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A. Roshko: I_Ldlike to tell you about some experiments on turbulent free shear layers

in pressure gradients that we've been able to do. I know that Stan Birch said yester-

day that effects of pressure gradient are not included in this conference, but maybe it

will give us something to think about for the next conference. Actually I probably

ought to be talking about the older results (with no pressure gradient) since many of

you probably haven't seen them or did not hear Garry Brown's talk 1 in London last

fall. Furthermore, I realize that there is considerable skepticism about them, par-

ticularly about the large vortex structures which we see (fig. 1). We were a little

startled ourselves when we saw them in our first pictures but are now convinced that

they are quite real and are basically two dimensional, with a scale that increases on

the average with x. One thing I'd like to mention is that in the recent measurements

of Spencer and Jones, 2 they find a definite spectral peak in their turbulent shear lay-

ers (in homogeneous flow). Using the average vortex spacing at any point from our

pictures (actually movies) and assuming that they are convected with average speed

I(UI+ U2) , we calculate a dimensionless frequency nox/U1 = 1.7 as compared with

2.1 from the Spencer and Jones data at U2/U1 = 0.3. (Our case is for U2/U 1 = 0.38

and p2/Pl = 7.) Thus, we feel that the spectral peak measured by Spencer and Jones

corresponds to the passage of the vortex structures we see in our pictures.

Another thing that has worried people about the experiments is the effect of the chan-

nel walls. These are used to set the pressure gradient and, for the case we are dis-

cussing right now, they were set for uniform pressure along the flow. Now we also

wondered about the effect of the fairly close proximity of the walls, and so we made

some measurements on turbulent shear layers in homogeneous flow. The results

agreed fairly well with those of other investigators on homogeneous flows.

Now, for the case of a mixing layer in pressure gradient, here's the setup (fig. 2). Pl

and P2 do not vary with x. Similarly U 1 and U 2 are constants in the case of

zero pressure gradient. But if the pressure gradient is not zero then U 1 and U2

are functions of x. Bernoulli's equation shows that if we try to maintain U2/U 1 the
/

1Brown, Garry; and Roshko, Anatoh The Effect of Density Difference on the Turbu-
lent Mixing Layer. Turbulent Shear Flows, AGARD-CP-93, Jan. 1972,
pp. 23-1 - 23-12.

2Spencer, Bruce Walton: Statistical Investigation of Turbulent Velocity and Pressure
Fields in a Two-Stream Mixing Layer. Ph.D. Thesis, Univ. of Illinois, 1970.

Spencer, B. W.; and Jones, B.G.: Statistical Investigation of Pressure and Velocity
Fields in +" _"'_*'"'_"+_,,e .......... Two-Stream _xing ,_,,_'............... A,^ A Paper _,To. 71=613,
June 1971.
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same at all x, then, in general, the pressure will not develop the same way on both sides

layer. But, for one particular case, namely P2U22 = PlU12, the pressure p(x)of the

will be the same on both sides. For that one particular case, you might hope to get an

equilibrium or similarity shear layer even in a prdssure gradient.

_ x dUl_ x dU2

Well, if you play with this idea, you find that, if the parameter a U 1 dx U 2 dx ' the

Falkner Skan parameter, is a constant, then you would expect to have an equilibrium shear

layer. It will still spread linearly but not necessarily at the same rate as for a = 0

where y/x is still the similarity coordinate.

To set up these flows in our apparatus we had to diverge the walls (for adverse pressure

gradients) and put slots in them to allow outflow helped by some resistance added at the

channel exit. One of our graduate students, M. Rebollo, did the experiments. It took

some adjusting and playing around but we think we produced an equilibrium flow and I'd

like to show you those results.

Figure 3 shows, for comparison, a profile of dynamic pressure for the case P2U22 =PlU12

and with a = 0. Here similarity is shown by the fact that the points all fall on one curve

when plotted against _ = y/(x - Xo). Values of x were 2 to 3 inches and x o was about

-0.20 inch. This is a stronger test of similarity than one can get from velocity profiles or

density profiles, since here we have points of maximum and minimum that all have to be

the same for every value of x. Keep in mind the horizontal scale; it is a measure of the

spreading angle; you see that the layer extends over a width of about 0.2 in y/x. Also

noted is the location of the dividing streamline r/o.
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The next figure (fig. 4) shows the corresponding result for an adverse pressure gradient

with _ = -0.18. First of all, you see that there's a tremendous effect on the spreading

angle - it's just about doubled (the scale is the same as before). There's also a larger

dip at the minimum. If you had a more adverse pressure gradient, you'd reach zero

velocity at the minimum and would be tending to flow reversal in this part of the shear

layer.

One of the better tests for existence of similarity or equilibrium is that the turbulence

structure shows similarity, and we've recently begun to make measurements of this. We

are able to measure the fluctuating density, or concentration, in the flow, using the probe

developed by Brown and Rebollo. 3 The root mean square of the concentration fluctuation

does tend to fall on one similarity curve, indicating equilibrium. Shown in figure 5 is the

case for e = -0.18 compared with that for _ = 0. Again you see the large change in

the width of the layer.

3Brown, G. L.; and Rebollo, M. R.: A Small, Fast-Response Probe To Measure Compo-
sition of a Binary Gas Mixture. AIAA J., vol. I0, no. 5, May 1972, pp. 649-652.
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From the measurementsof the meandensity profile and the meanvelocity profile, you
can computethe shearing stress distribution; in figure 6 is a comparison of this for

= 0 and _ = -0.18. There is quite a difference in the maximum shear stress.
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The next figure (fig. 7) shows the same comparison for the turbulent mass diffusion pry'.

There is not a great difference in the maximum for the two cases.

The last figure (fig. 8 on p. 636) is a summary of some of the parameters that can be

computed from the mean profiles. For example, the maximum shear stresses and mass

diffusions are shown. If you use the measured and computed profiles to infer eddy vis-

cosities and diffusivities you find the results shown here. (The asterisk indicates values

on the dividing streamline.) The eddy viscosity, normalized with x, is much larger for

the case _ = -0.18. Even if normalized with 5 (which itself is larger in the adverse

gradient), it still is about 50 percent larger than for a = 0. The eddy diffusivity nor-

malized with x is not much changed. But, most interesting, the turbulent Schmidt num-

bers here are nothing like what we've been hearing about today or at any other time that

I know about. They are down at around 0.2 and 0.3 rather than about 0.8 to 1.
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In closing, I'd like to say that Dr. Garry Brown was very much involved in this work until

he left for Australia a year ago, Mr. Manuel Rebollo made most of the measurements you

have seen today, and the research is sponsored by the Office of Naval Research.

P. A. Libby: Does that mean that the concentration profiles and the velocity profiles are

not related according to the Crocco relation?

A. Roshko: Yes, I think so. I think that when you have this tremendous density difference

which is continually maintained, the physics is rather different from where you have a

small concentration that is passively floating around. I think all the ideas about Schmidt

numbers near l come from cases where the contamination is rather small - that is, that

there is not a large density difference or concentration difference.

I. E. Alber: I'll just ask you the question that I asked you before in private for the whole

audience to comment on. Do you expect that you would get the same structure in the shear

layer if you had an initial turbulent boundary layer ahead of the separation point, com-

pared with the case which you ran where you had laminar initial boundary layer? •
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A. Roshko: Well, I really don't know the answer, but I don't think so. Again, my feelings

about this relate to some of my ideas that were kicked around here in regard to the

stability - that this is really an instability phenomenon. For example, I think that insta-

bility in the supersonic layer would be rather different from the instability in the subsonic

layer. I think, in fact, it accounts for the difference between the a in the supersonic and

the subsonic cases. I think that supersonic layers are stiffer in some sense than the sub-

sonic ones.

I. E. Alber: But the instability mode would be different depending on the shape of the ini-

tial profile. Then you would have a much fuller profile in the turbulent case than the

laminar case. You may expect a different response.

A. Roshko: It's not the initial profile that matters, it's the average profile at any point in

the developed layer, which has a universal shape. In other words, the instability from any

point in the shear layer is determined by the profile at that time. So I don't think that, if

I understand you correctly, the initial profiles of the separation points should matter if

there is any validity at all to these ideas about mean flow similarity.
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V. W. Goldschmidt: There are three things I want to refer to. These are measurements

taken related to the problems of (a) upstream effects, (b) similarity, and (c) stability.

Figure 1 (from unpublished data) relates to upstream effects. It shows the widening rates

of plane free jets (the inverse of a) on the ordinate. Along the abscissa is shown the tur-

bulence intensity at the mouth of the different jets. These values may be in slight absolute

but not relative error. As you see there is an increase in widening rate with upstream

turbulence intensity. Shown, just for reference, is where a = 9 and 11 would be located.
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Figure 2 considers the macroscale downstream of a circular jet. The macroscale is on

the ordinate, a dimensionless radial coordinate on the abscissa. The three curves are

for three different x/d stations. Never do we get them to scale with anything. Although

the velocity profiles look similar, the turbulence intensity looks similar, and the Reynolds

stresses seem to reach similarity, the macroscales do not. These results were published

in the Trans. ASME, Ser. D: J. Basic Eng. 4 Similar results (still unpublished) were
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4Goldschmidt, V. W.; and Chuang, S.C.: Energy Spectrum and Turbulent Scales in a
Circular Water Jet. Trans. ASME, Ser. D: J. Basic Eng., vol. 94, no. 1, Mar. 1972,

pp. 22-26.
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noted for a plane jet. The problem of some kind of periodicity or stability or something

coming in is alluded to in figure 3. 5 Trying to answer the question, '_Do jets flap?," two-

hot-wire probes were placed on opposite sides of the center of a plane jet. The time

cross correlation of these two is shown in the figure. A negative correlation for no time

delay on either of the signals (T = 0) would imply or suggest flapping. The figure shows

that there is flapping, and what is interesting is that there is a certain periodicity to this

flapping.
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5Goldschmidt, V. W.; and Bradshaw, P.: Flapping of a Plane Jet. Phys. Fluids, vol. 16,
no. 3, Mar. 1973, pp. 354-355.
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V. W. Goldschmidt: I have a question for Jack Herring that we discussed after his pre-

sentation, but I think it would be worthwhile to bring it to the group as a whole. My ques-

tion was whether, as you recall in the model proposed, there was a need for what you call

a random force or a random wave mix that regenerates and brings energy back into the

flow. The distribution of this random input was made random throughout all wave num-

bers. My question to him was can this input be made selective over wave numbers and,

hence, try to simulate how the turbulent flow gains energy from the mean flow and how

dependent would his results be on the distribution of this random input. Did I make this

question correct?

J. R. Herring: Yes. It is the same question you asked yesterday. Perhaps I wasn't very

clear on this point. What I meant yesterday was that you start by modeling the turbulence

"force," the (V._V) term (the nonlinear terms in the Navier-Stokes equations), as if they

were normally distributed multipoint Gaussian. In having made the assumption that the

turbulence force could be so modeled, you need no information about the spectral shape

because you are going to compute that in a self-consistent way after you have finished

constructing the theory. Next, having made the Gaussian assumption, you immediately

discover that along with such a random stirring force, in modeling turbulence, you will

need an eddy viscosity because random stirring always increases the energy of systems

to which it is applied. This eddy viscosity (really a generalized eddy viscosity) is deter-

mined by the spectrum of the random stirring force representing the "turbulence force"

through the condition of energy conservation. In that case you have a model with no

empirical constants and this is Kraichnan's direct interaction approximation. 6 Of course,

the discussion here was not a derivation but rather a description of the ingredients of the

theory. However, a derivation along these lines has been developed by Phythian. 7

V. W. Goldschmidt" If I could elaborate on that, the reason for the question is that we

found that when we use different distributions for this random stirring force we could gen-

erate different macroscales on the resulting flow, although the microscales remained

basically unchanged.

M. V. Morkovin: Could you elaborate on your critique of this subgrid-scale closure? As

I understood you, because of a mismatch of the statistical behavior on one side of the large

wave numbers and the actual computed nonstatistical values on the other side of the wave-

number interface, you do have propagation of errors into the larger scales. You made

some very definite statements about the amount of spoiling that this error propagation

would do to your original results.

6Kraichnan, Robert H.: Direct-Interaction Approximation for Shear and Thermally
Driven Turbulence. Phys. Fluids, vol. 7, no. 7, July 1964, pp. 1048-1062.

7phythian, R.: Self-Consistent Perturbation Series for Stationary Homogeneous Turbu-
lence. J. Phys. A: Gen. Phys., vol. 2, no. 2, Mar. 1969, pp. 181-192.
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J. R. Herring: Yes, this is a very topical subject now because it limits the ultimate pre-

dictability of equations that you are using. H you make small error perturbations on the

small-scale structures, these feed back and contaminate the large scales. Hence, any

deterministic aspects thatthese large scales may originally have can be ruined. I believe

that the figure quoted now is that within about three eddy circulation times a given scale

will be contaminated with the error originally residing at very small scales. As to how

this affects the large scales in a real problem depends upon the geometry of the flow,

whether the flow has boundaries and so on. The defenders of the subgrid-scale theory

argue that the method is to be used to forecast "typical" flows, and as such, the theory

need not tie back to any particular initial conditions.

M. V. Morkovin: Isn't there a difference between behavior in three-dimensional turbu-

lence and two-dimensional turbulence? Two-dimensional turbulence, as long as we are

away from the small viscous scales, should have circulation preservation, vorticity pres-

ervation. Andso automatically you do have a chance of cascade upstream, I mean up to

the larger scale. Is this the problem that you are talking about? Wouldn't the same thing

be true for three-dimensional turbulence?

J. R. Herring: Errors initially in the small scales work their way back to larger scales

in both two and three dimensions. Their penetration into the large-scale regime is

aided - in two dimensions - by the energy cascade to larger scales that you mentioned.

However, the "error cascade" to larger scales occurs in three-dimensional turbulence,

despite the fact that here the energy cascade is dominantly to smaller scales.

P. A. IAbby: I think it would be very valuable for the evaluation committee if Dr. Herring

could make some conjectures about the future prospects of these more deterministic

methods of calculation. He has seen, in the last day or so, some of the complexities

which the engineers have to deal with. I think the answer we would like to hear from him

really is what he thinks in the next 10 years perhaps, when computers become even more

powerful, as to whether or not all the methods that he has heard today would be simply

passe, and we would all be doing, even for relatively simple calculations, these more

advanced methods based on direct integration of Navier-Stokes, direct interaction, or the

subscale closure and things of that sort. I think it would be very valuable for us to have

his notions in that regard for the sort of flows that we have been dealing with here not

boxes.

J. R. Herring: I tried, in the talk to limit myself to simple geometries to get some

insight into whether the parameterizations make sense in terms of a more deductive

theory. When it comes to doing problems with complicated geometries you have in mind

in this conference and at large Reynolds numbers, a direct application of the statistical

theories seems to me out of the question. At best, one can hope for solutions to problems

with simple geometries, such as parallel plate shear flow or cylindrical pipe flow. It
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seems to me that the future value of such statistical methodsmay lie in their ability to
shed light onsimpler closures by way of either generalizing them or determining their
constants. For example, I think that the proposals of Hanjali_ and Launder's model8 are
in some sensesuggestedby the direct interaction kinds of equations,although the latter
are certainly more complicated andlaborious to solve. Possibly one should try to extract
information from the direct interaction theory to get a theory at the level of Hanjali_ and
Launder by assumingshapesfor the various spectra - energy spectra and so on. Some
work has beendonealong this line already by Leslie. 9 That may be a goodavenuealong
which to attack the problem andI have tried to give some indication of how such a calcu-
lation wouldgo at the end of the printed version of my talk. To summarize, then, it would
appear that the future rule at statistical turbulence theory in the type problems discussed
here would be in improving and generalizing existing second-order, single-point moment
closures.

As for the other two approaches,the subgrid-scale closure and the spectral method, these
appear to havea better chanceof beingused directly on complicated problems discussed
here. The subgrid-scale methodhas already beenused for shear flows and thermal con-
vection by Deardorff. 10 Of course, this methodis a model of turbulence andhenceis
opento doubtson this account. However, as I pointedout in my talk, it is a method which
canbe progressively improved (at the expenseof more computer time), andso hopefully
one canavoid the disquieting doubtsof other procedures, where errors are less easy to
assess. This method could be applied, now, to the problems dealt with at this conference.
No onehas doneso, principally I guess becauseof the additional programing neededto
treat the complicatedgeometries you have. Of course, the method cannot, at present,
deal with the boundary layer itself. It seems to me that such a calculation would be very
valuable, because,it would predict so much flow structure, that it wouldbe easy to tell
whether the methodis sensible or not. You cannot do this with the "global-averaged"
procedures described here by, say, Launder andDonaldson,becauseof the averaging over
the turbulent structure.

With reguard to the spectral technique,one must be more guarded. This methoddeals
with all scales, so its principal contribution is at low Reynolds numbers, where there
aren't many. It may serve (andis now serving) as a useful tool in assessing other

8Hanjali_, K.; and Launder, B. E." A Reynolds Stress Model of Turbulence andIts
Application to Thin ShearFlows. J. Fluid Mech., vol. 52, pt. 4, Apr. 25, 1972,
pp. 609-638.

9Leslie, D.C.: Simplification of the Direct Interaction Equations for Turbulent Shear
Flow. J. Phys. A: Gen. Phys., vol. 3, no. 3, May 1970,pp. L16-L18.

10Deardorff, J. W.: A Three-Dimensional Numerical Investigation of the Idealized
Planetary Boundary Layer. Geophys.Fluid Dyn., vol. I, no. 4, Nov. 1970,
pp. 377-410.
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methods, such as the subgrid-scale method. For example, for some of the two-
dimensional calculations carried out at The National Center for Atmospheric Research
(NCAR)by Orszag, the behavior of the large scales seem to be relatively insensitive to
the detailed phasesof the Small scales. All that's apparently required is for the magni-
tudeof the small scales to be approximately correct. Suchcalculations tend, in this case,
to bolster one's confidencein the subgrid-scale method.

S. J. Kline: Something bothers me about that, and I'm not quite sure of all of what you

are saying. Let me try to explain myself. If you try to do what Professor Launder and

Professor Spalding were doing where they were dealing with the ratios of production and

dissipation, then this implies that you are saying something about the production. I am

not at all persuaded from the physical evidence that the nature of production is the same

as the nature of the cascade process in the statistics of decay, which is the box problem.

If that is true, then there is a fundamental gap between the box problem and the kinds of

things that we are doing here. Can you comment on that?

J. R. Herring: I'm not sure that I understand the question.

S. J. Kline: What I am saying, is that those models which seem to fit, for example, the

two-point space-time correlations for shear flows (the only ones that we know that work

at all, and also the visual data, the data that Gupta has taken with I_aufer, and so forth)

suggest that what one sees during the peak periods of production, which is intermittent,

is of a qualitatively different nature from the processes that lead from there to decay.

Now if that is true, then it seems to me that there is a fundamental gap between doing

problems of statistics in which you are dealing with the decay process and cases where

there is strong shear and high turbulence production.

J. R. Herring: Well, maybe I can answer part of that. Let me say as a general comment

that the theories are capable of treating any kind of flow with mean fields (production)

present or not. In my talk, I stressed the decay problem because it is simplest and

because we have more numerical experience with it than with problems having production

terms. I would agree that the physics of turbulent production is fundamentally different

from that of decay; but I think the statistical theory may be flexible enough to handle both

production and "decay." The issue you raised about the intermittency is, however, a

problem with statistical moment theories, and it is not clear to me that they can handle

correctly highly intermittent flows.

J. Laufer: I think that is a very fundamental question that Professor Kline brought up.

And maybe it might be worthwhile to argue about this a little further. The sort of model-

ing that we have seen today and yesterday really tried to model some average equations,

primarily Reynolds equations and some higher order equations of the turbulent quantities.

We have not yet tried to - certainly not in this conference - make some physical model

of turbulence itself. There is a great deal of skepticism about the formulation of the
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turbulence problem, a 1_Reynolds, in several people's mind working with turbulence. I
think manyof us are convincedthat a great deal of information, especially phaseinforma-
tion, is lacking in that. And the obvious consequenceof that is that we cannot close the
problem. Sowhenwe are talking about the production term in the Reynolds equation, to
me it is really just a nomenclature - I have no physical picture of it. Certainly not until
the first suggestionsas to howthis production might take place (madein Professor Kline's
group) did I begin to get a physical picture. That was really the first notion that suggested
someactual physical process that this is the way the flow might break downand produce
turbulence. Sothe questionis, how far canwe go by trying to do the modeling according
to these equations. Might it not be better to goback more into the physical work and the
modeling? And this actually has beendone - anyof you whohave tried to get into the
details of Townsend'sbook11 - he actually hada very physical picture in mind whenhe
tried to comeupwith a value for turbulent Reynoldsnumber. That I consider to be a sort
of modeling - physical modeling. Clearly this is a muchmore difficult task, and I cer-
tainly don't have anyobvious suggestionsof how we cando that. But I think that it would
be worthwhile for people whowork in this area to think in terms of other possible model-
ing processesbesides the ones that we haveheard in the past 2 days.

A. Roshko: I'd like to pick up the idea that Paul Libby started and has been continued

here - and that is, the question that has also come to my mind occasionally, one of these

days will computers be able to calculate the flow directly without putting in any physical

models let alone Reynolds equations. I think that there is some possibilities that this

might occur. I'm thinking of some examples that I know of where you try to model a vor-

tex shedding, for example, behind a circular cylinder by just letting vortices peel off from

the cylinder into the wake and do a time calculation. This reproduces these flows at least

qualitatively fairly well. Just this year in the Physics of Fluids, there was a short paper

by a couple of Russians, Kadomtsev and Kostomarov, 12 in which they try to model the

mixing layers that we have been talking about here so much. They simply feed vortices

off the splitter plate and let it go. This is really just solving the Euler equation on a

computer, leaving out the viscous terms. We do think that these free turbulent flows are

viscous independent, and it is really quite remarkable that you get mean velocity profiles

which look quite reasonable. My objection is that this is a two-dimensional calculation;

these are all line vortices. However, for some flows like these mixing layers and vortex

shedding down a cylinder, I think the large structure is to some extent two dimensional.

I think there might be some progress in that direction. There has been really little work

of this kind done.

llTownsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge Univ. Press,
1956.

12Kadomtsev, B. B.; and Kostomarov, D. P.: Turbulent Layer in an Ideal Two-
Dimensional Fluid. Phys. Fluids, vol. 15, no. 1, Jan. 1972, pp. 1-3.
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D. B. Spalding: On this particular point of whether it will be practical in the near future

to compute turbulent flows by a time-dependent solution of the Navier-Stokes equations,

there is a simple computation that one can do about the number of grid points that one

will need. Undoubtedly, if we are to proceed in that way, we must have grid points suf-

ficiently close together so that we can accurately describe the behavior in the smallest

eddies where energy is being dissipated. Now these are very small indeed. And so we

can compute just how many grid points we will need, and thus see by how many orders of

magnitude our current computers are away from being able to compute a turbulent pipe

flow. I think it is quite a long way.

J. R. Herring: If I can make one comment along those lines. Some of those calculations

done at NCAR on decaying turbulence suggest that it is not really so - that if you wish to

calculate the large-scale structures accurately, you don't have to do a clean job of cal-

culating the tiniest dissipation scales present. The examples I'm referring to here are

two-dimensional calculations; it may be that in three dimensions there is a difference.

M. V. Morkovin: I was hoping that Dr. Spalding would share with us some of the early

experience of Imperial College with three-dimensional flows. As I understand it you are

computing things that have streamwise vorticity. How much of a complication, how much

for instance, do you have to increase the number of grids to get something decent. Those

are pioneering, rather smeared numerical experiments as yet, but they must be giving

you some feeling of what the future potentials are. Isn't that right?

D. B. Spalding: I think that my answer must follow the lines of what i was saying just now.

We are doing three-dimensional time-dependent computations, and we are doing them for

turbulent flows. But we are doing them only by the use of turbulent models. They are

still the quite simple two-equation turbulent models. We do not have higher level ones

for three-dimensional flows. But we are struggling with computer storage at that level.

And I think that we should have to have computers of many orders of magnitude greater

capacity before we could approach the task of solving for turbulent flows by any other

means than by way of turbulent models. But once that is said, there are no special prob-

lems about three-dimensional flows. If you've got a computer program that solves the

three-dimensional equations and the continuity equation, and then an equation that will

solve for any other scalar, like the energy or the dissipation rate or like concentration,

then you just go ahead and solve. We have seen that there is still much comparison to be

done between predictions and measurements for two-dimensional free turbulent boundary

layers. For two-dimensional recirculating flows, there is much work to be done, and

after that there is a comparison to be done with three-dimensional turbulent flows. So

there is an immense amount of utilization of these techniques. And we are just at the

very beginning of this.
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S. J. Kline: I agree with Professor Spalding. You will recall that a number of people

have made this calculation that he suggests. Howard Emmons has made it, Bill Reynolds

has made it, and I think a number of other people have made it. And it is not just a small

jump from present computers. I think you will recall that if you want to do a complete

solution to the smallest scales as he suggested, then there is a graph in the 1968 Confer-

ence proceedings, I think Emmons 13 did that particular one, which shows that you have to

run about 30 years on a computer that is slightly larger than anything that exists to get

out one point for a fairly simple flow. That is pretty hard to imagine. So unless we get

really a very big jump in computer power, one has to do something other than simply put-

ting the Navier-Stokes equations into the computer and letting it run. Now the next ques-

tion that immediately comes beyond that is what approximations do you make. Jack

Herring suggested one kind of approximation, which may in fact be a very good one - that

is, you model the small scales and try to do the larger scales. But that still is a model-

ing. And it still involves all these problems. I think that that really is the situation. I

think it is naive to say that you are going to put all this in the computer and it is simply

going to run. I wanted to revert also to the exchange between Jack Herring and me

earlier and add one other remark - it may be helpful, I don't know. And that is, if you

look at Lahey's model 14 of the two-point space-time correlation which does seem to fit

all of them remarkably well, it is a two-part model which is the sum of the Markov noise

and a traveling wave which has a stochastic jitter on the wave number and a stochastic

phase coefficient. The situation is analogous in some simple sense to a simple harmonic

oscillator which is underdamped or overdamped. If you work out the spectra using that

model, it is essentially overdamped. But the constants are such that, if you just do long-

term averaging, you don't see any peak at all. If you do the short-term stuff, there is a

marked peak for certain kinds of events. If you take a long-term average, which is

equivalent mathematically to Reynolds stress averaging, then this simply washes out.

Experimentally, this would be the same as trying to find the critical frequency or reso-

nant frequency of a simple harmonic oscillator by perturbing an overdamped system -

you don't get anything. This is quite disturbing in terms of understanding the basic phys-

ics, as John Laufer said, from measurements based on the normal kinds of long-term

averages.

D. R. Chapman: I would like to say a few words on behalf of the large computers as one

who looks at their possibilities rather optimistically. The trends over the last decade or

15 years are such that computer speed is increasing by a factor of 10 approximately every

13See Comments by H. W. Emmons on page 651 for his present views.

14Lahey, Richard Thomas, Jr.; and Kline, Stephen J.: Stochastic Wave Model Interpreta-
tion of Correlation Functions for Turbulent Shear Flows. Rep. MD-26, Stanford
Univ., Mar. 1971.
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3 years, andthe cost to do a given number of calculations is going downby a factor of 10
about every 5 years. Soif you makea computationof l=owlong it would take you to com-
putea hundredmillion grid points, which I did, by the :, 'esentnumerical methodsof
solving the unsteadyNavier-Stokes equationsthat BobMcCormick uses at Ames and
extrapolate these past trends as they have beengoingon out in the future, you come to a
situation, where I estimate about 1982or 1985,that the computers will be ablc 4odo such
calculations in a practical amountof time andat a practical cost. Nowa hundred million
grid points is quite a few. I would like to make a commentaboutHoward Emmons' cal-
culation also. I think that he was undulypessimistic. He picked a grid size and assumed
that you had to maintain that grid size throughout theflow. He picked a size that was
probably necessary to maintain only in the sublayer. Becauseof that, he comi:'::: 3 that
it would take very much longer to do on the computerthe unsteadyNavier-Stoke_ equation
for pipe flow of say a Reynolds number of 107than it would for 105. His grid scale was
roughly 100different andin three dimensions, that means a factor of a million. If you
only have to use the smaller grid scales in the sublayer the amountof computation time
to do a Reynolds number of 107is the sameas to do105. In my judgment, it is going to
be more nearly independentof Reynolds number. After all, the velocity profiles in a pipe
whenplotted in terms of the right variables (shear stress, etc.) are independentof
Reynoldsnumber, surface roughness,and so forth. SoI think that Emmons' paper has
beenquite misleading to manypeopleabout the ultimate prospects of what the large com-
puters will do.

S. C. Lee: I just want to make the same kind of comment on this large computer. With

our experiments recently we have calculated a flow around a sphere using NCAR's

CDC 7600. We start with rotational symmetry, solving the entire _ ,._ier-Stokes equa-

tion. With a Reynolds number equal to 20, it only takes 5 minutes to get the results. By

the time the Reynolds number reached 130, the flow began to oscillate. The time for the

CDC 7600 to calculate to a Reynolds number of 300 is more than 10 hours. So we decided

that that was enough, and we stopped. If we are going to calculate as far as we are talk-

ing about, in the neighborhood of Reynolds numbers of 100 000, I really don't know how

long it would take.

T. Morel: I think that there is some limitation to this. We can't expect to increase it

indefinitely. We are limited by the physical side of the computers, since the speed of

light is just the speed of light.

D. R. Chapman: This point has been raised a number of times before, but the computer

people that I have talked to are not concerned about thi_ limitation for quite a while yet.

The size of the computers keeps going down, and the idea of putting the computers in

parallel gets around this to a large degree. Whether or not the trends of the last 15 or

20 years or so keep on going, we really won't know until another 10 years have gone by.
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But the trends on log paper are not linear, they are accelerating. In other words,
10years ago, the average time it would take a computer to increase its speedby a factor
of 10was longer than3 years - it was 4 years or so. At least I haven't heard anyonein
the computer business identify a foreseeable limit on the trends.

D. B. Spalding" There is another subject that I would like to raise. I would like to refer

to a remark that Dr. Corrsin made yesterday in the Discussion for Donaldson's paper

(paper no. 7), which I think is a very important one. He cast some doubts on the

gradient-diffusion type of approximations for transport. I think that it is very important

and that we ought to think about it. It came to my mind when he spoke about the book by

Bosworth 15 in which there is a connection made between this problem and that of radiated

transfer. In radiated transfer, one of the important parameters is the ratio of the mean

free paths of the radiation to the dimensions of the apparatus. In turbulence transport we

have the problem that the mean free path of the turbulence eddies is not small compared

with the dimensions of the apparatus; the mixing length is one-tenth of the width. It is

for this reason that we are in an area where the gradient type of approximation isn't quite

good enough. That connection with radiation theory has a useful aspect to it. There are,

coming from the astrophysicists, quite simple theories for radiative transport which do

better than the conduction - the gradient type of approximation. I want to say that it is

possible, it has been done, to work out the corresponding transport equations in turbulence

also. One can write a correlation, for example, the temperature-prime--velocity-prime

correlation, for the transport of heat. Write that in terms of a random velocity and a

temperature of the outward moving and a temperature of the inward moving fluid. Fol-

lowing the exact pattern which is used in radiation theory, we find ourselves with an equa-

tion saying that the flux is proportional not to the gradient of the average temperature but

to the gradient of the sum of the temperatures of the outward going and the inward coming

balls of fluid. And then only in the limit of small mean free path, or whatever the appro-

priate parameter is in turbulence, do we reduce to the gradient type of approximation. I

think I have said enough. I think that remark of Professor Corrsin is important and that

we can follow up its implications by turning to radiation theory to get a practical improve-

ment by that means.

M. V. Morkovin" The diffusion-gradient problem and the diffusion terms in general,

those that involve pressure-velocity correlations, are indeed one of those things that may

be used as a constraint on the mathematics which may not correspond to the physics. One

of the things I would like to raise is the general trend that one sees in the observations,

more detailed observations of turbulence, disclosing increasingly more some aspects of

instability of the field. I was wondering to what extent the computable budgets of energy

15Bosworth, Richard Charles Leslie: Heat Transfer Phenomena - The Flow of Heat in

Physical Systems. John Wiley & Sons, Inc., _952_.
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which do have exact solutions for the pressure-velocity correlations in linearized sta-

bilitiescan guide us in trying to reformulate some of the questions on these terms.

There are really two questions. Is ittrue that we really see more and more instability

behavior in turbulence, and, then, whether one can learn something from stabilitytheories

for it?

C. duP. Donaldson: I agree with Mark. I think thatany way you can use an exact known

solutionand look at the physics of itto see ifyou can get a handle on how you can model

something better is precisely the way to go. I don't think that we have made enough use

of exact solutions in making these models initially.

J. Laufer: I think thatwe get back to the comment I made earlier on physical modeling.

In response to Professor Morkovin's question, I think thatwe can say yes we see now, by

making more visual observations, more and more instances where some type of instability

process does take place, even in regions where we think thatthe flow is completely tur-

bulent. One good example is the type of instabilitythat the Stanford group discovered

and we studied further in the sublayer of a turbulentboundary layer. We are now taking

almost instantaneous measurements of the profiles,velocity profiles,in the sublayer.

When we compare those profiles with the well-known figure in Schlichting'sbook, showing

the eigenvalue distributionof a Tollmien-Schlichting wave in a laminar boundary layer,

the resemblance is quite striking. This is one example of gettingback to the geometry

thatwe are concerned with at this meeting in the case of the free shear layer, the mixing

layer. You have seen in Professor Roshko's pictures and again herethat we are dealing

with a completely well-developed turbulent flow with very definitelarge-scale motion in

that flow that seem to indicate some type of instabilityorigin. In fact,we are looking at

the same type of problem in a water flow, where we can very nicely see how these large-

scale motions generate from some interfaceinstabilityoriginatingright at the x = 0

station.

Written Comments

P. A. Libby and C. duP. Donaldson: We wish to call attention to the need for considera-

tion of the proper specification of initial and boundary data when the newer methods of

closure of the system of equations describing turbulent shear flows are employed. We do

so because we are so familiar with the initial and boundary data appropriate for the well-

known eddy viscosity and/or mixing length formulations for such flows that we may casu-

ally carry over these ideas to the newer methods, some of which lead to different orders

in the normal derivative than are customary and to other differences in the mathematical

nature of the describing equations.

Cat_tion seems to be especially called for in the case of the free mixing flows under con-

sideration._ this :_conference. This is because in these flows we usually make the
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assumption that the shear stress due to molecular transport is negligible in the stream-

wise momentum equation and, thus, that we can drop the Uyy term in that equation; but

in some formulations this leads to a loss in our ability to specify two boundary conditions

on _: Contrast this with boundary-layer flows in which we must retain molecular effects

near the solid boundary because of the laminar sublayer.

It should also be recognized that in some of the new, higher order closure schemes for

turbulent shear flows the mean shear stress _ is an explicit, dependent variable, which

usually appears differentiated once with respect to the normal coordinate. However,

again in free-mixing flows we wish to specify ÷ = 0 at y -* +o_:

Since we are dealing with parabolic equations and their solutions in either a quarter- or

half-plane, we recognize that there is an interrelation between initial data (at x = 0 or

x = Xo) and the boundary co_,titions at y - 0% or y -* _. It may well be that the initial

data plus some benign conditions of "boundedness" are sufficient to get us around appar-

ent difficulties, such as those indicated previously, of not having the ability to specify all

the boundary conditions we desire. However, mathematicians can usually help us on

these questions only for highly idealized models of our problems.

Finally, we note that in one class of free-mixing flows, i.e., two-dimensional mixing, we

have always had the problem of determining the orientation of the "zero" streamline in

space. The proper treatment of the boundary conditions in this case has been provided

some years ago by Ting.16 As a result we now recognize that the theoretician may legit-

imately formulate his boundary conditions so as to make his analytic or numerical prob-

lem "well posed," but that when he compares his predictions with experiment or when an

experimentalist employs that theory, the predictions must be properly reoriented in space

so as to be consistent with the environment of the experiment, i.e., so that the zero

streamlines are consistent.

These remarks should be sufficient to call attention to the need for careful consideration

of the appropriate and proper specification of initial and boundary data for a set of

describing equations, especially a set based on the new, higher order methods. The ease

with which such equations can be "put on the computer" should not be allowed to disguise

our ignorance of what constitutes a "well-posed" problem. We may well learn some

important aspects of the phenomenology of turbulent space flows by considering the for-

malism before hasty computation.

16Ting, Lu: On the Mixing of Two Parallel Streams. J. Math. & Phys., vol. XXXVIII,
no. 3, Oct. 1959, pp. 153-165.
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Comments on the Place of the Computer in Turbulence

Research and Application*

H. W. Emmons

Harvard University

The current lack of understanding of the basic nature of turbulence prevents the predic-

tion of just what approach can ultimately be successful. It is not now known whether tur-

bulent flow is an initial instability followed by a complex, nonlinear, transfer of macro-

scopic kinetic energy through random interaction down through a chain of ever smaller

scale motions to end as molecular chaos or whether each scale of motion develops ever

more intense until it in turn becomes unstable and thus passes its energy down with var-

ious wave number and phase control or whether in these processes significant informa-

tion can be fed up from the microscopic "chaos" (turbulent, molecular, or both) to control

some significant aspects of the macroscopic motions.

The most pessimistic view of this situation would require a quantum statistical mechan-

ical kinetic theory. Essentially no questions of current interest require this level of

description. Furthermore it will be a long time, if ever, that 1025 particles could be fol-

lowed in detail. Finally for turbulence research now of interest, there are many reasons

to reject this view.

The most important simplification is the replacement of the effect of the molecular chaos

by a laminar viscosity based upon the observation that the smallest "significant" eddy is

large compared with intermolecular dimensions and the supposition that no significant

control of the turbulent motions can be exerted by the details of the microscopic molecu-

lar processes. A test of this supposition is now being made in the Doctoral Thesis study

by Carol Russo who is measuring the details of grid turbulence in methyl alcohol. The

expected agreement with air grid turbulence will confirm that the total effect of the

molecular chaos is subsumed under the Reynolds number (through v) and that no other

dimensionless variables are required and, therefore, the Navier-Stokes equations are

adequate for the description of turbulent flow.

The present conference is devoted to a discussion of the varying ideas, methods, and

results available to describe the essentially four dimensional (r',t) turbulent flows. A

wide ranging variety of ideas is being tried as is necessary because of the failure of the

obvious replacement of the turbulent motions by a constant "turbulent viscosity" inspired

by the molecular chaos replacement.

_Tm view of *_e current interest in the role of the computer in turbulence studies, the
editors invited Professor Howard Emmons to submit his present views on the subject.
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The direct numerical solution of the Navier-Stokes equations must be carried out on

such a scale that the smallest eddies with significant macroscopic effect are properly

described. A very fine scale is clearly needed at high Reynolds numbers in the turbulent

energy creation regions near walls and internal shear layers. I believe they will also be

needed in the high dissipation regions if a complete description of the turbulent flow is

desired. Thus, while computation net grading may save a few orders of magnitude of

points, I do not believe that direct solution of the Navier-Stokes equations will be possible

for general turbulent flows for a very long time (if ever).

Again the growth in computer speed, a factor of 10 every 3 years, will no doubt continue

for awhile. However there are only about four orders of magnitude available before a

speed-of-light limitation and a like increase by further size reduction. Before these

limits are reached, thermal fluctuations will have to be reduced by cryogenic computer

elements. Finally, parallel computation can further increase computer speed by a

couple of orders of magnitude. Thus I can expect something like 1014 computation to be

over the horizon (present machines are about 107 ) but not 1020 .

Eventually a few of the simpler, lower Reynolds numbers, turbulent flows will be directly

computable and these will prove invaluable for checking out the various simplifying

assumptions. However, complex turbulent flows, like flow around and in the wake of a

building - or even a sphere - are not in my view likely to be directly computable for a

very long time - if ever.

On the other hand, I fully expect work of the kind reported at this conference to lead to

approximate methods of calculation of general turbulent flows. The successful method

will incorporate both a phenomenologically and mathematically justifiable procedure which

provides for the computation of the growth and decay of the appropriate turbulent transport

of momentum, energy, and specie. There will eventually be a hierarchy of such methods

which permit the computation of any turbulent flow with any desired precision, the deci-

sion being a compromise of need and pocketbook.
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