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PREFACE

The work described in this report was performed by the author
while he was a consultant to the Jet Propulsion Laboratory, under the
cognizance of the Engineering Mechanics Division, The author is
Professor of Applied Mechanics at the California Institute of Technology,
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ABSTRACT

The purpose of the present report is to develop certain matrix

perturbation techniques which can be used in the dynamical analysis

of structures where the range of numerical values in the matrices is

extreme or where the nature of the damping matrix requires that complex

valued eigenvalues and eigenvectors be used. The techniques can be

advantageously used in a variety of fields such as earthquake engineering,

ocean engineering, aerospace engineering and other fields concerned

with the dynamical analysis of large complex structures or systems of

second order differential equations.

A number of simple examples are included to illustrate the

techniques.
a
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I. INTRODUCTION

In the dynamic analysis of large complex structures the numerical

computations are frequently complicated by the fact that the range of numer-

ical values of the matrices is much larger than today's computers can

comfortably handle, In other problems the nature of the damping matrix

may be such that the structure does not possess classical normal modes and

in such a case the additional complications of having to deal with complex

valued eienvalues and eigenvectors may overtax the capacity of today's

digital computers, In still other problems the engineer may be interested

in the effects of small changes in parameters on the response of a large

complex structure whose response is known for one set of parameters. In

all these cases it may be possible to employ matrix perturbation. techniques

to good advantage.

In a previous report (TM 33-4$4) the author showed how certain

matrix perturbation techniques could be profitably applied to the problem of

the design of subsystems in large complex structures. The purpoh> ^ of the

present report is to develop certain matrix perturbation techniques which

can be used to advantage in the class of problems discussed above, The

techniques developed can be used to advantage in a variety of fields such as

earthquake engineering, ocean engineering, aerospace engineering and

s	 other fields which are concerned with the dynamical analysis of large complex

structures or systems of second-order differential equations,
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II. PRELIMINARIES
i

In this report we shall be concerned with the dynamical analysis of

large discrete structures, All linear problems in discrete structural

dynamics may be expressed in the following form

Mx+Dx+Kx = f(t)
a

(1.0)

x(0) =a	 x(0) =b

If the problem is formulated in an inertial frame, then the NXN matrix M is

symmetric and positive definite, while if the system is passive the matrices
h^

D and K are at least symmetric and non-negative definite. The N vector, x,

{	 may contain both displacements and rotations, while the N vector, f may

contain both forces and moments

A, Reduction to Canonical Form

Since M, D and K are symmetric and M is positive definite, the

transformation y=M^x, reduces (1, 0) to the canonical form

IY+ B.Y.' Cy = a(t)	 (1. 1)

where

B _M-aDM_i= BT

C M-iKM i= CT

4	 (1. 2)
=M f(t)

-.	
y(0) = M"a	 Y(0) = Mib

B. Classical Normal Modes

The system (1. 0) is said to possess classical normal modes if and

only if (iff) it can be reduced to a set of N uncoupled second order systems.

A necessary and sufficient condition for the existence of classical normal

2	 JPL Technical Memorandum 33-652
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modes is that the matrices B and C commute (Caughey, 1960; Caughey and

O'Kelly, 1964), Thus

BC= CB or M -1 DM - i K = M -1KM '1 D	 (1.3)

In this case there exists (^) an orthogonal matrix T, such that (^)

T TBT = 8 — a diagonal matrix -- 8 
i 8 i 8i

T T CT = A — a diagonal matrix -- A ij = 8 i Xi	 (1,4)

and

T = [t 1 „t2	
N

where tl , i=1,2• • •N are the eigenvectors of C. Equation (1. 0) reduces to

1"+ IZ h /1z = r (t)

z= T T 

(1. 5)
z(0) = T Ty(0) , z(0) = T T. (0)

r (t) TTq(t)

C. Application of Classical. Normal Modes

In many practical problems, the da pping matrix D, or its canonical

equivalent B, is unknown, From extensive testing, however, it is known

that the modal damping is in the range of one to two percent of critical. In

this case one frequently assumes that the damping is classical and writes

9. =2 ^1 S\	 (1.6)i
Now B TO T T , using (1. 6) and the Cayley-Hamilton theorem we may write

B = S(C)	 (1.7)

That is, the matrix B is a matrix function of matrix C. Or expressed in

terms of M and K

JPL Technical Memorandum 33-652
	

3

r



R

4

D : M-i C(M_'-K M - ^)M'	 (1-8)

If it is assumed that (1, 8) is ra. basic property of the materials used in the

structure, then (1, 6), (1. 7) and (1, 8) remain unchanged in form as the mass

and stiffness of the elements of the structure are changed. 	 This assumption

results in considerable simplification in the problem. 	 Using (1. 6) and

recalling that 0 and A are diagonal, (1, 5) may be written

X.z i	ri(t)

zi (0) = z°	 Aim : Z.	 (1- 9)

i-1, 2... N
Thus

t
zi (t) w ui (t)z^+vi (t)AQ+

J
 v. (t - T) r i (T) dt	 i=1,2... N	 (1. 10)
0

where

- ^s t
ui (t) = e 	 Ic OST 

i 
t+ - i	 1 sine

0

te 	 ^	 (1. 11)
Tvi (t) , ----1--- s in	 i t

i

Equations (1. 10) can be expressed compactly in matrix notation as follows

t
z(t)-u(t)z(0)+v(t)z(0)+Jv(t-T)r(T)dT—	 — 0

where	 (1. 12)
v(t)	 - S. v. (t)u(t)i^ - $i^t»i (t)	 ii	 ij

tt	 I

JPL Technical Memorandum 33-652 ,
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Using Equations (I - 'i) and (1, 5)

T	 T	 t	 T
y(t)=Tz(t)=Tu(t)T y(0)+Tv(t)T im+ Tv(t-T)T q(T)dT

f
(1,13)

o

Using Equation (1. 2), the solution to Equations (1. 0) can be expressed as

TMa+Qv(t)Q T	
t	 T

-'*)=Qu(t)Q	 M b + f Qv (t - T)Q	 L(T) dr (1.14)0

where 0 is the congruence transformation

Q = OT (1, 15)

which has the properties that

1) QTMQ =I

2) QT
DO 0-

T
3) 

Q 
KQ	 A

D.	 Nonclassical Normal Modes

If in Equation (1. 1) the matrices B and C do not cor,!.tmute, then in

general it is impossible to reduce (1, 1) to a set of uncoupled second, order

equations.	 In this case we rewrite Equation (1. 1) in, the form

Aw + P (t)

M a (1.17) f

W/O)

[M
^ b ]

where

(t

A -
0C -B]

JPL Technical Memorandum 33-652	 5
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The solution of Equation (1, 17) is

(11 18)
c Ont.

I

sl^'

a(t) C 
At 

w (0') +	
e A(t-1r) 

p (T) d T	 (1. 19)

Alternatively, there always exists a non-singular matrix S, such that

S" 
I 
AS - J	 (I. ZO)

If the matrix A has a full complement of ordinary e-igonvectors, then J is

kt diagonal matrix who8c elements are the eigenvalues of A. Furthermore,

the matrix 5 has, as I ts columns, the eigenvectors of A. If A does not

possess a full complement of ordinary eigenvectors, then J is a Jordan

matrix whose diagonal elements are the eigenvalues of A, In this case the

matrix S has, as its columns, the ordinary and generalized eigenvectors

of A,

D, she case where A has a full complement of ordinary eigenvectors

Equation (1. 19) can be written in a more convenient form for computation.

Since S- 
1 
-AS=J=A a diagonal matrix A=SAS-

X I 
t

e

12
At	 e 	

S-1
	

(1.21)

Alt
e-

t
W	 w;_ W(0)+ S \ee	 S-	 (T) dT	 (I. 22)

\ ] 
	

\
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111, MATRIX PERTURBATION T111±,ORY

.A, Linear S igeriva.l.ue Problems

Case l I'the eigenvalues of C o distinctl

Consider the elgenvalue problem

µilWi + [C o + EC 1 + E2 CZ • 1 ti v o

where C o , C 1 , CZ , etc, , are symmetric NXN matrices and CO is positive

definite with distinct; roots, and E is a small parameter, Jet

Vl T2	 (2 , l j

where T is the orthogonal matrix which diagonalizes Co . Thus

[uii+n^ +EC l +ES C+ ,,]Ci =o	 (2,2)

where Cj T T Ci T (;^T Ao a diagonal, matrix with elements X. 	 Since
3

p

C= AO+ ^ E1 C'1 	r

J=l

is a symmetric matrix, we know that there exists an orthogonal matrix Z
i

i

which will. diagonalize C. In addition, we know that the columns of Z are

the eigenvectors col of a, and both they and the eigenvalues ui , i=1,2• • • ,

are analytic functions of E. Knowing this we expand Ili and Cp in a power

series in E, Thus

ep' cpO + E.T
1 

+ E24 ...

(2. 3)

Pi^4io+ Eµil+EZµi7,.

Substituting (2, 3) into (2, 2) and equating coefficients of like powers

of E to zero, we have

T AKl

JPL, Technical Memorandum 33-652	 ?
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4

G0	
CU i01 

+ n 0 14 n 0	 (2.4)

E	
[uio 

I+ A 0 121 V -a26 -"i 126	 (2. q)

E 
2	

41n01111
	 2 i	 i

io
1+  
	 i 

n 
-al l

T	
T-O-"il21-Ui22'6	

(2.6)

etc,

F r om (2. 4)

=e	 a column vector whose elements are
all zero except the ith element

(2.7)

^)R Ij

(..CP Aoj)-x6
=0 TO - io 

The 4 Is form a complete orthonormal set. From (2, 5)

1P I+A E Ĵ =.0 4
	

1)io	 0I	 '20 - ^ji 14	 (2-8

Since the I s form a complete orthornormal s pt they span the N space,

thus any vector in that N space 
may 

be represented as a linear combin -.tion

of the P 
I I 
s, Let

ZO

N

(2-9)

Substituting (Z, 9) into (2, 8) we have

N

aji EµijoI + A O
20 "i I

(2, 10)

j=l

If the inner product of (Z, 10) is taken with 
1P 

k and use is made of (2, 7), then

JPL Technical Iviemorandum 33-652
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--.__- _^ns^k. ..._.i•.aE r'^YY:i:R._. 	 ^ ,ac_rm!	 4f+f	 vl._	 7._. '_.	 _..	 X17.

a'kiG^`a,0 "A,k0] ^ "C^0' cl`^o / " µil6ik	 (2. l l)

Since Xi0^ Xc0' iOk, Vi=e., then

k	 (2, 12)
ki	 (i^ Wk

a
^'	 1	 1	 1We note in passing that since	 is a symmetric matrix C;ij:

Hence

C l
ki

i.lc_ ^,,0" X10 y ""ki

If i=k, then we have

ail _ \m-0' C1ZO)= " ^ i	 (2, 14)

To determine aii we make use of the normalization properties of the c is

( i ,^ )- 1 =^^,	 ) + 2E (^O'CPi)+O( E2) 	
(2. 15)

Equating coefficients of like powers of E, we have

(4, e^, ) = (X U = 0	 (2.16)

1

j,

x

(2. 17)

(2.18)

(2,19)

Thus

0-EC+O(E2)

N î^^ j	 2

-^0 E 	 ^i0_^j0 +O(E )
j.l

Using (2, 18) we may define a matrix Z, where

Z=I+ES

where

JPL Technical Memorandum 33-652 9
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♦ 	 e
♦ fi T/

	 t

10

0	 alz a13 , . , a1N

114,1	 0	 a2 3 .... a2 N

	

S T -S '7" a	 , 	 (2.20)

0

The matrix Z ha, 3 the followfiig properties

i) Z T Z =1+O(E2 )	 (2,21)

ii) Z T [A f1+E'l +eC2+ .. ,]Z =A
0 +EA I +O(E2 )	 (2, 22)

where

X10
A	 20	 (2, 23)

0

'N0

µ11

A =	 X21	 (2, 24)

	

1	 ,

µN1

where Ai0 are the eigenvalues of C O and µi1 , i=1,2, • ,N are given by (2, 14),

Case 2 [some eigenvalues of C O repeated]

Suppose that the first r eigenvalues of C 0 are repeated. We know

that the corresponding eigenvectors are not unique and hence the orthogonal

transformation which diagonalizes CO is not unique, Let

LT 0T;^ = T 
Or 

1	
(2. 2 5)

where T is any orthogonal matrix which diago alizes C O and Tr is any r X r

orthogonal matrix. Then

,z,T T 	 I	 (2, 26)

JPL Technical Memorandum 33-652
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. _.^.-,..-. ,,,.._._... _,-.:_......_.. 	 ^,...w...,..	 ..	
._ ____._	 ._....yam. ,;:%i+tk nM► ellu.._...____. __.

E

.....E

l
I

and

TJ<TCOT;< e 10 r NPr = 
A0	

(2,27)

^o

where x`10 is repeated r times,

Properties (2, 26) and (2, 27) give u=; the necessary freedom to solve

the perturbations in the case of repeated roots, The first step is to apply

the transformation

Y° Tz (2,28)

where T is any orthogonal matrix which diagonalizes C O , 'Thus

[4i I+AO +EC' +E' lepi = 0	 (2,29)

Direct application of the matrix perturbation technique, applied to Case 1,

fails unless C;1,O, i^j, i, jE (l,r), In general these conditions are not

satisfied, however we can always construct a new transformation T* such

that this condition does hold.

Let Br 	 i,j E (l,r), and let Tr be the rXr matrix whose columns

are the eigenvector. s of

[µl+Br]tr=0	 (2, 30)

The new orthogonal transformation (2, 25) using this particular matrix Tr

has the property that

T'4TC1 T^^ = C 1	 (2. 31)

where i^l is a symmetric matrix with the property that

?5 	 S.	 i, j E (1, r)	 (2. 32)ij	 ii ij

Thus if T* is used in place of T, T *T C I T *Z 1 has the necessary properties

so that the matrix perturbation technique can be used,

{	 JPL Technical Memorandum 33•-652



UiI+ R0+ EC1 +E2e.,-]V =0 (2.33)

where °=T'	 C j 7" ` j=1,2 « • .	 As before, IaC

+E " +E2 	2+.•.
(2,34)

µi = Pi 0 + Eui l 
.y. 

E2 Ui2. + .. .

Substituting (2, 34) into (2, 33) and equating coefficients of like powers of E to

zero, we have

E0	 [µioI+A01 C20 = 0 (2. 35)

E 1 	GuioI+A01	 i' = _Z5 1 =µi1 r^0 (2, 36)

E2 	[4Ii0I+A0 ] c^z = -CYl -C2 	-^' 1--1^1 - 4120
1

i
(2. 37)

etc,

From (2. 35), we have

^iOT-^io	
i=1,2.•.N

i
4	

= e.

(2. 38)

0 , Ao o _ - ^'io 5 i

The's form a complete ortbonormal set, 	 From (2, 36)

Lµiol+/1014=-C   
1	

µio^0 (2. 39)

s

r

{

tY

l

l

M N

4

Al

^s	 z ^:	 c

If in Equation (2, 1) T" is used in place of T, Equation (2, 2) becomes

As before, let cpi be represented as a linear combination of the ms's. Thus

12	 JPL Technical Memorandum 33-652
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1 	) ajiQ	 (2,40)
j=1

Substituting (2. 40) into (2, 39) and taking the inner product with ^, we have

	

(	 rr	

_

a"ki`^i.0-^kO)- - \^-0 ' ^ 1 i- 	 µi0 0	 (2.41)
-f
i

Thus iik and eithev i or k 4 (1,r), we have as before
fi

	

-	

1

^	 '^^ k	 (2 42)
i	 alci	 i" 0 "k0

If i=k, then

µi1 - CS-0' pl4/ . U	 (2.43)

If i#k, but i and k E (I, r), we cannot determine aik. As before, normalization

gives us aU=O,V i.

To determine a'ik' ilk, i and k E (1,r) we proceed to the 0(E 2 ). From.

(2. 37), we have

[µ. I+l1 a cp'' _ -^1 ^1 -C2^x -µ. ^P^ -µ. ^Pl 	(2 44)i0	 0 —2	 1	 —(? i 1-1 i.2 0

Since the ms's span the N space, let cez be represented by a linear combina-

tion of the "KJI s, Thus

N

	

22 =	 Rjicpj	 (2.45)

j=1

Substituting (2, 45) into (2, 44) and taking the inner product with ego, we have

	

r_ k51 i	 ((k	 i1

	

L ^`i0 - 0 ski =	 TO 	 -1	 \^0'	 0 ! - µi 1 a'ki - µi2 'ik	 (2.46 )

Making use of (2, 40), we have

JPL Technical. Memorandum 33-652
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N
1 ..	 µ.	 " 6	 (2, 47)i0 - 0 ' ki = ^,^ aj ij k	 xk ' x l aki ^ x2 ik

j=l

if i=k, but i and k E (1,r), Then, since k=Cl 8jk for j and k E (l,r), (2. 47)

gives us

N

(µ	 µ. )a, . -S oc..Cl	 (2, 48)kl^ xl kx	 ^x ^k	 xlr
j=l+r

Therefore

^N+
J i jk + k

_ ,j=1+r
alci `	 µi 1 µ1c 1	 (2.4 9)

aik

Vence

µi= ^ i0 - E^11+0( E2 ) (2. 50)

N
x = ep +E^ ajijo +O(E2 ) (2.51)

j=l

where the aji are given by (2, 42) and (2. 49).

Using (2. 51) we may define a matrix Z, where

Z_I+ES (2, 52)

where

0	 a12	 a13 ... a 1 N
Cc21	0	 a2 3 ...

a2 N

aN1	 'NZ	
..... 0

f

14	 JPL Technical Memorandum 33-652
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The matrix Z has the following properties, as before

i) ZTZ =1+ O(EZ )	 (Z, 54)

ii) ZT CA O+EC1+E2 G +...]Z = A O+ EA 1 +0 ( E2 )	 (2.55)

where

x`10 ,
120.

A 0 (2, 56)

aN0

10	 10	 i= 1,2,,..r

u ll ,;

A l =	 u2l (2.57)

uN l ^

where ^iO , i = 1, Z ... N are the eigenvalues of C 	 and the µii are given by (2, 43).

Case 3 [some ei ggenvalues of CO close to one another]

Suppose that the first r roots of A 0 are close such that

I xi0	 X. 0 	 k 	 (i,J) E ( l , r ) (2. 58) -'

In this case we observe that E e, is no longer guaranteed to be of O(E). This
r'

difficulty is easily remedied by writing our eigenequation in the form

[PiI + /1O + EC l + EZ ^Z ...^^1	 0 (Z• 59)

where

r

AO -	 IA N-r0
(2.60)

i

n

JPL Technical Memorandum 33-652	 15
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w1

2

Ao =TTCT=	
w2.

2
w

n

fit..

(2.64)

0

(2.60)
l	 ' r1	 cont.
E

0	 0

Thus the problem has been reduced to one in which the first r eigenvalues of

Co are repeated, In this case the methods used in Case 2 are applicable,

B, "Nonlinear" Eigenvalue Problems

In the case of nonclassical normal modes we have to deal with an

eigenvalue problem in which the eigenvalue occurs quadratically, viz.

^y21+ Eyi(Bi+EB2+ ...) + C^ l = 0	 (2.61)

where B i , i=1 0 2 ... and C are symmetric matrices which do not commute,

Let

i = TCPi 	(2.62)

where T is the orthogonal matrix which diagonali,zes C. Substituting (2,62)

in (2, 61)

[YiI+ y.(ES'+E2Ji2...) +no]^i = 0	 (2.63)

where

ri

OPP

a1 = T 
T 

B 
i T
	 i=1,2 .. .

ell

16	 JPL Technical Memorandum. 33-652
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Equation (2, 63) may also be written in the form

t^
[Y.I+Al i 0	 (2. 65)_

where
r	 0	 _1

A
A0 E314'-

and	 (2, 66)

i ^
_.	 -•- 	

Yi

Let

i	 i E2 i	 3

2 pp0 +
"_Tl

+_TZ_

(2, 67)

Y.	 Yi0 + EYiO +E Yi2

i-

Substituting (2, 67) into (2, 63) and equating coefficients of like powers of E

to zero, we have

E 	 [Y' I+ A0 ^ 0 0 	 (2, 68)
io

 
ii

E 
1	 X + A	 ^1	 2 Y.Y. c + Y. 03 l ' 	 (2. 69) [ y2

 i0	 0-1	 i 0 xl^-0	 10 ^0

From (2, 68) we have

YiO=jw i

Yi0	 -^Wi	 Y90	
,#

(2. 70)

	

- ei	(real)

k,

t	 t -^

-652JPL Technical Memorandum 33 	 17	 i.
^t



If i°—k then
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(2, 70)

	

^0	 wa2' u^ j	 cont,

The =' I s form a complete orthonormal set,

For each 4 the y a are two So one corresponding to Y O, the other

to Yip , Thus

f

	

1iiFO:"41 	 lyi-0441

We seep that

.W Ti	 (2.72)

Since theCOI s form an orthonormal set, let us express P^ as a linear

combination of the ^Of s, j=1,2 • . • N. Thus

N
i =

	

	 a.CP	 (2. 7 3)
j =l

Substituting (2, 73) into (2, 69) and taking the inner product with^ we have

	

, io " Yk0 ^ O D i = _2 YiOil Pik YW "i.k	 (2, 7^k)

We shall consider only the case where the Yi0 's are distinct; the

case of repeated and close roots can be handled in the same way as in the

linear eigenvalue problem. Thus if ilk

	

a v 	 iO
1 031 k

	

,:h2	 (2.75a)ki	 Y+2 y
z0 k0

±jwi Pik
ak1 `	 2	 (2, 75b)2 

w  -wk

ti

0

Y

o

I
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(2. 82)

Z2=Z1

Let us define the matrices not Sy	 A l ,

w1

w2

110

L	 wN

1 1
0 .....2122 IN

w 1 -w2 w'1-wN

1 81

X 21 2N
wz -w1 w2-wN

63N 1 ..............	 0
^ZwN -w 1

JPL Technical Memorandum 33-652

(2.80)

(2. 81)

R

ffi	 r	 t

t

5

Yl	 (2,76)

The obi 's can be shown to be zero by using the normalization condition on

the eei 's. Thus

K

Y^ol = tjW. - 63 * O (E2)

cpi 	 i	 N j wi ail-, 20 +0 ( E
k  

	 20 	 —y-2  
k= 1 w  -wk

Using (2, 78) we can construct the two NxN matrices

1x12 Ea13 ... Ea1N

Z	 Ea21	 1	 Ea23	 Ea2N`.' 1 -- . I

Ea' 
I EaN2	1

and

(2,77)

(2.78)

(2.79)

ky



The matrix S is skew symmetric, I, o. ,

ST
	 -'s	 (2,83)

I

T

A	 (2,84)

f^INJ

Then the matrix Z 
I 
can 

be 
expressed in the form

z1 
= Cl+jES001

The nonsingular 2NX2N matrix, T, whose columns are the eigen-

vectors of matrix A is given by

T = 

Z1—Z l C17 i7l 1	

(2.86)

where

A= jOo - EA,

Matrix T can be expressed in terms of 
S,110 

and A l .
 

Thus

I+jE$O	 IES 00	
2T	 0	

+ O(E 
jf1,, -E(A j+SC

0̂
- ) -jO .,E(A,+SOO
 0

It may be shown, after some tedious algebra, that

1 1 I+jEDO 1A1+SaO'
T	

2 I-jEO-
011CFO
1 A +S 

'2-	
j 0- 1 - ES + O(E

The matrix T has the property that

(Z, $7)

(2. 88)

(2.89)
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JO +GA	 0

	

0	 1T_ 
1
AT = + O( G	(2-90)

Thus T is the required similarity transformation matrix which will diagona-

lize A to O(G
rs

IV, APPLICATIONS OF MATRIX PERTURBATION THEORY

Two examples will now be given to illustrate the use of matrix

perturbation theory,

A. The Matins; of a Small Com ,,olex Structure to a Large

9	 Complex Structure

Consider the. 'problem of mating a small, but complex, structure

with M degrees of freedom to a much larger structure having N degrees of

freedom, A good example of such a problem is the mating of a space craft

to its booster. Suppose that the eigenvalues and eigenvectors are known for

each structure separal-Lely. Can one compute the eigenvalues and eigenvectors

for the composite structure using this information? As we shall now show this

can be done without having to solve the eigenvalue problem for the (N+M)

degree of freedom system.

Consider the following problem

NIX— + D^+ Kx
(3, 0)

x(0) a	 x(0) b

where

M
M	 l	

z M_	
(3.1)

Z_
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a	 •

S^

a

yLL.0 d

is the inertia matrix for the composite structure and consists of the two

submatrices M 1 and E2M2 , M1 is an NXN symmetric positive definite

matrix and represents the inertia matrix for the large structure. E2M2

is an MXM symmetric positive definite matrix and represents the inertia

matrix of the small structure, It is purposely written in the form E2M2

to emphasize that the inertial elements of the small structures are very

much smaller than those for the large structure, Where

K _ K 1 0 +E 2r;2 1 K22
0 0	 23 1 K24

(3,2)

FS-- j
is the stiffness matrix for the composite structure and consists of the five

Ll	 submatrices K,, E2 K2i i=1,2,3,4,

K 1 is an NXN symmetric nonnegative definite matrix and represents

the stiffness matrix of the large structure and E2K2i , i=1,2,3,4 are coupling

and stiffness matrices for the small structure. E2K21 is an NXN symmetric

nonnegati` definite matrix. E2K 22 is an NXM symmetric nonnegative

definite matrix. E2K23 is an MXN symmetric nonnegative definite matrix,

JK24 is an MXM symmetric nonnegative definite matrix. These matrices

are written in the form E2 K21, i=1,2,3, 4 to ,emphasize that the elements of

the stiffness and coupling matrices for the small structure are very much

smaller than those for the large structure. It should be notes: that the eigen-

values for the two systems separately can be of the same order of magnitude

since they are governed by the eigenequations

% i m l +K l 3x ] =0

2 2 42 =
a

and are independent of E,

^,	 v4

22
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In Equation (3. 0) D is assumed to be an (M+N)X (M+N) nonnegative

matrix which satisfies the conditions for classical normal modes, i, e,

M -1 KM -1 D = M" 1. DM-1K
	 (3.4)

In Equation (3, 0) the force vector f (t) is given by

MON
(3.5)

M

where p(t) is an N vector and acts only on the large structure.

Consider the eigenvalue problem associated with (3. 0)

CµiM+K]xi = 0	 (3.6)

[Note; Since by assumption D is such that (3. 0) has classical normal modes,

the eigenequation (3. 6) does not include damping. ] The trahsforn-.ation

-xi =M- 1/2 $i 	(3, 7)

reduces (3. 6) to canonical form,

[Pi I+C 0 +EC I+E 2 C ZI fir i = 0	 (3. 8)

where

0 MI1/2K1Mi1/2	 0
C	

-1 2	 -1 2	
(3. 9)

0	 M2 K24M2

0	 M-1/2K M-1/2

C1 =	 1 2	
1	 22 2 _	 (3.10)

M2 K23M1	 0

-1/2	 -1/2

C 2 = M1 ^21M1	 0 (3.11)
0	 0

If TI is the orthogonal transformation, which diagonalizes M-1/2K1M-1/2

r	 and T2 is the orthogonal transformation which diagonalizes M21/2K24M-1/2

let

"	
JPL Technical Memorandum 33-652	 23
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h	

F ,.^aYU^9g,

	

r	
-

	

':	 t

The transformation

reduces (3, 8) to

T	 0

	

T:: 01 T	 P. 12)
2

	

V► 1 = TCPi 	(3. 13)

24

^P I+A +EC 1 +E2C2 1 CPi 	(3.14)

where

A0 = X01 ^0
	

P. 15)
02

where

N
X10

A01	 t3. 16)

X ^, are the eigenvalues of the large structure

and

M
X10

11 02 =
M	

(3. 17)

HMO

^ 0 , are the eigenvalues of the small structure

C I = T T C 1 T	 (3. 18)

and

C2 = T T C 2 T	 (3, 19)

The eigenequation (3. 6) has now been reduced to the standard form

where the techniques of Section 2 may be applied. The exact details wili be

reflected in two numerical examples.
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By perturbation analysis we obtain

Z _I+ES
	

(3,20)

a

'	 and
r

3 A= A +EA	 (3.21)

R
where is given by (2, 20) and the elelaents of A by (2, 18). The orthogonal

transformation which diagonalizes (3, 8) is given by

T 2 TZ T+ ETS+ O(E2 )	 (3. 'L2)

The congruence transformation which di,agonelizes (3, 0) is given by
r

Q2 =M .1/2 T2
	

(3. 23)

rM^`
M-1/2 T

1 (1+ 	 )	 E M"lt2 T S
Q^	 l	 ].	 1	 1	 1 2	 (3.24)  .2	 M21 T2 S3E M21 T2 (1+ES4)

i
hj

	

	 N modes ----- M modes

where S l , S 20 S 3 , S4 are the partitions of S

N M

S = S 
1	 2 M	 (3.25)
3 

S 
4

It will be seen from (3. 24) that the first N modes are ordinary .rr global

modes. By that we mean that they are simply extensions of the modes of

the main structure into the secondary structure. The next M modes are

however "local modes". By this we mean that the response of the secondary

structure is O( E ), or O( 2) times as large as that of the main structure.

That is the motion is highly localized in the secondary structure.

Consider now the forced vibration problem (3. 0) with a= b = 0. Using

Equation (1, 14), the solution of (3, 0) is given by
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1
a

t.
r

t

x(t} ^ J
O

T)QTf(T) dT	 (3.26)

where v(t) is a diagonal matrix whose elements are given by (1, 11).

Defining the partitions Q i , i=1,2,3 of Q by

N M
Q 1 EQ2 N

Q

	

	 (3.27)
Q3 EQ4 M

where Q i , i=1,2,3,4 are O(l).

Defining the partitions x i , i=1,2 of x by

N
x

x(t ) _1 M	 (3.28)
—2

Defining the partitions vi , i=1,2 of v by
o-

N M
vl 0 N

V(t) - 0	 v M	 (3. 29)
2

Introducing the partitions (3. 27), (3. 28) and (3, 29) into (3, 26) we

have

Txl(t)	
t	

Q1 vI(t- T)Qlp(T)+O(E2)	
d	 ;^t

x(t) - x t}	 T	 T	 T	 (3. 30)	 i
—2 (	CQ4v2(t-T)Q2 +Q3v 1 {t-T)Q l ]P(T) 
0_

Thus, we see that the response of the main structure and the

1	 secondary structure depend only on the frequencies in the input and the

distribution of the eigenvalues. In particular, the response of the secondary

system is of 0(1) with respect to E and not O(E2) as one might have expected	
r-

from the eigenvectors of the local modes. In order to make the exact details

1	 of the procedure clear we shall now consider two numerical examples, 	 1
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.v ^^(3, 35)

(3. 36)

f
6

i

Example Al (Distinct Eigenvalues)

In Equation (3, 0) let the matrices M and K be given by

1

	

M=	 1 E2	 (3. 3l)

2 -1 0	 2 0 0 0
K _ -1	 2 01 1 2E 0 0 -1	 (3, 32)

0 0 0j	 0 -1 0

'^	 1
M -1/2	 1 1	 1,3, 33)

Using the transformation x=M-1/2 ;reduces (3. 6) to the canonical form

	

-10000
Z+[- 21 2 0	 0 0 -2t' ^ 0	 (3, 34)

	

0 0 2	 0 2
0]]

Now, the matrix

2	 ,..1
-1	 2

is diagonalized by the orthogonal matrix

1	 1

1	 _1

LV(2-

and the matrix [2] is diagonalized by the matrix [1].  Thus

]	 1	 0

T= 1 - 1 0

0	 0 1

The transformation ^1 =Te' reduces P. 34) to the standard form

1	 0	 0 -
µil+ 3	 + E 0	 0	 =0

2 -VT VT 0

J'PL Technical Memorandum 33-652
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This is a case of distinct eigenvalues (1, 2, 3) and hence the standard matrix

perturbation method can be used, Thus

1	 0 -EV—Z
Z = I q-ES =

1
-E (3.37)

E	 E

1	 1 -2E
3T

T2 = TZ = 1	 _	 1 0 (3. 38)
VT

E  -2-	 E l

1 1
- 2 E

V72—	 vrz-

Q2 = M -1/2 T2 1	 -	 1 0 (3. 39)
F	 37

3T	 ,/7 E-1

Q2 has the following propi^;rties

i) Q2MQ2 = I+O(t2 )	 (3.40)

ii) OT2KQ2 = A +E/1 1 +0(t2 ) = 132 +O(E2 )	 (3.41)

Thus we see that the first body, or global mode, has eigenvalue 1

and eigenvector ( //1 1 , ^) and is simply an extension of the first mode of
V 2- Y Z

the main structure into the secondary structure. The second body, or

global mode, has eigenvalue 3 and eigenvector ( 	 --L , VT) and is simply

an extension of the second mode of the main structure into the secondary

structure.

The third mode is a local anode and has the eigenvector [-2 E, 0, E-1],

For example, if E=10 -1 , then the motion of the secondary structure is

fifty times as large as that of the main structure.

If, for example, we take the matrix D to be

JPL Technical Memorandum 33-652



;_.___ .:-^. _.._.,,._.^ _ .::.,. ..a s aaa...	 .a.sa :.--..rams.	 _	 ,... .._._ .a.7	 ♦. R '1 	 ?_.

	

2 -1	 0

D=2C-1	 2	 -2E2

	

0 - 2E2 	 2 E2

Then

QZDO2=2S 132

Using the partition (3, 27) we see that

1	 1

Q	 11^

Q 2 = L0J

Q 3 = [ 2 v'-Z-]

Q4 = [111

Thus, using (3.30)

e- Qt -T)	 e-3 S(t -T)	 2̂
t ^^ -sin' l-4^

22
 (t- T)^--- 	 sin V3-9C (t- T) (p1(T)+P2(T))

V1- C" 
(t)'= 2	 dt

O e S(t-T)	 /--2-	 e-3S(t-T)	 /^2^
T )----Z sinNl - e (t - T) -	 2 sin'V3-9S (t -	 (pl(T)-p2(T))

3-95

+O(E2)	 (3.48)

t e - S(t- T)	 /-- 22
x2 (t)=x3 (t)= J

0 N1-
-- F 

5 
f sin` l-S (t-T)(p1(T)+P2(T))

-3S(t-T)
+ e -	 sinN3-9Sy (t-T)(p1(T)-p2(T))

3 -95

2e2e-2C(t-T)-T)
sin42-4C" (t-T)p 1 (T) dt+ O(E2 )	 (3.49)

2-452

(3. 42)

03.4 3)

(3,44)

(3.45)

(3.46)

(3.47)
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#	
A

4

As pointed out previously in connection with (3. 30), the response of the

secondary system does not blow up as E tends to zero as might be suggested

Iby the local m -)de, whose eigenvector is [-2E, 00 E -1 ].

r

rE
(	 Example A2 [Repeated Digenvalues]

i?
As a second example consider Equation (3. 0) with the matrices M,

D and K given by

^; 1
1

M=	
E2

(3, 50)

2	 -1 0

"^	 ( D^2C^1	 2 -E2 (3.51)

0	 -E
2 E2

''	
,^	

l - 2	 -1	 0	 0 0 0

K= -1	 2	 0+ 0 0 -E2 (3.52)

a
0	 0	 0	 0 -E E2

1/2Using the transformation x 	 M -	reduces (3. 6) to the canonical form

2	 -1	
0

00 0
1

µiY+ -1	 2	 0 +E 0
0	 0

1]
	 0

^-,	 =0 (3, 53)
-1 0

Now, the matrix

2	 -1
-1	 2

{ is diagonalized by the orthogonal matrix
.^ 1	 1

42	 72

.	 1	 1

-42

and the matrix [I] is diagonalized by the matrix [1].	 Thus

k:
30 JPL Technical Memorandum 33-652
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t
i

f
	

I

t

I

M

n

fg

	

r	

YT

iI

	

O	 wi
OF

:

7 lw	 ♦ [r

	

T= 1 -	 0	 (3. 54).. 
,F2

0	 0	 l

The transformation $i=TTi reducers (3. 53) to the standard form

0 0 „^^

^ji+ 3 1 + E 0	 0	 1 c^' . 0	 (3,55)

_ /1̂
	 /

1
'^	

0'Y 2	 'V j,	
,

We note that in this case the first and third elements of A O are equal, this

is then a case of repeated roots and we must use the techniques of Section

2 applicable to the problem of repeated roots.

First we form the auxiliary eigenequation

PI+Br ]tn =0	 (3.56)

[Note: In the formulation of Section 2 the first r roots were repeated; here

the first and third roots are equal, This poses no difficulty since it can be

put into standard form by interchanging the second and third columns of T in

(3. 54), This is really unnecessary provided we use the elements of C1

associated with the repeated roots.

In the case of the present problem

	

O	 1

Br 	 1	 0	 (3. 57)
^r

Solving the eigenvalue problem (3. 56), the associated orthogonal matrix T r is

,TPL Technical Memorandum 33-452
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1	 1 1
2	

F2
2

T* = 1	 1

2	 ` 1Tz—
1

2 (3, 60)

1	
0 -	 11 -2 r

Using the transformation ) V_i reduces (3. 53) to the canonical form for

repeated roots
1

`^
l
2

0

µi1 +
1	 0	 0
0	 3	 0+ E 2 0 - 2 epi = 0 (3.61)
0	 D	 1

0 - 2 +^

Application of the perturbation technique applicable to repeated roots gives

1	 4 0

Z= - 4	 1 4 (3. 62)

0	 -4 1

I'

t;

^•	 4

32 JPL Technical Memorandum 33-652

4
M

» 1	 1^

V2 ,12

^J

OKA

T " 1	 1	 (3.58)
-2

The required orthogonal, matrix T* is given by

1	 1	 0	 1	 0	 1
4 T

T* = 1	 » 1	 0	 0	 1	 0	 (3. 59)

1	 10	 0	 10J._. 	 - ^,.

[Note; The reordering of T r to accommodate the fact that the first and third

roots are repeated.] Thus



P

4

4
i

F

j"

x

j

a^

r

M
M •,

	

T2 = T"Z	 (3.63)

Q2 r M -1/2 
T"'Z

1	 E	 1	 1 + E

2 - 7Z 72 1 
4%'2-

1 E	 1 1 E
2	 (3. 64)^.	

4^ -	 2 - 4ti
E -1 :1	 1	 -E-1

$Zl:1^ 2 412 

The congruence matrix Q. has the following properties

i) Q2MQ2 A I +O(E2 )	 (3.65)

	

1-^ 0	 0

ii) Q2ISC2 2 =	 0	 3	 0	 * O(EL )	 (3.66)
0	 0 1*

In this particular example we see that the first and third modes

of vibration are both local modes and are associated with the reduction of

the degenerate eigenvalue 1. It should be noted that in this case the relative

motion of the secondary system is of order 1 /E compared to that of the

main system, whereas in the previous case the relative motion was of

order 1/E2 , The second mode of vibration is a body, or global, mode which

1 , - 1 , 1 ) and is simply an extensionhas eigenvalue 3 and eigenvector (77 2
of the second mode of the main structure into the secondary structure.

Using the values of the matrix D in (3. 42), then

I- E

	

QZDQ2=2C	 V-2 3	 E	 (3.67)
1+ ^.
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Using Equation (3, 30) the solution of (3, 0) is

X 1 (t) - Jt L v (t-T)[p1(T)+[^2(T)] + Z V2(t -^T)[pl(r)-p2(r)^
0

	

+ I V3 (t-T)[p 1 (T)+n2 (T)I dT +O( E )	 (3.68)

Iqt

X2 (t)	 J V l (t-T)CP i (T)+ P2 (T)1 -	 2(t-T)	 , (T). 2(T)3
0

	

+ V3 (t_ T) Cp 1 (r) + p2 (T) 7 d T + O (E)	 (3. 69)

V	 t
	 - 1

	

7	 X3(t) - J [ V I (t-T)-v3(t-T)3Ep,(r)`k' P,, (T)7
0 2^i^ r1-

If	
+ ZV2(t-T)Cp1(r)-P2(T)l

	

*	 - $ C V 1 (t-T)+v3 (t^r)aCp l (T)- p2 (T)a dT + O ( E )	 (3. 70)

where
1
4
t

E

t ^e	 1	 tsin 1 .. E _C2(1-._...2t	 1-	 -2(1-

2 (t) e_3Cti sin V3-9 S" t/^`	
(3. ?1)	 ,.

E2

2^

V t-eV7 sin l+ E -C2(1+ E t/ 1+ E. ^2^1+ E 1

It will be observed that the term X 3 (t) contains a term of order l / E. One

might thirilc that this term will become singular as E- ► 0; this is not the case

and it is easily shown that the limit of X 3 (t) as E-*0 ir... finite.

N	 r>
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r

I

K

V

c

4

Limit x3 ()

(1..2"")

JO" 1_

(t'„r)e_C(t_r) 2,/ I.
	

cosy/],-7 (t-T) - 	 sin I	 (t-r)

(^Zf2 ^^^^)
3	

cR(tr) sin A-	 (t -'r) Cn l (r) p2 (r}^ dr

+f”	 v2(t-r)- v1(t- r)]Cpl(r)- p2(r)] dr	 (3, 72)
0

Thus we see that X3 (t) is finite if C is greater than zero and p 1 and p2

are finite.

Exile B

Consider now the problem

Mx+ EDx+Kx=f(t)
(JK 73)

x(0) a , a(Q) = b 
f

where M, D and K are symmetric, M is positive definite and D and K are

non-negative definite. Suppose that M -1 D does not commute with M^ 1K,

Egtiation (3. 73) does not possess classical normal modes. Let us first

reduce (3, 73) to canonical form. Let

Y = M 1/2x , a(t) " M 1/2ft)

Then

ly+ EBY+ Cy = a(t)
(3, 74)

y(0)=Ml/2 a , y(0) =Ml/2b

Now let X Tz, where T is the orthogonal matrix which diagonalizes C. Thus

Iz + EBz + AO = r (t)
(3. 75)
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TI 2Ma	 Ivillz	 (3, 7
z(0) T	

T	
b	 Cont

Equation (3, 75) may be written as a system of first order equations

if	 dw
hit, + t3 (t)

(3, 76)

w(0) (1

where

A =	
1	

(3, 77)['00

w	 (3. 78)

IA -	
00	 0

S	

r	
IT 

T 
a(t)]	 T 4N]	

(3. 79)

T
i.	

C,	
T NJ/2a 

= [OTMa]	
(3. 80)

TI 
TMelZ 

b
- 0 

T 
Mb

where 0 z M-1/2 T is the congruence transformation which simultaneously

diagonalizes M and K,

The problem has now been reduced to the form where the matrix

perturbation theory of Section 2B can be applied. In Section ZB it was

shown that the similarity matrix T which will diagonalize A is given by

I+jES 
DO	

I j E S 0 
0

T

	

	
-E(A,+S Z ) - j OO -E(A l+s c -̂ )	

(3.81)
jno

Iro 	
0

-1
I+jEn l
	 2

T	
Al +S 

ao	
_jQ 

0 

1- 1!

	

(3.82)
I - jEn;' A I+SOZ	EjQ-1-

	

0	 0	 S]
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where

E

):	 E

W

i^ = Ai/2	 W2.	 (3.83)0	
0- -wN

where wi , i-1,2. , . N are the radial frequencies of the undamped system.

X11
f3

Al =	 22 . ,	
(3.84)

6NN

0	 0312	 T IN
2 2 22w 1 -w2	 w 1-wN

S	 1	 0 s_,.,	 2N	 (3.85)2----- 2,	 2	 2w2 -w 1	 w2-wN

ZN1 2	 ..... 0
wN.-w 1

Making the transformation

w = Tp	 (3, 86)

Equation (3.76) becomes

dp [jQO -EA,	 0	
- 1dt	 0	 j DO - E A-I p+ T s(t)

(3, 87)

( 0 ) = T-1p 	 d

Thus

	

e(J00-EA1)t 0-^	 t e (j00 -EA 1 )(t-r) 0

P(t) =
	 .2-1w(0)+	 T -1s (T) dT (3. 88)

	

(-j^20-Eli1ic!	
O	

(-jD0-EAI (t-T)0 e J	 ^^
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^- t

1?

i

i Therefore

	

i	 c(iQ En 1)t 0	 e

	

t	 (j no 	
Or

W (t) T	 r-	 T-lw(0)+	 T	 T-1 0 dT (3.89)-..	
e1 

JQO-EAX)t_
	 A _^,(-j00-En1)t(t)

	

r ` I	
Substituting (3. 78), (3, 81), (3. 82), (3. 83), (3. 84) into (3, 89) and

	

t	 i	 i

taking the special case where w(0)` 0
t ^ E

	

t 	
- 2 6ii(t-T) 

sinwi(t-T)	 Tz(t)	 e	
w.	

Q f(T) dT	 1

t	 1

	

+ E^ [SR(t -T) - R(t-T)S]Q T f(T) dT + O(E2 )	 (3, 90)

where

r

- 2 fit 
R(T) =	 e	 cos wit	 (3, 91)

Now

	

X(t) = M
-1/Z Tz (t) = QZ (t)	 l,^

t

- 2 ^ii (t-T) sinwi(t-T)	
T

	

^(t) _ Q e	 w,	
Q f(T) dT

+ 
Efot

	

Q[SR(t-T)-R(t-T)S]QT±(T) dT + O ( E2 )	 (3. 92)

The first term in (3. 92) is the solution which would have been obtained

if the matrix B=Q TBQ had been diagonal. Thus the error in neglecting the ^Ma^l

off-diagonal terms is

^t
x(t) - x0 (t) = E

J QESR(t-T)-R(t-T)S ]QTf(T) dT- + O ( E2 )	 (3. 93)_	
0
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To obtain some idea of the errors introduced by the off -diagonal

terms in the matrix B, let us compare the two matrices v(t) and

E[SR(t)-R(t)SI. We have

- 2 R3 11t sixt 'wlt 	 _........._.....
e	

wl

v(t) _	 ' ,	 E	 (3. 94)	 j

e - 2 '^Nl`7t sin wNt
wN

and

E[SR(t) - R(t)S]

Ep312(Rl-R,2) E"13(R 1-R3 )	 E'WR1 RN)
0	 2 2	 2 2	 2 2	w 1 -w2	 w 1 -w`	 w 1-wN

EB1 2(	 0	
E S 

Z3 (RZ- R 
3) .. ............	 (3. 95)

w 1 -w2	 w2-w3

ESIN(Rl-RN)	
0

w l - wN

The contribution oz v(t) to the solution depends on

i) the diagonal terms o3ii

ii) the frequencies w 
iii) the frequencies and amplitudes of the model excitation

The contribution of E[SR(t)-R(t)S) to the solution depends on

i) the off-diagonal term E03 ij iij

ii) the frequency separation of the modes w?-w^ i4j

iii) the frequencies and amplitudes of the modal excitation

From the above one may conclude the following;

i) The effect of the off-diagonal terms will be smaller the smaller the

magnitude of the off-diagonal terms.
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ii) The effect of the off-diagonal terms will be smaller the wider the

separation in the modal frequencies,

To illustrate some of the points in this case, consider the numerical

Example B,

F

rA". 7
^.

5

Example B

Consider the steady state solution of the problem

	

2 0	 I 1,05 -0,051	 (cost

	

Iy* E LO El i+ L-0,05	 1,05J - - cos 1

The transformation

	

F1
	 17

vr2
y	 1	 1 z

V VIZ

will diagonaliz e the stiffness matrix, giving

Iz^ E^-1 2]Z+L0 
1 0	 V2 ^f2 stl

The associated eigenvalue problem is

(Y?I+EYiL-1 2 ]  I0 1.11)i i=0

Applying the methods of Section 2B, we have

	

l	 0

	

^0 - [0	 1.1

((^^ 1 01
 1^

0	 1

	

S -	 0.10 10
1	 0
	 [10 00.1

	

1	 1

Q T = V
-2- vrZ-
1_ 1

(3. 96)

(3. 97)

(3. 98)

(3. 99)
Vill,

(3.100)

(3, 101)

(3.102)
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Thus the steady state solution is given by (3. 92) with the lower limit set

to Co.

	t --1	 17 e E(t-T) sin (t- 1r) 	 0	 vr2-- c o s t72 72
_X(t)	 1	 E(t-T) sin/—l.l (t-,r)0	 e	 0

dr=f
- 00 v7 v'2-j -	 ITI-71	 __j

- 
E(t- 

T) ] [COS (t-T)-COr3/l7 (t-T)] /0 1 0 Ce	 O2 CS t

	

+ Ef' V/2 v-2	 dT + O(E 21	 1	 10[ - E(t- T)
[COS(t-T)-CoSv/1.1 (t-T)l 0	 0

	

-00 V2 /2-	
e

 -
(3. 103)

Therefore

sin t-	 5 cos t-
Y_(t)	

2E	 + O(E)	 (3. 104)sin t	 5 cos t

The first term represents the response y o (t) of the system neglecting the

off-diagonal term, thus the error due to the off-diagonal terms in B is

given by

5 COS t
1(t)-y-01(t) - 1-5 cos t]+ O(E)	 (3. 105)

A measure of the relative error is

s
upp ir—YO(t) = IOE	 (3. 106)

Thus we see that as long as E is small the relative error in neglecting the

off-diagonal terms in the B matrix is small in this case.
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