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PREFACE

The work described in this report was performed by the author
while he was a consultant to the Jet Propulsion Laboratory, under the
cognizance of the Kngineering Mechanics Division, The author is
Professor of Applied Mechanics at the California Institute of Technology.
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ABSTRACT

The purpose of the present report is to develop certain matrix
perturbation techniques which can be used in the dynamical analysis
of structures where the range of numerical values in the matrices is
extreme or where the nature of the damping matrix requires that complex
valued eilgenvalues and elgenvectors be used. The fechniques can be
advantageously used in a variety of fields such as earthquake engineering,
ocean engineering, aerospace engineering and other filelds concerned
with the dynamical analysis of large complex structures or systems of
second order differential equations.

A number of simple examples are included to lllustrate the

techniques.

JPL Tec¢hnical Memorandum 33-652
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I, INTRODUCTION

In the dynamic analysis of large complex structures the numerical
computations are frequently complicated by the fact that the range of numer-
ical values of the matrices is much larger than today's computers can
comfortably handle, In other problems the nature of the damping matrix
may be such that the structure does not possess classical normal modes and
in such a case the additional complications of having to deal with complex
valued eigenvalues and eigenvectors may overtax the capacity of today's
digital computers, In still other problems the engineer may be interested
in the effects of small changes :n parameters on the response of a large
complex structure whose response is known for one set of parameters. In
all these cases it may be possible to employ matrix perturbation techniques
to good advantage.

In a previous report (TM 33-484) the author showed how certain
matrix perturbation techniques could be profitably applied to the problem of
the design of subsystems in large complex structures. The purposa of the
present report is to develop certain matrix perturbation techniques which
can be used to advantage in the class of problems discussed above, The
techniques developed can be used to advantage in a variety of fields such as
earthquake engineering, ocean engineering, aerospace engineering and
other fields which are concerned with the dynamical analysis of large complex

structures or systems of second-order differential equations,

JPL Technical Memorandum 33-65%
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II, PRELIMINARIES

In this report we shall be concerned with the dynamical analysis of
large discrete siructures, All linear problems in discrete structural

dynamics may be expressed in the following form

ME+ Dx+Kx = £(t)

(1, 0)
x(0)=a , %(0)=h

If the problem is formulated in an inertial frame, then the NXN matrix M is
symmetric and positive definite, while if the system is passive the matrices

D and K are at least symmetric and non-negative definite, The N vector, x,

may contain both displacements and rotations, while the N vector, f, may

contain both forces and moments

A, Reduction to Canonical Form

Since M, D and K are symmetric and M is positive definite, the

%

transformation y=M"x, reduces (1, 0) to the canonical form

I+ By+Cy = gt) (1.1)

where

) (1.2)

B, Classical Normal Modes

The system (1. 0) is said to possess classical normal modes if and
only if (iff) it can be reduced to a set of N uncoupled second order systems,

A necessary and sufficient condition for the existence of clagsical normal

JPL Technical Memorandum 33-652
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modes is that the matrices B and C commute (Caughey, 1960; Caughey and
O'Kelly, 1964), Thus

BC=CB or M DMk =mlxkmIp (1,3)

In this case there exists (1) an orthogonal matrix T, such that (3)

mTam_ @ . b _ \
T"BT=0-—a diagonal matrix ®ij = 6ij 8,
TTCT=/\-—a diagonal matrix — A, =6, A, > (1,4)
ij” vij i
and
Taltl )

where _1:_1, i=1,2...N are the eigenvectors of C, Equation (1. 0j reduces to

1Z+ @2+ Az =z (t)

(1. 5)

C. Application of Classical Normal Modes

In many practical problems, the dainping matrix D, or its canonical
equivalent B, is unknown, From extensive testing, however, it is known
that the modal damping is in the range of one to two percent of critical. In

this case one frequently assumes that the damping is classical and writes
1
=237 (1)
8, =2)\"¢ . (1, 6)
Now B=T® 'I'T, using (1, 6) and the Cayley~-Hamilton theorem we may write
B=(C) (1.7)
That is, the matrix B is a matrix function of matrix C, Or expressed in

terms of M and K

JPL Technical Memorandum 33-652



D= M“Q( %KM %>M%5 (1, 8)

If it is assumed that (1, 8) is 2 basic property of the materials used in the
structure, then (1,6), (1.7) and (1, 8) remain unchanged in form. as the mass
and stiffness of the elements of the structure are changed, This assumption
results in considerable simplification in the problem, Using (1. 6) and

recalling that ® and A are diagonal, (1, 5) may be written

PN I . )
,Li+2>\i gizi+ )\izi..ri(t)

0 a0 (1. 9)
zi(())...'z.i , zi(O)-.zJL ?
i=1,2... N ),
Thus
t
2, (6) = u, ()0 + v, (5)20 + Iovi(tur)ri('r)dt i=1,2. .. N (1. 10)
where
\
1
(t) —Xi%g.t[- 'X%t+7§;— "X%
. =e COSs 51n
1
- 1
1
»
| e‘>‘i & 3 P (1, 11)
Vi(t =———%—-—sm i‘t
-Xi
- 2
)\i:: )\i(l-(;i) )

Equations (1. 10) can be expressed compactly in matrix notation as follows

t
& (t) = u(t)Z(0) + v(t)2(0) + [ v(t-T)x(r) dr
0

where (1.12)

u(t);= 80 () MUHEREAAD

JPL Technical Memorandum 33-652



Using Equations (1. %) and (1, 5)
T T, ¢ T
y(t) = Tz (t) = Tu(t)T " y(0)+ Tv({t)T " ¢(0)+ ‘fo'l‘v(t-'r)'l‘ q(r)dr (1. 13)
Using Equation (1, 2), the solution to Equations (1, 0) can be expressed as
t
x(t) =umR™Ma+avte My + [ avie-na Ty ar (1, 14)
‘ 0

where Q is the congruence transformation

Q=M (1. 15)

which has the properties that
1) QTMQ =1
T i 14
2) Q°DR=E (1,1%)
3) QTRQ=A

D. Nonclassical Normal Modes

If in Equation (1, 1) the matrices B and C do not coramute, then in
general it is impossible to reduce (1, 1) to a get of uncoupled second order

equations, In this case we rewrite Equation (1.1} in the form

dw S
MPa (1.17)
(0) = =
Wi ) LM%

where

> (1. 18)

JPL Technical Memorandum 33-652
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pit) = (1,18)
la ) cont,

The solution of Equation (1, 17) is
At £ Alt-T)
wt)= oMoy | A pinyar (1. 19)
0

Alternatively, there always exists a non-singular matrix S, such that

s'lassy (1.20)

If the matrix A has a full complement of ordinary eigenvectors, then J is
a diagonal matrix whose elements are the eigenvalues of A, Furthermore,
the matrix S has, as its columns, the eigenvectors of A, If A does not
possess a full complement of ordinary eigenvectors, then J is a Jordan
matrix whose diagonal elements are the eigenvalues of A, In this case the
matrix S has, as its columns, the ordinary and generalized eigenvectors
of A,

Ir; *he case where A has a full complement of ordinary eigenvectors
Equation (1, 19) can be written in a more convenient form for computation,

Since S"]‘AS =J =M a diagonal matrix A::S!\S“1

‘)\t -
L
At ‘
eAt=s e . S”1 (1,21)
Myt
. e -
At t A (t-T)
g(t)‘:S[\e\l]S-l}_v_(O)-Fi)S[\e\l ]S'IR(T)dT (1.22)

JPL Technical Memorandum 33-652



I, MATRIX PERTURBATION THIEORY

A, Lincar Figenvalue Problems

Case 1 ['the eigenvalues of cf distinetl

Consider the elgenvalue problem
wis+ [c¥+ect+ @c?. . etz (2, 9)

where CO, Gl, Cz, ete,, are symmetric NXN matrices and GO is positive

definite with distinct roots, and € is a small parameter, Let
i i

=Ty (2,1)

where T is the orthogonal matrix which diagonalizes C.O. Thus
[ui1+/\0+€(31+620+-~]£qi=0 (2,2)

T

where @ =T CT= CZJT, AO a diagonal matrix with elements >‘iO' Since

p
C=hy+ ) &0
j=l
is a symmetric matrix, we know that there exists an orthogonal matrix Z
which will diagonalize C, In addition, we know that the columns of Z are
the eigenvectors _c_gi‘ of C, and both they and the eigenvalues M, i=1,2...,
are analytic functions of € Knowing this we expand o and _C_pi in a power

series in € Thus
i ob 4 eob + 2ol
@ =957 < 1
M. =M.+ €U +€2u
i~ 710 il i2

Substituting (2, 3) into (2. 2) and equating coefficients of like powers

of € to zero, we have

JPL Technical Memorandum 33-652



10 ﬂi - 4
€ EuiO“' Ao'lﬁouo (2, 4)

1 1ob i

€ [“iOIM 'lca & =C Wy =k Do (2, 5)
2 ioali24 i :

€ Dyt Ay = -Ciy -Cgy iy 0y -1y (2. 6)

ete,
From (2, 4)
u10$-)i0 i=1,2...N

g
[

= e, = a column vector whose elements are
all zero except the ith element

o 2,7)
A
(% ,23) %3 J
(25 n2d)= 250854
The gg;l)'s form a complete orthonormal set, From (2, 5)
RN U
Lol + Ag gy = -Cregy-uy, 2y (2. 8)

Eince the gga‘s form a complete orthornormal set they span the N space,
thus any vector in that N space may be represented as a linear combin tion
of the ©¥'s, Let

N
2= 2 aji% (2.9)

j=1

Substituting (2, 9) into (2. 8) we have

Za [, T A ]ggo-_—-clg(l)-uilggg 2., 10)

If the inner product of (2, 10) is taken with c‘o}g and use is made of (2, 7), then

JPL Technical Memorandum 33-652
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03 LA Neo = (913' clf-‘%) M5 P

. . i
Since xiO’“‘kO’ ifk, %“%’ then

rl

“ik
P00 14

Yei =

We note in passing that since cl is a symmetric matrix Giljr;c.l..

Hence
cll.
a. g ..-—-—--S-}-—--: ,.dl N
ik AkO-)\iO ki

If i=zk, then we have

(g, )= ]
iy ="\ C &p)= -Cyy

(2,11)

(2.12)

J1

(2,13)

(2, 14)

To determine a,, we make use of the normalization properties of the @'s

2

@ oh=1=(g, o )r2e(e, o )+ ot

Equating coefficients of like powers of €, we have

(9%)’911):“11:0

Thus
1 2
W, = >‘io - Ecii+ o(€™)
N 1 j
- (
. . e n z
g=g-€) Tig%‘L+0(e )
L MoT N0
j=1
Using (2, 18) we may define a matrix Z, where
Z=I+ €S
where

JPL Technical Memorandum 33-652
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poaw ——y

0 oyp Qygee.Oyy

" 0y 0 Onm e
5x.gT 2|21 23" ]N (2. 20)

.
4

N1 Oz O

The matrix Z hes the following properties

0y zTze140(6% (2.21)
i) zT[Agrec +EPh. |z = A jren ro(€) @, 22)
where
Mo
A= %20 (2,23)
O"' -' ]
_ "wo_|
M1 .
A = 2 (2. 24)
o g

where kiO are the eigenvalues of CO and Mg i=1,2,++*N are given by (2, i4).

Case 2 {some eigenvalues of CO repeated]
Suppose that the first r eigenvalues of CO are repeated, We know
that the corresponding eigenvectors are not unique and hence the orthogonal

transformation which diagonalizes Co is not unique, Let

- L 2.25)
T - T O I ( .
where T is any orthogonal matrix which diagoualizes cO and T, is any rXr

orthogonal matrix. Then

als
g

T p¥ o1 (2,26)

JPL Technical Memorandum 33-652
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e aty I nl
T'I'TC‘OT'D 2 10 1

(2.27)

where 7\10 is repeated r times,

Properties (2,26) and (2,27) give uy the necessary freedom to solve
the perturbations in the case of repeated roots, The first step is to apply
the transformation

y=Tz (2, 28)

where T is any orthogonal matrix which diagonalizes CO. Thus

[wi+n +ect+ e ot =0 (2. 29)
Direct application of the matrix perturbation technique, applied to Case 1,
fails unless Gilj:O’ i#j, i, j€(1l,r), In general these conditions are not
satisfied, however we can always construct a new transformation T* such
that this condition does hold,

Let Br=[ci1j] L,j€(1,r), and let T, be the rXr matrix whose columns

are the eigenvectors of
CpI+ Br];fo (2, 30)

The new orthogonal transformation (2, 25) using this particular matrix T,

has the property that

Tl p* g1l (2. 31)
where @l is a symmetric matrix with the property that
gl-Gls.,. i,5e(, 1) 2. 32)
157 Uiy IS\ :

Thus if T* is used in place of T, T*TCIT*=€1 has the necessary properties

so that the matrix perturbation technique can be used,

JPL Technical Memorandum 33-652
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If in Equation (2, 1) T% is used in place of T, Equation (2,2) becomes

~l, 252 i
(e n,+ @l e 8% Jo =0 (2,33)
where GI=T*TCITH j=1,2... . As before, let
2 i

i i 5
SP_ :CQO’FGQI‘*‘G _ng'f"-'
(2, 34)

2
My = Mgt Qg+ €y o e

Substituting (2. 34) into (2, 33) and equating coefficients of like powers of € to

zero, we have

0 i
€ [uiol+/\0]90=0 (2.35)
1 'l el i i ‘
€ Ly T+Ag 1) = -C gy -1y, 2 (2. 36)
62 [, I+A ]gi —-51 1_52 i-u coi -l i (2.37)
' TR R i SR R SRS R PR ’
etc
From (2, 35), we have
Mio = - Ay i=1,2.00N )
& =g
. (2, 38)
i
(EQO’SQJO)— 613
{ .
(90’ A09J0> %003
/
The 910'5 form a complets orthonormal set, From (2, 36)
" i ~] i i
Ly oA 19 = -C 95 -1; 09, (2.39)

As before, let gp_ll be represented as a linear combination of the cgg’s. Thus

JPL Technical Memorandum 33-652
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j
a0 (2. 40)
1

3
® =
J

n i~

Substituting (2, 40) into (2, 39) and taking the inner product with 5918, we have

dki(kio')\k0>="(£p~l(§ ﬁl—‘—‘%)‘“ioﬂ?(i) (2.41)

Thus i#k and eithey i or k€(1,r), we have as before

wl
G,k.: - 'Jfk (2»42)
P M0 k0
If izk, then
_ i~ i\
Wiy = ’(—“30'(" ‘—"0) = -Cy (2.43)

If i#k, buti and k€ (1l,r), we cannot determine Ciger As before, normalization
gives us aiiEO,\/l.
To determine Cypes i#k, i and k€ (l,r) we proceed to the 0(62). From

(2.37), we have
i oml iR i i
[y THAG 19, = -C ) -C 0y -1y ) @) -k, @ (2. 44)

Since the _cgg's span the N space, let _CQ;‘ be represented by a linear combina-

.

tion of the EECJ)' s, Thus
N 13
L= ) B0l (2. 45)
% = 3170 .
j=1
Substituting (2, 45) into (2. 44) and taking the inner product with _cglg, we have

M- )\kO]ﬁki= - (918’ ¢l ) - (“plc{)' 93) " Hy1 % 7 Hip Oy (2.46)

Making use of (2, 40), we have

JPL Technical Memorandum 33-652
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N
Y ool 2
0 %"komkl >,.,°L_]1 ik c':‘(1}: M1 %1 ulzblk (2, 47)

j=1
if i=k, but i and k€(1,r), Then, since E;k;&*jljajk for j and k€ (1,r), (2,47)
gives us
0=(uk1'“il)a’ z al Jk i (2. 48)
j=l+4r
Therefore
N A\
~l a2
z d‘_]l jk+ k
o = - j=ltr
“ Hi1 "M P (2, 49)
=7 %k
Hence
U, = A, -€Cro(€?) (2. 50)
i” 10 il ’
N
i 3 j 2
_cg-;_cgo+ezocjigo+0(e ) 2. 51)
j=1

where the G‘ji are given by (2,42) and (2, 49).

Using (2. 51) we may define a matrix Z, where

7 =1+ €S (2. 52)
where
0 0y, %3Oy
o | %21 0 oty
s=-sT- (2. 53)
Onp Oz e 0 |

JPL Technical Memorandum 33-652



The matrix Z has the following properties, as before

T 2

i) zTz=1+0(% (2. 54)
1) zT[A0+e€1+ezé*2+.-.]z=Ao+eA1+0(ez> (2, 55)
where
>\10
A= %20 (2. 56)
0 n' .
Mg
)\10—>\10 i=1,2,+01
U
11
_ Hay :
A = . 2. 57)

where )\io, i=1,2...N are the eigenvalues of CO and the M, are given by (2, 43),

Case 3 [some eigenvalues of CO close to one another )

Suppose that the first r roots of AO are close such that

i’\io-kjolske (i,j) € (1,r) (2. 58)

In this case we observe that Ggil is no longer guaranteed to be of O(€), This

difficulty is easily remedied by writing our eigenequation in the form

[ui1+'/T0+ e&'l+ezc2---]gi =0 (2. 59)
where
- NI
K, = | =2
0 Algl'r (2. 60)

JPL Technical Memorandum 33-652 15
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(2, 60)

cont,

. )

Thus the problem has been reduced to one in which the first r eigenvalues of

CO are repeated, In this case the methods used in Case 2 are applicable,

B, "Nonlinear! Eigenvalue Problems

In the case of nonclassical normal modes we have to deal with an

eigenvalue problem in which the eigenvalue occurs quadratically, viz,

where Bl, i=1,2.+. and C are symmetric matrices which do not commute,
Let
¥ =Ty’ (2. 62)

where T is the orthogonal matrix which diagonalizes C, Substituting (2,62)

in (2, 61)
1,.2.2 i
[Pre v, (colve®e c ¥ | =0 (2.63)
where
p— 2 -—\
W]. 5
Ay = TTeT w2 5
o, (2., 64)
w
_ n
al = tTelr  i=1,2 /

JPL Technical Memorandum 33-652



Equation (2, 63) may also be written in the form

[YI+AE =0 (2, 65)
where
\
0 | -1
A=
Ay Iéﬁl»hezﬁz
and > (2, 66)
i
"3 i
Y, ® /
Let
P4, 4,21
[ =_I_;QO+€£Q1+=: _st
(2, 67)

2
Vi = Yygt €Yot € Y

Substituting (2, 67) into (2, 63) and equating coefficients of like powers of €

to zero, we have

0

€ [onn Mo ]% =0
¢ [Yio”/*o :l—ceil = [ZYIO 11%
From (2,68) we have
Y:o = jwy )
Yip = IV T ;—f(; 5
gé = & (real)
(%’%) = 613

JPL Technical Memorandum 33-652
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7 A oy S i 3 LA &

] 2 (2.70)
(m AOE()) = Wy émj cont,

The Lg's form a complete orthonormal set,

For cach o ~0 there are two 3t 's, one corresponding to v i0? the other
to YiO' Thus
i i
. [ . )
gt . 0 1, &= O (2.71)
~0 Y+ i -0 v ot
0 2o i0 2
We see that
i- =it
_20 = @O (2,72)

. i ! i .
Since the QO s form an orthonormal set, let us express cp’i as a linear

combination of the geg's, j=1,2.+.. N, Thus

2

(2, 73)

IS8,
]
n L\/]

J%

J 1

Substituting (2,73) into (2,69) and taking the inner product with 913 we have

2 1
YkO:lO'kl = lOY11611<+ Yfi:() By (2,74)

We shall consider only the case where the Yio's are distinct; the

'l:

case of repeated and close roots can be handled in the same way as in the

linear eigenvalue problem, Thus if ik

£ o1
Yo, 8;
ok i0 ik
Qi = - i _ A2 (2.75a)
10 ~ %0
Ejw, 0?»
+ i1k
N =72 2 (2. 75b)
W, W
i k

If i=k then

JPL Technical Memorandum 33-652

T g

4



i S SN g i

- t

3
YinT-7

i - e R <A . D W ... Rt » A

gl
11

(2,76)

The aﬂ's can be shown to be zero by using the normalization condition on

the _cgi' 8. Thus

Y = i, - 58+ O(€%)

1

N
\ , w, B
+ e 2
o = o ieZJ——-——-—z‘ Ik ot 4 0(6%)
k=1 Vi Wk

Using (2,78) we can construct the two NxN matrices

I

and

i

1

JPL Technical Memorandum 33-652
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4 . -
€aj, €ofg- - €y

+ N
1 €ayq CoN
+

GQ’NZ e 1 _

ZZ::Zl

Wlw

2
YN
1 1 ]
B2 RN
2 2 2 2
Wl-\Vz Wl-WN
1
. Py
..... [ _——Z—-:;T
%2 N
............ O

(2.77)

(2,78)

(2.79)

(2. 80)

(2, 81)

(2. 82)

19
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The matrix S is skew symmetrie, I, ¢, ,

1l
- 7 B2

Then the matrix Zl can be expressed in the form

Zy = E1+jesrzofl

(2,83)

(2,84)

(2,85)

The nonsingular 2NX2N matrix, T, whose cclumns are the eigen~

vectors of matrix A is given by

z. | Z
e
ZIQ ZIQ

where

A= on-€/\1

Matrix T can be expressed in terms of S, QO and Al' Thus

2

. I+j€sn, | I1-j€80, 5
i )

It may be shown, after some tedious algebra, that

cco - Mhws? ] | —ianls
R
-3€0, [Al“"SQo.l | 30,"-€8]

The matrix T has the property that

JPL Technical Memorandum 33-652
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-0+ EA, 0

-1 2

Thus T is the required similarity transformation matrix which will diagona-

lize A to O(Gz).

IV, APPLICATIONS OF MATRIX PERTURBATION THEORY

Two examples will now be given to illustrate the use of matrix

perturbation theory,

A, The Mating of a Small Complex Structure to a Large

Complex Structure

Consider the problem of mating a small, but complex, structure
with M degrees ot freedom to a much larger structure having N degrees of
freedom, A good example of such a problem is the mating of a space craft
to its booster, Suppose that the eigenvalues and eigenvectors are known for
each structure separasrely, Can one compute the eigenvalues and eigenvectors
for the composite structure using this information? As we shall now show this
can be done without having to solve the eigenvalue problem for the (N+M)
degree of freedom system.,

Consider the following problem

M + Dx + Kx = £(t)
(3, 0)
x(0)=2 x(0)=h
where
M, |
M = |— - (3. 1)
/E Mz

JPL Technical Memorandum 33-652 21



22

is the inertia matrix for the composite structure and consists of the two
submatrices Ml and EZ'MZ, Ml1 is an NXN symmetric positive definite
matrix and represents the inertia matrix for the large structure, GZMZ
is an MXM symmetric positive definite matrix and represents the inertia
matrix of the small structure, It is purposely written in the form GzMz
to emphasize that the inertial elements of the small structures are very

much smaller than those for the large structure, Where

K, |0 K,, | K
K:[ 1 l J%z[Km l Kzz} (3.2)
0 1o 23 | K24

is the stiffness matrix for the composite structure and consists of the five
submatrices K,, EZKZi i=1,2,3,4,

K, is an NXN symmetric nonnegative definite matrix and represents
the stiffness matrix of the large structure and GZKZi, i=1,2,3,4 are coupling
and stiffness matrices for the small structure, GZKZI is an NXN symmetric
nonnegativ definite matrix, GEZKZZ is an NXM symmetric nonnegative
definite matrix, €2K23 is an MXN symmetric nonnegative definite matrix,
GZK24 is an MXM symmetric nonnegative definite matrix, These matrices
are written in the form GZKZi, i=1,2,3,4 to emphasize that the elements of
the stiffness and coupling matrices for the small structure are very much
smaller than those for the large structure. It should be note& that jhe eigen~
values for the two systems separately can be of the same order of magnitude
since they are governed by the eigenequations

(MM, +K; 1%, =0

?a v (3» 2;)'
€ IMM, + ¥, 1x,=0

£

and are independent of €,
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In Equation (3,0) D is assumed to be an (M+N)X (M+N) nonnegative
matrix which satisfies the conditions for classical normal modes, i,e,

1 1 1 1

M7'KM "D=M""'DM 'K (3. 4)

In Equation (3, 0) the force vector f(t) is given by

)| N
£(t) = = (3. 5)
0 M

where p(t) is an N vector and acts only on the large structure,
Consider the eigenvalue problem associated with (3, 0)

[uiM-i-K]:_;i:O (3. 6)

[Note: Since by assumption D is such that (3, 0) has classical normal modes,

the eigenequation (3, 6) does not include damping.] The transformation

reduces (3, 6) to canonical form,

[u?.&1+c°+ecl+€2c:2 :lf= 0 (3. 8)
where

’M-l/zK M"l/z | 0

B B T . 9)

) 0 IM"” 2 Mol/2 '

L 2 24772
i 0 |M‘1/2K M2

1 1 KpaM,

= MYk M2 0 (.10
My Ky oMy
- o.1/2 1/2
MYk M 0

G2 M EaM | (3. 1)
] 0 I o

If T1 is the orthogonal transformation which diagonalizes M-]'/z'Kll\/IIl/2

1
-1/2 -1/2

and T, is the orthogonal transformation which diagonalizes M, K24M2 )

2
let
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Tl 0
T= ) Tz (3.12)

The transformation

¥=Te (3.13)
reduces (3, 8) to
[hengrectse®e? o (3. 14)
where
A 0
01
A =[ :' (3.15)
0 0 [ Ay
where
N
%o |
A - ! [ (3‘ 16)
01 N
0
)\11\10, are the eigenvalues of the large structure
and
M
>\10
/\02= M (3.17)
A
MO
)\11\% , are the eigenvalues of the small structure
ctarTclr (3. 18)
and
c?=1TctT (3.19)

The eigenequation (3. 6) has now been reduced to the standard form
where the techniques of Section 2 may be applied, The exact details will be

reflected in two numerical examples,
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By perturbation analysis we obtain
Z=1+€S (3, 20)
and

A= AO+€A1 (3.21)

wheve 3 is given by (2, 20) and the elernents of A by (2, 18), The orthogonal

transformation which diagonalizes (3, 8) is given by

T, = TZ = T+ ETS + O(&%) (3. 22)

2

The congruence transformation which diagonalizes (3, 0) is given by

RY)
Q, =M%, (3. 23)
Mil/z T, (1468 em;”z T,S,
Q, = (3. 24)
2 177 T2

M T283 =M, T, (I+€S4)

2
i<—N modes ——— M modes--}l

S, are the partitions of S

where Sl’ SZ' S

3 P4
N M
S. 18
1|2 (N
s:[ ] (3.25)
S, 54 /M

It will be seen from (3. 24) that the first N modes are ordinary ,r global
modes, By that we mean that they are simply extensions of the modes of
the main structure into the secondary structure, The next M modes are
however '"local modes'', By this we mean that the response of the secondary
structure is O(-le-), or O(é—z) times as large as that of the main structure,
That is the motion is highly localized in the secondary structure,

Consider now the forced vibration problem (3.0) with a=b=0, Using

Equation (1, 14), the solution of (3, 0) is given by
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¢ T
x(t) =] v(t-nRTg(r) ar (3. 26)
0
where v(t) is a diagonal matrix whose elements are given by (1, 11),
Defining the partitions Qi’ i=1,2,3 of Q by
N M
Q= __.*T__ (3,27)
Q3 EQLL M
where Qi' i=1,2,3,4 are O(1),

Defining the partitions X i=1,2 of x by

%1 N
x0= (o ) (3.28)

Defining the partitions Vi i=1,2 of v by

N M

vy 0 |N
V(t): 0 Vz M (3.29)

Introducing the partitions (3.27), (3.28) and (3.29) into (3.26) we

have

=&\ T ev,t-nelpm+oE
?ﬁ(t) =4« (t) = T T dr (3.30)
=28 (2,7, t-1)05 +Q,v, (6-1)Q] |p(7)

Thus, we see that the response of the main structure and the

secondary structure depend only on the frequencies in the input and the
distribution of the eigenvalues, In particular, the response of the secondary
system is of O(l) with respect to € and not O(EIZ_) as one might have expected
from the eigenvectors of the local modes, In order to make the exact details

of the procedure clear we shall now consider two numerical examples,
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Example Al (Distinct Eigenvalues)

In Equation (3, 0) let the matrices M and K be given by

1,
M:[ Gz} (3. 31)
2 -1 o‘, .0 0 0
K= |-1 2 0[+2€° 0 0 - (3, 32)
0 0 0 0 -1 0
e
M = 1 13, 33)
€

Using the transformation x= M-'l/zi reduces (3. 6) to the canonical form

2 -1 0 00 0],
WwI+l-1 2 Q}'{'G[Q 0 -ZJ =0 (3. 34)
. 0 02 02 0

]

is diagonalized by the orthogonal matrix

Now, the matrix

A1
V2. /2
R S
Wz V2
and the matrix [2] is diagonalized by the matrix [1]. Thus

0

0 (3.35)

;
i

ERTEST
o S-S

1

The transformation lll_lzngl reduces (3, 34) to the standard form

)4k s 6
I+ 3 [+€ 0 0 2 =0 (3. 36)
M 2} /2 JZ 0 <
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This is a case of distinct eigenvalues (1, 2, 3) and hence the standard matrix

perturbation method can be used., Thus

1 0 -€/2
Z =1+€S=| 0 1 -€/Z (3.37)
€/2 €/2 1
L L o]
vz J/Z
Tp = TZ = 1 1 0 (3. 38)
2 /Z
ev2 €/2 1|
F1 1 T
JyZ /2
Q =MY2r |1 1 (3. 39)
2" 27| w— .= 0 ’
vz J/Z
vz vz el
Q2 has the following propsrties
i) QIMQ, = I+0(t%) (3. 40)
" T Canly oY 2
ii) QZKQ2=A0+€A1-1O(1: )_[ 32]+O(€ ) (3.41)
Thus we see that the first body, or global mode, has eigenvalue 1
and eigenvector (7_L,71_-, /Z) and is simply an extension of the first mode of
2 V2
the main structure into the secondary structure, The second body, or
global mode, has eigenvalue 3 and eigenvector (—1-, --L, /f) and is simply
V2. V2

an extension of the second mode of the main structure into the secondary
structure,
The third mode is a local mode and has the eigenvector [-2€, 0, e 1,

1, then the motion of the secondary structure is

For example, if €=10"
fifty times as large as that of the main structure,

If, for example, we take the matrix D to be
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2 .1 0
p=2Cl-1 2 -zez} (3. 42)
0o -2¢¢2 26

Then
T 1
Qz DCJ.z:ZC[ 32} (3.43)
Using the partition (3.27) we see that
L1
/2 JZ
Ql = -_1_ -_1— (30 44")
/2 V2
~2
Q,= 7] (3. 45)
Q3=[/’2' V2] (3. 46)
Q4= {1] (3.47)

Thus, using (3. 30)

[ - C(t-) -3¢(t-7) N
e~ sin¥1-C% (t-1) e sinV3-9C% (t-7) | ((p, (THp, (7))

t
] V-2 V3-9¢2
2972) | e 3¢t “
-C(t-7 - -T
012 Mnb&&w%im—-mM4£Wﬂ(hmmﬂm

| W1-¢? Y392 _

+O(€") (3.48)

o-Ct=1)

t

-38(t-7)
e V3-9¢% (£-7)(p, (T)-p, (7))

sin¥1-€% (t-1)(p, (T)+py (7))

+ .
3_9C2 sin
_zg(t-q')
2e e A/ Ar2 2
—-————2_4g2 sinN2-4C" (¢ 'T)pl('r)dt+ O(€™) (3.49)
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As pointed out previously in connection with (3, 30), the response of the
secondary system does not blow up as € tends to zero as might be suggested

by the local mode, whose eigenvector is [-2€,0, e 1y,

Example A2 [Repeated Eigenvalues]

As a second example consider Equation (3. 0) with the matrices M,

D and K given by

1, »
M=| !2 (3, 50)
2 -1 0
D=2C|-1 2 -€ (3. 51)
0 - €

=2 -1 0 6 © 0

K=|-1 2 ol#o0 o - (3. 52)

0o o ol Lo -¢& &

Using the transformation x= Mul/d\b reduces (3, 6) to the canonical form
2 -1 0 0 0 O},
wI+|-1 2 0 +e[o -1l =0 (3. 53)
Lo 01 0 -1 O

Now, the matrix

2 -1

-1 2
is diagonalized by the orthogonal matrix
SE
2 W2
1 1

o

e %

and the matrix [1] is diagonalized by the matrix [1]. Thus
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0 (3. 54)

The transformation _\1:_1=T9‘1 reduces (3, 53) to the standard form

el oy

- 17
0o 0 -
xu.+[13]+e o o Lllgt=o0 (3. 55)
1 ! S 0T
LoL
L V2 42 uj

We note that in this case the first and third elements of Ay are equal, this
is then a case of repeated roots and we must use the techniques of Section
2 applicable to the problem of repeated roots.

First we form the auxiliary eigenequation
[M+Br]_t_n.~.o (3, 56)

[Note: In the formulation of Section 2 the first r roots were repeated; here
the first and third roots are equal, This poses no difficulty since it can be
put into standard form by interchanging the second and third columns of T in
(3. 54). This is really unnecessary provided we use the elements of Cl
associated with the repeated roots. ]

In the case of the present problem

0 -k

7z

0

o

B = (3.57)

L
V2

Solving the eigenvalue problem (3, 56), the associated orthogonal matrix Tr is
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The required orthogonal matrix T* is

B EET L XB LB

e L

Lo S &l

sk &~

S-Sl

.

1= &l

(3.58)
given by
r- 1
ol L o L
V2 2
ojf 0 1 0 (3, 59)
1 1
== 0 -—=
o s_..\[i' \/-E._

[Note: The reordering of T, to accommodate the fact that the first and third

roots are repeated.] Thus

T =

],__. o) — N}»—-l

&

]

(3. 60)

o &S

Wl |

Using the transformation §*= ’I‘*_c!o_i reduces (3, 53) to the canonical form for

repeated roots

L L 5]
‘ Nz
1 00 1 1 i
BI4+10 3 0l+€| 5 0 -5 |l =0 (3.61)
i 2 2 -
0 01 1 1
0 e )
L 2 a2l

Application of the perturbation technique applicable to repeated roots gives

(3. 62)

dim —  Bm
— wlm o
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T, = Ty, (3, 63)

Q, = M2 1z
1€ L L, €7
24l 2 Pz
1, € 1 1 € :
=i £ L 1 € (3. 64)
2z 2 P oaz
-1 1 1 -1 1
€ "~ e L€
| V2 2V VzZ |
The congruence matrix Q, has the following properties
j) Q7 MQ, = 1+0(€%) (3. 65)
= M
€
le— 0 0
T V2 2
il) Q,KQ, =| 0 3 0 [+0(€) (3. 66)
0 0 1 +-§—
; V2|

In this particular example we see that the first and third modes
of vibration are both local modes and are associated with the reduction of
the degenerate eigenvalue 1, It should be noted that in this case the relative
motion of the secondary system is of order 1/€ compared to that of the
main system, whereas in the previous case the relative motion was of

order 1/62. The second mode of vibration is a body, or global, mode which

has eigenvalue 3 and eigenvector (71—5, --\/%,5-5—2.) and is simply an extension

of the second mode of the main structure into the secondary structure,

Using the values of the matrix D in (3, 42), then

1m—

72

T
Q, DR, =2¢ 31+_€_ (3. 67)

Nz
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Using Equation (3, 30) the solution of (3, 0)

t
%, (t) = j'o Ly 6= 1)+ B, (1)1 + v (E=1) Doy (7)=Py ()]
b 2v, (6-m)[p, (1) 4 o (1) 1ATHO(E)  (3.68)
ﬁt
sy (t) = | v (E=T) [, (14 py(m)] - 39 (6= [py (7)-py (7)]
2(8) = ) 3V 1{(T)F Py 2 V2 1(1)-Py
b &, (=) [p) (1) 4 py(1)]ATHO(E) (3. 69)
£ -1
%, (t) = fo £ Ty )y 60 Loy (1) 4y (1)
+ ivz(t ) lpy (1)-py ()]
- Lo -1+ v, (-1 1 (7)-py(m)JdTHO(E) (3, 70)
where
¢
-cl1-
\)l(t)-.:e ( ) sm\/l--—--C /«/1-—-«-@ 1--—-—)
vy ()= e F sin \/3-9C2t/\/3~952 (3. 71)
€
-G+t
\)3(1:) < ) gin \/1+----¢; /J1+~-c G)

It will be observed that the term *s (t) contains a term of order 1/€, One

might think that this term will become singular as €-0; this is not the case

and it is easily shown that the limit of x, (t) as €=0 is finite
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Limit Xy (t) =

€~ 0
p ot 4( T)(;f(l.zgz) /“”‘2’ g /‘""z’
=== {{Eem)e | S 12C% (tnT) = e 8iny/1 - €% (£=1)
ﬁfof_ ’ g g (

1 2
1-¢2

o

v

) £ Iy (6=7)-v) (6-1)1[p, (T)=p, ()] dr (3. 72)

Thus we see that %y (t) is finite if ¢ is greater than zero and Py and Py

are f{inite,

Example B
Consider now the problem
ME+ €DX + Kx = £(t)
(3, 73)
x0)=a , %(0)=h
where M, D and K are symmetric, M is positive definite and D and K are

1n does not commute with M~ K,

non-negative definite, Suppose that M~
Equation (3, 73) does not possess classical normal modes, Let us first
reduce (3, 73) to canonical form, Let

y= M1/2_15 , o qlt)=M l/z_f_(t)

Then
Iy + €BY + Cy = q(t)
{3, 74)
g0 =M%, g(0)=M"2p
Now let y=Tz, where T is the orthogonal matrix which diagonalizes C, Thus

1z+ EBz+ Az =1(t
= = 0= “'()} (3. 75)
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20e1 M %, o) =1 MY P cont

T. 1/2 } (3, 7%)

Equation (3, 75) may be written as a system of first order equations

dw,
— = = Aw 3 (L)
& (3, 76)
w(0)=d ]
where
a=|2 ¢ 3,77
B AO B (3,77)
2]
¥ = _7_” (3, 78)
"0 0 0 5.7
§_:: T - 3- 9)
i) |tTam)|  |[eTiw
P‘TMllzﬁ QTM?; 3
d= = (3.80)
. M2 | | @TMp

where Q = M~1/2

T is the congruence transformation which simultaneously
diagonalizes M and K,

The problem has now been reduced to the form where the matrix
perturbation theory of Section 2B can be applied, In Section 2B it was

shown that the similarity matrix T which will diagonalize A is given by

I+3€80, 1-j€sqy,
T = ) (3.81)

30,-€(r 4502 ) | 30, -€(h +scf

ol b e [ el
1 u{ngeoo Mrsad | -0 -es}
=3

—1 I S
1-jeat aprsal ] jogt-€s

(3. 82)
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where

w
. W
00=Aé/&= 2',.‘ (3. 83)
YN

where Wi i=l,2...N are the radial frequencies of the undamped system.

11 8
A =5 2z (3. 84)
172 .
BN
“0 Byp BN
2 WZ WZ WZ
W1 V2 17N
7t
S—_- 24?—2—]:2 0 t 22t "ZNZ (3. 85)
Wy =W Wy =Wy
#
S 0
W =W
LNl ]
Making the transformation
w=Tp (3, 86)
Equation (3, 76) becomes
dp [jf,-€A 0
0 1 -1
Et""[ 0 { -jQO—GAl:lR+T s(t)
(3.87)
p(0)=Tta
Thus
. - .
e(JQO-EAl)t . o (39,-€A)(t-T)
_ el e 0 -1 88
pt) = ('-590-61"\113 I "w(0)+ (-jQO-EAl)(t-T) T “s(t)dr (3. 88)
0 ] 0 L
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Therefore

]

.| (GO -€AL )
t e 0 1 0

-] -11 0

(30, - €A )t
R !

S TR TR e e s TR RN Ry T

Substituting (3. 78), (3,81), (3.82), (3.83), (3,84) into (3, 89) and

taking the special case where w(0)=0

t\ € f,.(k-T) si (t-T)
-=fB,. (t-7T) sinw, (t-
?_(t)=f e 2 H —_— QTg(r)ar
0

1N
t
4 e'/; [sR(t-7) - R(t-1)S |@Tg(m) ar + 0(€%) (3. 90)

where

€
S g
R(T) =!’\e 2 i coswiﬁ] (3. 91)

Now

x(t) =M Y2 Tat) = Qz(h)

\ -= B, (t-7) sinw, (t-T)
so(t) =[Q e ii i QTf(T)d'r
0

i N T

Dim

t
+ efoQ[SR(t-T)-R(t-T)s]QT_f_(fr) dr + O(€?) (3. 92)

The first term in (3. 92) is the solution which would have been obtained
if the matrix R= QTBQ had been diagonal, Thus the error in neglecting the
off-diagonal terms is

ot

x(t) - x, (t) = GJOQ [SR(t-T)-R(t-1)SIQ T £(r) d + O(€%) (3. 93)
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To obtain some idea of the errors introduced by the off-diagenal
terms in the matrix B, let us compare the two matrices v(t) and

€[SR(t)-R(t)S]. We have

ST mE————— -

s

—
- 'Hl 11: _s_ifwlt
W1
v(t) = ' € (3. 94)
e--é- ﬁNNt SanNt
- N
and
e[SR(t)-R(t)S]
. € ﬁlz(R 1"R‘2) 6631 3(R 1 R3 ) € BIN(R 1-RN)
2 2 2 Pt 2 2
wl-w W -Wa Wy “WN
eR. (R,-R,) €8,,(R,-R,)
2 2
- 12 i‘v O ZSZ—WZ 3 . . . .. . v . (3. 95)
W1V W2 W3
€8 R Ry o
2 2 ¢ e e 0 e .0 . U N I TR IR R N I Y R Y BT I A A]
W1 %N
— .

The contribution of v(t) to the solution depends on

i) the diagonal terms Bii

ii) the frequencies W,
iii) the frequencies and amplitudes of the model excitation
The contribution of €[SR(t)-R(t)S] to the solution depends on

i) .the off-diagonal term eﬁij i#j

ii) the frequency separation of the modes wi2 -sz i4j
iii) the frequencies and amplitudes of the modal excitation

From the above one may cohclude the following:
i) The effect of the off-diagonal terms will be smaller the smaller the

magnitude of the off-diagonal terms,
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ii) The effect of the off-diagonal terms will be smaller the wider the
separation in the modal frequencies,
To illustrate some of the points in this case, consider the numerical

Example B,

Example B
Consider the steady state solution of the problem
o, 2 0., 7 1,06 -0,057  _ (cos t)
§+€0 612t 005 1005J% = \cost (3. 96)

The transformation

T
V2 V2
=1 112
V2 V2
will diagonalize the stiffness matrix, giving
. 2 -1] [1 o] _(/2cost> .
A I RS R R G (3. 97)
The associated eigenvalue problem is
2 2 -1] [1 0 ]\ i_
(YiHeYi[-l 21t Lo 1.10/2 =0 (3. 98)
Applying the methods of Section 2B, we have
o ‘\
% =[o /1) (3.99)
_riro
Ao=le 3 (3. 100)
S . 0”6711_010 (3. 101)
1l o |7 |10 0 '
0.1
NS
Q=T= /15 /1? (3.102)
/2 V2
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'rhus the steady state solution is given by (3, 92) with the lower limit set

to ~ oo,
1 1) -
) t—/_—z: 75— e’e(t"'r)sin(t"r) 0 V2 cos t 4
£(t) = x(t) = 1 1 0 e-E(t--'r) sinv1,1 (t-7) 0 T
Joo V2 V2 /1.1
1 1
N7 1o 10[e =" [cos(t-T)-cos VI T (t-1) ]| [VZ cost .
+ € 1 1 -E(t-’l’) dr + O(G )
— —| [10[e Jlcos(t-T)-cos V1.1 (t-T)] 0 0
“olV2 V2
(3.103)
Therefore
s—izl-l-ei 5cost
y(t) = sint + + O(€) (3.104)

> -5cost

The first term represents the response y_o(t) of the system neglecting the
off-diagonal term, thus the error due to the off-diagonal terms in B is

given by

e =gty ) = [ 22°5F ]+ ofe) (3. 105)

A measure of the relative error is

Sup || &
n:——-Enﬂ—LSup y_o(t)=10€ (3.106)

Thus we see that as long as € is small the relative error in neglecting the

off-diagonal terms in the B matrix is small in this case,
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