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SUMMARY

Mixing of coaxial streams is analyzed by application of integral techniques. An

integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the

integral equations for the mean flow. Normalized TKE profile shapes are obtained from

incompressible jet and shear layer experiments and are assumed to be applicable to all

free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to

be directly proportional to the local TKE, and dissipation is treated with a generalization

of the model developed for isotropic turbulence. Although the analysis was developed

for ducted flows, constant-pressure flows were approximated with the duct much larger

than the jet. The axisymmetric flows under consideration have been predicted with

reasonable accuracy. Fairly good results have also been obtained for the fully devel-

oped two-dimensional shear layers, which were computed as thi,_ layers at the boundary

of a large circular jet.

INTRODUCTION

An extensive integral analysis of ducted turbulent mixing processes (fig. 1) has

been developed at the Arnold Engineering Development Center (AEDC) (refs. 1 and 2).

As usual with such analyses, the shape of the velocity profile is assumed, and the inte-

gral form of the mean flow governing equations is used to compute the shear-layer

growth rate and other dependent variables of the problem. In the integral analysis of

references 1 and 2, the turbulent shear stress at the midpoint of the shear layer is

computed by use of a model for the turbulent eddy viscosity. The integral analysis has

been extended to flows with equilibrium chemical reactions, to flows which extend across

the entire mixing duct, and to flows in which the inviscid portion of the jet flow must be

treated with the method of characteristics. The method has also been applied to flows

with embedded recirculation zones. The analytical framework has been developed for

1 The research reported in this paper was sponsored by the Arnold Engineering
Development Center, Air Force Systems Command, Arnold Air Force Station, Tennessee,
under Contract No. F40600-72-0003 with ARO, Inc. Major finm-_cial support was pro-
vided by the Air Force Office of Scientific Research, under Program Element 61102F,
Project 9711. Dr. B. T. Wolfson was the project monitor.
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quite complexflow situations, but a serious deficiency has always beenthe model used
for the turbulent eddyviscosity, the Prandtl incompressible model with a compressibility
correction similar to that proposedby Donaldsonand Gray (ref. 3). This eddy-viscosity
model is not adequatewhenthe secondarystream velocity exceedsabout 0.2 times the
primary stream velocity, or whenlarge pressure gradients exist in the flow field. Other
eddy-viscosity models have beenproposed which would perhapsyield better results for
certain flows, but basedon the extensive evaluation by Harsha (ref. 4), it is not likely that
any eddy-viscosity model will beapplicable to the entire range of free turbulent flows of
interest. A fundamentalproblem with eddy-viscosity models is that the turbulent shear
stress is related only to the local meanflow properties (this local dependenceis true only
in simple limiting flow situations); most free turbulent flows are characterized by signifi-
cant history effects on the turbulent transport.

Starting with the work of Bradshawand associates (ref. 5) a few years ago, con-
siderable effort hasbeendevotedto developmentof the turbulent kinetic energy (TKE)
methodsfor turbulent shear flows. In these methods, the turbulent shear stress is related
to the kinetic energy of the turbulent motion, andthe TKE governing equationis solved
simultaneouslywith the meanflow governing equations; the TKE equationis, in effect, a
governingequationfor the turbulent shear stress. Two different methodshave beenused
to relate the shear stress to the TKE in free shear flows. In the work at AEDC (refs. 4,
6, and 7), Bradshaw's direct relationship betweenshear stress andTKE has beenused.
Other investigators (refs. 8 to 11)have related shear stress to TKE by defining an eddy
viscosity which is the product of a length scale andthe square root of the TKE. Although
there appearsto be experimental evidence(ref. 12)for the Bradshawapproach, both
approachesare great improvements over earlier eddy-viscosity models in that turbulent
shear flows are recognized to be indeedturbulent, that is, to consist of both mean and
fluctuating components. The current TKE methodsare undoubtedlyoversimplified for
the wholespectrum of turbulent flows in nature; however, Harsha's work (ref. 4) has
shownthat the TKE approachis useful for a large class of shear flows which is commonly
encounteredin engineering applications.

In thepresent study, the earlier integral approach for ducted flows (refs. 1 and 2)
hasbeenextendedto include an integrated TKE equation. Becausethe TKE equationhas
beenintegrated across the entire shear layer, no model for the lateral diffusion of TKE
needsto bespecified. In addition, the relation betweenthe TKE and the shear stress is
specified only at the midpoint of the shear layer. These simplifications are achieved
with a penalty - the shapeof the lateral TKE profiles in the shear layer must be speci-
fied. The TKE profile shapeshavebeenobtained from incompressible experiments but
have beenusedwith reasonablesuccess for flows with large density gradients.
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The present integral method is limited to those flows in which the velocity profile
shapeis essentially fully developed(shapesimilar) throughout the flow ffeld; that is, the
initial boundarylayers must be relatively thin. Deferencemust be madeto the more
powerful finite-difference TKE methodsfor those flows which have developingvelocity
profiles over a significant axial distance. In addition, the present integral method has
beenformulated for only axisymmetric flow, andthetwo:dimensional jet and wake flows
have not beencomputed. However, the fully developedshear layers (test cases 1 to 3)
havebeencomputedas thin layers at the boundaryof a very large axisymmetric jet.

SYMBOLS

a1

a2

constant in TKE shear-stress relation

coefficient in dissipation term

mixing zonewidth

C

correction factor for a2

mass fraction of elements from primary stream

D diameter of primary stream nozzle

H stagnation enthalpy

k turbulent kinetic energy

normalized turbulent kinetic energy

K exponentin velocity-concentration relation

M Mach number

M e

Mo

external stream Mach number

central stream Mach number

boundary-layer profile exponent
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p static pressure

r radial coordinate

ri

r o

r W

R

radius of inner mixing zone boundary

radius of primary stream nozzle

duct wall radius

gas constant

R T

T

turbulent Reynolds number

static temperature

Tt stagnation temperature

U

U e

axial velocity component

outer stream velocity

U o

u,2

v

v,2

W

w,2

W

X

initial primary stream velocity

square of turbulent velocity component in x-direction

radial or transverse velocity

square of turbulent velocity component in r-direction

TKE profile parameter (eq. (11))

square of turbulent velocity component in circumferential direction

wake center-line velocity defect,
1 - U c

U e

axial coordinate

Xcore length of first regime
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Y transverse coordinate

mixing zone coordinate,
r - r i

b

mass fraction of primary stream species on center line

boundary-layer thickness

turbulent eddy viscosity

P density

turbulent shear stress

spreading parameter for two-dimensional shear layer

% spreading parameter at a reference condition

Subs cr ipt s:

initial mixing station; high speed stream for two-dimensional shear layer

low-speed stream for two-dimensional shear layer

inviscid secondary flow

b/ boundary layer

center line

far field

inviscid primary flow

m half-velocity control surface in mixing zone

n near field
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sl shear layer

w duct wall

DEVELOPMENT OF ANALYSIS

The first and second regimes of figure 1 will be considered in this paper. A region

of inviscid secondary flow exists throughout the duct, and the turbulent mixing zone is

free turbulent in nature; that is, the turbulent flow is not adjacent to the wall. The duct

wall interacts with the turbulent shear layer only through the axial-pressure gradients

which are imposed by its presence.

Fundamental Assumptions

The following principal assumptions have been used in developing the analysis:

(1) The flow is axisymmetric.

(2) All gases obey the perfect gas law.

(3) The usual boundary-layer assumptions are used; that is, negligible radial

pressure gradients, and so forth.

(4) The inviscid portions of the primary and secondary flows are one-dimensional

and isentropic.

(5) The mixing layer is completely turbulent, and the initial boundary-layer thick-

nesses at the initiation of mixing are very small compared with the length of the first

regime (fig. 1).

(6) The thickness of the nozzle lip separating the primary and secondary flows

is negligible.

(7) The viscous effects at the duct wall are negligible.

(8) The normalized velocity profiles in the mixing layer are similar in shape at

all axial stations and are represented by a cosine function.

(9) The turbulent Prandtl and Lewis numbers are unity.

(10) The TKE profile shapes in the shear layer which have been obtained from

constant-density experiments are unaffected by density gradients in the shear layer.

(11) The turbulent kinetic energy outside the shear layer boundaries is negligible.

582



Basic Integral Equations

Nomenclature for the analysis is illustrated in figure 1. In this section, the nomen-
clature is generally consistent with that of references 1 and2; the results are described
in terms of the recommendednomenclaturefor this conference.

By integrating the boundary-layer differential equations, five basic integral equa-
tions are obtained: (1) a continuity equationfor the entire flow, (2) a momentumequation
for the entire flow, (3) a momentumequationfor the flow betweenthe duct center line and
a control surface arbitrarily located at the midpoint of the shear layer, (4) a jet species
conservation equation for the entire flow, and (5) aturbulent kinetic energy equationfor
the shear layer.

Continuity equation:

_: _ drww (pu)r dr = -PwVwrw = -PaUarw

Overall momentum equation:

_:w_ (pu2)rdr= rw2dPw2dx

Half-radius momentum equation:

S:m _(pu2) r dr -Um/:m -_(pu)r dr

Jet species conservation equation:

_:w --_(puC)r dr = 0

The differential form of the TKE equation is

(1)

dr W

PaUa2rw -_- (2)

pur _=2--+ pvr t_0_2." = _-r 0u + Diffusion - Dissipation
Ox Or Or

k=_. + +

where

rm2 dP w
= _'mrm - (3)

2 dx

(4)

By integrating the TKE equation across the entire shear layer, the lateral diffusion term

disappears. The dissipation is given by the usual relation developed for isotropic turbu-

lence (ref. 4):

'2
a2Pk_/ r

Dissipation -
b
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Thus, the basic integral TKE equation is

;ri+b ___ _ri+b au a2 _ri+bpuk)r dr= T--r dr -
ri ri Or -b- ri

pk3/2r dr (5)

Velocity Profile

The velocity profile is giver, by

u-u a l+lcos(n§) (6)
Uc -

where _ = _r - r i and u c = uj in the first regime. The cosine profile is shown in fig-b

ure 2, along with the experimental results of Spencer (ref. 13) for a fully developed two-

dimensional shear layer. At the control surface, rm (= ri + b), the velocity is

1
um = _(u c + Ua)

Concentration and Enthalpy Profiles

For unity Lewis number, the normalized total enthalpy and concentration profiles

are essentially identical and are related to the velocity profile by

(5- Ua]
C7)

The parameter K has been introduced so that jet species can be conserved in

variable pressure flows. For unity turbulent Prandtl number, equation (7) with K = 1

is identically true for constant-pressure flow; the pressure gradients in all the flows con-

sidered in this communication are negligible, and K remained unity for all computations.

Therefore, equation (4) could have been deleted for these flows, since the assumption of

K = 1 would have identically satisfied that equation.

Turbulent Kinetic Energy Profiles

As with the velocity profile, the shape of the TKE profiles must be specified. The

near-field (first-regime) TKE profiles have been obtained from the experimental results

of Spencer (ref. 13) and Liepmann and Laufer (ref. 14) for constant-density two-

dimensional shear layers. The experimental results are shown in figure 3, along with

the following analytical function which has been fitted to the data:

[_n = k._ = 0.51 - 0.51 cos --_ C0 -<y < 0.45) C8a)
k m 0.45
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l_n = 0.51 - 0.51 cosE2_(0.0909 + 0.9091_)_ (0.45 < _ < 1.0) (8b)

In fitting the data, the recent experiments of Spencer were given more weight than the

Liepmann and Lanier experiments because of the improvement of hot-wire techniques in

the past 20 years.

In the far field, well downstream of the end of the potential core, the experiments

of Pindell (ref. 15) and Wygnanski and Fiedler (ref. 16) on the constant-density axisym-

metric jet into still air were used. The experimental TKE profiles are shown in fig-

ure 4, along with the following analytical function which has been fitted to the data:

kf = 0.5 + sin +_ (9)

Obviously, the shape of the TKE profile cannot change discontinuously from kn to

at the end of the first regime. It has been hypothesized that a transition region exists

in which the TKE profile evolves from kn to _. In this transition region, the TKE

profile is assumed to be a linear combination of kn and kf

k:= w_ + (1 - w)k n (10)

where w is an empirical function of x. The resulting family of TKE profiles is shown

in figure 5. Because many features of jets scale with X/Xcore , it has been hypothesized

that w can also be related to X/Xcore. The experiments of Pindell (ref. 15), Sami

(refs. 17 and 18), a_d Bradshaw et al. (ref. 19) on the constant-density jet were used to

develop the following empirical function for w:

w= 1 exp 1.09 x re

The center-line TKE, normalized with the value at rm, is shown in figure 6 for the

constant-density jet into still air. A value of Xcore = 4.66D was used in computing the

curve shown in figure 6; this core length is predicted by the present theory for a jet with

negligible initial boundary layer. The TKE profiles are seen to be essentially fully

developed (w = 1) for x greater than 5Xcore. It should be noted that the value of Xcore

is not prescribed for a particular flow but is a result of the first-regime solution.

Even though the TKE profile shapes were obtained from relatively simple constant-

density flows, the two-dimensional shear layer and the _isymmetric jet, it is assumed

that these profile relationships apply to all flows. It should be noted that nothing has been

stated about the level of TKE, but only that the TKE profiles, normalized with kin, are

given by equations (8) to (11).

and

Relation Between TKE and Shear Stress

As the present integral theory has been formulated, the relationship between r

k must be specified only at the midpoint of the shear layer r m. This method is
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distinctly different from finite-difference TKE methods, in which it is necessary to spec-
ify the variation of T with k across the entire mixing zone. The linear relationship

iTml = alPmkm (12)

is used, with a 1 = 0.3, the value found by Harsha and Lee (ref. 11) in the high shear region

of a variety of constant-density free turbulent flows. This value of a 1 is also the same

as that used by Bradshaw et al. (ref. 5) for turbulent boundary layers. In order to have

the proper sign on Tm, equation (12) is written as

alPmkm(ua - Uc) (13)
= lua- ucl

The Dissipation Parameter a 2

In the extensive evaluation of his differential TKE method (ref. 4), Harsha used

a 2 = 1.5. During the development of the present integral method, a 2 = 1.69 was found

to give good results for constant-density two-dimensional shear layers and for the axisym-

metric jet into still air. Other flows, however, were found to require significantly differ-

ent values for a 2 if reasonably good mean flow predictions were to be achieved. Speci-

fically, supersonic flows require a 2 to be larger than 1.69, and some flows with very

high shear stress levels require a 2 to be less than 1.69. Finally, it was found that a 2

could be correlated with the turbulent Reynolds number R T which is defined as

luc- Ualb
R T = em

where e m is the local eddy viscosity at r m. Of course,the eddy viscosity is not speci-

fied but is computed from

Tm
em =

_u
Pm "_lm

For the cosine profile,

_uI = _(Ua- Uc)-_r m 2b

and R T may be written as

_(u e - Ua)2 (u c - Ua)2
RT = - 5.236

2alk m km

Thus, it has been found that the dissipation coefficient a 2 can be related to the ratio of

the mean flow velocity difference across the shear layer to the turbulent velocity fluctua-
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tion level (characterized by km) in the layer. The a 2 function which has been devel-

oped is shown in figure 7, along with the equations which describe the fur_ction.

The approach used in the development of the a 2 - R T function will be briefly

described. For R T > 145, the a 2 function was developed by computational experi-

ments on the near field of unheated compressible air jets exhausting into still air.

Warren's potential core length data (ref. 20) for experimental flows with thin initial

boundary layers and 0.69 < Mj < 2.6 were used to establish approximately a few desired

a 2 values. A direct correlation of a 2 with a characteristic Mach number for the shear

layer was abandoned because such a correlation fails for two-stream supersonic flows

such as the combustion flows reported in reference 1. The turbulent Reynolds number

was finally found to correlate consistently the a 2 values for the preceding flows.

Because R T is related to the local turbulence characteristics in the shear layer, it is

more appropriate as a dissipation parameter than some other parameter which is related

only to the mean flow in the layer. When it is considered that only the near-field results

for a few experimental flows were used in developing the a 2 function for R T > 145, the

overall performance of this part of the a 2 - R T function (fig. 7) has been reasonably

satisfactory for a variety of flows. The high R T portion of the a 2 function is subject

to further refinement, however, particularly for RT > 300, that is, for fully developed

single stream flows with Mj > 2.7.

Experience with far-field predictions of jets in moving streams indicated that a 2

should be somewhat less than 1.69 for R T < 70. The function used for R T < 70 (fig. 7)

is the first one tried, and no attempt has been made to improve it.

The effects of density ratio caused by jet Mach number are adequately predicted by

the a 2 - R T function; however, prediction of the entire range of flows of interest is

improved if small additional corrections to a 2 are made as a function of density ratio.

Tentatively, the following corrections have been developed and used:

a2(RT)
a2- c

where a2(RT) is as shown in figure 7 and c is given by

c = 0.984 + 0.016 Pa__l.1

Pjl

or

(Pal > Pjl)

c = 0.95 + 0.05 RaTta

RjTt j (Pal < Pjl)

These density corrections to the basic a 2 - R T function are perhaps required because

the empirical TKE profiles are inadequate for flows with large density gradients; this
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point will notbe resolved until detailed turbulence structure dataare available for flows
with large density gradients.

The a2 function as described has beenused for all of the shear layer andjet
computationspresented in this paper. Experience has shownthat wakes require some-
what different dissipation than jet flows, andthe axisymmetric wake computations (test
cases 15and 17)were made with a2 = 1o40.

Turbulence Production

The first term on the right-hand side of equation (5) represents the production of

turbulence by the shear stress. For the boundary conditions of the shear layer, the pro-

duction is equal but opposite in sign to the dissipation of mean flow mechanical energy:

_ri+b _u ;ri+b a 1 _ri+b_(- P u3) r dr
r--rdr = U-_r(Wr) dr= 2_0-ri Or -.ri

dPw _ ri+b
iri +b a__(pu)r dr- -_ °O ur dr (14)1 Ua 2 _0+

By substituting equation (14) into equation (5), the following form of the integral TKE

equation is obtained:

_1 _ ri+b __(pu3) r dr 1 /_ri +b;ri+b_-{puk)rdr= _v0 +_Ua2o0 --_pu)rdr
vr i

dPw f r i+b a 2 _ r i+bur dr - pk3/2r dr
dx _0 %-" "Jr i

By using the TKE equation in this form, the shape of the shear-stress profile need not be

specified. The turbulence production is related only to the dissipation of mean flow

mechanical energy, which, in turn, is related to the mean flow profiles and the rate of

growth of the shear layer.

Solution Technique

Sufficient information is available to transform equations (1) to (5) into a system of

ordinary differential equations which is linear in the derivatives of the dependent vari-

ables (dPw/dX , etc.). This transformation procedure is described in detail in reference 2.

After the system of linear equations is solved for the derivatives, the resulting five dif-

ferential equations are then numerically integrated with a modified Euler technique (vari-

able step size). An IBM 370/155 digital computer was used to obtain the numerical solu-

tions; a typical flow-field solution required a computation time of approximately 2 minutes.
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In the first regime, the dependentvariables are Pw' ri, b, K, and km. In the
secondregime, the dependentvariables are Pw, Uc, b, K, and km.

Initial Conditions

In order to integrate the system of differential equations, initial values must be

specified for each of the dependent variables. The most critical of these initial values

is that for km. As usual with TKE methods, the convective terms cause the initial

condition for km (or rm) to be "remembered" for some distance downstream; the

distance is dependent on the particular flow situation. Experience has shown that two

stream flows with Ua/U j < 0.25 can be started with a "fully developed" shear stress.

This fully developed shear stress is obtained from the corresponding fully developed

two-dimensional shear layer. Even though the present method is generally limited to

flows with thin initial boundary layers, two stream jet flows with Ua/U j < 0.25 and very

thick initial boundary layers (jet nozzle boundary-layer thickness up to 0.4ro) have been

successfully computed with the following procedure: (1) the initial boundary layer is

assumed to be negligible, and (2) the inner shear layer radius r i is adjusted to match

the experimental value of the excess momentum.

Even for thin boundary layers, the influence of the initial conditions persists

throughout the flow field when Ua/U j exceeds about 0.3. Therefore, the concept of a

negligible initial boundary layer and a fully developed initial shear stress is not usable

for such flows. In order to treat these flows, a control volume analysis of the initial

region has been developed.

Control Volume Analysis of Initial Region

A sketch of the initial region just downstream of the nozzle lip is shown in figure 8.

The initial boundary layers are characterized by power law velocity profiles:

and

u /ro - rknj

The nozzle wall is assumed to be adiabatic; therefore, the stagnation temperature is

constant in each boundary layer. Specification of the wall skin-friction coefficients,

Cfa and cfj, and a 1 = 0.3 completely defines the mean flow and the turbulence quanti-
ties at the initial station b/. The wall skin-friction coefficients are determined with the

method of Spalding and Chi (ref. 21).
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At somedownstreamstation,
developedshear layer profile shapesfor velocity and near-field TKE.
assumptionsare made aboutthe process between b/ and sl:

(1) There is nonet entrainment into the shear layer.

(2) The process occurs at constantpressure.

(3) The excessmomentumis conserved.

(4) The length scale of the process is sufficiently small to insure that the volume
integral of turbulent dissipation is negligible.

The following equationsare written betweenstations b/ and s/:

Momentum:

Continuity:

s/, the flow is assumedto have evolved to the fully
The following

_0r°+6a pu(u- ua)r dr[ = [ri+b pu(u - ua)r dr I
b/ "_0 sl

pur dr = pur dr

r o- 5j b/ ri sl

b/

(15)

Turbulent kinetic energy:

r°+Sa b/ 1 _ ro+Sa dr
pukr dr pu3r

_ro_5 j + _ _ro-5 ]

(16)

+ 1 pjuj(uj 2 -Ua2)_ro-Sj) 2- ri_

pukr dr + pu3r dr

ri sl 2 Jri sl
(17)

With 5a, 5j, na, nj, Cfa , and cfj specified, equations (15) to (17) are solved for ri,

b, and k m. These values are then used as initial conditions for the integral TKE solu-

tion of the remainder of the flow field.

This control volume analysis is obviously not applicable as Ua/U j approaches
unity, since in such flows a very large distance is required to approach a fully developed

profile shape. In addition, the initial region analysis as formulated is not applicable to

mixing of streams with greatly different densities. The computations are made with

K = 1 at station sl, and the solution does not, in general, conserve species or energy.
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RESULTSANDDISCUSSION

Initial conditions for the computedexperimental flows are presented in table I.
The initial shear stress levels are characterized bythe turbulent Reynolds number RT.
In addition to beingused to specify the initial shear stress, the axial distribution of RT
throughout the flow field is very informative, anda number of such distributions is pre-
sented. For the cosineprofile, the midpoint shear stress in the mixing layer is given by

pm(_U) 2 2RT

where _u is the local velocity difference across the layer. If self preservation is

approached, then R T must become constant in the flow field.

Most of the flows considered in this conference have a constant-pressure boundany

condition, whereas the analysis was developed for a ducted system with a prescribed duct

wall shape. The constant-pressure axisymmetric flows were computed in a very large

cylindrical duct (r w = 1000ro) so that negligible axial pressure gradients were predicted.

Integrated momentum in the duct is conserved to a high degree of accuracy in the corn-

putations, typically to within one part in 105. The degree to which the jet excess momen-

tum is conserved in constant-pressure flows is illustrated by the fully developed axisym-

metric jet (test case 18). For similar velocity profiles, the product of mixing zone width

and center-line velocity should remain constant throughout the second regime. This

product changed 1.5 percent from the value at the end of the core at x/D = 50, and

2.8 percent at x/D = 100. Even though the excess jet momentum is not exactly conserved

in the calculations because of the ducted boundary condition, the results are considered to

conserve excess momentum adequately when the inprecision of most experiments is taken

into account.

Effect of Velocity Ratio on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 1

As presently formulated, the integral analysis cannot be used for zero secondary

velocity. Therefore, all computations of flows with nominal zero secondary velocity

were made with a secondary velocity 0.01 times the maximum velocity in the flow field

(u 1 or Uo). The fully developed two-dimensional shear layers were computed as thin

shear layers at the boundary of a large axisymmetric jet; the duct radius r w was set

equal to 100r o for these cases. In no case did the predicted shear-layer thickness

exceed 2 percent of the jet radius.

Computations for test case 1 were made for u2/u 1 = 0.01, 0.2, 0.4, 0.6, and 0.8.

The results, shown in figure 9 (test case 1), fall on the classic relationship
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_o _ Ul - u2

uI + u2

where _o = 12.9 for u2/u 1 = 0. The standard relation for _ used in this computa-
tion becomes

3.12

db/dx

for the cosine profile. It should be noted that _-- 12.9 by this definition corresponds

to a = 12 when the cosine profile midpoint slope is matched to the widely used error

function profile. The fully developed R T varied negligibly from 143 over the entire

range of u2/u 1.

Effect of Mach Number on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 2

Results for test case 2 are shown in figure 10(a). The computations were made with

u2/u 1 = 0.01; therefore, all a values are about 2 percent too large. The ratio ao/a ,

where ao is the value at M 1 = 0, is shown in figure 10(b), along with the value of fully

developed R T. Based on available experimental information on a, the predicted ao/a

probably decreases too abruptly in the M 1 range of 0.5 to 1.5. The predicted a values

in this M 1 range can be altered by slight refinements of the a 2 function in the appro-

priate R T range. The predicted _ values are considered to be good at M 1 = 2 and

Ml=3.

Effect of Density Ratio on Growth of Fully Developed Two-Dimensional

Shear Layer - Test Case 3

The computations for test case 3 were made for low-speed flow and u2/u 1 = 0.2.

Results for a and R T are shown in figure 11 as a function of pl/p 2. Evaluation of

the a predictions at high pl//P2 is nearly impossible because of the lack of experi-

ments in this range. The a results for this case are not influenced by the factor which

causes the density ratio, that is, temperature difference or molecular weight difference.

In general, very large axial distances were required to approach the fully devel-

oped condition in all these shear-layer computations. All the flows were computed for

an axial distance of several hundred initial shear-layer thicknesses; such distances were

required to approach closely the fully developed condition unless the initial shear stress

was luckily chosen to be very close to the fully developed value. These results clarify

the extreme difficulty in accomplishing a shear-layer experiment in which the flow truly

approaches a fully developed condition.
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Maestrello and McDaid Axisymmetric Jet - Test Case6

The computationsfor test case6 were madein two ways. In the first (curve a,
fig. 12), the experimental profile at x/r o = 2 was fitted with a cosine profile, and the

computations were started with a fully developed shear stress. The predicted rate of

mixing is too large; therefore, the shear stress does not yet approach the fully developed

value at x/r o = 2 but is somewhat lower. The computations were also started at x = 0,

with negligible initial boundary layer, fully developed R T and r i corrected to achieve

the excess momentum shown at x = 2roo This second computation (curve b, fig. 12)

yields a first regime which is somewhat too long, but the results are better than those of

the first computation.

The abrupt change in center-line velocity at the end of the first regime is charac-

teristic of the integral method but is of little concern unless the main interest is in the

transition region at the end of the potential core.

Eggers Supersonic Jet Into Still Air - Test Case 7

The prediction of this well-defined experimental flow (test case 7) is very satis-

factory. (See fig. 13(a).) Computations were started by assuming a negligible initial

boundary layer and fully developed R T (from fig. 10(b)). The predicted potential core

is slightly longer than that shown by the experiment, but the far-field agreement is excel-

lent. The predicted velocity profiles at x/r o = 8, 27, and 99 are also satisfactory.

(See fig. 13(b).) These profiles illustrate that the cosine profile approaches zero at the

outer edge of the layer more rapidly than does the experiment; the cosine profile is gen-

erally better for two stream flows.

The predicted axial variation of R T (fig. 13(c)) shows a very large change in R T

for this flow (from 283 to 82). Thus, most of the a 2 - R T function (fig. 7) was used in

this prediction.

G.E. Heated Subsonic Jet - Test Case 8

The experimental velocity profile at x/D = 2.79 was fitted with a cosine profile;

the computations were started with this velocity profile and fully developed R T. Pre-

dictions of both center-line velocity and center-line static temperature are very satis-

factory for test case 8. (See fig. 14.)

Forstall Jet in Moving Stream - Test Case 9

This flow (test case 9) was computed by assuming a thin initial boundary layer and

fully developed RT; r i was corrected to yield the experimental excess momentum and

the actual duct radius rw/r o = 16 was used for the prediction. The predicted center-

593



line velocity agrees very well with the experiment at all axial locations. (Seefig. 15(a).)
The detailed far-field behavior of the excess center-line velocity is illustrated in the log
plot (fig. 15(b)). Becauseof the assumptionof unity Prandtl andLewis numbers, the pre-

dicted _ is identical to the excessvelocity (uc - Ue)/(uo - Ue)o Predicted half-
velocity width (fig. 15(c)) agrees well with the experiment for x/D up to 25, but falls
about 10percent under the experiment at x/D = 80.

Chriss Hydrogen Jet in Moving Air Stream - Test Case 10

This flow (test case 10) was computed in two ways. In the first, a cosine velocity

profile was fitted to the data at ×/D = 2.97. This profile, along with the experimental

shear stress shown in reference 22 (R T = 98.3), was used to start the computations.

Predicted results for the center-line velocity are fairly good (fig. 16(a)), but the pre-

dicted rate of decay of center-line concentration is too low. This type of concentration

prediction is typical of the integral analysis, since it is limited to unity turbulent Prandtl

and Lewis numbers.

The second computation was started at x = 0 with small initial shear layer thick-

ness and fully developed shear stress (R T = 120). Predicted center-line velocities

(fig. 16(b)) are somewhat better than those for the first computation, but, of course, the

center-line concentration decay rate is again underpredicted.

Eggers and Torrence Axisymmetric Jet in

Moving Air Stream - Test Case 11

This flow (test case 11) has wakelike behavior and it is unlikely that it can be prop-

erly predicted by a constant-pressure mixing analysis. In spite of the thick initial bound-

ary layers and the velocity ratio (Ue//U j = 1.36), computations were started at x = 0 with

thin initial shear layer and fully developed shear stress. The predicted center-line

velocity distribution is surprisingly close to the experiment. (See fig. 17.) Wakelike jet

flows, with jet momentum flux less than external stream momentum flux, tend to have

relatively high relative shear levels (low RT) , and it is possible in such flows that the

influence of the initial conditions does not persist very far downstream in the flow field.

This aspect should certainly be further explored.

Eggers Hydrogen Jet in Moving Air Stream - Test Case 12

As with the preceding case, this flow (test case 12) has jet momentum flux less than

external stream momentum flux. In this case, however, the jet momentum deficit is

caused by density rather than by velocity (Ue/U j = 0.37). Again, the computations were

started with a thin initial shear layer and fully developed R T. Although the length of the
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first regime is somewhat overpredicted (fig. 18i, the downstream prediction for both

center-line velocity and center-line concentration is very good. In view bf the unity

Schmidt number assumption, the good prediction of both velocity and concentration was

unexpected; the results are undoubtedly caused in part by the neglect of the initial bound-

ary layers.

Chevray Axisymmetric Wake - Test Case 15

Computation of this flow (test case 15) was started at x = 0 with an equivalent

second regime cosine velocity profile; the cosine profile was selected to match the experi-

mental momentum defect and mass flow in the shear layer. An initial value for R T was

established by equating the experimental TKE flux (ref. 23) with the TKE flux in the equiv-

alent fully developed profile. The theory does not predict the initial rapid acceleration of

the center-line velocity (fig. 19(a)) for x/D < 2. This rapid acceleration is caused in

part by a favorable pressure gradient just downstream of the body; the axial pressure

gradient was neglected in the calculations. For x/D > 4, the center-line velocity defect

W is underpredicted; however, the log plot of W against x (fig. 19(b)) shows that the

predicted decay rate at x/D = 18 is somewhat less than the experimental rate. The

predicted axial distribution of W follows an x -1 decay from x/D = 5 to the maximum

axial distance computed (x/D = 200). Better prediction of the decay rate at x/D = 18

would require less dissipation than that used in the calculations. On the other hand,

achievement of the x-2/3 decay rate for W, as predicted for self-preservation, would

require much higher dissipation. One can only conclude that (1) the far-field dissipative

mechanism is much different from the near-field mechanism, or (2) self-preserving axi-

symmetric wakes are never attained. The lack of far-field experiments on the axisym-

metric wake makes it difficult to decide which of these conclusions is correct.

The predicted axial variation of R T (fig. 19(c)) shows that R T never approaches

a constant value but continuously decreases in the axial direction.

Demetriades Supersonic Axisymmetric Wake - Test Case 17

This flow (test case 17) was computed by fitting a cosine profile to the experimental

velocity data at x/D = 17, and by using the R T value quoted by Demetriades (ref. 24)

for x/D - 17. The plot of 1 against x/D (fig. 20(a)} shows that the experimental
W3/2

center-line velocity defect is well predicted. A log plot (fig. 20(b)) shows that the pre-

dicted W decays even more rapidly than an x -I decay. Again, this axisymmetric

wake prediction is very different from the x -2/3 decay of W which is required for

self-preservation. The predicted axial variation of R T (fig. 20(c)} is considerably dif-

ferent from that shown by Demetriades (ref. 24); he showed R T to be nearly coi_stant

at 32 for x/D greater than about 30.
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Fully DevelopedAxisymmetric Jet - Test Case 18

This important andfundamentalflow (test case 18)was computedfrom x = 0 by

assuming a thin initial shear layer and a fully developed near-field shear stress

(R T = 143). The predicted center-line velocity (fig. 21(a)) follows an x -1 decay for

x/D greater than 15. Although the predicted center-line velocity agrees well with the

experiment of Albertson et al. (ref. 25) at all axial stations, the agreement with the

Wygnanski and Fiedler experiment is fairly satisfactory only for x/D > 40. The

Wygnanski and Fiedler flow apparently does not approach self-preservation as quickly

as do other reported jet experiments; the terms "fully developed" or "self-preserving"

are questionable when applied to the Wygnanski and Fiedler experiment.

The predicted velocity profile (fig. 21(b)) is based on the local mixing-zone growth

rate at x/D = 60. Compared with the experimental profile of Wygnanski and Fiedler,

the half-velocity radius is well predicted, but the predicted profile is fuller near the

center line; the predicted profile is closer to the empirical profile of Albertson et al.

(ref. 25) in the high-speed half of the shear layer. The theoretical profile approaches

zero velocity in the outer part of the shear layer more rapidly than does the experi-

mental profile. The predicted TKE level (fig. 21(c)) agrees well with the Wygnanski and

Fiedler experiment in the outer half of the profile, but the predicted center-line TKE

level is about 13 percent below the experiment. It should be noted that the predicted TKE

level is satisfactory in the region of peak shear stress. Predicted axial variations of

R T and the TKE profile parameter w are shown in figure 21(d). Even though the

center-line velocity closely follows the x -1 decay (required for self-preservation)

downstream of x/D = 15, R T and w do not become constant until considerably far-

ther downstream.

G.E. Heated Supersonic Jet - Test Case 19

This flow (test case 19) was computed by fitting a cosine profile to the velocity data

at x/D = 2.79, and by using a fully developed initial shear stress. Agreement between

predicted and experimental center-line velocity (fig. 22) is fairly satisfactory.

Paulk Jet in Moving Stream - Test Case 20

Even though the initial boundary layers are fairly thin in this flow (test case 20), the

velocity ratio (Ue/U o = 0.48) exceeds that where a fully developed initial shear stress can

be used. A potential core length of approximately 12D is predicted with the assumption of

a fully developed initial RT. The control volume initial region analysis was applied with

5a = 0.082r o and 6j = 0.063r o. The experimental boundary-layer shapes are not well

defined in reference 22; therefore, the initial region computations were carried out for

two values of the velocity profile exponent (n a = nj = 1/4 and n a = nj = 1/7). The result-
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ing values of b, ri, and shear stress were then used to start (at x = 0) the computa-

tions for the entire flow field. Both computations are shown in figure 23; the predicted

flow field is obviously not very sensitive to the initial boundary-layer shape. Both pre-

dictions agree fairly well with the experimental center-line velocity but, of course, the

experimental center-line concentration decays more rapidly than predicted.

It should be noted that the experimental values of (u c - Ue)/(u o - Ue) were com-

puted with u o = 390 ft/sec (119 m/sec) and Ue = 187 ft/sec (57 m/sec), the observed

values of u o and u e downstream in the flow field.

Chriss Hydrogen Jet in Moving Air Stream - Test Case 21

As with test case 10, this flow (test case 21) was computed (1) with experimental

initial conditions, and (2) with fully developed R T at x = 0, The initial shear stress

for the first computation was taken from reference 22 at the most upstream axial station

for which a shear stress was measured in this flow. The predicted center-line velocity

agrees well with experiment (fig. 24(a)) but, as usual, the center-line composition decay

is underpredicted. The computations which were started at x = 0 are shown in fig-

ure 24(b); the agreement with experiment is poor. Therefore, it can be concluded that the

velocity ratio of this flow (Ue/U o = 0.31) exceeds that for successful use of a fully deyel-

oped initial shear stress.

Eggers Hydrogen Jet in Moving Air Stream - Test Case 22

As with test cases 11 and 12, this flow (test case 22) is wakelike in that the jet

momentum flux is less than the outer stream momentum flux. The flow also has very

thick initial boundary layers. In spite of the thick boundary layers and the velocity ratio

(Ue/U j = 0.54), computations were started at x = 0 with a thin initial shear layer and

with fully developed R T. The predictions (fig. 25) are not as bad as could be expected,

but the analysis does not predict qualitatively the behavior of the center-line velocity.

It is unlikely that this flow will ever be properly predicted with an analysis which ignores

the significant pressure gradients in the flow field.

CONCLUDING REMARKS

When the rather small investment of empirical information on turbulence structure

is considered, the quality of the mean flow predictions is surprisingly good. Experience

in computing a variety of flows has not indicated that the assumption of universal TKE

profile shapes is grossly incorrect. The utility of the admittedly oversimplified model

for turbulent dissipation has been significantly increased by relating the dissipation coef-

ficient a 2 to the local turbulent Reynolds number. _.,
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A persistent point of criticism about TKE methods for free shear flows has been

that the required detailed information on initial conditions is not generally available for

engineering flows. Experience has shown that a considerable number of practical flows

can be computed without detailed information on the initial conditions. For Ue/U o less

than 0.25, specifying a fully developed initial shear stress works very well. Wakelike

flows, such as test case 12, seem to be fairly insensitive to initial conditions. For jet

flows with velocity ratio Ue/U o greater than 0.25, the control volume initial region

analysis shows promise. The very limited experience with this initial region analysis

for constant density flows has indicated that the results are not overly sensitive to the

initial boundary-layer characteristics; good guesses about the initial boundary layers
seem to be sufficient.

Turbulent kinetic energy methods, of which this method is a simplified example,

represent a fundamental improvement over eddy-viscosity models in that more of the

physics of the turbulent motion is taken into account, albeit crudely. It appears that

these methods have been developed to the point where they are routinely applicable to

engineering calculations on a broad class of free turbulent flows.
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TABLE I.- INITIAL CONDITIONS FOR THE EXPERIMENTAL FLOWS

Test Flow
case

Maestrello and McDaid axisymmetric jet,

M o = 0.64

x I bl ril RT,I

2r o 0.87r o 0.52r o 190

• 0 .01r o .86r o 190

7 Eggers supersonic jet, Mo = 2.22 0 .01r o ro

8 G.E. heated jet, M o = 0.7 i 5.58r o 1.70ro .18ro

9 Forstall jet in moving stream, 0 .01r o .88r o

Ue/U o = 0.25

10 Chriss H2 jet in air stream, 5.94r o 1.132ro .412ro

Ue/U o = 0.16 0 .01r o ro

11 Eggers and Torrence jet in moving stream 0 .01r o r o

12 Eggers H 2 jet in air stream, M e = 1.33 0 .01r o ro

15 Chevray axisymmetric wake 0 .0257D 0

17 Demetriades axisymmetric wake, 17D 1.00D 0

Me = 3

18 Fully developed axisymmetric jet 0 .01r o

19 G.E. heated jet, Mo ffi 1.36 5.58ro 1.30ro

20 Paulk jet in moving stream, 0 .113r o

Ue/U o ffi 0.48 0 .122ro

21 Chriss H 2 jet in air stream, 5.15r o 1.17r o

Ue/Uo = 0.31 0 .01r o

22 Eggers H2 jet in air stream, Me = 2.5 0 .01r o

r o

.46r o

.916r o

.923r o

.464r o

ro

ro

Notes

Experimental profile, fully developed RT

r o corrected for momentum

Fully developed R T

293 Fully developed RT

212 Experimental profile, fully developed R T

143 r o corrected for momentum

Fully developed R T

98.3 Experimental profile and RT

120 Fully developed R T

130 Fully developed R T

125 Fully developed R T

1930 Equivalent cosine profile, u c = 0.083u e

48 Experimental profile. R T quoted

by Demetriades

143 Fully developed RT

238 Experimental profile, fully developed R T

36.8 Initial condition analysis, na = nj = 1/4

42.9 i Initial condition analysis, na = nj = 1/7

49.2 Experimental profile and RT

130 Fully developed RT

110 Fully developed RT
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DISCUSSION

S. W. Zelazny: You assume that the Schmidt number was unity in your analysis. Wouldn't

it be a simple exercise to remove that restriction by introducing an additional equation?

C.E. Peters: Yes sir, we plan to do that. It's a little frustrating because obviously I

have access to Tom Harsha, who sits 15 feet away, and for those flows where I'm inter-

ested in a nonfully developed case or nonunity Schmidt number I can always use the finite-

difference results. But there are certain flows that I can handle with the integral method

we can't handle yet with the finite-difference method. So I will probably go ahead and try

to do something to approximately handle nonunity Schmidt number.

S. C. Lee: You mentioned this method you have has some advantage over finite-difference

schemes.

C. E. Peters: I didn't refer to it as an advantage, I called it a difference. It's a different

set of approximations. Instead of assuming an a 1 function we just assume that the tur-

bulent kinetic energy profile shapes are invariant as a different approach.

S. C. Lee: Perhaps you could summarize for us what would be the difference between

this method and the finite-difference method as Harsha presented it.

C. E. Peters: The point is that my kinetic-energy profiles are universal in the given

position in terms X/Xcore. Because of the variable-density and variable-velocity ratio,

the shear profile varies from flow to flow; that is, the normalized shape of the shear pro-

file. Therefore, a 1 varies in shape from flow to flow, a condition implied through the

whole analysis. I backed it out for some flows, and it does vary from flow to flow. So

it's an alternate approximation to saying something about a 1. That's the only fundamen-

tal difference. Tom and I are using essentially the same dissipation, and, of course, in

return for my specifying the profile shape of kinetic energy, I don't have to say anything

about diffusion.

M. V. Morkovin: I think this is another case where we can benefit from the comparisons

of different methods. Could you tell us something about your general experience, when

you prefer to use Harsha's method to yours and how much more complex it is. I gather

you do have some problems in sensitivity to initial conditions. If you could give us a

little bit of briefing on that, I think it would be highly valuable.

C. E. Peters: I'll give you my experience first and Tom can comment on it if he likes.

The implication of my being able to use a fully developed initial shear stress up to a

velocity ratio of 0.25 merely says that these flows are strong shear flows, and they wipe

out any small inaccuracies in the initial condition fairly quickly. So that seems to be a

viable procedure. When the flows become wake-like in nature, of course, the initial con-

ditions persist indefinitely; in that case my analysis is not applicable at all. For example,
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if the hole never fills up, it's not useful. So I limit it to a velocity ratio of maybe 0.7 or

0.8 as the upper limit. I haven't tried to define carefully an upper limit here. Certainly,

the finite-difference method is much more powerful in a sense of handling nonsimilar ini-

tial conditions and so forth. It's interesting to note the sort of generalized information

one can back out with an alternate set of assumptions. For example, about a 1 profiles.

So in addition to the practical requirement that we have a better transport model for our

"nuts and bolts" engineering calculation schemes, we are also interested in some of the

implications in general.

Anon.: Which costs more ?

C. E. Peters: This is embarrassing for me because Harsha's program runs faster. But

one of the reasons is that this program is a mess; it does lots of different things. This

regime is far beyond what we were talking about in this particular calculation. We even

do circulating flows with them by using patched up techniques. So the program is not

optimized for this kind of flow. If we build a constant-pressure version, I am sure we

can get our run time down perhaps an order of magnitude.

I. E. Alber: Your calculation of the spreading parameter variation with Mach number for

the two-dimensional shear layer shows quite an increase in the variation of sigma with

M. That is your figure 10. Now in this same calculation by Harsha, which I believe is

a very similar model to yours, he shows hardly any variation at all.

C. E. Peters: We can't explain that - it's different. Tom, would you care to comment?

P. T. Harsha: Well, the only comment I could make really is that with shear layers I was

forced to use an almost patently ridiculous a 1 model which Peters does not have to use

because his a 1 comes out of shear stress profile and kinetic energy profiles. I would

suspect that the problem is that the a 1 model that I used is simply inappropriate for the

shear layer.

J. M. Eggers: I was wondering if you or anyone else here could comment on what we

could do to improve the modeling in the transition region to get rid of this somewhat

atrocious inflection point at the end of the core region.

C. E. Peters: The sharp corner on the center-line velocity distribution is characteristic

of integral methods, at least as we have put them together. It doesn't bother me very

much because most of the required information is not centered in that particular region,

but the finite difference smooths it out. That's the idea of patching together two regimes

discontinuously. It's bound to give a sharp corner with an integral method without some

relaxation of profile shapes locally or something.

D. B. Spalding: I have a question and a comment about R T. The question is a simple

one - in the paper R T seems to be defined twice, once it has the difference between
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uc and ua on the top and in the secondit has the square of those. Which of thosewas
actually used?

C. E. Peters: I think the difference comes because when you plug in the midpoint velocity

profile slopes, it is in terms of delta u over width and I think that's where it comes from.

D. B. Spalding: The other remark I want to make is that this quantity appears to be

related to the ratio of the production term to the dissipation term which Rodi found also

to be significant, and it will be interesting when we have time just to compare whether

there was a quantitative connection between your function of R T and our function of

production over dissipation.

C. E. Peters: Yes, I certainly agree. We haven't had time to give much thought as to

what this R T function means in terms of structure, but it would be nice if we could at

least rationalize, in terms of energy spectrum or whatever, why the length scale changes

or the R T changes the effective dissipation.

D. B. Spalding: At least you can see that with your definition, when u c equals Ua,

there will be no shear stress, so production is zero. And so R T is zero; it's the same

as Rp/e is equal to zero. Even closer quantitative connections are being worked out.

C. E. Peters: It was also interesting for me to read in Joe Schetz's written version that

the constant in his eddy-viscosity model perhaps should be related to a similar parameter

to this - the ratio of U prime over delta U. So, this parameter is obviously developed

by mean flow correlations during the near field of the wire and jet series, and I just

stumbled across it. I think it is better than a mean flow parameter, such as Mach num-

ber or some density parameter, and I think it is related to the turbulent structure.

S. Corrsin: I was interested in R T because the numbers look so much larger than the

ones I computed 15 years ago.* Did you compute it for a wake also?

C. E. Peters: Yes, it was shown in the paper I think on the Chevray case. Remember my

length scale is the full width of the shear layer; that is, from the centerline out to the

outer edge.

S. Corrsin: Well, I was just looking at my paper from 1957 in which is used the half-

width and the full-velocity difference. I got a value of 12 for Townsend's wake.

C. E. Peters: I didn't do the two-dimensional wake.

S. Corrsin: And for the round jet, I defined it in terms of the momentum diameter and

it came out to be 15.

Corrsin, S.: Some Current Problems in Turbulent Shear Flows. Symposium
Hydrodynamics (Washington, D.C.}, Sept. 24-28, 1956, pp. 373-400.

on Naval
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C.E. Peters: My number of 75 for the asymptotic value for the fully developed jet is con-

sistent, considering the difference in length scale definition, with the number tabulated

experimentally by B. G. Newman.

S. Corrsin: By whom?

C. E. Peters: Newman, in his survey paper a few years ago. So I think it is consistent

with other quoted information.

S. Corrsin: I can make a physical comment about this concept. I first heard it suggested

back in the early 1940's by Hans Liepmann, who proposed the idea that perhaps turbulent

shear flows tend to keep themselves in a state of lower critical Reynolds number based

on the turbulent viscosity, and it's a sort of self-destroying system that always disturbs

itself violently. That was sort of the reason that I computed these. For bounded flows,

they seem to vary more, but the general idea was that for shear flows without boundaries

there are probably universal constants for each geometry.
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