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SUMMARY

The question considered here is how deductiveturbulence theory can shed light
on the validity of turbulence phenomenologyat the level of second-order, single-point
moments. Chosenfor particular consideration are the phenomenologicalformula
relating the dissipation to the turbulence energy andthe Rotta-type formula for the
return to isotropy. First, methodswhich deal directly with most or all of the scales
of motion explicitly are reviewed briefly. The two discussedhere are the spectral
techniqueof Orszag and Patterson (ref. 1) and thesubgrid scale parameterization of
Smagorinsky (ref. 2) and Lilly (ref. 3). It appearsthat, at present, the spectral tech-
nique candeal with homogeneousturbulence with satisfactory accuracy up to a (micro)
Reynoldsnumber of 45. The virtues and faults of the subgrid scale methodare
briefly pointed out.

The statistical theory of turbulence is presentedhere as an expansionabout
randomness. Two conceptsare involved: (1) a modeling of the turbulence as nearly
multipoint Gaussianand (2) a simultaneous introduction of a generalized eddyviscos-
ity operator. In this context, the direct interaction approximation (DIA) of Kraichnan
(ref. 4) and a more recent theory, the test field model (TFM) of Kraichnan (ref. 5),
are discussedbriefly.

Someresults obtainedby using the DIA andTFM to predict the energy dissipa-
tion relation and the return to isotropy are next presented. For self-similar free
decay, the theory gives anenergy-dissipation relationship in qualitative agreement
with the phenomenology;but the numerical coefficient appears, at large Reynolds
numbers, to be about 40percent smaller than that used, for example, by Donaldson
(ref. 6). This result is considered an indication of a lack of universality of the phe-
nomenological formula in question. For the return to isotropy, the results are in
satisfactory accord with the phenomenology,but here again there are symptoms of
lack of universality of the phenomenology.

Finally, it is observed that the structure of the phenomenologyclosely resem-
bles, in some respects, the large Reynoldsnumber limiting form of the DIA equations.

*The National Center for ^*.... _^-'__t,,u_,,_, _ Research is sponsored by the National
Science Foundation.
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This observation is illustrated by the form of the triple momentused by Hanjalic and
Launder (ref. 7), which may be obtained as a limiting form of the DIA equation for the
same third-order moment.

INTRODUCTION

The past few years have seen great advances in numerical computations of turbulent

flows around a variety of complicated geometrical shapes. One has to be impressed by

the volume of these calculations and by their success in predicting mean velocity profiles,

etc., as witnessed, for example, by the compilation of comparisons of test calculations

with experiments by Reynolds (ref. 8), and as will undoubtedly be demonstrated again at

the present conference. Although the general outlook engendered by these calculations is

optimistic, the flourishing of empirical constants, which must be determined by appeals to

experiments, is somewhat disturbing. This state of affairs should not be indefinitely tol-

erated; somehow, a "deductive turbulence theory," free of empiricism, can be brought to

bear on these problems, and at the very least can determine the phenomenological con-

stants for the present models. Of course, a deductive theory probably will determine

much more than is now contained in the phenomenology - for example, the two-point cor-

relation functions.

This paper will describe how statistical turbulence theory can be brought to bear on

the problem of determining the parameters of turbulent flow models and how such a theory

could help evaluate several of the phenomenological constants entering the treatment of

homogeneous flows. The basic philosophy here is that an understanding of turbulence for

relatively simple geometries will shed light on the correctness of the phenomenological

equations used in the more interesting and complicated flow geometries. In developing

such an approach it may be appropriate to alter (or even give up part of) the empiricism.

The word statistical is used here in the sense of statistical mechanics. Several

such theories have been offered, most notably Kraichnan's direct interaction approxima-

tion (ref. 9) which will be discussed in more detail later. These theories offer closed

deductive equations for the statistical parameters of the flow field (that is, the mean value

of the velocity field, and the covariance). Alternatively, some procedures employ the dis-

tribution function of the velocity (Lundgren, ref. 10) or the distribution for its Fourier

transform (Herring, refs. 11 and 12). The theories may be described as expansions about

a type of randomness, which in some sense is supposed to be close to turbulence. Most

are free of empirical parameters but make somewhat arbitrary assumptions about the

statistics of the flow.

Consider some of the equations used to treat turbulent flows. (Symbols are defined

in the appendix of this paper.) The equation for the mean Reynolds stress, Rij = <vivj> ,
is
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(i)

Here Ui is the mean velocity field and p is the pressure field. The (constant) ambient

fluid density Po has been set at 1, restricting the discussion to incompressible flows.

The angle brackets denote an average about the instantaneous velocity field, v. Equa-
m

tion (1) is needed to "close" the equation for the mean velocity field Ui, which is not given

here (see, for example, Reynolds, ref. 8, p. 9). Before closed equations for U and R

can be written, the third, fourth, and sixth terms on the right-hand side of equation (1)

must be related back to U and R. Here attention will be restricted to the fifth and

seventh terms (underlined), which alone survive for homogeneous flows. The fifth term

is responsible for the return of an initially nonisotropic flow field to isotropy. It is

usually modeled by an equation of the form (Rotta, ref. 13):

(2)

Here E =-IR..
2 ll

viscosity:

is the total turbulent kinetic energy and e is the energy dissipated by

For e it is customary to take

°_ n

e = AE3/2/L (3)
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The seventhterm on the right-hand side of equation (1) is usually modeledin either of
two ways:

or

2v v i _x vj _x =3

The first, which seems more appropriate for large Reynolds number flow, will be used

here. In equation (3), L is a length scale associated with the large-scale part of the

turbulence. In the following discussion, L is taken to be the longitudinal integral scale,

following Batchelor (ref. 14, p. 105, Eq. 6.1.2). The quantity A is supposed to be a con-

stant of order unity; A = 0.707 according to Donaldson (ref. 6). Note that equation (2)

in conjunction with equation (1) (suppressing temporarily the viscous term) states that

2 5ijE exponentially if C and the turbulence decayRij relaxes to its isotropic value -_
rate e/E are constants.

The immediate goal is to see what statistical turbulence theory can reveal about the

universality (or, indeed, validity) of equations (2) and (3). This question is explored for

the restricted case of homogeneous flows. It is admittedly a very restricted context, but

by no means an empty question, as shall be demonstrated.

The most direct method of assessing equations (2) and (3) by a turbulence theory is

to set up a decay calculation to be done by the particular theory in question, march the

theory's covariance equations forward in time, and compare the results of the calculation

with equations (2) and (3). The generality of equation (3) could be tested by varying the

initial energy spectral shape (or equivalently, the initial shape of _v(x,0)v(x',0)_), and

perhaps by driving the system at low wave number to simulate the destabilizing effects of

shear instability. The same procedure could be used to test equation (3), with the addi-

tional freedom of varying the degree and spectral shape of the initial anisotropy. At best,

a reliable statistical theory would pin down universal values for A and C; at worst, it

would reveal that A and C as defined by equations (2) and (3) are time and context

dependent, so that the equations are useless as universal closure prescriptions. Even if

these equations are found to be justified for homogeneous flows, there remains the prob-

lem of explaining how they could be valid (with the same values of A and C) for non-

homogeneous flows. The success of the models may be taken as some indication of the

universality of the equations.
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Before proceeding with this task, two methods which are capable (with a large

enough computer) of answering these questions directly will be reviewed briefly. These

are methods which directly integrate the Navier-Stokes equations. They will have an

important role in the next few years in understanding turbulence. A comparison of their

predictions at low Reynolds numbers for good statistical initial data will help select the

correct statistical theory. Wind-tunnel data is not very helpful here because of the lack

of statistical initial data at t = 0 (just after the grid bars have generated the turbulence).

Moreover, the statistical theories are most easily studied if the initial state of the veloc-

ity field is random; this "statistical aspect" of the initial data cannot be matched by wind-

tunnel experiments. As these methods are improved, they will replace wind-tunnel data

as reliable data for low Reynolds number flow. In addition, they provide much more

detail than wind-tunnel data; the numerical integrations have enormous amounts of data

concerning the flow. These data can be stored on tapes, and interrogated as desired.

DIRECT INTEGRATION OF NAVIER-STOKES EQUATIONS

The simplest turbulence theory is just the Navier-Stokes equations; since most tur-

bulence calculations are numerical anyway, no insight is lost by considering direct inte-

gration of the Navier-Stokes equations forward in time, starting from some suitable ini-

tial data (for example, data generated by random numbers). Several years ago, this

approach appeared much too time consuming to be feasible. It still is not feasible for the

sort of problems considered at this conference. However, for simple boundaries and for

moderate Reynolds numbers (Rk = 30 or 40), it is now possible to do a creditable job of

treating turbulence, including all relevant scales of motion, directly by computer. Orszag

and Patterson (ref. 1), using the spectral technique, ha_e succeeded in simulating homo-

geneous turbulence in a periodic cubical box, with good numerical accuracy, up to a

Reynolds number R X of 45. Their results, I believe, will soon replace wind-tunnel data

in accuracy for the case of homogeneous turbulence. As mentioned, this method employed

a spectral technique; the velocity field was Fourier analyzed and each Fourier mode was

assigned an initial value according to a set of Gaussian random numbers. These were

generated so as to yield a statistically Gaussian, homogeneous, isotropic initial spatial

velocity field. They then integrated the equations of motion forward in time, allowing the

dynamics to build up correlations out of the initial state of chaos. Of course, the realiza-

tion of complete initial chaos (and isotropy) is limited by the finite number of degrees of

freedom that can be handled by a computer. At present, Orszag and Patterson treat one

time step of a (32)3-mode decay calculation in 7.5 sec of CDC 7600 time, and abouf 100

time steps are required to evolve the system significantly.

It may appear somewhat surprising that Orszag and Patterson resort to Fourier

modes in a day when finite mesh methods have all but taken over as a rapid numerical
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integration techniquefor the Navier-Stokes equations. There are three points, however,
which make their method competitive with the grid-point method, especially for problems
with simple geometry. First, the estimates of derivatives madeby the Fourier transform
methodare muchsuperior to those madeby the finite spatial grid method. Second,the
finite trigonometric series approximation to the velocity field (sometimes called an infi-

nite order approximation) converges uniformly and very rapidly to the exact solution as

the order of the approximation is increased. Such convergence is not obtained for an

arbitrary polynomial or piecewise-polynomial approximation to the flow field, as is, for

example, used in ordinary finite mesh or finite element schemes. The third point is that

the fast Fourier transform technique can be successfully implemented for this problem

so as to greatly speed up the calculation (the evaluation of convolution sums). Orszag

estimates that for the same given accuracy, the "Galerkin-Fourier" method is faster by

a factor of 3 (for a three-dimensional cubic box of turbulence) than the Arakawa stag-

gered mesh differencing scheme.

So far, the main use of these simulations has been to develop insight into the nature

of the turbulence and to check the statistical approximations, such as the direct interaction

approximation of Kraichnan, which will be discussed subsequently. One simple turbulence

parameter pinned down by these calculations is the (differential) skewness, defined by

S _

It measures the strength of nonlinear transfer in the turbulence microscale region. The

simulations give a value for s of =0.47 (for 20 <=R}, <_50), whereas the experimental

value in this range is more nearly 0.43 (Frenkiel and Klebanoff, ref. 15).

One present problem with the wave-number spectral technique lies in the difficulty

of obtaining good statistical information at low wave numbers without using a formidable

number of wave-number points. The method uses a grid of equally spaced points, and in

three dimensions the density of such points is proportional to k 2, so there are problems

in accurately representing the large-scale features of the flow. At present, this causes

difficulties in simulating free, moderate RX, turbulence decay if the initial energy spec-

trum to be simulated has too much energy at small k (that is, E(k) cc k, k - 0). The

problem is that as the spectrum decays, the larger k regions decay out faster because
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viscosity acts on them more strongly, leaving only the low k region excited at later
times, andthis region has poor statistics. At present no self-similar calculations (which
are necessary to obtain eqs. (1) and (2)) have beendonebecauseof the problem at low
wave numbers. According to Leith (ref. 16), a self-similar spectrum whosedecay law is
E cct-1 requires E(k) cck at small k.

Another methodwhich shouldbe mentionedat this point is the "subgrid scale closure
approximation," to which Smagorinsky (ref. 2), Lilly (ref. 3), andDeardorff (refs. 17

and 18) have made substantial contributions. The method is really a phenomenological

closure scheme, but the logistics of the approximation is such that as computers become

larger the phenomenology can be phased out, leaving in the limit only the exact numerical

procedure. The procedure is, very briefly, to average the Navier-Stokes equations over

a cubical box of dimensions 5 (5 is actually the grid size of the calculation). The

dimensions of this box determine the "subgrid scale." Roughly speaking, any scale larger

than 5 is treated explicitly , and any scale of motion smaller than 5 is not treated

explicitly but is represented in the averaged equations of motion by mixing-length-type

terms. More precisely, the averages of products of fluctuating terms are approximated

by suitable functions of average field quantities. The particular functional forms are

chosen in accordance with eddy viscosity ideas and are consistent with Kolmogoroff's

inertial range assumption (the eddy coefficients are proportional to a scale length 5 and

to the dissipation rate only). The logic of the procedure implies that the scale size 5 is

at least as small as the scale sizes in the inertial range. Hence, in using this method, one

must be prepared to treat explicitly all scale sizes larger than the scales in the inertial

range. As mentioned, the method does contain an empirical constant, but Lilly has shown

how it is related in a simple way to Kolmogoroff's constant. The procedure has been

applied successfully to thermal convection and shear flow by Deardorff (refs. 17 and 18).

More recently, Lilly (ref. 3) has made an analogous closure for third-order

moments. The idea here is to again form averages of the equations of motion over the

grid size 5. Now, however, instead of relating the averaged Reynolds stresses to mean

gradients, equations of motion for 'the Reynolds stresses themselves are sought by suit-

able manipulation of the equations of motion. In this way a relationship is obtained

between the time derivatives of the Reynolds stresses and their local sources and sinks

which include the averaged triple moments. The latter are then "approximated" by

mixing-length-like terms involving the mean gradients of the velocity field and the

Reynolds stresses themselves.

The equations obtained this way for the subgrid scale parameterization are very

similar to those obtained from other closure procedures (cf. Hanjali_ and Launder, ref. 7)

with the obvious difference in interpreting and computing the mean fields.
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Onevirtue of the subgrid scale methodnot possessedby methods parameterizing all
scales of motion is that a parameterization of only those scales much smaller than the
energy-containing range give the theory a universality not possessedby the other methods.
For example, it is hard to accept that Le/E3/2 is the same for any type of flow, regard-
less of howthe turbulence is generated, if E and L pertain to the energy-containing
region. Onehas much less difficulty here if the scales and energy involved are in the
inertial range.

Another virtue of the methodis its ability to assess its own accuracy. If the actual
explicitly treated flux of momentum, for example, turns out to be much larger than that
estimated bythe subgrid scale closure procedure, the total flux calculation may safely be
consideredaccurate, regardless of the accuracy of the subgrid scale procedure.
Deardorff (ref. 18)has foundthis to be essentially the case for a calculation of a buoyantly
active shear layer at heights greater than oneor two 5.

One difficulty with this approach,appreciated by Fox and Lilly (ref. 19), is that
there appears to be no strictly deductiveway whereby scales of motion less than a certain
scale size maybe treated as statistical and scales larger than this size may be treated
deterministically. Becauseof the nonlinearity of the Navier-Stokes equations, small-
scale uncertainties will in time penetrate the large-scale region, thereby contradicting
the logical framework of the theory. This difficulty may be cast in terms of statistical
turbulence theory by considering a staUstical initial value problem in which scales larger
than 5 are identical from ensemblemember to ensemblemember but scale sizes less
than 5 are knownonly statistically (varying in amplitude andphasefrom ensemble
member to ensemblemember). This initial specification corresponds to the logical
framework of the "subgrid scale" closure approximation. As Ume passes, however,

destabilizing nonlinear terms in the equations of moUon cause the scale sizes larger than

5 to be contaminated with that uncertainty initially residing at scale less than 5. This

mixing transforms the initial "mean" (or certain) field into an eventual "fluctuation" (or

uncertain) field. Of course, the closure procedure takes no cognizance of this fact, and

therein lies a problem in calculations of the evolution of a flow. As long as the errors do

not penetrate the large-scale energy-containing region, it may safely be assumed that the

predicted values of these large scales are correct. However, once the errors penetrate

the large-scale region, the solutions of the subgrid scale procedure must be interpreted

as a "typical" flow field, and the logical connection with the initial flow field is obscure.

It is of some interest in this connection to have estimates of error-growth Ume scales.

A theory for error growth has recently been developed by Leith and Kraichnan

(ref. 20). These investigators use the "test-field approximation," which is a type of sta-

tistical approximation that will be discussed subsequently. Their conclusion is that
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errors initially confined to infinitely small scales grow and saturate a region of scale
sizes 5 within a time =9.5e-1/352/3, which is 11 times the eddy circulation time for

length scales 5. Their analysis was limited to the limit of infinite Reynolds number and

to 5 in the inertial range. Whether or not the errors grow until they penetrate the

energy-containing range is not yet known, although if 5 is initially sufficiently large,

there seems little doubt that the energy region would be contaminated by error.

STATISTICAL TURBULENCE THEORY

The original objective of applying statistical turbulence theory to the practical prob-

lems of determining turbulence parameters is pursued next. The physical content of sev-

eral of the theories is discussed briefly, but the equations are not derived. As mentioned

in the introduction, these theories are pivoted on the idea that turbulence is, in some

sense, close to a state of randomness. "Completely random" would mean, here, that the

averages of products of the velocity field at different space-time points y =(:_,t) are

joint normal. (A space-time point is indicated by y, the spatial components by ]7, and

the time component by t._ For the third- and fourth-order moments, in particular,
/

•<vicy vk  ivJ  

• •

(4)

where the dots indicate omitted terms in which the indices 1, 2, 3, and 4 are permuted.

Here the property of randomness is expressed in terms of two-point (and three-point)

functions like (vi(Y)vj(y')), which are more general covariances than those used in

equation (1). For deductive turbulence theories the two-point correlation functions are

indispensable. It is noted, in this connection, that the problem of viscous decay (flow at

very low Reynolds number) is closed with respect to the two-point functions Rij(x,x',t )

= \v j_ )/ °.-_,-=-_' ...... _,............ ,_.,_.,w, hence Lhei_.,t)v X ,t but not with respect to the o_1_ _..._.+ _.... ,_..... ,:, iv .. +_.1j
need for the ....... -.-. • .... ,- .... • ,L^LW U--_I.JU.LI J,t
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The hypothetical consequences of complete randomness for the Navier-Stokes equa-

tions are examined now. These equations are written in a compact notation (summation

convention understood):

_in(Y)Un(Y) = Pij /uj - lu
(5)

where the operator _(_o is

_(_in° = 5"_aLlnt- vV2) - Pin(:_')U/(Y) _--_-"- PiJ(_ 8UJs_l

and the operator Pij(_ ) is specified by

82

=

Here, u is the departure of v from its ensemble mean, U = (v). To obtain Pij
Poisson's equation must be inverted for the boundary conditions appropriate to the prob-

lem at hand (a cubic box of homogeneous turbulence). The operator P(_) simply sup-

the compressible part of (v. V)v, so that V. vlx,t/ = 0, and results\! from
/

presses an
\ ]

elimination of the pressure term from the equations of motion.

In equation (5) the terms which give rise to the closure problem are isolated on the

right-hand side. These are the terms that may build up multipoint non-joint-normal cor-

relations out of multipoint normal initial data. That is to say, relations (4) are consistent

with the Navier-Stokes equations if the right-hand side of equation (5) is suppressed. The

simplest nontrivial closure procedure is to discard the right-hand side of equation (5)

entirely. Such a theory, sometimes called the quasi-linear or mean-field theory (also

called by Deissler "weak turbulence" approximation in ref. 21), has met with some suc-

cess for thermal convection (Herring, refs. 22 and 23). It has also been applied to shear

flows by Deissler (ref. 21).

First the assumption of complete randomness, as embodied by equations (4), is

tried on equation (5). Closed equations for ----_ui(Y)uj(y')_ are then obtained simply by

multiplying equation (5) evaluated at y by itself at y'. The result is
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0 0 ' U U , '
°_in(Y)o_i,n,(Y )_ n(Y) n (Y))

-F ii,(y,y) (6a)

It is convenient to rewrite equation (6a) as a first-order equation in time by multiplying

it by (£o)-1(y), with the result

_°n(Y)<Un(Y)Un,(y)_ = _ G°,i,(y',z)dzFii,(y,z) (6b)

where

_(_in(Y)~o G onp(y,y,) = PiplYjS(y\] " y')

Here, =3d is the adjoint of _(_.

The dz-integration here is over all the spatial part of z, but the time integration

extends only over the past up to the time argument of y',t'. It is recalled here that basic

interest is in the simultaneous moments, <vi(Y)vj(y) >. An equation of motion for these

may be obtained from equation (6b) by forming the limit,

yliy, _°n'Y)<Un(Y ')ui (Y> + _(_°n(Y') <Un(Y')Ui (Y>I -= N(Y)
(7)

There is a fundamental difficulty with equations (6a) and (6b); namely, they do not conserve

kinetic energy (for closed systems N ¢ 0). This difficulty stems from the fact that the

"turbulence force" P(v • V_v has been assumed to be a completely random stirring

force, and random forces are known to increase the kinetic energy of systems to which

they are applied. Hence, the assumption of complete randomness must be abandoned.
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The statistical theories modify _O(y) used in equations (6a) and (6b) to a new

operator _(y) so as to restore energy conservation. The modification consists of

including on the left-hand side of equations (6) a generalized eddy viscosity term so as to

make N=0 for closed systems. Formally, o(_°(y) is replaced by _(_(y), and G°(y,z)

(-(o(_°)-l)by G(y,z)(=(_-1). The modified equations are

_°n(Y)<Un(Y) Un, (Y')_ + _ T/in(Y,z)dz <Un(Z)Un, (Y')_ =

where Fij(Y,Z ) is defined by equation (6a). The operator

- pij(y)! p_.(z)! G/p(y,z)<Us(Z)uj(y)
8_ l wo Ozn

Gn,j(y',z)dz Fij(Y,Z) (8a)

7/(y,z) is defined by

(8b)

The new term on the left-hand side of equation (8a) cancels the right-hand side upon form-

ing the equation for the total energy, N = 0.

Equations (8a) and (8b) constitute a complete statistical theory for the two-point con-

variances (v(y)v(y')). The ingredients embodied in it are: (1) the modeling of the tur-

bulence force P(_l(v • X_v as Gaussian-multivariate and (2)the simultaneous introduction
#

of a generalized eddy viscosity operator T/(y,z), so that energy is conserved within the

context of the Gaussian assumption. The type of "modeling" done here involves a qualita-

tive characterization of the statistics of the flow rather than any explicit quantitative

assumption about relationships between the various terms in the theory.

Still to be specified is G(y,z). On this point the theories differ. Generally G(y,z)

specifies the mechanisms whereby the flow at different space-time points becomes decor-

related and decays away under the joint action of viscosity and turbulence. At very low

Reynolds numbers G is expected to be entirely viscous, so that

_(_°n(Y)Gnj (y,y')= Pij(_)5(y - y') (R_. - 0) (9a)
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At larger Reynolds numbers the turbulence itself contributes an eddy viscosity, so that in

the determination of G(y,z) the generalized eddy viscosity operator _(y,z) is included:

 °n(Y)Gnj(y,y')÷ G,j(,.,y') : Pij( )8(Y- Y') (gb)

The choice of equation (9a) is sometimes called the "two-time quasi-normal approxima-

" (R < 10). The choice oftion, and is sensible only at very small Reynolds numbers k =

equation (gb) together with equation (8a) constitutes the direct interaction approximation

(Kraichnan, ref. 4). Note that equation (gb) lapses over into equation (9a) for small

Reynolds number flow.

Another approach in determining G(y,y') is to select the most appropriate phys-

ical mechanism responsible for producing decorrelation, work out the corresponding

G-function, and use it in equations (8a) and (8b). Such a procedure was used by Kraichnan

(ref. 5) in deriving the test-field model, a theory which uses a G-function that incorpo-

rates "pressure scrambling" and viscous effects alone. The test-field model also makes

the more severe approximation of modeling the turbulence force on white noise, which is

a simplification introduced to avoid the time-history integrals in equations (8a) and (8b).

Yet another method (to my knowledge yet untried) is to base G on the evolution of a pair

of particles whose relative position at t = t' is __ - __'.

At this point the objection may be raised that the comments of the last paragraph

have introduced an arbitrariness into the theory, which was to be avoided. Expressed

differently, why worry about specific physical mechanisms for decorrelating the flow, if

the DIA is a complete theory. The answer is that the DIA, though complete, cannot be

correct at large Reynolds numbers because it does not behave properly under random

uniform velocity translation (Kralchnan, ref. 24). As a consequence, it does not have a

proper inertial range (E(k) cc k-3/2 instead of E(k) cc k-5/3). On the other hand, the

two mechanisms mentioned above do produce a properly invariant theory.

The arbitrariness alluded to in discussing the test-field model is just the (arbitrar-

ily assumed) strength parameter which couples the "test field" to the actual velocity field.

The (statistical) deviation of this (compressive) test field from the actual velocity field

measures the decorrelation effects expressed by g. This theory, with a single adjust-

able parameter, is capable of treating nonlsotropic and nonhomogeneous flows.

The accuracy of the direct interaction and test-field models has recently been

assessed by comparing their predictions with the Orszag-Patterson type of simulations

at low to moderate Reynolds numbers (Herring and Kralchnan, ref. 25). These compar-

isons were made for _............. A _o,,+_,,,,_ flow fi _la_ with R < 50. A detailed
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comparison was made for the Fourier transform of the two-point function Rij(x,x,,t), as
well as for the total energy decay and skewness. The direct interaction approximation
gave entirely satisfactory results for all the abovespectra, including the dissipation and
energy transfer spectra. The test-field model gave satisfactory results for all the above
spectra if the parameter mentionedpreviously was adjusted so that the predicted and
simulated skewnessagreed. At much larger R the test-field model with the same
parameter gavethe Kolmogoroff spectrum, with the Kolmogoroff constant C = 1.8.

COMPARISON OF STATISTICAL THEORY WITH

PARAMETERIZED EQUATIONS

Assuming that they are valid, what do these theories indicate about the universality

of equations (2) and (3)? Consider first equation (3), which may be examined within the

context of homogeneous, isotropic flows. On general grounds, an equation like (3) can be

expected if the decay is self-similar; that is, if

v. _x ,t v.]_x -x_, = Rij ,t = Function of (x/_,x'/_,t)

where _ is the Taylor microscale. Equivalently, the energy spectrum E(k), defined to

be the Fourier transform of Rii with respect to x - x', should be of the form F(kk,t)

for k in both the energy containing range and the dissipation range. Figure 1 shows

eL/E 3/2 as a function of t for such a self-similar calculation. Here the initial energy

spectrum is that found experimentally by Ling and Huang (ref. 26). The theory, inciden-

tally, does not confirm that this initial spectrum is self-similar during the decay; the

spectrum predicted by the theory is a good deal more peaked (especially at large R_)

than this. The final asymptotic values of R_ label the curves. In all cases studied, it

was found that R_(t) became independent of t for t =>1 and that the E(k), k2E(k),

and energy transfer spectrum became self-similar. (Note that E (l_(t))/Eo_(t) is a

R_ and 1_.) For a given initial R_, A = eL/E3/2 becomesuniversal function of

very nearly constant at large t, but the value of A appears to be a function of Rk. At

the larger values of R_, A = 0.5 is indicated. This may be compared to the value

A = 0.7 (Donaldson, ref. 6), used in the phenomenological approach.

The difference (=40 percent) between the computed value of A and the phenome-

nological value of =0.7 probably indicates the kind of departure from universality to be

expected in using the phenomenological approach. The lack of universality in the value

of A probably is due to the lack of universality in the spectral shape of E(k) in the

energy containing region.
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Consider next equation (2) for the deviation of Rij from its isotropic value,

2E6ij/3. The statistical theories may also be applied to this case. To solve this prob-
lem requires an order of magnitude more work than the homogeneous isotropic problem,

even for the homogeneous case. This is because the energy-correlation lunction must be

specified at all angles. The simplest way to do this is to assume that departures from

isotropy may be parameterized by El(k) and E2(k),where E 1 and E 2 are the

energy perpendicular and parallel to the axis of symmetry. The departure from isotropy

is then represented simply by Z_ = E 1 - E2, and the phenomenology of equation (2) is

d_/dt = -C(E/e)_

where

A = A(k)dk

An application of the DIA theory to homogeneous, axisymmetric turbulence has been

completed, the details of which will be published elsewhere. Only those points bearing on

the phenomenology (that is, eq. (2)) are reported here.

In general, the DIA theory gives equations for dA(k)/dt and dE(k)/dt -_t(El(k)

E2(k)) , which quadratically couple A(k) and E(k) for all wave numbers k with the4-

corresponding G-functions. A careful examination of these equations, which are similar

to the Fourier transform of equations (7) and (8), shows that the equation for _(k) is

nearly linear. This result is, a priori, somewhat surprising since terms contributing to

dA(k)/dt proportional to A(p)A(k-p / are not easily seen to be small. This result tends

to lend credence to equation (2). A particularly simple equation results if the energy and
# \

Z_(k) spectrum may be regarded as very sharp (E(k) and A(k)cc 6(k- k0) )
and if "mem-

ory effects" are neglected. In this case,

dA (k,t)/dt = - 277(k) A (k)

For the case in which E(k) is sharply peaked about k0, it may be shown, under the

restrictions stated above, that

3---E-_ _/(k0_' =
L=4ko \ ,

0.858E01/2

L
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which gives

dA/dt = - 1.71E 12A/ (10)
L

where 7/ is the eddy viscosity coefficient, which is just the "Fourier representative" of

the operator 77(y,z) as given by equation (8b).

Equation (10) should not be taken too seriously, especially in view of the rather

restrictive assumptions involved in its derivation. It is, nevertheless, an equation agree-

ing with the phenomenology as to type and order of magnitude and originating in a deduc-

tive theory.

Of course, for a particular initial value problem it is possible to do much better

than equation (10) by constructing numerical solutions for the direct interaction approxi-

mation. Such results are presented in figure 2. Thisshows C=(E/e)(dlnlE 1 - E21/dt )

as a function of t for the case El(k ) = 27rk2exp(-2k) E2(k) = 0, initially, and R)_(0)
k+0.5 '

= 47.6. It can be seen that C levels off for the later stages of decay, and then begins to

decrease slowly. The initial value of this spectrum was chosen because for isotropic tur-

bulence at the same value of R}, the decay of E(k) appeared to be self-similar. The

values of C(t) appear consistent with Rotta's suggested value (ref. 27). This compari-

son should not, however, lead to any generalizations since different initial spectral shapes

give somewhat different values for C and since the computed values here are not strictly

constant. For example, if the deviation of E 1 from E 2 is made more pronounced at

larger k than in the above example, larger values of C result.

So far in confronting statistical theory with phenomenology, certain terms contrib-

uting to the evolution of the Reynolds stress have been dealt with in isolation, and only for

homogeneous flows. Although such calculations are instructive, they can hardly be thought

adequate to deal with shear flow in which mean fields U as well as boundaries are pres-

ent. In my opinion, it will be a few (2 or 3) years before direct computation using the DIA

on simple geometries at very large Reynolds numbers will be done. David Leslie, in his

forthcoming book '_Developments in the Theory of Turbulence," estimates that it would

take about 10 man-years to program DIA equations like equations (8a) and (Sb) to deal

realistically with large R}, shear flows. I think this estimate is a bit pessimistic, but

of the correct order of magnitude.
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An alternate to a frontal attack is to try to simplify the DIA equationsanalytically,
using asymptotic functional forms appropriate to large Reynolds numbers, and perhaps
large distances from boundaries. Someprogress that has already been madein this
direction by Leslie (ref. 28) is described in detail in Chapter 15 of his book cited above.

Perhaps the severe analytic complexities of the DIA can be in some sense reduced so as

to approach the complication level of phenomenological theories discussed at this con-

ference. Consider, for example, the triple moment term in equation (2). Hanjalid and

Launder (ref. 7) approximate this term by

where

_Um(Y)u/(y)uj(Y)) =Cs- _ js_Rlm
aY s

The DIA equation for equation (ll) is

\

a a _I (11)+ R/s --=- Rim + Rms _ R/
aYs aYs 1

_Um(Y)u/(y)uj(y) _ = lim f dZ{Gmp(Y',Z)Ppr(Z)-z_s_/r(y,z)Rjs(y,z ) + R/s(y,z)Rjs(Y,Z _y'--y

+ G/p(Y,Z)Ppr(Z)_-Z_s _ms(Y,Z)Rrj(Z,Y)+ Rmr(Y,Z)Rsj(Z,Y_

+ Gjp(Y,Z)Ppr(Z)_+sIRmr(Y',z)R/s(Y',Z)+ Rms(Y',z)R/r(Y,Z_}

Equation (12) reduces to equation (ll) if (arbitrarily)

1 E 8(t-t')5(y- y')SijGij(Y'Y') = 2 Cs T

(12)

Pij = 6ij

No claim is made here that these expressions for G and P become valid at very large

Reynolds numbers and fai _ from boundaries. In fact, tiu_t_....... ul_.......... " ....... *^_uuliu. _J. _¢ iS
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anexamination of the G-equation. However, perhapsan examination of the complete equa-
tions (8a)and(8b), along lines begunby Leslie (ref. 28), will show whether anything close
to these canbe valid or, better yet, will suggesthow to improve equation ill), especially
near boundariesand at moderateReynolds numbers. Onepoint that is clear from even a
cursory examinationof equations(11)and (12) is that equation (12) is nonlocal in both
spaceand time, whereas equationill) is not.

Of course the preceding discussion presumes that the statistical theory discussed
here is valid. On this point, the reader may examine the comparison of theory with sim-
ulation (for isotropic flow) by Herring and Kraichnan (ref. 25)and judge for himself. It
is hopedthat a more detailed comparison of theory with computer experiment for more
general types of flow will soontell whether this type of theory is on the right track.

LIMITATIONS OF THEORY

In closing, someof the limitations and defects of the statistical moment theory dis-
cussedhere will be pointedout. First, there are limitations connectedwith the fact that
the theory is statistical. In comparing theory with experiment, this leads to problems of
how to specify initial data. Suppose,for example, the decayof turbulence generatedby a
wind-tunnel grid is to be predicted. The two-point velocity correlation just behind the
grid bars canbe measured, andfrom this dataan energy spectrum can be obtainedwhich
the statistical theory uses as E(k,0). However, the use of this spectrum alone as initial
data in the statistical theory cannotproduce the observed subsequentdecay evenif the
theory usedis exact. This is becausethe experiment (or, ideally, an ensembleof experi-
ments) hashigher order (statistical) correlations built up at the initial time, whereas the
theory presumesthese to bezero. Therefore, if only the energy spectrum canbe speci-
fied initially, the theory canbe expectedto deviate from experiment while the higher order
momentsin the statistical theory are being built up from zero. The theory could be
worked out for specified initial values for higher order moments, but I do not know that
these are measurable. The samedilemma may also afflict the phenomenologicaltheories
also in connectingthe meanvelocity and Reynolds stresses to the "preturbulent state."

That theDIA does not give the proper inertial range has already beenmentioned. It
is not known,however, how serious this is with regard to the behavior of the single-point
Reynoldsstresses, even at large Reynoldsnumbers. In this connection, it may be shown-
under rather weakassumptions - that anequation like equation (3) is obtainedfor the DIA
at large R_. The value of A has, however, not been computed. In any case the test-
field model couldbeused, but it is a less complete theory than the DIA. Alternatively,
there is the Lagrangianhistory direct interaction theory (Kraichnan, ref. 9), which com-
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pares very well indeed with large Reynolds number flows; but this is a very complicated

theory, whose logical foundations, in my opinion, are not as secure as those of the DIA.

Finally, there are problems for which the statistical-moment approach discussed

here is not very profitable; that is, extremely intermittent flows consisting of very small

regions of intense shear separated by quiescent volumes. In this case, the statistical

moment theory requires a specification of very high order moments to adequately describe

the physics of the problem. Hence, closure at low order moments would be inappropriate.
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APPENDIX

DEFINITIONS OF SYMBOLS

empirical constant relating energy integral scale and energy dissipation

(see eq. (3))

constant

triple moment constant introduced by Hanjalid and Launder (ref. 7, eq. (2.3))

total turbulent kinetic energy, l<u2>

turbulent functional defined in equation (6a)

k

Green's function which includes eddy viscosity effects (see eq. (9b))

Green's function which does not include eddy viscosity effects (see eq. (6b))

dimensionless scaling parameter entering test field model (see ref. 25 for

further details)

wave number

L longitudinal integral scale

_O

N

P

P

R

operator (see eq. (5))

defined by equation (7)

pressure "projection" operator, defined just after equation (5)

pressure field

ensemble mean Reynolds stress tensor

ensemble mean Reynolds stress tensor components

_3



R_

S

Ui

U

U

V
m

X
m

Y

Taylor microscale Reynolds number

_a 2\3/2
Vl/OXl) _

time

ith component of ensemble mean velocity field _U

ensemble mean velocity field

deviation of velocity field from its ensemble mean

instantaneous velocity field vector

vector coordinate

three-vector part of space=time point

space-time point (g,t)

A(k)

s2A = A (k)clk

6ij

5{5 = y')

Y

three=vector part of space=time point z

deviation from isotropy spectrum, = 2rrk2(_3(k,t)12 = [Ul(_k,t)12 )

grid-scale length in subgrid=scale method

Kronecker delta (= 0 if i $ j; = 1 if i = j)

Dirac 5-function

energy dissipaLion rate, - =2u{/v.V2v_
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7?

PO

T

Subscripts:

i,j,k,l,_

m,n,p,s_

eddy viscosity operator (see eq. (8b))

Taylor microscale

kinematic viscosity coefficient

constant fluid density, set equal to 1

used to distinguish one space point from another

indicates ensemble mean

vector indices (= 1, 2, 3); summation convention holds, unless otherwise stated
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