer, the Clauser model must be written as

e3 = 0"036Ue o -0 _e dy (8)

This model will provide good predictions of the development of planar, constant-density

flows of either the wake type (see test case 14 below) or jet type (see ref. 4).

At this early point in the development, it remained to extend the model in equa-

tion (8) to axisymmetric and/or variable-density eases. The constant-density axisym-

metric ease was considered first. The model for this geometry was obtained by intro-

ducing a new, physical interpretation of the Clauser model (applicable to either its

original form, eq. (4), or its extended form, eq. (8)). This interpretation is stated,

"The turbulent viscosity pe is proportional to the mass flow defect (or excess) per

unit width of the mixing region." This can be carried over to the axisymmetric situ-

ation as

Sol fKPeUe 1- U
pe 4 = _ _ee 2_rr dr (9)

where L is some characteristic width required to be dimensionally correct. Note that

the unit width of the planar case does not appear here. Some studies were made to deter-

mine a suitable width for this use. The obvious choice of the local half-radius rl/2 was
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foundto be unsuitable for all but jet caseswith Uj/Ue >> 1. Since such casesare of
marginal practical interest, this choice was rejected, andthe simple choice of the initial

radius a was made. For wakes, rl/2(0) , the half-radius at the "initial" station at the
end of the "near wake," is used.

It was still necessary to determine the constant K for use in equation (9). It

should be emphasized here that a useful turbulent exchange model must contain fixed

empirical constants that are determined once and then are not changed from problem to

problem'. In the present case, this was accomplished by considering the experimental

case of Forstall and Shapiro (ref. 8) with Uj/Ue = 2.0. The prediction using K_r = 0.018

(the apparent correspondence to Clauser's constant in eq. (4) is pure coincidence) is com-

pared with experiment in figure 1, where the excellent agreement can be noted. This

constant has been adopted as universal for use with this model and has not been changed

for comparisons with any other experimental case. Two points are worth noting from

figure 1. First, a variation in the constant does not change the slope of the predicted

velocity decay, it merely moves the curve up and down on the paper. Thus, the correct

decay rate predicted is due solely to the functional form of the model. Second, the

straightforward extension of P randtl's planar model, equation (2), to the axisymmetric

case

e5 = 0"025rl/21Umax - Umin I (10)

gives a poor prediction.

The extension of the unified model, equation (8) for planar and equation (9) for axi-

symmetric cases, to variable-density situations was accomplished by simply using the

appropriate definition for the mass-flow defect (or excess). Thus, the final model is:

Planar

pe=O.O36PeUe_;ll---_.U. [dypeue[ (11)

Axisymmetric

O'O18PeUe "_;[ Ipe = a 1 - pU 2rdr (12)
PeUe

This is at variance with the suggestions of some workers in the boundary-layer field, who

U for variable-density
have used a "kinematic displacement thickness" based on 1 - _e

cases in trying to extend Clauser's basic model to such situations. It will be shown below

that such a choice is clearly inappropriate for at least free-mixing problems.
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TEST CASES

Calculations were run for test cases 9, 10, 11, 12, 14, 15, 16, and 17, using equa-

tion (11) or (12) as appropriate to the particular problem. The equations of motion were

solved numerically by using an explicit finite-difference scheme in von Mises (x,@) coor-

dinates. The actual computer routine used is a modification of that developed in refer-

ence 9. The program is written in FORTRAN II, and the total execution time on an

IBM 370/155 for the compressible, two-dimensional wake case (test case 16) was 1 min-

ute, 8 seconds, as an example. Two-dimensional shear layers (test cases 1 to 5) and

jets in still air (test cases 6 to 8) were excluded since the concept of a mass-flow defect

(or excess) with respect to some "free stream" is unclear for such situations.

The results for the Forstall and Shapiro jet with Uj/U e = 4.0 (test case 9) are

shown in figure 2. The rate of decay of the center-line velocity is not as accurately pre-

dicted here as for the same experiment with Uj/U e = 2.0 shown in figure 1. The agree-

ment is greatly improved for this case, as well as for all cases with Uj/U e >> 1, by

using L = rl/2 in equation (9), but the predictions at the lower, more useful, values of

Uj/U e are worsened.

The hydrogen-air jet of Chriss (test case 10) is considered in figures 3, 4, and 5.

The predictions of center-line values of the velocity and hydrogen concentration are quite

good, and the predicted profile shape is in good agreement with the data. This is strong

support for the utility of the functional form of e(y) as modeled in equation (12). It is

* ( U rather than
also interesting to consider the use of 5K rather than 5* \that is, 1 Ue

1 - pU in eq. (12)_ for this highly variable density problem. The results are shown as
PeUe /

dashed curves in figures 3 and 4, where the use of 5K gives much poorer agreement

with the data.

The results for the air-air, compressible jet experiment of Eggers and Torrence

(test case 11) are shown in figure 6. The calculations are started beyond the end of the

"potential core," and the agreement with the data is good.

Results obtained from equation (12) by Eggers for his hydrogen-air jet problem

(test case 12) are shown in figure 7. The decay rate of center-line quantities for this

low mass-flux ratio (pjUj/PeU e = 0.16)is considerably overestimated.
g

The low-speed wake cases of Chevray and Kovasznay (test case 14) and Chevray

(test case 15) are plotted in figures 8 and 9. The adequacy of the model for such cases

is clearly demonstrated by these results. Note that the same constants previously deter-

mined for a boundary layer in the planar model and for a jet in the axisymmetric model

have been successfully used here for wakes.
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The supersonic wake cases of Demetriades (test cases16 and 17) are given in fig-
ures 10, 11, and 12. The planar wake caseappearsto be rather poorly predicted in
figure 10, but it should be notedthat the methodof presenting the comparison, as dictated
by the meeting organizers, is very sensitive to small inaccuracies in either the dataor
the prediction. A more conventionalplot of the same results is shownin figure 11.

The agreement betweenprediction anddata for the axisymmetric wake is good.
The prediction in terms of W is given in figure 12. A conventionalplot of these results
is given in reference 4.

LIMITATIONS OF THE MODEL

It is worthwhile to summarize the limitations of this model as they can be discerned
either from the derivation or from the results for the test casesand other experimental
cases that havebeen considered in references 1to 4.

First, the model makes no attempt to describe flows either in the "near wake" or
in the potential core of a jet. Thus, it is alwaysstrictly necessary to start with some
"initial" profile that is downstream of these regions. If the region of primary interest
is long as measured in diameters, however, onecan simply assumethat the model applies
in the potential core andaccept the attendantinaccuracy in the near field.

Second,the results showthat the accuracy of the predictions obtained,as compared

with experimental data, deteriorates for (pjUj/PeUe) - ,_ and (pjUj/PeUe) - O. The

best results are obtained in the range 0.4 _-<(pjUj/PeUe) <=3.0. Fortunately, essentially

all wakes and most jets of practical interest fall in this range.

Finally, in all cases, even those where the overall prediction is good, the area of

poorest agreement is in the near field downstream of the "initial" station. It is believed

that this is due to the fact that the Clauser model, from which the models presented here

are directly descended, was developed for a flow in dynamic "equilibrium." Clearly, the

rapidly relaxing flows in the near field are not in such a state.

IMPORTANT PHENOMENA NOT COVERED BY THE TEST CASES

It is unfortunate that none of the wake cases selected as test cases were for the

wake behind a bluff body such as a circular cylinder, since it has been known for some

time that the proportionality constant in any eddy viscosity model must be increased

above a value appropriate for jets or the wake behind a streamline body in order to obtain

comparable agreement with the data. This question was examined in detail in refer-

ence 4, where it was found that the proportionality constant must be made a function of
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the turbulence field in order to make a rational choice of an appropriate value. In the

constant-density planar case, for example, it was shown that the proportionality constant

in the extended Clauser model, equation (8), should be taken as

K cc IU') z (13)

IUc- 2

A further interesting case which is not adequately handled by conventional eddy

viscosity models is the wake behind a self-propelled body where the net momentum defect

is zero.

SYMBOLS

a initial jet radius

bl/2 half -width

CD drag coefficient

D diameter

K constant

L characteristic length

radial coordinate

rl/2

U

(U') 2

Uc
W=l ---

Ue

X

half-radius

axial velocity

time average of square of axial-velocity fluctuation

axial coordinate

Y normal coordinate

Ot mass fraction of hydrogen
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5K

displacement thickness of boundary layer

kinematic displacement thickness

e eddy viscosity

0 momentum thickness of boundary layer

p density

shear stress

Subscripts:

c center line

e free stream

init:._djet condition

max maximum

min minimum

1,2,3,4,5 different eddy viscosity models
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DISCUSSION

S. W. Zelazny: Your model as applied to axisymmetric free layers uses the initial jet

radius a as the characteristic length. I have shown* that using the velocity half-radius

rl/2 rather than the initial jet radius results in an eddy viscosity model that accurately

models quiescent jets, which your model cannot. Comparisons between predictions and

experiment using both rl/2 and a for coflowing streams showed that the two models

give about the same results. Where have you shown that using rl/2 "was found to be

unsuitable for all but jet cases with Uj/U e >> 1"?

J. A. Schetz" If you experiment with the choice of this length scale which must be intro-

duced, you can improve the comparison in different regimes of the data. It is true that

an improvement is obtained by using the half-radius in the region of high mass-flux ratios

which corresponds to a jet in a quiescent medium. One could adopt that choice if he were

interested in problems mostly in that regime. However, considering comparisons with

data in the regime of greatest practical interest, the use of the initial radius is definitely

superior.

H. McDonald: I don't know if there is that much controversy over the selection of the

kinematic displacement thickness as far as boundary-layer methods are going. I think

that Cebeci and Mellor both used the kinematic definition and both achieved very good

agreement in their predictions. We are then faced with the dilemma that in boundary

layer one uses the kinematic displacement thickness, and manifestly from your results,

we have to use the normal definition. It would seem to me, in light of Rudy and Bushnell's

paper (paper no. 4), one should use mixing-length formulation.

J. A. Schetz: No, there is not much of a controversy. The situation is that, I think, in

boundary layers you don't usually get the tremendous density variations that we have in

a hydrogen jet into an air free stream. We have made calculations for boundary layers

using a kinematic or the real displacement thickness and the effect is generally not very

large.

J. Laufer" I noticed in your axisymmetric formulation, when you take the formulation

for the limiting case of constant density, and very far downstream where you assume

similarity, that you end up with an e that varies as the square of the width of your

shear region rather than the usual function of linear variation. Have you worried about
that situation?

*Zelazny, Stephen W.: Eddy Viscosity in Quiescent and Coflowing Axisymmetric Jets.
AIAA J., vol. 9, no. 11, Nov. 1971, pp. 2292-2294.
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J. A. Schetz: Not directly. I think it is well to recall that in the case of a moving

external stream, the exact equations do not admit a similar solution of the classical

type. Only the linearized equations accept such a solution.

M. V. Morkovin: I noticed that you avoided the first three test cases.

J. A. Schetz: Yes, the shear-layer cases. I'm talking about a mass-flow defect or

excess with respect to some main stream, and if you have two streams in which +y

has one velocity and -y has another, that does not make much sense.

B. J. Audeh: You said that this model is not to be used in the potential core, but we

have a problem of where to use it. You have shown concentration profiles, and did an

excellent job, but if I missed starting at the right place would my concentrations be

off considerably?

J. A. Schetz: Calculations can be started at any station beyond the potential core. You

could patch in a potential-core prediction, but it is insensitive to where you start as long

as you are beyond the potential core. You either have to have a prediction model which

you believe in for the potential core and start at the end of that, or start at some mea-

sured profile which is clearly beyond the potential core.
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PREDICTIQNS OF AXISYMMETRIC FREE TURBULENT SHEAR FLOWS

USING A GENERALIZED EDDY-VISCOSITY APPROACH*

By J. H. Morgenthaler and S. W. Zelazny

Bell Aerospace Company, Division of Textron

SUMMARY

The lack of a general theory for predicting turbulent flows has resulted in the

development of various empirical techniques applicable to specific classes of these

flows. One class of flows of considerable interest for many years, because of the

various engineering applications, is designated as free turbulent shear flows. A gen-

eralized eddy-viscosity approach has been successfully applied to these flows and is

reported. Results presented herein for the test cases selected for evaluation by the

Data Selection Committee of the NASA Working Conference on Free Turbulent Shear

Flows show that predictions were obtained which are adequate for most engineering

applications.

Because of the importance of starting computations from the injection station

where experimentally determined mean and turbulence parameters are rarely avail-

able, a very simple core model applicable to simple step-type (slug) profiles was

developed. Agreement between predicted and experimental mean profiles was gen-

erally almost as good for calculations made by using this model throughout the core

region and the transition model for all subsequent regions as predictions made by

starting from experimental profiles in the transition region.

The generalized eddy-viscosity model, which was developed in part through

correlation of turbulence parameters, successfully predicted turbulent shear stress,

turbulent intensity, and mean velocity profiles for a 0.040-inch-diameter microjet.

Therefore, successful scaling by the model was demonstrated since data used in its

development was for jet areas up to 90 000 times as large as the microjet and veloc-

ities only 1/20th as high.

INTRODUCTION

There has been considerable interest for many years in turbulence, since most

flow fields of practical importance are turbulent. Unfortunately, there is no general

analytical technique available for their prediction. In fact, a group of French scien-

tists (ref. 1) has objected to the use of a set of partial differential equations, such as

*Work supported in part by _e .air Force Office of Scientific Research under
Contract F44620-70-C-0016, with technical monitoring by Dr. Bernard T. Wolfson.
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the equations of change, for application to turbulent flows; they feel that since a turbulent

flow field is in "pure chaos," the instantaneous velocity of a particle of fluid cannot be

sufficiently regular to satisfy the constraints of partial differential equations such as the

Navier-Stokes equations. Unfortunately, no substitute for the equations of change has

been proposed.

Therefore, the current approach in analysis of turbulent flows is to assume that the

laminar form of the equations of change apply to instantaneous values of the velocity, den-

sity,enthalpy,and concentration. These equations are then time-averaged, such that

cross correlations, thatis, Reynolds transport terms, occur in additionto the original

"laminar-type" terms. Evaluation of these terms requires experimental information con-

cerning the nature of turbulence, since there are insufficientindependent equations to

specify a given turbulent flow uniquely. The factthat experimental data are required for

specificationof the Reynolds transport terms is the reason that analyses of turbulent

flows, whatever the approach, must be considered semiempirical.

Two general techniques thathave been used extensively to provide the needed turbu-

lence input are the eddy-viscosity and the turbulence kinetic energy (TKE) approaches.

(See refs. 2 to 4.) Both were developed primarily for the prediction of momentum trans-

port (forexample, mean velocity fields)because the velocity fieldwas frequently of pri-

mary interest. However, as more complex applications arise such as supersonic com-

bustors and chemical lasers, prediction of mass and energy transport becomes more

important than momentum transport. At present, the assumption generally made is that

turbulent Prandtl and Schmidt numbers are constant (generally less than unity,the value

specified being rather arbitrary) so that the identicalapproach used for predicting momen-

tum transport can be used for predicting mass and energy transport as well.

Unfortunately, the assumption of constant turbulent Prandtl and Schmidt numbers has

been shown in a number of investigationsto be only a rough approximation (for example,

refs. 5 to 7)so thatnot untiladequate mixing models for mass and energy transport also

are devised can solution of practical problems involving multispecies turbulent flows be

obtained with confidence. Of course, generality of an analysis is desirable; however,

from a practical standpoint,itis not necessary (nor very likely)that allturbulent flows

will be correlated with a single semiempirical mixing model. As long as flows of a given

class can be predicted over the complete range of practical interest,useful computations

can be made.

Several years ago, the eddy-viscosity approach was selected for further development

at Bell Aerospace Company, because itappeared to have a number of advantages over the

newer TKE approach (refs.8 to 11) for applicationto practical combustor problems:
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{1) Successful modeling techniques established for momentum transport could be

applied directly to t_e modeling of mass and energy transport, and thereby would make

the assumption of c_nstant turbulent Schmidt, Prandtl, and Lewis numbers unnecessary.

(2) Compressible multispecie free shear layer flows were of greatest interest; such

flows were not successfully treated prior to 1971 by use of the TKE approach. The sim-

plicity and flexibility of the eddy-viscosity approach for application to practical systems

such as combustors were judged to be significant.

(3) Profiles computed downstream of the injection station were less sensitive to

precise initial conditions. In fact, as demonstrated, the eddy-viscosity approach permits

calculations to be begun from the injector face by assuming simple (and obviously very

approximate) step functions for mean velocity, mass faction, and stagnation temperature;

whereas, the TKE approach requires detailed initial shear stress profiles.

{4) The eddy-viscosity approach does not require an explicit relationship between

the shear stress and the TKE. At present there is a controversy as to whether the shear

stress is directly proportional to the TKE or the square root of the TKE and thus its gen-

eral applicability is somewhat uncertain.

(5) Empirical relationships are required for the second and higher order correla-

tions in the TKE equation. The data used to develop these empirical relationships is

limited to simple flow conditions, that is, low-speed constant-density flows. Quite pos-

sibly these relations will not apply in general to more complex practical flow systems.

(6) The TKE approach had not been demonstrated to predict successfully the details

of mixing and reacting jet flow.

(7) Both the TKE and eddy-viscosity techniques use phenomenological approaches,

and therefore, neither can be expected to describe the detailed physics of the flow. The

success of predictions and the ease of their use are principal factors to consider in judg-

ing the relative merits of the approaches.

SYMBOLS

D

G

L

jet diameter

ratio of transverse to longitudinal root-mean-square values of velocity

fluctuations (eq. (2))

radial variation function for eddy viscosity. (eq. (9)); also gas

characteristic length (eq. (7))
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M Machnumber

Npr,T

NSc,T

Ruv

turbulent Prandtl number

turbulent Schmidt number

shear correlation coefficient (eq. (1))

r 1

r 2

T

radial coordinate (fig. 1)

value of r where U-Ue =0.99

Uj - Ue

value of r where U-U e =0.01

Uj - U e

total temperature

U mean velocity in z-direction

U

U t

V

V t

W

W t

X_Z

fluctuating velocity in text and mean axial velocity in figures

root-mean-square value of fluctuating axial velocity, u_

fluctuating velocity.in r-direction

root-mean-square value of fluctuating radial velocity, _'_

1-U
fluctuating tangential velocity component or

Ue

root-mean-square value of fluctuating tangential velocity, _'_

axial coordinates

Z c

zm
D

rw

velocity core length (fig. 1)

mass fraction
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e eddy viscosity

P

T
E

Subscripts:

mean density

Reynolds momentum flux (shear stress)

evaluated at center line

e evaluated at r = o_

j evaluated at r=0, z =0

max maximum value at a given z

o evaluated at r = o

U evaluated at velocity half-width

A bar over a symbol denotes a time-averaged quantity.

GENERALIZED EDDY-VISCOSITY MODEL FOR COFLOWING STREAMS

Background

When the decision was made to pursue an eddy-viscosity approach for turbulent

mixing analyses, a procedure was selected which, if successful, would circumvent many

of the shortcomings of previous eddy-viscosity models. Perhaps, most important was

the decision to model transport of mass, momentum, and energy separately and to con-

sider the wide range of flow conditions for the model development (refs. 5 and 12) pre-

sented in table 1. Previous investigators had demonstrated that any select set of data

could be successfully correlated (refs. 13 to 19) by using various types of models and

assuming the turbulent Prandtl and Schmidt numbers to be constant. Unfortunately, most

of these models had rather limited application (refs. 5 and 20).

The data in table 1 include both very low-speed single-component free jets as well

as supersonic compressible multispecies coflowing streams for the configuration shown

in figure 1. Because of the wide range of conditions, it was apparent that some of the

assumptions made by previous investigators for mathematical simplicity could not be

valid. For example, the assumption that has been most frequently niade for this reason
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is that no variation in the transverse (radial) direction exists in either the eddy viscosity,

or alternatively the eddy diffusivity of momentum. (See refs. 13 to 19.) Unfortunately,

this assumption has no valid basis (ref. 12) so that a general model must be a function of

radial as well as axial position.

Another important decision was to apply the computational technique for the numeri-

cal differentiation of experimental mixing data previously developed (refs. 21 to 23) prior

to initiating model development. By using this procedure, designated the inverse solution

technique, mean velocity and concentration profiles are differentiated once in the radial

direction, each of the remaining terms in an integral form of the shear-layer equations

evaluated, and the appropriate turbulent transport coefficients solved for as a function of

position in the flow field. Such information was considered to be essential for successful

model development. Overall mass and momentum balances were evaluated for consis-

tency; only high quality data which yielded species mass and momentum balances to within

20 percent of their average value at each axial station were used for the modeling.

General guidelines were established for the model development which, if success-

fully followed, almost certainly would lead to more general eddy-viscosity-type mixing

models than those previously reported:

(1) Attempt to model the structure of the turbulence, for example, shear stress and

turbulent intensities, not merely mean quantities.

(2) Predictions should exhibit self-preservation in region IV (fig. 1) which are inde-

pendent of jet initial conditions.

(3) Consider the lack of attainment of equilibrium of the mean and turbulence param

eters upstream of the self-preservation region by using anemometry data in the model

development. Failure to follow this guideline which permits consideration of flow

"history" was considered an important reason for lack of generality of previous eddy-

viscosity models.

(4) Use of the strong points of past models, for example, the eddy-viscosity model

should yield predictions in agreement with the successful Prandtl-type model for incom-

pressible free jet flows in the similarity region.

(5) Judge the merit of the model by comparison of predicted and experimental pro-

files at each axial station for which data are available. The ability to predict proper pro-

file shapes was considered to be more important than merely obtaining agreement with

experimental data along the center line.

By using these guidelines and the results obtained from the inverse solution tech-

nique, models for the maximum values of the turbulent shear stress and eddy viscosity

were devised as well as their variation in the direction transverse to the flow (radial
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direction). Details of this development were presented in references 5 and 12; a sum-

mary is presented herein.

Model Development

For coflowing streams, in which there is a predominant flow direction, the shear-

layer equations apply; they are the same as the boundary-layer equations except for

initial and boundary conditions. The classical definitions of the turbulent shear stress

applicable to incompressible flows

"re = pu-'_ = -PRuvu'V' = e 8__UU _ (1)
ar

Equation (1) was used together with the assumption that the effects of density fluctuations

are negligible, as is usually done in the analysis of free turbulent shear flows. This

_ssumption has been shown to be valid for compressible flows (up to Mach 3) in which

nolecular weight is constant. (See ref. 24.) Empirical relations were developed for vari-

ous parameters in equation (1), that is, for u', v', and Ruv , which permitted prediction

,f turbulence quantities such as "re and u '2, as well as mean profiles.

The data of references 25 to 30 suggested that the ratio of axial to radial turbulent

ntensity, as a first approximation, may be expressed only as a function of axial position,

md that the ratio of radial to tangential turbulent intensity is essentially unity.

v_ T / V f=fl-2 and m_-I
U t W _

C2)

where

f .5 + 0.005_ (_. < 100)
.o > lOO)

%

and

z

D

The empirical relationship between turbulent kinetic energy and the shear stress

suggested in reference 11 was used to relate the eddy viscosity to u '2

"re=O.15p_,2 +v,2 +w,2) BU/Br
(BU/ar)ma x

(3)
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Therefore, by using equations(2) and (3) andassuming that the region of maximum shear
occurs at the half-width of the jet ru

7_..._e= pu '2 aU/ar

u (pu,2)u
(4)

and

e pu '2
(5)

Applying equations (1), (2), and (3) at the jet half-width r u resulted in an expression for

the maximum value of the correlation coefficient

Ruv)u = -0.15 1 + 2f
fl/2 (6)

The empirical relation for the maximum value of _u '2) that followed the generalu
guidelines and correlated hot-wire anemometry data was (refs. 5 and 12)

(u,2)u=O.12_:lPU-PeUelrdrlaul( 1 "4"6Uj/Ue)
Pu L _-]u _ + e (7)

where

L=ru+(D-ru)e -0"115_

Substituting equations (2), (6), and (7) into equation (1) yields an expression for the maxi-

mum value of the eddy viscosityl

0.011}(1 + 2f)(1 + e'4"6Uj/Ue)S: I pU- PeUelr dr
(s)

eu= L

1 The original model developed in reference 12 included an empirical function of
density ratio. Subsequent analysis suggested that, in general, this function was not nec-
essary and has been excluded from the model. Interestingly, Brown and Roshko (ref. 34)
have shown that the mixing rate of planar shear layers also exhibits an independence of
density ratio.
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Variation of the eddy viscosity in the transverse (radial) direction was evaluated by

using equation (5). The empirical expression G(r/ru/ used to represent this radial

variation was

e Pu '2 1.05- O.15e "4"6r/ru
--=--= -=G(r/ru) (9)

eu (pu,2)u 1.0 + 0.05Cr/ru) 7

Equations (8) and (9) define the generalized eddy-viscosity model developed for the

transition region. This model, together with the assumption that NSc,T and Npr,T

were constant, was used for predicting the mixing of the free turbulent shear flows

selected by the conference data selection committee.

Discussion of Model

The eddy-viscosity model successfully followed all the general guidelines at least

partially, and therefore it is unique. Several of its features deserve comment:

(1) Radial variation of e and pu '2 are included in the empirical function
, .-,/._ __ \

e/e u =-u_,/_u] defined in equa+don _,.1°_ T_...._ .+u,,tlnn............. +.q p]otted in fiaure_ 2 alon__ with

constant and variable density data of references 25 to 28 and 31 to 33 which were used

for its determination. There are several reasons for the scatter of the data: (a) turbu-

lence quantities have not become self-preserving at the axial stations for which they were

available and (b) data obtained by using the inverse solution technique scatter even more

than the anemometry data since numerical differentiation of experimental data is utilized

in this technique. Consistency of the injected mass and momentum integral balances to

better than ±10 percent (rather than ±20 percent) is required to reduce the scatter.

Nevertheless, the composite results in figure 2 strongly indicate that the eddy vis-

cosity reaches a maximum at some distance from the center line and that it exhibits an

intermittent-type behavior at the outer edge of the mixing region analogous to the behavior

of boundary layers (ref. 2). The data also indicate that e/eu is monotonically decreasing

for r/r u > 1 and that it reaches a maximum at about r/ru _- 0.6, that is, in the vicinity

of half-width of the jet. The exact location of the maximum is difficult to pinpoint because

of the data scatter; however, the maximum of the function defined by equation (9) occurs at

r/r u = 0.66. No consistent trend was apparent which correlated with density variation

across the mixing region. Therefore, as a first approximation, the solid curve repre-

sented by equation (9) was used to represent the average variation of eddy viscosity in the

transverse direction. This approximation is obviously superior to the assumption that

e/eu is constant which was frequently made by previous investigators; however, it is

apparent from figure 2 that a correlation which includes other parameters than r/r u is
needed to reduce the scatter.
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(2) Both the eddy viscosity and turbulent intensity u'/Uj are proportional to the

mass defect. The mass defect has been successfully used by a number of investigators

to model the turbulent shear stress over a wide range of flow conditions and test geom-

etries. It was shown by Clauser (ref. 35) to correlate the eddy viscosity in the outer

region of a two-dimensional turbulent incompressible boundary layer in the absence of

pressure gradients. Schetz (refs. 18 and 19) extended the mass defect concept to model

axisymmetric coflowing streams in the transition region. Zelazny (ref. 36) further gen-

eralized this concept to apply to both jets in a quiescent atmosphere and coflowing

streams. It should also be noted that the generalized eddy-viscosity model predicts the

same center-line velocity decay rate in the similarity region as the Prandtl model.

(3) Recognition was given the fact that turbulent shear stress is not determined

exclusively by local mean flow properties at a particular location; that is, until the flow

is in the self-preservation region (fig. 1), prior development or "history" of the flow must

be considered, for example, initial conditions and wall effects. An attempt was made to

include this effect in the model empirically by defining a characteristic length L (eq. (7))

and a function f (eq. (2)), both of which varied significantly with axial location in the near

region up to about 100 diameters downstream (_. = 100).

The fact that L = r u (a function of axial position) was a more appropriate charac-

teristic length than L = D/2 (a constant) was discussed in reference 36. The more

sophisticated relation of equation (7) was demonstrated to yield superior predictions for

the data of table 1. Figure 3 is a plot of L for several of the test cases, and shows this

parameter reaches a minimum value for _ ranging from 6 to 10. Since this parameter

is empirical, and somewhat arbitrarily defined, its further modification may well lead to

improved results.

The function f defined in equation (2) varies linearly from 0.5 at _ = 0 to 1.0 at

= 100. It accounts empirically for the fact that u' and v' are not in equilibrium in

the near region of a free shear flow. The additional refinement of considering f a func-

tion of radial position was deemed unnecessary in light of the spread of the data for u '2

shown in figure 2. 2

The relations L and f both attempt to allow for the fact that the free turbulent

shear flows do not attain self-preserving profiles for much of the region of practical

interest. (See fig. 1.) Obviously, these relations are only rough approximations for this

effect since free turbulent flows do not exhibit a "universal" law by which turbulence

parameters and mean properties attain self-preserving profiles. Preturbulence levels

such as those caused by screens and initial profile shapes caused by splitter plates may

play a significant role in determining the axial location at which this condition is achieved.
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(4) An empirical function, 1 + expl-4.6Uj/Ue) which yields better correlation

when U e >> Uj was introduced to broaden the range of applicability. However when

Uj > Ue, this function has a negligible effect on the eddy-viscosity model, for example,

for the axisymmetric test cases the relation ranged from 1.00 to 1.04. On the other hand,

a significant improvement in predictions was obtained for jets where Uj << Ue such as

those reported by Zawacki and Weinstein (ref. 25). The amplification provided by this

function, which reaches a maximum value of 2, may account for the increase in the tur-

bulent momentum transfer caused by the recirculation regions that occur in these "wake-

like" flows.

Core Model

The generalized eddy-viscosity model was developed by using published data for

coflowing streams. Unfortunately, there were few data available for the core region

because of the difficulty in obtaining valid measurements in this region prior to the recent

development of the laser-Doppler technique. Of course, a model applicable to the core is

of great practical importance since in practical combustors and chemical lasers, for

example, the ignition and most of the combustion occur within this region. Unfortunately,

generally neither initial mean profiles nor shear stress profiles are known. The simplest

type of initial condition for starting calculations would be a "step-type" or "slug" profile

in which bulk mean quantities were simply used to characterize each stream. Naturally,

a core mixing model appropriate to step-type initial profiles might not apply when used

with experimental profiles. However, such a deficiency would not be important for model-

ing the transition and similarity regions as long as realistic profiles were generated prior

to reaching the end of the core. An effort to develop a core model is one task of the cur-

rent Bell Aerospace AFOSR contract.

As demonstrated in this paper the generalized eddy-viscosity model was quite suc-

cessful in the transition region for which it was developed. The simplest possible

approach was to assume a core model with the same functional form; therefore, as a first

approximation, the transition model was multiplied by a constant factor (less than unity)

to correct for the overmixing predicted using it in the core. The constant 0.4 proved to

be satisfactory, and the "core model" which resulted, that is, ecore = 0.4etransition, was

far more successful than anticipated. Of course, when applying the transition model to

the core region, the limits of the integral for the mass defect (eq. (8)) were changed from

0 to oo (the extent of the mixing zone in the transition region) to r 1 and r 2 (the extent

of the mixing zone in the core). Success of this model was demonstrated by the very

reasonable predictions attained when using either experimental or slug profiles at the

injection station. It suggests that the general functional form of the transition model may

be appropriate for the core as well; however, further work on core modeling is rbquired

before any conclusions can be drawn.
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Additional efforts to model the core region are in progress at Bell Aerospace with

recent results reported in reference 37. Also reported in reference 37 is a review of

methods used in the modeling of turbulent axisymmetric coflowing streams and quiescent

jets. Concepts such as a universal center-line mass fraction decay exponent, the

Reichardt hypothesis, and a virtual origin were demonstrated generally to be inadequate

for characterization of these flows.

COMPARISON OF PREDICTIONS WITH EXPERIMENTAL DATA

The generalized mixing model was used to predict the flow fields for the twelve axi-

symmetric jet cases and the two axisymmetric wake cases listed in table 2. The govern-

ing shear layer equations were solved numerically in the Von Mises coordinates by using

an explicit finite-difference method. Three types of predictions were made: (1) Step-type

(slug) initial profiles were assumed at the injection station (x = 0) and the core model used

until the velocity on the center line of the jet was less than its initial (core) value; the

transition model was used thereafter. (2) The first experimental profiles reported down-

stream of the core were used for the initial profiles (x/D designated on curve) and the

transition model used exclusively. (3) The first experimental core profile was used for

those cases in which the boundary-layer effects on the splitter plate were not pronounced

(x/D designated on curve). (Initial velocity profiles that exhibited pronounced boundary-

layer effects required a programing change to define the extent of the mixing region; this

change was not deemed to be warranted in the light of the success obtained by using the

slug profile.) Generally, three sets of curves are presented in each figure and corre-

spond to each of these types of predictions. Figures are plotted in the manner specified

by the data selection committee.

Test Case 6 (Maestrello and McDaid)

Predictions of the mean velocity for the high-speed quiescent jet are compared with

the experimental data in figure 4 for test case 6 (ref. 38), results showed good agreement.

Since no transition region profiles were available, only predictions from the injection sta-

tion were possible. The predicted center-line velocities were at most 14 percent greater

than the experimental velocities. This good agreement indicates that the initial slug

velocity profile was adequate. However, as expected even better agreement was obtained

when the actual experimental core profile (x/D = 1.0) was used. This result tends to val-

idate the simple core model for use with realistic initial profiles.

Test Case 7 (Eggers)

Velocity data for the supersonic (Mach 2.22) quiescent jet are compared with the

predictions in figure 5(a) for test case 7 (ref. 32). The agreement achieved appears to be
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adequate for most engineering applications; however, the model overestimated the mixing

rate (maximum error was 24 percent). Note, however, that it had underestimated the mix-

ing rate in the previous case with a maximum error of 14 percent. Again little difference

in predictions was observed when experimental core profiles were used and thus the

results of the previous case. were confirmed. Comparison of predicted axial velocity pro-

files with the data are shown in figure 5(b) for both the slug and experimental initial pro-

files. Good agreement was obtained at x/r o = 8.0 and adequate agreement at x/r o = 27

and 99 for each type of prediction.

Test Case 8 (Heck)

Predictions of the center-line velocity and total temperature for the high-

temperature quiescent jet are shown in figures 6(a) and 6(b) for test case 8 (ref. 39).

Since both momentum and thermal energy transport are significant in this case, it was

necessary to specify a turbulent Prandtl number. A constant Npr,T = 0.70 was

assumed, since this value appears to be representative of values reported in the literature.

Calculations were started from the point of injection using the slug and experimental ini-

tial profiles. The former overestimated the mixing rate for both velocity and total tem-

perature with a maximum error of 20 percent; the latter resulted in somewhat better

agreement. In addition, when calculations were started from the transition region pre-

dictions of both velocity and temperature were in excellent agreement with data (maximum

error was only 8 percent).

Test Case 9 (Forstall)

Predictions of the center-line velocity decay for the coflowing air (with 10 percent

He tracer) mixing with airstreams are shown in figure 7(a) for test case 9 (ref. 40). The

model underestimates the mixing rate with differences between prediction and experiment

less than 14 percent. Examination of the initial experimental profile and the assumed ini-

tial slug profile shown in figure 7(b) suggests one reason for the disagreement. The

assumed momentum flux at the injection station is considerably larger than the actual

momentum flux because of significant momentum loss to the splitter plate. Therefore,

mixing was predicted to be slower than actually observed. As a test of the importance of

this effect, predictions also were made with a slug profile adjusted so that the momentum

flux obtained from both the experimental and slug profiles would be equal (fig. 7(b)). Pre-

dicted center-line velocity decay for this case which is also presented in figure 7(a) is in

excellent agreement with experimental values. In addition, calculations made by starting

from the transition region show that good agreement was attained between the data and the

predictions (within 10 percent).
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Test Case 10 (Chriss)

Results for the high-speed, subsonic, coflowing streams of hydrogen mixing with

air are shown in figure 8 for test case 10 (ref. 31). The center-line predictions obtained

by using both an initial slug profile and experimental core profiles underestimated the

mixing (29 percent difference for velocity and 57 percent difference for mass fraction).

No significant difference was observed between these cases. Calculations started from

the transition region show that slightly better agreement was obtained for the hydrogen

mass fraction (within 55 percent) but poorer agreement was obtained for the center-line

velocity (within 45 percent). The first experimental transition velocity profile, obtained

at x/D = 5.34, is presented in figure 8(c). Good agreement at this station demonstrated

again the adequacy of the simple core model. However, these results demonstrate that

the eddy-viscosity model does not include all the complexities required for exact predic-

tions. The predictions for this case and that of Eggers (test case 12 (ref. 41)) are the

poorest of the entire set. Nevertheless, results probably still are adequate for many

engineering purposes.

Test Case 11 (Eggers and Torrence)

Predictions for coflowing air (with 1 percent ethylene tracer) and airstreams are

presented in figure 9 for test case 11 (ref. 7). These results show good agreement between

predicted and experimental velocities and are obtained by using the initial slug profile

(within 8 percent) even though data taken at the injector face exhibited boundary-layer

effects at the splitter plate. Predictions also were made by starting from the transition

region for this case, and they showed better agreement (within 5.5 percent).

Test Case 12 (Eggers)

Results for the Mach 0.89 inner hydrogen jet mixing with a Mach 1.32 outer air-

stream are presented in figure 10 for test case 12 (ref. 41). A turbulent Prandtl number

of 0.9 was used in the calculations as suggested in reference 36. Predictions for velocity

obtained starting both from the core and transition regions (fig. 10(a)) are somewhat low;

predictions initially were 40 percent too low, but agreement was considerably better at

downstream stations. The center-line hydrogen mass fraction decay (fig. 10(b)) was

greatly overestimated (nearly 75 percent too low at x/D = 6). This overmixing is sur-

prising, since for the similar conditions of Chriss (test case 10) the model predicted

undermixing, although it gave reasonable agreement overall. Examination of the schlieren

photographs of these tests suggest that pressure gradients exist in the near region (ref. 41).

Of course, since the shear layer equations are used in the analysis, transverse pressure

gradients could not be considered. The omission of pressure-gradient effects may, at

least in part, account for the poor agreement in figure 10.
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Test Case 15 (Chevray)

Predictions for an axisymmetric wake are shownin figure ll(a) for test case 15
(ref. 42). The model underestimated the mixing rate for this wake. Note, however, that
the scale w-3/2 is somewhatmisleading since it amplifies small discrepancies. For
example, at x/D = 18.0, the difference between predicted and experimental velocity is

15 percent; whereas, with respect to the w-3/2 scale, the difference is 70 percent.

Chevray also has measured the turbulent shear stress and a comparison between data and

predictions is shown in figure ll(b) at x/D = 12.0. The predicted and experimental shear

are in reasonably good agreement at this station; however, comparisons at other axial sta-

tions were not consistently this good. The ability of the model to predict turbulence quan-

tities is discussed in the next section.

Test Case 17 (Demetriades)

Good agreement between experimental and predicted velocities was obtained for the

compressible wake data presented in figure 12 for test case 17 (ref. 43). The maximum

disagreement was only 8.0 percent. This result suggests that the model developed by use

of jet data exclusively is reasonably valid for wake data as well.

,,,_ _,,_,_,._v,,_ _,_ the wake _; ............ _ _".... _**_ ,_.^ ._ _ n

exp(-4.6Uj/Ue),,,, from the model since actual wake data were not used in the development

of this expression (for which Uj = 0). Calculations made by including this term improved

agreement with the Chevray data but agreement between predictions and the Demetriades

data became poorer. Additional wake data must be evaluated before an empirical velocity

ratio expression can be validated.

Optional Test Cases

Predictions also were made for the five optional test cases (figs. 13 to 17) which

utilized axisymmetric geometry. Since the previous cases showed that valid results were

obtained by starting with the initial slug profile, and since such profiles are the simplest

to use, predictions were made only with these profiles.

The agreement obtained between the predictions and the experimental data for test

case 18 (Wygnanski and Fiedler, refs. 29 and 30) was outstanding; that is, similar

(region III, fig. 1) velocity profiles were predicted. Agreement for test case 19 CHeck,

ref. 39) was also quite good (within 20 percent) as it had been for the earlier test case 8

CHeck, ref. 38). The velocity agreement is not very good (within 33 percent) for test

case 20 (Chriss, ref. 44); however, the hydrogen concentration for this case was somewhat

better (about 29 percent). As before, agreement was not good for either velocity or con-

centration for test case 21 (Chriss, ref. 31) (nearly 16 percent for velocity and t00 percent

for concentration). Agreement for test case 22 (Eggers, ref. 41) also was not good; the
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model drastically overestimated the mixing rate as it had for test case 12 (Eggers,
ref. 41). Lack of agreement is not surprising since the data exhibits an anomalous
behavior in which the center-line jet velocity becomesless than the free-stream velocity,
evidencethat severe pressure gradients may have occurred. For this reason, an analysis
using shear-layer equationsmay not be appropriate.

PREDICTIONOF TURBULENCEPARAMETERS

In the developmentof the generalized eddy-viscosity model, an effort was madeto
correlate both turbulence and meanquantities. Recently purchasedhot wire andlaser-
Doppler anemometersare beingused to characterize the flow from small jets in an effort
to obtain empirical correlations for jet noise. Suchdatapresent anexcellent opportunity
to compareturbulence parameters predicted by using the model directly with experimen-
tal parameters. If successful in thesepredictions, the model might be used with some
confidencein the developmentof anempirical correlation for noise.

Results of hot-wire measurementsmadefor a 1.02-mm-diameter (0.040-in.) free
jet by Baker, Moonet al. (ref. 45) are presented in figures 18 to 21; initial jet velocity
was 213.4m/sec (700ft/sec). The data are very consistent since variation in momentum

OG

balances was less than 2.5 percent from the mean value, that is, _0 pU2r dr ranged

from 0.0512 to 0.0533 N (0.01152 to 0.01198 lbf). Predictions were made by using the

initial slug profile and the core model in the near region followed by the transition model

as previously described. Agreement is seen to be very adequate for turbulent shear

stress 7e, axial turbulent intensity u'/Uj, and mean velocity Uj. In the case of r e

and u_Uj, agreement was poorest at the initial station (x = 30.48 mm (1.2 in.)) where the

x-wire is long (1.27 mm (0.050 in.)) relative to the jet diameter. For this reason, char-

acterization of the near region, that is, core and transition, are in progress using the

laser-Doppler technique. The agreement between experimental and predicted velocities

using the model (fig. 20) is outstanding, even at the initial station. The accuracy of pre-

dictions of mean values (within 2 percent) is significantly better than the shear stress

(within 20 percent). This result demonstrates that predicted mean values exhibit a degree

of insensitivity to the inaccuracies introduced in predicting the shear stress. That is, the

eddy viscosity is used directly for computation of shear stress, but it merely influences a

coefficient used in the numerical integration procedure to obtain mean velocity. The

center-line velocity is plotted as a function of axial position in figure 21. The decay

exponent is correctly given by -1 for both experimental and predicted results as is appro-

priate for flow in the similarity region.
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Additional experiments were made for a sonic free jet; although exact static pres-

sure matching was not attained at the nozzle exit agreement between predicted and exper-

imental parameters, it was essentially as good as that shown in figures 18 to 20.

These results enhance our confidence in the applicability of the model for engineer-

ing calculations. They also showed the model was useful for scaling since data used for

its development (table 1) were for jet areas up to 90 000 times as large as the 1.02-mm

(0.040-in.) microjet and velocities 1/20th as high. No modification of the model was made

for the microjet predictions.

CONCLUSIONS AND RECOMMENDATIONS

Generalized eddy-viscosity models developed for the similarity, transition, and core

regions were presented which did creditable jobs of predicting mean velocity profiles (and

reasonably well for concentration and temperature profiles when appropriate) for most of

the 14 axisymmetric free turbulent shear flows selected by the data selection committee.

The core model was demonstrated to be reasonably valid even when slug (step-type) pro-

files were assumed at the injector. Results established the validity of the eddy-viscosity

approach for engineering predictions including practical hardware design and its optimiza-

tion. (For example, see ref. 46.)

The model also was shown to predict turbulence shear stress and axial turbulence

intensity as well as mean velocity for jets varying in area by a factor of 90 000 and veloc-

ities varying twentyfold. Its applicability over a wide range of jet geometries as well as

flow conditions was thereby established.

The model has several important features; it includes (1) a transverse (radial) vari-

ation of the eddy viscosity, (2) the mass defect, (3) allowance for the fact that turbulent

shear is not dependent exclusively on local mean flow properties (by defining an empirical

characteristic length, and a function allowing for axial variation in the ratio of the axial to

radial turbulence intensities), and (4) allowance for the variation in the ratio of jet velocity

to external stream velocity.

The assumption of constant turbulent Schmidt and Prandtl numbers was made in

order to predict flow fields in which mass and energy transport occurred in addition to

momentum transport. In order to obtain satisfactory predictions, these parameters were

varied from 0.6 to 0.9. These results clearly demonstrate the need for separate models

for mass and energy if realistic predictions are to be made without the benefit of prior

experimental data.

The critical guideline used in the development of the generalized eddy-viscosity

model was application of the inverse solution technique to a wide range of valid experimen-

tal data so that quantitative results were available for determination of the various func-
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tional relations and constants. The same technique shouldbe applied for the development
of turbulent mixing models for mass and energy transport, so that the unacceptable
assumptionthat the turbulent Schmidtand Prandtl numbers are constant canbe relaxed.

Examinationof those workshopcases in which poorest predictions were obtained

( e) < 0.6. This result suggeststhat further improve-indicates that the ratio (pU)j pU e =

ment of the eddy-viscosity model may be possible by including an appropriate relation

containing this ratio.

Examination of available free turbulent shear flow data suggests that more detailed

experimental investigations be conducted. These investigations should include the follow-

ing effects: (1) pressure gradients and pressure levels other than atmospheric, (2) initial

conditions at the injection station, (3) heavy gas jets exhausting into light gases, for exam-

ple, oxygen into hydrogen, and (4) jet to free-stream velocity ratios near unity.
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TABLE i.- COAXIAL JET MIXING DATA USED IN MODEL DEVELOPMENT

[External gas stream was air in all cases]

Investigator

Cbriss (ref.31)

Zakkay (ref.13)

Eggers (ref.32)

Eggers and Torrence (ref.7)

Alpinlert (ref.47)

Zawacki and Weinsteln (ref. 25)

Sami (refs.26 to 28)

Wygnanald (refs.29 and 30)

Cane
number

"1

*2

*3

*4

*5

6

7

8

9

*1

2

3

*4

5

6

7

8

*1

*1

1

*2

3

*1

*2

3

*4

*5

6

7

*8

*9

*10

"1

tl

Jet gas

H2

H2

H2

H2

H2

H2

H2

H2

Air

H2

H2

H2

He

He

Ar

Pfr

Ar

Air

/_i .=thylene

302

302

702

Air

Air

Air

Air

Air

Air

eon 12

eon 12

eon 12

eon 12

Air

Air

D r mm

12.7

12.7

12.7

12.7

12.7

12.7

12.7

12.7

12.7

7.6

7.6

7.8

7.6

7.6

7.6

7.6

7.6

25.4

24.4

50.8

50.8

50.8

18.14

18.14

18.14

18.14

18.14

18.14

18.14

18.14

18.14

18.14

304.8

25.5

D, in. Oj, kg/m3 pj, tbm/ft 3

0.5 87.6 5.47 x 10-3

.5 92.7 5.79

.5 87.8 5.48

.5 85.7 5.35

.5 82.7 5.16

.5 80.7 5.04

.5 79.3 4.95

.5 74.0 4.62

.5 1322.4 82.56

.3 48.2 3.01

.3 64.1 4.00

.3 76.9 4.80

.3 141.0 8.80

.3 163.4 i 10.2

.3 1633.8 ilO2.0
..... ]....

._ _ueo._ J._.u

.3 2354.6 147.0

1.0 2402.7 150.0

.96 1457.6 91.0

2.0 2162.4 135.0

2.0 2226.5 139.0

2.0 2114.4 132.0

.7141 1217.4 76.0

.714 1217.4 78.0

.714 1217.4 76.0

.714 1217.4 76.0

.714 1217.4 76.0

.714 1217.4 76.0

.714 4869.5 304.0

.714 4837.4 302.0

.714 4869.5 304.0

.714 4837.4 302.0

12.0 1217.4 76.0

1.004 1217.4 78.0

uj, m/sec

1005.8

975.4

929.6

731.5

579.1

944.9

746.8

594.4

286.5

603.5

701.0

1002.8

454.2

691.9

219.5

_,3i.6

256.0

539.2

289.6

95.1

128.6

154.2

,366

.503

.920

1.829

4.328

14.630

1.207

2.621

1.341

.564

10.668

57.912

Uj, fl/sec

3300

3200

3050

2400

1900

3100

2450

1950

940

1980

2300

3290

1490

2270

720

"l_u

840

1769

050

312

422

506

1.20

1.65

3.02

6.00

14.2

48.0

3.96

8.60

4.4

1.85

35.0

190.0

_kz/Dj)mir

2.95

.49

.42

.50

.41

.50

.50

.51

.50

10.0

13.3

13.3

13.3

13.3

13.3

t_.;J

16.7

.0

.0

5.25

5.25

5.25

.0

.0

.0

.0

.0

1.40

.35

.35

.36

.35

1.00

5.00

(z/Dj) man

14.55

14.50

20.80

20.80

12.70

19.20

16.30

12.40

14.30

30.00

30.00

30.00

30.00

26.70

30.00

Z_.'lU

30.00

75.00

49.00

12.50

12.50

12.50

11.30

11.30

14.00

14.00

21.00

14.00

14.00

21.60

14.00

14.00

10.00

100.00

I
* (1) Momentum integral balances were within _ercent of their average value at any axial station.

(2) Injected mass integral balances were within 20 percent of their average value at any axial station and were Within 13
80 percent of the axial stations.

tDetalled profiles not available.

(U)e Lou) e

6.300 0.56(

4.400 .390

3.80( .320

3.000 .240

2.400 .190

4.600 .620

3.200 .410

2.500 .300

2.40( 3.600

1.460 .047

1.690 .072

2.420 .124

1.100 .103

1.670 .185

.530 .590

. _)t_U .'ISU

.620 .97(3

.746 .64C

.470 .66C

.650 .95C

.786 1.17(;

.02_ .02_

.o35 .036 i

.063 .063!

.12! .12_

.294 .294

il.OOC t.O0_

.08_ .344

.17_ .714

.185 .74C

.132 .526!

_u2_j Mj M e
:pu2)

3.5201_.79 0.42

1.710 .79 .60

1.210:.73 .66

.720 .57 .67

.460:.44 .65

2.850 .71 .42

1.310 ._6 .49

.750 .43 .50

8.650 .87 .71

.069 .51 1.6

• 122 .60 1.6

.300 .89 1.6

.113 .51 1.6

.309 .82 1.6

.312 .82 1.6

.442 .89 i.6

.605 1.00 1,6

2.22 .0

.447 .90 1.3

.310

.617

.912

.001

.001

.004

.063

.089

1.000

.030

.127

.137

.070

percent of their average value at
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DISCUSSION

S. Corrsin: This is a trivial remark, but on the figure showing eddy viscosity e versus

radial distance r you have a finite slope of e at the center line of the axis of the jet.

I wonder whether it would be better to have a horizontal slope there.

J. H. Morgenthaler: Of course, the center line is an axis of symmetry; however, because

(_u/ar)¢. = 0, it is not possible (or necessary) to define (ae/ar)¢_.

I. E. Alber: Also, with respect to your eddy viscosity model, I noticed that you had the

eddy viscosity e proportional to u '2. Nominally, from dimensional analysis, one would

take e proportional to u'. Is there any reason that you chose that over the more con-

ventional scheme?

J. H. Morgenthaler- Steve, would you like to answer that one?

S. W. Zelazny: The proportionality you are referring to (eq. (5)) was obtained by assuming

(1) the shear stress is directly proportional to the turbulence kinetic energy, an assump-

tion used in a number of the Workshop papers using the turbulence kinetic energy

approach, (2) the ratio of the transverse turbulence intensity to the axial turbulence inten-

sity is independent of radial position, and (3) the shear correlation coefficient is directly

proportional to the partial derivative of the axial velocity with respect to the radial coor-

dinate, that is, aU/Sr. The relation, _ proportional to u '2, also may be obtained from

dimensional analysis if it is assumed that the eddy viscosity is functionally dependent on

density u '2 and the maximum value of 8U/Sr at a given axial station.

J. H. Morgenthaler: In other words, we did not pull the relation out of our hat.

M. V. Morkovin: Concerning the same point, how do you use equation (5)? Do you use e

just to evaluate u'2? It is not used in the development of other relationships, is it?

S. W. Zelazny: Equation (5) was used to develop the empirical expression, G(r/ru) of

equation (9) describing the radial variation of eddy viscosity and turbulence intensity. It

showed that both eddy viscosity "data" and turbulence intensity data could be used to

obtain an approximation for e/e u and (pu'2)/(pu'2)u consistent with the assumptions

listed in my reply to Dr. Alber. It is not true that e is just used to evaluate u '2 since

e is essential for prediction of the mean values.

J. H. Morgenthaler: In figure 2 of the paper, there are open symbols and closed symbols

which didn't show up very well on the slide, but as you can see, some points were obtained

by direct differentiation of the mean data, and some were obtained directly from hot-wire

turbulence measurements.
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M. V. Morkovin" But I'm saying, that all you are trying to do is to fit some transverse

variation of e. In your computations as you are marching in the axial direction, the

effect of transverse variation does not influence predictions since the function G(r/ru)

is independent of z. That is, the transverse variation only affects prediction of the tur-

bulence quantities, doesn't it. _

J. H. Morgenthaler: The transverse variation of

as is illustrated in the figure. The local value of

momentum transport as minor perturbations in e

opment of the model. It is true, however, that the computation of mean quantities is not

influenced by the prediction of turbulence intensity. In other words, the model may pre-

dict valid mean profiles but be considerably poorer in its predictions of turbulence

quantities.

T. Cebeci: Well, let us have one more question before we take our coffee break.

S. C. Lee: I am looking at your figure 2 right now. I have a question related to this fig-

ure. It looks from the figure that the function G(r/ru) might be considered to be con-

stant between r/r u = 0 and r/ru = 1.5. What effect would this assumption have on the

predictions?

J. H. Morgenthaler: We believe the radial variation to be important based on our model-

ing experience. We have run a case which shows that the length of the transition region

is significantly influenced as are mean quantities (see the figure). For example, the

velocity at the ¢_ at z = 50 D (2.0 in.) was 92.0 ft/sec for G(r/ru) defined by equa-

tion (9), but was 64.3 ft/sec when the assumption was made that G = 1o

e has a great influence on predictions,

e greatly influences the rate of

have demonstrated during the devel-
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PREDICTIONAND EVALUATION OF EDDY-VISCOSITY

MODELS FOR FREE MIXING*

By V. Zakkay, R. Sinha, and S. Nomura

New York University

SUMMARY

Analysis for the turbulent mixing of free jets is presented in this paper and com-

pared to recent experimental results. A turbulent mass diffusion model is presented

and is based on the concentration potential core. The model yielded good results when

compared with the experimental results except for low-speed flows where few experi-

mental data are available.

A review of recent experimental results verifies again that the three diffusion pro-

cesses in turbulent mixing are interrelated; however, no single diffusion model may be

used for all three processes. This is especially true when pressure gradients are

present in the flow field. It is shown that even though momentum diffusion is signif-

icantly affected by pressure gradients, mass diffusion is not.

It is further indicated that the mass diffusion model has been derived and is

based on the accurate correlations of experimental results obtained for the concentra-

tion potential core. Similar techniques may be used in deriving an expression for the

momentum and thermal diffusion coefficients. These expressions would be more com-

plicated since they would have to take care of boundary layer at the start of the mixing

region.

Finally, a comparison of the analyses, using this particular model and Ferri's

model, with available experimental results is made.

INTRODUCT_N

The problem of free turbulent mixing with large density gradients has been an

area of considerable interest and ever increasing practical importance in the past

decade. Problems of constant density mixing may be traced back as far as the 1930's.

These types of problems have a wide variety of applications and have been used for

wakes, rocket planes, supersonic combustion, nuclear core reactions, and so forth.

* This research was sponsored in part by the Aerospace Research Laboratories,
Air Force Systems Command, United States Air Force, Wright-Patterson Air Force
Base, Ohio, under Co.-_ract F-336!5-68-C-!!84 and in part by NASA International
Fellowships.
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In reference 1, the Prandtl eddy-viscosity model for constantdensity flow was
extendedto the variable density flow. However, as pointed out in reference 2, this model
fails whenthe mass flux of eachstream is equal. Ting and Libby (ref. 3) determined the
compressibility factor for the Prandtl model using their transformation, while Donaldson
andGray (ref. 4) andPeters (ref. 5) obtainedthe compressibility factor empirically.
Thesemodels, however, fail also whenthe velocity of eachstream is equal, since the
Prandtl modelbecomeszero. Zakkay, Krause, and Woo(ref. 6) developedthe eddy-
viscosity model in terms of the center-line velocity andvelocity half-radius. Schetz
(ref. 7) extendedthe Clauser model (ref. 8) to the axisymmetric wakewhich was
expressed in terms of mass defect across the wake.

Eachof all thesemodels has a constantwhich is chosensuchthat the numerical
solutions of wake equationsagree with the experimental databy employing the proposed
eddyviscosity andappropriate constantvalues for turbulent Prandtl number Pr t and

turbulent Schmidtnumber Sct. Therefore, it hasbeenfound in references 2, 9, and 10
and also in the present investigation that all these models provide goodpredictions for
certain very restricted flow conditions, but noneof them is valid for the general case.

In comparisonwith these numerousworks for the eddy viscosity, only few exten-

sive works havebeendonefor other transport properties, namely Prt, Sct, and Let
(turbulent Lewis number). In analytical andnumerical investigations so far, constant
values for Pr t and Sct havebeenassumed,and several experimental studies seem
to approvethese assumptionsof constantproperties under the condition of zero pressure
gradient in the mixing flow field.

In reference 11, Forstall and Shapirodetermined Let = 1.0 and Pr t = Sc t = 0.7

using the data of air-to-air mixing measured at very low speed. Zakkay et al. (ref. 6)

carried out extensive measurements for the turbulent mixing of high-speed coaxial jets

comprised of several dissimilar gases. For hydrogen and air mixing, Sc t = 0.8 to 2.0

and Le t = 0.9 to 1.2 have been concluded. Chriss (ref. 12) measured very detailed pro-

files in mixing flows of high-speed coaxial air and hydrogen jets and obtained Le t = 1:0.

The accuracy of these experimental data has been checked by Zelazny, Morgenthaler, and

Herendeen (ref. 9) and Harsha (ref. 10) by means of constant-momentum integral check

and was found to be very good. Peters, Chriss, and Paulk (ref. 13) have shown for one

case of hydrogen and air mixing measured by Chriss that Pr t = Sc t = 0.85 is approxi-

mately valid. Zelazny et al. (ref. 9) also calculated Sc t for four cases of Chriss' data

(ref. 12) and confirmed the result obtained by Peters et al. (ref. 13).

It is difficult at this time to generalize and to derive equations for a single applica-

tion; however, some basic conclusions have been reached from past research efforts.

For example, the authors have indicated previously that the mixing which occurs between

two coaxial streams depends largely on their initial energy and their transfer phenomena
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in the mixing region. Therefore, differentiation must be made between jets where momen-

tum diffusion is the controlling mechanism and jets where mass diffusiofi, or thermal

diffusion, is the controlling mechanism. Theoretical treatment of the problem is impos-

sible since turbulent transport properties for the three diffusion processes are not yet

available. Reference 6 has attempted to deduce such turbulent transport coefficients

from mass diffusion experiments.

Similar attempts have been made in wakes to deduce momentum diffusion coeffi-

cients; however, no single model has been capable of analyzing the entire range of flow

fields. In addition to the complications of the unknown transport properties, in several

problems, the pressure field is not constant, and therefore complicates the analysis

further. For instance, references 14 and 15 have indicated that pressure gradients do

not affect mass diffusion; however, momentum diffusion is significantly affected. These

regions of varying pressure gradients are present close to the exit of the jets and are

directly responsible for the discrepancies among constant-pressure analyses. Results

of mixing with pressure gradients, in reference 15, indicate a large discrepancy between

theory and experiments for momentum diffusion, although good agreement exists for mass

diffusion.

Therefore, since the topic under discussion is complex and cannot be described in

terms of one single model, the present paper will concentrate on the mixing of coaxial

jets with special emphasis on mass-diffusion processes. At first a description of the

model used for mass diffusion will be derived (see fig. 1) and then the predictions of this

model are compared with several of the test cases supplied by the organizers of the

Langley working conference on free turbulent shear flows.

SYMBOLS

Cp

Dj

Dt

H

specific heat at constant pressure

normalized specific heat with respect to

normalized specific heat of kth gas; k -- 1

and k- 2 corresponds to outer jet gas

inner jet nozzle diameter

turbulent diffusion coefficient

total enthalpy of gas

Cpe

corresponds to inner jet gas
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h k static enthalpy of kth gas

Le t

M

turbulent Lewis number

local Mach number

N total number of grid points in T-direction

concentration decay exponent along center line

P

Pr t

R

static pressure

turbulent Prandtl number

gas constant

Re Reynolds number

r radial coordinate

rj

rmc

_mc

rmu

sc_

T

m

T

normalized radial coordinate with respect to rj

radius of inner jet nozzle

concentration half-radius defined so that Yj YJ¢-
2

normalized half-radius with respect to rj

velocity half-radius defined so that u =
u¢_ + u e

2
at

turbulent Schmidt number

temperature

normalized temperature with respect to T e

at r = rmc

r : rmu

U axial component of velocity

normalized axial velocity with respect to u e
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v radial component of velocity

W

W

nondimensional radial velocity

ratio of molecular weights, Wj/W e

normalized molecular weight with respect to We

x axial coordinate

x i initial value of x to start computation

concentration potential core length

normalized axial coordinate with respect to rj

normalized x o with respect to rj

normalized axial coordinate with respect to Xo

Yj

Yk

mass concentration of inner jet gas

mass concentration of kth gas; k = 1

k = 2 corresponds to outer jet gas

transformed axial coordinate defined as

eddy viscosity

corresponds to inner jet gas, and

Re -1 d_

specific-heat ratio

mass-flow ratio defined as pjuj
PeUe

modified stream function defined by equation (7)

_u¢_ normalized center-line velocity defined by
u e - u__

U e - Uj

transformed axial coordinate defined as 2 SO _'_dx
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p density

m

P

T

rt

_t

(pDt/

(pv)

Subs cripts:

normalized density with respect to

modified stream function defined as

turbulent shear stress

turbulent viscosity

normalized value of

normalized value of

pD t with respect to

pu with respect to

normalized value of pv with respect to

pjujrj

pjuj

PeUe

center-line values

external conditions

initial conditions

inner jet conditions

THEORETICAL ANALYSIS

Basic Equations and Turbulent Diffusion Coefficient

The governing equations for the mean turbulent flow properties in coaxial mixing

with axial pressure gradient can be described as follows:

Conservation of mass:

1
_-_pu) +r a_rPVr)=0

Conservation of momentum:

_)u Ou 1 o (p ._r) dppu _- + pv -- = e rar r ar -

(1)

(2)
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Conservation of energy:

aH aH
pu -_ + pv _- __ 1 _I_e_raH= u + _ _ rt _-_

Pr_ - 1 Le t - 1
+--_ -perU_r +

P r t P r t
(3)

Conservation of species:

pu -_- + pv O'-r-= r\sc t r -_-'r / (4)

where the following conditions were assumed:

(I) The flow is chemically frozen.

(2)The radial pressure gradient is not existing.

(3)The streamwise pressure gradient is supposed to exist and therefore the

external flow conditions could be variable.

In references 16 and 17, equations (1)to (4)are solved for the axisymmetric coaxial

jet mixing with the assumptions of dp/dx = 0, pr t = c_ = ,_ = !.0, a -_ step _._+i_1 p_n__t _t .............

filesfor velocity,enthalpy, and concentration. Obviously these assumptions reduce those

equations to a single equation and the solution can be applicable for any flow properties.

As for these assumptions, however, the transport coefficients Prt, Sct, and Le t are

generally not equal to unity, and the initial profiles are not always step profiles because

of boundary layers developed on the jet nozzle wall. The exact application of this solu-

tion is possible only for the species equation involving the turbulent diffusion coefficient,

for which the initial profile can be assumed correctly to be a step profile and in which

other transport properties are not directly involved. Furthermore, even if the axial

pressure gradients exist, the mass diffusion will not be affected significantly as shown

experimentally in references 6, 14, and 15 and in the present experiment, since the pres-

sure gradient affects the concentration indirectly through velocity and temperature field

as seen in equation (4). Therefore, the solutions as obtained in references 16 and 17 can

be employed exactly only for the species equation involving the turbulent diffusion coeffi-

cient in the mixing with axial pressure gradients.

The species equation with the diffusion coefficient is

pu + pv = - Dtr (5)

where the initialconditions at x = 0 are

yj = 1 (for 0_-<r _rj)
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Yj = 0

and the boundary conditions are

OYj

Or

Yj = 0

(for rj< r< _)

(at r = O)

(at r - _)

Applying the modified yon Mises transformation, Kleinstein obtained the exact solu-

tion for the linearized boundary-layer equation in reference 17. Employing the same

method, the species equation can be solved as follows:

Equation (5) is transformed to

=¥-_ 0Dt)(0u)r (6)

by the transformation terms:

_=x
rj

0_\2]

0__(_A2 m
_x\2] = -(pv) _

Neglecting the fourth-order term in the Taylor series expansion of

the species equation (6) reduces to the linear form in _ #I,-plane as

o-7-=7.,_,

_0_(where _ is definedas _=2 PDt)d_.

Assuming a step initial profile, the solution of this well-known heat-conduction

equation can be expressed along the center line by

where _I,j is _f2 by the definition given in equation (7).

Yj//Yj¢_ approaches the Gaussian distribution (ref. 6) as

(7)

(8)

In the far wake region as _ -- co,
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Y_.i.J= exp (_ _1 (9)
YJa6

These solutions (eqs. (8) and (9)) can be used to introduce the diffusion model in a

way similar to that developed in reference 6 where Zakkay et al. introduced the eddy-

viscosity model.

1Since WuJ -

_2 2_ 2
= ""X--

in the far wake region as _ - _o,

and

--= exp
Yj_

Therefore, assuming the center-line concentration decay law to be

the concentration profile can be expressed in the physical plane by

Yj = _-n(1 _ _-n) f2//x

(10)

=_-n (x)-nYk = _o '

(II)

Then the asymptotic jet spread can be given by taking the limit of equation (11) as follows:

lira a_ (_ yj ._1/2 (_-1)

Integrating this equation gives the half-radius for concentration rmc in the far wake

region as

r .nql/2

rmc = 0.833rj_(xX----o)_
(12)

Equation (12) may provide an analytical prediction of the concentration half-radius. Once

the concentration profile is expressed in the physical plane by equation (11), the turbulent

diffusion coefficient can be derived from the species equation inversely.

The species equation (5) is described with the aid of the continuity equation by

0Yj r 0(p_Yj) r' dr' Yj r' a(pu)dr'PDtr -- =ar _x ax

Then the diffusion coefficient along the center line can be expressed as

(PDt)_ = ! _2y|

\2__i/
\ ar2 J¢_

(13)
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Substituting equation (11) into equation (13) gives the turbulent diffusion coefficient on the

center line as follows:
n-1

_2 -W'-

nr. (Jme / xl/n(pu)¢___""J
4_o\ln 2/

(14)

n. The decayIn equation (14) there are two unknown parameters, namely Xo and
_-n

exponent n in Yj ¢_= x has been shown to be

n = 2 (15)
for high-speed jetmixing in many experiments (forexample, refs. 6, 14, and 15) and also

will be shown to be n = 2 in the present experiment.

Now the potentialcore length Xo for concentration in high-speed mixing, where

n = 2 is valid,should be formulated in terms of known values. The parametric inves-

tigationhas shown the importance of momentum ratio at the initialexitplane on the poten-

tialcore lengthfor concentration. The typical correlation between the potentialcore

length for concentration and the initialMach number ratio can be seen obviously in fig-

ure 2. The Mach number ratio of two jetscan be expressed by the momentum ratio as

pjuj 2 _ \RT/j

\g'W']e

since pj = Pe" Therefore, figure 2 shows that when the momentum ratio becomes larger,

the potential core length becomes longer.

These data are rearranged in figure 3, from which the correlation equation has been

obtained as

-- 1 + 30/_'J _ M.2 2
(_--_')concentration \Pe/_Pxl/4 ] + Mj exp (1 Mi/j _

From equation (16), when Mj = 0,

(16)

(_../concentratio n = 1.0

which corresponds to the axisymmetric wake, and the result of Xo//D j = 1.0 is supported

by the data of the supersonic wake studies (refs. 18, 19, and 20). When M e = 0, which

corresponds to the jet injected into the quiescent atmosphere, the data of Keagy and

Weller (ref. 21) and O'Connor (ref. 22) are fairly well correlated as seen in this figure.

Now the turbulent diffusion coefficient, assuming that it is only a function of x, can

be described with the aid of equations (14) and (15) as
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PDt-- 0.6 rmc(PU/ (17)

It is noticeable that equation (17) does not include any adjustable constant to match the

numerical solutions of wake equations with the experimental data. Such constants were

included in all previous viscosity models suggested by Prandtl, Ferri, Schetz, and others.

As shown subsequently the diffusion model given by equation (17) provides good

numerical predictions for the high-speed mixing of hydrogen and air, for which the decay

exponent n satisfied equation (15) approximately. However, for the general case of

arbitrary dissimilar gases, it has been found necessary (by means of numerical calcula-

tions) to include a molecular-weight factor given as

for turbulent diffusivity; thus,

0.6 X1/2

PDt = 1 + 0.8W Xo rmc(PU)c-

whe re

1 + 0.8(Wj/We) in the expression

; [(1 Me._ 2_ -2Xo = 2 + 60_ pj '_1/4M2 2 \ - _,-'_7",! ''
_'-_] j/I+Mj exp " 2i/ I(

(18) -1

Since the ratio of the molecular weights W = Wj/W e is very small for the mixing of

light gas and heavy gas, equation (18) becomes of the same form as equation (17) as, for

example, in the case of hydrogen-air mixing.

It is important to realize that the model chosen is based on the potential core

derived from a step profile. Therefore, one cannot expect it to work if the initial pro-

file consists of a boundary-layer profile. However, these difficulties could be avoided

by always starting with an initial step profile, and calculating the length of the potential

core for the step profile. This distance should be added to the calculations performed

with the boundary-layer type profile. This procedure will result in a shift of the curve,

which will indicate a slower mixing region. This fact will be evident in some of the

results that will be given in the next section.

Application to the Numerical Solution of Wake Equations

Without Pressure Gradients

In order to investigate the validity of the present diffusion model, the wake equa-

tions have been solved for the cases without pressure gradients. The wake equations

1 For numerical calculation, the concentration half-radius rmc should be _leter-
mined by the numerical procedure instead of equation (12), which will provide the ana-
lytical prediction of the half-radius in the far wake region only.
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in the general form are written in the modified von Mises plane as follows:

Momentum equation:

a-_=7or\ r ___m

Energy equation:

tp..... 2 #) -- -2-2u/_=\'_,-z-,.
I_M2_T - 1 _Ue +0Y 1 0 _tCp ur _ P/_tr i_._.

--= _'T_( PTtT +(Ve .... a_' 5p,r 2 \a.r/j_ 'rSp / e_cpU e

-- _2_

u _ aYk

P_tr _ _k cpk _SCt_pT 2 0"1- 0_-

Species equation:

OYk 1 0 __Pfitfi_2 _OY

(k=1,2,...)
where the modified yon Mises transformation is defined by

0T2 _- _
-- : pur0P

a_2
-- : -pvr
_2

Re -1 dx
_=4 i

and /1t = SctPD t and Pr t = LetSc t are used.

The associated initial and boundary conditions are

_(0,_)= _i(_)

Y(o,T) : ¥i(_)

Yj(O,_') = Yji(T)

u(_,O)-- _ _(_,0)= a Yj(_,O)= 0

lim tl(_,T)= lim T(_,_-)= 1.0

lim Yi(_,T)= 0
@

T..,.oo

(19)

(20)

(21)
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The numerical calculations for equations (19) to (21) were carried out by an implicit

finite-difference scheme. The details of this numerical process have been reported in

references 23 and 24. Also, some pertinent results relating to this program have been

reported in references 25 to 27.

Once initial and boundary conditions are specified, equations (19) to (21) can be

solved with the aid of equation (18) for diffusion coefficient and with the assumptions of

appropriate constant values for Sc t and Pr t. In this present calculation,

Sc t=Pr t= 0.8 and Le t= 1.0 have been used.

The numerical calculations were carried out for the experimental data of Chriss

(ref. 12) and Alpinieri (ref. 2). In figure 4, the numerical solutions for the data of Chriss

are shown compared with the experimental data which were measured in hydrogen and air

mixing. The accuracy of those experiments have been found to be very good by Zelazny

et al. (ref. 9) and Harsha (ref. 10) (reportedly within 4 percent). Since the lateral profiles

measured at several stations of x were reported in reference 12, the initial profiles for

this numerical calculation were chosen at the position of xi indicated in figures instead

of the assumed profiles at the jet exit plane.

Figures 4(a), 4(c), and 4(f) show very good agreement of numerical solutions with

the experiment for concentration decay on the center line and for the concentration half-

radius. Figure 4(e) shows an example for the lateral concentration profiles which agree

quite well with the experimental data. Also in figures 4(a), 4(c), and 4(f) the analytical

predictions of concentration half-radius rmc given by equation (12) are shown. The

agreement with the experimental data is excellent, considering that equation (12) does not

include any adjustable constant to match the solutions with data.

Concerning the velocity profiles for the data of Chriss (ref. 12), the center-line pro-

file and the half-radius have been predicted well as seen in figures 4(b), 4(d), and 4(g).

These results prove that if there is no pressure gradient in the flow field the assumptions

of Sc t = Pr t = 0.8 and Le t = 1.0 are valid for the high-speed mixing of hydrogen and

air.

In figures 4(c) and 4(f), the numerical solutions obtained by employing the eddy-

viscosity model of reference 1 are presented. The comparisons with the data show that

the Ferri model provides fairly good predictions in the far wake region.

The numerical result for the data of Alpinieri (ref. 2), which are characterized by

the very small momentum of the inner hydrogen jet, is shown in figure 5. The result

given by the present diffusion model agrees fairly well with the data.

In figure 6, the results are shown for the case of CO 2 and air mixing measured by

Alpinieri. In these cases numerical results agree fairly well with the data which have the

decay exponent n _ 1.5.
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Throughout these numerical computations the momentum integral of the wake has

been checked at each station of finite-difference calculation and found to be constant with

a variation of less than +1 percent.

COMPARISONS WITH SELECTED CASES

In addition to the cases presented in the previous section of this report, six cases

(identified as 9, 10, 11, 12, 20, and 21) will be chosen for this section. Each of these case_

will be discussed separately. An additional case was chosen in order to evaluate the

numerical techniques used in the analysis. Table I presents initial conditions for all the

above-mentioned cases.

Discussion of the Results of Selected Cases

Additional case.- For the additional case (see page 735 for explanation), a step pro-

file has been given for the velocity as well as the concentration. The velocity did not pre-

sent any problem; however, the concentration profile had to be rounded off slightly in order

to start the calculation. For this case, the transformed _ coordinate, which is indicated

as T, had a step size of AT equal to 0.009. The total number of grid points in the

T-direction was 60. The total time required for the calculation on the 6600 computer at

NYU was 180 seconds. The results of this case are shown in figure 7.

Case 9.- In case 9, the analysis was carried out for the experimental conditions of

Forstall and Shapiro (ref. 11). Initial profiles were given both for the velocity and con-

centration. However, one could hardly consider this case as the mixing of two dissimilar
1

gases since the center jet contained 13 percent, by mass, of a helium tracer gas.

The momentum controls the mixing in this case, and therefore it dominates the mix-

ing primarily. The results of the present analysis are presented in figure 8 and compared

with the experimental results. It is noticed that the Ferri model, which essentially reduce.,

to the Prandtl model for low speeds, has the best agreement with the experimental results.

Case 10.- In case 10 (see ref. 12) the initial profiles were given, and therefore no

adjustments were needed. Figure 9 presents results of the Ferri model as well as the

results of the present model. Both models seem to agree initially; however, the present

model seems to give the correct trend of the experimental results. For this case, even

though the flow is subsonic, the analysis still agrees excellently with the experimental

results.

Case 11.- The results for case 11 are presented in figure 10. The center jet in this

case is a subsonic air stream traveling at Mach 0.90 surrounded by an annular Mach 1.3

nozzle. In this case, a 1-percent ethylene tracer gas was mixed into the central stream.

As far as the mixing is concerned, this was a predominantly momentum transfer, and
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therefore the analysis which is presented herein and which has been derived from a con-

centration potential core would hardly be suitable. However, the analysis was still carried

ou_ for this model. Two different initial conditions were chosen for case 11:

(a) Assuming an initial step profile

(b) Assuming the initial profile provided

It is clearly seen that condition (a) provides the fastest mixing, and the boundary-

layer type profile (condition (b)) results in a slower mixing region. In order to use this

model for the potential core, the length required to reach the boundary-layer profile should

be added as initial conditions, since the analysis here assumes a step profile. The results

of such a correction are included in figure 10 and labeled "New model with correction."

Even though the analysis of such a technique improves the agreement, it still falls short

of the experimental results.

Case 12.- The results for case 12 are presented in figure 11. The center jet is

entirely H 2 at a Mach number of 0.89. As seen in figure 11, the present analysis agrees

fairly well with the experimental results; however, the Ferri model falls quite short of

the experimental results.

Case 20.- in case 20, only a 2 percent by volume of H 2 was placed in the center jet,

and therefore the mixing is dominated by momentum. The results for this case are pre-

sented in figure 12, which shows no agreement with the experimental results.

Case 21.- The center jet is entirely H2 for case 21, and both inside and outside

streams are subsonic. The results for this case are presented in figure 13, and the anal-

ysis, as expected, is in fair agreement with the experimental results.

Summary of Results of Selected Cases

The following general results were noted for the cases selected:

(1) For all the cases where a lighter molecular gas such as H 2 or He is placed in

the center, the present analysis works very well (that is, X < 1). This is independent of

the conditions whether the flow is subsonic or supersonic.

(2) For low-speed flows, where k > 1 (predominantly flowsof air-to-air mixing),

the Ferri model seems to work best.

(3) As noted previously, the decay such as exists for the flow described in result (1)

is always proportional to x -2.

CONCLUSIONS

A model has been presented for the prediction of the concentration decay for high-

speed coaxial mixing. The model has been derived from accurate correlation of data
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derived from the length of the concentration potential core. Comparisons of this model

with available experimental results seem to indicate good agreement, except for cases

where the mass-flow ratio is greater than 1 (mixing of gases having approximately the

same molecular weight). For all the cases where the gas in the center was much lighter

than the coflowing outer gas, the analyses predicted the concentration decays excellently.

It is indicated in this paper that no single model could solve the problem of mixing, and

attempts should be made to analyze each problem separately. In addition, differentiation

should be made between momentum, mass, and thermal diffusion. These effects become

much more important when pressure gradients are present in the flow field.
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TABLE I.- INITIAL CONDITIONS FOR SELECTED CASES

Test case

Additional

Jet

H2

T

x i

0.0

uj/ue/ AT N Profile
(*)

3.84 0.009 60 u-step

c_-step (modified)

9 He and air 0.0 4.0

mixture

10 H 2 5.932 6.3

11 Air 0.0 0.735

12 H 2 0.0 2.726

20 0.4568 2.1926

5.15

H 2 and air

mixture

21 H 2 3.078

AT step size in r-direction; T

0.04 55 As given

0.03 60

0.03 55

0.03 70

0.03 55

0.03 45

transformed

0.262

3.68

M e

0.681

0.0266

As given 0.508 0.422

As given 0.634 1.312

0.0439

2.06

0.398

As given

As given

As given

1.32

0.158

0.497

coordinate as defined by
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PREDICTION OF FREE SHEAR FLOWS

A COMPARISON OF THE PERFORMANCE OF

SIX TURBULENCE MODELS

By B. E. Launder, A. Morse, W. Rodi,

and D. B. Spalding

Imperial College of Science and Technology

SYMBOLS

Cs

CE

constant prefixing diffusion term in

constant prefixing diffusion term in

models

Cel,Ce2

CU

C_I

C_2

D

constants appearing in transport equation for e

viscosity constant

constant appearing in first part of pressure-strain simulation

constant appearing in second part of pressure-strain simulation

diameter of jet or of wake-generating body

Di diameter of inner nozzle

Do

Dij

g

diameter of outer nozzle

net diffusion flux of uiu---_

a function of P/e (see table 4)

h

k

lm

specific enthalpy of fluid

turbulence energy, (_ + v-'_ + w'2)/2

length scale of turbulence

mixing length
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M Mach number

m mass fraction of chemical species

P

Pij

r

production rate of turbulence energy

production rate of Reynolds stress uiu---_

radial coordinate

r o

To

t

radius of nozzle exit

stagnation temperature

stagnation temperature at nozzle exit

time

U mean velocity in streamwise direction

Ue

AU

velocity of free stream

change in mean velocity across shear flow

Ui,Uj

Umin

Uo

mean velocity components

minimum velocity

initial (uniform) value of streamwise mean velocity

U_V_W fluctuating velocities in x,y,z directions

UV kinematic shear stress

m

uiuj

X

kinematic Reynolds stresses

coordinate in streamwise direction

xi,xj general Cartesian coordinates
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Y

YG

Yl,Y2

yJ

C_

k

_kS

_t

P

(Y

%

Subs cripts:

coordinate in cross-stream direction

effective width of shear flow

values of y at which effective internal and external edges of the shear

flow occur

coordinate in cross-stream direction where j is 0 for plane flows and is

1 for axisymmetric flows

normalized mass fraction

Kronecker delta

turbulence energy dissipation rate

momentum deficit (or excess) thickness of wake (or jet)

constant in mixing length model

proportionality constant relating length scale 1 to YG in

k model of turbulence

effective turbulent viscosity

density

reciprocal of spreading rate of mixing layer

value of a when one stream is at rest

effective turbulent Prandtl/Schmidt number (where subscript _b

stands for h, k, m, or e and denotes the diffused quantity)

pressure strain term in equation for uiu'--_

value prevailing along center line of a symmetric flow
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E external boundary of shear flow

internal boundary of shear flow

high-velocity edge of shear layer

low-velocity edge of shear layer

Bar over symbol indicates time average of turbulence correlation.

THE TURBULENCE MODELS CONSIDERED

The authors' work for the NASA Conference on Free Shear Flows has led to the

exploration of the performance of three distinct classes of turbulence model. These

classes are

(1) turbulent-viscosity models 1 in which the length scale of turbulence is found

by way of algebraic formulas

(2) turbulent-viscosity models in which the length scale of turbulence is found

from a partial differential equation of transport

(3) models in which the shear stress itself is the dependent variable of a partial

differential conservation equation

In the context of the group's work on this subject, these classes might equally be,

respectively, labeled "yesterday's" models, "today's" models, and "tomorrow's" models.

At the time of the AFOSR-IFP-Stanford Conference in 1968, detailed exploration had been

confined to models of class (1). In the intervening years, the development and application

of models of class (2) has commanded the major part of the group's attention and, although

models of class (3) have been in use since 1969, they have not yet been refined sufficiently

to achieve the level of universality of which they are believed to be capable.

Two models have been examined in each class; thus, six different models have been

tested. A complete mathematical statement of these models is provided in tables 1 to 6;

a brief commentary on the models now follows.

Tables 1 and 2 detail the group's versions of two of Prandtl's turbulence models

(refs. 1 and 2), namely, his 1925 mixing-length hypothesis (m/h) and his 1945 turbulence

1A turbulent-viscosity model is one in which the shear stress is taken to be pro-

portional to the local gradient of time-average velocity. The proportionality factor may
vary from point to point in the flow and is usually calculated by reference to local turbu-
lence quantities. It is not implied that the effective viscosity of the fluid is uniform
across the mixing region.
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kinetic energy model (k). For each model, the lengthscale is taken as proportional to
the width of the shear flow althougha different constantof proportionality is adoptedfor
plane and axisymmetric flows. Table 1 reveals howthe width of flow is defined.

The models of class (2), described in tables 3 and4, employ a differential equation
for the decay rate of turbulence energy e as well as one for the turbulence energy. By

introduction of this second turbulence transport equation, the need to prescribe the length

scale is removed. The same two turbulence variables have been used in similar models

by Harlow and Nakayama (ref. 3) and by Jones and Launder (ref. 4); other models having

just two differential equations have also been used and described by Rodi and Spalding

(ref. 5), Ng and Spalding (ref. 6), and Spalding (ref. 7). In the kel model set out in

table 3, the viscosity constant C_ differs according to whether the flow is plane or axi-

symmetric. The more elaborate ke2 model, detailed in table 4, has been adapted from

that presented by Rodi (ref. 8). Rodi found that C_ did not, in fact, assume a constant

value but varied significantly with the distortion rate of the turbulence; the local rate of

turbulence production divided by the rate of dissipation may be taken as a dimensionless

measure of this quantity. Figure 1 shows Rodi's proposal for the dependence of C/! on

the ratio of production to dissipation at any station; the same variation is adopted in the

ke2 model.

In the two-equation class, attention has been confined to models employing k and

e as variables because extensive research at Imperial College has shown that, for free

turbulent flows, the models of references 5, 6, and 7 produce almost identical results.

Indeed, it can be shown that the identity is exact whenever the length scale of turbulence

is uniform across the mixing region, and this condition is very nearly fulfilled for all free

shear flows. Further, e is preferable to the second variables of the other models when

walls are present, for the ke model alone can dispense with a wall-effect correction of

the empirical constants.

The models set out in tables 5 and 6 are ones which do not involve the effective-

viscosity concept. Table 5 presents the model of Hanjali_ and Launder (ref. 9), which

has been applied by its originators to predict a number of boundary layers and free shear

flows. Besides the differential equations for k and e, it embodies one for the kine-

matic shear stress u'W as well. Lastly, model 6 presented in table 6 is an orthodox

Reynolds stress closure of the kind first proposed by Rotta (ref. 10); it provides transport

equations for all the Reynolds stresses uiu--"_ and for the energy dissipation rate. If the

turbulence Reynolds number is assumed high enough for the dissipative motions to be iso-

tropic, only two processes remain to be simulated in the Reynolds stress equations:

those of diffusional transport and of energy redistribution, the latter arising from corre-

lations between fluctuating pressures and ir_stantaneous --^'^v_vc._'*....._,,_,_,_.,_.A_""+__,,....... approxi-

mations have been explored for the first process and three for the second. In thb flows
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considered for this conference, only four of the Reynolds stresses are nonzero; the model

thus entails the solution of five transport equations for turbulence quantities.

DETAILS CONCERNING THE PREDICTIONS

Method of Solving the Equations

The systems of differential and auxiliary equations governing the development of

the mean and turbulent flow field have been solved by means of the finite-difference pro-

cedure of Patankar and Spalding (ref. 11). The main features of the method - that is,

the use of normalized stream function as cross-stream independent variable and the

employment of a grid-control system to fit the width of the grid to that of the shear flow -

are perhaps sufficiently well known not to require further elaboration here. For the

readers who are unfamiliar with the procedure, reference 11 documents the method in

full and provides a listing of the basic computer program, GENMIX, from which codes

used in the present work have been adapted.

The number of cross-stream nodes employed has varied from 20 to 40 according to

the complexity of the initial profiles; grid nodes have been concentrated in regions where

velocity gradients were steepest. A Control Data 6600 computer system was used.

Typically, with 25 cross-stream nodes, the programs executed 70 forward steps per sec-

ond for calculations employing the mixing-length hypothesis, where differential equations

were solved for the mean-flow field (x-momentum, species, and stagnation enthalpy); with

the Reynolds stress turbulence model and with the same number of nodes, about 35 for-

ward steps per second were taken for isothermal, single-species flows. This number

could certainly have been increased substantially, for to save human time many redundant

instructions were not removed. No attempt has been made to include the influence of

normal-stress gradients in the mean momentum equation since, for the turbulent-

viscosity models, retention of these terms would render the equations elliptic in charac-

ter. Likewise, corresponding terms in the turbulence equations have been neglected.

Initial Profiles

For all models except the mixing-length hypothesis, the initial profiles supplied by

the conference organizers were insufficient to prescribe fully the starting conditions.

Therefore, some of the profiles of the turbulence energy, of the Reynolds stress, and of

the energy-dissipation rate had always to be estimated. This section explains the group's

practices for generating the profiles.

(1) When the initial shear-stress profile was not supplied, a number of trial calcu-

lations were made based on a constant effective viscosity. The value of the constant was

adjusted until the predicted development in the vicinity of the starting point agreed with

the measured; this value of the effective turbulent viscosity was then used to determine
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the initial shear-stress profile from the given velocity profile. The values adopted for

each test case are given in table 7; they have been normalized by the product of the den-

sity p, the velocity change across the shear flow AU, and the diameter of the jet (or the

diameter of the obstacle giving rise to the wake) D. In some cases the local value of

density has been used, in others the values prevailing in the external stream; the third

column of the table contains l or e as appropriate to identify the practice.

(2) Where the initial turbulence energy was not available, it was estimated from the

shear-stress profile (either measured or determined as in practice (i)) by use of the fol-

lowing relation:

k :
0.3

Close to an axis of symmetry, this formula gives an unrealistically low value of energy;

in this region the k profiles are adjusted to apparently reasonable values based on

turbulence data of other similar flows.

(3) In none of the test cases is the profile of energy dissipation rate directly avail-

able. It is calculated by inverting the viscosity formula

e = -_pk2
_t

where _t is taken as the value of effective viscosity found in practice (1) or, when

shear-stress data are available, is calculated from

uv

(4) For the ke2 model, the initial value of the function g(P--_) must be specified.

For this inquiry, the usual practice has been to take this ratio as unity; however, for two

of the wakes values greater than 1 have been assumed, and for two mixing layers values

less than unity have been adopted. These test cases are identified in the fourth column

of table 7.

DISCUSSION OF THE PREDICTIONS

Preliminary Remarks

Predictions have been made with the four models of classes (1) and (2) of all the

24 test flows except test case 24. The last of the flows was omitted from this inquiry

because over much of its development the flow appeared not to be fully turbulent and

because these models have not yet been adapted to the prediction of low Reynolds hum-
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ber phenomena. 2 For the shear-stress models of class (3), predictions have been

confined to the isothermal, single-species plane flows, that is, to test cases 1, 4, 13,

and 14.

The results of the calculations are shown in the figures of the appendix, which pro-

vide standard comparisons of predictions with experimental data for the four models of

classes (1) and (2), and in figures 2 to 7 which display further aspects of particular pre-

dictions referred to in this discussion section. Also included in this section are a dis-

cussion of the relative success of the models in predicting the test flows, an examination

of the models in ascending order of complexity (beginning with the Prandtl energy model)

to discover in what respects a particular model is superior to the immediately preceding

one, and a discussion of those features of the measurements which are not well predicted

by any of the models and the possible reasons for the discrepancies.

The Prandtl Kinetic Energy Model (k)

Our experience of predicting wall boundary layers had led us to believe that there

were scarcely any advantages in using Prandtl's kinetic energy model rather than his

earlier mixing-length hypothesis; Mellor and Herring (ref. 12) reported a similar con-

clusion. Therefore, it should be emphasized that for free shear flows, the k model

performs consistently better than the m/h hypothesis. This fact is well brought out by

reference to the jet predictions of cases 8, 12, and 18 and the wake-flow predictions of

cases 13 to 16.

In concept, the k model represents a substantial advance over the m/h hypoth-

esis. That it is also superior in practice may be attributed to the fact that, in free shear

flows but not in wall boundary layers, the convective transport and diffusive transport of

kinetic energy are usually important terms in the energy-balance equation.

The foregoing remarks, however, are nearly the only ones that can be made in favor

of the k model, inasmuch as reference to the cases noted indicates that there are still

large discrepancies between the measured and calculated development of the flow. Invari-

ably, over the initial region of a jet, the predicted rate of decay is too rapid; whereas,

far downstream, the decay rate is too slow. The behavior over the initial region could,

of course, be improved by choosing the length scale to be a smaller fraction of the flow

width, but such a move would make the far-region predictions worse than ever.

2 Jones and Launder (ref. 4) have in fact provided a low Reynolds number version
of the kel model; however, at several points in its derivation, the assumption is made
that the low Reynolds number region is adjacent to a rigid surface as in wall boundary-
layer flows. The model is thus not immediately applicable to free-shear-flow transition
phenomena.
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The Energy-Dissipation Model of Turbulence (ke1)

The introduction of a transport equationfor the dissipation rate removes the need
to prescribe the length scale and leadsto a modelof turbulence possessing a much
greater degree of universality than Prandtl's energymodel, inasmuch as the length scale
of turbulence is by no meansa universal fraction of the width of the shear flow. Specifi-
cally, it is notedthat, for manyof the jet flows, the correct behavior is predicted both in
the vicinity of the nozzle and manydiameters downstream(cases 6, 9, 11, and 12). The
kel predictions of cases 13, 14, 15, 16, and 17are also in distinctly better agreement
with the data than are the k predictions.

The Extended Energy-Dissipation Model (ke2)

When there is just one significant component of the velocity-gradient tensor and

when the energy p,-oduction and dissipation rates are approximately in balance, the kel

model nearly always gives acceptable predictions. The second condition is always met in

wall boundary layers, in mixing layers, and also in many jet-like flows. When, however,

the shear flow is weak (that is, when the excess or defect of the shear flow is but a small

fraction of the velocity of the external stream), the model predicts too slow a decay rate

of the shear flow; this behavior is exemplified in the predictions for cases 13, 15, 16,

and 17 (the data for case 13 and for other similar but currently unpublished flows mea-

sured by Bradbury are shown replotted in fig. 2 in the format that the organizers adopted

for the other weak shear flows).

Reference to the same test cases shows that much better agreement with data is

achieved with the ke2 model. Distinct improvements may also be seen in the predic-

tions of cases 11, 12, and 19. The result is particularly encouraging in that Rodi (ref. 8)

determined the Cp function without reference to the data considered at this conference.

The Stress Models of Turbulence (u_e and uv-'v'ke)

Models of this class have been applied to only four of the flows so that inferences

drawn must be more tentative than those for the models already discussed. Moreover,

when this set of computations was made, little time remained before the conference dead-

line and, consequently, only a preliminary adjustment of the constants was possible.

Predictions for all models gave results for case 1 scarcely distinguishable from

those obtained with the ke viscosity models. For case 4 (standard comparisons shown

in fig. 3), however, the stress models do give a small but definite improvement; the fact

emerges clearly in figure 4 which shows the development of the minimum velocity with
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distance downstream. The stress models3 follow the measureddevelopmentvery closely,
whereas the ke2 predictions show initially too steepa rise and, later, a too gradual
disappearanceof the wake.

The other two sets of predictions are for flows which, superficially at any rate, are
very similar; yet they would lead oneto draw different conclusions aboutthe relative cor-
rectness of the models. It is seenfrom figures 5 and 6that the models which are best at
predicting case13are worst for case 14and vice versa.4 The experimental data from

bothsets of investigations seemadmirably consistent. Perhaps, therefore, the differ-
encesin the developmentof the two flows may be traced to the different initial shear
flows from which they develop,namely, a mixing layer for case 13and a wall boundary
layer for case14. Certainly it is knownfrom parallel research at Imperial Collegethat
noneof the pressure-strain approximations so far employedpredict the normal-stress
profiles well close to a wall; thus, possibly there is someresidual influence of the wall
in the initial region of case 14.

The profiles of the lateral and streamwise energy componentsfor case 14 are com-
pared with the experimental data in figure 7. Agreement with the data may be thought
reasonablygood. It is not believed possible, on the basis of the calculations madeso far,
to determine which of the approximations for the diffusion andpressure-strain correla-
tions is the best. The proposal of Naot and coworkers (ref. 13)andReynolds (ref. 14) for
the pressure-strain correlation is simple and, for the four test casesexamined,not dis-
cernibly worse than the other two. It seems likely, however, that a more elaborate form,
akin to stress-model versions B and C, will be neededif the axisymmetric and plane flows
are to be well predicted with _ single set of constants.

Aspects of the Flows Which are Poorly Predicted

The most serious disagreements betweenthe ke2 predictions and measurements
arise in flows where there are appreciable density gradients. Cases 5 and 7 both suggest
that compressibility effects reduce, somewhat,the rate of spread of a mixing layer,
whereas the ke2 model indicates no significant variation with Machnumber. This trend
is not uniform over all the flows. However, the predictions of the jets of cases 19and 12
bothdisplay reasonableagreementwith the experimental data; whereas, the experiments
of cases 10and 21exhibit a jet decaymuch faster than the predictions herein would
indicate.

3The letter and number ascribed to the uiu'--]emodels denotethe versions of the
diffusion andpressure-strain hypotheseswhich were employed. (Seetable 6.)

4The only reason that the ke2 model gave goodpredictions for both flows was
that the initial value of g_-_) was raised to 1.2 for case 14.
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At least someof these contradictions may beattributed to the difficulty of prescrib-

ing adequately the initial conditions, particularly for the hydrogen jets of cases 10 and 21

where calculations start nearly 3 diameters downstream from the exit. An additional

prediction of these flows has been made, in which the initial values of k and /_t across

the jet have been doubled. The resultant predictions shown on the standard comparison

are in much closer agreement with experimental data than those previously obtained with

the ke2 model. Moreover, if the turbulent Prandtl/Schmidt number had been taken

as 0.5 rather than 0.7 (the former value was adopted with the k and m/h models), the

prediction of the velocity decay would have been further improved.

Apparently, little success has been had with any of Chriss and Paulk's data inas-

much as their air/air jet (case 20) also decays much faster than the ke2 predictions

herein show. Since computations are begun right at the jet lip, initial conditions have

little effect on the flow for case 20. The rate of spread is, however, quite sensitive to

the presence of turbulence in the core region. Included in the standard comparison for

this flow is a prediction where the initial turbulence intensity (_o) was about 5 per-

cent. It may be seen that this curve follows more closely the experimental data over the

first 8 diameters or so.

Predictions are also in poor agreement with experimental data for the hydrogen jet

of case 22. The flow is interesting because, through the presence of boundary layers on

the nozzle walls, the "jet" actually has a momentum deficit. This discrepancy may be

attributable to (1) the initial value of Pt being too high (the effect of halving it is shown)

and (2) the initial velocity profile having too small a momentum deficit.

For the uniform-density flows, disagreement between experiment and prediction is

much less. The following discrepancies however are to be noted:

Case 4: The predicted shear stress at the downstream station is only half the measured.

In view of the excellent predictions of the velocity profiles achieved by the stress

models, it is difficult to accept that the predicted shear-stress profile can be

much in error.

Case 14: It seems that the momentum deficit of the wake measured at x = 1.5 m may

be rather more than that at the other stations.

Case 15: The near-wake behavior is not well predicted for this case, probably because of

the pressure gradient across the boundary layer. In the calculations herein,

zero cross-stream pressure variation is presumed.

Case 18: The predictions of the turbulence energy show a flatter top to the profile than do

the standard data. It is seen that Rodi's (ref. 15) recent measurements, employ-

ing what is claimed to be a more accurate signal-processing technique, are in

closer agreement with the prediction.
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Case 23: For this case, the experimental data showa progressive loss of momentumas
theflow developsdownstream.

CONCLUSIONS

The following main conclusions canbedrawn from this work:

1. Turbulence models which determine the length scale of turbulence from the trans-
port equationfor energy dissipation rate (or from someother length-scale-containing
variable) cangive correct predictions over a wider range of flows than is possible with
models embodyingalgebraic prescriptions of 1.

2. The ke2 model, which incorporates the dependence of C_ on (_'_), leads to

reasonable predictions of both strong and weak free shear flows.

3. The versions of the Reynolds stress models which were tested already give, on

the average, predictions for the four cases considered which are slightly superior to

those of the kel model. There is, however, evident need for further refinement, par-

ticularly with respect to the pressure-strain approximation.

4. More experiments are needed on flows with density variation in order to resolve

the question of whether or not there is a systematic influence of density variation for

which the present models do not account.

5. It is very desirable that experimenters should measure and report the distribu-

tions of turbulence quantities at the upstream boundaries of the flows, as well as just the

time-mean velocities, temperatures, and compositions.
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APPENDIX

PREDICTIONS OF TEST CASES 1 TO 23

This appendix contains, in order, predictions of test cases 1 to 23, obtained with

the aid of the four turbulent-viscosity models. (See pages 697 and 698 for index to test

cases.)
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TABLE 1.- THE MIXING-LENGTH HYPOTHESIS (m/h)

OU (aU_
Zm2

where

and

l m = XyG

X = 0.11 (Axisymmetric flows)

= 0.125 (Plane flows)

For a monotonically increasing/decreasing velocity profile, the characteristic shear

width of the flow is defined by

YG = Y2 - Yl

where at Yl

and at Y2

U - U I

U E - U I

U - U I

UE - UI

=0.1

= 0.9

Ii I = Axial velocity at \

internal boundary

E = Axial velocity at /

external boundary//

For velocity profiles without a maximum or minimum at either boundary:

At Yl

or at Yl

U - UI
For region flow,inner of

i.e., between the internal

boundary and the point of

occurrence of the minimum/

maximum velocity U)

U-U =0.9
U E - U

(For outer region of flow)

At Y2

U=U

For diffusion of enthalpy a_d species,

_h = am = 0.5
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TABLE 2.- THE PRANDTL ENERGY MODEL (k)

where

and

__'_ = c_kl/2/l_ )

l = ksy G (With YG determined as in table 1)

k s = 0.625 (Axisymmetric flows)

= 0.875 (Plane flows)

Equation solved for conservation of kinetic energy Of turbulence is

Dk ____1a (y'] gt ak_ /aU\ 2 _ek 3/2

where

CU = 0.08

For diffusion of enthalpy and species,

ah=am=0.5
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TABLE 3.- THE ENERGY-DISSIPATIONMODEL (ke1)

where

m _U
-puv = gt

vy

- pe

De ___1a (y'Pt_)1 e /aU_ 2 pe 2PD-[=yj ay _'e-- + Celkut_'] -Cc2 k

For plane flows:

CU

0.09

Ce2 Cel ak a e

1.92 1.43 1.0 1.3

For axisymmetric flows:

The same as plane flows except

Cp = 0.09 - 0.04f

Ce2 = 1.92 - 0.0667f

where

f -- iy_ ld c ]0.2

For diffusion of enthalpy and species,

am = _h = 0.7
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TABLE 4.- THE EXTENDEDENERGY-DISSIPATIONMODEL (ke2)

The dataare the same as in table 3 except as noted below.

For plane flows:

C_ Ce2 Cel ak a e

* 1.94 1.40 1.0 1.3

* C_ = 0.09gC_ )

where

andthefunction_(_) isshownin_i_ure1

For axisymmetric flows:

The same as plane flows except

C_= 0.09g(P-_)- 0.0534f

Ce2 = 1.94 - 0.1336f
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TABLE 5.- THE HANJALIC-LAUNDER u-_'keMODEL

The Reynolds shear stress

D___W_cs ±(k_2
Dt ay \e

-pu-V is found from

,._1_-7- c. k _)

D__k_0.gCs±[_._), _ a___Dt _ \e ay

D.__e
Ce a---i----_j- Cel Ce2 _'-Dt _r\e k

where

C s C¢1 C# C e

0.1 2.8 0.09 0.07
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TABLE6.-RE O .DSSTRESSMODELS
Reynolds stresses -pu_ calculated from

D_-_ / _Uj _Ul'_ o2eOiJ- vlj+®ij-_ _ +_) -
PtJ

1. Simple version for Dij

C s :, 0.25

2. Tensor invariant Dij

D,j._,_ _\-i-_-_- ÷uju,-_-÷UkU,-_)
C s = 0.10

A. Rotta-Wolfshtein-Reynolds, Oij

C_l = 2.8 C02 ffi 0,4 P s Total production rate of k

B. Rotta-Hanjali_-Launder, _ij

2 8ijk ) + (_ij + _ji)-%1 k(U-_- _

. where

aU1 _i

V(UmUjUiUz + UmUlUiUj) (u--_4 u--_ /
4 "+C

k 42 k

_=
-8C_2 ( - O) -(4-12C_b2) 6- 18C_b 2I0 .'2 8c2" _,- ,Tffi
11 11 55 55

_, = -C_b 2 C_l = 2.5 C_2 = 0.3

C. Rotta-Launder, 4'i] (present work)

_ ]]Oi'k_+ +_Ji)-%1
where

aUl ami

% "_'zl

mi .0miU_ + _(0m/U-_ + 0mju_ + 8iZu--_ + 0iju--_) + 7O, j_--'_ + [.SmiS, j + _(0mZ0i, + OmjO._k_,j =

,8. _ _' ffi 4_ + 10 _. _ v. 20= +..._6 _ - 0.3 C4,1 - 1.5
11 11 55 55

De C e 8 (ku-7-._. ee_ uu_Ui e 2
_" _k\ _ kl_/ "cel k _ --C'2_"

C e = 0.2 Cel = 1.43 Ce2 = 1.92 (Versions A and B for @i|)

Ce = 0.16 Cel - 1.50 Ce2 = 1.95 (Version C for @iJ)
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TABLE 7.- INITIAL CONDITIONS

Test
case

1, 2, 3

4

Remarks

Arbitrary initial conditions

_t

pD AU
P at-

g,ven; v-V ,
0.3'

test case 14

5 3.68 x l0 -3 e D taken as 2.54 cm

6 u"V and k taken from reference 16

7 3.3 x 10 -3 1

8 6.6 × 10-3 1

9 1.6 x 10-3 1

10 0.72 x 10-3 e

1.25 x 10-3 e g = 0.8

5.5 x 10-3 1

as in

11

12

13

14

15

16

17

18

19

20

21

22

uv and k from self-preserving plane jet (ref. 17);

_/k, v"2/k, w'2/k assumed to be 2/3

0.19 x 10-3 1

12.9 x 10-3

u'-V given; u'_ and _ from reference paper for

test case 14; w 2 from reference 18; g = 1.2

uv given; k from reference paper for test

case 15; computations begun at second station

g= 1.3

23

A continuation of case 6

5 × 10-3 1

0.5 x 10-3 e

2.3 x 10-3

27 x 10 -3

and v'2 given; w2= v 2 assumed; _'V from

reference 19; g = 0.8; computations begun at

second station

e
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DISCUSSION

D. M. Bushnell: I was wondering if you had any thoughts about the importance of the

pressure-velocity correlations at compressible speeds, and how you presently handle

them in your method.

D. B. Spalding: How they are handled at the present is that everything of that kind is

lumped into the energy diffusion term. We simply see how well we can do by choosing

the best constants, such as the effective t>randtl or Schmidt number, for turbulence diffu-

sion, including in our review compressible or density-varying flow.

D. M. Bushnell: We have nothing to compare the diffusion model with at the compressible

conditions. In other words, you are lumping a lot in there, and we are not sure how accu-

rate the lump is.

D. B. Spalding: That is correct. All we see is the final result. We do not have enough

detailed information. For incompressible flows, we can make detailed comparison; for

compressible flows, we need corresponding detailed measurements and comparisons.

D. M. Bushnell: The only thing is, those terms look huge. That's my only comment.

I. E. Alber: With respect to the compressible calculations, I see that you get the results

for the spreading rate for the two-dimensional mixing layer as a function of Mach num-

ber, which is quite similar to what other people have obtained; that is, there is very little

variation of the spreading parameter with Mach number. However, the data, apparently

the high Reynolds number data, indicate that there is a considerable increase in the

spreading parameter with Mach number. Could you comment on what may be the cause

of this discrepancy, and if the pressure velocity correlation effect at high speeds may

come into the picture?

D. B. Spalding: I can't comment from any knowledge or any insight. I have noted the

effect also, and so I wonder.

G. L. Mellor: Yes, I would like to be certain on one point that you made. Your length

scale equation is a dissipation thing, which is energy to the 3/2 power over the length

scale. And we know that Rotta has an equation for the transport of a velocity squared

times the length scale. I think you said that you tried some of that too, and you said that

it made no difference whatsoever? Is that my understanding?

D. B. Spalding: It makes little difference for the kind of flows considered in this confer-

ence, which are free turbulent flows. It is easy to explain. One can formally show that

the transport equation for e can be turned into the transport equation for the product

of k times the length scale, except for an additional term involving the gradient across

the layer of the length scale. -",nere are many models in _'_,,,s _,_l,,_,,,,.,_jthat n_,_..._, only in
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an additional length-scale-gradient term in the equation. That term is very small in all

these flows. Flows near walls are different. There are some crucial experiments to be

carried out which will enable us to distinguish between the models. But, at the practical

level, the distinction between the models lies only in the different value given to the

effective Prandtl number (or Schmidt) of the second turbulence quantity. There is just

one good thing in favor of the e models. You can have a constant value of the Schmidt

number for the diffusion of this quantity, whether you are in a free turbulent flow or near

a wall. All the other models, including the k/ model, require the Schmidt number to

be varied, or they require something else to be done. So the ke model has our favor

for this quite small advantage connected with wall flows.

M. V. Morkovin: Could I ask for a comparison of your efforts and Donaldson's? In what

respect are they similar and where do they depart?

B. E. Launder: Dr. Donaldson and our group at Imperial College are both developing

turbulence models based on differential equations for the Reynolds stresses. We adopt

in detail different approximations for the pressure-strain term; we use appreciably

more elaborate closures than Dr. Donaldson. I think that he will find it necessary to use

a more complicated closure when he comes to look at some of the shear flows that we

have examined.

C. duP. Donaldson: We use a slightly different dissipation model. We have already

started to put in more complicated pressure-strain terms that we came to from trying

to use this method to study transition. This problem is similar to that of the wall region

of a turbulent boundary layer. In this case, to be more complete, you do have to use

mean gradients in the definition of pressure-strain and isotropy terms. I would like to

make an additional comment while I've got the microphone and emphasize again what can

be learned from these higher order models by setting the transport terms equal to zero

and neglecting diffusion. It is really very interesting that you can see the difference

between plain and axisymmetric jets and, in many cases of complicated flows with body

forces or centrifugal forces, you can begin to see just where you don't want to use con-

ventional methods.

C. E. Peters: I would like to address my question to either Professor Launder or

Professor Spalding. These advanced methods depend greatly on the initial conditions,

particularly in relatively weak shear flows. Your procedure of using either experimental

initial conditions or an eddy viscosity which matches the initial region development only

allows an after-the-fact correlation of an experiment. What is one to do in an engineer-

ing situation where the initial conditions are not well defined? Can you suggest proce-

dures for approximately determining the initial conditions?
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B. E. Launder: I would not entirely accept your assertion that our practices allow only

"after-the-fact correlation." After all, if it were correct, we might expect nearly the

same performance to be turned in by the various models; yet there are, in fact, large

differences between predictions generated by the various models. However, I agree

that when our procedures (or anyone else's for that matter) are used to predict engineer-

ing flows, insufficient experimental data will generally be available to describe the initial

conditions with certainty. If the predictor has thorough acquaintance with experimental

data of turbulent flows, he may well be able to assess with sufficient accuracy the initial

profiles. Otherwise, the safest practice is to begin computations sufficiently far upstream

for the (perhaps badly) guessed initial profiles to have negligible effect on the region of

interest. For example, if one wants to predict a jet development, then computations

might begin at the upstream end of the nozzle(s); or, if the flow is a wake, the calcula-

tions could start upstream of the obstacle generating the wake.

P. A. Libby: I am greatly impressed by the powers of the new methods developed by the

Imperial College group and others when applied to flows with variable density, but I won-

der whether we can expect the carefully selected constants in these methods to carry

over without density effects to the variable density cases. My work in a simple flow

shows that we must make these constants functions of the density.

B. E. Launder: Yes, it may be necessary to amend or extend our present models to

provide consistently good predictions of variable density flows. The pressure-strain

term would be the first term to be examined; others in the dissipation equation need to

be looked at.

S. C. Lee: The turbulence kinetic energy equation consists of convection, diffusion, pro-

duction, and dissipation terms. Why treat the dissipation term more favorably than the

others? If we examine the figure of turbulence energy balance (shown by Professor

Spalding with comparison of Bradbury's data), it appears that all terms are approximately

the same order of magnitude.

B. E. Launder: In the models I have been talking about, based upon differential equations

for the Reynolds stresses, the five processes of generation, dissipation, redistribution,

diffusion, and convection interact to determine the local stress levels. Since we solve

convective transport equations for the stress components, we may say that we account

"exactly" for convection of the stresses. The generation term, too, is one that we treat

without further approximation since it consists simply of the product of Reynolds stresses

and mean velocity gradients. That leaves dissipation, diffusion, and redistribution to be

accounted for; as you say, we solve a differential equation for the first of these but not

for the other two. We could solve transport equations for the diffusion correlations as

well as for the Reynolds stress and dissipation rate (Chou and a number of others have
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suggested models of this kind). However, I regard this level of closure as unnecessarily

elaborate since the diffusion terms are seldom decisively important in the Reynolds

stress equations. I think therefore that the simpler gradient-diffusion approximation will

suffice. Finally, there is the redistribution term to consider. Although this term does

not appear in the turbulence energy equation (which was the equation you mentioned), it

is of great influence in determining the magnitude of the individual stress components.

The practice we adopt in simulating this term is, we think, suggested by the form of the

exact correlation. Other practices are possible, however, and Kolovandin and Vatutin 1

describe a much more elaborate treatment involving the solution of three-dimensional

elliptic differential equations. I do not believe such an approach is warranted since it

seems that evaluation of the redistribution term would then absorb more computer time

than all the rest of the calculation.

1 Kolovandin, B. A.; and Vatutin, I.A.: Statistical Transfer Theory in Non-
Homogeneous Turbulence. Int. J. Heat& Mass Transfer, vol. 15, no. 12, Dec. 1972,
pp. 2371-2383.
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A PROVISIONALANALYSISOF TWO-DIMENSIONAL TURBULENT

MIXING WITH VARIABLE DENSITY

By Paul A. Libby

University of California at San Diego

SUMMARY

A predictive method for the titled flows based on the Prandtl energy method is

developed and assessed by comparing predicted results with experimental results.

For constant-density flows, both gross properties such as spreading rate and maximum

turbulent kinetic energy and detailed properties such as mean shear stress distributions

are shown to be well predicted. For variable-density flows, considerable attention is

devoted to the inclusion in the analysis of the added effect of pressure fluctuations and

of the variation in the several extant empirical parameters on the turbulent kinetic

energy. It is found that a variation with Mach number of the characteristic Reynolds

number for turbulent transport is needed to account for the observed decrease in

spreading rate. The predictions which result from these considerations are compared

with the limited experimental data presently available for the two crucial cases: com-

pressible adiabatic mixing and low-speed isothermal mixing of two dissimilar gases.

_TRODUCTION

There is considerable activity presently underway by several groups on the

description of turbulent shear flows by methods which contain more of the physics of

turbulence than do the well-known methods based on mixing length and the usual eddy-

viscosity models. Bradshaw et al., Rodi and Spalding, Hanjali_ and Launder, Donaldson,

and Wilcox and Alber (refs. I to 5) provide recent entry points in this literature. Most

of this activity has concerned turbulent flows with uniform properties, presumably

because these new methods should first be assessed for this simpler case and because

the amount of data for the case of variable density is limited. Concern here is with the

simplest turbulent shear flow, the two-dimensional mixing of two different streams, but

under circumstances involving variable density, either because of the high speed of one

stream or because of different compositions of the two streams.

The two-dimensional mixing layer has the virtue that its description is given in

terms of a similarity variable; thus, the numerical analysis associated with its study is

modest. It has the further advantage that there are no solid walls present so that most

effects of molecular transport are negligible and the modeling required to effect closure
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in the describing equations is simplified. A disadvantageis that its study in the labora-
tory is relatively difficult whencomparedwith other free mixing flows, for example,
wakes andjets; therefore, experimental data suitable for purposes of comparison are
limited, especially for the caseof variable density.

Previous theoretical work on two-dimensional, turbulent mixing for constant fluid
properties is extensive; the well-known references 6 and 7 may be examined. For the
case of variable density due to either compressibility effects of high speedor to hetero-
geneouscomposition, the literature involving a serious effort to compare prediction and
experimental data is sparse; most entries set upa model for the caseof variable proper-
ties, validate it against the data for the constant-density case, andthen use it to predict
the effects of variable density. Typical thereof is reference 8.

This situation is perhapsdue to the disarray in the experimental datapresently
existent in two crucial casesof two-dimensional mixing with variable density. The data
have beenrecently reviewed by Birch and Eggers (paperno. 2 of this conference). With
respect to the caseof onehigh-speed stream mixing with a quiescent gas of the same
composition under conditions such that the stagnationtemperature is constant everywhere,
that is, the caseof so-called "compressible adiabatic flow," several sets of data indicate
no effect of high speed(that is, of high Machnumber) on the spreading angle. Other data
indicate a significant increase in spreadingparameter, that is, a decrease in spreading
angle andmixing rate, as the Mach number of the high-speed stream increases.

The other crucial caseof two-dimensional mixing with variable density involves the
low-speed isothermal mixing of two gases of different molecular weights. Again, Birch
et al. havepointedout the inconsistency of several sets of data related to the spreading
parameter, in these casesto be considered a function of the velocity and density ratios
of the two participating streams.

Given this situation, any theoretical analysis such as the present one must be

treated as a provisional one until at least the experimental evidence related to these two

crucial cases cited is considered to be well-established. In the present work, the

Brown and Roshko data (ref. 9) for heterogeneous, low-speed mixing and the data shown

by Brown and Roshko and by Birch and Eggers indicating significant effect of Mach num-

ber on the spreading parameter for compressible adiabatic flows have been accepted as

correct. Accordingly, comparisons have been made of the present theoretical predic-

tions against these data and the appropriate empirical constants have been adjusted to

bring prediction and these experimental data into agreement insofar as possible. If future

developments do not support these experimental data as correct, the present work should

still provide a methodological framework of some value, but, of course, the adjustment of

parameters would require some alteration.
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A cursory examination of the new methodsof analysis of turbulent shear flows indi-

cates a wide variety of approaches, each of which can be extended to the case of variable

density. One of the simpler ones, that is sometimes termed the "Prandtl energy method,"

is followed here. It is based on the idea of an eddy viscosity proportional to a length

associated with the scale of the mixing layer and to the square root of the turbulent

kinetic energy. It can be seen that the extension of this idea to flows with variable den-

sity is ambiguous and must be guided by comparison with data. Comparison is made by

relying heavily on the data associated with the gross behavior of the mixing layer, as

reviewed and codified recently by Brown and Roshko (ref. 9) and Birch and Eggers (paper

no. 2).

The appropriate conservation equations are first developed and the terms as

required for closure are modeled. One representation is then selected for the eddy vis-

cosity for constant-density flows and the predictions based thereon are compared with

various experimental results. The problem of incorporating the effects of variable den-

sity in such a fashion as to achieve agreement with experimental data relative to the two

crucial cases cited is then discussed. Finally, a comparison with experimental data is

made.

ANALYSIS

The idealized flow shown schematically in figure 1 is considered. Two streams

with different composition, velocity, and energy but with the same uniform pressure

undergo turbulent mixing at the end of a splitter plate which is the origin of a x 1,x 2

coordinate system. The symbols used in the analysis are defined in appendix A.

In developing the equations for the description of this flow, several assumptions are

employed. The effect of molecular transport is neglected except for certain dissipation

terms. Constant pressure in the two external flows, flow similarity, and no chemical

reaction are assumed. Furthermore, work is done in terms of mass-averaged quantities

after Favre (ref. 10). For clarity a tilde will be used for a mass-averaged temporal

mean; a double prime, for the fluctuating part left__over; and a conventional bar, for a

Pui ui,, ui"
regular temporal mean; thus, ui(xl,x2,x3,t ) = -'=-p + = ffi + with customary nota-

tion. Note that ui"¢ 0 whereas PUi" =0.

Basic Equations

In terms of Cartesian tensor notation and in accord with these assumptions, it is

readily established that the describing equations for the mean flow are
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+ =0
axk PUk"hs"

ffkYi + PUk Yi 0

(i= I, 2, . . .,N)

(i= 1, 2,. . .,N)

(1)

where Yi is the mass fraction of species i and where

In more detail

N

Z UkUk = h + UkUk
1 1

h s - Yihi + _
i=l

h s is the stagnation enthalpy.

(2)

where h i is the static enthalpy of species i. From equation (2),

151_s =/3h + _ UkUk + PUk"Uk" =/3h + _/3 + q2

where the mass-averaged turbulent kinetic energy is defined as

Thus

¢%U iV11 f_

q2 = _" k _k (3)

h s contains all forms of energy of present interest.

For this particular closure scheme based on an eddy viscosity as discussed, a con-

servation equation for q2 is needed; it is found to be

1 a /-_ 2 nu "u"u"_ " "
p kq + k i i j +puiUk aXk

where Tik is the viscous stress tensor.

ap aUi"
Uk" rik _ (4)

_xk

Closure Assumptions

The closure of these equations as applicable to a thin shear layer wherein the

boundary-layer approximations apply is next considered. First, in all the applications

considered herein, it appears adequate to assume a single eddy transport coefficient

essentially based on the mean velocity field. The generalization to a separate coefficient

for each species, for the energy, and so forth is straightforward if an appropriate, sepa-

rate length scale for each coefficient is introduced. Additional comments on this will be

made. Thus for the present a single eddy transport coefficient is introduced and
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8Yi_

The remaining terms to be modeled arise in the equation for the turbulent kinetic

energy. Dependence rests heavily on previous work related to the new phenomenology of

turbulent shear flows; previous ideas are adapted to the a priori and formal introduction

of an eddy viscosity. Thus for the dissipation term,

_ ,t

rik -_k ~

where /31 is a constant for flows with constant density but is considered provisionally a

function of an appropriate density ratio for flows with variable density, Equation (6) may

( ?( )be compared with the usual form 7i k _ui /_x k oc q3/L where L is a suitable length

scale. Here dimensional arguments are used to let L cc e/q but a density ratio 15/p 1

raised to some power could be introduced without compromising dimensionality.

It is customary in previous work devoted principally to constant-density flows to

group the triple correlation terms and the pressure-velocity correlation together. What

remains is a pressure-strain correlation which for constant-density flows is zero. Here

more care must be taken; in appendix B the maintenance of the customary grouping and

the addition of several new terms to account for the pressure-strain correlation prevail-

ing in variable-density flows are heuristically justified. There results (see eq. (B9))

a 1

where _2 and a are at most functions of a density ratio, otherwise constants, and ¢p

is a thermodynamic parameter. (See appendix B.)_,This procedure_ should be compared

with the usual form for constant density, that is, -_--. {qL _:'-./. Here again L in terms
2\ °_2/

of e has been eliminated and the terms appropriate for variable density have been

added.
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The mean pressure 15 is now considered; the x2-momentum equation with the pres-

sure in the external flows set to zero yields _5= -PU2"u2". Thus in the x 1-momentum

equation,

_11(t_ + PUl"U2")= _11(PU1"Ul"- PU2"u2" )

Although it is recognized that unless the turbulent kinetic energy is equally distributed

among the three velocity components, this term is nonzero; it does not appear to con-

tribute significantly and will be dropped.

Similarity Form

The describing equations are now transformed to similarity form and the nondimen-

sional variables are introduced. It is considered to be convenient to include a density

distortion of the x2-coordinate since the resulting equations are formally simpler and

since the inverse transformation back to the physical variables is readily performed once

a similarity solution is obtained. Thus, let

1 _x2 -
 - lJ0 dX2' (8)

and introduce

f, Ul
U

H = hs

hsl

Q2 =0.2
U 2

_. E

e0 Pl

where a prime denotes differentiation with respect to 77. Thus,

(e0f")' ff"+ =0

(EoH')' =+ fH' 0

' ( -p2.1)2Q4 e0f"2 otfQ2(Pl/P) '_2_0(Q2)_+_l+(1-_)cz_f(Q2)-ill e0 + - _

The first two of these equations imply a Crocco relation

H 2 - 1
H= 1 +--(1 -f')

7

(9)

(10)

=0

(11)
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w.er 
two unknowns f(7/) and

parameter e0 are appropriately given.

The boundary conditions are

f'(oo)=l, f'(-¢o)= 1 -V, fCO) =0_

JQ(+_) = 0

Several remarks as to the boundary conditions on f(_/)

Thus, equations (10) may be considered two equations for the

Q(_/), provided the density ratio (P//Pl) and the eddy-viscosity

(12)

are perhaps indicated.

First, it is known from the work of Ting (ref. 11) that in applications of analyses of

laminar or turbulent two-dimensional mixing of the sort considered here, the actual loca-

tion of the dividing streamline f = 0 depends on details of the external flow, the pres-

ence of walls, and so forth. Thus, the coordinates x 1 and x 2 must be considered to

be boundary-layer coordinates along the actual dividing streamline whose location in

physical coordinates may be found for a particular flow situation by application of

reference 11.

Second, in the presentation of experimental data relative to two-dimensional mixing

it is customary to select as the origin of x 2 the line along which f' has a particular
1

value, for example, f'(0) = 1 - _ 7. The difference between these two means for select-

ing an origin is simply a translation in 77 so that comparison between the solutions and

such data is readily possible.

Form for e0

Since the eddy transport parameter e0 clearly plays a central role in these equa-

tions, it is appropriate to make some remarks about it. In terms of an academic inves-

tigation, devoid of connection with the available data, a wide variety of relati, ons for e0

can be assumed. Indeed, even if experimental results are conscientiously considered,

there remain several such relations and in the course of this study several have been

examined for flows with constant and variable density. Only those which involve coupling

between the mean velocity and the turbulent kinetic energy, that is, those consistent with

the spirit of the Prandtl energy method are reported.

Comparisons of prediction and experiment lean heavily on the gross property

spreading rate, as specified by Brown and Roshko (ref. 9). Define a parameter a such

that

where

1.32
0"=

(x2/xl)i, i= 1, 2 are defined by the velocity ratios
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- (1 - ii

7U = (0.9) 1/2 (i = 1)

(0.1)i/2 (i 2
7U

(13)

Note that in defining _ in terms of the mass-averaged velocity _1 rather than in terms

of the usual Ul which is implicitly assumed to be the mean velocity given by experi-

mental data, the density-velocity correlations near the outer edges of the mixing layer are

neglected since ffl = _1 + (_1')/_.

Note also that there are other possible definitions of quantities defining the spread-

ing rate but equation (13) is convenient and according to Brown and Roshko (ref. 9) yields

values of a "very close to those obtained from the more elaborate . . ." definitions.

Accordingly, in considering some experimental data not treated by Brown and Roshko,

the values of a given by the experimentalist have been taken and have been assumed to

be equal to that which would be given by equations (13) if the detailed velocity profiles

had been available. For the case y = 1, the most often quoted value _- a0 = 11.3 is

due to Liepmann and Laufer (ref. 12). However, Birch and Eggers (paper no. 2) have

pointed out that many experimentalists assume that this value is the value they would

measure if they, in fact, did so, and has provided a more rational means for estimating

the value of a0 peculiar to their setup.

In the special case of constant density,

(14)

Now in the spiritwhere A is a scale length on the order of the mixing-layer thickness.

of the Prandtl energy method it is assumed that at least for constant density

qAe - Rq = Constant (15)

that is, there is a characteristic Reynolds number whose exact value depends on how A

is defined. In cases requiring several eddy transport coefficients, it would be hoped that

Rq would be constant for each value, provided consistent definitions of A are applied

to each property being mixed.

For the single eddy transport coefficient based on the velocity and for the two-

dimensional mixing considered here, it is convenient to choose for

by
-1

'" J

A a thickness defined
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This procedure is reminiscent of one means for defining the thickness of a shock wave

and is readily generalized to other properties being mixed. Thus, the form of e0

examined for flows with constant density becomes

e0 = __._7__.._Q (17)
aqf"(0)

The predictions of the analysis using equation (17) are compared with a variety of data

for mixing having constant density and then e0 is reconsidered for the case of variable

density.

In connection with the comparison of experiment and prediction, it is convenient to

identify the similarity variable _ =_:(_)d_' =_(T1)=_I.

CONSTANT-DENSITY FLOWS

For constant-density flows with equation (17) taken to relate e0 to the dependent

variables, a single parameter 7 specifies the flow situation but Rq, /31, and /32

must be selected. The parameter q_ = 1, and _ is immaterial for these flows. For

/_1 the following consideration is made: if in the last of equations (10), specialized to

15/pl) - 1, it is assumed that production and dissipation of turbulent kinetic energy are
roughly balanced, that is, that 1Q e 0 = _0 t , it is found that e0f" = (_1)1/2Q 2.

This result can be identified with the relation between the mean shear stress and the tur-

bulent kinetic energy widely used in the new methods of analysis of turbulent shear flows.

(See, for example, ref. 1.) The generally accepted constant in this relation suggests

t31 = 0.024, the value used.

Furthermore, for ¢2' which appears not to be critical, it is found on the basis of

numerical experimentation that an appropriate value is 0.5. Finally, again on the basis

of numerical experimentation, Rq = 22 is taken.

Each of these three parameters has not been systematically varied to establish a

set which is "optimum" in some sense but rather it has been determined on the basis of

the comparisons of experiment and prediction that the cited set is adequate for many pur-

poses. Also note that equations (10) have been solved by finite-difference methods and by

iteration to handle their nonlinearity, the problem of the three-point boundary conditions,

and the implicit appearance in the differential equations of f"(0), a quantity obtained from

the soIution. No features of the numerical analysis appear to warrant special mention; in

fact, the computer program was designed primarily to provide means for altering readily

the severaI parameters and the various flow situations to be studied and not to provide

efficient computation of any one ease.
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Now the predictions can be compared with experimental data. Solutions have been

computed for a variety of values of 7 and several parameters are shown in table I

which are obtained from these solutions and which may have residual value. Note that

a0 = 11.4 is predicted.

In accord with previous remarks, figure 2 shows the prediction for a0/(_ as

well as the analytic, empirical approximation due to Sabin (ref. 13), (_0/(_ - 7/(2 - 7).

This approximation was shown by Birch et al. to represent well a wide variety of data

if _0 is appropriately estimated for those cases in which it is not directly measured.

It is seen that the predictions for (_O/a are in good agreement with this empirical
approximation and thus with experiment.

Next, consider a second gross property. Yule (ref. 14) has recently developed an

empirical equation for the maximum turbulent kinetic energy as a function of 7. In

terms of the variables used herein and with a 0 = 11.4 for consistency, his equation
becomes

Q2(0) = 0.054(2 - 7)72 (18)

In figure 3 the predictions of this paper are compared with those of equation (18). Again,

very reasonable agreement is obtained.

Because of the apparent high quality and completeness of the measured details of

Spencer and Jones (ref. 15), they have been used to make comparisons with the predic-

tions of this analysis. In figure 4 for 7 = 0.7, the measured and predicted mean shear

stresses in the form -e0f" =(u_/U 2) are compared; in figure 5a comparison is

made for the turbulent kinetic energy in the form Q2 = _/U2). In both cases the

agreement is good. It, of course, follows from the agreement in figure 4 that the mea-

sured and predicted mean velocity profiles (1]l/U) will also agree well. There seems

little point in actually showing this comparison.

It is also perhaps of interest to compare the distribution of eddy viscosity inferred

from the measurements of mean shear and mean velocity with that computed. Although

the experimental results may be considered subject to possible error, the results of

carrying out the comparison are shown in figure 6 for x 1 = 23.5 inches (59.69 cm) (dis-

tance from the virtual origin), and for 7 " 0.7. The agreement must be considered highly

satisfactory.

Thus on the basis of these comparisons, it is concluded that the analysis for two-

dimensional mixing flows with constant density gives satisfactory agreement over the full

span of velocity ratios with gross properties such as spreading rate and with some of the

available detailed properties. Further refinements of the constants ill' f_2' and Rq

could presumably be made but to do so is not the main purpose of the present work.
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VARIABLE-DENSITY FLOWS

In the case of variable-density flows the constants /91' /92, and Rq must be sup-

plemented with the parameter a and the thermodynamic parameter _p. It is perhaps

appropriate to make some general remarks about the approach used to incorporate the

variable-density effects into the analysis.

Crucial Cases and Alterations of Analysis

As mentioned in "Introduction" there appear to be two crucial cases of variable-

density, two-dimensional turbulent mixing. In the compressible adiabatic mixing, 7 = 1

and to a good approximation

Pl= 1 + m-.--_---(1 -f,2) (19)

/3 1-_

Ei  j_iwhere m- (U2/2hsl) = 1(7-1)M12 + 1(7-1)M 1 for the case of a calorically

perfect gas, and where M 1 is the Mach number in the high speed stream.* Equa-

tion (19) gives the density ratio pl/P2 = (1 - _n)-1.

The second crucial case is the low-speed isothermal mixing of two gases of differ-

ent molecular weights, W 1 and W 2. In this case,

I+w-__-!(i-f') (20)
p

where W=Wl/W 2. In this case the density ratio for _= 1 is pl/P2 =w.

The experimental data which apply to the first case, compressible adiabatic mix-
,..f

ing, and which appears to be most reliable (see paper no. 2 by Birch and Eggers) indicate

that a significant reduction in (_ occurs as M1 increases; in particular, a = 38 for

= 0.833 (M 1 = 5). On the contrary, the most reliable data for the second case seem

to be that of Brown and Roshko (ref. 9) which indicate no significant change in a with w

over the range 0.143 _w _ 7. The essential data for 7 = 1 are shown in figure 7 in

terms of a0/a plotted against pl/P2. On the basis of a comparison of equations (19)

and (20), one would not expect such a disparate difference in mixing behavior.

* In this relation for _, y is the ratio of specific heats; there should be no con-
fusion with our other use of 7'. In deriving equation (19), the contribution of turbulent
kinetic energy to the stagnation enthalpy is essentially canceled by the variation of static

pressure due to PU2"u2". It is perhaps appropriate to observe here that _n is the

proper similarity parameter for compressible adiabatic mixing of calorically perfect
gases so that high-speed mixing of gases other than air, for example, high-speed helium
with quiescent helium, should be correlated in terms of _a.
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In the interest of exposition it is indicated now that with the parameters _1' /_2'

and Rq equal to the values used for constant-density flows and with _ = 0.25 and q_

appropriately selected, the analysis results in predictions in reasonable agreement with

those of Brown and Roshko (ref. 9). However, it underpredicts very significantly the

effect of highspeed on the spreading parameter. Therefore, accepting the experimentally

observed difference in the two crucial cases to be correct, that is, anticipating that it will

be substantiated by further experimental results, the implications thereof are now dis-

cussed, that is, determination of the effect of Mach number through the parameter _.

This apparent difference, accepted herein, in behavior of the two crucial cases rules out

several possible means for incorporating the effects of variable density. Several means

have been studied but have been abandoned, at least for the time being.

The most obvious candidate to account for the difference in the two cases is the

pressure fluctuations which are expected to become more significant with Mach number.

It is shown in appendix B that in the variable-density case, the pressure correlations

introduce effects into the equation for the turbulent kinetic energy through the diffusion

term, the convection term, and through an added term directly associated with the density

gradient. However, this equation, and thus presumably the turbulent kinetic energy, is

dominated by the production and dissipation terms, neither of which are directly influ-

enced by the pressure fluctuations. Thus it is found by numerical experimentation that

unreasonable values for _2, treated as a function of _n, must be assumed in order to

achieve a significant alteration of _ with _n. It thus appears that at least up to a Mach

number of 5, pressure effects cannot account for a significant compressibility effect on

two-dimensional turbulent mixing. This result is in accord with the finding of Laufer

(ref. 16) for turbulent boundary layers.

If the changes in the empirical parameters with _ that might be rationalized to

account for the observed effect on a are considered, the parameter fll which accounts

directly for dissipation and Rq appearing in e0 remain. Again by numerical experi-

mentation, it is found that unreasonably large changes in fll with _n are required to

bring prediction and experiment into agreement. Moreover, there appears to be no way

to rationalize such changes; in this regard, note that such would imply a considerable

deviation with _ of the coefficient in the frequently assumed relation between mean

shear and turbulent kinetic energy. Although it is not certain that some alteration of

this coefficient is not in fact indicated, the alteration associated with the required changes

in E1 is probably excessive.

Thus, alterations of Rq with Mach number, that is, of the only parameter at our

disposal, are considered. As is seen in more detail subsequently, rather modest changes

in Rq with m can bring the predictions in agreement with the data for compressible

adiabatic mixing. 'Consider here the possible physical explanation therefor, and keep in
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mind a distinction betweendensity and Mach numbereffects. With all the other param-

eters in e0 fixed, the value of Rq determines the rate of entrainment of external flow

into the turbulent layer. This entrainment is known to be related to the detailed mechan-

isms connected with the superlayer at the interface between the potential and turbulent

flows. Because of detailed experiments involving conditioned sampling (see Kovasznay

et al. (ref. 17) and Kaplan and Laufer (ref. 18)), a great deal is known about these

mechanisms for low-speed turbulent boundary layers, for example, about the relative

speed of the large turbulent eddies and the external flow. Although the corresponding

data for the high-speed mixing layer do not exist and will be extremely difficult to obtain,

it appears intuitively clear that when the relative speed of the large-scale turbulent

eddies and the external flow approaches a significant fraction of the local speed of sound,

major changes in the detailed entrainment mechanisms could occur. The observed

decrease in spreading angle and mixing rate with free-stream Mach number, for example,

as implied by figure 7, supports this view. These effects are concluded to be attributed

to Rq in the present analysis.

Accordingly, a strategy of seeking Rq = Rq(_) is adopted to bring the analysis

into agreement with the case of compressible adiabatic mixing. Beyond the case of

7 = 1, that is, of mixing with a quiescent gas, it is expected that Rq will depend on 7
as well as on _n when the second stream becomes supersonic. Resolution of this effect

awaits further experimental data.

Isothermal Binary Mixing

Consider now the low-speed isothermal mixing of two dissimilar gases and treat

w -- (W1//W2) and the velocity ratio by means of _ as parameters. The assumed values

of w include helium-air cases with the molecular weight of air assumed to be 28. The

value of cp is taken for simplicity to be three and represents its arithmetic mean for

air and helium; these results are independent of any reasonable value for ¢p since it

enters only in the convection term, that is, in one of the small terms, in the equation for

the turbulent kinetic energy. Also a = 0.25 is taken in all cases since it too does not

enter importantly. Several of the combinations of w and 7 are chosen to permit com-

parison with the experimental results of Brown and Roshko (ref. 9) for helium and air

mixing.

Table II gives the principal gross results from this series of calculations. Several

points are indicated there. For a given velocity ratio, that is, 7, the effect of the

molecular weight ratio w on the spreading parameter a is small. This result is in

accord with the main conclusion of Brown and Roshko (ref. 9). Moreover, simple calcu-

lations using the results in table II show that for a given w, the effect of 7 on a is

closely given by the equation of Sabin (ref. 13) developed for constant-density flows. This
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prediction may be useful in determining a0 for binary mixing flows 'after the suggestion

of Birch and Eggers (paper no. 2).

The results with respect to the spreading parameter a for 7 = 1 are shown in

figure 7 in terms of a0/a plotted against pl/p 2 = w in this case. The comparisons

with the results deduced by Brown and Roshko (ref. 9) are seen to be good, as suggested

earlier; that is, when no changes in the effective parameters _1, /32, and Rq are made,

the spreading parameter is insensitive to density variations.

Attention is now turned to some of the detailed results of Brown and Roshko (ref. 9).

In figure 8 a comparison is made of the predicted velocity and density profiles for one of

their experiments corresponding to _ = 0.622, w = 0.143, that is, helium at a higher

velocity mixing with slower air. It is seen that the velocity profile is well predicted but

that the density profile reflects the single eddy transport coefficient assumed a priori in

the analysis, whereas the experimental results indicate a considerably larger coefficient

for the species. Contrast this result with another case shown in figure 9, _, = 0.622,

w = 7, corresponding to faster moving air mixing with slower helium. Within the ability

to read the plots in reference 9, it is not possible to distinguish the prediction from

experiment so only the predicted results are shown. The reason for the difference in

the predictability of the two cases is not clear.

It is of interest to consider the predicted alteration in the distribution of some mean

quantities with molecular weight or density ratio. Accordingly, the velocity profiles for

the constant density case (w = 1) and the hydrogen-air cases w = 14, (1/14), each with

zero velocity on one side of the mixing layer, are shown in figure 10. Although the

spreading parameter is about the same in all three cases, it may be seen that the varia-

tion in mean density results in altered velocity profiles.

In figures 11 and 12 are shown the predicted distributions of production of turbulent

kinetic energy in terms of e0f"2(7/) and of dissipation in terms of -/31([}/plJ2Q4e0 -1

plotted against _ = x2/x 1 for these same three cases. There is a shift in the peaks of

production and dissipation toward the low-density side of the dividing streamline and, as

expected, the dissipation term is less than the production term in the central portion of the

mixing layer. From the calculations it is found that the diffusion term provides most of

the difference in the two main terms in the equation for the turbulent kinetic energy. It

would be highly desirable if some measurements of the turbulent kinetic energy could be

made in binary mixing flows to permit comparisons with predictions of the sort shown in

figures 11 and 12 in order to establish whether the energy balances are as predicted or

whether changes in the modeling are required.

It,is thus concluded that the analysis for constant-density flows without essential

change _the changes due to _/_u "/_xv_ k / k} are considered to be "unessential" here) largely
\
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agrees with the results of Brown andRoshko (ref. 9) and showslittle effect on the gross
quantity, spreading parameter % although detailed distributions are as is to be expected
altered by density variations.

Compressible Adiabatic Mixing

Attention is nowturned to the caseof compressible adiabatic mixing. Only _,= 1,

that is, mixing with a quiescent gas, is considered and thus there is a single parameter,

that associated with the Mach number in the moving stream, _. The previous values

#1 = 0.024, #2 = 0.5, and _ = 0.25 are retained and _ = 7/2 is taken, corresponding

to air. Again, the values of _ and _ are unimportant. However, as discussed pre-

viously, Rq is adjusted to bring into agreement prediction and experiment with respect

to the spreading parameter a.

As a result of preliminary numerical experimentation, it is found that a simple

variation of Rq with _n gives a variation of spreading parameter with

pl/P2 = (1 - _n) -1 in reasonable agreement with the data shown in figure 7; thus,

Rq = 22 + 5.2(1 - _)-1 (0 -<_ <=0.7)_
(21)

Rq = 39 (0.7 _ _n < 1)J

This variation of Rq is used for the calculations discussed here. The implication of

this result in terms of the previous discussion of the possible physical explanation of a

change in Rq with Mach number appears to be that at a Mach number of about 3 the

large-scale eddies in the mixing layer readjust so that further effects of Mach number

on the spreading parameter are small and so that the characteristic Reynolds number Rq

may be taken as a constant at higher Mach numbers. This explanation is, of course, to

be considered a conjecture based on a careful consideration of the present analysis and

the experimental data presently considered definitive.

With the use of equations (21) a series of compressible adiabatic flows correspond-

ing to a range of _n have been computed; the principal gross results are given in

table III and the variation of the spreading parameter in terms of a0/a with pl/p 2 is

shown in figure 7. It is seen that the simple variation of Rq with _n given by equa-

tions (21) results in increases in a with _ in good agreement with the experimental

data.

In figures 13 to 15 are shown the same distributions of mean quantities as in the

case of binary mixing in order to provide some indication of the effect of high speed on

turbulent mixing. From figure 13 it can be seen that a significant change in the veloc-

ity profile takes place when _ increases from 0 to 0.667 (M 1 from 0 to =3) but that

little change seems to take place as _ increases further despite the doubling of the
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density ratio pl/p 2 as _ increases from 0.667 to 0.833. This behavior is also
reflected in figures 14 and 15 which show that the distributions of production and dissipa-

tion of turbulent kinetic energy for _ = 0.667 and _ = 0.833 are alike but are very

different from the low-speed case (_n = 0).

It may also be noted from figures 14 and 15 that the peaks in production and dissipa-

tion shift toward the low-density side of the dividing streamline as in the case of binary

mixing. Also to be noted is the close balance between production and dissipation which

indicates, as suggested earlier, that the other terms in the equation for conservation of

turbulent kinetic energy are dominated by these two terms.

The General Case

On the basis of the results for the two crucial cases of turbulent mixing studied in

some detail, the present analysis could be used with the parameters _1' _2' and

fixed, with _ determined from thermodynamic considerations, and with Rq(_n) as

given by equations (21) to make predictions of the properties of a variety of mixing flows

involving heterogeneous composition, high-speed effects, and nonadiabaticity. These

have not been carried out in the present work because there appear to be no data with

which to compare prediction and experiment. When such data are available, it would be

of considerable interest to determine the extent of the agreement and/or disagreement.

Of considerable value in assessing the a priori assumption of a single transport

coefficient and the overall accuracy of the present analysis for these fundamental flows,

that is, for two-dimensional turbulent mixing, would be cases of heterogeneous mixing

under nonisothermal conditions, for example, heated helium mixing with relatively cold

air. The greater the statistical detail constituting the data the more valuable such

experiments would be.

CONCLUDING REMARKS

A simple turbulent flow, the two-dimensional mixing layer, involving significant

variations in density due either to heterogeneity in composition or to compressibility

effects associated with the high speed of one flow has been analyzed in some detail. One

of the simpler of the new methods of analysis of turbulent shear flows, that usually

termed the "Prandtl energy method," has been used. It involves relating the eddy trans-

port coefficient to the turbulent kinetic energy and to an appropriate length scale of the

large-scale turbulent motion. Thus, one equation in the second level in the hierarchy of

describing equations, that describing the conservation of turbulent kinetic energy, must

be added to the usual set of equations describing the variables of the mean flow.
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For two-dimensional mixing layers with constantdensity it is found that the analy-
sis provides satisfactory predictions for gross properties of the flow over the entire
range of velocity ratios of the two streams andfor detailed properties for the one case,
that is, onevelocity ratio, examined.

With respect to flows involving variable density, there is discussed the existing
experimental data for two crucial cases, the low-speed isothermal mixing of two dis-
similar gases andthe high-speedadiabatic mixing of air. It has beenassumedprovi-
sionally that the results of Brown andRoshko, which show little alteration of the spread-
ing rate with large density differences in the first case, andthe results which show
significant reduction in the spreading rate with Machnumber in the secondcaseare cor-
rect, and that they will be confirmed by further experiments. With this assumption fixing
the strategy to be followed, it is found that analteration with Mach number of the empir-
ical parameters entering the analysis is required to bring prediction and experiment into
agreement. The analysis suggeststhat neither the modeling of pressure rate of strain
nor alterations in two parameters, those relating to diffusion and dissipation in the equa-
tion for the turbulent kinetic energy, can reasonablyaccount for the observed Machnum-
ber effect_ However, it is shownthat a modest changein the Reynolds number charac-
terizing the turbulence reduces the spreading rate in accord with experiment. A sug-
gestion is made of howthis required changeis related to the physics of the turbulence.

It is emphasizedthat if further experiments do not support the assumedbehavior of
the two-dimensional mixing layer in the two crucial cases cited, the methodologyof the

present work may retain somevalue, but the strategy usedto bring prediction andexperi-
ment into agreement would, of course, be altered. It is also emphasizedthat this study
indicates the dangers of casually extendingthe newmethods of analysis of turbulent shear
flows to cases involving significant variations of density.
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APPENDIX A

SYMBOLS

Cp

Cpi

f

H

H2

h

coefficient of specific heat

coefficient of specific heat of i species

stream function (see eq. (9))

stagnation enthalpy ratio (see eq. (9))

stagnation enthalpy ratio, hs2/hsl

static enthalpy

hi

h s

L

M 1

static enthalpy of i species

stagnation enthalpy (see eq. (2))

length scale

Mach number in stream 1

Mach number parameter (see eq. (19))

P static pressure

Q

q

R0

nondimensionalized turbulent kinetic energy

turbulent kinetic energy,
Pui'ui'

universal gas constant

Reynolds number of turbulence

static temperature

t time
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U

ui

W

Wi

W

x i

Yi

_I,_2

7

e0

A

P

P

/)1

(y

x-component of velocity in stream 1

Cartesian velocity components, i = I,2, 3

molecular weight of mixture

molecular weight of i

molecular weight ratio,

Cartesian coordinates,

species

W2/Wl

i= I, 2, 3

mass fraction of i species

fraction of turbulent kinetic energy due to u 2

empirical constants

parameter determining velocity of stream 2; ratio of coefficients of

specific heat

eddy viscosity

nondimensionalized eddy viscosity

transformed similarity variable (see eq. (8))

length scale

kinematic viscosity coefficient

similarity variable, x2/x 1

density

density in stream 1

spreading parameter
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%

_'ik

spreading parameter when u i = 0

viscous stress tensor

thermodynamic parameter (see eq. (B7))
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APPENDIX B

THE PRESSURE-STRAINCORRELATION

Here the modeling of the velocity-pressure gradient correlation appearing in equa-

tion (4) is considered. The first step is to write

,, ap a /_..-:T'-W,'_aUk"

uk ax---_=-_k_PUk)-p _xk (m)

For constant-density flows the second set of terms on the right-hand side is zero. Here

the general case of a gas mixture described by a perfect gas law is considered. First

N

RoT _ YiP = P --W = PRoT --Wi (B2)
i=l

where R 0 is the universal gas constant and W is the mixture molecular weight. The

conservation equations devoid of significant molecular effects are

8
0

a a ap
{i = 1, 2, 3)

l
(B3)

The pressure relative to that in the two streams external to the mixing layer is mea-

sured so that P(Xl, +o% x3 ' t) = 0. In addition, the stagnation enthalpy is defined as

N

1 V" 1
h s-h+2 zzu'u-= L Yihi(T) +2ukuk

i=l

(B4)

From mass conservation and the equation of state, it is easy to show that

(B5)
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Next from equations(B3) and (B4),

fl_ 0T

CpWJ _Xk
and

ZTwi uki_-i + %/

where

N

Cp = _ CpiY i

i=l

Thus

P - Uk_V__aXk

=0

(B6)

Except for certain dissipation terms which would enter if molecular effects were

included in equations (B3), equation (B6) is exact. Drastic simplifications are now made.

It hardly seems reasonable to add to the result of the crude modeling usually associated

with the first set of terms on the right-hand side of equation (B1) and complicated

modeled terms arising from the second set. First note that R0/CpW is to a good

approximation constant because the model specific heat CpiW i is roughly constant.
Thus let

Then by letting q?-I _ (R0/CpW) ' it is found from equation (B1)that

oXk exk Oxk

Note now that the x 2-momentum equation in the boundary-layer approximation and

with the external pressure set equal to zero yields

= -PU2"u2" = -_Xl 2 (B8)

where ot is a parameter (taken to be constant) representing the fraction of the total tur-

bulent kinetic energy in the u 2-velocity fluctuations. Most low-speed data for turbulent
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shear flows indicate _ -- 1/4 but there does not appear to be any data related thereto

for variable-density flows.

With equation (B8), equation (BT) can be rewritten to yield

(B9)

Several remarks about equation (B9) are appropriate. Equation (B9) reduces to

that for constant density flows if _ = 1 so the usual model in this case is recovered.

For compressible adiabatic flows, _ = _/(_ - 1) where _ is the ratio of specific heats.

For binary isothermal flows, q_ is really a function of concentration but an adequate

approximation would appear to be an average value across the mixing layer. Finally,

note that the inclusion of density effects in the velocity-pressure gradient correlation

introduces two new terms (one directly related to the mean density gradient, and one to

the convection of turbulent kinetic energy) and modifies the usual combination of the dif-

fusion of turbulent kinetic energy and the pressure-velocity correlation.
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TABLE I.- NUMERICAL RESULTS FOR CONSTANT DENSITY FLOWS

V f'(0) f"(0) Q2(0) a0

1

0.8

0.7

0.6

0.4

0.2

0.578

0.643

0.680

0.721

0.808

0.902

6.07

7.18

7.74

8.31

9.46

i0.6

6.42 x 10 -2

4.17

3.22

2.37

1.06

0.265

II.4

16.8

20.6

25.8

43.1

97.0

TABLE II.- NUMERICAL RESULTS FOR BINARY FLOWS

y w f'0? = 0) f"0? = 0) Q2(0) Pl

1

0.8

0.622

0.4

0.2

0.857

0.622

0.4

0.2

1

2

4

7

14

0.5

0.25

0.143

0.0714

7

0.143

0.578

0.624

0.664

0.694

0.729

6.07

8.63

13.0

18.7

30.7

6.42 x 10 -2

6.92

6.88

6.82

6.70

1

1.38

2.01

2.83

4.53

0.544

0.505

0.487

0.450

0.744

0.794

0.861

0.928

0.529

0.635

0.756

0.875

4.59

3.68

3.20

2.79

22.3

25.6

29.8

33.7

3.45

3.93

4.42

4.93

6.94

6.92

6.87

6.88

4.40

2.67

I.II

0.279

5.10

2.70

1.12

0.279

0.772

0.629

0.560

0.489

2.92

2.99

3.08

3.15

0.529

0.497

0.478

0.466

11.4

11.2

11.6

12.1

13.2

10.9

11.1

11.1

11.8

17.2

24.8

42.5

91.0

15.0

25.2

50.0

105
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TABLE HI.- NUMERICAL RESULTS FOR COMPRESSIBLE ADIABATIC MIXING

_'(n= o) _"@ = o) Q2(o) Pl
_(o) _o Rq

0

0.333

0.5

0.667

0.75

0.833

0.875

0.578

0.610

0.626

0.649

0.664

0.684

0.700

6.07

14.6

21.6

38.2

54.3

77.3

99.3

6.42 × 10 -2

4.12

3.52

2.77

2.47

2.43

2.41

1

1.31

1.61

2.16

2.68

3.66

4.57

11.4

19.8

24.4

31.6

36.4

38.4

40.0

22

30

32

38

39

39

39
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Figure 1.- Schematic representation of the flow.
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Figure 2.- Variation of spreading parameter with

velocity ratio. Constant density flows.
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Figure 3.- Variation of turbulent kinetic energy on the dividing streamline

with velocity ratio. Constant density flows.
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Figure 4.- Comparison of predicted and experimental mean shear stress.
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Figure 5.- Comparison of predicted and measured turbulent kinetic energy.
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Figure 6.- Comparison of predicted and measured distributions of eddy viscosity.
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Figure 11.- Predicted distributions of production of turbulent kinetic energy

for several density ratios. Binary mixing; _, = 1.

0.5 1.0 1.5 x I0 -I

Figure 12.- Predicted distributions of dissipation of turbulent kinetic energy

for several density ratios. Binary mixing; _, = 1.
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Figure 13.- Predicted velocity profiles for several values of the Mach number

parameter. Compressible adiabatic mixing; y = 1.
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Figure 14.- Predicted distributions of production of turbulent kinetic energy for several

values of the Mach number parameter. Compressible adiabatic mixing; y = I.
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DISCUSSION

J. Laufer: I think Libby showed us very well the extent of our ignorance as far as density

fluctuations in the turbulent flow are concerned. At this stage I would like to just ask one

question - and maybe that question should be more properly addressed to Professor

Roshko. Dr. Libby pointed out the difference between the conventional average and mass

average velocity. I suspect that in many cases, the experimentalist measures a mass

average quantity with a pitot tube. Professor Roshko, could you tell us, is it a mass

average or a mean velocity that you are measuring?

A. Roshko: Well, that is a little hard to say. The velocities are measured by getting a

pitot tube reading for pu 2, but there is a little question of what you are reading with a

pitot tube because you have the turbulence part of the term. When we do have an accurate

measurement of the average density, we simply divide one by the other. What that aver-

age means is hard to say. We estimate that it's perhaps within 10 percent.

J. Laufer: I would like to suggest just on the basis of the simple Bernoulli's equation

that one uses in obtaining the velocity that that value is, in fact, a mass average and not

a conventional average.

S. J. Kline: On the same point, we have some experiments going on in which we are try-

ing to vary the fluctuations and see what happens in a pitot under some controlled condi-

tions. I don't want to go into details, but perhaps we can shed some light on your ques-

tion. One more comment, we are getting ready to measure time averages by using laser

Doppler techniques that we are developing, and then you will have a little more informa-

tion on this point.

P. A. Libby: John, that's exactly why I said, "if we take the experimenter's word for it

that he is giving us the usual average," then we are, in fact, comparing two slightly dif-

ferent things. I understand, as we have talked before, about the fact that the experimenter

may be wrong, but I do think that we have to take his word for it.

J. Ito: We have been working with heterogenous shear flows for applications to the gas-

gas auxiliary propulsion on the space shuttle system. We have obtained quite a bit of

data in the past 6 to 8 months with cold flow and chemical reactions. One of the things

that we have determined empirically was that we can best correlate mixing rates with

pressure-gradient-type terms when you look at heterogenous flows of variable densities.

In our case, we used gaseous hydrogen and gaseous nitrogen to simulate our oxygen, and

we found that our best correlating parameters were really lpu2 of the two differing

jets, and the ratios of them.
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PREDICTIONOF FREE TURBULENT MIXING USING A

TURBULENT KINETIC ENERGY METHOD*

By Philip T. Harsha

ARO, Inc.

SUMMARY

Free turbulent mixing of two-dimensional and axisymmetric one- and two-

stream flows is analyzed by a relatively simple turbulent kinetic energy method.

This method incorporates a linear relationship between the turbulent shear stress and

the turbulent kinetic energy and an algebraic relationship for the length scale appear-

ing in the turbulent kinetic energy equation. Good results are obtained for a wide

variety of flows. The technique is shown to be especially applicable to flows with

heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be

assumed.

INTRODUCT_N

For some years a continuing research project has been underway at the Arnold

Engineering Development Center (AEDC) aimed at the development of efficient and

accurate techniques for the prediction of the entire range of free turbulent mixing

phenomena. The goal of this project, sponsored by the Air Force Office of Scientific

Research, has been the development of a method which will allow the accurate deter-

mination of the mean flow structure of free mixing flows. Although the requirements

of accuracy and reliability have dictated the choice of a history-dependent model (i.e.,

one which takes into account some aspects of the turbulence structure), the prediction

of turbulence structure per se has not been considered to be of great importance. In

any event, it would seem to be unlikely that a model which predicted the mean flow

field correctly for a variety of different flows, would be grossly in error in its pre-

diction of the important features of the turbulence structure.

The model to be described in this paper is a development of the turbulent

kinetic energy method originally reported by Lee and Harsha (ref. 1) and further

*This research was performed under the provisions of United States Air Force
Contract No. F40600-72-C-0003 with ARO, Inc., the operating contractor of the
Arnold Engineering Development Center (AEDC) for the Air Force Systems Com-
mand. Major financial support was provided by the Air Force Office of Scientific
Research under Air Force Project 9711. Project Monitor was Dr. B. T. Wolfson.
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described and extended to more complex flows in other publications (refs. 2 to 4). Even

though the model includes flow history through its use of the turbulent kinetic energy

equation, it is still an empirical model as are all current approaches to the prediction of

free turbulent mixing. Indeed, the only basic difference between approaches is in the

point at which empiricism enters. But although empirical information is used in this

model, one restriction not commonly made is enforced: there must exist some system-

atic method for the application of the empiricisms to the calculation of any given flow.

Put another way, the empiricisms must either be universal or have clearly defined limits

of validity.

It is perhaps important to introduce the analytical model to be described in this

paper with a summary of the features of the basic work described in references 1 to 4.

In the first of these papers (ref. 1) a simple turbulent kinetic energy model was intro-

duced, in which a linear relation between the turbulent kinetic energy and turbulent shear

stress was employed to obtain the shear stress from the solution of the turbulent kinetic

energy equation. Gradient diffusion of turbulent kinetic energy was assumed with a con-

stant "kinetic energy Prandtl number," and the length scale required to evaluate the dis-

sipation term in the kinetic energy equation was taken to be proportional to the local width

scale of the mixing zone. In this context the model introduced and applied to two simple

flows in reference 1 is a single-equation model, since compared to an eddy viscosity

method, the only additional equation required is the turbulent kinetic energy equation.

Universal constants were assumed for the kinetic energy Prandtl number, for the ratio

between turbulent shear stress and turbulent kinetic energy, and in the dissipation term.

The work described in reference 2 (summarized in ref. 3) and the similar work

described in reference 4 involved the application of the method to progressively more

complex free mixing flows, including flows with heat and mass transfer. Throughout this

work the universal constants defined in reference 1 were retained. In reference 2, which

to some extent parallels the approach of this conference, the predictions of this single-

equation turbulent kinetic energy method were compared with the predictions of a number

of eddy viscosity models for a wide variety of flows, including several that are included

as test cases for this conference. The conclusion drawn from this comparison was that,

even though some serious difficulties remained, the predictions of the turbulent kinetic

energy model with the universal constants were, in general, better than those of any eddy

viscosity model tested when it was required that the constants appearing in the eddy vis-

cosity models also be considered to be universal.

In particular, good agreement between kinetic energy theory and experiment was

shown in reference 2 for coaxial air-air mixing, similar to test cases 9 and 20 of this

conference, for hydrogen-air mixing, similar to test cases 10 and 21, and for wake flows

such as test cases 14 and 15. Indeed, based on the work of reference 2, it is clear that

the universal constant model would be capable of predicting at least 8 and probably 10 of
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the 23 available test cases for this conference without change. However, reference 2

also showed that the universal-constant model was clearly in error for the important jet

into still air flows. In addition, the asymptotic two-dimensional shear layer had not been

attempted nor had initial conditions other than experimental shear stress profiles been

used, except for one flow. Inevitably, the extension of the model described in references 1

to 4 to handle such problems led to the need for refinement of some features of the model.

As might be expected, the refinements incorporated in the model described in this

paper involve the empirical functions that must be introduced to close the turbulent kinetic

energy equation. The new functions have been developed primarily through a process of

computer experimentation, in which the predictions made by turbulent kinetic energy

theory have been compared both with experimental data and with the predictions of simple

eddy viscosity models in those flows in which the simple models are known to be adequate.

The integral turbulent kinetic energy theory developed by C. E. Peters at AEDC, whiah is

briefly described in paper no. 17 of this compilation, has been very useful in the develop-

ment of these improved functions. Such a theory allows a rapid investigation of the

asymptotic behavior of a given turbulent kinetic energy model in certain relatively simple

flows without the numerical complications that can develop with finite-difference tech-

niques. In addition, integral techniques, in which the profiles of the dependent variables

are specified a priori, eliminate the problem of specification of a diffusion function for

turbulent kinetic energy (since the lateral diffusion integrated over a profile at a given x

must be zero) and allow the production and dissipation terms to be evaluated in terms of

integral quantities. This then simplifies the interpretation of the effects of changing the

constants appearing in the turbulent kinetic energy equation for flows in which the profiles

of the dependent variables can be adequately prescribed.

SYMBOLS

a 1 ratio of turbulent shear stress to turbulent kinetic energy, r/pk

a2 dissipation parameter (see eq. (1))

b local width of mixing region

jet species concentration

D diameter

k turbulent kinetic energy per unit mass,

/ \

l!2(u,2+v2+w,2)
\ /
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constant in Prandtl exchange coefficient model

length scale, equal to distance between 0.90Zlu and 0.10Au in a shear layer,

distance between 0.99_u and 0.01_u in the core region of a jet, and 2rl/2

in an axisymmetric flow

Mach number

kinetic energy Prandtl number

turbulent Prandtl number

"turbulent Reynolds number," equation (2)

radius

turbulent Schmidt number

static temperature

velocity

characteristic velocity difference, (Uma x - Umin)

turbulent shear stress correlation

mean-flow lateral velocity component

axial coordinate

general lateral coordinate

concentration

parameter, 1 for axisymmetric flow and 0 for two-dimensional flow

initial boundary-layer thickness



turbulent eddy viscosity,

0

P

momentum thickness

density

% reference value of spreading parameter

turbulent shear stress, -pu'v'

Cr

Subscripts:

center-fine value

free-stream value or maximum value in outer jet for coaxial mixing

max maximum value at cross section

min minimum value at cross section

O value at the nozzle

value on high velocity side of shear layer

1/2 or mu

value on low velocity side of shear layer

point at which u = 1/2(u c + Ue)value at

ANALYSIS

In addition to the continuity, momentum (mean flow), energy, and species equations

necessary in any treatment of a general free turbulent mixing problem, the method

described in this paper involves the solution of the turbulent kinetic energy equation. This

equation can be written as described, for example, in reference 2: The parameter _ is

0 for a two-dimensional flow and 1 for an axisymmetric flow.

Bk 8k- 1 _ IPeyfl_._k_ _Su a2Pk3/2

°UTx+  -y\p + _y, rk By/. By Ik

Convection Diffusion Production Dissipation

(1)
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In thedevelopmentof this equation and its application along with the momentum

equation to the solution of a given problem, empirical hypotheses have been invoked at

three points. The first of these is in the definition of the appropriate form for the dif-

fusion of turbulent kinetic energy. Equation (I) incorporates a gradient diffusion hypoth-

esis; such a hypothesis, with a constant "kinetic energy Prandtl number" Pr k equal

to 0.70, was used in the model described in references I to 4, and is also used in this

paper.

As written in equation (I), the form assumed for the dissipation term is unchanged

from the earlier work. However, whereas a universal constant value for a2, equal to 1.5,

was assumed in the earlier work, constant a 2 falls to yield the proper asymptotic behav-

ior in all flows, and an expression allowing axial variation of a 2 has been developed. No

lateral variation of a 2 is allowed.

The third hypothesis is the relation between turbulent shear stress and turbulent

kinetic energy. Again, the form of the relationship is the same as that used previously:

= alPk

In the earlier work, two expressions for the lateral variation of a 1 have been used. For

two-dimensional flows (including the core region of an axisymmetric jet), a 1 has been

taken to be essentially constant, with a value of 0.3 (and with its sign defined by the veloc-

ity gradient), whereas in axisymmetric flow, the expression

has been shown to apply (ref. 3). However, in the course of the work described in this

paper, it became clear that a new function for the lateral variation of a 1 had to be

developed for the two-dimensional shear layer. Such a function was devised and is

described subsequently; the new function also has certain implications for the prediction

of the core region of axisymmetric jets.

In addition, one of the often mentioned problems with turbulent kinetic energy meth-

ods is the fact that at the initial station, turbulent shear stress profiles are needed, and

experimental profiles are seldom available. In the work described herein, two simple

techniques have been used to start the calculations, the choice depending on the position

of the start profile. Neither of these techniques involves a detailed knowledge of the ini-

tial shear stress profiles. Taken together, they effectively remove the "initial shear

stress profile" objections.
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The Dissipation Function

As mentioned previously, itquicklybecame evident during the development of the

integral turbulentkinetic energy theory by C. E. Peters and W. J. Phares (paper no. 17)

that a constant value of a2 could not provide the proper asymptotic behavior for all

flows considered in this conference. Although itis certainly arguable that the reason for

thislles in the form of the term itself,itis less complicated to obtain the proper asymp-

toticbehavior through variation of a2, ifthis is at allpossible. Thus, the basic k3/VZ k

proportionalityhas been formally retained,with a new expression describing the axial

variation of a2.

The a2 function developed by Peters is based on a "turbulent Reynolds number"

R T defined as

AUlk "(2)
R T = --_

where Au is a characteristic velocity difference across the mixing region, such as

Uma x - Umin; l k is a characteristic length scale, for example, twice the half-velocity

width rl/2 in an axisymmetric flow; and e is the local value of the effective (or eddy)

viscosity. Because Peters evaluates the shear stress at only one point in a lateral pro=

file Yl/2, RT needs only one value at a given x; in the present work R T varies
across a profile, but in order to assign a characteristic value, the point of maximum tur-

bulent energy is chosen as the point to evaluate R T. With R T defined as in equa-

tion (2), the appropriate values of this parameter can be immediately written down for

some flows for which the Prandtl eddy viscosity model

1

e = kpZkAU = _TT IkAU

is known to provide a good asymptotic prediction. Thus, for the incompressible two-

dimensional shear layer, for which kp = 0.007, RT is 143, whereas for a circular jet

in stillsurroundings, for which kp = 0.0125, RT is 80.

The relation between a2 and R T used in this work is one of a family of rela-

tions developed by Peters and is given by

a2=3.89 315 (RT>143)
R T

(3a)

a 2 = 1.69 (70<R T< 143) (3b)
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a 2 = 0.99 + 0.01R T (R T < 70) (3c)

The relationship expressed by equations (3) is not entirely optimum for the calculations

described in this paper, primarily, because of differences in the point in a lateral profile

at which R T is calculated between the integral and the finite-difference methods. In

particular, the point at which equation (3c) is applied in the finite-difference method prob-

ably should be at R T < 30, and the break at R T = 143 needs to be handled more gradu-

ally than equations (3) allow. However, as the results will show, equations (3) do allow

the accurate calculation of a very wide variety of flows. Further development of the

empirical functions represented by equations (3) is continuing; some of this development

is described by Peters in paper no. 17.

Relation Between Shear Stress and Kinetic Energy

Although al, the ratio of the turbulent shear stress to the turbulent kinetic energy,

is sensibly constant (at a value of 0.3) for a wide variety of flows (ref. 5), the necessity of

allowing for some lateral variation of a 1 has always been understood. Thus, in previ-

ously reported work in axisymmetric flow, the expression

(where the subscript "max" refers to the point where au/_r attains its maximum value)

has been used from the center line to the point at which

with the expression

0.3(_u/_r)
a 1 -

being used for the rest of the profile to insure the proper algebraic sign for the shear

stress. In two-dimensional flow, the expression
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was used only in a small region around the point of maximum or minimum velocity gra-

client, primarily to avoid excessive steepening of this gradient.

However, in the course of the work carried out for this paper, it was found to be

impossible to obtain an accurate prediction of the incompressible two-dimensional shear

layer by using either of the two models described previously. Because the problem lay

in the prediction of shear stress at the profile edge, it was not possible to determine the

appropriate a 1 function from comparison with experimental data. Instead, use was

made of the fact that the incompressible two-dimensional shear layer is one of the flows

for which the Prandtl eddy viscosity model provides an accurate asymptotic prediction.

A calculation was made with the Prandtl model to obtain the shear stress and the produc-

tion term in the turbulent kinetic energy equation. The resulting shear stress and kinetic

energy profiles were then used to obtain the lateral variation of the parameter al, as

shown in figure 1. In this figure, the symbols represent different x-locations at which

the calculated profiles were obtained, and the solid line represents the a 1 function

derived from these results. Positive values of the abscissa represent the high-velocity

edge of the shear layer. This variation was found to be reasonably universal for the

incompressible shear layer, as can be seen from the figure, and has been used in all

asymptotic shear layer calculations in this study.

The a 1 profile obtained for the two-dimensional shear layer may also be appro-

priate for the mixing layer in the core region of a jet. Because of time limitations it has

not been possible to investigate the application of the a 1 function to these flows, but it

is possible that use of a function such as that represented by figure 1 will reduce the

fairly long transition region that is predicted in some of the flows described in the follow-

ing section.

Initial Conditions

The most often-quoted major objection to the use of turbulent energy methods in the

prediction of free turbulent mixing has been the apparent necessity of obtaining a turbu-

lent shear stress (or turbulent kinetic energy) profile to start the calculation. In the cal-

culations described, this problem has been in large part overcome; experimental shear

stress profiles have not been used to start an___yyof the calculations reported herein, and

experimental estimates of the turbulent shear stress level have been used in only those

few cases where other estimates could not properly be made.
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To start these calculations, two techniqueshave beenused. In all cases in which
the initial profiles have beengiven at x = 0, the turbulent eddy viscosity profiles obtained

for boundary-layer flows by Maise and McDonald (ref. 6) have been used to obtain the pro-

files of the turbulent shear stress. These profiles were also used for the boundary-layer

portion of the initial velocity profile for the compressible two-dimensional shear layer

(test case 5), although the start point for this case was not at x = 0. In all other compu-

tations, for which profiles have been given downstream of the origin of mixing (usually in

the core region of a jet flow), constant eddy viscosity has been used to generate the ini-

tial shear stress profile. One exception is test case 24, for which the start point was in

the laminar part of the flow. The eddy viscosity has in general been that appropriate for

R T = 200 (i.e., a Prandtl constant of 0.005), although in a few cases a more accurate

estimate of the experimental R T was necessary. As the results described in the next

section show, it is not necessary to have detailed knowledge of the initial shear stress

distribution for each case in order to get accurate predictions of the flow development.

Numerical Solution Technique

The finite-difference numerical technique used to make the calculations reported

herein is identical to that reported in references 1 to 4. One of the features of this tech-

nique is that the constant-momentum-excess requirement applicable to free turbulent

flows is satisfied at each station; that is,

_: pu(u - ue)yfldy = Constant

As across-check, the value of the product (rl/2/ro)(Uc/Uo) was evaluatedfortheaxi-

symmetric jet flow of test case 18. If momentum is conserved, this product should be

constant for the similar profile region of the flow. Over the range 30 < x/D < 115, the

valueof (rl/2/ro)(Uc/Uo) varied within +l.5 percent of its average for this calculation.

RESULTS

Successful computations were completed for 23 of the 24 test cases that were avail-

able. The only case not computed was test case 23, the compound coaxial jet, which would

have required fairly complicated reprograming to account for the simultaneous develop-

ment of two shear layers.

Because of the large number of cases to be covered, the discussion in this section

is limited to the most significant aspects of each case computed. The comments to fol-

low in the main emphasize the problems encountered in these computations. The overall
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success of the method described in this paper will speakfor itself. General details of
the starting techniquesandthe dissipation function used are noted in table I, which also
provides a guide to the appropriate figures.

Two-Dimensional ShearLayers

As might be inferred from the discussion of the a1 function, the five shear layer
cases required a relatively large developmenteffort which is not yet complete. This
developmenteffort was particularly important for the three asymptotic cases, for which
the new a1 function was particularly necessary. For test cases 1 to 3, the calculations
beganwith initial shear stress profiles obtainedfrom the appropriate Maise and McDonald
eddy viscosity profiles (ref. 6) and constant al, as is appropriate for boundary-layer
flow. At anarbitrary distance downstreamthe a1 profile indicated in figure 1 was
introduced (approximated analytically by a series of straight-line segments). For test
cases 1 to 3, since only the asymptotic behavior was required, the point at which thenew
a1 function was applied could be truly arbitrary (it was taken to be 1initial boundary-
layer height), but as will be seenin test cases 4 and 5, the choice canbe important for
the preasymptotic shear layer. No transition function was used to changefrom a constant
a1 profile to the profile shownin figure 1.

Self-preservation was approachedat relatively small axial distances for the incom-
pressible shear layers, althoughwith values of a lower than are commonly reported.
The calculation of a was madeby using the standarddefinition of a for this conference

e = 1.855 x2 - xl

Y2 - Yl

where Yl and Y2 represent the lateral distance between the points at which

u - u2 u - u 2
= 0.1 and _ = 0.9 at x 1 and x2, respectively. Figure 2 shows that the

u 1 - u2 u 1 - u 2

profile shape passes through a shape appropriate to the a = 11.8 data of Liepmann and

Laufer (ref. 7), but at these distances it is apparently still evolving with cr decreasing.

Figure 3 shows that the predictions of a are apparently uniformly low, since the classi-

cal behavior of a with velocity ratio is recovered.

There is no evidence that the a 1 profile represented in figure 1 is invariant either

with Mach number variation or density ratio variation. Indeed, there is some evidence

that it is not, primarily from the differences between these calculations and those reported

by Peters and Phares (paper no. 17). In the latter work, the shape of the turbulent kinetic

energy profile is assumed to be invariant, wl-dch imp_es that the lateral variation of the
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ratio of the turbulent shear stress to the turbulent kinetic energy (i.e., al) cannot be

invariant with either Mach number or density ratio variation. In any event, the a 1 func-

tion shown in figure 1 was used for all shear layer calculations, and figure 4 shows the

predicted variation of a with Mach number. Note particularly the extremely great dis-

tances required to approach a self-preserving condition at the higher Mach number.

The variation of _ with density ratio predicted by using this model is shown in

figures 5 and 6. As noted in figure 6, the density ratio was obtained by varying the tem-

perature of the two streams. Within the framework of the commonly made unity turbulent

Lewis number assumption, similar results would be obtained by varying the molecular

weight of the two streams. However, the unity turbulent Lewis number assumption is not

necessary in the analysis. The predicted variation of a with density ratio is completely

different from that predicted for a similar variation in density ratio caused by Mach num-

ber variation.

The asymptotic two-dimensional shear layer predictions are not meant to represent

an adequate and correct theory of this particular flow. They do show the necessity for

including a different sort of lateral variation of a 1 in such a flow from that which is

necessary in other flows. This lateral variation may in turn be important in the predic-

tion of the core region of axisymmetric jets. Further, these calculations indicate that,

at least in some instances, self-preservation is only very slowly reached - an observa-

tion that raises obvious questions about the interpretation of experimental results.

Self-preservation, or the lack of it, is also a factor in the two remaining shear

layer flows, test cases 4 and 5. In these calculations direct comparison with experi-

mental profile data is made, and these comparisons indicate that both of these flows were

preasymptotic.

Evidence for this statement in test case 4 is shown in figure 7, which shows that the

"constant al" model provides a better prediction of the velocity profile at x = 76 cm

than does the "shear layer al" model. For both test case 4 and test case 5, the pre-

dicted profiles were matched with the experimental ones at the half-velocity points. This

technique was necessary because the calculation does not satisfy the proper lateral bound-

ary condition at plus or minus infinity. As is well known, the effect of neglect of this

boundary condition is to allow the calculated profiles to "float" in space.

The comparison of shear stress profiles for test case 4 shown in figure 8 shows

that the constant a 1 model overpredicts the shear stress at x = 12.7 cm and strongly

underpredicts it at x = 76 cm. However, analysis of the shear stress profiles given for

test case 4 shows that the peak shear at x = 76 cm is considerably higher than the trend

from the upstream data would indicate it should be. (The experimental peak shear stress

is almost constant at x = 25 cm and x = 46 cm.) Furthermore, it is unlikely that an

error in shear stress prediction of the magnitude shown in figure 8 at x = 76 cm would
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be reflected by the small velocity profile deviations shown in figure 7 at this station.

Therefore, the reported value of shear stress at x = 76 cm is, in the author's opinion,

suspect.

Test case 5 is also evidently preasymptotic, as the comparison of the experimental

and predicted velocity profiles in figure 9 shows. Again, the constant a 1 model pro-

vides the better prediction. This test case and test case 4 both raise the question of what

is the proper point to begin to use the "asymptotic" a 1 profile represented by figure 1.

The answer to this question clearly requires further research.

Axisymmetric Jets Into Still Air

Three test cases in the category of axisymmetric jets into still air were considered,

test cases 6 to 8, and the results were good for all cases as figures 10 to 13 demonstrate.

For all these calculations, the constant a 1 model was used in the mixing layer region

(first regime) of the flow. Downstream of the end of the potential core, the model in

which the constant value of a 1 is modified by the velocity gradient ratio was used as

was used for all axisymmetric flows. The point at which the change of models takes

place is arbitrarily assumed to be that at which the center-line velocity is 0.9 times the

jet velocity. No transition function was used.

The prediction of the subsonic jet of test case 6 began at x/r o = 2 with a Prandtl

constant kp = 0.005. As can be seen from figure 10, the prediction of this flow is quite

good. The fact that the prediction is better if equation (3c) is not used, despite the fact

that the predicted asymptotic value of the turbulent Reynolds number R T is 35, indi-

cates that for these predictions, the upper limit for the use of equation (3c) should be

reduced.

One point of difference between this calculation and the integral technique reported

by Peters is that the R T value is in this analysis obtained at the point at which k = kma x

rather than the half-velocity point. This tends to lower the value of R T somewhat com-

pared with the value obtained by Peters. It would also have been possible in this analysis

to evaluate R T at the point at which v = 7max, which does not in general correspond to

the point at which k = kmax. Had this been done, there would have been a 10-percent

increase in R T for the air-air flows, for which the eddy viscosity is essentially constant

over the inner portion of the flow, and perhaps a 40-percent increase in R T for

hydrogen-air flows. Thus, the point at which R T is evaluated is only a substantial fac-

tor in hydrogen-air flows for which the upper limit for equation (3c) is not a factor.

For test case 7, the length of the potential core is somewhat underpredicted, result-

ing in an overall overprediction of the velocity decay, as shown by figure 11. On the other

hand, the profile prediction is quite good (fig. 12) if the underprediction of the center-line

velocity is taken into account. The profile data are from reference 8.
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Finally, the excellent center-line temperature and velocity agreement with the data

of test case 8 (fig. 13) is obtained by using an assumed (and constant) value of 0.85 for

the turbulent Prandtl number.

Jets in Moving Streams

The first of the coaxial jet cases, test case 9, represents the data of Forstall

(ref. 9). For these calculations, the 10 percent by volume helium trace was included so

that the initial jet to outer stream density ratio was 0.92. In table I it is noted that two

initial profile offsets were used in the calculation for test case 9. One calculation was

made by using the shifted profiles given by the data sheet for test case 9, and the others

were made by using the unshifted profiles given in the data sheet. Figure 14 demon-

strates that the most accurate prediction uses the latter start condition and further

neglects the use of equation (3c). The initial radii reported in figure 14 represent the

location of the inner edge of the viscous region. For test case 9, as for test case 6, the

asymptotic value of R T is of the order of 35, indicating again that the upper limit for

equation (3c) should be of the order of R T = 30 for this method. Profiles of velocity

and concentration are shown in figure 15 (the data obtained from curves presented in

ref. 9), and figure 16 shows excellent agreement with the data for the half-velocity width

calculation. Both of these figures relate to the "unshifted" calculation shown by the

dashed line in figure 14, for which equation (3c) is not used.

Perhaps the strongest feature of the method described in this paper is the relative

ease and accuracy with which more complex flows involving heat and mass transfer are

handled. Figures 17 and 18 show the excellent agreement between theory and experiment

for the hydrogen-air mixing data of test case 10. The experimental profile data were

obtained from reference 10.

For test case 10 (and the similar data of test case 21) a second regime start point

was assumed for the calculations; that is, the initial viscous region was assumed to extend

all the way to the center line. The profile data were obtained, as in all the calculations,

from the appropriate data sheet. The start points for both test cases 10 and 21 are in the

transition region between the first and second flow regimes, and such start points are

among the most difficult to use with this method. For calculations which start at

x/D = 0, the natural tendency is for the level of kinetic energy near the inside edge of the

viscous region to increase fairly slowly but rapidly enough that the center-line kinetic

energy is of the order of 70 percent of the maximum in a profile at the point at which the

"second regime" a 1 profile is put into effect. In calculations starting in the transition

region as this one does, the increase in kinetic energy near the inside edge of the viscous

region does not occur, so that the kinetic energy (and hence the shear stress) is too low

near the flow center line. The result is an excessively long transition region, with
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6 diameters being required in this particular flow for the center-line velocity ratio to

drop to 0.90.

However, this problem was overcome within the framework of a constant eddy vis-

cosity start profile by using the second regime velocity gradient ratio throughout the flow.

Since the initial shear stress is input, the initial kinetic energy was obtained by using the

second regime velocity gradient ratio inverted; thus, the initial kinetic energy was main-

tained at a constant value from the center line to the maximum velocity gradient point,

which is a reasonable approximation to the form that the kinetic energy profile would have

had if the calculation started at x = 0. It must be stressed that this is only a problem if

a transition region start is used and, thus, was only a problem for test cases 10 and 21.

The hydrogen-air flows of test cases 12 and 22 did not require such treatment.

Incidentally, the value of the Prandtl constant implied by the shear stress used to

start this calculation, which was obtained from the Tmu data of reference 10, and the

assumed width of the profile, is kp = 0.005, the same as has been generally assumed for

nonzero start points.

The data of test case 11 have some curious features, not the least of which is the

fact that the value of the center-line velocity, initially lower than the free-stream veloc-

ity, drops still lower before beginning to rise. Nevertheless, the overall prediction still

compares favorably with the data as shown in figure 19.

Comparison of the theoretical prediction of test case 12 with the experimental data

(fig. 20) indicates that very good results can be obtained for hydrogen-air flow with a cal-

culation starting at x/D = 0, with a Maise and McDonald eddy viscosity profile being used

to obtain the initial shear stress. Profile comparison (fig. 21) also shows reasonably

good agreement, if the difference between the predicted and actual center-line values at

the axial station chosen is taken into account. The data are from reference 11.

The prediction of the two-dimensional jet in a moving stream, test case 13, is shown

in figure 22. For this case, no initial boundary-layer data other than an initial momentum

thickness for the two boundary layers together were available. Calculations were begun

with 1/4 power-law initial boundary-layer profiles because the 1/7 power-law profile

ordinarily used resulted in extremely thick initial boundary layers being necessary to

equal the quoted momentum thickness. Maise and McDonald eddy viscosity profiles were

used to obtain the initial shear stress level. The agreement between the experimental

values of center-line velocity and the computed values is quite good as can be seen from

figure 22.
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Wakes

Accurate prediction of the two-dimensional wake flows required the use of a con-
stant value of a2 rather than the variation described by equations (3). The value 1.4
was considerably lower than equations (3) wouldpredict at the RT appropriate to the
flow. For axisymmetric values, the function described by equations (3) seems to be ade-
quate. However, the prediction of the axisymmetric wake flows is not sufficiently good
for any strong conclusionsto be drawn regarding the optimum a2 for those flows.

The center-line velocity prediction for a preasymptotic two-dimensional wake,
case 14, is shownin figure 23. Becausethe presentation method tends to emphasizethe
discrepancies betweentheory and experiment rather markedly, velocity profile shapes
are comparedin figure 24. The corresponding turbulent shear stress profiles are shown
in figure 25,which indicate that the Maise and McDonaldeddyviscosity profiles used to
start thesecalculations may have significantly underpredicted the actual initial shear
stress level.

Theory andexperiment for an axisymmetric wake, test case 15, are comparedin
figure 26.

The asymptotic two-dimensional wake data of test case 16were computedby using
the initial RT reported in reference 12to obtain the initial shear stress. Prediction
and experiment are compared in figure 27.

Again, an initial RT reported in reference 12was used to start the computation
for test case 17,an axisymmetric wake; the comparison betweentheory andexperiment
is shownin figure 28.

Optional Test Cases

Thefirst of the optional cases, test case 18, is the prediction of the asymptotic free
jet. Unfortunately, the data given are not appropriate for an asymptotic jet. Figure 29
showsthe center-line velocity decay for the data of reference 13from which test case 18
was taken; it canbe seenthat the prediction for this casegoes essentially through the
data points. The start condition was taken from the data of Bradshaw, Ferriss, and
Johnson(ref. 14)at x/D = 1. Also shown in figure 29 are the free jet center-line veloc-

ity results obtained by Albertson, Dai, Jensen, and Rouse (ref. 15), which follow the clas-

sical (x/D) -1 decay law quite well. Clearly, the data of reference 13 do not satisfy this

decay law, and, for x = 100, the center-line velocity recorded by Wygnanski and Fiedler

(ref. 13) is considerably lower than that which would be obtained from an (x/D) "1 decay

from, say, x/D = 40. For a free jet, the excess momentum integral must be a constant.

Thus, if two flows vary in center-line velocity with constant momentum excess in such a

manner that the center-line decay curves cross, one would expect the flow with the lower

center-line velocity to have the wider profile. Comparing the test case 18 data with data
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from reference 15 (fig. 30) shows that this is not true. On the other hand, the theory

does show a wider profile than either the reference 15 data or the test case 18 data.

Therefore, the conclusion is made that the data for test case 18 were not, in fact, prop-

erly asymptotic.

Figure 31 demonstrates the good agreement of the present method with the data of

test case 19. Three further coaxial mixing cases are presented in figures 32 to 36. Note

especially the excellent profile agreement shown in figures 33 and 35, along with the good

axial decay agreement shown in figures 32 and 34 for both test cases 20 and 21. Fig-

ure 36 demonstrates the quite acceptable prediction of the unusual hydrogen-air flow of

test case 22 achieved with the present method. This method will, of course, not predict

the negative velocity ratios measured experimentally, and the computation stopped at

x/D = 26 where the velocity profile had all but flattened out.

The last case to be discussed is the interesting two-dimensional wake flow of test

case 24. The start point for this case is in the laminar portion of the flow; there follows

in the experimental data a fairly long transition region until behavior characteristic of a

turbulent flow develops. In the computation of this flow, the viscosity term appearing in

the momentum equation was taken to be made Up of a laminar and a turbulent contribution.

The laminar contribution was obtained from the experimental data of reference 12, and

the turbulent contribution was obtained through the solution of the turbulent kinetic energy

equation in the normal manner. A very low, uniform, initial turbulent kinetic energy pro-

file was used to provide the initial condition for the solution of the turbulent kinetic energy

equation, and the level of the energy was allowed to develop as described by the equation.

Referring to the turbulent kinetic energy equation (eq. (1)), the production term was eval-

uated with only the turbulent contribution to the shear stress, whereas the viscosity

appearing in the diffusion term was taken to be the total viscosity.

Results of several computations with this approach are shown in figure 37. The

computations differ only in the initial turbulent kinetic energy level assumed. This level

is described in the figure in terms of the associated turbulent intensity level based on an

assumed isotropic condition - that is, u' = v' = w'. As can be seen from the figure, the

effect of increasing the initial intensity level is to shorten the transition region, as would

be expected. Note also that the level giving the best agreement with the data is 2 percent,

which agrees well with the quoted intensity levels from reference 12, which, based on the

outer stream mean velocity, ranged from 0.3 percent to 3 percent through the laminar and

transition regions. Because the wake was heated, the turbulent Prandtl number for these

calculations was taken to be 0.85.

Since it was not possible to completely establish a priori an appropriate start con-

dition for this problem, the results shown herein should only be taken as a demonstration

of the abilities of the method described in this report, using an admittedly crude start
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technique. Transitioning flows such as test case 24 would appear to require more knowl-

edge of the experimental initial conditions than fully turbulent flows.

CONCLUDING REMARKS

As was stated in the introduction, the work described in AEDC-TR-71-36 made it

clear that the universal constant kinetic energy approach described in that reference was

capable of handling a substantial number of the test cases for this conference without

change. Indeed, ignoring the free shear layer cases for the moment, the only obvious

area in which this method would have clearly failed was in the prediction of the circular

jet, test cases 6, 7, 8, 18, and 19. On the other hand, it had not been developed to the

point that calculations could be routinely initiated without detailed knowledge of the ini-

tial shear stress profiles.

The results described in this paper show that with a small increase in complexity -

that is, the addition of a function describing the axial variation of the dissipation param-

eter a 2 - the kinetic energy method described in AEDC-TR-71-36 can be applied to a

wide variety of flows of engineering interest. In particular, accurate predictions of jets

with zero secondary flow and coaxial jets, including heat and mass transfer, can routinely

be made without exact knowledge of the initial shear stress profiles and with a well-

defined method of obtaining the necessary empirical constants which does not involve

prior knowledge of the results desired.

Some work is still required to obtain the optimum function for the dissipation

parameter a 2. The asymptotic free jet prediction does not seem proper, as the classi-

cal center-line velocity decay rate is not recovered. Also, the shear layer form for the

lateral variation of the ratio of shear stress to turbulent kinetic energy, al, needs to be

further investigated, with particular emphasis on the effects of Mach number and density

variation. Further work is underway on this problem, as well as on the problem of inte-

grating the shear layer a 1 model into an overall model for better prediction of the core

region of axisymmetric jets.
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TABLE I.- SUMMARY OF CALCULATION TECHNIQUES

Test
case Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

Incompressible 2D shear layer

Compressible 2D shear layer

Variable density 2D shear layer

Incompressible 2D shear layer

Compressible 2D shear layer

Circular jet

Supersonic circular jet

Compressible circular jet

Coaxial air jets with He trace

Coaxial H2-air

Compressible coaxial air-air

Compressible coaxial H2-air

Plane jets

Incompressible plane wake

Incompressible axisymmetric wake

Compressible plane wake

Compressible axisymmetric wake

Circular jet

Compressible circular jet

Coaxial air-air jets

Coaxial H2-air jets

Coaxial compressible H2-air jets

Coaxial air-air jets

Compressible plane wake

Start point

x=0cm

x=0cm

x=0cm

X=0cm

X= 2.5cm

x/D = 1

X=0cm

x/D = 2.8

x/D = 0

x/D = 3

x/D = 0

x/D = 0

x=0cm

x=Ocm

x/D = 0

x = ).91 cm

x = ).74 cm

ix/D= 1

x/D = 2.8

x./D = 0.23

x/D = 2.6

x/D = 0

x = 1.67 cm

Start method Dissipation
parameter

Maise & McDonald a 2 = 1.69

eddy viscosity

As for case 1

As for case 1

As for case 1

As /or case 1a

Prandtl e,

kp = 0.005

Maise & McDonald

eddy viscosity

Prandtl e,

kp = 0.005

Maise & McDonald

eddy viscosity

Constant eddy

viscosity

Maise & McDonald

eddy viscosity

As for case 11

As for case Ii

Maise & McDonald

eddy viscosity

Prandtl t,

kp=0.005
Constant eddy

viscosity

Constant eddy

viscosity

Prandtl _,

kp = 0.005

Prandtl e,

kp = 0.005

As for case 19

Constant eddy

viscosity

Maise & McDonald

eddy viscosity

Laminar viscosity

+ constant {low)

turbulent

intensity

aMaise and McDonald eddy viscosit profiles used for boundary-layer

adjacent Maise and McDonald value) for remainder.

Zqs. (3)

Eqs. (3)

a 2 = 1.69 Eqs. (3)

Zqs. (3)

Eqs. (3)

Eqs. (3)

Zqs. (3)

Eqs. (3a), (3b)

Zqs. (3)

Eqs. (3a), (3b)

Figure Remarks

Uses a I profile from fig. 1

4 As for case 1

5, 6 As for case I

7, 8 As for case I; also with a I = Constant

9 As for case 4

10 a2,mi n = 1.69 in one calculation

11, 12

13

14, 15, 16 Two initial profile offsets

17, 18 e obtained from extrapolation _'mu

plots of ref. 10

19

Sqs. (3)

Eqs. (3) 22

a2 = 1.4 (constant) 23, 24, 25

Eqs. (3) 26

!a 2 = 1.4 (constant) 27

Eqs. (3) 28

Eqs. (3a), (3b) 29, 30

Zqs. (3) 31

Eqs. (3) 32, 33

Eqs. (3) 34, 35

Eqs. (3) 36

a 2 = 1.4 37

20, 21 Initial velocity profile from data of

ref. 14

e obtained from extrapolation of R T

plots of ref. 12

As for case 16

Data not actually fully developed

Eddy viscosity from extrapolated 7mu

of ref. 10

Not attempted

Computed through transition to

turbulent flow

_ortion of initial profile with constant e (equal to one-half the
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Figure 2.- Comparison of predicted shear layer velocity profile with data of

Liepmann and Laufer (ref. 7) for test case 1.
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DISCUSSION

D. M. Bushnell: What has been your experience as far as predicting core length for

heterogeneous mixing? You show results which indicate that you are picking up the right

core length. I wonder, do you feel confident that this is a feature of your method and that

you automatically get this?

P. T. Harsha: I feel confident that I get in the "right ballpark" with the core length.

However, I am not overly confident that I can predict core length in every case. The

results I show here, if I can use the Maise and McDonald type of start, seem to do quite

well, however.

J. M. Eggers: Could you describe your experiences in applying this technique to the

reacting flow field for which I understand you have performed at least some preliminary

calculations.

P. T. Harsha: The problem with the reacting flow calculation is in general that the den-

sity field has an even larger density variation across the shear fields and this tends to

create numerical difficulty for me. The results which we have reported using this have

not used the a 1 and a 2 models I have described here, but that was only because we

were attempting to reproduce some experimental results which were probably in error in

any case. I think that the technique as described here can be used for calculations for

reacting flows - the only problem being the amount of finesse required to handle large

density ratios.

D. B. Spalding: I wonder if you could explain why you say you are using Bradshaw's

model. I know that you start off by looking at the equation • = alPk , but no sooner have

you got it than you depart from it by saying a 1 must vary. The thing which is queer

about the Bradshaw relationship is that it does require that the shear be proportional to

the energy, and so you promptly change. Now your old method was to make a 1 propor-

tional to the velocity gradient which immediately gives you an effective viscosity type of

relationship. There is a direct proportionality between the shear stress and the velocity

gradient. Later on you seem to have done more complicated things. But it seems to me

that right from the start you just introduced Bradshaw's hypothesis and then threw it away

while retaining the name.

P. T. Harsha: Your comment is well taken. I really meant to say that the hypothesis that

I used was originally introduced by Bradshaw but it is necessary to put a lateral variation

of a 1 in an axisymmetric flow. I don't believe that Bradshaw has attempted axisym-

metric flows.

I. E. Alber: How do you obtain the length scale i k in your formulation?
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P. T. Harsha: The length scale is simply a geometric length scale. In the shear layer

region, it is taken to be equal to the distance between the 99- and 1-percent velocity points

and in the developed region of a jet it is taken to be twice the half-radius.

I. E. Alber: Also with respect to the two-dimensional mixing layer, I noticed that you

find little variation with Mach number as other predictors have found, but with respect to

the variation of the spreading parameter _ with the density ratio you find quite a con-

siderable variation. Can you explain that?

P. T. Harsha: No. All I can say is that those were the results that I got. I simply ran

the case to see what happened. I have no good explanation for it.

M. V. Morkovin: It seems to me that it would be desirable for you to take a good look at

where it comes from because this is the central issue of the density stuff. If there is a

clue in the thing it would be nice to know, and if it's a fluke, then it's a fluke, but it seems

to me you want to follow up Alber's comment and see where it comes from.

P. T. Harsha: Well I fully agree, and I simply did not have time in preparing for this

conference to look at it any more thoroughly than to just run the calculations. But I

definitely agree that this is a major problem that must be faced.

Written Comment

S. C. Lee: Referring to the original paper I presented to an AIAA meeting in 1969,1 I

am very glad to see that Dr. Harsha has applied this method to supersonic free mixing

problems. However, using several values for one empirical constant is exactly what I

wish to eliminate by developing the turbulence kinetic energy method instead of using the

simpler eddy viscosity approach. In Harsha's version, the coefficient a 2 (occurring in

the dissipation term) is falling into this category. Professor Spalding introduces a dis-

sipation rate equation which is one way to consider the dissipation term of the turbulence

kinetic energy equation. I feel the direct approach is to measure the spatial correlations

in addition to the Reynolds stresses to obtain a functional relationship of a 2 as I out-

lined in a paper presented at the 1972 Heat Transfer and Fluid Mechanics Institute.

1Lee, S. C.; and Harsha, P.T.: The Use of Turbulent Kinetic Energy in Free IQIixing
Studies. AIAA Paper NS. 69-683, June 1969.
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By P. H. Heck and M. A. Smith

General Electric Company

Paper not available for publication
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DISCUSSION

W. G. Hill, Jr.: Do you know of any measurements of the jet behind an actual aircraft in

flight, where you have a lot of other things going on?

P. H. Heck: I know of tunnel data only, where they have used a scale model of an aircraft

and tried to get behind it. Invariably the wake is highly distorted because of the lifting

effect of the aircraft.

W. G. Hill: Yes, well that is part of the point. This question is primarily directed

towards your comments about IR. In flight, you have a self-propelled body which has

a net zero momentum wake. The place where most of the methods seem to have prob-

lems is with the wake, where those who do handle the wake use different constants than

they do for the jets. Now, for the case where you have a wake and a jet that is essen-

tially one and the same, what do you do?

P. H. Heck: That becomes a rather specialized problem in the IR area, and I don't think

that I am able to answer it right here. For one thing, I have to admit that once you get

into the particulars of IR, you have to stamp a security classification on everything, and

I' 11 have to leave it out.

S. W. Zelazny: How did you get your initial turbulent energy profiles for cases where

they weren't available ?

P. H. Heck: We use a flat initial profile, and it has to be an estimate where we are not

given information.

S. W. Zelazny: How do you determine the amplitude of the flat profile ?

P. H. Heck: In our applications, we have enough data behind our combustion-type engines

which give us an empirical model which we can use as a functional start. Otherwise, we

have to look at the experiments and, in some cases, if we really want to fit data we have

had to look at the experiment very critically and occasionally use trial and error to deter-

mine what the initial turbulence should have been. One of the characteristics we have

found is that the experiments inherently have had low turbulence and, of course, the real

applications have a turbulence of 10 to 20 percent initially.

D. M. Bushnell: I have two questions. First, I don't really understand how we can com-

pute core length for these heterogenous compressible jets but we can't compute developed

free shear layers. Is this because these near-field shear layers in the core are low

Reynolds numbers or are we adjusting initial turbulence levels ?

P. H. Heck: Adjusting initial turbulence levels to make them agree ?

D. M. Bushnell: Yes, I just don't understand how we can compute these things and not

developed shear layers.
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P. H. Heck: The initial turbulence isn't adjusted there. We start with the given quantity

and let the flow field develop, and in the parabolic sense we are moving down the axis.

D. M. Bushnell: Maybe it's the low Reynolds number thing catching up with us. The other

question is, what about your length scale. You don't tell us what you use, especially in

the transition region.

P. H. Heck: The length scale in the mixing layer follows an empirical work by

Ollerhead 1 and in the fully developed region it becomes a constant; we have a transi-

tion between the two which is an exponential decay. It's empirical, of course.

M. V. Morkovin: Did I understand you correctly that you did use the Spalding model but

with different constants ?

P. H. Heck: Yes, we retained the constants in the dissipation term and the diffusion term

that had been developed previously for boundary-layer work. They work quite well.

M. V. Morkovin: What I am driving at is whether a comparison of your results with those

that Professor Spalding presented yesterday (for identical cases) would give us another

clue of the sensitivity to changes in the coefficients. You apparently have differences

between you, yet you are solving the same problems. Is the assumption correct that

there would be some information coming from that ?

P. H. Heck: I guess the comparisons of the details would be very valuable. But we have

to sit down and see what the minute details are.

D. B. Spaldin$: It seems to me that what differences appear in the results must lie in

the differences in the length scale distributions. That is what we really need to know

about. That is where the differences stem from.

P. H. Heck: The length scale is the critical problem in these turbulent kinetic energy

solutions.

B. E. Launder: In your presentation, you gave attention to the fact that you had included

a correlation between density fluctuations and velocity fluctuation. I'm afraid I missed,

however, how you actually approximated this in the model.

P. H. Heck: We used a definition of the turbulent kinetic energy and assumed local isot-

row. I will admit that this assumption is going to be very loose in some of these flows

with high gradients, both temperature and velocity.

B. E. Launder: I'm not sure that I quite understand what you said there. Are you imply-

ing that the correlation between density fluctuations and velocity fluctuations be presumed

to be proportional to, say, a mean density gradient times a turbulent viscosity ?

1Ollerhead, J. B.: On the Prediction of Near Field Noise of Supersonic Jets.
NASA CR-857, 1967.

525



P. H. Heck: I'm sorry. In the solution technique, we use the Von Mises transformation.

In using the transformation, the transverse momentum mass flux disappears and there-

fore is not left in the calculation scheme thereafter.

I. E. Alber: I understand, from hearing a talk at a previous AIAA meeting, that your

length scale may be a function of the Mach number in some region of the flow. Is that

correct ?

P. H. Heck: In the initial shear region, the model of Ollerhead includes a term that is

related to the jet exit Mach number squared.

I. E. Alber: I think that is quite important for determining that initial shear layer behav-

ior. Also, I would like to comment on an earlier question about the in-flight problem -

about the zero momentum wake. Typically, if you have engines mounted on the fuselage,

the wakes do not get rolled up in the wing tip vortices, and so you do not have this direct

cancellation of the momentum occurring earlier in the jet development. However, if you

have the jet engines mounted outboard toward the wing tips, you can get the wakes

entrained in the wing tip vortices which carry the induced drag of the aircraft. Then

you can get some different momentum effects.

P. H. Heck: I agree.

S. Corrsin: You have assumed a form of the dissipation which is somewhat different

from that which other people have assumed. Usually, I think, most of the previous

speakers have assumed energy to the three-halves power over a characteristic scale,

whereas you have energy over characteristic scale squared so that basically your char-

acteristic length is the Taylor microscale, whereas the other people's characteristic

length was basically the integral scale. And I think the shortcoming of this as an engi-

neering technique is that the integral scale tends to be independent of Reynolds number

for a given geometry, whereas the microscale tends to be quite sensitive to the Reynolds

number for a given geometry. So this might be a more difficult thing to use.

P. H. Heck: We'll look into it.

S. C. Lee: I'm particularly interested in your correlation between acoustic and turbu-

lence energy or turbulent intensity. One of the curves you showed was pressure fluctua-

tions correlated with the intensity U '2 divided by U 2.

P. H. Heck: The local pressure fluctuations correlated with turbulent intensity, yes.

S. C. Lee: Do you have those two relations directly related with each other? In other

words, every time you measure turbulence intensity, can you say that it is also pressure

fluctuations ?

526



P. H. Heck: Maestrello's paper 2 showed a relation which included the equation showing

the static pressure as a function of turbulence plus a constant times another turbulence

term. The constant was arbitrary; not knowing the value of the constant (Maestrello

didn't know it either), the assumption that we made at this point was that the constant

was zero. Of course, we then took a look at the correlation and it did correlate.

S. C. Lee: So there is a relation but not necessarily a known invariant parameter ?

P. H. Heck: Yes, the acoustic relations are much more involved, and that is where you

get into the details.

2 MaestreUo, L.; and McDaid, E.: Acoustic Characteristics of a High-Subsonic Jet.
AIAA J., vol. 9, no. 6, June 1971, pp. 1058-1066.
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A LOCAL EDDY VISCOSITY MODEL FOR

TURBULENT SHEAR FLOW

By Paul J. Ortwerth, Douglas C. Rabe,

and Donald P. McErlean

Air Force Aero Propulsion Laboratory

Wright-Patterson AFB, Ohio

INTRODUCTION

Turbulent flow fields are generated in shear flows of sufficiently high Reynolds

number for which the laminar shear layer is unstable. Mean flow kinetic energy is

transformed into a random turbulent kinetic energy and finally dissipated into random

thermal energy. The present theoretical model attempts to make predictions of tur-

bulent flow fields by using the historically popular eddy viscosity concept.

The eddy viscosity is assumed to be a fluid property dependent on the state of

the fluid locally, namely the local density, turbulent kinetic energy, turbulence scale,

and Mach number. An empirical law was found (ref. 1) which related eddy viscosity

to these properties satisfactorily for free jets. This law is used without modification

for the present set of test cases in free shear layers, free-jet decay, coaxial mixing,

and wakes.

At present the scale of turbulence is taken as a constant at any axial location

equal to the width of the shear layer.

By utilizing the boundary-layer order-of-magnitude analysis, a coupled set of

fluid dynamic equations is formulated, which of necessity includes the equation for the

production of turbulent kinetic energy.

SYMBOLS

_p mean specific heat at constant pressure

d jet diameter

....def U = VU + , where is the transpose of VU

dk rate of dissipation of turbulence kinetic energy into random

thermal energy

mean static enthalpy
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T

k

LD

M

Npr

Np r ,T

NSc

NSc ,T

Pe

PT

r

r o

Tt

Tt ,o

T

U

Ue

Uo

530

species enthalpy

identity tensor

turbulence kinetic energy,

scale of large eddies

I_-_'U' + (pV)'V' + (pW)'W'_

local Mach number

mean Prandtl number

turbulent Prandtl number, 0.75

Schmidt number, 0.75

turbulent Schmidt number

static pressure at edge of shear layer in the nonturbulent region

turbulence pressure

mean static pressure

radial coordinate

jet radius

total temperature

initial total temperature

mean static temperature

streamwise velocity

velocity at edge of shear layer

initial velocity



U 1

U2

V

W=I

X

Y

¢xi

ek

gT

P

Pl

P2

¢Y

%

r T

velocity on high-velocity side of shear layer

velocity on low-velocity side of shear layer

U

Ue

normal velocity

streamwise coordinate for two-dimensional shear layers

coordinate normal to shear layer for two-dimensional shear layer

mass fraction of species i

kinematic diffusivity for turbulent kinetic energy,

eddy viscosity

Pek = PT

mean molecular viscosity coefficient

density

density on high-velocity side of shear layer

density on low-velocity side of shear layer

shear layer spreading parameter

incompressible spreading parameter for

Reynolds stress tensor, (pU)'U

stream function (subscripts r and

U 2
_----0

U1

x indicate derivatives with respect

to radius and streamwise coordinate, respectively)

EQUATIONS

The equations are presented in cylindrical coordinates.
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Reynolds stresses

The turbulence stresses are formulated in the following manner:

_T = -PT I + _T def

separating the turbulence stress tensor into static pressure and shear stress tensor.

Turbulence pressure is by definition

(1)

2
PT = _ pk (2)

Turbulent kinetic energy

The turbulent shear stress and pressure are coupled to the turbulent kinetic energy

by the following equation:

+_ Pek_r -dk (3)

Eddy viscosity

and

where

or

Following reference 1, the equations for eddy viscosity, dissipation, and scale are

_T = _ I-_.5k3 ] \Co/

m m

LD = Umax - Umi n _/2

(4)

(5)

dk = _ P LD
(6)

e = 1 M 2 (0 < M < 0.6)
Eo

_e = (1 + 0.25M) -2
Eo

(0.6 =<M< _o) (7)

1 8 -- 0 --
y-_r (rpV) +-_(pU) = 0 (8)

Continuity
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Radial momentum integral

l_ + PT = Pe

Streamwise momentum equation

Energy equation

--at_+_al_ ___ dk+ _r_\Npr cPov -_ -_= + _\_-) +

Species continuity

+ ' _rE \NSc + N--S-_,Tc,T)_hi Tr j

Numerical solution of these equations follows Edelman and Fortune (ref. 2).

The equations are transformed by the Von Mises transformation as

X=x

¢_r = put

¢_x" _r

q,

Then the finite-difference equations are formed by using the following substitutions:

Partial derivative in the X-direction

(%+1,m" %,m)-_N
AX _X

Partial derivative in the _-direction

(¢n,m+l - Cn,m-1) =

2 _ a_

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Second derivative in the @-direction

A¢ 2 (q_n,m+l - 2_bn,m + _n,m-1)

l-a_l (16)
1 1 0 a
4 A_2 (_bn, re+l- qSn, m-1)(an,m+l - an,m-l) -_ 0

Further discussion of these equations can be found in reference 1.

RESULTS

Numerical results have been obtained for each of the categories. For each prob-

lem an initial turbulence kinetic energy profile and scale are needed in addition to a veloc-

ity and temperature profile. These data on turbulence were not supplied and were esti-

mated. This was not a serious problem for the test cases for free shear layers; however,

initialturbulence level is important for the decay of free jets and coaxial jets,and free-

stream turbulence is important to the decay of wakes. In the spiritof making predictions,

no attempt was made to "fit"the solutionsto the data by reinitializingthose problems

which did not work well. In fact, comparisons were not made untilall cases were run.

Two-Dimensional Shear Layers

Test cases 1, 2, and 3.- Linear velocity profiles (figs. 1, 2, and 3) and a 1-percent

turbulence intensity were used as input, and computations were started with 14 data points

in gJ-direction. The initial shear layers were a few centimeters thick, and computations

carried out 10 meters (30 ft) in the downstream direction.

Test cases 4 and 5.- The given profiles (figs. 4 to 8) and an initial turbulence inten-

sity of 1 percent of U 1 were used to initialize the problems. The initial number of

points in the gJ-direction were 16 and 19 for cases 4 and 5, respectively. For test case 4,

the profiles were shifted so that a velocity ratio of 0.5 occurred at y -- 7 cm (3 in.). For

case 5, the 0.5 velocity ratio was shifted to y = 2.5 cm (1.0 in.).

Free Jets

Test case 7.- The given profile (figs. 9 and 10) was input with a 1-percent turbulence

intensity by using 14 initial points in the @-direction. The theoretical points seem to have

more scatter than the data points. This may be due to the nature of the e/e o function

used in equation (7).
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Test case 8.- This problem was started downstream at x/d = 2.79 by using the

given profile (fig. 11) and assuming a self-similar turbulence intensity in the shear layer

and 15 initial points in the _-direction.

Coaxial Mixing

Test case 10.- The initial profiles (figs. 12 and 13) at x/d = 2.966 were used with

a self-similar turbulence profile and 14 initial points in the _-direction. The potential

core length is overpredicted in this problem, perhaps because of large initial turbulence

levels in the jet and external stream. This problem is basically one of a free jet with an

embedded coaxial jet. The outer shear layer may also have affected these data through

acoustic radiation to the mixing zone.

Test case 11.- The initial profiles (fig. 14) and a 5-percent turbulence intensity

were used as input. Thirty initial points were used in the _-direction to fit the profiles

adequately. These initial profiles show that basically two shear layers are present - a

feature not accounted for in the formulation of the theory where only one scale is used at

a given axial location. The initial center-line behavior is adequately predicted but not

the final or wakelike zone. The reason for this is not known.

Test case 12.- Fifteen points were used to describe the initial profiles (fig. 15) in

the _-direction. An 8-percent turbulence intensity was used in the hydrogen boundary

layer and a 3-percent initial turbulence intensity in the air boundary layer. Again the

potential core length is overpredicted, and no definite reason can be offered to explain the

discrepancy.

Wakes (Test Case 17)

Fourteen points were used to initialize the problem at the station x/d = 17.0. (See

fig., 16.) An initial turbulence intensity of 6 percent on the center line varying to 1 percent

in the free stream was used.

Theprediction is an order of magnitude too low. The reason for such a large dis-

crepancy between theory and data is not known. It appears that the physics employed in

this model do not correspond to what occurred in the experiment or that some larger

error exists in the programing.

RE COMMENDED EXPERIMENTATION

The achievement of rapid mixing is the goal of the propulsion engineer. Some ideas

are proposed to achieve that goal. The instability of shear layers, be they laminar or

turbulent, makes them capable of extracting power from various sources. The instability
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of shear layers is not properly exploited by many devices exceptperhaps in whistles and
musical instruments suchas a flute or anorgan.

Becauseof this instability, greatly enhancedmixing occurs, often leading to anom-
alous experimental results whennot recognized. It is the authors' opinionthat these
exciting phenomenashouldbe exploited more fully by the propulsion engineer. Figure 17
sketchessomeinteresting examplesof shear-layer instabilities producing enhanced
mixing.

The addition of moving mechanical parts which act as triggers or amplifiers to
shear layers is also possible. An exampleof this occurs whenthe vortex sheddingfre-
quencyof a cylinder is equal to the frequency of cylinder oscillations.

REFERENCES

1. Ortwerth, Paul James: Mechanism of Mixing of Two Nonreacting Gases.

AFAPL-TR-71-18, U.S. Air Force, Oct. 1971.

2. Edelman, R.; and Fortune, O.: An Analysis of Mixing and Combustion in Ducted Flows.

AIAA Paper No. 68-114, Jan. 1968.
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DISCUSSION

D. B. Spalding: Some of the plots of the axial concentration or axial velocity seem to

show points which were rather far apart with straight lines drawn between them. Does

that mean that you actually took very large forward steps in your computation?

P. J. Ortwerth: They were rather large but they weren't that large. That's how often

the program printed out.

D. B. Spalding: What's your forward step size then as a fraction of width, for example?

P. J. Ortwerth: It's comparable to the step size in the radial direction. If you have

14 points, for example, across a shear layer, then you have to march forward with a little

less than 1/14 of a shear layer in distance. So the curves are continuous; however, I

really think that they are discontinuous enough that drawing straight lines between data

points is not all that bad.

\

B. E. Launder: I noticed that when you showed your slide of the kinetic energy equation,

that the first term on the right-hand side was, if memory serves me, something like,

2/3 Density × Turbulence energy × Mean velocity gradient. Could you explain briefly the

origin of thatterm?

P. J. Ortwerth: I assume that'sequal to the turbulence normal stresses ifyou break the

turbulent stress tensor intoa normal part and a shear part like you would for a normal

molecular flow or laminar flow of gas; that is T g O by definition.

B. E. Launder. Well, certainly if we were concerned with the normal stresses, I would

agree with you, but the production in the turbulence energy equation is associated with

shear stresses.

P. J. Ortwerth: That is right. I tried to point that out. If you, for example, have a com-

bustion chamber with a gas velocity in there of 8000 It/see (2400 m/see), and you have a

turbulence intensity of 20 percent, this will correspond to an amount of energy, translated

into gas temperature so you can understand it, of several thousand degrees. Now when

you expand that gas through a nozzle, of course, there's a pressure gradient and a veloc-

ity gradient, and the normal turbulence shear stresses are such a large part of the pres-

sure in the flow, that the work done pushing the gas out of the nozzle is significant. I

want to know how much that is so I can integrate that equation with that term in there.

As far as you're concerned, maybe it doesn't make any difference. In the normal incom-

pressible flow those terms are very smaI1.

W. A. Rodi: In reference to test ease 17 you mention a possible Reynolds number influ-

ence. We found very similar predictions with our model where we do not introduce a

function of one of the constants. I believe the reason for your bad predictions is that you
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use a constant. In this particular case, the production of kinetic energy is very low,

and that's why we get a very different constant. I believe that differences occur because

we introduce this function of production over dissipation.

P. J. Ortwerth: Where I would have difficulty with that comment is if the production of

turbulent energy is low, I wind up with a lower viscosity and with poorer agreement with

the data.

W. A. Rodi: But, we introduced a function where the new constant would increase by a

factor of about 5, and that's why we get better agreement.

P. J. Ortwerth: If I change the constant by a factor of 5, it probably would agree.
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TURBULENT KINETIC ENERGY EQUATION AND FREE MIXING*

By Thomas Morel, T. Paul Torda,

Illinois Institute of Technology

and Peter Bradshaw

Imperial College of Science and Technology, London

INTRODUCTION

The present work on calculation of free shear flows was carried out to investi-

gate the usefulness of several concepts which were previously successfully applied to

wall flows. The method belongs to the class of differential approaches. The turbu-

lence is taken into account by the introduction of one additional partial differential

equation, the transport equation for the turbulent shear stress. The structure of tur-

bulence is modeled after Bradshaw et al. (ref. 1). This model has been used success-

fully in boundary layers and its applicability to other flows is demonstrated in this con-

tribution. An earlier attempt to use this approach for calculation of free flows was

made by Laster (ref. 2). The work reported here differs substantially from that of

I.aster in several ways. The most important difference is that the region around the

center line is treated by invoking the interaction hypothesis (ref. 3) (concerning the

structure of turbulence in the regions separated by the velocity extrema). The com-

pressibility effects on shear layer spreading at low and moderate Mach numbers were

investigated. In the absence of detailed experiments in free flows, the evidence from

boundary layers that at low Mach numbers the structure of turbulence is unaffected by

the compressibility was relied on. The present model was tested over a range of self-

preserving and developing flows including pressure gradients using identical empirical

input. The dependence of the structure of turbulence on the spreading rate of the

shear layer dS/dx was established.

SYMBOLS

al,G,L

Cp

L o

M

defined by equations (2)

specific heat at constant pressure

width to the half velocity point on the profile

Mach number

p mean pressure

*This research was supported in part by NASA Fellowship and partially by
NASA Grant NGR-14-004-028.
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q2 ' '= uiu i

r recovery factor

T temperature

U,V mean velocity components

U1,U 2 external velocities at edges of a mixing layer

_U maximum velocity difference across shear layer

U t _V _ _W v fluctuating velocity components

-7-'7

P

X,Y coordinate axes

x,y distances along axes

(X angle of characteristic

Y

5

d5

ratio of specific heats

\

shear layer thickness defined as distance between points where

d /dx

(dS/dX)still-air jet

dissipation rate

momentum thickness

P mean density

(7

7" --'-- - tVt

spreading parameter for free shear layers
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• + and _- shear stress profiles of "simple" layers

Superscripts:

a exponent

fluctuating quantities

Subscripts:

center- line value

i index

J initial jet value

m,max

1/2

maximum value

half velocity point

ANALYSIS

Equations and the Model of Turbulence

The governing equations considered are the continuity, momentum, and turbulent

kinetic energy equations:

_U + aV = 0

(U 0_ + V _._)U = IdP _u'v'p dx 0y

(U _ ._q"2" _u-';_v, _U _ p_v' q-'_v,/+ V _-}_-= OY- b'Y'\"_- + 1 -e

(i)

The turbulent kinetic energy equation contains three additional correlations not

appearing in the other two equations. To close this system, assumptions about the struc-

ture of turbulence would have to be made, where by structure a given relation between the

local values of two turbulent quantities is understood. As in Bradshaw et al. (ref. 1),

three relations are used to define the structure:
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m

_- = alq2 (2a)

_'}m'{I/2 (2b)

L

"7-7,

pv__p+½q2v'= 1/2 (2c)

The functions al, L, and G are sPecified by algebraic expressions and the local

length and velocity scales of turbulence are assumed to be proportional, respectively, to

5 and {_mt 1/2.

By utilizing relations (2), the conservation equation for q-2 may be converted into

an empirical transport equation for T

_-_+ V 7 = 2a I aUay 7 "rmax + "r _x al _ (3)

The choice of convective type diffusion (eq. (2c)) over gradient type in free flows is

supported by mixing layer experiments. (See refs. 4 and 5.) The positions of zero diffu-

sion and maximum kinetic energy do not coincide, a fact for which gradient diffusion can-

not account for. The two points are separated by a distance of the order of 5 percent of

the shear layer thickness. Also, the free shear flows exhibit strong large-scale motions

which made the convective diffusion important.

There is much experimental evidence to support the relation (2a). An examination

of a wide range of experimental data showed that the value of a 1 varies within a small

range depending on the flow considered. The only difficulty in this formulation occurs in

the vicinity of a velocity extremum, as discussed in the next paragraph. Relation (2b) is

a logical extension, based on equation (2a), of

which is a commonly accepted model.

of

Flows With Velocity Extrema

The formulation presented was applied to free mixing layers with the simple choice

al(Y ) = Constant as in boundary layers. In flows with velocity extrema, the shear
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stress changes sign in the vicinity of the velocity extremum. The turbulent kinetic

energy, by definition, does not change sign and this fact precludes the use of constant

a 1. Also, the shear stress equation is singular at the point where a 1 = 0 (its solution

being regular) and for this reason presents numerical difficulties. (See ref. 2.)

To avoid this problem, the suggestion of Bradshaw (ref. 3) is used and the flow with

velocity extremum is regarded as two adjoining "simple" shear layers which interact only

through the mean velocity profile. Each layer has its own shear profile and the algebraic

sum of these profiles in the region of overlap gives the shear profile of the complete flow.

One reason for looking at the flow from this viewpoint is that if the structure of turbulence

in each layer is unaffected by the presence of the adjoining layer (does not actively partic-

ipate in the interaction), then a simple tool for calculating more complex flows such as

jets, wakes, and wall jets is obtained. There are two such simple or basic shear layer

flows - the boundary layer and the mixing layer - and it is proposed to regard all other

thin shear layer flows as combinations of these two. The empirical functions in each

layer of a complex flow were to be the same, or nearly the same, as in the corresponding

simple shear layer and, as a result, the task of determining them would be simplified.

(The actual difference between jets and mixing layers can be seen in figures 1 and 2.)

Another reason is that this point of view allows a simple explanation of the regions of

"negative production" of turbulent kinetic energy which occur in asymmetric flows. The

technique can be utilized for calculating these flows which otherwise require the a priori

knowledge of the point of vanishing shear when the original formulation is used. The

same shortcoming affects all models which involve the eddy-viscosity concept in one form

or another.

The idea was applied to the duct flows (ref. 3) and very good results were obtained

with the empirical functions which were developed for boundary layers. In this work the

same approach is applied to jets and wakes.

Empirical Functions of the Structure

The empirical functions of the structure of turbulence in mixing layers (with

U2//U 1 = 0) were derived from the experimental data (refs. 4 and 6) and then refined by

comparison of the velocity and shear profiles with the experiments. (See fig. 1.) The

simple choice of constant a 1 = 0.15 and L/5 = 0.09 was found to be adequate for good

results. The shape of the diffusion function G was obtained by integration of the diffu-

sion in the turbulent kinetic energy balance. The proper values of the empirical func-

tions for U2/U 1 ¢ 0 were deduced from calculations by comparison with the results of

Spencer (ref. 7). The empirical functions were found to be dependent on the velocity ratio

of the mixing layer. This dependence may be correlated with dh/dx, the spreading rate

of the shear layer.
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The same model was applied to jets and wakes as outlined. The two adjoining layers

are calculated as two separate layers. They share joint U and V profiles but they

have separate shear profiles. The only difference from the mixing-layer program appears

in the momentum equation where the shear profiles are superposed to give the "true"

shear profile in the region of overlap:

aU 8U 1 dp av + 87-U V (4)
W- W -+ ther layer

Beyond the velocity maximum, the layer experiences a negative production in the shear

equation which limits the region of overlap.

The program is written, at the present time, for symmetric jets and wakes because

of lack of experimental data. However, the concept is not restricted in any way to sym-

metric flows and its importance lies in its ability to treat and explain asymmetric flows.

The calculations show that in free flows the structure of the "simple" layer is

affected by the interaction. The interaction tends to modify more the magnitude than

the shape of the empirical functions. Thus, the a 1 and L/5 were retained constant

and the shape of the diffusion function G was slightly altered. (See fig. 2.) The com-

parison with experiments indicates again the dependence of the structure on the spreading

rate dS/dx. The limiting case for dS/dx = 0 is shown in broken lines in figure 2.

The results show the usefulness of the interaction concept for calculation of free

shear flows. The required modifications of the empirical functions are not large and

indicate that the flows with velocity extrema may be regarded as weakly interacting

adjoining shear layers. There appears to be more interaction of turbulent structure in

the free flows than in the ducts and the explanation may be sought in the behavior of the

shear stress in the vicinity of the velocity extremum. (See fig. 3.) The shear stress

profiles of free flows overlap significantly more and the value of the shear on the center

line is typically 0.55_-max, against 0.1_ma x in the duct, and thus causes a stronger

interaction.

All the results presented are calculated with the same input, the structure being a

function of y/6 and dS/dx alone.

Compressible Flow

The governing equations for the compressible flow are much more complicated than

their incompressible counterpart. If the restriction is made to include only low and mod-

erate Mach number flows, many of the new correlations appearing in the compressible

equations may be neglected on the basis of order-of-magnitude arguments. (See ref. 8.)

This neglect simplifies the equations which may then be written in boundary-layer form

as follows:
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8x
__+_+OaP _ap_y _+ _7 =°

+ _. aT..T 1 d._.ppa-r "r ap
8y -P dx + _" + P a-'y"

where

U_x+ Ol milJ2•i -l mlI/2= "r ay p ay

"]+a 1 _x +a 1 _-.j

i p'v' +2 ½q2v'+_ P'q-4'_Q_'v'=e'l'm Im

The inclusion of compressibility presents two additional tasks. The structure of turbu-

lence in compressible flow and the density variation across the layer have to be deter-

mined.

For the values of the empirical functions in compressible flows, the suggestion

(ref. 9) is relied on that the turbulence is convected passively by the mean flow as long

as the local Mach number of the root-mean-square fluctuations is much

less than unity. The inference is that the structure of turbulence is Mach number inde-

pendent and the "incompressible" values of the empirical functions may be used. This

assumption is based on the analysis of experiments in boundary layers, where this condi-

tion is satisfied up to moderate Mach numbers (M < 5).

In the Math numbei" range to which the present approach is limited, a good approxi-

mation for the density profile can be obtained from the Crocco formula used in boundary

layers:
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CpT + 0.5rU 2 = Constant

which together with the equation of state yields p = p(U). It eliminates the need for an

additional equation and may be incorporated into the incompressible version of the pro-

gram with only small modifications.

Compressibility effects due to temperature or density differences were also incor-

porated by assuming, respectively, similarity between temperature and velocity profiles

and between mass fractions and velocity profiles. That again yields a relation p = p(U)

which is useful for small compressibility effects. Large effects will require the solution

of a separate equation.

METHOD OF SOLUTION

With the diffusion term in the kinetic energy equation modeled to be of the convec-

tive type, the set of equations becomes hyperbolic. There are two choices of solving this

system, either by a procedure suitable for parabolic equations or to use the method of

characteristics. The first approach is advantageous if it is intended to introduce addi-

tional equations, for example, for compressible flows or for a more involved model of

turbulence. In the present work, it was decided to use the mathematically simpler method

of characteristics used already in the boundary-layer calculations. (See ref. 1.) The

model of turbulence and the empirical functions developed in the course of this work

would be the same if an alternative method of solution of these equations is used.

The accuracy of the calculations is governed by the number of points on the profile

and by the number of iterations used to improve the interpolation along the characteris-

tics. However, even if several iterations are used, the momentum and mass balance are

not preserved because of numerical inaccuracies and lead to a momentum thickdess gain

of the order of 0.1 percent per station. To avoid accumulation of error, the'grid size is

being readjusted by that very small amount after every step so that momentum is pre-

served. The mass balance is then very well preserved - to within 1 percent on a typical

run. The largest inaccuracies occur for flows issuing into a small externalstream. One

of the characteristic angles near the edge tends to ot = arc tan (V/U) and precludes cal-

culation of mixing with still air unless some special numerical treatment for this bound-

ary is introduced. The problem at the still-air edge affects other methods of solution as

well. Calculation of mixing with small external stream has some practical limitations.

The step size in the x-direction is inversely proportional to tan _max and, therefore,

for economical calculation, it is necessary to maintain at least U 1 = 0.05Uma x which

gives tan _max = 1. The region of very small external stream also suffers from larger

than average errors in mass balance.

556



COMPARISONWITH EXPERIMENTS

The model developed for the mixing layers can be used for all velocity ratios. Cal-

culations for three ratios are compared with experiments below:

(a) Mixing into still air. (See Liepmann and Laufer (ref. 6) and Bradshaw and

Ferriss (ref. 4) and also figure 4.) Note that the computed profile has a small external

stream rather than still air on its edge; thus, the spreading rate is reduced somewhat.

(b) Mixing with a parallel moving stream. (See Spencer (ref. 7) and figures 5 and 6.)

The jet program is capable of handling both jets and wakes in the presence of pres-

sure gradients by using the same empirical input. Some predictions compared with exper-

iments are

(a) Jet mixing with still air. (See Bradbury (ref. 10) and figure 7.) Both the exper-

iment and the calculations had actually a small external stream which does not affect the

nondimensional profiles.

(b) Small deficit wake. (See Townsend (ref. 11).) The region in which Townsend

made his measurements is far from complete self-preservation as documented by the dif-

ference between the measured shear profile and the profile required for self-preservation.

(See fig. 8.) The calculations compare well in the region investigated by Townsend and

show self-preservation far downstream. (See fig. 9.) The small excess jet tends toward

the same results as the small deficit wake when W - 0.

When the external flow varies as U 1 _ xa, there are ranges of the exponent a for

which the momentum equation allows self-preservation of jets or wakes. The following

two flows fall in that category:

(c) Wakes in a pressure gradient - investigated by Gartshore (ref. 12) who found

them approximately self-preserving. The calculations show that, although the flow has

the tendency to conform to the self-preservation, it drifts steadily away from it (fig. 10).

(d) Self-preserving jet in a pressure gradient. Value of the exponent a = -._a

was used for the calculations. The results obtained are plausible, although there are

no experiments to support them. (See fig. 11.)
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APPENDIX

COMMENTS ON TEST CASES

This appendix presents comments on some of the test cases presented in figures 12

to 19.

Test Case 5 (Hill and Page)

The free shear layer was measured in the early stages of its development from a

boundary layer separated over a cavity. At the separation the boundary layer was turbu-

lent and had a momentum thickness of 0.0793 cm. The last measured station was at

x = 20.95 cm or x/O = 264. The dimensions of the cavity and of the orientations of the

axes X,Y are not clear in reference 13. Depending on the details of the geometry, sig-

nificant backflow and transverse pressure gradient may have been present. In view of

these uncertainties, it is difficult to comment on the disagreement of the calculations and

of the experiment and also on the lack of spreading of the experimental profile on the low

velocity side.

In any case, as the boundary layer was turbulent at the separation the shear layer

was probably not in the self-preserving range even at the last station. (See Bradshaw,

ref. 14.) In the calculations the maximum shear first increased above the "fully

developed" value (overshoot). Its decrease toward the value far downstream was slow

and monotonical. At x = 20.95 cm, its value was still higher by an amount on the order

of 10 percent. Also the spreading rate 1/a was still substantially higher at that station

than far downstream.

Test Case 13 (Bradbury)

The calculations were not overly sensitive to the initial shear.

initial shear by 66 percent produced less than 1-percent difference in

An inc'rease of the

W at x/D = 300.

Test Case 14 (Chevray and Kovasznay)

In a wake very close to the trailing edge, the structure of turbulence may be expected

to be that of a boundary layer rather than that of a free flow. The question remains how

long does it take for the structure to undergo the change from one regime to another. The

examination of the data of reference 15 showed that the mean velocity and turbulent quan-

tities take on their wakelike shapes already by the distance x = 20 cm and possibly even

earlier. It seems reasonable to expect that also the structure of turbulence came close

to the wake type by that distance. This possibility was tested by starting the calculations

at three different points x 0 = 0, 20, and 50 cm by using the experimental profiles as the

558



APPENDIX - Concluded

input. The results do confirm the expectation since although the latter two calculations

differ from the first one they agree with each other. (See figs. 12(a) and 12(b).) It

appears that the present model has difficulties near the trailing edge where the struc-

ture is still that of the boundary layer. The calculated and experimental profiles at

x = 240 cm agree well when the calculations start at x = 20 cm (fig. 12(c)) or at

x = 50 cm. From the figures it is also clear that the momentum thickness of the com-

puted and measured profiles are not equal. A check on the momentum thickness at sev-

eral stations revealed the following variation of 8 and gives an idea about the generai

accuracy of the experiment:

x 0 20 50 240

0 0.578 0.606 0.585 0.557

Test Case 16 (Demetriades (ref. 16))

The results of the calculations were found to be rather sensitive to the initial shear

in contrast to the test case 13. A 20-percent change of the initial shear produced a sub-

stantial difference at x/40 = 2000 and this difference (as represented by the value of

Tm/AU2 ) still persisted very far downstream. This behavior was found both in
\

compress-

ible and incompressible flows. This lack of tendency "to forget" of small deficit wakes

is very interesting and suggests that convection and diffusion of turbulence in these flows

have a large influence on the flow development.

The presented results were obtained by using a recovery factor of 0.9.
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DISCUSSION

B. E. Launder: I would like to ask whether your method can be extended to cope with

axisymmetric flows ?

T. Morel: Presumably, one could certainly try to do that, and I would expect it would

work. However, there we have to talk, strictly speaking, about an infinite number of

interactions. That means we would lose the nice mental picture we were basing this on.

B. E. Launder: Doesn't it look then, that yours is a rather complicated way of doing

something very simple ? A more conventional simulation of the shear stress equation

would permit one to treat both axisymmetric and plane shear flows.

T. Morel: The flows that we want to calculate are certainly not very simple and that is

the reason we have all gathered here. We know so much more about the kinetic energy

equation that we thought it worthwhile to pursue our work in this direction. Further, as

I pointed out in the presentation, the interaction approach has a very important conse-

quence. It allows us to use the kinetic energy equation to close the system without having

to rely on the eddy viscosity to obtain the shear stress. This fact alone makes this work

certainly worthwhile.

G. L. Mellor: One comment here - it looks like you are taking a perfectly good energy

equation and turning it into a shear stress equation. And yet there closely exists a per-

fectly good shear stress equation. I think you get into trouble when you do that, as evi-

denced by qualitative argument required to avoid the jump in sign of a, when going from

one sign at a channel to the other.

T. Morel: First, the exact shear stress equation is not necessarily a perfectly good

equation. There are terms which we do not know enough about. The kinetic energy equa-

tion is very well documented; our results certainly seem to support that. Second, the

pressure-rate-of-strain correlation in the exact shear stress equation is usually mod-

eled as a sum of production and dissipation. When all the terms are modeled, that equa-

tion looks the same as our equation: You can ask Brian Launder about that. To your last

question, if you view the flow from the point of view of separate layers, there is no jump

of a 1 within either one of them. And that is precisely the point we are making.

A. Roshko: Yes, I would like to comment on Launder's comment. This question of

whether what works for two-dimensional flow will work with axisymmetric flow is not

so clear. For example, I have a feeling that these shear layers, in particular, have the

large structure that has a lot of two-dimensionality in it. In fact our measurements show

that. In a fully developed axisymmetric flow, I think that is going to have a very different

structure. I think it is an instability structure. I don't think it will be axisymmetric. I
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think it will be skewed, and random. Therefore I am sure that the physics will be the

same for those two flows.

P. T. Harsha: Your figure 11 shows some pretty mystifying wiggles in your parameter

Au/u 1. Can you explain them ?

T. Morel: Well they don't mean much. You start out with some initial conditions which

are away from self-preservation and watch what happens. If it is a flow that likes the

self-preservation, it will tend toward it. We started a bit off, and it had to adjust. It is

just trying to adjust. That's explainable.

P. A. Libby: Tom, I would like to ask a question, not directly to you, but I think it does

raise a question about some of these newer methods, and perhaps some of these other

people will straighten me out. For example, in the method you described, if I look at

the mathematical structure, I see a first-order differential of r with respect to y.

That raises the possibility of satisfying one boundary condition with respect to • on

some line of x. In a free shear problem, of course, you want to say that • is 0 at

two points, plus or minus infinity. I don't see how you do that. I've raised similar

questions with other people; they say you've got to put in molecular viscosity which puts

you back into a second-order equation. But of course, if you look at similar free-mixing

flows, you cannot leave that molecular viscosity in, because it destroys the similarity.

That term wants to vary as _'x and the purely turbulent problem wants to go like x

itself. Now this, in my view, is just a manifestation of one of the problems that enter

when you look at the newer methods of solving turbulent shear problems. I would like

to hear what you and other people have to say about this matter. Would you like to

comment?

T. Morel: No, I really didn't quite follow what you said. I would like to talk to you

afterwards.
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AN INTEGRAL TURBULENT KINETIC ENERGY

ANALYSIS OF FREE SHEAR FLOWS 1

By C. E. Peters and W. J. Phares

ARO, Inc.

SUMMARY

Mixing of coaxial streams is analyzed by application of integral techniques. An

integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the

integral equations for the mean flow. Normalized TKE profile shapes are obtained from

incompressible jet and shear layer experiments and are assumed to be applicable to all

free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to

be directly proportional to the local TKE, and dissipation is treated with a generalization

of the model developed for isotropic turbulence. Although the analysis was developed

for ducted flows, constant-pressure flows were approximated with the duct much larger

than the jet. The axisymmetric flows under consideration have been predicted with

reasonable accuracy. Fairly good results have also been obtained for the fully devel-

oped two-dimensional shear layers, which were computed as thi,_ layers at the boundary

of a large circular jet.

INTRODUCTION

An extensive integral analysis of ducted turbulent mixing processes (fig. 1) has

been developed at the Arnold Engineering Development Center (AEDC) (refs. 1 and 2).

As usual with such analyses, the shape of the velocity profile is assumed, and the inte-

gral form of the mean flow governing equations is used to compute the shear-layer

growth rate and other dependent variables of the problem. In the integral analysis of

references 1 and 2, the turbulent shear stress at the midpoint of the shear layer is

computed by use of a model for the turbulent eddy viscosity. The integral analysis has

been extended to flows with equilibrium chemical reactions, to flows which extend across

the entire mixing duct, and to flows in which the inviscid portion of the jet flow must be

treated with the method of characteristics. The method has also been applied to flows

with embedded recirculation zones. The analytical framework has been developed for

1 The research reported in this paper was sponsored by the Arnold Engineering
Development Center, Air Force Systems Command, Arnold Air Force Station, Tennessee,
under Contract No. F40600-72-0003 with ARO, Inc. Major finm-_cial support was pro-
vided by the Air Force Office of Scientific Research, under Program Element 61102F,
Project 9711. Dr. B. T. Wolfson was the project monitor.
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quite complexflow situations, but a serious deficiency has always beenthe model used
for the turbulent eddyviscosity, the Prandtl incompressible model with a compressibility
correction similar to that proposedby Donaldsonand Gray (ref. 3). This eddy-viscosity
model is not adequatewhenthe secondarystream velocity exceedsabout 0.2 times the
primary stream velocity, or whenlarge pressure gradients exist in the flow field. Other
eddy-viscosity models have beenproposed which would perhapsyield better results for
certain flows, but basedon the extensive evaluation by Harsha (ref. 4), it is not likely that
any eddy-viscosity model will beapplicable to the entire range of free turbulent flows of
interest. A fundamentalproblem with eddy-viscosity models is that the turbulent shear
stress is related only to the local meanflow properties (this local dependenceis true only
in simple limiting flow situations); most free turbulent flows are characterized by signifi-
cant history effects on the turbulent transport.

Starting with the work of Bradshawand associates (ref. 5) a few years ago, con-
siderable effort hasbeendevotedto developmentof the turbulent kinetic energy (TKE)
methodsfor turbulent shear flows. In these methods, the turbulent shear stress is related
to the kinetic energy of the turbulent motion, andthe TKE governing equationis solved
simultaneouslywith the meanflow governing equations; the TKE equationis, in effect, a
governingequationfor the turbulent shear stress. Two different methodshave beenused
to relate the shear stress to the TKE in free shear flows. In the work at AEDC (refs. 4,
6, and 7), Bradshaw's direct relationship betweenshear stress andTKE has beenused.
Other investigators (refs. 8 to 11)have related shear stress to TKE by defining an eddy
viscosity which is the product of a length scale andthe square root of the TKE. Although
there appearsto be experimental evidence(ref. 12)for the Bradshawapproach, both
approachesare great improvements over earlier eddy-viscosity models in that turbulent
shear flows are recognized to be indeedturbulent, that is, to consist of both mean and
fluctuating components. The current TKE methodsare undoubtedlyoversimplified for
the wholespectrum of turbulent flows in nature; however, Harsha's work (ref. 4) has
shownthat the TKE approachis useful for a large class of shear flows which is commonly
encounteredin engineering applications.

In thepresent study, the earlier integral approach for ducted flows (refs. 1 and 2)
hasbeenextendedto include an integrated TKE equation. Becausethe TKE equationhas
beenintegrated across the entire shear layer, no model for the lateral diffusion of TKE
needsto bespecified. In addition, the relation betweenthe TKE and the shear stress is
specified only at the midpoint of the shear layer. These simplifications are achieved
with a penalty - the shapeof the lateral TKE profiles in the shear layer must be speci-
fied. The TKE profile shapeshavebeenobtained from incompressible experiments but
have beenusedwith reasonablesuccess for flows with large density gradients.
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The present integral method is limited to those flows in which the velocity profile
shapeis essentially fully developed(shapesimilar) throughout the flow ffeld; that is, the
initial boundarylayers must be relatively thin. Deferencemust be madeto the more
powerful finite-difference TKE methodsfor those flows which have developingvelocity
profiles over a significant axial distance. In addition, the present integral method has
beenformulated for only axisymmetric flow, andthetwo:dimensional jet and wake flows
have not beencomputed. However, the fully developedshear layers (test cases 1 to 3)
havebeencomputedas thin layers at the boundaryof a very large axisymmetric jet.

SYMBOLS

a1

a2

constant in TKE shear-stress relation

coefficient in dissipation term

mixing zonewidth

C

correction factor for a2

mass fraction of elements from primary stream

D diameter of primary stream nozzle

H stagnation enthalpy

k turbulent kinetic energy

normalized turbulent kinetic energy

K exponentin velocity-concentration relation

M Mach number

M e

Mo

external stream Mach number

central stream Mach number

boundary-layer profile exponent
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p static pressure

r radial coordinate

ri

r o

r W

R

radius of inner mixing zone boundary

radius of primary stream nozzle

duct wall radius

gas constant

R T

T

turbulent Reynolds number

static temperature

Tt stagnation temperature

U

U e

axial velocity component

outer stream velocity

U o

u,2

v

v,2

W

w,2

W

X

initial primary stream velocity

square of turbulent velocity component in x-direction

radial or transverse velocity

square of turbulent velocity component in r-direction

TKE profile parameter (eq. (11))

square of turbulent velocity component in circumferential direction

wake center-line velocity defect,
1 - U c

U e

axial coordinate

Xcore length of first regime
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Y transverse coordinate

mixing zone coordinate,
r - r i

b

mass fraction of primary stream species on center line

boundary-layer thickness

turbulent eddy viscosity

P density

turbulent shear stress

spreading parameter for two-dimensional shear layer

% spreading parameter at a reference condition

Subs cr ipt s:

initial mixing station; high speed stream for two-dimensional shear layer

low-speed stream for two-dimensional shear layer

inviscid secondary flow

b/ boundary layer

center line

far field

inviscid primary flow

m half-velocity control surface in mixing zone

n near field
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sl shear layer

w duct wall

DEVELOPMENT OF ANALYSIS

The first and second regimes of figure 1 will be considered in this paper. A region

of inviscid secondary flow exists throughout the duct, and the turbulent mixing zone is

free turbulent in nature; that is, the turbulent flow is not adjacent to the wall. The duct

wall interacts with the turbulent shear layer only through the axial-pressure gradients

which are imposed by its presence.

Fundamental Assumptions

The following principal assumptions have been used in developing the analysis:

(1) The flow is axisymmetric.

(2) All gases obey the perfect gas law.

(3) The usual boundary-layer assumptions are used; that is, negligible radial

pressure gradients, and so forth.

(4) The inviscid portions of the primary and secondary flows are one-dimensional

and isentropic.

(5) The mixing layer is completely turbulent, and the initial boundary-layer thick-

nesses at the initiation of mixing are very small compared with the length of the first

regime (fig. 1).

(6) The thickness of the nozzle lip separating the primary and secondary flows

is negligible.

(7) The viscous effects at the duct wall are negligible.

(8) The normalized velocity profiles in the mixing layer are similar in shape at

all axial stations and are represented by a cosine function.

(9) The turbulent Prandtl and Lewis numbers are unity.

(10) The TKE profile shapes in the shear layer which have been obtained from

constant-density experiments are unaffected by density gradients in the shear layer.

(11) The turbulent kinetic energy outside the shear layer boundaries is negligible.
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Basic Integral Equations

Nomenclature for the analysis is illustrated in figure 1. In this section, the nomen-
clature is generally consistent with that of references 1 and2; the results are described
in terms of the recommendednomenclaturefor this conference.

By integrating the boundary-layer differential equations, five basic integral equa-
tions are obtained: (1) a continuity equationfor the entire flow, (2) a momentumequation
for the entire flow, (3) a momentumequationfor the flow betweenthe duct center line and
a control surface arbitrarily located at the midpoint of the shear layer, (4) a jet species
conservation equation for the entire flow, and (5) aturbulent kinetic energy equationfor
the shear layer.

Continuity equation:

_: _ drww (pu)r dr = -PwVwrw = -PaUarw

Overall momentum equation:

_:w_ (pu2)rdr= rw2dPw2dx

Half-radius momentum equation:

S:m _(pu2) r dr -Um/:m -_(pu)r dr

Jet species conservation equation:

_:w --_(puC)r dr = 0

The differential form of the TKE equation is

(1)

dr W

PaUa2rw -_- (2)

pur _=2--+ pvr t_0_2." = _-r 0u + Diffusion - Dissipation
Ox Or Or

k=_. + +

where

rm2 dP w
= _'mrm - (3)

2 dx

(4)

By integrating the TKE equation across the entire shear layer, the lateral diffusion term

disappears. The dissipation is given by the usual relation developed for isotropic turbu-

lence (ref. 4):

'2
a2Pk_/ r

Dissipation -
b
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Thus, the basic integral TKE equation is

;ri+b ___ _ri+b au a2 _ri+bpuk)r dr= T--r dr -
ri ri Or -b- ri

pk3/2r dr (5)

Velocity Profile

The velocity profile is giver, by

u-u a l+lcos(n§) (6)
Uc -

where _ = _r - r i and u c = uj in the first regime. The cosine profile is shown in fig-b

ure 2, along with the experimental results of Spencer (ref. 13) for a fully developed two-

dimensional shear layer. At the control surface, rm (= ri + b), the velocity is

1
um = _(u c + Ua)

Concentration and Enthalpy Profiles

For unity Lewis number, the normalized total enthalpy and concentration profiles

are essentially identical and are related to the velocity profile by

(5- Ua]
C7)

The parameter K has been introduced so that jet species can be conserved in

variable pressure flows. For unity turbulent Prandtl number, equation (7) with K = 1

is identically true for constant-pressure flow; the pressure gradients in all the flows con-

sidered in this communication are negligible, and K remained unity for all computations.

Therefore, equation (4) could have been deleted for these flows, since the assumption of

K = 1 would have identically satisfied that equation.

Turbulent Kinetic Energy Profiles

As with the velocity profile, the shape of the TKE profiles must be specified. The

near-field (first-regime) TKE profiles have been obtained from the experimental results

of Spencer (ref. 13) and Liepmann and Laufer (ref. 14) for constant-density two-

dimensional shear layers. The experimental results are shown in figure 3, along with

the following analytical function which has been fitted to the data:

[_n = k._ = 0.51 - 0.51 cos --_ C0 -<y < 0.45) C8a)
k m 0.45
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l_n = 0.51 - 0.51 cosE2_(0.0909 + 0.9091_)_ (0.45 < _ < 1.0) (8b)

In fitting the data, the recent experiments of Spencer were given more weight than the

Liepmann and Lanier experiments because of the improvement of hot-wire techniques in

the past 20 years.

In the far field, well downstream of the end of the potential core, the experiments

of Pindell (ref. 15) and Wygnanski and Fiedler (ref. 16) on the constant-density axisym-

metric jet into still air were used. The experimental TKE profiles are shown in fig-

ure 4, along with the following analytical function which has been fitted to the data:

kf = 0.5 + sin +_ (9)

Obviously, the shape of the TKE profile cannot change discontinuously from kn to

at the end of the first regime. It has been hypothesized that a transition region exists

in which the TKE profile evolves from kn to _. In this transition region, the TKE

profile is assumed to be a linear combination of kn and kf

k:= w_ + (1 - w)k n (10)

where w is an empirical function of x. The resulting family of TKE profiles is shown

in figure 5. Because many features of jets scale with X/Xcore , it has been hypothesized

that w can also be related to X/Xcore. The experiments of Pindell (ref. 15), Sami

(refs. 17 and 18), a_d Bradshaw et al. (ref. 19) on the constant-density jet were used to

develop the following empirical function for w:

w= 1 exp 1.09 x re

The center-line TKE, normalized with the value at rm, is shown in figure 6 for the

constant-density jet into still air. A value of Xcore = 4.66D was used in computing the

curve shown in figure 6; this core length is predicted by the present theory for a jet with

negligible initial boundary layer. The TKE profiles are seen to be essentially fully

developed (w = 1) for x greater than 5Xcore. It should be noted that the value of Xcore

is not prescribed for a particular flow but is a result of the first-regime solution.

Even though the TKE profile shapes were obtained from relatively simple constant-

density flows, the two-dimensional shear layer and the _isymmetric jet, it is assumed

that these profile relationships apply to all flows. It should be noted that nothing has been

stated about the level of TKE, but only that the TKE profiles, normalized with kin, are

given by equations (8) to (11).

and

Relation Between TKE and Shear Stress

As the present integral theory has been formulated, the relationship between r

k must be specified only at the midpoint of the shear layer r m. This method is
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distinctly different from finite-difference TKE methods, in which it is necessary to spec-
ify the variation of T with k across the entire mixing zone. The linear relationship

iTml = alPmkm (12)

is used, with a 1 = 0.3, the value found by Harsha and Lee (ref. 11) in the high shear region

of a variety of constant-density free turbulent flows. This value of a 1 is also the same

as that used by Bradshaw et al. (ref. 5) for turbulent boundary layers. In order to have

the proper sign on Tm, equation (12) is written as

alPmkm(ua - Uc) (13)
= lua- ucl

The Dissipation Parameter a 2

In the extensive evaluation of his differential TKE method (ref. 4), Harsha used

a 2 = 1.5. During the development of the present integral method, a 2 = 1.69 was found

to give good results for constant-density two-dimensional shear layers and for the axisym-

metric jet into still air. Other flows, however, were found to require significantly differ-

ent values for a 2 if reasonably good mean flow predictions were to be achieved. Speci-

fically, supersonic flows require a 2 to be larger than 1.69, and some flows with very

high shear stress levels require a 2 to be less than 1.69. Finally, it was found that a 2

could be correlated with the turbulent Reynolds number R T which is defined as

luc- Ualb
R T = em

where e m is the local eddy viscosity at r m. Of course,the eddy viscosity is not speci-

fied but is computed from

Tm
em =

_u
Pm "_lm

For the cosine profile,

_uI = _(Ua- Uc)-_r m 2b

and R T may be written as

_(u e - Ua)2 (u c - Ua)2
RT = - 5.236

2alk m km

Thus, it has been found that the dissipation coefficient a 2 can be related to the ratio of

the mean flow velocity difference across the shear layer to the turbulent velocity fluctua-
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tion level (characterized by km) in the layer. The a 2 function which has been devel-

oped is shown in figure 7, along with the equations which describe the fur_ction.

The approach used in the development of the a 2 - R T function will be briefly

described. For R T > 145, the a 2 function was developed by computational experi-

ments on the near field of unheated compressible air jets exhausting into still air.

Warren's potential core length data (ref. 20) for experimental flows with thin initial

boundary layers and 0.69 < Mj < 2.6 were used to establish approximately a few desired

a 2 values. A direct correlation of a 2 with a characteristic Mach number for the shear

layer was abandoned because such a correlation fails for two-stream supersonic flows

such as the combustion flows reported in reference 1. The turbulent Reynolds number

was finally found to correlate consistently the a 2 values for the preceding flows.

Because R T is related to the local turbulence characteristics in the shear layer, it is

more appropriate as a dissipation parameter than some other parameter which is related

only to the mean flow in the layer. When it is considered that only the near-field results

for a few experimental flows were used in developing the a 2 function for R T > 145, the

overall performance of this part of the a 2 - R T function (fig. 7) has been reasonably

satisfactory for a variety of flows. The high R T portion of the a 2 function is subject

to further refinement, however, particularly for RT > 300, that is, for fully developed

single stream flows with Mj > 2.7.

Experience with far-field predictions of jets in moving streams indicated that a 2

should be somewhat less than 1.69 for R T < 70. The function used for R T < 70 (fig. 7)

is the first one tried, and no attempt has been made to improve it.

The effects of density ratio caused by jet Mach number are adequately predicted by

the a 2 - R T function; however, prediction of the entire range of flows of interest is

improved if small additional corrections to a 2 are made as a function of density ratio.

Tentatively, the following corrections have been developed and used:

a2(RT)
a2- c

where a2(RT) is as shown in figure 7 and c is given by

c = 0.984 + 0.016 Pa__l.1

Pjl

or

(Pal > Pjl)

c = 0.95 + 0.05 RaTta

RjTt j (Pal < Pjl)

These density corrections to the basic a 2 - R T function are perhaps required because

the empirical TKE profiles are inadequate for flows with large density gradients; this
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point will notbe resolved until detailed turbulence structure dataare available for flows
with large density gradients.

The a2 function as described has beenused for all of the shear layer andjet
computationspresented in this paper. Experience has shownthat wakes require some-
what different dissipation than jet flows, andthe axisymmetric wake computations (test
cases 15and 17)were made with a2 = 1o40.

Turbulence Production

The first term on the right-hand side of equation (5) represents the production of

turbulence by the shear stress. For the boundary conditions of the shear layer, the pro-

duction is equal but opposite in sign to the dissipation of mean flow mechanical energy:

_ri+b _u ;ri+b a 1 _ri+b_(- P u3) r dr
r--rdr = U-_r(Wr) dr= 2_0-ri Or -.ri

dPw _ ri+b
iri +b a__(pu)r dr- -_ °O ur dr (14)1 Ua 2 _0+

By substituting equation (14) into equation (5), the following form of the integral TKE

equation is obtained:

_1 _ ri+b __(pu3) r dr 1 /_ri +b;ri+b_-{puk)rdr= _v0 +_Ua2o0 --_pu)rdr
vr i

dPw f r i+b a 2 _ r i+bur dr - pk3/2r dr
dx _0 %-" "Jr i

By using the TKE equation in this form, the shape of the shear-stress profile need not be

specified. The turbulence production is related only to the dissipation of mean flow

mechanical energy, which, in turn, is related to the mean flow profiles and the rate of

growth of the shear layer.

Solution Technique

Sufficient information is available to transform equations (1) to (5) into a system of

ordinary differential equations which is linear in the derivatives of the dependent vari-

ables (dPw/dX , etc.). This transformation procedure is described in detail in reference 2.

After the system of linear equations is solved for the derivatives, the resulting five dif-

ferential equations are then numerically integrated with a modified Euler technique (vari-

able step size). An IBM 370/155 digital computer was used to obtain the numerical solu-

tions; a typical flow-field solution required a computation time of approximately 2 minutes.
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In the first regime, the dependentvariables are Pw' ri, b, K, and km. In the
secondregime, the dependentvariables are Pw, Uc, b, K, and km.

Initial Conditions

In order to integrate the system of differential equations, initial values must be

specified for each of the dependent variables. The most critical of these initial values

is that for km. As usual with TKE methods, the convective terms cause the initial

condition for km (or rm) to be "remembered" for some distance downstream; the

distance is dependent on the particular flow situation. Experience has shown that two

stream flows with Ua/U j < 0.25 can be started with a "fully developed" shear stress.

This fully developed shear stress is obtained from the corresponding fully developed

two-dimensional shear layer. Even though the present method is generally limited to

flows with thin initial boundary layers, two stream jet flows with Ua/U j < 0.25 and very

thick initial boundary layers (jet nozzle boundary-layer thickness up to 0.4ro) have been

successfully computed with the following procedure: (1) the initial boundary layer is

assumed to be negligible, and (2) the inner shear layer radius r i is adjusted to match

the experimental value of the excess momentum.

Even for thin boundary layers, the influence of the initial conditions persists

throughout the flow field when Ua/U j exceeds about 0.3. Therefore, the concept of a

negligible initial boundary layer and a fully developed initial shear stress is not usable

for such flows. In order to treat these flows, a control volume analysis of the initial

region has been developed.

Control Volume Analysis of Initial Region

A sketch of the initial region just downstream of the nozzle lip is shown in figure 8.

The initial boundary layers are characterized by power law velocity profiles:

and

u /ro - rknj

The nozzle wall is assumed to be adiabatic; therefore, the stagnation temperature is

constant in each boundary layer. Specification of the wall skin-friction coefficients,

Cfa and cfj, and a 1 = 0.3 completely defines the mean flow and the turbulence quanti-
ties at the initial station b/. The wall skin-friction coefficients are determined with the

method of Spalding and Chi (ref. 21).
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At somedownstreamstation,
developedshear layer profile shapesfor velocity and near-field TKE.
assumptionsare made aboutthe process between b/ and sl:

(1) There is nonet entrainment into the shear layer.

(2) The process occurs at constantpressure.

(3) The excessmomentumis conserved.

(4) The length scale of the process is sufficiently small to insure that the volume
integral of turbulent dissipation is negligible.

The following equationsare written betweenstations b/ and s/:

Momentum:

Continuity:

s/, the flow is assumedto have evolved to the fully
The following

_0r°+6a pu(u- ua)r dr[ = [ri+b pu(u - ua)r dr I
b/ "_0 sl

pur dr = pur dr

r o- 5j b/ ri sl

b/

(15)

Turbulent kinetic energy:

r°+Sa b/ 1 _ ro+Sa dr
pukr dr pu3r

_ro_5 j + _ _ro-5 ]

(16)

+ 1 pjuj(uj 2 -Ua2)_ro-Sj) 2- ri_

pukr dr + pu3r dr

ri sl 2 Jri sl
(17)

With 5a, 5j, na, nj, Cfa , and cfj specified, equations (15) to (17) are solved for ri,

b, and k m. These values are then used as initial conditions for the integral TKE solu-

tion of the remainder of the flow field.

This control volume analysis is obviously not applicable as Ua/U j approaches
unity, since in such flows a very large distance is required to approach a fully developed

profile shape. In addition, the initial region analysis as formulated is not applicable to

mixing of streams with greatly different densities. The computations are made with

K = 1 at station sl, and the solution does not, in general, conserve species or energy.
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RESULTSANDDISCUSSION

Initial conditions for the computedexperimental flows are presented in table I.
The initial shear stress levels are characterized bythe turbulent Reynolds number RT.
In addition to beingused to specify the initial shear stress, the axial distribution of RT
throughout the flow field is very informative, anda number of such distributions is pre-
sented. For the cosineprofile, the midpoint shear stress in the mixing layer is given by

pm(_U) 2 2RT

where _u is the local velocity difference across the layer. If self preservation is

approached, then R T must become constant in the flow field.

Most of the flows considered in this conference have a constant-pressure boundany

condition, whereas the analysis was developed for a ducted system with a prescribed duct

wall shape. The constant-pressure axisymmetric flows were computed in a very large

cylindrical duct (r w = 1000ro) so that negligible axial pressure gradients were predicted.

Integrated momentum in the duct is conserved to a high degree of accuracy in the corn-

putations, typically to within one part in 105. The degree to which the jet excess momen-

tum is conserved in constant-pressure flows is illustrated by the fully developed axisym-

metric jet (test case 18). For similar velocity profiles, the product of mixing zone width

and center-line velocity should remain constant throughout the second regime. This

product changed 1.5 percent from the value at the end of the core at x/D = 50, and

2.8 percent at x/D = 100. Even though the excess jet momentum is not exactly conserved

in the calculations because of the ducted boundary condition, the results are considered to

conserve excess momentum adequately when the inprecision of most experiments is taken

into account.

Effect of Velocity Ratio on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 1

As presently formulated, the integral analysis cannot be used for zero secondary

velocity. Therefore, all computations of flows with nominal zero secondary velocity

were made with a secondary velocity 0.01 times the maximum velocity in the flow field

(u 1 or Uo). The fully developed two-dimensional shear layers were computed as thin

shear layers at the boundary of a large axisymmetric jet; the duct radius r w was set

equal to 100r o for these cases. In no case did the predicted shear-layer thickness

exceed 2 percent of the jet radius.

Computations for test case 1 were made for u2/u 1 = 0.01, 0.2, 0.4, 0.6, and 0.8.

The results, shown in figure 9 (test case 1), fall on the classic relationship
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_o _ Ul - u2

uI + u2

where _o = 12.9 for u2/u 1 = 0. The standard relation for _ used in this computa-
tion becomes

3.12

db/dx

for the cosine profile. It should be noted that _-- 12.9 by this definition corresponds

to a = 12 when the cosine profile midpoint slope is matched to the widely used error

function profile. The fully developed R T varied negligibly from 143 over the entire

range of u2/u 1.

Effect of Mach Number on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 2

Results for test case 2 are shown in figure 10(a). The computations were made with

u2/u 1 = 0.01; therefore, all a values are about 2 percent too large. The ratio ao/a ,

where ao is the value at M 1 = 0, is shown in figure 10(b), along with the value of fully

developed R T. Based on available experimental information on a, the predicted ao/a

probably decreases too abruptly in the M 1 range of 0.5 to 1.5. The predicted a values

in this M 1 range can be altered by slight refinements of the a 2 function in the appro-

priate R T range. The predicted _ values are considered to be good at M 1 = 2 and

Ml=3.

Effect of Density Ratio on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 3

The computations for test case 3 were made for low-speed flow and u2/u 1 = 0.2.

Results for a and R T are shown in figure 11 as a function of pl/p 2. Evaluation of

the a predictions at high pl//P2 is nearly impossible because of the lack of experi-

ments in this range. The a results for this case are not influenced by the factor which

causes the density ratio, that is, temperature difference or molecular weight difference.

In general, very large axial distances were required to approach the fully devel-

oped condition in all these shear-layer computations. All the flows were computed for

an axial distance of several hundred initial shear-layer thicknesses; such distances were

required to approach closely the fully developed condition unless the initial shear stress

was luckily chosen to be very close to the fully developed value. These results clarify

the extreme difficulty in accomplishing a shear-layer experiment in which the flow truly

approaches a fully developed condition.
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Maestrello and McDaid Axisymmetric Jet - Test Case6

The computationsfor test case6 were madein two ways. In the first (curve a,
fig. 12), the experimental profile at x/r o = 2 was fitted with a cosine profile, and the

computations were started with a fully developed shear stress. The predicted rate of

mixing is too large; therefore, the shear stress does not yet approach the fully developed

value at x/r o = 2 but is somewhat lower. The computations were also started at x = 0,

with negligible initial boundary layer, fully developed R T and r i corrected to achieve

the excess momentum shown at x = 2roo This second computation (curve b, fig. 12)

yields a first regime which is somewhat too long, but the results are better than those of

the first computation.

The abrupt change in center-line velocity at the end of the first regime is charac-

teristic of the integral method but is of little concern unless the main interest is in the

transition region at the end of the potential core.

Eggers Supersonic Jet Into Still Air - Test Case 7

The prediction of this well-defined experimental flow (test case 7) is very satis-

factory. (See fig. 13(a).) Computations were started by assuming a negligible initial

boundary layer and fully developed R T (from fig. 10(b)). The predicted potential core

is slightly longer than that shown by the experiment, but the far-field agreement is excel-

lent. The predicted velocity profiles at x/r o = 8, 27, and 99 are also satisfactory.

(See fig. 13(b).) These profiles illustrate that the cosine profile approaches zero at the

outer edge of the layer more rapidly than does the experiment; the cosine profile is gen-

erally better for two stream flows.

The predicted axial variation of R T (fig. 13(c)) shows a very large change in R T

for this flow (from 283 to 82). Thus, most of the a 2 - R T function (fig. 7) was used in

this prediction.

G.E. Heated Subsonic Jet - Test Case 8

The experimental velocity profile at x/D = 2.79 was fitted with a cosine profile;

the computations were started with this velocity profile and fully developed R T. Pre-

dictions of both center-line velocity and center-line static temperature are very satis-

factory for test case 8. (See fig. 14.)

Forstall Jet in Moving Stream - Test Case 9

This flow (test case 9) was computed by assuming a thin initial boundary layer and

fully developed RT; r i was corrected to yield the experimental excess momentum and

the actual duct radius rw/r o = 16 was used for the prediction. The predicted center-
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line velocity agrees very well with the experiment at all axial locations. (Seefig. 15(a).)
The detailed far-field behavior of the excess center-line velocity is illustrated in the log
plot (fig. 15(b)). Becauseof the assumptionof unity Prandtl andLewis numbers, the pre-

dicted _ is identical to the excessvelocity (uc - Ue)/(uo - Ue)o Predicted half-
velocity width (fig. 15(c)) agrees well with the experiment for x/D up to 25, but falls
about 10percent under the experiment at x/D = 80.

Chriss Hydrogen Jet in Moving Air Stream - Test Case 10

This flow (test case 10) was computed in two ways. In the first, a cosine velocity

profile was fitted to the data at ×/D = 2.97. This profile, along with the experimental

shear stress shown in reference 22 (R T = 98.3), was used to start the computations.

Predicted results for the center-line velocity are fairly good (fig. 16(a)), but the pre-

dicted rate of decay of center-line concentration is too low. This type of concentration

prediction is typical of the integral analysis, since it is limited to unity turbulent Prandtl

and Lewis numbers.

The second computation was started at x = 0 with small initial shear layer thick-

ness and fully developed shear stress (R T = 120). Predicted center-line velocities

(fig. 16(b)) are somewhat better than those for the first computation, but, of course, the

center-line concentration decay rate is again underpredicted.

Eggers and Torrence Axisymmetric Jet in

Moving Air Stream - Test Case 11

This flow (test case 11) has wakelike behavior and it is unlikely that it can be prop-

erly predicted by a constant-pressure mixing analysis. In spite of the thick initial bound-

ary layers and the velocity ratio (Ue//U j = 1.36), computations were started at x = 0 with

thin initial shear layer and fully developed shear stress. The predicted center-line

velocity distribution is surprisingly close to the experiment. (See fig. 17.) Wakelike jet

flows, with jet momentum flux less than external stream momentum flux, tend to have

relatively high relative shear levels (low RT) , and it is possible in such flows that the

influence of the initial conditions does not persist very far downstream in the flow field.

This aspect should certainly be further explored.

Eggers Hydrogen Jet in Moving Air Stream - Test Case 12

As with the preceding case, this flow (test case 12) has jet momentum flux less than

external stream momentum flux. In this case, however, the jet momentum deficit is

caused by density rather than by velocity (Ue/U j = 0.37). Again, the computations were

started with a thin initial shear layer and fully developed R T. Although the length of the
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first regime is somewhat overpredicted (fig. 18i, the downstream prediction for both

center-line velocity and center-line concentration is very good. In view bf the unity

Schmidt number assumption, the good prediction of both velocity and concentration was

unexpected; the results are undoubtedly caused in part by the neglect of the initial bound-

ary layers.

Chevray Axisymmetric Wake - Test Case 15

Computation of this flow (test case 15) was started at x = 0 with an equivalent

second regime cosine velocity profile; the cosine profile was selected to match the experi-

mental momentum defect and mass flow in the shear layer. An initial value for R T was

established by equating the experimental TKE flux (ref. 23) with the TKE flux in the equiv-

alent fully developed profile. The theory does not predict the initial rapid acceleration of

the center-line velocity (fig. 19(a)) for x/D < 2. This rapid acceleration is caused in

part by a favorable pressure gradient just downstream of the body; the axial pressure

gradient was neglected in the calculations. For x/D > 4, the center-line velocity defect

W is underpredicted; however, the log plot of W against x (fig. 19(b)) shows that the

predicted decay rate at x/D = 18 is somewhat less than the experimental rate. The

predicted axial distribution of W follows an x -1 decay from x/D = 5 to the maximum

axial distance computed (x/D = 200). Better prediction of the decay rate at x/D = 18

would require less dissipation than that used in the calculations. On the other hand,

achievement of the x-2/3 decay rate for W, as predicted for self-preservation, would

require much higher dissipation. One can only conclude that (1) the far-field dissipative

mechanism is much different from the near-field mechanism, or (2) self-preserving axi-

symmetric wakes are never attained. The lack of far-field experiments on the axisym-

metric wake makes it difficult to decide which of these conclusions is correct.

The predicted axial variation of R T (fig. 19(c)) shows that R T never approaches

a constant value but continuously decreases in the axial direction.

Demetriades Supersonic Axisymmetric Wake - Test Case 17

This flow (test case 17) was computed by fitting a cosine profile to the experimental

velocity data at x/D = 17, and by using the R T value quoted by Demetriades (ref. 24)

for x/D - 17. The plot of 1 against x/D (fig. 20(a)} shows that the experimental
W3/2

center-line velocity defect is well predicted. A log plot (fig. 20(b)) shows that the pre-

dicted W decays even more rapidly than an x -I decay. Again, this axisymmetric

wake prediction is very different from the x -2/3 decay of W which is required for

self-preservation. The predicted axial variation of R T (fig. 20(c)} is considerably dif-

ferent from that shown by Demetriades (ref. 24); he showed R T to be nearly coi_stant

at 32 for x/D greater than about 30.
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Fully DevelopedAxisymmetric Jet - Test Case 18

This important andfundamentalflow (test case 18)was computedfrom x = 0 by

assuming a thin initial shear layer and a fully developed near-field shear stress

(R T = 143). The predicted center-line velocity (fig. 21(a)) follows an x -1 decay for

x/D greater than 15. Although the predicted center-line velocity agrees well with the

experiment of Albertson et al. (ref. 25) at all axial stations, the agreement with the

Wygnanski and Fiedler experiment is fairly satisfactory only for x/D > 40. The

Wygnanski and Fiedler flow apparently does not approach self-preservation as quickly

as do other reported jet experiments; the terms "fully developed" or "self-preserving"

are questionable when applied to the Wygnanski and Fiedler experiment.

The predicted velocity profile (fig. 21(b)) is based on the local mixing-zone growth

rate at x/D = 60. Compared with the experimental profile of Wygnanski and Fiedler,

the half-velocity radius is well predicted, but the predicted profile is fuller near the

center line; the predicted profile is closer to the empirical profile of Albertson et al.

(ref. 25) in the high-speed half of the shear layer. The theoretical profile approaches

zero velocity in the outer part of the shear layer more rapidly than does the experi-

mental profile. The predicted TKE level (fig. 21(c)) agrees well with the Wygnanski and

Fiedler experiment in the outer half of the profile, but the predicted center-line TKE

level is about 13 percent below the experiment. It should be noted that the predicted TKE

level is satisfactory in the region of peak shear stress. Predicted axial variations of

R T and the TKE profile parameter w are shown in figure 21(d). Even though the

center-line velocity closely follows the x -1 decay (required for self-preservation)

downstream of x/D = 15, R T and w do not become constant until considerably far-

ther downstream.

G.E. Heated Supersonic Jet - Test Case 19

This flow (test case 19) was computed by fitting a cosine profile to the velocity data

at x/D = 2.79, and by using a fully developed initial shear stress. Agreement between

predicted and experimental center-line velocity (fig. 22) is fairly satisfactory.

Paulk Jet in Moving Stream - Test Case 20

Even though the initial boundary layers are fairly thin in this flow (test case 20), the

velocity ratio (Ue/U o = 0.48) exceeds that where a fully developed initial shear stress can

be used. A potential core length of approximately 12D is predicted with the assumption of

a fully developed initial RT. The control volume initial region analysis was applied with

5a = 0.082r o and 6j = 0.063r o. The experimental boundary-layer shapes are not well

defined in reference 22; therefore, the initial region computations were carried out for

two values of the velocity profile exponent (n a = nj = 1/4 and n a = nj = 1/7). The result-
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ing values of b, ri, and shear stress were then used to start (at x = 0) the computa-

tions for the entire flow field. Both computations are shown in figure 23; the predicted

flow field is obviously not very sensitive to the initial boundary-layer shape. Both pre-

dictions agree fairly well with the experimental center-line velocity but, of course, the

experimental center-line concentration decays more rapidly than predicted.

It should be noted that the experimental values of (u c - Ue)/(u o - Ue) were com-

puted with u o = 390 ft/sec (119 m/sec) and Ue = 187 ft/sec (57 m/sec), the observed

values of u o and u e downstream in the flow field.

Chriss Hydrogen Jet in Moving Air Stream - Test Case 21

As with test case 10, this flow (test case 21) was computed (1) with experimental

initial conditions, and (2) with fully developed R T at x = 0, The initial shear stress

for the first computation was taken from reference 22 at the most upstream axial station

for which a shear stress was measured in this flow. The predicted center-line velocity

agrees well with experiment (fig. 24(a)) but, as usual, the center-line composition decay

is underpredicted. The computations which were started at x = 0 are shown in fig-

ure 24(b); the agreement with experiment is poor. Therefore, it can be concluded that the

velocity ratio of this flow (Ue/U o = 0.31) exceeds that for successful use of a fully deyel-

oped initial shear stress.

Eggers Hydrogen Jet in Moving Air Stream - Test Case 22

As with test cases 11 and 12, this flow (test case 22) is wakelike in that the jet

momentum flux is less than the outer stream momentum flux. The flow also has very

thick initial boundary layers. In spite of the thick boundary layers and the velocity ratio

(Ue/U j = 0.54), computations were started at x = 0 with a thin initial shear layer and

with fully developed R T. The predictions (fig. 25) are not as bad as could be expected,

but the analysis does not predict qualitatively the behavior of the center-line velocity.

It is unlikely that this flow will ever be properly predicted with an analysis which ignores

the significant pressure gradients in the flow field.

CONCLUDING REMARKS

When the rather small investment of empirical information on turbulence structure

is considered, the quality of the mean flow predictions is surprisingly good. Experience

in computing a variety of flows has not indicated that the assumption of universal TKE

profile shapes is grossly incorrect. The utility of the admittedly oversimplified model

for turbulent dissipation has been significantly increased by relating the dissipation coef-

ficient a 2 to the local turbulent Reynolds number. _.,
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A persistent point of criticism about TKE methods for free shear flows has been

that the required detailed information on initial conditions is not generally available for

engineering flows. Experience has shown that a considerable number of practical flows

can be computed without detailed information on the initial conditions. For Ue/U o less

than 0.25, specifying a fully developed initial shear stress works very well. Wakelike

flows, such as test case 12, seem to be fairly insensitive to initial conditions. For jet

flows with velocity ratio Ue/U o greater than 0.25, the control volume initial region

analysis shows promise. The very limited experience with this initial region analysis

for constant density flows has indicated that the results are not overly sensitive to the

initial boundary-layer characteristics; good guesses about the initial boundary layers
seem to be sufficient.

Turbulent kinetic energy methods, of which this method is a simplified example,

represent a fundamental improvement over eddy-viscosity models in that more of the

physics of the turbulent motion is taken into account, albeit crudely. It appears that

these methods have been developed to the point where they are routinely applicable to

engineering calculations on a broad class of free turbulent flows.
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TABLE I.- INITIAL CONDITIONS FOR THE EXPERIMENTAL FLOWS

Test Flow
case

Maestrello and McDaid axisymmetric jet,

M o = 0.64

x I bl ril RT,I

2r o 0.87r o 0.52r o 190

• 0 .01r o .86r o 190

7 Eggers supersonic jet, Mo = 2.22 0 .01r o ro

8 G.E. heated jet, M o = 0.7 i 5.58r o 1.70ro .18ro

9 Forstall jet in moving stream, 0 .01r o .88r o

Ue/U o = 0.25

10 Chriss H2 jet in air stream, 5.94r o 1.132ro .412ro

Ue/U o = 0.16 0 .01r o ro

11 Eggers and Torrence jet in moving stream 0 .01r o r o

12 Eggers H 2 jet in air stream, M e = 1.33 0 .01r o ro

15 Chevray axisymmetric wake 0 .0257D 0

17 Demetriades axisymmetric wake, 17D 1.00D 0

Me = 3

18 Fully developed axisymmetric jet 0 .01r o

19 G.E. heated jet, Mo ffi 1.36 5.58ro 1.30ro

20 Paulk jet in moving stream, 0 .113r o

Ue/U o ffi 0.48 0 .122ro

21 Chriss H 2 jet in air stream, 5.15r o 1.17r o

Ue/Uo = 0.31 0 .01r o

22 Eggers H2 jet in air stream, Me = 2.5 0 .01r o

r o

.46r o

.916r o

.923r o

.464r o

ro

ro

Notes

Experimental profile, fully developed RT

r o corrected for momentum

Fully developed R T

293 Fully developed RT

212 Experimental profile, fully developed R T

143 r o corrected for momentum

Fully developed R T

98.3 Experimental profile and RT

120 Fully developed R T

130 Fully developed R T

125 Fully developed R T

1930 Equivalent cosine profile, u c = 0.083u e

48 Experimental profile. R T quoted

by Demetriades

143 Fully developed RT

238 Experimental profile, fully developed R T

36.8 Initial condition analysis, na = nj = 1/4

42.9 i Initial condition analysis, na = nj = 1/7

49.2 Experimental profile and RT

130 Fully developed RT

110 Fully developed RT
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DISCUSSION

S. W. Zelazny: You assume that the Schmidt number was unity in your analysis. Wouldn't

it be a simple exercise to remove that restriction by introducing an additional equation?

C.E. Peters: Yes sir, we plan to do that. It's a little frustrating because obviously I

have access to Tom Harsha, who sits 15 feet away, and for those flows where I'm inter-

ested in a nonfully developed case or nonunity Schmidt number I can always use the finite-

difference results. But there are certain flows that I can handle with the integral method

we can't handle yet with the finite-difference method. So I will probably go ahead and try

to do something to approximately handle nonunity Schmidt number.

S. C. Lee: You mentioned this method you have has some advantage over finite-difference

schemes.

C. E. Peters: I didn't refer to it as an advantage, I called it a difference. It's a different

set of approximations. Instead of assuming an a 1 function we just assume that the tur-

bulent kinetic energy profile shapes are invariant as a different approach.

S. C. Lee: Perhaps you could summarize for us what would be the difference between

this method and the finite-difference method as Harsha presented it.

C. E. Peters: The point is that my kinetic-energy profiles are universal in the given

position in terms X/Xcore. Because of the variable-density and variable-velocity ratio,

the shear profile varies from flow to flow; that is, the normalized shape of the shear pro-

file. Therefore, a 1 varies in shape from flow to flow, a condition implied through the

whole analysis. I backed it out for some flows, and it does vary from flow to flow. So

it's an alternate approximation to saying something about a 1. That's the only fundamen-

tal difference. Tom and I are using essentially the same dissipation, and, of course, in

return for my specifying the profile shape of kinetic energy, I don't have to say anything

about diffusion.

M. V. Morkovin: I think this is another case where we can benefit from the comparisons

of different methods. Could you tell us something about your general experience, when

you prefer to use Harsha's method to yours and how much more complex it is. I gather

you do have some problems in sensitivity to initial conditions. If you could give us a

little bit of briefing on that, I think it would be highly valuable.

C. E. Peters: I'll give you my experience first and Tom can comment on it if he likes.

The implication of my being able to use a fully developed initial shear stress up to a

velocity ratio of 0.25 merely says that these flows are strong shear flows, and they wipe

out any small inaccuracies in the initial condition fairly quickly. So that seems to be a

viable procedure. When the flows become wake-like in nature, of course, the initial con-

ditions persist indefinitely; in that case my analysis is not applicable at all. For example,
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if the hole never fills up, it's not useful. So I limit it to a velocity ratio of maybe 0.7 or

0.8 as the upper limit. I haven't tried to define carefully an upper limit here. Certainly,

the finite-difference method is much more powerful in a sense of handling nonsimilar ini-

tial conditions and so forth. It's interesting to note the sort of generalized information

one can back out with an alternate set of assumptions. For example, about a 1 profiles.

So in addition to the practical requirement that we have a better transport model for our

"nuts and bolts" engineering calculation schemes, we are also interested in some of the

implications in general.

Anon.: Which costs more ?

C. E. Peters: This is embarrassing for me because Harsha's program runs faster. But

one of the reasons is that this program is a mess; it does lots of different things. This

regime is far beyond what we were talking about in this particular calculation. We even

do circulating flows with them by using patched up techniques. So the program is not

optimized for this kind of flow. If we build a constant-pressure version, I am sure we

can get our run time down perhaps an order of magnitude.

I. E. Alber: Your calculation of the spreading parameter variation with Mach number for

the two-dimensional shear layer shows quite an increase in the variation of sigma with

M. That is your figure 10. Now in this same calculation by Harsha, which I believe is

a very similar model to yours, he shows hardly any variation at all.

C. E. Peters: We can't explain that - it's different. Tom, would you care to comment?

P. T. Harsha: Well, the only comment I could make really is that with shear layers I was

forced to use an almost patently ridiculous a 1 model which Peters does not have to use

because his a 1 comes out of shear stress profile and kinetic energy profiles. I would

suspect that the problem is that the a 1 model that I used is simply inappropriate for the

shear layer.

J. M. Eggers: I was wondering if you or anyone else here could comment on what we

could do to improve the modeling in the transition region to get rid of this somewhat

atrocious inflection point at the end of the core region.

C. E. Peters: The sharp corner on the center-line velocity distribution is characteristic

of integral methods, at least as we have put them together. It doesn't bother me very

much because most of the required information is not centered in that particular region,

but the finite difference smooths it out. That's the idea of patching together two regimes

discontinuously. It's bound to give a sharp corner with an integral method without some

relaxation of profile shapes locally or something.

D. B. Spalding: I have a question and a comment about R T. The question is a simple

one - in the paper R T seems to be defined twice, once it has the difference between
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uc and ua on the top and in the secondit has the square of those. Which of thosewas
actually used?

C. E. Peters: I think the difference comes because when you plug in the midpoint velocity

profile slopes, it is in terms of delta u over width and I think that's where it comes from.

D. B. Spalding: The other remark I want to make is that this quantity appears to be

related to the ratio of the production term to the dissipation term which Rodi found also

to be significant, and it will be interesting when we have time just to compare whether

there was a quantitative connection between your function of R T and our function of

production over dissipation.

C. E. Peters: Yes, I certainly agree. We haven't had time to give much thought as to

what this R T function means in terms of structure, but it would be nice if we could at

least rationalize, in terms of energy spectrum or whatever, why the length scale changes

or the R T changes the effective dissipation.

D. B. Spalding: At least you can see that with your definition, when u c equals Ua,

there will be no shear stress, so production is zero. And so R T is zero; it's the same

as Rp/e is equal to zero. Even closer quantitative connections are being worked out.

C. E. Peters: It was also interesting for me to read in Joe Schetz's written version that

the constant in his eddy-viscosity model perhaps should be related to a similar parameter

to this - the ratio of U prime over delta U. So, this parameter is obviously developed

by mean flow correlations during the near field of the wire and jet series, and I just

stumbled across it. I think it is better than a mean flow parameter, such as Mach num-

ber or some density parameter, and I think it is related to the turbulent structure.

S. Corrsin: I was interested in R T because the numbers look so much larger than the

ones I computed 15 years ago.* Did you compute it for a wake also?

C. E. Peters: Yes, it was shown in the paper I think on the Chevray case. Remember my

length scale is the full width of the shear layer; that is, from the centerline out to the

outer edge.

S. Corrsin: Well, I was just looking at my paper from 1957 in which is used the half-

width and the full-velocity difference. I got a value of 12 for Townsend's wake.

C. E. Peters: I didn't do the two-dimensional wake.

S. Corrsin: And for the round jet, I defined it in terms of the momentum diameter and

it came out to be 15.

Corrsin, S.: Some Current Problems in Turbulent Shear Flows. Symposium
Hydrodynamics (Washington, D.C.}, Sept. 24-28, 1956, pp. 373-400.

on Naval
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C.E. Peters: My number of 75 for the asymptotic value for the fully developed jet is con-

sistent, considering the difference in length scale definition, with the number tabulated

experimentally by B. G. Newman.

S. Corrsin: By whom?

C. E. Peters: Newman, in his survey paper a few years ago. So I think it is consistent

with other quoted information.

S. Corrsin: I can make a physical comment about this concept. I first heard it suggested

back in the early 1940's by Hans Liepmann, who proposed the idea that perhaps turbulent

shear flows tend to keep themselves in a state of lower critical Reynolds number based

on the turbulent viscosity, and it's a sort of self-destroying system that always disturbs

itself violently. That was sort of the reason that I computed these. For bounded flows,

they seem to vary more, but the general idea was that for shear flows without boundaries

there are probably universal constants for each geometry.
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OPEN FORUM

f

A. Roshko: I_Ldlike to tell you about some experiments on turbulent free shear layers

in pressure gradients that we've been able to do. I know that Stan Birch said yester-

day that effects of pressure gradient are not included in this conference, but maybe it

will give us something to think about for the next conference. Actually I probably

ought to be talking about the older results (with no pressure gradient) since many of

you probably haven't seen them or did not hear Garry Brown's talk 1 in London last

fall. Furthermore, I realize that there is considerable skepticism about them, par-

ticularly about the large vortex structures which we see (fig. 1). We were a little

startled ourselves when we saw them in our first pictures but are now convinced that

they are quite real and are basically two dimensional, with a scale that increases on

the average with x. One thing I'd like to mention is that in the recent measurements

of Spencer and Jones, 2 they find a definite spectral peak in their turbulent shear lay-

ers (in homogeneous flow). Using the average vortex spacing at any point from our

pictures (actually movies) and assuming that they are convected with average speed

I(UI+ U2) , we calculate a dimensionless frequency nox/U1 = 1.7 as compared with

2.1 from the Spencer and Jones data at U2/U1 = 0.3. (Our case is for U2/U 1 = 0.38

and p2/Pl = 7.) Thus, we feel that the spectral peak measured by Spencer and Jones

corresponds to the passage of the vortex structures we see in our pictures.

Another thing that has worried people about the experiments is the effect of the chan-

nel walls. These are used to set the pressure gradient and, for the case we are dis-

cussing right now, they were set for uniform pressure along the flow. Now we also

wondered about the effect of the fairly close proximity of the walls, and so we made

some measurements on turbulent shear layers in homogeneous flow. The results

agreed fairly well with those of other investigators on homogeneous flows.

Now, for the case of a mixing layer in pressure gradient, here's the setup (fig. 2). Pl

and P2 do not vary with x. Similarly U 1 and U 2 are constants in the case of

zero pressure gradient. But if the pressure gradient is not zero then U 1 and U2

are functions of x. Bernoulli's equation shows that if we try to maintain U2/U 1 the
/

1Brown, Garry; and Roshko, Anatoh The Effect of Density Difference on the Turbu-
lent Mixing Layer. Turbulent Shear Flows, AGARD-CP-93, Jan. 1972,
pp. 23-1 - 23-12.

2Spencer, Bruce Walton: Statistical Investigation of Turbulent Velocity and Pressure
Fields in a Two-Stream Mixing Layer. Ph.D. Thesis, Univ. of Illinois, 1970.

Spencer, B. W.; and Jones, B.G.: Statistical Investigation of Pressure and Velocity
Fields in +" _"'_*'"'_"+_,,e .......... Two-Stream _xing ,_,,_'............... A,^ A Paper _,To. 71=613,
June 1971.
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Experiment for a = - 0. 18

Figure 2

same at all x, then, in general, the pressure will not develop the same way on both sides

layer. But, for one particular case, namely P2U22 = PlU12, the pressure p(x)of the

will be the same on both sides. For that one particular case, you might hope to get an

equilibrium or similarity shear layer even in a prdssure gradient.

_ x dUl_ x dU2

Well, if you play with this idea, you find that, if the parameter a U 1 dx U 2 dx ' the

Falkner Skan parameter, is a constant, then you would expect to have an equilibrium shear

layer. It will still spread linearly but not necessarily at the same rate as for a = 0

where y/x is still the similarity coordinate.

To set up these flows in our apparatus we had to diverge the walls (for adverse pressure

gradients) and put slots in them to allow outflow helped by some resistance added at the

channel exit. One of our graduate students, M. Rebollo, did the experiments. It took

some adjusting and playing around but we think we produced an equilibrium flow and I'd

like to show you those results.

Figure 3 shows, for comparison, a profile of dynamic pressure for the case P2U22 =PlU12

and with a = 0. Here similarity is shown by the fact that the points all fall on one curve

when plotted against _ = y/(x - Xo). Values of x were 2 to 3 inches and x o was about

-0.20 inch. This is a stronger test of similarity than one can get from velocity profiles or

density profiles, since here we have points of maximum and minimum that all have to be

the same for every value of x. Keep in mind the horizontal scale; it is a measure of the

spreading angle; you see that the layer extends over a width of about 0.2 in y/x. Also

noted is the location of the dividing streamline r/o.
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The next figure (fig. 4) shows the corresponding result for an adverse pressure gradient

with _ = -0.18. First of all, you see that there's a tremendous effect on the spreading

angle - it's just about doubled (the scale is the same as before). There's also a larger

dip at the minimum. If you had a more adverse pressure gradient, you'd reach zero

velocity at the minimum and would be tending to flow reversal in this part of the shear

layer.

One of the better tests for existence of similarity or equilibrium is that the turbulence

structure shows similarity, and we've recently begun to make measurements of this. We

are able to measure the fluctuating density, or concentration, in the flow, using the probe

developed by Brown and Rebollo. 3 The root mean square of the concentration fluctuation

does tend to fall on one similarity curve, indicating equilibrium. Shown in figure 5 is the

case for e = -0.18 compared with that for _ = 0. Again you see the large change in

the width of the layer.

3Brown, G. L.; and Rebollo, M. R.: A Small, Fast-Response Probe To Measure Compo-
sition of a Binary Gas Mixture. AIAA J., vol. I0, no. 5, May 1972, pp. 649-652.
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From the measurementsof the meandensity profile and the meanvelocity profile, you
can computethe shearing stress distribution; in figure 6 is a comparison of this for

= 0 and _ = -0.18. There is quite a difference in the maximum shear stress.
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Figure 6

0.5

/

The next figure (fig. 7) shows the same comparison for the turbulent mass diffusion pry'.

There is not a great difference in the maximum for the two cases.

The last figure (fig. 8 on p. 636) is a summary of some of the parameters that can be

computed from the mean profiles. For example, the maximum shear stresses and mass

diffusions are shown. If you use the measured and computed profiles to infer eddy vis-

cosities and diffusivities you find the results shown here. (The asterisk indicates values

on the dividing streamline.) The eddy viscosity, normalized with x, is much larger for

the case _ = -0.18. Even if normalized with 5 (which itself is larger in the adverse

gradient), it still is about 50 percent larger than for a = 0. The eddy diffusivity nor-

malized with x is not much changed. But, most interesting, the turbulent Schmidt num-

bers here are nothing like what we've been hearing about today or at any other time that

I know about. They are down at around 0.2 and 0.3 rather than about 0.8 to 1.
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In closing, I'd like to say that Dr. Garry Brown was very much involved in this work until

he left for Australia a year ago, Mr. Manuel Rebollo made most of the measurements you

have seen today, and the research is sponsored by the Office of Naval Research.

P. A. Libby: Does that mean that the concentration profiles and the velocity profiles are

not related according to the Crocco relation?

A. Roshko: Yes, I think so. I think that when you have this tremendous density difference

which is continually maintained, the physics is rather different from where you have a

small concentration that is passively floating around. I think all the ideas about Schmidt

numbers near l come from cases where the contamination is rather small - that is, that

there is not a large density difference or concentration difference.

I. E. Alber: I'll just ask you the question that I asked you before in private for the whole

audience to comment on. Do you expect that you would get the same structure in the shear

layer if you had an initial turbulent boundary layer ahead of the separation point, com-

pared with the case which you ran where you had laminar initial boundary layer? •
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A. Roshko: Well, I really don't know the answer, but I don't think so. Again, my feelings

about this relate to some of my ideas that were kicked around here in regard to the

stability - that this is really an instability phenomenon. For example, I think that insta-

bility in the supersonic layer would be rather different from the instability in the subsonic

layer. I think, in fact, it accounts for the difference between the a in the supersonic and

the subsonic cases. I think that supersonic layers are stiffer in some sense than the sub-

sonic ones.

I. E. Alber: But the instability mode would be different depending on the shape of the ini-

tial profile. Then you would have a much fuller profile in the turbulent case than the

laminar case. You may expect a different response.

A. Roshko: It's not the initial profile that matters, it's the average profile at any point in

the developed layer, which has a universal shape. In other words, the instability from any

point in the shear layer is determined by the profile at that time. So I don't think that, if

I understand you correctly, the initial profiles of the separation points should matter if

there is any validity at all to these ideas about mean flow similarity.
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V. W. Goldschmidt: There are three things I want to refer to. These are measurements

taken related to the problems of (a) upstream effects, (b) similarity, and (c) stability.

Figure 1 (from unpublished data) relates to upstream effects. It shows the widening rates

of plane free jets (the inverse of a) on the ordinate. Along the abscissa is shown the tur-

bulence intensity at the mouth of the different jets. These values may be in slight absolute

but not relative error. As you see there is an increase in widening rate with upstream

turbulence intensity. Shown, just for reference, is where a = 9 and 11 would be located.
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Figure 2 considers the macroscale downstream of a circular jet. The macroscale is on

the ordinate, a dimensionless radial coordinate on the abscissa. The three curves are

for three different x/d stations. Never do we get them to scale with anything. Although

the velocity profiles look similar, the turbulence intensity looks similar, and the Reynolds

stresses seem to reach similarity, the macroscales do not. These results were published

in the Trans. ASME, Ser. D: J. Basic Eng. 4 Similar results (still unpublished) were
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4Goldschmidt, V. W.; and Chuang, S.C.: Energy Spectrum and Turbulent Scales in a
Circular Water Jet. Trans. ASME, Ser. D: J. Basic Eng., vol. 94, no. 1, Mar. 1972,

pp. 22-26.
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noted for a plane jet. The problem of some kind of periodicity or stability or something

coming in is alluded to in figure 3. 5 Trying to answer the question, '_Do jets flap?," two-

hot-wire probes were placed on opposite sides of the center of a plane jet. The time

cross correlation of these two is shown in the figure. A negative correlation for no time

delay on either of the signals (T = 0) would imply or suggest flapping. The figure shows

that there is flapping, and what is interesting is that there is a certain periodicity to this

flapping.
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5Goldschmidt, V. W.; and Bradshaw, P.: Flapping of a Plane Jet. Phys. Fluids, vol. 16,
no. 3, Mar. 1973, pp. 354-355.
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V. W. Goldschmidt: I have a question for Jack Herring that we discussed after his pre-

sentation, but I think it would be worthwhile to bring it to the group as a whole. My ques-

tion was whether, as you recall in the model proposed, there was a need for what you call

a random force or a random wave mix that regenerates and brings energy back into the

flow. The distribution of this random input was made random throughout all wave num-

bers. My question to him was can this input be made selective over wave numbers and,

hence, try to simulate how the turbulent flow gains energy from the mean flow and how

dependent would his results be on the distribution of this random input. Did I make this

question correct?

J. R. Herring: Yes. It is the same question you asked yesterday. Perhaps I wasn't very

clear on this point. What I meant yesterday was that you start by modeling the turbulence

"force," the (V._V) term (the nonlinear terms in the Navier-Stokes equations), as if they

were normally distributed multipoint Gaussian. In having made the assumption that the

turbulence force could be so modeled, you need no information about the spectral shape

because you are going to compute that in a self-consistent way after you have finished

constructing the theory. Next, having made the Gaussian assumption, you immediately

discover that along with such a random stirring force, in modeling turbulence, you will

need an eddy viscosity because random stirring always increases the energy of systems

to which it is applied. This eddy viscosity (really a generalized eddy viscosity) is deter-

mined by the spectrum of the random stirring force representing the "turbulence force"

through the condition of energy conservation. In that case you have a model with no

empirical constants and this is Kraichnan's direct interaction approximation. 6 Of course,

the discussion here was not a derivation but rather a description of the ingredients of the

theory. However, a derivation along these lines has been developed by Phythian. 7

V. W. Goldschmidt" If I could elaborate on that, the reason for the question is that we

found that when we use different distributions for this random stirring force we could gen-

erate different macroscales on the resulting flow, although the microscales remained

basically unchanged.

M. V. Morkovin: Could you elaborate on your critique of this subgrid-scale closure? As

I understood you, because of a mismatch of the statistical behavior on one side of the large

wave numbers and the actual computed nonstatistical values on the other side of the wave-

number interface, you do have propagation of errors into the larger scales. You made

some very definite statements about the amount of spoiling that this error propagation

would do to your original results.

6Kraichnan, Robert H.: Direct-Interaction Approximation for Shear and Thermally
Driven Turbulence. Phys. Fluids, vol. 7, no. 7, July 1964, pp. 1048-1062.

7phythian, R.: Self-Consistent Perturbation Series for Stationary Homogeneous Turbu-
lence. J. Phys. A: Gen. Phys., vol. 2, no. 2, Mar. 1969, pp. 181-192.
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J. R. Herring: Yes, this is a very topical subject now because it limits the ultimate pre-

dictability of equations that you are using. H you make small error perturbations on the

small-scale structures, these feed back and contaminate the large scales. Hence, any

deterministic aspects thatthese large scales may originally have can be ruined. I believe

that the figure quoted now is that within about three eddy circulation times a given scale

will be contaminated with the error originally residing at very small scales. As to how

this affects the large scales in a real problem depends upon the geometry of the flow,

whether the flow has boundaries and so on. The defenders of the subgrid-scale theory

argue that the method is to be used to forecast "typical" flows, and as such, the theory

need not tie back to any particular initial conditions.

M. V. Morkovin: Isn't there a difference between behavior in three-dimensional turbu-

lence and two-dimensional turbulence? Two-dimensional turbulence, as long as we are

away from the small viscous scales, should have circulation preservation, vorticity pres-

ervation. Andso automatically you do have a chance of cascade upstream, I mean up to

the larger scale. Is this the problem that you are talking about? Wouldn't the same thing

be true for three-dimensional turbulence?

J. R. Herring: Errors initially in the small scales work their way back to larger scales

in both two and three dimensions. Their penetration into the large-scale regime is

aided - in two dimensions - by the energy cascade to larger scales that you mentioned.

However, the "error cascade" to larger scales occurs in three-dimensional turbulence,

despite the fact that here the energy cascade is dominantly to smaller scales.

P. A. IAbby: I think it would be very valuable for the evaluation committee if Dr. Herring

could make some conjectures about the future prospects of these more deterministic

methods of calculation. He has seen, in the last day or so, some of the complexities

which the engineers have to deal with. I think the answer we would like to hear from him

really is what he thinks in the next 10 years perhaps, when computers become even more

powerful, as to whether or not all the methods that he has heard today would be simply

passe, and we would all be doing, even for relatively simple calculations, these more

advanced methods based on direct integration of Navier-Stokes, direct interaction, or the

subscale closure and things of that sort. I think it would be very valuable for us to have

his notions in that regard for the sort of flows that we have been dealing with here not

boxes.

J. R. Herring: I tried, in the talk to limit myself to simple geometries to get some

insight into whether the parameterizations make sense in terms of a more deductive

theory. When it comes to doing problems with complicated geometries you have in mind

in this conference and at large Reynolds numbers, a direct application of the statistical

theories seems to me out of the question. At best, one can hope for solutions to problems

with simple geometries, such as parallel plate shear flow or cylindrical pipe flow. It
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seems to me that the future value of such statistical methodsmay lie in their ability to
shed light onsimpler closures by way of either generalizing them or determining their
constants. For example, I think that the proposals of Hanjali_ and Launder's model8 are
in some sensesuggestedby the direct interaction kinds of equations,although the latter
are certainly more complicated andlaborious to solve. Possibly one should try to extract
information from the direct interaction theory to get a theory at the level of Hanjali_ and
Launder by assumingshapesfor the various spectra - energy spectra and so on. Some
work has beendonealong this line already by Leslie. 9 That may be a goodavenuealong
which to attack the problem andI have tried to give some indication of how such a calcu-
lation wouldgo at the end of the printed version of my talk. To summarize, then, it would
appear that the future rule at statistical turbulence theory in the type problems discussed
here would be in improving and generalizing existing second-order, single-point moment
closures.

As for the other two approaches,the subgrid-scale closure and the spectral method, these
appear to havea better chanceof beingused directly on complicated problems discussed
here. The subgrid-scale methodhas already beenused for shear flows and thermal con-
vection by Deardorff. 10 Of course, this methodis a model of turbulence andhenceis
opento doubtson this account. However, as I pointedout in my talk, it is a method which
canbe progressively improved (at the expenseof more computer time), andso hopefully
one canavoid the disquieting doubtsof other procedures, where errors are less easy to
assess. This method could be applied, now, to the problems dealt with at this conference.
No onehas doneso, principally I guess becauseof the additional programing neededto
treat the complicatedgeometries you have. Of course, the method cannot, at present,
deal with the boundary layer itself. It seems to me that such a calculation would be very
valuable, because,it would predict so much flow structure, that it wouldbe easy to tell
whether the methodis sensible or not. You cannot do this with the "global-averaged"
procedures described here by, say, Launder andDonaldson,becauseof the averaging over
the turbulent structure.

With reguard to the spectral technique,one must be more guarded. This methoddeals
with all scales, so its principal contribution is at low Reynolds numbers, where there
aren't many. It may serve (andis now serving) as a useful tool in assessing other

8Hanjali_, K.; and Launder, B. E." A Reynolds Stress Model of Turbulence andIts
Application to Thin ShearFlows. J. Fluid Mech., vol. 52, pt. 4, Apr. 25, 1972,
pp. 609-638.

9Leslie, D.C.: Simplification of the Direct Interaction Equations for Turbulent Shear
Flow. J. Phys. A: Gen. Phys., vol. 3, no. 3, May 1970,pp. L16-L18.

10Deardorff, J. W.: A Three-Dimensional Numerical Investigation of the Idealized
Planetary Boundary Layer. Geophys.Fluid Dyn., vol. I, no. 4, Nov. 1970,
pp. 377-410.
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methods, such as the subgrid-scale method. For example, for some of the two-
dimensional calculations carried out at The National Center for Atmospheric Research
(NCAR)by Orszag, the behavior of the large scales seem to be relatively insensitive to
the detailed phasesof the Small scales. All that's apparently required is for the magni-
tudeof the small scales to be approximately correct. Suchcalculations tend, in this case,
to bolster one's confidencein the subgrid-scale method.

S. J. Kline: Something bothers me about that, and I'm not quite sure of all of what you

are saying. Let me try to explain myself. If you try to do what Professor Launder and

Professor Spalding were doing where they were dealing with the ratios of production and

dissipation, then this implies that you are saying something about the production. I am

not at all persuaded from the physical evidence that the nature of production is the same

as the nature of the cascade process in the statistics of decay, which is the box problem.

If that is true, then there is a fundamental gap between the box problem and the kinds of

things that we are doing here. Can you comment on that?

J. R. Herring: I'm not sure that I understand the question.

S. J. Kline: What I am saying, is that those models which seem to fit, for example, the

two-point space-time correlations for shear flows (the only ones that we know that work

at all, and also the visual data, the data that Gupta has taken with I_aufer, and so forth)

suggest that what one sees during the peak periods of production, which is intermittent,

is of a qualitatively different nature from the processes that lead from there to decay.

Now if that is true, then it seems to me that there is a fundamental gap between doing

problems of statistics in which you are dealing with the decay process and cases where

there is strong shear and high turbulence production.

J. R. Herring: Well, maybe I can answer part of that. Let me say as a general comment

that the theories are capable of treating any kind of flow with mean fields (production)

present or not. In my talk, I stressed the decay problem because it is simplest and

because we have more numerical experience with it than with problems having production

terms. I would agree that the physics of turbulent production is fundamentally different

from that of decay; but I think the statistical theory may be flexible enough to handle both

production and "decay." The issue you raised about the intermittency is, however, a

problem with statistical moment theories, and it is not clear to me that they can handle

correctly highly intermittent flows.

J. Laufer: I think that is a very fundamental question that Professor Kline brought up.

And maybe it might be worthwhile to argue about this a little further. The sort of model-

ing that we have seen today and yesterday really tried to model some average equations,

primarily Reynolds equations and some higher order equations of the turbulent quantities.

We have not yet tried to - certainly not in this conference - make some physical model

of turbulence itself. There is a great deal of skepticism about the formulation of the
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turbulence problem, a 1_Reynolds, in several people's mind working with turbulence. I
think manyof us are convincedthat a great deal of information, especially phaseinforma-
tion, is lacking in that. And the obvious consequenceof that is that we cannot close the
problem. Sowhenwe are talking about the production term in the Reynolds equation, to
me it is really just a nomenclature - I have no physical picture of it. Certainly not until
the first suggestionsas to howthis production might take place (madein Professor Kline's
group) did I begin to get a physical picture. That was really the first notion that suggested
someactual physical process that this is the way the flow might break downand produce
turbulence. Sothe questionis, how far canwe go by trying to do the modeling according
to these equations. Might it not be better to goback more into the physical work and the
modeling? And this actually has beendone - anyof you whohave tried to get into the
details of Townsend'sbook11 - he actually hada very physical picture in mind whenhe
tried to comeupwith a value for turbulent Reynoldsnumber. That I consider to be a sort
of modeling - physical modeling. Clearly this is a muchmore difficult task, and I cer-
tainly don't have anyobvious suggestionsof how we cando that. But I think that it would
be worthwhile for people whowork in this area to think in terms of other possible model-
ing processesbesides the ones that we haveheard in the past 2 days.

A. Roshko: I'd like to pick up the idea that Paul Libby started and has been continued

here - and that is, the question that has also come to my mind occasionally, one of these

days will computers be able to calculate the flow directly without putting in any physical

models let alone Reynolds equations. I think that there is some possibilities that this

might occur. I'm thinking of some examples that I know of where you try to model a vor-

tex shedding, for example, behind a circular cylinder by just letting vortices peel off from

the cylinder into the wake and do a time calculation. This reproduces these flows at least

qualitatively fairly well. Just this year in the Physics of Fluids, there was a short paper

by a couple of Russians, Kadomtsev and Kostomarov, 12 in which they try to model the

mixing layers that we have been talking about here so much. They simply feed vortices

off the splitter plate and let it go. This is really just solving the Euler equation on a

computer, leaving out the viscous terms. We do think that these free turbulent flows are

viscous independent, and it is really quite remarkable that you get mean velocity profiles

which look quite reasonable. My objection is that this is a two-dimensional calculation;

these are all line vortices. However, for some flows like these mixing layers and vortex

shedding down a cylinder, I think the large structure is to some extent two dimensional.

I think there might be some progress in that direction. There has been really little work

of this kind done.

llTownsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge Univ. Press,
1956.

12Kadomtsev, B. B.; and Kostomarov, D. P.: Turbulent Layer in an Ideal Two-
Dimensional Fluid. Phys. Fluids, vol. 15, no. 1, Jan. 1972, pp. 1-3.
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D. B. Spalding: On this particular point of whether it will be practical in the near future

to compute turbulent flows by a time-dependent solution of the Navier-Stokes equations,

there is a simple computation that one can do about the number of grid points that one

will need. Undoubtedly, if we are to proceed in that way, we must have grid points suf-

ficiently close together so that we can accurately describe the behavior in the smallest

eddies where energy is being dissipated. Now these are very small indeed. And so we

can compute just how many grid points we will need, and thus see by how many orders of

magnitude our current computers are away from being able to compute a turbulent pipe

flow. I think it is quite a long way.

J. R. Herring: If I can make one comment along those lines. Some of those calculations

done at NCAR on decaying turbulence suggest that it is not really so - that if you wish to

calculate the large-scale structures accurately, you don't have to do a clean job of cal-

culating the tiniest dissipation scales present. The examples I'm referring to here are

two-dimensional calculations; it may be that in three dimensions there is a difference.

M. V. Morkovin: I was hoping that Dr. Spalding would share with us some of the early

experience of Imperial College with three-dimensional flows. As I understand it you are

computing things that have streamwise vorticity. How much of a complication, how much

for instance, do you have to increase the number of grids to get something decent. Those

are pioneering, rather smeared numerical experiments as yet, but they must be giving

you some feeling of what the future potentials are. Isn't that right?

D. B. Spalding: I think that my answer must follow the lines of what i was saying just now.

We are doing three-dimensional time-dependent computations, and we are doing them for

turbulent flows. But we are doing them only by the use of turbulent models. They are

still the quite simple two-equation turbulent models. We do not have higher level ones

for three-dimensional flows. But we are struggling with computer storage at that level.

And I think that we should have to have computers of many orders of magnitude greater

capacity before we could approach the task of solving for turbulent flows by any other

means than by way of turbulent models. But once that is said, there are no special prob-

lems about three-dimensional flows. If you've got a computer program that solves the

three-dimensional equations and the continuity equation, and then an equation that will

solve for any other scalar, like the energy or the dissipation rate or like concentration,

then you just go ahead and solve. We have seen that there is still much comparison to be

done between predictions and measurements for two-dimensional free turbulent boundary

layers. For two-dimensional recirculating flows, there is much work to be done, and

after that there is a comparison to be done with three-dimensional turbulent flows. So

there is an immense amount of utilization of these techniques. And we are just at the

very beginning of this.
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S. J. Kline: I agree with Professor Spalding. You will recall that a number of people

have made this calculation that he suggests. Howard Emmons has made it, Bill Reynolds

has made it, and I think a number of other people have made it. And it is not just a small

jump from present computers. I think you will recall that if you want to do a complete

solution to the smallest scales as he suggested, then there is a graph in the 1968 Confer-

ence proceedings, I think Emmons 13 did that particular one, which shows that you have to

run about 30 years on a computer that is slightly larger than anything that exists to get

out one point for a fairly simple flow. That is pretty hard to imagine. So unless we get

really a very big jump in computer power, one has to do something other than simply put-

ting the Navier-Stokes equations into the computer and letting it run. Now the next ques-

tion that immediately comes beyond that is what approximations do you make. Jack

Herring suggested one kind of approximation, which may in fact be a very good one - that

is, you model the small scales and try to do the larger scales. But that still is a model-

ing. And it still involves all these problems. I think that that really is the situation. I

think it is naive to say that you are going to put all this in the computer and it is simply

going to run. I wanted to revert also to the exchange between Jack Herring and me

earlier and add one other remark - it may be helpful, I don't know. And that is, if you

look at Lahey's model 14 of the two-point space-time correlation which does seem to fit

all of them remarkably well, it is a two-part model which is the sum of the Markov noise

and a traveling wave which has a stochastic jitter on the wave number and a stochastic

phase coefficient. The situation is analogous in some simple sense to a simple harmonic

oscillator which is underdamped or overdamped. If you work out the spectra using that

model, it is essentially overdamped. But the constants are such that, if you just do long-

term averaging, you don't see any peak at all. If you do the short-term stuff, there is a

marked peak for certain kinds of events. If you take a long-term average, which is

equivalent mathematically to Reynolds stress averaging, then this simply washes out.

Experimentally, this would be the same as trying to find the critical frequency or reso-

nant frequency of a simple harmonic oscillator by perturbing an overdamped system -

you don't get anything. This is quite disturbing in terms of understanding the basic phys-

ics, as John Laufer said, from measurements based on the normal kinds of long-term

averages.

D. R. Chapman: I would like to say a few words on behalf of the large computers as one

who looks at their possibilities rather optimistically. The trends over the last decade or

15 years are such that computer speed is increasing by a factor of 10 approximately every

13See Comments by H. W. Emmons on page 651 for his present views.

14Lahey, Richard Thomas, Jr.; and Kline, Stephen J.: Stochastic Wave Model Interpreta-
tion of Correlation Functions for Turbulent Shear Flows. Rep. MD-26, Stanford
Univ., Mar. 1971.
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3 years, andthe cost to do a given number of calculations is going downby a factor of 10
about every 5 years. Soif you makea computationof l=owlong it would take you to com-
putea hundredmillion grid points, which I did, by the :, 'esentnumerical methodsof
solving the unsteadyNavier-Stokes equationsthat BobMcCormick uses at Ames and
extrapolate these past trends as they have beengoingon out in the future, you come to a
situation, where I estimate about 1982or 1985,that the computers will be ablc 4odo such
calculations in a practical amountof time andat a practical cost. Nowa hundred million
grid points is quite a few. I would like to make a commentaboutHoward Emmons' cal-
culation also. I think that he was undulypessimistic. He picked a grid size and assumed
that you had to maintain that grid size throughout theflow. He picked a size that was
probably necessary to maintain only in the sublayer. Becauseof that, he comi:'::: 3 that
it would take very much longer to do on the computerthe unsteadyNavier-Stoke_ equation
for pipe flow of say a Reynolds number of 107than it would for 105. His grid scale was
roughly 100different andin three dimensions, that means a factor of a million. If you
only have to use the smaller grid scales in the sublayer the amountof computation time
to do a Reynolds number of 107is the sameas to do105. In my judgment, it is going to
be more nearly independentof Reynolds number. After all, the velocity profiles in a pipe
whenplotted in terms of the right variables (shear stress, etc.) are independentof
Reynoldsnumber, surface roughness,and so forth. SoI think that Emmons' paper has
beenquite misleading to manypeopleabout the ultimate prospects of what the large com-
puters will do.

S. C. Lee: I just want to make the same kind of comment on this large computer. With

our experiments recently we have calculated a flow around a sphere using NCAR's

CDC 7600. We start with rotational symmetry, solving the entire _ ,._ier-Stokes equa-

tion. With a Reynolds number equal to 20, it only takes 5 minutes to get the results. By

the time the Reynolds number reached 130, the flow began to oscillate. The time for the

CDC 7600 to calculate to a Reynolds number of 300 is more than 10 hours. So we decided

that that was enough, and we stopped. If we are going to calculate as far as we are talk-

ing about, in the neighborhood of Reynolds numbers of 100 000, I really don't know how

long it would take.

T. Morel: I think that there is some limitation to this. We can't expect to increase it

indefinitely. We are limited by the physical side of the computers, since the speed of

light is just the speed of light.

D. R. Chapman: This point has been raised a number of times before, but the computer

people that I have talked to are not concerned about thi_ limitation for quite a while yet.

The size of the computers keeps going down, and the idea of putting the computers in

parallel gets around this to a large degree. Whether or not the trends of the last 15 or

20 years or so keep on going, we really won't know until another 10 years have gone by.
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But the trends on log paper are not linear, they are accelerating. In other words,
10years ago, the average time it would take a computer to increase its speedby a factor
of 10was longer than3 years - it was 4 years or so. At least I haven't heard anyonein
the computer business identify a foreseeable limit on the trends.

D. B. Spalding" There is another subject that I would like to raise. I would like to refer

to a remark that Dr. Corrsin made yesterday in the Discussion for Donaldson's paper

(paper no. 7), which I think is a very important one. He cast some doubts on the

gradient-diffusion type of approximations for transport. I think that it is very important

and that we ought to think about it. It came to my mind when he spoke about the book by

Bosworth 15 in which there is a connection made between this problem and that of radiated

transfer. In radiated transfer, one of the important parameters is the ratio of the mean

free paths of the radiation to the dimensions of the apparatus. In turbulence transport we

have the problem that the mean free path of the turbulence eddies is not small compared

with the dimensions of the apparatus; the mixing length is one-tenth of the width. It is

for this reason that we are in an area where the gradient type of approximation isn't quite

good enough. That connection with radiation theory has a useful aspect to it. There are,

coming from the astrophysicists, quite simple theories for radiative transport which do

better than the conduction - the gradient type of approximation. I want to say that it is

possible, it has been done, to work out the corresponding transport equations in turbulence

also. One can write a correlation, for example, the temperature-prime--velocity-prime

correlation, for the transport of heat. Write that in terms of a random velocity and a

temperature of the outward moving and a temperature of the inward moving fluid. Fol-

lowing the exact pattern which is used in radiation theory, we find ourselves with an equa-

tion saying that the flux is proportional not to the gradient of the average temperature but

to the gradient of the sum of the temperatures of the outward going and the inward coming

balls of fluid. And then only in the limit of small mean free path, or whatever the appro-

priate parameter is in turbulence, do we reduce to the gradient type of approximation. I

think I have said enough. I think that remark of Professor Corrsin is important and that

we can follow up its implications by turning to radiation theory to get a practical improve-

ment by that means.

M. V. Morkovin" The diffusion-gradient problem and the diffusion terms in general,

those that involve pressure-velocity correlations, are indeed one of those things that may

be used as a constraint on the mathematics which may not correspond to the physics. One

of the things I would like to raise is the general trend that one sees in the observations,

more detailed observations of turbulence, disclosing increasingly more some aspects of

instability of the field. I was wondering to what extent the computable budgets of energy

15Bosworth, Richard Charles Leslie: Heat Transfer Phenomena - The Flow of Heat in

Physical Systems. John Wiley & Sons, Inc., _952_.
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which do have exact solutions for the pressure-velocity correlations in linearized sta-

bilitiescan guide us in trying to reformulate some of the questions on these terms.

There are really two questions. Is ittrue that we really see more and more instability

behavior in turbulence, and, then, whether one can learn something from stabilitytheories

for it?

C. duP. Donaldson: I agree with Mark. I think thatany way you can use an exact known

solutionand look at the physics of itto see ifyou can get a handle on how you can model

something better is precisely the way to go. I don't think that we have made enough use

of exact solutions in making these models initially.

J. Laufer: I think thatwe get back to the comment I made earlier on physical modeling.

In response to Professor Morkovin's question, I think thatwe can say yes we see now, by

making more visual observations, more and more instances where some type of instability

process does take place, even in regions where we think thatthe flow is completely tur-

bulent. One good example is the type of instabilitythat the Stanford group discovered

and we studied further in the sublayer of a turbulentboundary layer. We are now taking

almost instantaneous measurements of the profiles,velocity profiles,in the sublayer.

When we compare those profiles with the well-known figure in Schlichting'sbook, showing

the eigenvalue distributionof a Tollmien-Schlichting wave in a laminar boundary layer,

the resemblance is quite striking. This is one example of gettingback to the geometry

thatwe are concerned with at this meeting in the case of the free shear layer, the mixing

layer. You have seen in Professor Roshko's pictures and again herethat we are dealing

with a completely well-developed turbulent flow with very definitelarge-scale motion in

that flow that seem to indicate some type of instabilityorigin. In fact,we are looking at

the same type of problem in a water flow, where we can very nicely see how these large-

scale motions generate from some interfaceinstabilityoriginatingright at the x = 0

station.

Written Comments

P. A. Libby and C. duP. Donaldson: We wish to call attention to the need for considera-

tion of the proper specification of initial and boundary data when the newer methods of

closure of the system of equations describing turbulent shear flows are employed. We do

so because we are so familiar with the initial and boundary data appropriate for the well-

known eddy viscosity and/or mixing length formulations for such flows that we may casu-

ally carry over these ideas to the newer methods, some of which lead to different orders

in the normal derivative than are customary and to other differences in the mathematical

nature of the describing equations.

Cat_tion seems to be especially called for in the case of the free mixing flows under con-

sideration._ this :_conference. This is because in these flows we usually make the
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assumption that the shear stress due to molecular transport is negligible in the stream-

wise momentum equation and, thus, that we can drop the Uyy term in that equation; but

in some formulations this leads to a loss in our ability to specify two boundary conditions

on _: Contrast this with boundary-layer flows in which we must retain molecular effects

near the solid boundary because of the laminar sublayer.

It should also be recognized that in some of the new, higher order closure schemes for

turbulent shear flows the mean shear stress _ is an explicit, dependent variable, which

usually appears differentiated once with respect to the normal coordinate. However,

again in free-mixing flows we wish to specify ÷ = 0 at y -* +o_:

Since we are dealing with parabolic equations and their solutions in either a quarter- or

half-plane, we recognize that there is an interrelation between initial data (at x = 0 or

x = Xo) and the boundary co_,titions at y - 0% or y -* _. It may well be that the initial

data plus some benign conditions of "boundedness" are sufficient to get us around appar-

ent difficulties, such as those indicated previously, of not having the ability to specify all

the boundary conditions we desire. However, mathematicians can usually help us on

these questions only for highly idealized models of our problems.

Finally, we note that in one class of free-mixing flows, i.e., two-dimensional mixing, we

have always had the problem of determining the orientation of the "zero" streamline in

space. The proper treatment of the boundary conditions in this case has been provided

some years ago by Ting.16 As a result we now recognize that the theoretician may legit-

imately formulate his boundary conditions so as to make his analytic or numerical prob-

lem "well posed," but that when he compares his predictions with experiment or when an

experimentalist employs that theory, the predictions must be properly reoriented in space

so as to be consistent with the environment of the experiment, i.e., so that the zero

streamlines are consistent.

These remarks should be sufficient to call attention to the need for careful consideration

of the appropriate and proper specification of initial and boundary data for a set of

describing equations, especially a set based on the new, higher order methods. The ease

with which such equations can be "put on the computer" should not be allowed to disguise

our ignorance of what constitutes a "well-posed" problem. We may well learn some

important aspects of the phenomenology of turbulent space flows by considering the for-

malism before hasty computation.

16Ting, Lu: On the Mixing of Two Parallel Streams. J. Math. & Phys., vol. XXXVIII,
no. 3, Oct. 1959, pp. 153-165.
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Comments on the Place of the Computer in Turbulence

Research and Application*

H. W. Emmons

Harvard University

The current lack of understanding of the basic nature of turbulence prevents the predic-

tion of just what approach can ultimately be successful. It is not now known whether tur-

bulent flow is an initial instability followed by a complex, nonlinear, transfer of macro-

scopic kinetic energy through random interaction down through a chain of ever smaller

scale motions to end as molecular chaos or whether each scale of motion develops ever

more intense until it in turn becomes unstable and thus passes its energy down with var-

ious wave number and phase control or whether in these processes significant informa-

tion can be fed up from the microscopic "chaos" (turbulent, molecular, or both) to control

some significant aspects of the macroscopic motions.

The most pessimistic view of this situation would require a quantum statistical mechan-

ical kinetic theory. Essentially no questions of current interest require this level of

description. Furthermore it will be a long time, if ever, that 1025 particles could be fol-

lowed in detail. Finally for turbulence research now of interest, there are many reasons

to reject this view.

The most important simplification is the replacement of the effect of the molecular chaos

by a laminar viscosity based upon the observation that the smallest "significant" eddy is

large compared with intermolecular dimensions and the supposition that no significant

control of the turbulent motions can be exerted by the details of the microscopic molecu-

lar processes. A test of this supposition is now being made in the Doctoral Thesis study

by Carol Russo who is measuring the details of grid turbulence in methyl alcohol. The

expected agreement with air grid turbulence will confirm that the total effect of the

molecular chaos is subsumed under the Reynolds number (through v) and that no other

dimensionless variables are required and, therefore, the Navier-Stokes equations are

adequate for the description of turbulent flow.

The present conference is devoted to a discussion of the varying ideas, methods, and

results available to describe the essentially four dimensional (r',t) turbulent flows. A

wide ranging variety of ideas is being tried as is necessary because of the failure of the

obvious replacement of the turbulent motions by a constant "turbulent viscosity" inspired

by the molecular chaos replacement.

_Tm view of *_e current interest in the role of the computer in turbulence studies, the
editors invited Professor Howard Emmons to submit his present views on the subject.
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The direct numerical solution of the Navier-Stokes equations must be carried out on

such a scale that the smallest eddies with significant macroscopic effect are properly

described. A very fine scale is clearly needed at high Reynolds numbers in the turbulent

energy creation regions near walls and internal shear layers. I believe they will also be

needed in the high dissipation regions if a complete description of the turbulent flow is

desired. Thus, while computation net grading may save a few orders of magnitude of

points, I do not believe that direct solution of the Navier-Stokes equations will be possible

for general turbulent flows for a very long time (if ever).

Again the growth in computer speed, a factor of 10 every 3 years, will no doubt continue

for awhile. However there are only about four orders of magnitude available before a

speed-of-light limitation and a like increase by further size reduction. Before these

limits are reached, thermal fluctuations will have to be reduced by cryogenic computer

elements. Finally, parallel computation can further increase computer speed by a

couple of orders of magnitude. Thus I can expect something like 1014 computation to be

over the horizon (present machines are about 107 ) but not 1020 .

Eventually a few of the simpler, lower Reynolds numbers, turbulent flows will be directly

computable and these will prove invaluable for checking out the various simplifying

assumptions. However, complex turbulent flows, like flow around and in the wake of a

building - or even a sphere - are not in my view likely to be directly computable for a

very long time - if ever.

On the other hand, I fully expect work of the kind reported at this conference to lead to

approximate methods of calculation of general turbulent flows. The successful method

will incorporate both a phenomenologically and mathematically justifiable procedure which

provides for the computation of the growth and decay of the appropriate turbulent transport

of momentum, energy, and specie. There will eventually be a hierarchy of such methods

which permit the computation of any turbulent flow with any desired precision, the deci-

sion being a compromise of need and pocketbook.
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OPENING REMARKS

By H. H. Korst

University of Illinois at Urbana-Champaign

We are now approaching the summarizing portion of our conference which will

consist of formal panel presentations and subsequent discussions of their reports on

the floor.

The first panel, the Committee To Recommend Critical Experiments, chaired

by Professor S. J. Kline from Stanford, will attempt to draw conclusions as to the

present status of, and the continuing need for, both supporting and exploring experi-

mentation to gain a better understanding of the physical phenomena underlying jet

mixing.

The second panel, the Conference Evaluation Committee, chaired by Professor

Mark V. Morkovin, will address itself to the efforts made by the predictors to utilize

various physical models and mathematical procedures to arrive at solutions for test

cases submitted to them earlier upon the recommendations of the Data Selection

Committee.
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EXPERIMENTS IN FREE SHEAR FLOWS -

STATUS AND NEEDS FOR THE FUTURE

By Committee To Recommend Critical Experiments:

S. J. Kline (Chairman), Stanford University

D. E. Coles, California Institute of Technology

J. M. Eggers, NASA Langley Research C_:_nter

P. T. Harsha, ARO, Inc.

CLASSES OF PROBLEMS

Experiments on free turbulent shear flows have two primary objectives:

(1) Accumulation of experience with simple classical flows as a basis for evaluat-

ing constants in closure models of predictive theories

(2) Applied work on flows of technological significance

Unfortunately, requirements for objectives 1 and 2 tend not to coincide in the case of

free shear flows. This condition can be seen by considering the typical case of a low-

speed axisymmetric jet of air flowing into still air. The flow field is usually consid-

ered to contain three zones: (a) the near field, (b) the transition (or intermediate) field,

and (c) the far field.

In the near field, a gaggle of initial conditions arises from the presence of flow-

control devices and upstream solid surfaces. In real flows, as contrasted to ideal

models, these initial conditions often involve one or more sets of back-to-back bound-

ary layers trailing from solid surfaces. In the transition region, the potential core has

disappeared, but the mean velocity has not yet reached a state of self-similarity. In

the far field, by definition, self-similarity is characteristic of the mean-velocity field

and at least the second-order correlations of the velocity perturbations.

Simple scaling laws have been established only for the far field, and the proper-

ties of this zone tend to be the best established and the most used for construction of

predictive theories. The vast bulk of applications, on the other hand, depend on flow

characteristics in the near field. Typical cases include jet ejectors, wake signatures,

base-pressure control, combustors, flow over steps and cut-outs, jet noise, jet inter-

actions, etc.

Since the variety of applications of technological significance is so great, and

since increased fundamental understanding will aid in all of them, this report is con-

cerned primarily with classical flows to augment understanding and for model building.
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THE ROLE OF CLASSICALEXPERIMENTS

Test data for five well-known types of classical, free turbulent shear flow are

included in this conference:

(1) Mixing layer (half jet)

(2) Round jet

(3) Plane jet

(4) Round wake

(5) Plane wake

Other potentially classical flows of lesser importance include

Radial jet

Zero-momentum wake

Round plume *

Plane plume *

Each of these classical flows, by definition, has the property of self-similarity. A

key assumption, which is noncontroversial in the limit of large Reynolds number, is that

effects of molecular transport can be neglected. What remains then is usually a simple

problem in dimensional analysis with very little physical content. Given a rather vague

notion of what constitutes a boundary-layer approximation for turbulent flow, an elemen-

tary argument leads in each case to simple and well-known similarity laws of a power-

law type.

An instructive conclusion from these analyses, at least for purposes of planning

experiments, is that as the flow proceeds downstream, the Reynolds number based on

local length scale and mean-velocity scale can increase (mixing layer, plane jet),

remain constant (round jet, radial jet, plane wake), or decrease (round wake).

A second conclusion is that in the absence of a pressure gradient, the plane mixing

layer, in particular, has self-similar properties (corresponding to linear growth) regard-

less of velocity ratio and presumably also regardless of density ratio, Mach number, or

whatever. This plane flow therefore provides an opportunity to study a variety of special

effects, singly or in combination, under relatively clean conditions. In view of present

confusion about the effect of density ratio and to a lesser degree about the effect of initial

conditions, much more might well be done with this particular flow configuration. Substi-

tution of an axisymmetric geometry for the plane geometry is a little hazardous, as long

*Plume here refers to a free convective flow and not to a jet engine or rocket flow.
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as effects of lateral curvature are no better understood than they are at present. How-

ever, studies of the axisymmetric configuration should continue because of the technical

importance, particularly of the near fields in this geometry. Flow in the far field of a

jet (plane or axisymmetric) is especially unsuitable as a model for investigating effects

of density variations on turbulent mixing, because most of the jet fluid (eventually, all of

it) is characteristic of the ambient fluid rather than the fluid used as the original momen-

tum source. The flow is therefore a relaxation or transition problem and is best

approached from this point of view.

The committee believes that other classical or near-classical experiments, if pos-

sible with known similarity properties, need to be sought and experimentally documented.

Examples include (1) curved plane jets, such as are encountered in jet flaps and thrust

augmenters; (2) cross- or counter-flowing streams; and (3) vortex flows, flows with large

coriolis forces, or other flows which contain regions having large mean rate of strain but

small turbulence production. No recommendation is being made of a single class of

experiments, but rather careful consideration of what experiments are worth extensive

documentation to aid model building for turbulent flows.

The description in the section "Classes of Problems" of the near, intermediate, and

far fields also provides the basis for a classification of levels of difficulty, and hence

levels of confidence, regarding the agreement between predictive output of a given theory

and available data. At the lowest level, any theory which does not reproduce the well-

established limiting similarity forms for shear and spreading rate as x approaches oo

should be rejected, unless overriding practical considerations force its use.

At a second level, a predictive theory should provide some information about the

transition region where the conditions are essentially now initial conditions for calcula-

tion of the far field.

At a third (and possibly fourth) level, predictive theories might be able to cope with

the evolution of the near field and to specify the total distance required for evolution of

the downstream regions.

In each case, as in boundary-layer flows, predictions for integral quantities, local

mean-field quantities, and correlations of fluctuating quantities form a second hierarchy

of successively more difficult checks on the power and accuracy of predictions.

Most technological applications entail added complications, such as curved layers,

recirculating flows, chemical reactions, species diffusion, pressure gradients, and gross

unsteadiness. Although such experiments are essential, it is difficult, if not impossible,

to obtain reliable experimental data for purposes of model building from these more com-

plex flows. It may be possible to use them to check the output of theoretical models, but

it must be recognized that in most cases, substantial differences in behavior may occur

between the more complex cases and the simpler classical cases.
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CRITICAL EXPERIMENTS

Five classes of experiments appear to the committee to be particularly significant

for the near future.

(1) Additional experiments clarifying the effect of density variation owing to use of

different gases, with and without the :tdditional effect of density variation owing to high

Mach number or other effects. Whenever possible, a density ratio of unity should be run

as a base line for variable-density data. One configuration which may be valuable for

study of b:". _mbsonic and supersonic plane mixing layers is flow over a two-dimensional

downstr,-_ ;;_cing step. The bottom wall downstream of the step should be porous, uni-

form il_, ,!_,_', of an arbitrary gas being in a direction normal to the main flow. The

natural c_ _ainment rate is presumably matched when pressure disturbances in the free

stream are minimized.

(2) Experiments clarifying the role and importance of various parameters which

determine the behavior of the near field as well as the conditions under which any of these

parameters can be neglected.

(3) Experiments determinir,_ '_umulative effect of initial conditions in terms of

_,_e distance to fully established IL _.: .:periments relating these results to those of the

second class. Note that similarity z_:ems to be reached significantly earlier for mean-

velocity profiles than for second-order correlations of velocity fluctuations. The dis-

tance to similarity for higher order correlations is probably still greater.

(4) There exist few documented cases of coflowing turbulent layers, that is, cases

where two layers of distinctly different initial turbulence structure flow side by side at

the same mean speed. Data on such flows should increase our understanding of free tur-

bulent shear flows and aid in model building.

(5) Experiments using contemporary experimental techniques (computer-assisted

instrumentation, conditional sampling, and averaging) should be carried out to study struc-

ture in free turbulent shear flows in order to complement and support contemporary work

on boundary layers. The emphasis among predictors at this conference has been on tur-

bulent field methods based on conventional long-time averaging. However, there is a

growing conviction among many experimenters that long-time averaging (Reynolds

stresses, higher correlations, spectra) may not be the most productive way to describe

turbulent flows. An alternative approach is implicit in recent work on large-eddy (or

wave) structure in turbulent boundary layers by Kovasznay, Often, and others (refs. 1 to

3). If a large eddy can eventually be described experimentally with sufficient credibility

for a given flow, then averaging over a moving pattern of such eddies can serve the same

purpose as conventional averaging while avoiding some of the present disadvantages (such

as trying to cope with the phenomenon of intermittency). With few exceptions, research
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in free turbulent flows has so far not used conditional averaging techniques or attempted

to exploit the contemporary point of view.

DESIRABLE MEASUREMENTS FOR VARIOUS CASES

The committee believes that improved and extended data are needed both for con-

struction of models and for tests of specific applications of these models. Many of the

existing data fail to report significant experimental parameters and are also deficient in

reporting cross-checks and in estimating uncertainties. In only a handful of cases have

the effects of systematic variation of initial conditions been reported. Paramefers esti-

mated from complex flows have often been mixed indiscriminately with parameters esti-

mated from nearly classical flows in model building.

The committee believes that rapid advancement of predictive capability requires

more complete reporting of experimental data and also requires arrangements for stor-

age of complete original data in suitable archives (not merely on small published figures).

Because of existing difficulties (see paper no. 2 by Birch and Eggers) in establishing

a value for the spreading parameter a for the plane mixing layer, the committee sug-

gests that the dependence of _ on × be reported. Different workers have employed

different definitions for a; the specific definition employed should always be explained.

In the plane mixing layer and other flows with similarity, there is usually some confi-

dence in the exponents for the similarity laws. Therefore, more can be learned about

the effect of initial conditions on apparent origin, about rate of approach to similarity,

and about effects of scatter in difficult measurements far downstream, by abandoning the

usual log-log scales in favor of plotting dependent variables to the appropriate limiting

power against a linear scale for the independent variable x.

Various permutations of laminar and turbulent boundary layers can occur on the

solid surfaces which are involved in the generation of a free shear flow. Documentation

of these boundary layers just before separation should be an inherent part of near-field

studies and should also be recorded whenever persistence of effects of initial conditions

into the intermediate and far field is of concern.

For the case of laminar initial boundary layers, two kinds of instabilities have been

observed; sinuous oscillations of the entire layer (ref. 4) and vortex roll-up of the indi-

vidual layers (ref. 5). Sinuous instability is also reported by Brown and Roshko (paper

no. 18 of this compilation) for the turbulent case. The presence of such instabilities

should be suspected and reported if found.

In confined jets the committee urges that static pressure, including at least wall

pressure, be measured and reported. In closed regions of separation (with recircula-

tion), both curvature of the dividing mean streamlines and lateral constraints on the flow
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(for example, end conditions and wall proximities) should be reported. There may be a

tendency for cellular three-dimensionality to develop, often with unsteady elements; this

possibility should be carefully examined.

The round jet involves relaxation of one classical flow in the near field toward

another classical flow in the far field. Our belief is that such flows should be studied

extensively for the sake of the relaxation property, with particular attention to the rate

of approach to the final equilibrium state. From the predictor's point of view, such

relaxing flows involve a change in local length scale. Examples of relaxing flow studies

are the Chevray and Kovasznay experiment (ref. 6) where a symmetric pair of turbulent

boundary layers relaxes toward a plane wake; the Knystautas experiment (ref. 7) where

a row of round jets relaxes toward a plane jet; and the productive study by Prabhu and

Narasimha (ref. 8) of a plane wake relaxing after being perturbed. The relaxing of a jet

or wake with significant density variation toward a constant-density flow has previously

been mentioned. Note that initially rectangular or elliptical wakes or jets are known to

interchange their major and minor axis of symmetry (at least once) during their approach

to equilibrium. In all cases, it should be expected that the relaxation process may be

extremely slow.

More work directly on instrument development is needed, for example,

(a) for means to measure static pressure fluctuations in a moving fluid

(b) for use in high temperature fluids, and

(c) for more accurate sampling techniques for measurement of species concentration

EXPERIMENTAL PRECAUTIONS AND PITFALLS

Considerable caution is required regarding three-dimensionality in nominally plane

flows. End-wall boundary-layer effects which modify the entrainment process, and other

obstacles which block or otherwise displace the flow, can give seriously distorted results.

Note specifically that comparison of _(y) profiles at various lateral stations is not a

sufficient guarantee of two-dimensionality. Streamwise invariance of momentum flux is

a much better check. Specific calculations and experiments are needed to ascertain when

three-dimensional effects are negligible.

In axisymmetric (or three-dimensional nonround) flows, traverses should be made

in more than one direction both as a cross-check and because transformation of major to

minor dimension by action of turbulent shear stresses can occur.

A key property in the growth of any free turbulent shear layer is entrainment of

nonturbulent flow from the surroundings. Jets, in particular, have an equivalent sink

effect (ref. 9), and this effect needs to be studied and understood by the experimenter.
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Becauseof entrainment, the surrounding fluid is not really at rest, andthe presenceof
walls (as in flow over a step or a cavity) can seriously affect the value of the spreading
parameter. It follows that anyaspect of an apparatuswhich can affect entrainment (for
example, closed versus opentest sections, walls close to separated flows, downstream
obstacles, etc.) can introduce scatter in any correlation of results. Even for a flow as
simple as the round jet out of a wall, the presenceand size of the wall may modify the
pressure field andthe spreading rate. Although nosingle prescription can be given, it
is recommendedthat specific consideration of the entrainment process be incorporated
in planning anddesigningany realization of a classical experiment in the sense used
herein.

In supersonic cases, caution is necessary to avoid (or at least document) the effects
of lip shocksand other pressure perturbations. Observationsof static pressure for
supersonic regimes are also essential for clear interpretation.

Direct calibration of hot wires for compressible flows (Mach number greater than
0.3) is essential in order to separate effects of velocity from those of temperature and
density. (See,for example, ref. 10.)
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DISCUSSION

R. B. Edelman: I will address this question to the panel in general: Have you given any

consideration to the type of instrumentation that should be used for the types of quantities

that one might be interested in, in turbulent flow; for example, mean flow properties, the

turbulence quantities, and then finally concentration measurements. And perhaps I should

generalize this to include reacting flows as well, which is an area that is of ultimate

interest to many of us.

D. E. Coles: Well, Iwill think out loud a little bit, I would like to be excused from talking

about reacting flows. I do not have any experience with those and perhaps I do not want

any. I think the most promising instrument these days is the laser Doppler anemometer

and I think very rapid developments will occur. We even have hopes of being able to

measure vorticity with one of those things, if we can figure out how to do it. It is not so

much a matter of instrumentation as it is a matter of attitude toward these flows, I think.

One of the points that Kline made and that I would like to underline is that there is a sig-

nificant body of experimenters, mostly working in the boundary-layer field, who are not

going in the same direction as everybody else. They are aiming at substituting some

other kind of formulation for these turbulent problems than the classical one which began

with Osborne Reynolds about 100 years ago. Laufer made the point that you clearly throw

away all phase information in the problem as soon as you draw bars over things, and

experience has shown that clever kinds of conditional sampling and conditional averaging

can reveal highly unexpected properties of these turbulent flows. I think the first of these

was intermittency, but there are many others; the bursting phenomenon, the sublayer

structure in boundary layers, and large-scale structure in shear layers. All these things

suggest that what is going to happen or what may happen is that the eddy chasers will

succeed in catching an eddy and assigning some properties to it, a shape, and an intrinsic

velocity field. The kind of averaging we will come to, maybe 10 years from now, will be

an average over a moving pattern of these eddies treated as operators. I like the word

operators; others do not agree with me. This is virtually a complete rejection of the

traditional schemes of thinking in terms of correlations, auto- or cross-correlations,

Reynolds stresses, spectral operators, etc.; and I would like to see more work done in

the free shear flow business along these lines. I think Wygnanski has been the only man

who has tried to apply these ideas in the sense that the boundary-layer people are doing,

although I think the Brown and Roshko experiments 1 will certainly have to be continued

with this point of view. You have to explain those pictures. You have to know about those

pictures and if you know about those pictures you should be nervous about Reynolds stress.

1 Brown, Garry; and Roshko, Anatol: The Effect of Density Difference on the Turbulent

Mixing Layer. Turbulent Shear Flows, AGARD-CP-93, Jan. 1972, pp. 23-1 - 23-12.
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S. J. K.line: I think there is a general dearth of experimental work in celation to the level

of theoretical work. Some of the big hangs-ups are in the data and the1 e _._not enough

data taking and even less effort on instrumentation. There is even n,:, really good text-

book on the subject of how measurements are made in moving fluid fields. There are

very few schools that give courses in this subject. I can advertise a little bit here, we

are one of the very few that do. I think that more effort on both of those problems is

needed and that there is really an enormous amount of work to be done.

H. H. Korst: Considering myself now as a spokesman for those who contributed to this

conference as predictors, I wish to direct attention to the lack of concise and needed

information concerning initial conditions in some of the selected test cases. This, in

particular, refers to the specification of the microstructure for the starting profile.

If a well-defined attached boundary layer precedes the mixing process, one may

assume that the work of Maise and McDonald 2 provides some guidance; yet, there seems

to be evidence that such a structure does not carry over smoothly into the developing free

shear layer but may actually be subjected to a rapid and rather catastrophic breakdown as

a consequence of large-scale instabilities as has been shown so dramatically in the work

of Brown and Roshko.3

So I would like to ask the panel to suggest what instrumentation and observations

may be needed to cope with, and extract information on, boundary-layer breakdown which

may have a large influence on the structure and initial development of near wakes.

S. J. Kline: Yes, I wanted to say one think about that and I wanted to show some pictures

that I brought with me. Mr. Oseberg, 4 in my laboratory a couple of years ago did study

a plane jet in water using a kind of visualization technique which is well-known to you.

He studied three different velocity ratios and three different sets of initial conditions.

He did find instabilities for the laminar separating layer very much like those in the pic-

tures that Professor Roshko showed. When one has a turbulent boundary layer leaving

the surface, one still gets quite a lot of instability but it is not as clean and as pronounced.

I had hoped to show those pictures but the projectionist tells me that the motion-picture

copy that I brought with me has no holes in it - so we will not see those, but they do

appear in Oseberg's thesis. 4 As far as instrumentation goes, I think there are lots of

ways of measuring that - a simple visual technique which Roshko has already shown

you will get beginning measurements. Cross-correlation measurements, which

2 Maise, George; and McDonald, Henry: Mixing Length and Kinematic Eddy Viscosity in
a Compressible Boundary Layer. AIAA J., vol. 6, no. 1, Jan. 1968, pp. 73-80.

3 Brown, Garry; and Roshko, Anatoh The Effect of Density Difference on the Turbulent
Mixing Layer. Turbulent Shear Flows, AGARD-CP-93, Jan. 1972, pp. 23-1 - 23-12.

4Oseberg, Oyvind K.; and Kline, S.J.: The Near Field of a Plane Jet With Several Initial
Conditions. Rep. MD-28 (NSF Grant GK-10034 and Contracts AF 49(638)-1278 and
4F-F44620-69-C-0010), Stanford Univ., May 1971.
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Vic Goldschmidt hasalready suggested,should certainly be very adequateto measure
that kind of phenomena at least in the beginning. I would suggest that one wants to docu-

ment whether the layer at separation at the back of the solid surface is laminar or tur-

bulent because this does make a qualitative difference.

P. A. Libby: I was rather disappointed that our distinguished panel did not use the lever-

age of their prestige when they called for very careful and detailed experiments to point

out to those in the audience who have money to disburse in this direction that they must

be patient when they disburse that money. They must expect to fund that sort of work

over years, not a 6-month affair. I assume that our panel agrees on that and is very

embarrassed by its omission.

V. W. Goldschmidt: I cannot answer Paul's point - I would like to speak about the eddy

chasers a little bit. I think Val Kibens 5 is looking at the wake of a flat plate right now

and I think he is also heating it. Ren_ Chevray 6 at Stonybrook is looking at a circular

jet; Fiedler 7 in Berlin is also looking at a heated circular jet and our group at Purdue

University is also looking at a plane heated jet. However, I would like to direct a ques-

tion to the panel. You made reference to a need for documenting information that is

available and I think this is a crucial point. We cannot pass the buck to NASA. I think

we can start accusing ourselves in the shortcomings of previous work. For instance, to

be more direct, the selection committee for experiments forgot to include Gunnar

Heskestad's 8 work which I think is the best around on plane, circular, and radial jets.

But coming to the point on hand, how can we be more cautious and how would you suggest

creating these archives of data that you refer to.

S. Corrsin: I am not volunteering but I would like to remind everybody that there is still

no generally accepted way of measuring static-pressure fluctuations in a turbulent flow.

It would be nice if somebody would go to all the trouble of developing appropriate instru-

mentation. I guess there are probably half a dozen places in the world where people are

allegedly working on such instruments and I think that no two of them agree that anybody

else is doing it right. So, if someone could set aside his interest in detailed hydrody-

namics for awhile and develop such a device it would be very useful. In terms of the

5Oswald, L. J.; and Kibens, V.: Measurements in the Wake of a Disk. Paper EA1,
1970 Annual Meeting of Division of Fluid Dynamics, Amer. Phys. Soc.
(Charlottesville, Va.), Nov. 1970.

Oswald, Lawrence James: Turbulent Flow in the Wake of a Disk. Ph. D. Diss.,
Univ. of Michigan, 1971.

6 Dr. Ren_ Chevray: Department of Mechanics, State University of New York at
Stonybrook, Stonybrook, Long island, New York 11790.

7 H. Fiedler: Hermann Scbttinger Institute,FI_--_rSmungstechnik, Technische
Universitiit,Berlin, Germany.

8 Heskestad, Gunnar: Two Turbulent Shear Flows: I.A Plane Jet. II.A Radial Jet.
Ph.D. Diss., Johns Hopkins Univ., 1963.
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applicability of gradient transport models, one of the things that I pointedout a long time
ago is that they have greater success in free shear flows than in wall shear flows. This
is coincidentwith the fact that the principal axes of the mean strain rate tensor andthe
stress tensor happento coincide for reasons which are unknownin free shear flows and
they definitely donot coincide in wall flows. If we move one order higher in the moment

hierarchy and use the Reynolds shear stress equations and the energy equations, then we

move to the question of whether the gradient transport model might be appropriate for

the transport of shear stress or energy. Therefore, it would be worthwhile finding out

whether the principal axes of those things happen to coincide with the corresponding

transport quantities and this information could be found very easily with existing instru-

mentation. We just have not done it for some reason which I do not know.

B. G. Jones: Professor Corrsin has commented on the current status of static-pressure

information and I wish to add a further comment concerning some experimental observa-

tions which we have made at the University of Illinois. Our initial results were reported

in Spencer's thesis 9 with some root-mean-square static-pressure measurements in a

plane mixing layer included in the AIAA paper. 10 We did not stop our studies at that

point although we realized these early measurements were severely contaminated because

of velocity fluctuation sensitivity. We cannot say exactly how severe, but it was substan-

tial and was caused primarily from the sensor tip configuration and its orientation. We

have continued the studies with the same basic sensor in terms of its internal structure,

using bleed type anemometer sensing, but we have modified the tip configuration to make

it less sensitive to velocity contamination. Examining this new configuration (which

resembles a pitot static tube) far downstream in the self-preserving region of a circular

jet, we have been able to estimate the contamination to the pressure signal caused by the

transverse and axial velocity field components. The axial component effect is reduced

to approximately 2 percent, whereas the transverse component effect is less than 10 per-

cent. With these levels of contamination we are able to make some estimates of correc-

tions to be applied to both root-mean-square pressure levels and velocity-pressure

results.

We are now in the process of applying these results to our aerodynamic noise gen-

eration program, which was mentioned briefly in our session this morning. We are

examining the two-point spatial pressure correlations in the initial mixing and in the

developing regions of the circular jet. We expect to continue this work in the plane mix-

ing layer as a means of examining in more detail the initial shear layer in circular and

9 Spencer, Bruce Walton: Statistical Investigation of Turbulent Velocity and Pressure
Fields in a Two-Stream Mixing Layer. Ph.D. Thesis, Univ. of Illinois, 1970.

10 Spencer, B. W.; and Jones, B.G.: Statistical Investigation of Pressure and Velocity
Fields in the Turbulent Two-Stream Mixing Layer. AIAA Paper No. 71-613, June
1971.
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plane jets. This will also enable a reexaminationof the original study of the energy bud-
get across the plane mixing layer and allow improved estimates, particularly with respect
to pressure-velocity transport terms.

H. H. Korst: Coming back to the problem of preserving information: We have here a

reservoir of people and minds. Having assembled, processed or produced stockpiles of

data, is it safe to assume that NASA will, for the time between now and the publication of

the Proceedings, act as a guardian of this information?

Furthermore, are there any plans whether this information will be kept beyond that

time at a selected central location, preferably at NASA Langley Research Center? Shall

we leave this question open or shall we try to exert some gentle pressure on potentially

willing individuals or organizations?

D. M. Bushnell: We will publish as Volume II the data that we sent out to the predictors.

This is fairly complete data, at least as far as the mean flow is concerned. The problem

is not stockpiling the reports that are available, the problem is getting the details on the

experiments, that is, the details that Professor Kline has called for and which have often

not been included. When one gets an AIAA paper, there is no guarantee that you will get

the detail you need to check out the more sophisticated numerical programs. The theses

we see coming out of Georgia Tech now that are 3 and 4 inches thick may well have the

detail that is necessary. But I do not know where you would store these things and how

you would insure that the details are put in.

H. H. Korst: Mr. Bushnell, will you collect and make available such information, if it

should be sent to you, and can we write to you at Langley for it?

D. M. Bushnell: I very regretfully decline your invitation - we pay COSMIC 11 to stock-

pile computer programs and there is a possibility through NASA Headquarters that they

could be prevailed upon to fund other sources of storage for this type of information (the

experimental data). I think this is the only hope if you want it done on a Government

basis.

H. H. Korst: Is there a hope that some organization will take the responsibility at least

for the time being? This information is now hoarded and collected by you. Can some

responsibility be established, say through a committee, to keep this body of information

available?

D. M. Bushnell: Stan Birch really is the one who has collected this stuff. Stan started

working in the area about 11 to 2 years ago and he has an immense pile of information in

this area. He was the source for most of the initial data for this conference. The other

people I have are regular NASA employees and we are being pushed projectwise just like

11 Computer Software Management and Information Center, Barrow Hall, University of
Georgia, Athens, Ga. 30601.
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everybodyelse is in the Government, andafter Stangoes (he is an NRCassociate with
us), we just do not have anyonewho can spendtheir time catalogingthis stuff and storing
it.

S. J. Kline" Could I make one comment on this? I quite agree with Mr. Bushnell that

our problem is not simply to get the stuff sent to the Ann Arbor microfilm library 12 or

something like that. One of the reasons that we were able to do some of the things we

did do in the 1968 Conference 13 was that Don Coles had been an archivist on boundary

layers for quite a long time. It does take somebody who has some knowledge about which

questions to ask and what to compare with what in order to get the right kind of informa-

tion. It is not just a function of sending it in and putting it on disks. It does need some-

body (we appear to have no volunteers just at the moment), but we thought that - I am not

volunteering - this freeway should be in somebody else's backyard. That is the problem.

If someone would do that it would help a great deal.

M. V. Morkovin." I think we are putting too much emphasis on past data. I believe that

the panel actually decided that an awful lot of that data was not that good. I think the

emphasis is on new data (new data with better instruments) that is just going to make the

other stuff obsolete. Now we do not have any institution short of ASME, Division of Fluid

Mechanics, to do something like that. I think that what we can do is to assure that in the

future we have sufficiently viable data that can be preserved. I think our emphasis is on

the future; I think we have spent too much time on the past.

S. J. Kline: I am sorry if I did not make myself clear. There was no intention to talk

about restockpiling past data, but the intention was to have someone look at the data as

it came in. We have some questions about data taken 20 years ago which we cannot

answer because the people do not remember. If someone could collect the future data,

look at it critically and ask those questions, you would get better documented data and it

would be available. I am talking about looking toward the future, not looking at the past.

C. E. Peters: It seems to me that all of us have more than one kind of document that we

can disseminate. Papers are not the place to present the details of experiments. Most

of us have access to some reporting technique, for example, a technical report of some

sort, and if it has not been brought up before I strongly suggest that you summarize your

results in papers but go to the trouble of writing reports, like Jim Eggers '14 report or

12 University Microfilms, Inc., Ann Arbor, Michigan.

13Kline, S. J.; Morkovin, M. V.; Sovran, G.; and Cockrell, D. J., eds.: Computation of
Turbulent Boundary Layers - 1968 AFOSR-IFP-Stanford Conference. Vol. I -
Methods, Predictions, Evaluation and Flow Structure. Stanford Univ., c.1969.

14 Eggers, James M.: Velocity Profiles and Eddy Viscosity Distributions Downstream
of a Mach 2.22 Nozzle Exhausting to Quiescent Air. NASA TN D-3601, 1966.
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Don Chriss '15 report from our laboratory, in that kind of detail so that youdo not needa
central repository for data. It is then recoverable, particularly for thosepeople who
have different interests in the experiment than the original experimenter. I picked these
two examplesbecausethey have relatively goodtabulations of the mean flow results,
which is onething that is overlooked so often.

S. Corrsin: I want to make a comment about Dr. Peters' suggestion that published papers

could be essentially summaries and that internal reports of some kind could be the repos-

itories of all knowledge. One of the greatest tragedies in public science and engineering

in the world has been the growth of the shadow literature of reports which are not gen-

erally referenced and which are generally inaccesible to anyone who does not have a

Government contract. There is nothing more distressing to a graduate student who does

not have a contract than to see a bibliography in someplace like the AIAA Journal where

two-thirds of the things referred to are inaccessible to him. I think this is exactly the

wrong way to go.

C. duP. Donaldson: Maybe the thing that really should be done, since it is going to be

very difficult to get somebody to do this archival job, would be for the people here at

NASA to prepare a report which listed what they considered to be the minimum standards

for a decent job of reporting a turbulence experiment.
¢e

D. M. Bushnell: I think that Professor Kline is much more able to do that especially in

regard to the committee activity.

S. J. Kline: We have not dealt with the details of whether one should measure particular

kinds of correlations because that is so dependent upon which model you are looking at

and also because we are aware of the difficulties that Professor Corrsin just mentioned.

There is no point in recommending that somebody measure static pressure correlated

with something else if you cannot measure static pressure. I will agree that we should

say something about the need to be able to measure static pressure. But I would like to

emphasize again what I said in the beginning of this talk that we would like to hear all the

ideas from this audience on exactly the point that Dr. Donaldson mentioned. We did

include remarks about the need for a variety of flows to be documented, that is, flows

where there are large mean strain but not much production as being the kind of thing

people ought to think about and investigate.

D. E. Coles: I want to add some detail to some things Steve Kline said in the summary.

I am not myself a practitioner of the delicate art of mobilizing armies of rate equations

to calculate the development of turbulent flows. I would leave that to the people who are

now doing it and others who may wish to join them. I would stop with something much

15Chriss, D. E.; and Paulk, R.A.: An Experimental Investigation of Subsonic Coaxial
Free Turbulent Mixing. AEDC-TR-71-236; AFOSR-TR-72-0237, U.S. Air Force,
Feb. 1972. (Available from DDC as AD 737 098.)
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simpler. But, regardless of the use that is to be madeof the data, I think it would be
refreshing to see a number of experiments donewith the attitude that they are dealing
with relaxation problems involving somekind of perhaps, linear system relaxing toward
an equilibrium state. Oneof the flows in this conference, the Chevray andKovasznay
flow with a planewakedevelopingfrom a boundarylayer, is the kind of flow I have in
mind. Youunderstandthe starting condition for that flow; the boundary layer hasbeen
documentedto deathby now. You understandthe wake of that flow. What you do not
understandis whathappensin betweenandthe defect in those particular measurements
is that they do not give enoughdetail. They do not give enoughdetail both in kinds of
measurementsand in the resolutions of the measurements. The exciting things in that
relaxation process all happenin aboutthe first two boundary-layer thicknesses behind
the trailing edge.

Oneof the reasons I mentionedthis is that we have what I consider to be a very
beautiful piece of work by Prabhu and Narasimha,16who produced a planewake with a
body which they tinkered aroundwith until the wakewas in equilibrium somewhatsooner
than it wouldbe behind a cylinder, for example. Then this wakewas run through a pres-
sure gradient andthe test was to define somemeasure of the departure from the equi-
librium statein the newconstant-pressure field and howfast this flow recovered. It
turned out that it approachedthe asymptotic state exponentially. That is a very nice
thing to knowif you could figure out what the exponentis or howto calculate it. The
departure was measuredin terms of the difference in the amplitude of the shearing stress
distribution comparedwith the amplitude that went with the velocity profile in the equi-
librium state. Given the velocity profile, there are two stress distributions, the equilib-
rium one andthe oneyou measure. Theseare different and that difference is the mea-
sure of the departure from the equilibrium in this approximation. I have mentioned some
other flows that I think are examplesof relaxation problems. Oneof these has to do with
the wake behinda bodywhich is not round, for example, rectangular or elliptical. There
has beena little work doneon this wake, mostly at Colorado State University. These
wakes are a little rubbery; the axesdownstream in the wake are inverted with respect to
the major andminor axes of the body itself.

Jets do the same thing. It would be nice to know somethingaboutthese flows.
Sooneror later somebodywill have an idea. I do not claim that I know what shouldbe
donewith information like this; but I do claim that the more of this that there is the
sooner the ideaswill appear. Most of these flows (except for the mixing layer which is
in a class by itself) flow with variable densities, heatedwakes or jets with either density

16Narasimha, R.; and Prabhu, A.: Equilibrium and Relaxation in Turbulent Wakes.
J. Fluid Mech., vol. 54, pt. 1, July 1972,pp. 1-17.

Prabhu,A.; and Narasimha, R.: Turbulent Non-Equilibrium Wakes. J. Fluid Mech.,
vol. 54,pt. 1, July 1972,pp. 19-38.
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differences dueto Mach number, or density differences due to composition, are also

• relaxing flows. There is a significant region of the flow where, if you only looked at the

velocity, you would think of it as being in equilibrium, but if you look at the density, there

are significant density differences, which are wiped out eventually by entrainment. I am

saying that I think that this is a simple corner of the shear flow problem that I would like

to see somebody spend some time in. I mention even the experiment by Knystautas. 17

I do not know how many of you are familiar with it but I thought that this was a well-

conceived experiment. It was a series of round jets at the trailing edge of an airfoil

spaced a couple of diameters apart. Presently what you saw far downstream looked like

a plane jet as it obviously would have to, except that I think that if you look carefully

enough at it, it might not look like a plane jet - the scale might be haywire.

The reason for this statement is the experience people have had with grid turbu-

lence. As we know the characteristic velocity in a plane wake decreases like x-I/2,

and therefore if you produce turbulence with an array of plane wakes you would expect the

square of that velocity or the turbulence intensity to decrease like x -1, which is about

what it does. If you make a grid out of spheres we know that the characteristic velocity

downstream of a sphere decays like x-2/3. Therefore, the energy in that kind of iso-

tropic turbulence should decay like x-4/3 which is a different rule, although the ten-

dency is to think that isotropic turbulence is just that no matter where you find it. Well,

the experiment was done by Kistler (unpublished) some years ago at our place. I never

saw the results, but my impression was that the decay rates were different.

S. Corrsin: Genevieve Comte-Bellot 18 conducted experiments with a silver dollar grid

made out of aluminum at our place and the decay was the same as behind square rods and

round rods.

D. E. Coles (speaking from a sketch on the blackboard): I am not sure this is original,

but it is a representation of something a student named Ikawa 19 is doing at our place; he

is somewhere in the depths of Guggenheim and we see him infrequently. He is interested

in the mixing layer in which the external stream is supersonic. The scheme is simply

to inject, I believe air, but it obviously does not have to be air, through a porous wall and

to adjust the injection rate until the pressure disturbances are a minimum in the external

flow. That means you have the entrainment tailored right, the entrainment on the low-

speed side. All sorts of nasty things happen to you when you try to do this, like secondary

17 Knystautas, R.: The Turbulent Jet From a Series of Holes in Line. Aeronaut. Quart.,

vol. XV, pt. 1, Feb. 1964, pp. 1-28.

18 Comte-Bellot, Genevieve; and Corrsin, Stanley: The Use of a Contraction To Improve
the Isotropy of Grid-Generated Turbulence. J. Fluid Mech., voi. 25, pt. 4, Aug.
1966, pp. 657-682.

19 Hideo Ikawa is a student of Dr. Toshi Kubota, Professor of Aeronautics at California
Institute of Technology. The Ph. D. thesis of Ikawa is to be published in June 1973.
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flows in the cavity and so on. They also foundthat they had to put a thing downstreamto
steer theflow out of the cavity andto minimize the pressure disturbances; otherwise,
there is liable to be a separated region there and some shocksand so forth. But this is
a geometry that I think might be very useful in looking at what I consider to be the deep-
est mystery in the subject right now - the effect of density on the mixing layer. As far
as I can tell, that is a mess: Certainly, ff no other experiments get done, I would like to

see that subject cleared up.

J
t
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REPORTOF CONFERENCEEVALUATION COMMITTEE

By Mark V. Morkovin (Chairman), Illinois Institute of Technology;
Dennis M. Bushnell, NASALangley ResearchCenter;

R. B. Edelman,General Applied ScienceLaboratories, Inc.;
and Paul A. IAbby, University of California at SanDiego

INTRODUCTION

For the past 2 days we have been exposed to the concentrated comparison of

screened data with the results of months and months of effort on the part of our best

predictors. Apparently some honing of the methods took place even before the con-

ference as the predictors generally confronted a broader range of flows than those

which conditioned the original choices of their empirical constants or functions.

Thus, part of the objectives of the conference were accomplished before its start.

To the working engineer the proliferation of the methods appearing helter-

skelter in the journals has presented a confusing picture. We believe that the codi-

fication of these methods and their exposure to the same broad set of data should go

a long way in clarifying the limits of validity and the areas of usefulness of the dif-

ferent classes of methods.

_ um L_auer can ]uage, me presentations were uneven and the results do not

lend themselves to easy evaluation. It would indeed be presumptuous and unscien-

tific to render any definitive judgments on the performance of the 13 heterogeneous

predictive methods in the conference; we could do more damage than good. This

situation is, in part, brought about by the less satisfactory state of experimental

information for free shear layers than for attached boundary layers.

Rather, we shall report on our strongest impressions of the issues pertinent to

the modeling of turbulent flows primarily for applied objectives, as conveyed by com-

parison figures 1 (pp. 699 to 737), and by the lively discussions during the conference

sessions (which many participants continued late into the night). An engineer inter-

ested in free turbulent shear flows will find these figures a gold mine of information.

In fact, the experimental data with the many theoretical predictions provide him with

a zeroth-order tool for his own quick engineering estimates. He is also referred to

the correlation of Stanley F. Birch and James M. Eggers (paper no. 2) for the

spreading rate of simple mixing layers which is useful on the same level.

1Only a small part of these comparisons was available to the Conference Eval-
uation Committee. Thus, we could not pinpoint several of the methods which leave a
lot to be desired.
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Before we proceed to the predictive methods themselves, we need to consider the

potential uses of these methods and relate them to the distinguishing characteristics of

the methods. Advances in technology usually involve the development of more efficient

systems out of existing concepts. Examples include reductions in system size and weight

through optimization of cooling requirements and reaction volumes in (1) power generating

equipment, (2) propulsion and vehicle systems, (3) varieties of chemical process plants,

and (4) specialty hardware such as in gas dynamics and chemical laser systems. In many

of these systems public concern over the questions of thermal, chemical, and noise pollu-

tion must also be considered in present and future designs. Achieving high performance,

as well as controlling pollutant emissions (where appropriate), requires the development

of highly accurate predictive techniques. Such systems usually contain turbulent free

shear layers and mixing zones (including jets and wakes). The understanding and descrip-

tion of these turbulent shear flows should enable us to predict the structure of the flow

field and determine relationships among design parameters. Due to the intractable nature

of turbulent flows, approximate mathematical models must be formulated to describe these

turbulent processes.

Many problems require definition of the mean flow only. Quantities of interest

include the spreading rate, penetration, and degree of nonuniformity in the mean-flow

properties downstream of the origin of the mixing zone. The aerodynamic influence of a

shear layer on its environmentand the effectiveness of momentum exchange and fuel dis-

tribution in a combustor are typical examples of problems requiring primarily a definition

of mean-flow properties. For these problems a simple representation may be employed

for the turbulent exchanges. However, these models must account accurately for the

effects of velocity, temperature and density differences, and pressure gradients.

Another class of problems requires more detailed descriptions and computations of

the turbulent structure. These problems include (1) the propagation of disturbances

through turbulent layers, (2) the generation of noise, (3) dynamic loads on aircraft, and

(4) flows involving kinetic processes where the reactants are not intimately mixed and

rates of reaction cannot be defined in terms of mean-flow properties only. For example,

predictions of ignition and pollutant emission are crucially sensitive to trace amounts of

free radicals and these, in turn, depend upon the local turbulent spectrum. It is therefore

apparent that the complexity required in turbulence modeling depends on the problem.

That is, the selection of a method should depend upon a careful determination of the infor-

mation required to resolve the particular needs of the user. It would be unreasonable to

employ a highly complex method where only gross quantities are needed. Conversely,

low-order techniques cannot be expected to provide answers to problems requiring detailed

information on turbulent structure.
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CLASSIFICATION OF METHODS OF INCORPORATING TURBULENCE EFFECTS

As indicated by the wide variety of methods presented at this conference, there are

a number of approaches to the prediction of turbulent shear flows. It seems worthwhile

to make a general classification of these approaches in order that minor differences

between two methods should not obscure their commonality and that we may see where

the various contributions to the conference fit into a broad methodological structure. This

classification will pertain to the means by which the physics of turbulence is incorporated

into the describing equations, not to the means by which the resulting equations are

solved. 2 To emphasize the distinction, the equations developed for a sophisticated closure

scheme could conceivably be solved by an integral method, although to do so would not be

reasonable.

The basic problem in the description of turbulent flows (as usually treated in terms

of the time average of the dynamical variables and their correlations) is that an open-

ended hierarchy of equations results from the systematic treatment of the original, time-

dependent conservation equations. This is the so-called closure problem. To illustrate,

for constant-density flows the momentum equation corresponding to direction x i involves

the mean velocity components ui (i = 1, 2, 3), the mean pressure p, and the six correla-

tions ui'u k' (i,k = 1, 2, 3). In many flows of applied interest, boundary-layer approxi-

mations and other simplifications apply so that these six reduce to one, namely, Ul'U2'.

Until recent years mls problem was overcome, in most engineering problems, by

introducing a closure model at the first level in hierarchy, e.g., by formally introducing

an eddy viscosity e, so that -Ul'U2' = e/SUl/OX2) and by then relating e to specified

flow properties and to the dependent variables. Today this approach provides only one

class of methods for turbulent free mixing flows. The variations on the eddy-viscosity

approach involve introduction of mixing length concepts, turbulent Prandtl and Schmidt

numbers, and sophisticated correlations for _ involving a variety of effects - for exam-

ple, variable density. In view of the minimal content of the physics of turbulence in this

class of methods, it is somewhat surprising that in many problems of applied interest

entirely adequate answers are provided. This can be seen for several of the contributions

to this conference, especially where empirically determined constants are grafted on the

correct dimensional constraints of the procedure. Thus, if the problem relates to the

spreading rates and diffusion - either of a coaxial jet in a moving stream or of the wake

of a reentry body - the customary and generally adequate approach for its solution would

involve utilization of some appropriate model for _, preferably one which has been veri-

fied by comparison with experiment in a closely related flow. This situation concerning

2The reader would benefit greatly at this stage by referring to reference 1 and to

sections 4 and 5 of reference 2. Longer discussions can be found in references 3 and 4.
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the utility of eddy-viscosity methods is likely to continue; that is, such methods will be

entirely adequate for many problems. In this conference the contributions of David H.

Rudy and Dennis M. Bushnell (paper no. 4); L. S. Cohen (paper no. 5); H. H. Korst, W. L.

Chow, R. F. Hurt, R. A. White, and A. L. Addy (paper no. 6); Joseph A. Schetz (paper

no. 8); J. H. Morgenthaler and S. W. Zelazny (paper no. 9); and V. Zakkay, R. Sinha, and

S. Nomura (paper no. 10) fall within this first classification.

As mentioned previously, there do arise in engineering applications problems which

involve more of the physics of turbulence than is contained in eddy-viscosity approaches.

In addition, there are cases in which the eddy-viscosity approaches are inadequate for the

prediction of mean properties. For example, flows which involve abrupt changes in the

character of the main stream, with the so-called nonequilibrium effects and relaxation to

a new dynamical state, are not well predicted by methods employing eddy-viscosity con-

cepts because of their local nature. 3 Because of this situation and because of the advent

of high-speed computers which make feasible the numerical treatment of complex systems

of partial differential equations, new approaches have been developed in recent years which

incorporate more of the physics of turbulence into the describing equations. These

approaches possess greater variety and flexibility. At this conference the contribution of

B. E. Launder, A. Morse, W. Rodi, and D. B. Spalding (paper no. 11) provides an excellent

review of several of these new methods; an earlier paper by W. Rodi and D. B. Spalding

(ref. 5) gives a somewhat broader perspective.

These new methods may be characterized according to whether they introduce the

turbulent kinetic energy alone or other velocity correlations as well, and according to

whether the one or more length scales which arise in the analysis are specified algebrai-

cally in terms of computed quantities such as the thickness of the mixing layer, or are

defined by partial differential equations. For clarity, consider one of the early types of

these new methods. (See ref. 6 and paper no. 16 by Thomas Morel, T. Paul Torda, and

Peter Bradshaw.) It has been observed that in a wide variety of flows the mean turbulent

shear is related algebraically to the turbulent kinetic energy; that is, u'v' = aq2, where

a is a semiempirical function. Th___us,one adds to the usual set of mean equations, the

equation for the conservation of q2, an equation which is on the second level of the hier-

archy of describing equations. However, this equation involves certain correlations, for

example, the triple correlation u2'ui'ui'. These must be described in terms of the prin-

cipal dependent variables by what is usually called "structure" or "modeling"; the model-

ing process introduces at least one length scale. In applications of this early method, only

one length scale appears and is taken to be an algebraic function of the thickness of the

shear layer.

3The method presented by David H. Rudy and Dennis M. Bushnell (paper no. 4)
attempts by appropriate phenomenology to extend the mixing length concept to some of
these problems.
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A closely related methodis termed the "Prandtl energy method" wherein the eddy
viscosity is expressed in terms of q-2 so that

d_1
-Ul,U2, ccqA

dx2

where A is a suitable length scale. Again an equationfor A must be established.

Further developmentsinvolve use of the conservation equationsfor velocity corre-
lations other than those associatedcollectively with q-2. Eachof these equations are
entries in the secondlevel of the hierarchy of describing equationsand involve modeling
to close the set of equations. Indeed, a separateequationfor the meanshear Ul'U2' can
be included. It will be recognized that these methodsprovide, as part of the solution pro-
cedure, predictions for some of the physical aspectsof turbulence. For example, in the
methodoutlined above,the turbulent kinetic energyis found in the course of the solution"
and this may be of interest by itself. Furthermore, the meanshear dependson the turbu-
lent kinetic energy which involves convection,diffusion, anddissipation and therefore
involves an upstream history. Accordingly, the shortcomings listed previously regard-
ing nonequilibrium effects may be more readily overcome.

In applications of thesemethodsinvolving well-defined length scales, the assump-
tion of relatively simple relations for these lengths is justified. However, in problems
involving more than one scale (e.g., whentwo shear layers with different characteristic
dimensions interact or whena turbulent boundarylayer expandsarounda downstream
facing step), these simple relations are not convincingand more complicated means of
describing the length scale (e.g., by partial differential equations) are probably needed.
There are at least three meansfor deriving appropriate length-scale equations; each gen-
erally involves a high degree of modelingwith attendantpossibilities for error.

The many feasible combinations of correlations and length scales make possible a
wide variety of methodsandhave led to a proliferation of publications on these methods
in recent years - a mixed blessing. Thesenew methodsare under rapid development;
somewill becomeobsolete through further refinement. Their utilization shouldbe under-
taken only if the nature of the flow andof the desired information warrants dissatisfaction
with the less sophisticated methods. It shouldbeemphasizedthat the incorporation of the
elusive effect of variable density into these methodshasonly beententative and that much
improvement is in order in this regard.

The new methodsrequire specifications of initial data - for example, the distribu-
tion of turbulent kinetic energy or other correlations at some initial station. Thus exploi-
tation of these more powerful methodsfor more accurate predictions, in fact, requires
more detailed a priori knowledgeof the initial features of the flows than is generally
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available.4 Scatteredevidencesuggeststhat downstreamdevelopmentsof free shear

flows are more sensitive to suchdetails of iniUal turbulent structure than are develop-
ments in wall boundary layers, both experimentally and numerically. Adequateassess-
ment of the newmethodsinvolving turbulence characteristics will naturally place addi-
tional demandson the experimentalists. As additional correlation terms which are
explicitly modeledin the theories becomeaccessible to direct, accurate measurements,
the credibility of the methodscould increase convincingly beyondthat basedon present
comparisonsof gross quantities and mean profiles. In this connectionreference is made
to the report of the Committee To RecommendCritical Experiments, andto the open
forum discussion disclosing scepticism as to the relevance of the Reynolds' type of
averagingto the important physical mechanismsgoverning the flows.

At this conference in addition to the contributions of B. E. Launder et al. (paper
no. 11), thoseof Paul A. Libby (paper no. 12),P. T. Harsha (paperno. 13), P. M. Heck
and M. A. Smith (paper no. 14),P. j. Ortwerth (paper no. 15), Thomas Morel et al. (paper

no. 16), and C. E. Peters and W. J. Phares (paper no. 17) involve these newer techniques.

IMPRESSIONS

When the reader embarks upon his own study of the results in the comparison fig-

ures (pp. 699 to 737), he would do well to refer constantly to the classification sheets

(pp. 739 to 761) for the concise description of the methods as well as for an appreciation

of the costs.

- Substantial progress has been made in sharpening the predictive capability for both

mean and turbulent quantities in several basic flow configurations. Yet no single tech-

nique appears sufficiently general to warrant classification above all others.

- The cross-checked and related group of methods reported by the team at the Imperial

College of Science and Technology represents a broad approach which promises a sys-

tematic development toward a pracUcal degree of generality.

- The one integral technique presented is adequate for mean properties but while more

flexible than other integral methods, it cannot provide the details of the flow offered by

finite difference methods.

- The selection of a method by a user should be based upon the requirements of the prob-

lem and the cost of computations.

- Information concerning computational costs can be determined from the data given on

the program descriptions in the classification sheets (pp. 739 to 761).

4See also comments on the "near field" in the report of the Committee To Recom-
mend CriUcal Experiments.
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- Many methodshave beenoversold. It is most important to specify limitations of
regions of applicability of the methods; this has rarely beendonein the Past.

- Onewonderswhat the agreementswouldbe if theanswers were not known.

- Methodsin the same formal category may be quite different in their effectiveness. It
apparently depends,in part, on whois using the procedure andon the details of Lhemodel-
ing or fitting of empirical constants. Whenanauthor's methodis employedby a compet-
itor for comparison purposes, the author invariably complains that his methodwas not
usedto the best advantageby handsunfamiliar with the fine points.

SPECIFIC PROBLEMS

Variable Density

In many important turbulent flows, the density varies in space and time due to vari-

ations (a) in temperature or (b) in composition, or both. To describe these flows the var-

ious predictive methods for turbulent flows with constant density must be extended or

reformulated to take into account satisfactorily the effects of variable mean and fluctuating

density for both cases (a) and (b). This is one of the central problems in applied turbu-

lence research. However, the physics of such flows must be better understood before

their analytic description can make substantive progress. The report of the Committee

To Recommend Critical Experiments has emphasized the role of high-quality experimen-

tation in developi ng thi q ,,ndor._#_ ndin__

The equations describing the mean flow field and the various correlations, in cases

involving variable density, can be written in a variety of ways depending on how the

decomposition into mean and fluctuating quantities is performed. For free shear flows of

interest here, the consideration of mass-averaged quantities after Favre (ref. 7) leads to

equations which are more compact. But if the quantities which are desired either for

comparisons with experiment or for purely predictive purposes involve conventional time

averages, then some estimates of the correlations involving density must be made a pos-

teriori. On the other hand, if all dynamical quantities are decomposed in the straightfor-

ward manner into a mean-plus fluctuation, the resulting equations are cluttered and var-

ious a priori approximations must be considered. 5 No matter which approach is used for

describing equations and/or method of solution, the means for incorporating the effects of

variable density are generally unclear. 6

5In the conference, J. Laufer cautioned that in some cases the experimenter may be
measuring a mass-averaged quantity without being aware of it.

6As a revealing exercise the reader is urged to decide on a consistent mean equation
of state for a perfect gas by perturbing the instantaneous forms p = RpT and RT = p/p
(where p is pressure, R is gas constant, T is temperature, and p is density).
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One shouldkeepin mind that in many flows of applied interest large variations of
density do not persist over extendeddownstream regions. For example, In the caseof
an axisymmetric jet of hydrogeninjected coaxially into an airstream, the mean concentra-
t.ionof hydrogenon the axis decreases rapidly, so that within several orifice diameters ori
the order of 10, the mean-density difference from the axis to the external flow becomes
relatively small. Suchinsensitive flows do not provide crucial tests of predictive methods,
althoughfor the practicing engineer agreementbetweenprediction and experiment may be
all he requires.

Oneclass of turbulent shear flows appearscrucial for the careful assessment of
the effects of variable density. These are the two-dimensional mixing layers wherein the
variable density arises from differences in velocity, temperature, or composition in the
two mixing streams. In these flows the density differences persist indefinitely in the
downstreamdirection. In addition, the corresponding equationshave self-similar solu-
tions so that their numerical analysis canbe greatly simplified and the effects of variable
density clearly exposed.

Unfortunately, two-dimensional mixing flows exhibiting unequivocal self-similarity
are difficult to establish in the laboratory. The effects of initial boundary layers, of
transition, andof adjacentwalls in both directions (in the X-Y- and XZ-planes in the usual

notation) appear to alter even gross but essential properties of the mixing such as the

spreading parameter a. To illustrate, we consider a special case of two-dimensional

mixing, involving a high-speed airstream mixing with quiescent air under conditions such

that the stagnation temperature of the moving stream equals the static temperature of the

quiescent gas. This is the so-called compressible adiabatic case for which the Mach

number M 1 in the high-speed flow provides the only parameter. (More generally

(1/2)(7 - 1)M12 should be considered the parameter (where 7 is the ratio of specific

tests), but since air is the only gas considered in such flows to date, we confine our atten-

tion to M1. ) The effect of M 1 on a is at present obscure; some data indicate no

effect of M 1 on a whereas other data indicate a significant effect. Similar discrepan-

cies exist for the low-speed mixing of dissimilar gases, e.g., helium and air. These

points were brought out and emphasized at the conference in the contribution of Stanley F.

Birch and James M. Eggers (paper no. 2).

It thus appears crucial to the development of accurate predictive methods for turbu-

lent shear flows with variable density that high-quality, experimental data be obtained on

a few examples of two-dimensional mixing layers with large density differences in the two

streams. (For further insight and problems of implementation see the report of the

Committee To Recommend Critical Experiments.) Before these are available, the var-

ious extensions to include variable density of existing predictive methods for turbulent

shear flows must be considered provisional, and they cannot be used with confidence in

many flows of applied interest.
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Sensitivity of Prediction Methods to Parameter Values and Initial Data

We feel that many of the current methodologies cannot be fully reliecl upon for gen-

eral application until their sensitivities to (a) selection of "empirical" coefficients and

(b) specification of initial conditions has been documented. Although this type of study

was not provided for at the conference, the generality and practical utility of each tech-

nique depend largely upon the implications of these sensitivities. We believe that such

studies should be performed so that both the theoretical implications and the practical

requirements for initial conditions can be defined.

Pressure Fluctuation Terms

Operationally, we view the predictive methods as sophisticated interpolation schemes

subject to basic physical constraints, which connect functionally the past empirical data.

Whenever we add another algebraic or differential equation to account for the development

of another feature of turbulence, we increase the capacity of the scheme to fit better var-

ious selected characteristics of the exceedingly complex turbulent fields. It is not sur-

prising that the extra mathematical flexibility (bought at a price which should be properly

weighed by the user) leads to better predictions - within the confines of past empirical

information. As the predictor works with his program, the terms in his equations tend to

acquire a reality of their own which should not be confused with physical reality. Time

and again this distinction is brought home with a shock as the predictor applies his

machinery to re_mes beyond the original empirical foundations, such as we witnessed

here in connection with largo density changes and higher Mach numbers.

We foresee steady progress in the refinements of the differential field methods com-

mensurate with the need for answers to more refined technological problems, for exam-

ple, for flows with reactions. The progress, however, could be more apparent than real

if the modeling of the turbulence terms do not mirror physical reality accurately. The

currently most suspect group of terms describes the effect of the fluctuating pressure,

ap and v _--P-P. These terms are usually transformed tilizing incompressible
namely, u --_ ay

continuity _u 8v O_ "m +_ = and lumped together with "convective diffusion terms, which are
8X 8X /

distinctly different in physical nature. In compressible flow, continuity involves density

derivatives and the difference in the terms is thereby underscored. Since these terms

grow with M2, their careful treatment at supersonic speeds is desirable. We commend

to you the remarks of J. Laufer (pp. 687 and 688) on their possible important role in com-

pressible turbulence. These pressure fluctuation terms may well hold the key to the

understanding of the changes in free turbulence at supersonic speeds, including the appar-
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ent decreasein the spreading rate. The compressible turbulence experts conjecture that
these effects wouldbe felt in free turbulent flows at lower Machnumbers than in attached

turbulent boundarylayers (primarily becauseof the low-speed wall constraint). Thus the
free-shear-layer workers have an extra task as well as an extra opportunity for research.

Gradient Diffusion

In almost all closure schemesincluding the basic eddy-viscosity models it is
assumedthat the meanflux of somequantity is proportional to the gradient of an appro-
priate quantity, for example,

Ul,U2, cc8ill
8x2

Suchassumptionsare madeat several stages in the analysis in the new closure schemes.
Although suchmodels havebeenusedextensively for a long period of time and are repeat-
edly employedin a casual, uncritical manner, it was emphasizedat the conference that
gradient diffusion, in principle, applies only whenthe length scale associatedwith the
large eddiesis small in comparison with a length characterizing the gradient. Since this
is generally not the case in shear flows of applied interest, it is clear that the use of gra-
clientdiffusion must be considered risky.

Alternatives include a bulk diffusion expression and combinedbulk andgradient dif-
fusion. (Seeref. 8.) In Bradshaw's methodfor turbulent shear flow (ref. 6 and paper
no. 16), the turbulent kinetic energy equationis closed with a bulk diffusion model. How-
ever, the generalpreference for gradient diffusion persists amongdevelopers of predic-
tive methods. With improved measuring and computingcapabilities, renewedattention
should begiven to careful assessmentsof alternative modeling of the various diffusion
terms.

Low ReynoldsNumber

There is evidencethat manyof the research experiments - and for that matter the
intended applications - showReynolds number sensitivity. For the simple mixing layers
the energy supplyfrom the two cocurrent streams is infinite in principle, andwe expect
an asymptotic approachto a Reynolds-number-independent,self-similar shear layer if we
only march far enoughdownstream. However, the jet andwake flows may be conditioned
by low Reynoldsnumber effects throughout their lifetimes. The turbulence structure then
may not be "universal," andthe measurementand adequatepredictions of these flows may
present special problems.
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We believe that insufficient attention has beenpaid to understanding of the implica-
tions of a larger, active role of viscosity in turbulent shear flows either experimentally
or theoretically andto developing modified techniquesfor computationof flows at lower
Reynoldsnumbers. Someof the apparentexperimental scatter may well be a reflection
of the unavoidablenonuniversality.

What appears to be neededare simple rules for the experimentalist to use in order
to suppress Reynoldsnumber as a parameter. Someyears ago,Corrsin provided a lower
boundfor the Reynoldsnumber of a low-speed circular jet discharging into quiescentair.
Bradshawhas donesomethingsimilar for the two-dimensional, low-speed mixing layer
(seepaper no. 2). How their rules are affected byhigh speedandby variable density is
not known.

Influence of Geometry

We agree with A. Roshko's remark (during discussion of paper no. 16)aboutthe
possibility of real difference in the turbulence structure of two-dimensional andaxisym-
metric turbulent flows. Although the impact may not be large onour present methods -
mostly changesof coefficients - the potentially different structure of the large energetic
eddiesshouldentail consequencesfor the more detailed properties of the flows.

NON-BOUNDARY-LAYERANALYSES

Oneof the essential features of all the prediction techniques presentedat this con-
ference is the use of the boundary-layer approximation. Evidence of non-boundary-layer
effects appearedin some flows used in the conference,suchas in wakelike jet flows and
mixing regions involving large entrainment rates. Flow situations of this type raise
doubts concerning the approximation that 9/_ <<1. In addition, there are flows in which
displacement effects and longitudinal curvature alter the streamwise and normalpressure
gradients, respectively.

In the case of laminar flow the methodof matchedasymptotic expansionsprovides
a systematic methodfor accountingin part for theseeffects which may be associated
with non-boundary-layer phenomenainasmuchasthey are not included in the classical
boundary-layer theory. In view of the considerablephenomenologywe must introduce in
order to describe turbulent thin shear layers, it appearsinappropriate to use the
machinery developedfor laminar flow on our turbulent cases. However, someof the
physical ideas which evolve from the treatment of laminar flows - for example, in
accountingfor the effects of large entrainment rates (suspiciously large v(1)(x,°o) in
the usual notation of "inner solutions"! andfor displacementand curvature effects - may
well provide the basis for handling their counterparts in turbulent flows in a rational but
nonformalistic way.
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In this matter of non-boundary-layer effects, attention might well be called to a
contribution of Bradshaw(ref. 9) which showsthat many of the complexturbulent flows
that are important in engineering are recognizable as perturbations of the classical thin
shear layers. The point here is that we should carefully assess the nonclassical, non-
boundary-layer effects at handbecause,as Bradshawpoints out, we may be able to treat
these effects as perturbations to our familiar methodologyrather than to plungeinto an
unwarrantedformalism.

Behindall the activity related to flows of the boundary-layer type such as dominated
this conferencelooms the specter of many flows which arise in practical applications and
which have noneof the features required for application of the boundary-layer approxima-
tion. Frequently, such flows are turbulent and are amenableonly to experimental analy-
sis. Evenhere our knowledgeof turbulence shouldprove useful with respect to develop-
ment of the appropriate scaling and similarity laws.

THE ROLE OF THE COMPUTER IN TURBULENCE STUDIES

One of the pregnant questions which arose in the discussion during the conference

concerns the role of the high-speed computer in turbulence studies of interest to engineers

and engineering scientists. There are already underway at various centers (e.g., ref. 10)

studies of elementary flows - for example, flow in a cavity - in which the time-dependent

Navier-Stokes equations are solved with random initial conditions. After sufficient com-

puting time, statistics of the flow, such as the various correlations of interest, can be

computed and the turbulence characteristics determined.

In this conference, J. R. Herring of the National Center for Atmospheric Research

(paper no. 3) discussed several current attempts to utilize the high-speed computer in

turbulence research. For a given Reynolds number, such methods attempt to reduce the

computing time and increase the accuracy from that required by a brute-force attack on

the Navier-Stokes equations. The rapid expansion of the power and speed of the digital

computer and the steadily decreasing cost per operation raise the prospect that in the

foreseeable future such techniques can be employed on problems of interest to engineers,

e.g., turbulent shear flows of great complexity. It is clear from the discussion of this

prospect (see the remarks of J. R. Herring, D. R. Chapman, D. B. Spalding, and S. C. Lee

in the Open Forum) that there is no unanimity on this matter. It does seem certain that

these new methods will continue to be developed as the capacity of digital computers grows

and that certain idealized numerical experiments will be carried out with them. The

results thereof may be analogous to the fundamental, high-quality experiments which

presently play such a central role in the development of turbulence theories and methods.

What is not clear is the impact of these developments on the engineering methods which

evolve from those presented at this conference.
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DISCUSSION

R. B. Edelman: As a member of the industrial community, I would like to add some com-

ments to help put certain aspects of the proceedings into perspective. Some of us have

some very relevant practical problems to cope with, and, each day, these are becoming

very much more complicated. We are the first to realize and appreciate the need for a

better understanding of turbulence. Although this need is apparent, we cannot lose sight

of the realities of complex models which would serve to discourage potential users from

applying them, simply because the theoretical model developers have not concerned them-

selves with aiding in how these models should be applied. For example, in classes of

problems which may require the higher order methods, the specification of initial condi-

tions becomes more demanding. This must be the concern of both the theoretician as

well as the user. If this isn't the case, then I think that we are both going to lose. Sec-

ondly, although this conference has focused on the free shear layer, and specifically the

fluid mechanics aspects of the mixing process, there are numerous problems of practical

relevance which even though fundamentally more complicated are in current need of solu-

tion. Specifically, I am referring to problems involving mixing inside ducts (combustion

chamber problems, for example, which embody a wide variety of applications), turbojet

engines, rocket engines, and furnaces. Then one must include the problems of kinetic

processes, multiphase flows. There has been no mention of these aspects which are not

problems that can wait until the simpler yet very instructive free-shear-layer unbounded

flows are fully understood before we move on and tackle these more practical aspects. I

refer to them as more practical, but they are simply problems that are in current need of

a solution. What I would like to see is how these current systems of equations work now.

This will help to determine the paths that should be followed to provide current stopgaps

and to provide some direction for continued research. I think we should do this concur-

rently while we are looking at the more simple flows where it has been made quite clear,

during the past 2 days, that there are many things that we don't understand. If we don't

do this, and we try to work in series, instead of in parallel, I think that some valuable

information and insight will just not be available on a timely basis.

D. M Bushnell: I have one very simple comment: I have been playing for a number of

years in the sandbox of very high Mach number turbulent boundary layers. If one looks

at the equations, there are some very interesting p' and p' terms, the type of terms

that at Mach numbers less than 5 are usually dropped but now should be included. We

have obtained data at very high Mach numbers where we have density changes across

these boundary layers on the order of 100. When we look at these data and try to compute

them, I for one have been disappointed because when we put in low Reynolds number

effects, we can compute them. We have no right being able to compute them. At this

conference, at long last, it looks as if the free shear layer is a flow which may exhibit
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some Mach number effects. Finally, we have a flow where we can start seeing if the p'

and p' terms are important. I hope that this is the case. I hope we aren't just missing

something in the experiments, such as secondary flows in the apparatus, which are tend-

ing to change the entrainment rate. Several years ago I heard Donaldson cite the example

of an open jet in a hangar, and when the hangar door was opened, the entrainment rate

changed. This sort of a thing bothers me. I just hope that we have a nice juicy problem

here, which will tax us, rather than just something that is going to eventually degenerate

into some very simple answer in terms of some inviscid effects, or some quirk in the

experimental data.

J. Laufer: The question, of course, has concerned us for a number of years: In what way

do compressibility effects alter a turbulent flow?

Purely from a formalistic approach, one may get a first indication for an answer if

one fo!!ows Lagerstrom's arguments used on laminar flows 1 and applies them to the mean

equations of motion describing turbt/lent flows. If the equations are put into a proper non-

dimensional form, one can see right away that the Mach number appears explicitly in the

equation for the mean static enthalpy as the coefficient (V - 1) M2 in the work term

8p M2

u i _ and as --Re in the dissipation term. For high Reynolds number flows of particu-

lar significance is the work term containing the pressure fluctuations. This may be seen

further by considering the equations for the turbulent kinetic energy and for the mean

static enthalpy:

= -pu i'uj' _xj

8xj\ '/ 8xj

Op

- uj' ax--_l

+Sxj 3 - phuj

8ui'
-- "T..

13 ?_

lJ _)xj

The terms that explicitly show an energy interchange between the mean and turbulent flow

(terms that occur in both equations but with opposite signs) are shown in the dashed boxes.

Now since the interaction due to viscosity usually occurs at high frequencies where the

energy level is low, it is primarily the term containing the pressure that _ndicates the

_ important new sources (or sinks) for the production of turbulent energy in addition to the

,er,,, the Reynolds stresses.well-known production _ _ .,,,_.... _._-'_,,,_

1Lagerstrom, P.A.: Laminar Flow Theory. Theory of Laminar Flows, F. K: Moore,
ed., Princeton Univ. Press, 1964, pp. 20-285.
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Let us now try to speculate about the physical process through which such an inter-

change might come about. The term in question can be rewritten as follows:

_p a -- _ui'

ui' -a-_= 8xq ui'P - P 8x---_

where the first term on the right-hand side of the equation represents a spatial gradient

transport of energy and our attention should be concentrated primarily on the second term

that represents interchange between internal and kinetic energy. In incompressible flows

this term is usually referred to as the "tendency toward isotropy" term since it expresses

the action of the pressure due to which the u component of the turbulent kinetic energy

(generated by the pu'v' stress) is partially transformed into the v and w energy

components making the net value of this term vanish; that is,

8U' . BY' 8W____'

-P :PW +p +z

It is co_/jectured that in a compressible flow such a balance does not take place. Using a

somewhat descriptive rather than exact terminology, one may say the flow is stiffer and

more resistive to changes in the direction of large Mach number gradients; consequently,

less energy is transferred into the v component. This fact has then the important con-

sequence that the Reynolds stress pu'v' becomes smaller and, therefore, the turbulent

transport process becomes less efficient. Furthermore, the nonzero value of the dilata-

8ui'
tion -- brings about changes in the density. These density changes can be seen in a

axi
most dramatic fashion on a holograph picture of the outer edge of a turbulent jet. Itis

known that at the outer edge the occasionally outward moving (with v velocity)"turbulent

bumps" interact with the ambient fieldproducing pressure fluctuations. At low speeds

these fluctuationsare clearly incompressible. As the jet velocity is increased, the

spreading angle decreases and clearly distinguishable density variations appear around

the turbulentbumps. Itis conjectured that these density fluctuationsarise due to the

dilatationeffectof the compressibility which inhibitsmotion in the radial direction.

I have to emphasize that the above discussion is quite speculative; itis given mainly

with the hope thatitwill stimulate more thorough studies on this question,

M. V. Morkovin: I would liketo thank Dr. Laufer. Obviously 'I asked him to comment on

the modeling of the pressure-velocity correlation terms, especially at higher Mach num-

bers. Remember, itis with respect to the spreading that all of our methods were having
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difficulties. The high Mach number spreading was really the one thing that was most

off, and the possibility that we are not modeling right in that direction is why we are talk-

ing about it now.

J. A. Schetz: I would like to make two comments - one technical and one a formalism

about the evaluation. If we are going to tabulate the comparisons of all the predictors

with the data, I think it would be worthwhile to make some unified scoreboard of other

features of the method. After all, their relative accuracy of prediction is not the only

evaluation that a potential user might make. Other factors might be types of problems

that can't be treated (some of the eddy-viscosity models will obviously fall into this cat-

egory) and typical time for computation. There are a lot of.other measures of the use-

fulness of procedure which perhaps should be tabulated in this publication.

H. H. Korst: Is it your feeling that the questionnaire that has been passed out tp the pre-

dictors at this conference may have been incomplete or composed in haste and should it

be revised and made more complete, or do you have any other suggestions?

J. A. Schetz: Well, I think that most people put down approximate times. Perhaps we

should be asked how long it took us to do a couple of representative cases. I mean_ most

people guessed at the time it took them or estimated the time.

D. M. Bushnell: We will be corresponding with the authors anyway and we will send along

another sheet which they can fill out or, if they wish, we will use the original.

J. A. Schetz: I would like to mention again that we have measured rather substantial static

pressure gradients in situations which are perhaps surprising, in line with Dennis

Bushnell's comments. We have measured large static pressure gradients in the wake

behind a circular cylinder, for example, up to 25 to 30 percent of the free-stream static

pressure. We have also done the same thing at supersonic speeds where it is perhaps

not so surprising. This is an area which requires some attention, even if we are using

the simplest type of approach, and where I think further experimer/ts and some analyUcal

work is needed.

M. V. Morkovin: Where does this static pressure gradient come from? I mean, is it

part of the model? We all know that on the backside of a cylinder we "have low pressure.

We have the drag, right?

J. A. Schetz: We have observed that this static-pressure variation persists for surpris-

ingly long distances downstream (20 or 30 diameters). If in the same wind tunnel you

take a cylinder of a certain size and measure the normal pressure gradient and then you

take a sphere of exactly the same size and put it in the same wind tunnel, you will find a

very much smaller static pressure gradient. So it is not as simple as that.

689



H. H. Korst: Yes, but you address yourself to the wake problem in a more general sens

than "just mixing when you say that the wake problem may involve nonconstant pressure

mixing.

M. V. Morkovin: I'm trying to pursue this thing. Is this divorced from entrainment?

Do you have entrainment without such a gradient? How does entrainment come about?

Isn't a static-pressure field concomitant with the entrainment?

J. A. Schetz: My only comment is that you can have entrainment without such a big static

pressure gradient. We get entrainment in a jet. You get entrainment in the wake behind

a sphere and we don't measure anything like these large pressure gradients. We found

out that this is not a new discovery on our part. If you examine Schlichting's thesis

(1930), you will find he measured similar large static pressure gradients. It may have

something to do with the rate of entrainment. It is surprising that when you go from a

cylinder to a sphere you find such a big difference.

M. V. Morkovin: As you know, in laminar boundary layers and in other laminar flows

(jets or otherwise), you can proceed by iteration and compute your displacement thickness

to get a pressure gradient. I think Van Dyke 2 has shown, at least for laminar boundary

layers, that even in complex situations like laminar entry into a duct (which is much more
/

tricky because the displacement accelerates the flow), the simple next approximation (the

11
approximation) is a relatively good one. When I was referring to the ellipticity, I was

%

2

not being party to the predictors, I was still thinking that perhaps with the marching tech-

niques there is a possibility of putting a 11 type of step into the calculation.
2

J. Ito" I guess Dennis Bushnell more or less intimidated me right at the very beginning

in that he said that this conference will not account for mixing with static pressure gra-

dients and it will not account for mixing with chemical reaction effects. Now in industry,

as has been pointed out before, we can't necessarily solve ideal problems or classical

problems. We have to solve problems as they occur and we do have a model which I have

mentioned to Dennis Bushnell and to Dr. Birch, which does take these factors into account

and is based on physical insight. It's not a model which is based on mathematical deriva-

tions. Now the reason I didn't speak up earlier in this conference is that I didn't want to

disrupt the tone of this conference by bringing up additional factors which were beyond the

scope of this present conference. If anyone is interested in some of the details of this, I

would be willing to discuss it with them privately.

J

2Van Dyke, Milton: A Survey of Higher-Order Boundary-Layer Theory. SUDAAR
No. 326 (Contract No. AF 49(638)-1274), Dep. Aeronaut. & Astronaut., Stanford Univ.,
Sept. 1967.
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H. H. Korst: I think that was a self-imposed restriction of the conference. I am quite

sure that not only in industry but also at other places, of maybe less practicality, these

problems have found considerable interest and are worked upon and you may find here

interested partners to discuss it right away.

S. F. Birch: I would like to invite comments from some of the predictors on the model-

ing of length scale. In many of the papers details of the other terms and constants have

been elaborated upon considerably. The question I am asking is as follows: In these

complex flows where initially you have boundary layers with different length scales for

different regions of the flow, where the length scales are in some cases defined differently

and where differences in length scales that have cropped up between planar and axisym-

metric flows, do you feel that these differences represent real physical differences

between these regions of the flow? Also, how do you feel they should be dealt with?

D. B. Spalding: I would just like to say that it is our opinion that if one is interested in

flows of any gUlL_L,tll_y............. at ,_,_;1v,,_......,-,-,, _,,-b-_.... ÷ _'_,+_.... +v_n_'m_]ly............... dp._aribing the len_th_ scale.

The only practical way forward (the only economical way forward) is to deduce the length

scale by solving an appropriate differential equation. We need to think of only simple

separated flows like the flow downstream of a sudden enlargement in a pipe and we imme-

diately see that the length scale just downstream of the enlargement and in the neighbor-

hood of it must be similar to that in a mixing layer, because there is a mixing layer there.

Far downstream the length-scale distribution of a pipe flow must be approached. Then,

in the eddy region, there is some kind of length scale which perhaps close to the wall is

proportional to the distance. You can see some of the limits but you can't at all tell how

to propose the length-scale distribution. I think it is not worthwhile. If you can solve

any differential equations at all, you can solve those two extra ones - one for the energy

and the other for an equation which will lead to the length scale. I would argue that's

what all engineers ought to do.

D. M. Bushnell: I would like to ask the Imperial college people if they have ever pre-

sented the results of their length-scale calculations. I've seen quite a few predictions

of mean profiles. I've never seen plots of your computed length-scale developments in

various flows. It might be of some interest to see just what these things are doing.

D. B. Spalding: I cannot be absolutely certain about the papers, but I can recall length-

scale distribution for that sudden enlargement flow and also for certain film cooling flows,

film cooling downstream of a slot. Certainly we have presented there a length-scale dis-

tribution in the form of profiles.

D. M. Bushnell: Are these the length scales which you have computed from your kel

and ke2 models?

D. B. Spalding: Correct.
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M. L. Finson: I agree with Professor Spalding's points about the importance of solving

for the length scale in many situations. I gave a paper 3 at the recent AIAA meeting,

which Stan Birch alluded to briefly, having to do with the near wake behind hypersonic

bodies with turbulent boundary layers. In that case, the near-wake turbulence is appar-

ently residual boundary-layer turbulence and can have a scale size that will be off by an

order of magnitude from a normal wake scale size. This can have a very large effect on

the development of the wake. When you have scale sizes that are far from similarity,

things like dissipation rates will be far from similarity, and it can take a very long time

to recover.

H. H. Korst: I have one observation which I would like to share. While the appearance

of similarity solutions was recognized and observed by many of the predictors, I was

wondering why no reference was made to the levels of modified Reynolds numbers involv-

ing the virtual kinematic viscosity as published many years ago by Schlichting 4 for two-

dimensional and axisymmetric wakes which could be compared with the turbulent Reynolds

number defined in Dr. Peters' paper. Is there anyone who would like to comment on that?

M. L. Finson: I would like to amplify on your question because I wondered many of the

same things. For instance, Professor Spalding, in analyzing the wake flows with the var-

ious models, showed that as one went downstream the lower level models diverged from

the data and from the higher order models. I found this rather surprising. I would have

thought that the one thing any model could reproduce would be similarity; the asymptotic

self-preserving behavior. I would think that would be the first thing one would check with

the models to make sure that you get the right asymptotic solution, presuming, of course,

that the Reynolds number is high enough that you do have that behavior. Perhaps those

particular cases did not go far enough downstream, but I was shocked by that.

D. B. Spalding: The first thing that we did do when we began all this work, long before

the conference, was to look at those self-similar flows. You saw one slide, I showed it,

it is one of Mr. Rodi's slides, for four or five different self-similar layers and I quite

agree, one must at least be able to make predictions for self-similar layers. This is

why I argued that the ke2 is the one which we have to prefer, because only it can handle

those well-known plane and axisymmetrical wake flows which appear in Schlichting. 4

That is why we must have a model of that kind. Now in this conference we weren't asked

to compare our predictions with those data we were asked to compare them with develop-

ing flows and you saw what the results were. I entirely agree with what the speaker has

just said, and we've done it.

3Finson, Michael L.: Hypersonic Wake Aerodynamics at High Reynolds Numbers. AIAA
Paper No. 72-701, June 1972.

4Schlichting, Hermann (J. Kestin, transl.): Boundary-Layer Theory. Sixth ed., McGraw-
Hill Book Co., Inc., 1968, ch. 24.
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H. H. Korst: I was particularly interested in whether Dr. Peters would be able to cor-

relate his terminal and universal Reynolds number to such a value. Did you give some

thought to that?

C. E. Peters: Are you referring to the value of the fully developed terminal Reynolds

number R T in a wake?

H. H. Korst: That is right.

C. E. Peters: The one thing we commented on in the written version of the paper is that

the axisymmetric incompressible wake, the Chevray wake, was a situation where the

length scale of the experiment, which was far from fully developed, did not go to the ulti-

mate x-2/3 decay or whatever is proper; it varies as x -1 all the way. Personally, I

have never seen any incompressible axisymmetrical wake data behind a streamlined body

which go to the x-2/3 decay. Perhaps I am not aware of it. There may be a question

H. H. Korst: Steve Kline has mentioned and given due weight to this. The fact that we

do not reach similarity does not mean that we cannot anticipate its approach as we plot

consecutive data and see an asymptotic narrowing down of the gap.

C. E. Peters: In the particular flow that I mentioned before, we maintained an x -1

center-line velocity distribution (that is, the defect distribution) to x/D of 200 or so,

far beyond where the experimental data stopped. We commented on this in the written

paper.

M. V. Morkovin: I would like to have some advice on my own philosophy. On the panel,

we strongly came out for motherhood; that is, there was a need for simple solutions as

well as a need for more complex solutions. Maybe that wasn't right if I understand what

the industrial members are saying. For one thing, Peters says his simple solution is

really consuming an awful lot of time too and that no solution is really simple. If I under-

stood Professor Spalding, the extra differential equation isn't really that much more diffi-

cult. We have made that statement partly because we felt that the computer technology is

sucking us into a method pollution just like technology is sucking us into general pollution.

Perhaps, that's wrong and we should use the most up-to-date method and recommend it to

everybody; I don't know. I'm not in a position to judge and I'd be very happy to be cor-

rected in terms of a yearning for the simple old days.

C. E. Peters: May I clarify one point about our computation times. Our program is at

least an order of magnitude slower than it needs to be for these particular flows because,

as I mentioned during my presentation, it is full of extraneous information going much

beyond the requirements for the flows considered in this conference; therefore, I think it

is faulty to say that it is extremely slow. The point is that it is still a monumentgl com-

putation task even as an integral method. I mean it is not something one can do on the
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back of an envelopeas classical integral methodshavebeen, unless onehas an awfully
big envelopeand an awful lot of time.

M. V. Morkovin: It has been said that the Stanford conference did one piece of damage;

that is, it pushed in the direction of the proliferation of the extra complex things. Is that

a correct criticism? Is the idea to use the best tool that you have because it is not really

that complicated?

S. J. Kline: It seems to me that what Dr. Morkovin is saying is that we no longer need

motherhood but we need population control, for one thing. With regard to the Stanford

conference, 5 1 remember the recommendations were that we need some simple methods.

We said, in fact, that one couldn't differentiate between the integral methods and the dif-

ferential methods, as some of each were good. But since then, in looking at the actual

figures, critical readers of the proceedings have observed that the center of gravity of

the population Of the differential methods is certainly at a better place than the center of

gravity of the integral methods. If you are going to go to a computer, as Peters has said,

then certainly you are going to use more sophisticated methods. And in another comment,

I tend to agree with Professor Spalding. It seems to me that what progress has been made

toward improved calculations of turbulent boundary layers and of the class of problems

we have been discussing here - I think there is some progress - is due more to the com-

puter than to any other single factor in the last 20 years.

C. duP. Donaldson: I would like to make a suggestion in regard to when you use more

sophisticated methods and when you don't. I found it is enormously instructive to do what

I did or do what Professor Spalding did. If you wish to use a simpler method, you don't

use all these additional equations. But really the essence of a lot of the physics, but not

all of the physics, of eddy-viscosity methods comes from looking at the super equilibrium

form of those equations. In particular, what is the effect of heat release by chemical

reactions on eddy viscosity? You can get that effect -- the first-order effect - by taking

an equilibrium nondiffusive limit. This is a very helpful thing to do and it also helps tell

you, when you look at the problem, whether that's the kind of problem you can do that way

with any degree of confidence. If you don't feel you can, then you will have to use one of

these more elaborate methods.

C. E. Peters: I would like to add one bit of clarification about integral methods. Classi-

cally, integral methods have been, I think, of two types, and we should differentiate

between them, not mathematically but grammatically. The classic integral method is one

where you may not input information on the intergrand but you input information on the

integral quantities from empirical information and this does not give you back a detailed

5Kline, S. J.; Morkovin, M. V.; Sovran_G.;and Cockrell, D. J., eds.: Computation of
Turbulent Boundary Layers - 1968 AFOSR-IFP-Stanford Conference. Vol. I -
Methods, Predictions, Evaluation and Flow Structure. Stanford Univ., c.1969.
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flow-field description from the integral method. That's one approach. What we have

done is a bit different: We have input information on the integrand - that is, the shape of

things - and this means that we get back not just the distribution of net q,_antities (the

solution variables, wall pressure in the case of our ducted flow) but also spatial distribu-

tions. We get back just as much information qualitatively as we would get from a differ-

ential method. We get spatial distributions of kinetic energy, of shear stress, of velocity,

and so forth. So the output is not quite the same as in some simpler integral methods.

H. H. Korst: The different complexity of the problems on one side and in methods of

solution on the other side can be illustrated rather simply. As topics for this conference,

we have excluded certain problem types entirely by definition. That doesn't mean that we

as individuals haven't been concerned with such practical problems as hydrogen burning

in wakes (and have found solutions experimentally verified by simple flame sheet methods)

or that we haven't utilized such things as virtual origin shift and eql!iva!_nt bleed to attack

problems of base bleed in rather complicated configurations. We have here concentrated

on the better founded ways - not seeking simple solutions like saying what do I care for

a if I'm only interested in the dividing streamline because the dividing streamline with-

out any bleed in its asymptotic behavior doesn't care about u. It is just a simple simi-

larity solution which does not require any empirical information. Therefore, I think we

have gone quite a bit into more details. We always find that some people will continue to

make contributions to a better physical understanding and other people, such as in indus-

try, will be more or less forced to utilize whatever simple and maybe nonsophisticated

methods that have become available and can be readily compared to and applied to prob-

lems expecting a certain degree of ball-park type accuracy for their solutions.

S. C. Lee: Any method selection should be based on what we want to calculate. If we are

interested in design parameters such as a drag force or aerodynamic heating, I think the

so-called integral methods would be quite sufficient for giving us this information. How-

ever, if we are interested in the fuel-air mixing for a hypersonic jet, I think the integral

method would not be sufficient to give you the mixing in proper details. If we are inter-

ested in problems of meteorology, and we would like to see how the air masses move, we

have to go to more sophisticated methods like those Professor Spalding proposed - maybe

going even further, like analyzing the diffusion terms as well as the production and dis-

sipation terms.
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INDEX TO TEST CASES

Two-Dimensional Shear Layers:
1. Spreadingparameter for a fully developedfree turbulent shear layer for velocity

ratios u2/u1 of 0, (_.2,0.4, 0.6, and0.8.

2. Spreadingparameter for a fully developedfree turbulent shear layer with a velocity

ratio u2/u1 of 0 for Machnumbers of 1.0, 2.0, 3.0, 4.0, and 5.0.

3. Spreadingparameter for a fully developedfree turbulent shear layer with a velocity

ratio u2/u1 of 0.2 anddensity ratios p2/p 1 of 14, 1/2, 1/7, and 1/14.

4. Lee, Shen Ching: A Study of the Two-Dimensional Free Turbulent Mixing Between

Converging Streams With Initial Boundary Layers. Ph. D. Diss., Univ. of

Washington, 1966.

5. Hill, W. G., Jr.; and Page, R.H.: Initial Development of Turbulent, Compressible,

Free Shear Layers. Trans. ASME, Ser. D: J. Basic Eng., vol. 91, no. 1, Mar.

1969, pp. 67-73.

Axisymmetric Jets Into Still Air:

6. Maestrello, L.; and McDaid, E.: Acoustic Characteristics of a High-Subsonic Jet.

AIAA J., vol. 9, no. 6, June 1971, pp. 1058-1066.

7. Eggers, James M.: Velocity Profiles and Eddy Viscosity Distributions Downstream

of a Mach 2.22 Nozzle Exhausting to Quiescent Air. NASA TN D-3601, 1966.

8. Heck, P.H.: Jet Plume Characteristics of 72-Tube and 72-Hole Primary Sup-

pressor Nozzles. T.M. No. 69-457 (FAA Contract FA-SS-67-7), Flight Propul-

sion Div., Gen. Elec. Co., July 1969.

Jets in Moving Stream:

9. Forstall, Walton, Jr.; and Shapiro, Ascher H.: Momentum and Mass Transfer in

Coaxial Gas Jets. J. Appl. Mech., vol. 17, no. 4, Dec. 1950, pp. 399-408.

10. Chriss, D.E.: Experimental Study of the Turbulent Mixing of Subsonic Axisym-

metric Gas Streams. AEDC-TR-68-133, U.S. Air Force, Aug. 1968. (Available

from DDC as AD 672 975.)

11. Eggers, James M.; and Torrence, Marvin G.: An Experimental Investigation of

the Mixing of Compressible-Air Jets in a Coaxial Configuration. NASA

TN D-5315, 1969.

12. Eggers, James M.: Turbulent Mixing of Coaxial Compressible Hydrogen-AirJets.

NASA TN D-6487, 'n,1.L_ | .L.

13. Bradbury, L. J.S.: The Structure of a Self-Preserving Turbulent Plane Jet.

J. Fluid Mech., voh 23, pt. 1, Sept. 1965, pp. 31-64.
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Wakes:

14. Chevray,Rene; andKovasznay, Leslie S.G.: Turbulence Measurements in the
Wakeof a Thin Flat Plate. AIAA J., vol. 7, no. 8, Aug. 1969,pp. 1641-1643.

15. Chevray, R.: The Turbulent Wakeof a Bodyof Revolution. Trans. ASME, Ser. D"
J. Basic Eng., vol. 90, no. 2, June 1968,pp. 275-284°

16. Demetriades, Anthony: Turbulent Mean-Flow Measurements in a Two-Dimensional
SupersonicWake. Phys. Fluids, vol. 12, no. 1, Jan. 1969,pp. 24-32.

17. Demetriades, Anthony: Mean-Flow Measurements in an Axisymmetric Compress-
ible Turbulent Wake. AIAA J., vol. 6, no. 3, Mar. 1968,pp. 432-439.

Optional Test Cases:
18. Wygnanski,I.; and Fiedler, H.: SomeMeasurements in the Self-Preserving Jet.

J. Fluid Mech., vol. 38, pt. 3, Sept. 18, 1969,pp. 577-612.

19.Heck, P.H.: Jet Plume Characteristics of 72-Tube and 72-Hole Primary Sup-
pressor Nozzles. T.M. No. 69-457 (FAA Contract FA-SS-67-7), Flight Propul-
sion Div., Gen.Elec. Co., July 1969.

20. Chriss, D. E.; and Paulk, R.A.: An Experimental Investigation of SubsonicCoaxial
Free Turbulent Mixing. AEDC-TR-71-236, AFOSR-72-0237TR,U.S. Air Force,
Feb. 1972. (Available from DDC as AD 737 098.)

21. Chriss, D.E.: Experimental Studyof the Turbulent Mixing of SubsonicAxisym-
metric Gas Streams. AEDC-TR-68-133, U.S.Air Force, Aug. 1968. (Available
from DDC as AD 672 975.)

22. Eggers, James M.: Turbulent Mixing of Coaxial CompressibleHydrogen-Air Jets.
NASATN D-6487, 1971.

23. Champagne,F. H.; and Wygnanski,I.J.: Coaxial Turbulent Jets. D1-82-0958,
Flight Sci. Lab., BoeingSci. Res. Lab., Feb. 1970. (Available from DDC as
AD 707 282.)

24. Demetriades, Anthony: Observations on the Transition Process of Two-
DimensionalSupersonic Wakes. AIAA J., vol. 9, no. 11, Nov. 1971,
pp. 2128-2134.

698



COMPOSITEPLOTS

The composite plots of the predictions for eachtest casewere prepared by using
the figures in the original predictors' papers. Theyare intendedonly to facilitate an
overall comparison betweenthe predictions andthe experimental data. For a detailed
study of the successor failure of a particular methodandan explanationof the symbols
used, the reader should refer to the original paper.
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Results of the Additional Test Case to Compare Computer Codes

In the comparison of turbulent free mixing predictions from different authors the

possibility exists that variation between the predictions may be due in part to differences

in numerical computing procedures. To investigate this possibility the predictors were

asked to run an additional test case using a prescribed eddy viscosity model with given

initial conditions. This additional test case was considered optional since some predic-

tors could not run the case without substantial changes in their computer programs.

The geometry of the additional test case flow was chosen to be coaxial with flow

conditions typical of a hydrogen-air mixing experiment as follows:

Ue/U o = 0.26

u o = 1000 m/sec

T O = T e = 650 ° R

Turbulent Prandtl number = 0.7

Turbulent Schmidt number = 0.8

Primary stream: pure H 2

Secondary stream: air

Nozzle radius: r o = 2.0 cm

The initial profiles were to be uniform with discontinuous changes in u, p, and

OtH2 at r//r o = 1.0.

The following eddy viscosity model (which was not being used in the conference by

any of the predictors) was specified:

Pt = 0"021PeUe - Pc_UC_lrl/2

where rl/2 is the value of r where

u = llu¢_ + Uel

The objective of this additional test case was to compare computing procedures

rather than turbulence modeling. Six of the predictors (Rudy, Harsha, Launder, Schetz,

Morgenthaler, and Zakkay) ran the case. The resulting center-line velocity distributions

are shown in the first figure and center-line values of mass fraction of H 2 are shown in

the second figure. The resulting spread in the predictions corresponds to approximately

a 10-percent variation in the value of the constant in the eddy viscosity model.
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C LASSIFICATION SHE E TS

The classification sheets were completed by the predictors and are intended to give

the reader a concise description of the various prediction methods.
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Authors: David H. Rudy and Dennis M. Bushnell

Class of method: Eddy viscosity method with algebraic length scale equation

Number of empirical constants or functions: Two (1/5, c_ or _)

Were the same ones used for all cases ? No

Reason (numerical, physical) for any changes ?

Two values _0.05 axisym. (5

for 1/6 [.0.07 2-dim.

defined differently in each region

of jet and wake flows)

If needed in your method, how is initial shear profile generated ? Are the initial

_ma__ _/u2x/rV - Ul_2] values different for the four different classes of flows ? Not needed

Time for running of method on typical cases on what computer:

Shear layers :

Subsonic, constant density

Supersonic (u2/u 1 = 0.05)

Jets into still air:

Test case 7 (supersonic)

Test cases 6, 18 (subsonic)

Coaxial jets:

Typical case

Wakes:

Subsonic (test cases 14, 15)

Supersonic (test cases 16, 17, 24)

100 to 200 sec

1200 sec

2000 sec

1200 sec

200 to 300 sec

600 to 1200 sec

70 sec

CDC 6600

Cost estimate: $40/1000 sec

Availability of the deck: From authors - unlimited distribution

Precautions for potential industrial user: Equations solved in Von Mises plane (see

paper) with constant step size in normal direction

Special assumptions for compressible flows: None
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Test cases tried (pleasecircle):

s.@®
J:@®
_:® ®
,v:®®

®®@
®®@

@@@
®@@

@ 22 23

Key definitions to remember:

width of mixing region (see details in paper no. 4)
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Authors: Leonard S.Cohen

Class of method: Boundary layer form of conservation equationswith kinematic eddy
viscosity

Number of empirical constantsor functions: Two

Were the sameonesused for all cases? No

Reason (numerical, physical) for any changes ?

for two-dimensional and axisymmetric flows.

level.

One "constant" takes on different values

The other depends on initial turbulence

If needed in your method, how is initial shear profile generated ? Are the initial

• m_v/_(u2--- Ul_2 values different for the four different classes of flows? Not applicable
/

Time for running of method on typical cases on what computer: 10 min on UNIVAC 1108

Cost estimate: $30/case

Availability of the deck: Available to Government contractors through Contract Officer

Precautions for potential industrial user: (1) No transverse pressure gradient,

(2) Momentum flux ratio between outer and inner jet should not much exceed 4, and

(3) Initial boundary layer requires special treatment in search for mixing layer height.

Special assumptions for compressible flows:

Test cases tried (please circle):

s:@@ 3 4 5
J: 6 @ 8 18 19

JJ: 9 I0 II 12 13

W: 14 15 16 17 24

20 21 22 23

None
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Key definitions to remember:

m is the external to centerline velocity ratio

n is the external to centerline density ratio

m 1 is the external to centerline velocity ratio at which the preturbulence mechanism
achieves dominance.
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Authors: H.H. Korst, W. L. Chow,R. F. Hurt, R. A. White, and A. L. Addy

Class of method: Numerical methodwith averageeddydiffusivity

Numberof empirical constantsor functions: One

Were the same onesusedfor all cases? Yes (two-dimensional flow casesonly)

Reason(numerical, physical) for any changes?

If neededin your method,how is initial shear profile generated? Are the initial

Tmax/_(u2- - Ul)2 values different for the four different classes of flows ?

Initial shear stress is matchedwith the wall boundary layer flow

Time for running of methodon typical cases onwhat computer: =1min on IBM 7094

Cost estimate: $5

Availability of the deck: Yes

Precautions for potential industrial user:

Specialassumptions for compressible flows: None

Test cases tried (pleasecircle):

s:®@@@@
J: 6 7 8 18 19

JJ: 9 10 11 12 13 20 21 22 23

w:@ @ @
Key definitions to remember:

=
o2-d

Eddy viscosity models for jet mixing and wake flows
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Authors: JosephA. Schetz

Class of method: Differential meanfield

Number of empirical constantsor functions: One(eachfor planar and axisymmetric)

Were the same onesused for all cases? Yes

Reason(numerical, physical) for any changes?

If neededin your method, howis initial shear profile generated? Are the initial

rm,_/_fu2-,_/.k - Ul_2] values different for the four different classes of flows ?

Time for r_mningof method on_pical casesonwhatcomputer:

68sec for test case 16on IBM 370/155

Cost estimate:

Availability of the deck: Original codeobtainedfrom Gen.Appl. Sci. Lab. through Navy

Precautions for potential industrial user:

Avoid pjUj/PeU e greater than 3.0 or less than 0.4

Special assumptions for compressible flows: None

Test cases tried (please circle):

S: 1 2 3 4 5

J: 6 7 8 18 19

w:®@@
13 20

24

Key definitions to remember:

21 22 23
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Authors: J.H. Morgenthaler and S.W. Zelazny

Class of method: Differential mean field with eddy viscosity model

Number of empirical constants or functions: One constant and three functions

Were the same ones used for all cases ? Yes

Reason (numerical, physical) for any changes ?

If needed in your method, how is initial shear profile generated? Are the initial

• max/_(u2 - Ul)2 values different for the four different classes of flows ?

Time for running of method on typical cases on what computer: 4.5 min on IBM 360/65

Cost estimate: $36/typical case

Availability of the deck: Developed on internal research and development program

Precautions for potential industrial user:

Special assumptions for compressible flows: None

Test cases tried (please circle):

S: 1 2 3 4 5

W: 14 O 16 (_ 24

23

Key definitions to remember: Eddy viscosity proportional to the mass defect and

inversely proportional to a characteristic length which reduces to the velocity half

width downstream of the core. Models of axial and transverse turbulence intensity

are obtained through a derived relationship with eddy viscosity. Radial variation

of these models is included.
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Authors: V. Zakkay, R. Sinha,and S.Nomura

Class of method: Numerical: Von Mises transformation

Number of empirical constantsor functions: One

Were the same onesused for all cases? Yes

Reason(numerical, physical) for any changes?

If neededin your method, howis initial shear profile generated? Are the initial

_m^--/_/u2a.x/.-_-Ul_2/ values different for the four different classes of flows?

Time for running of method on typical c_ses on whst computer: 3 rain on CDC 6600

Cost estimate: University cost: $20

Availability of the deck:

Precautions for potential industrial user: Special precautions to be used for step profile

Special assumptions for compressible flows: None

Test cases tried (please circle):

S: 1 2 3 4 5

J: 6 7 8 18 19

® ®
W: 14 15 16 17

®13®®@
24

23

Key definitions to remember:
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Authors: B.E. Launder, A. Morse, W. Rodi, andD. B. Spalding

Class of method: 2-equation turbulent-viscosity model (ke2)

Number of empirical constantsor functions: 4 constants, 1 function (2 functions for
axisymmetric flows)

Were the sameonesused for all cases? No. Seetable 4 on page411.

Reason(numerical, physical) for any changes?

If neededin your method,howis initial shear profile generated? Are the initial

7max/_(u2 - Ul)2 values different for the four different classes of flows ?

Seepages366and 367.

Time for running of methodon typical casesonwhat computer: 20 sec on CDC 6600

Cost estimate:

Availability of the deck: Negotiable

Precautions for potential industrial user: e equation occasionally produces numerical

instability; eliminated by adjustment to grid distribution in outer region and to forward

step.

Special assumptions for compressible flows:

Test cases tried (please circle):

S:q)@@ @@

@ @ @@@

Key definitions to remember:

None

@@@
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Authors: B.E. Launder, A. Morse, W. Rodi, andD. B. Spalding

Class of method: 2-equation turbulent-viscosity model (kel)

Number of empirical constantsor functions: 5_ constants+ (for axisymmetric flows)
1 function

Were the same onesusedfor all cases? No, small differences for axisymmetric and
plane flows. Seetable 3 onpage410.

Reason(numerical, physical) for any changes?

If neededin your method,how is initial shear profile generated? Are the intial
Tmax/_(u2 - Ul)2 values different for the four different classes of flows?

/k /

See pages 366 and 367.

_'D_me for running of method on typical cases on what computer: 20 sec on CDC 6600

Cost estimate:

Availability of the deck: Negotiable

Precautions for potential industrial user:

Special assumptions for compressible flows: None

Test cases tried (please circle):

s.®@@®@
@ @

,v..® ® @ @
Key definitions to remember:

@@@@

One extra constant if species and/or stagnation enthalpy equation solved.
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Authors: B.E. Launder, A. Morse, W. Rodi, and D. B. Spalding

Class of method: Shear-stress transport + dissipation rate transport equation

Number of empirical constantsor functions: 6 constants (Seetable 6 on p. 413.)

Were the sameonesused for all cases? Yes

Reason(numerical, physical) for any changes?

If neededin your method,howis initial shear profile generated? Are the initial

Tmax/_(u2- - Ul)2 values different for the four different classes of flows ?

Seepages366and 367.

Time for running of methodon typical casesonwhat computer: 25 sec on CDC 6600

Cost estimate:

Availability of the deck: Negotiable

Precautions for potential industrial user:

Special assumptionsfor compressible flows:

Test casestried (pleasecircle):

S:(_) 2 3 (_ 5

J: 6 7 8 18 19

JJ: 9 10 11 12 (_ 20 21

1_ 15 16 17 24W:

Key definitions to remember:

As ke2model

No compressible flows considered

22 23
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Authors: B.E. Launder, A. Morse, W. Rodi, andD. B. Spalding

Class of method: Reynoldsstress transport model+ dissipation-rate transport equation

Number of empirical constantsor functions: 6 constants

Were the sameones usedfor all cases? Yes

Reason (numerical, physical) for any changes ?

If needed in your method, how is initial shear profile generated? Are the initial

_'m,../_(u2,_/.x - Ul_2/ values different for the four different classes of flows ?

See pages 366 and 367 and table 7 on page 414.

Time for running of method on typical cases on what computer: 30 sec on CDC 6600

Cost estimate:

Availability of the deck: Negotiable

Precautions for potential industrial user: None especially; but he would be advised to

gain some practice with a simpler model first.

Special assumptions for compressible flows: None considered

Test cases tried (please circle):

S:(_) 2 3 (4_ 5

J: 6 7 8 18 19

JJ: 9 10 11 12

W: (_ 15 16 17 24

Key definitions to remember:

20 21 22 23

751



Authors: B.E. Launder, A. Morse, W. Rodi, and D. B. Spalding

Class of method: Prandtl energy model

Number of empirical constantsor functions: 3 constantsfor isothermal 1-species flow;
otherwise 4 constants

Were the sameones usedfor all cases? No. Seetable 2 on page409.

Reason(numerical, physical) for any changes? To provide better overall predictions, a
different value of one of constantswas adoptedin plane andaxisymmetric flows.

If neededin your method,how is initial shear profile generated? Are the initial

7m--- _/u2a._/._ - Ul_2/ values different for the four different classes of flows ?

Seepages366 and 367.

Time for running of methodon typical cases onwhat computer: 15sec on CDC 6600

Cost estimate:

Availability of the deck:

Precautions for potential industrial user: As for mixing-length hypothesis

Special assumptions for compressible flows: None

Test cases tried (please circle):

s:@®@®@
@ @

Key definitions to remember:

®®®®
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Authors: B.E. Launder, A. Morse, W. Rodi, and D. B. Spalding

Class of method: Mixing-length hypothesis

Number of empirical constants or functions: 1 constant for uniform density flows;

otherwise 2 constants

Were the same ones used for all cases ? No. See table 1 on page 408.

Reason (numerical, physical) for any changes ? A different mixing-length constant was

used for axisymmetric and plane flows to improve agreement with data.

If needed in your method, how is initial shear profile generated? Are the initial

_m_'"/°fu2_-_/' k - ul_2/ values different for the four different classes of flows ?

g

Time for running of method on typical cases on what computer: 10 sec on CDC 6600

Cost estimate:

Availability of the deck: Basic listing of GENMIX published in reference 11 of paper

Precautions for potential industrial user: The user must be prepared to alter the mixing-

length constant according to the kind of shear flow considered.

Special assumptions for compressible flows: None

Test cases tried (please circle):

s.@@@®@
@ @

@@

Key definitions to remember:

@@@@
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Authors: Philip T. Harsha

Class of method: Parabolic turbulent kinetic energy with algebraic length scale

Number of empirical constants or functions: Three: a 1 (= "r/pk), a 2 (dissipation),

Pr k (TKE Prandtl no.)

Were the same ones used for all cases ? All except 2D shear layer for

2D wake for a 2

Reason (numerical, physical) for any changes ? Lateral function for

totic shear layer is not recommended (physically implausible); a 1
axisymmetric flows is supported by experiment.

al, all except

a I used in asymp-

function used for

If needed in your method, how is initial shear profile generated? Are the initial

_'max/P(U2-- - Ul)2 values different for the four different classes of flows ?

(1) If flow starts from initial boundary layers, Maise and McDonald eddy viscosity

profiles used to establish initial z.

(2) If flow starts downstream, either (a) constant e from e = kpbAu, kp = 0.005

or (b) constant e estimated from experimental maximum shear.

Time for running of method on typical cases on what computer: 1 min on IBM 370/155

(time varies with number of equations; H2-air (test case 12) involves 4 equations

and takes 1 min 45 sec)

Cost estimate: $5-$10 at $300/hr

Availability of the deck: Available on request

Precautions for potential industrial user:

spacing and requires careful handling.

tial boundary layers to start.

P_.0o< 1
Pe = 1-'4" causes numerical difficulties with grid

Zero pressure gradient; needs definition of ini-

Special assumptions for compressible flows: No differences in formulation, which implies

neglect of p'u' etc. terms in TKE equation for these cases.

754



Test cases tried (pleasecircle):

s.@@@@@
_.®®® @ @
_.®@@ @@
w:®@@@@

Key definitions to remember:

al pk

Dissipation =
a2Pk 3/2

@@@

f

23

lk =1Y99 - Y01 t for 2D flow, near field of jets

lk = 2Yl/2 for axisymmetric jets

1 u
Yl/2 = y at which u=_( c +ue)

TKE diffusion constant = Pr k = 0.7
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Authors: P.H. Heck and M. A. Smith

Class of method: Turbulent kinetic energy

Number of empirical constantsor functions: 4 + 3 constants in length scale

Were the sameones usedfor all cases? Yes, except in length scale model

Reason(numerical, physical) for any changes? Physical

If neededin your method,how is initial shear profile generated? Are the initial
Tmax/_(u2- - Ul_2 values different for the four different classes of flows ?

/

Uniform initial profile

Time for running of method on typical cases on what computer: 4 to 6 min on GE635

4min on GE635 = 1 min on CDC 6600

Cost estimate: $25- $35

Availability of the deck: Under Air Force contract - CDC deck

Precautions for potential industrial user: None

Special assumptions for compressible flows:

Test cases tried (please circle):

S: 1 2 3 4 5

J: @ @ 8 18 19

W: 14 15 16 17 24

None

20 21 22 23

Key definitions to remember:
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Authors: Paul J. Ortwerth, Douglas C. Rabe, and Donald P. McErlean

Class of method: Turbulent kinetic energy (eddy viscosity)

Numer of empirical constants: Three: (1) large eddy scale for dissipation, (2) small

scale for mixing, (3) compressibility

Were the same ones used for all cases ? Yes

Reason (numerical, physical) for any changes ? Not any

If needed in your method, how is initial shear profile generated ? Are the initial

Tmax/_(u 2 - Ul)2 values different for the four different classes of flows ?
g

An initial turbulence intensity profile is needed. When not ......... it .... * be _*_

mated from data on pipe flows or boundary layers. Self-similar profile data can also

be used.

Time for running of method on typical cases on what computer: 20 sec on CDC 6600,

2-3 min on IBM 7094

Cost estimate: I don't know

Availability of the deck: Unlimited

Precautions for "_+_-_-_ _,,_,,_ri_! ,,._er: Works well for high Reynolds number flows

but not for flows with instabilities, such as wakes, only one scale is used at each

downstream station, not correct for two or more shear layers.

Special assumptions for compressible flows: Empirical relation for the variation of

eddy viscosity with local Mach number.

Test cases tried (please circle):

s.@@@@@
J: 6 @ @ 18 19

W: 14 15 16 @ 24

Key definitions to remember:

20 21 22 23
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Authors: Thomas Morel, T. Paul Torda, and Peter Bradshaw

Class of method: Differential, solving continuity momentum and kinetic energy equations

Number of empirical constants or functions: Three

Were the same ones used for all cases ? Two sets: Mixing layers; jets and wakes

Reason (numerical, physical) for any changes ? Physical - basic differences in structure

of the two flows

If needed in your method, how is initial shear profile generated ? Are the initial

Vmax/_(u 2 - Ul)2 values different for the four different classes of flows ?

Shear stress profile is not generated, must be input. The level of initial shear

stress may be estimated using an eddy viscosity formula. Yes (to the last question)

Time for running of method on typical cases on what computer: 20 to 30 sec on

UNIVAC 1108

Cost estimate: $3 - (at IIT)

Availability of the deck: From the first author

Precautions for potential industrial use_': No known bugs, requires small external flow

(cannot handle still-air); details are in the paper.

Special assumptions for compressible flows:

+ 1 rU2 = Constant (Crocco relation)apT

Test cases tried (please circle):

s:@@@4@
J: 6 7 8 18 19

JJ: 9 10 11 12 @

W: @ 15 @ 17 24

20 21 22 23

Density profiles obtained from

758



Key definitions to remember:

T

m

pv ½--G = _-" + vq2

re-}m-{1/2
L=

C
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Authors: C. E. Peters and W. J. Phares

Class of method- (1) Integral method,and (2) Turbulent kinetic energy method

Number of empirical constantsor functions: Three: (1) a1
(2) universal TKE profile shapes, (3) dissipation coefficient
Reynoldsnumberand density ratio.

Were the sameonesused for all cases?
the two axisymmetric wakes.

to relate T to TKE,
a2 - related to turbulent

Yes, except a2 = 1.4 (constant) was used for

Reason (numerical, physical) for any changes ? Wakes seem to have somewhat different

dissipation than lets and shear layers. A single constant a 2 was used and no attempt

was made to refine the dissipation function for wakes.

If needed in your method, how is initial shear profile generated? Are the initial

Tmax/_(u 2 - Ul)2 values different for the four different classes of flows ?

Starting conditions defined in text and in table II. Strong shear flows Ue/U o =

can be reliably started with fully developed Tm. This also seems true of wake-like

flows (u e > Uo). Note that only one initial value of "r(Tm) must be specified.

Time for running of method on typical cases on what computer: 3 min on IBM 370/155

(3.3 min for test case 7 from x = 0 to x = 150ro) program not yet optimized for
run time.

Cost estimate:

Availability of the deck: Available. Note that program has been developed for more

complex flows than covered in this conference.

Precautions for potential industrial user: Except for strong shear flows, more work is

needed on establishment of initial conditions. Method is limited to fully developed

velocity profile shape and to unity turbulent Prandtl and Schmidt numbers.

Special assumptions for compressible flows: None. a 2 function developed to account

for compressibility effects.
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Test cases tried (pleasecircle}:

Key definitions to remember:

(1) Fundamentalassumption is universal shapes for TKE profiles.

from incompressible experiments.

Shapes obtained

(2) At midpoint of shear layer (rm) , v is directly proportional to TKE: Tm = alPmk m

(3) Important point of analysis is relating dissipation coefficient (a2)to relative turbu-
1 .... la,T_Z (R,,,_ and to density ratio.
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